Appendix G

Traffic Impact Analysis (Kd Anderson)

TRAFFIC IMPACT ANALYSIS

FOR
 RECOLOGY HAY ROAD LANDFILL EXPANSION PROJECT
 Solano County, CA

Prepared For:

ASCENT ENVIRONMENTAL, INC.
455 Capitol Mall, Suite 300
Sacramento, CA 95814

Prepared By:
KD Anderson \& Associates, Inc.
3853 Taylor Road, Suite G
Loomis, California 95650
(916) 660-1555

December 5, 2018

0563-002
Hay Rd Landfill.rpt

RECOLOGY HAY ROAD LANDFILL EXPANSION PROJECT TRAFFIC IMPACT ANALYSIS

TABLE OF CONTENTS

EXECUTIVE SUMMARY I
INTRODUCTION 1
Study Purpose and Objectives 1
Project Description 1
EXISTING SETTING 3
Study Area 3
Study Area Roadways 3
Study Area Intersections 3
Level of Service 5
Roadway Segment Level of Service 6
Existing Traffic Conditions 8
Non-Automobile Transportation 11
Existing Plus Project Conditions 12
Existing Plus Project Level of Service Impacts 19
CUMULATIVE IMPACTS 22
Year 2030 Traffic Forecasts and Lane Configurations 22
2030 Conditions 22
2030 Plus Project Level of Service Impacts 26
TEMPORARY BALE STORAGE OF RECYCLABLE MATERIALS 30
MITIGATION MEASURES 31
Existing Conditions 31
Existing Plus Project Conditions 31
2030 Conditions 31
2030 Plus Project Conditions 32
REFERENCES 34
APPENDIX 35

RECOLOGY HAY ROAD LANDFILL EXPANSION PROJECT TRAFFIC IMPACT ANALYSIS

EXECUTIVE SUMMARY

Project Description. This study evaluates the traffic impacts associated with amending the existing Conditional Use Permit (CUP) to reflect changes requested for the Recology Hay Road Landfill site in Solano County. The Recology Hay Road Landfill is located in the southwest quadrant of the SR 113 / Hay Road intersection in Solano County. Access to the site is from Hay Road just west of SR 113. The project will revise the existing daily tonnage limit and establish a new peak limit as well as an average daily limit. The existing CUP allows for 2,400 tons per day (tpd) of landfill disposal. Occasionally, the site has received more than $2,400 \mathrm{tpd}$ requiring the site to turn away vehicles so as to not exceed the existing peak limit. The project would amend the CUP to allow a peak day limit of 3,400 tpd with a 7 -day average limit of $3,200 \mathrm{tpd}$. This will allow the site to not have to turn away haulers.

Existing Setting. Levels of Service were evaluated for eight intersections and six roadway segments to provide a baseline analysis to meet CEQA criteria. The intersection locations included intersections between the I-80 / Midway Road interchange, and along Midway Road and SR 113. The analysis included a.m. and p.m. peak hours at all intersections and included a Saturday peak hour analysis at four intersections closest to the site. Sunday traffic was reviewed at the project site and was consistently lower than Saturday traffic; therefore, the weekend analysis included only Saturday.

The six roadway segments considered included three along SR 113, two along Midway Road and one along Hay Road. County Level of Service policy considers LOS C as the acceptable threshold while Caltrans policy considers LOS D as the acceptable threshold.

The SR 12 / SR 113 intersection currently operates at LOS E in the a.m. peak hour and LOS F in the p.m. peak hour. Caltrans has an identified safety project that would construct a single lane roundabout at this intersection. Construction is slated to be completed Fall 2019. Under the roundabout condition the intersection will operate at LOS A in the a.m. peak period (7.0 spv) and LOS C in the p.m. peak hour (18.8 spv). The remaining intersections and roadway segments operate within the Caltrans and County LOS thresholds.

No additional recommendations are noted.
Existing Plus Project Specific Impacts. Under Existing plus Project conditions, all intersections except the SR 12 / SR 113 intersection will operate within acceptable County and Caltrans LOS thresholds. The SR 12 / SR 113 intersection will continue to operate at LOS E in the a.m. peak hour and LOS F in the p.m. peak hour. As identified under Existing Conditions

Caltrans has an identified safety project that would construct a single lane roundabout at this intersection. With this project completed the intersection will operate at LOS A in the a.m. peak hour (7.1 spv) and LOS C in the p.m. peak hour (19.1 spv). All roadways will continue to operate within the Caltrans and County LOS thresholds.

No additional mitigations are necessary.
2030 Conditions. Under 2030 conditions, the SR 113 / Midway Road intersection will decline to an LOS E condition in the a.m. peak hour (45.7 spv) and LOS F condition in the p.m. peak hour (53.6 spv). The intersection will not meet the peak hour traffic signal warrant. The SR 12 / SR 113 intersection will decline to LOS F in the p.m. peak hour (124.4 spv). One roadway segment, Midway Road between the I-80 Eastbound Ramps intersection and Porter Road will decline to LOS D in both directions. The remaining intersections and roadway segments will operate within County and Caltrans LOS thresholds.

The following recommendations are made:

Recommendations:

- SR 113 / Midway Road: Installation of all-way stop control will improve the level of service to LOS B in both a.m. (13.3 spv) and p.m. (13.7 spv) peak hours. Caltrans has identified a conceptual project to widen shoulders, construct a median and install a traffic signal at the SR 113 / Midway Road intersection to enhance safety; however, this project is not yet included in a planning or programming document.
- SR 12 / SR 113: Installation of a second eastbound lane through the roundabout will improve the level of service to a LOS C (21.5 spv) condition in the p.m. peak hour. No agencies with jurisdiction currently have plans for any improvements at this intersection.
- Midway Road - I-80 Eastbound Ramps to Porter Road (both directions): A 0.30 mile long passing lane in both eastbound and westbound directions would be needed to improve the roadway segment to an acceptable level of service, LOS C (EB ATS - 45.1 / PTSF - 52.8; WB ATS - 45.3 / PTSF - 43.0). No agencies with jurisdiction currently have plans for any improvements at this intersection.

No additional recommendations are noted.
2030 Plus Project Conditions. The SR 113 / Midway Road intersection and the SR 12 / SR 113 intersection will continue to operate below the Caltrans LOS D threshold. Additionally, both directions of Midway Road, between the I-80 Eastbound Ramps intersection and Porter Road will operate at LOS D. The remaining intersections and all roadway segments will operate within County and Caltrans LOS thresholds. The following mitigations are made:

Mitigations:

- SR 113 / Midway Road: As identified in the 2030 No Project Recommendations installation of all-way stop control will improve the level of service to LOS B in both a.m. (13.7 spv) and p.m. (13.8 spv) peak hours. This intersection is under the jurisdiction of Caltrans, and Caltrans has identified a conceptual project to widen shoulders, construct a median and install a traffic signal at the SR 113 / Midway Road intersection to enhance safety. However, this project is not yet included in a planning or programming document. Any improvement of the intersection would require Caltrans concurrence and approval. The project applicant and Solano County shall coordinate with Caltrans on implementation of this improvement. However, because the final approval of the proposed improvement is outside the jurisdiction and control of the Applicant and County, there is no guarantee that this mitigation measure would be implemented prior to project-related trips occurring at this intersection. Therefore, this is considered a significant and unavoidable impact.
- SR 12 / SR 113: As identified in the 2030 No Project Recommendations installation of a second eastbound lane through the roundabout will improve the level of service to a LOS $\mathrm{C}(21.7 \mathrm{spv})$ condition in the p.m. peak hour. This improvement is under the jurisdiction of Caltrans. Any improvement of the intersection would require Caltrans concurrence and approval. The project applicant and Solano County shall coordinate with Caltrans on implementation of this improvement. However, because the final approval of the proposed improvement is outside the jurisdiction and control of the Applicant and County, there is no guarantee that this mitigation measure would be implemented prior to project-related trips occurring at this intersection. Additionally, Caltrans does not currently have plans for any improvements at this intersection. Therefore, this is considered a significant and unavoidable impact.
- Midway Road - I-80 Eastbound Ramps to Porter Road (both directions): As identified in the 2030 No Project Recommendations a 0.30 mile long passing lane in both eastbound and westbound directions would be needed to improve the roadway segment LOS to an acceptable level of LOS C (EB ATS - 45.0 / PTSF - 53.2; WB ATS - 45.2 / PTSF 43.7). This improvement is under the jurisdiction of Solano County. The project applicant shall coordinate with Solano County and shall fund the improvement of this segment to be constructed prior to vehicle trips to the landfill exceeding 2,400 per day. Therefore, with mitigation, this is considered a less-than-significant impact.

No additional mitigations are identified.

RECOLOGY HAY ROAD LANDFILL EXPANSION PROJECT TRAFFIC IMPACT ANALYSIS

INTRODUCTION

Study Purpose and Objectives

This study evaluates the traffic impacts associated with amending the existing Conditional Use Permit (CUP) to reflect changes requested for the Recology Hay Road Landfill site. Regarding traffic related issues the project proposed to revise the existing daily tonnage limit and establish a new peak limit as well as an average daily limit. The existing CUP allows for 2,400 tons per day (tpd) of landfill disposal. Occasionally, the site has received more than 2,400 tpd requiring the site to turn away vehicles so as to not exceed the existing peak limit. The project would amend the CUP to allow a peak day limit of $3,400 \mathrm{tpd}$ with a 7 -day average limit of $3,200 \mathrm{tpd}$. This will allow the site to not have to turn away haulers.

The study parameters are consistent with Solano County guidelines. The study addresses the following traffic scenarios:

1. Existing (2018) Peak Hour Traffic Conditions;
2. Existing plus Project Peak Hour Traffic Conditions;
3. Year 2030 Peak Hour Traffic Conditions;
4. Year 2030 plus Project Peak Hour Traffic Conditions;

The focus of this study is to identify project-related impacts under long-term conditions as a result of accepting an additional 1,718 tpd at the site, which is the difference between existing tonnage received at the landfill and allowable tonnage to be received under the proposed CUP amendments. Analysis of an Existing condition is required to address the requirements of Sections 15125 of the State CEQA Guidelines, "an EIR must include a description of the physical environmental conditions in the vicinity of the project, as they exist at the time the notice of preparation is published, or if no notice of preparation is published, at the time environmental analysis is commenced, from both a local and regional perspective."

Project Description

The Hay Road Landfill is located east of the City of Vacaville in Solano County. The site is located in the southwest quadrant of the SR 113 (Rio Dixon Road) / Hay Road intersection. The project will modify the previously approved Hay Road Landfill Expansion project. From a transportation perspective the proposed project will modify the existing daily limit to accept up to 3,400 tpd with an average of 3,200 tpd over a 7-day period.

Access to the site facility will remain unchanged, via its access along Hay Road. Figure 1 illustrates the location of the site relative to the surrounding areas of Solano County.

Source: Doug Brown 2012

EXISTING SETTING

Study Area

This study addresses traffic conditions in the vicinity of the Hay Road Landfill project site, including the project routes from the Interstate 80 (I-80) / Midway Road interchange to the north and from the SR 113 / SR 12 intersection to the south. Six roadway segments were analyzed along with eight intersections along the routes providing access to the landfill site. The text that follows describes the facilities included in this analysis.

Study Area Roadways

State Route 113. State Route (SR) is a two-lane road between in Solano County beginning at SR 12 in the south and heads north past I-80, continuing through Davis and Woodland to its terminus in Sutter County. Between SR 12 and Midway Road, the road has varying shoulder widths, ranging from about 10^{\prime} at intersections to 0 ' within the segments. The speed limit is 55 miles per hour (mph). SR 113 is identified in Solano County as a major arterial.

Midway Road. Midway Road is a two-lane road providing east-west access west of I-80 and east beyond the SR 113 intersection. The road has varying shoulder widths, ranging between 0 and 8 feet. The speed limit is 55 miles per hour (mph). Midway Road is identified in Solano County as a County Route of Regional Significance.

Hay Road. Hay Road is a two-lane local road running east-west between Meridian Road and SR 113. The road has minimal shoulder widths, ranging between 0 and 2 feet. The speed limit is 55 miles per hour (mph). Hay Road is identified in Solano County as a collector road.

Study Area Intersections

The quality of traffic flow is typically governed by the operation of major intersections. Eight intersections serving this site were identified for evaluation. These include:

1) I-80 Westbound Ramps / Oday Road
2) Midway Road / Oday Road
3) I-80 Eastbound Ramps / Midway Road
4) Midway Road / Porter Road
5) SR 113 / Midway Road
6) SR 113 / Hay Road
7) SR 113 / SR 12
8) Hay Road / Project Entrance
A.m. and p.m. mid-week peak hour counts were conducted at each of these intersections in late January and early February 2018. Traffic counts were also conducted at intersections 5 through 8 for the Saturday mid-day peak period in late January 2018. New counts were also conducted at intersections 1 through 3 in early October 2018; the I-80/Midway Road interchange has been
reopened since July 2018 after being replaced. The Midway Road interchange is the designated truck route for the site.

Each study intersection is described below:
I-80 Westbound Ramps / Oday Road is a tee intersection with a hook on/off ramp. The intersection is stop controlled along the I-80 off-ramp approach. The Oday Road approaches consist of single lanes providing shared through and left or right turn right turn movements. The westbound off-ramp includes a left turn lane under stop control and a short right turn lane under yield control.

Midway Road / Oday Road is an unsignalized tee intersection. Stop control is provided along Oday Road. Westbound Midway Road includes a through lane with a free right turn lane onto Oday Road. Eastbound Midway Road includes a shared through-left lane while Oday Road consists of a single lane approach.

The Midway Road / I-80 Eastbound Ramps intersection is an unsignalized diamond configuration (L-1). Both directions of Midway Road consist of a single lane with the eastbound approach providing a shared through left lane and the westbound approach providing a shared through-right lane. Stop control exists along the I-80 off-ramp for through and left turn movements while the right turn movement merges onto eastbound Midway Road.

The Midway Road / Porter intersection is an unsignalized tee intersection. Eastbound Midway Road bypasses the Porter Road intersection while westbound Midway Road tees into Porter Road. The westbound left turn is stop controlled while the right turn is yield controlled. The northbound and southbound approaches along Porter Road allow only through movements.

The SR 113 / Midway Road intersection is an unsignalized four-way intersection with stop control along Midway Road. The SR 113 approaches include left turn lanes and a shared through-right lane while Midway Road consists of a single lane.

The SR 113 / Hay Road intersection is an unsignalized tee intersection with stop control along Hay Road. All approaches are single lanes.

The SR 12 / SR 113 - Birds Landing Road intersection is an unsignalized four-way intersection with stop control along SR 113. The SR 12 approaches include a left turn lane, a through lane and a right turn lane. Both the northbound Birds Landing Road approach and the SR 113 approach include a shared through-left lane and a right turn lane. Caltrans has an identified safety project that would construct a single lane roundabout at this intersection. Construction is slated to be completed Fall 2019.

The Hay Road / Project Access intersection is an unsignalized tee intersection with stop control along the project access. Westbound Hay Road includes a through lane and a left turn lane while the eastbound approach includes a shared through-right lane. The project entrance is unstriped but wide enough to allow both right and left turning vehicles to queue.

Level of Service

To assess the quality of existing traffic conditions and provide a basis for analyzing project impacts, Levels of Service were calculated at study area intersections and project driveways. "Level of Service" is a qualitative measure of traffic operating conditions whereby a letter grade "A" through " F ", corresponding to progressively worsening operating conditions, is assigned to an intersection or roadway segment.

The Level of Service policies of Solano County and Caltrans govern this analysis. The Solano County Road Standards documents the County's policies for Level of Service in rural and urban areas. The document notes that LOS C is the design standard for the County.

Caltrans has set a minimum Level of Service standard of LOS D in rural areas, populations less than 2,500 and LOS E in urban clusters (populations 2,500 to 49,999) and LOS E in urbanized areas (populations over 50,000) for state highways. These standards may vary depending on the corridor conditions. For this project LOS D is considered the significance threshold.

Various methodologies exist to determine operating Levels of Service at signalized intersections. The available techniques vary with regard to factors such as traffic signal timing, interaction between adjoining signals, etc. The procedures contained in the 2010 Highway Capacity Manual have been used for determining operating Level of Service at signalized intersections.

At unsignalized intersections the number of gaps in through traffic, gap acceptance time and corresponding delays for motorists waiting to turn are used for Level of Service analysis. Procedures used for calculating unsignalized intersection Level of Service are as presented in the Highway Capacity Manual, 2010 Edition.

Table 1 presents general characteristics associated with each Level of Service grade.

TABLE 1
LEVEL OF SERVICE DEFINITIONS

Level of Service	Signalized Intersection	Unsignalized Intersection	Roadway (Daily)
"A"	Uncongested operations, all queues clear in a single-signal cycle. Ave Delay ≤ 10 seconds per vehicle	Little or no delay. Ave Delay $\leq 10 \mathrm{sec} / \mathrm{veh}$	Completely free flow.
"B"	Uncongested operations, all queues clear in a single cycle. Delay > 10 $\mathrm{sec} / \mathrm{veh}$ and $\leq 20 \mathrm{sec} / \mathrm{veh}$	Short traffic delays. Delay > $10 \mathrm{sec} / \mathrm{veh}$ and $\leq 15 \mathrm{sec} / \mathrm{veh}$	Free flow, presence of other vehicles noticeable.
"C"	Light congestion, occasional backups on critical approaches. Delay >20 sec/veh and <35 sec/veh	Average traffic delays. Delay > $15 \mathrm{sec} /$ veh and $\leq 25 \mathrm{sec} / \mathrm{veh}$	Ability to maneuver and select operating speed affected.
"D"	Significant congestions of critical approaches but intersection functional. Cars required to wait through more than one cycle during short peaks. No long queues formed. Delay $>35 \mathrm{sec} / \mathrm{veh}$ and < $55 \mathrm{sec} / \mathrm{veh}$	Long traffic delays. Delay > $25 \mathrm{sec} / \mathrm{veh}$ and $\leq 35 \mathrm{sec} / \mathrm{veh}$	Unstable flow, speeds and ability to maneuver restricted.
"E"	Severe congestion with some long standing queues on critical approaches. Blockage of intersection may occur if traffic signal does not provide for protected turning movements. Traffic queue may block nearby intersection(s) upstream of critical approach(es). Delay $>55 \mathrm{sec}$ and $\leq 80 \mathrm{sec} /$ veh	Very long traffic delays, failure, extreme congestion. Delay > $35 \mathrm{sec} / \mathrm{veh}$ and $\leq 50 \mathrm{sec} / \mathrm{veh}$	At or near capacity, flow quite unstable.
"F"	Total breakdown, stop-and-go operation. Delay > $80 \mathrm{sec} / \mathrm{veh}$	Intersection often blocked by external causes. Delay > 50 sec/veh	Forced flow, breakdown.
Sources: 2010 Highway Capacity Manual,			

Roadway Segment Level of Service

Two-Lane Highway Roadway Segments. Roadway segments were analyzed using methods presented in the Highway Capacity Manual 2010 (HCM). A two-lane highway is an undivided roadway with one lane in each direction. Passing a slower vehicle requires use of the opposing lane as sight distance and gaps in the opposing traffic stream permit. As volumes and geometric restrictions increase, the ability to pass decreases and platoons form. Motorists in platoons are subject to delay because they are unable to pass. The HCM divides these roadways into three types: Class I, Class II and Class III. They are defined as follows:

- Class I two-lane highways are highways where motorists expect to travel at relatively high speeds. Two-lane highways that are major intercity routes, primary connectors of major traffic generators, daily commuter routes, or major links in state or national
highway networks are generally assigned to Class I. These facilities serve mostly longdistance trips or provide the connections between facilities that serve long-distance trips.
- Class II two-lane highways are highways where motorists do not necessarily expect to travel at high speeds. Two-lane highways functioning as access routes to Class I facilities, serving as scenic or recreational routes (and not as primary arterials), or passing through rugged terrain (where high-speed operation would be impossible) are assigned to Class II. Class II facilities most often serve relatively short trips, the beginning or ending portions of longer trips, or trips for which sightseeing plays a significant role.
- Class III two-lane highways are highways serving moderately developed areas. They may be portions of a Class I or Class II highway that pass through small towns or developed recreational areas. On such segments, local traffic often mixes with through traffic, and the density of unsignalized roadside access points is noticeably higher than in a purely rural area. Class III highways may also be longer segments passing through more spreadout recreational areas, also with increased roadside densities. Such segments are often accompanied by reduced speed limits that reflect the higher activity level.

Levels of Service. Three measures of effectiveness are incorporated into the methodology to determine automobile LOS:

1. Average Travel Speed (ATS) reflects mobility on a two-lane highway. It is defined as the highway segment length divided by the average travel time taken by vehicles to traverse it during a designated time interval.
2. Percent Time Spent Following (PTSF) represents the freedom to maneuver and the comfort and convenience of travel. It is the average percentage of time that vehicles must travel in platoons behind slower vehicles due to the inability to pass. Because this characteristic is difficult to measure in the field, a surrogate measure is the percentage of vehicles traveling at headways of less than 3.0 at a representative location within the highway segment. PTSF also represents the approximate percentage of vehicles traveling in platoons.
3. Percent of free-flow speed (PFFS) represents the ability of vehicles to travel at or near the posted speed limit.

Speed and delay due to passing restrictions are both important to motorists on Class I two-lane highways; therefore, LOS is defined in terms of both ATS and PTSF. Travel speed is not a significant issue on Class II highways; therefore, LOS is defined in only terms of PTSF. High speeds are not expected on Class III highways and since the length of the Class III segments may be generally limited, passing restrictions are also not a major concern. In Class III segments drivers are expected to want to travel at or near the speed limit. Therefore, PFFS is used to define LOS. The LOS criteria for two-lane highways are shown in Table 2.

TABLE 2
AUTOMOBILE LOS FOR TWO-LANE HIGHWAYS \dagger

LOS	Class I Highways		Class II Highways	Class III Highways
	ATS (mi /hr)	PTSF (\%)	PTSF (\%)	PFFS (\%)
A	>55	≤ 35	≤ 40	>91.7
B	$>50-55$	$>35-50$	$>40-55$	$>83.3-91.7$
C	$>45-50$	$>50-65$	$>55-70$	$>75.0-83.3$
D	$>40-45$	$>65-80$	$>70-85$	$>66.7-75.0$
E	≤ 40	>80	>85	≤ 66.7

\dagger HCM 2010, Chapter 15, December 2010

Existing Traffic Conditions

Intersection Levels of Service. Level of Service is based on and measured in terms of delay (seconds) per vehicle for the peak fifteen-minute analysis period. For unsignalized minor leg stop controlled intersections the movement with the worst delay approach movement is considered the critical Level of Service for the intersection. For multiway stop-controlled intersections the Level of Service is determined based on the overall average delay in the intersection.

Figure 2 presents the intersection turning movements for each intersection. Table 3 summarizes current Levels of Service at the study area intersections during the a.m. and p.m. peak hour. Saturday peak hour level of service was also calculated along the SR 113 intersections and at the Hay Road / Project Entrance intersection. Sunday traffic was reviewed at the project site and was consistently lower than Saturday traffic; therefore, the weekend analysis included only Saturday. All intersections except the SR 12 / SR 113 intersection currently operate at LOS C or better. The SR 12/ SR 113 intersection operates at LOS E in the a.m. peak hour with a delay of 38.8 seconds per vehicle (spv) and LOS F in the p.m. with a delay of 373.3 spv . This intersection meets the peak hour signal warrant in the p.m. peak hour. Caltrans has an identified safety improvement at this intersection which will construct a single lane roundabout. This project is identified for completion in the Fall 2019.

**Note: Intersections 1-4 not analyzed on Saturday

TABLE 3
EXISTING PEAK HOUR LEVELS OF SERVICE AT INTERSECTIONS

Location	Control	Existing AM Peak Hour		Existing PM Peak Hour		Existing Saturday Peak Hour		$\begin{gathered} \text { Peak Hour } \\ \text { Warrant } \\ \text { Met? } \\ \hline \end{gathered}$
		LOS	Average Delay (secs)	LOS	Average Delay (secs)	LOS	Average Delay (secs)	
1. I-80 Westbound Ramps / Oday Rd SB Left WB	WB Stop	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 6.7 \\ 10.3 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.6 \end{aligned}$		--- ---	No
2. Midway Road/ Oday Rd SB EB Left	SB Stop	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 7.8 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.8 \\ & 7.6 \end{aligned}$	---	----	No
3. I-80 Eastbound Ramps / Midway Rd NB EB Left	NB Stop	$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	$\begin{gathered} 13.0 \\ 8.1 \end{gathered}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 12.2 \\ 8.1 \end{gathered}$	----	----	No
4. Midway Rd / Porter Rd WB	WB Stop	A	9.0	A	8.8	---	---	No
5. SR 113 / Midway Rd NB Left SB Left EB WB	$\begin{gathered} \mathrm{EB} / \mathrm{EB} \\ \text { Stop } \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 7.7 \\ 7.5 \\ 13.7 \\ 11.4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 7.6 \\ 7.6 \\ 12.0 \\ 13.7 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 7.5 \\ 7.4 \\ 10.5 \\ 9.9 \\ \hline \end{gathered}$	No
6. SR 113 / Hay Rd NB Left EB	EB Stop	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 7.6 \\ 10.6 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 7.8 \\ 12.1 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	No
7. SR 113 / SR 12 NB SB EB Left WB Left	NB / SB Stop	$\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 24.1 \\ 38.8 \\ 0.0 \\ 7.8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~F} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 17.8 \\ 373.3 \\ 8.6 \\ 9.3 \end{gathered}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{r} 12.0 \\ 20.5 \\ 8.6 \\ 7.9 \end{array}$	Yes
8. Hay Rd / Project Entrance NB WB Left	NB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.2 \\ & 7.4 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.1 \\ & 7.3 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.4 \end{aligned}$	No

AWS - multi-way stop

Existing Roadway Segment Levels of Service. Table 4 summarizes the Levels of Service based on the current traffic volumes on study area roads with the existing roadway configuration. Applicable Level of Service thresholds and roadway classifications are presented. The Levels of Service along Midway Road, SR 113 and Hay Road were computed using the HCS two-lane roadway methodology. Both County roadways will operate at LOS C or better while the segments along SR 113 operate at LOS D or better. These are within the acceptable thresholds.

TABLE 4
EXISTING ROADWAY SEGMENT LEVELS OF SERVICE

		Facility	ATS/PTSF/LOS	ATS/PTSF/LOS
Roadway	Location	Classification	Existing AM	Existing PM
Midway Rd	I-80 to Porter Rd	Class I Highway		
	EB		46.6 / 42.8 / C	45.9 / 55.0 / C
	WB		46.5 / 53.3 / C	$46.0 / 49.8 / \mathrm{C}$
	Porter Rd to SR 113	Class I Highway		
	EB		48.2 / 35.3 / C	50.0 / 13.9 / B
	WB		48.0 / 30.5 / C	50.2 / 28.1/B
SR 113	Midway Rd to Fry Rd	Class I Highway		
	NB		47.7 / 29.1 / C	45.9 / 36.8 / C
			$47.5 / 25.0 / \mathrm{C}$	$45.9 \text { / } 37.3 \text { / C }$
	Fry Rd to Hay Rd	Class I Highway		
	NB		45.8 / 44.2 / C	44.8 / 46.1 / D
	SB		45.6 / $31.7 / \mathrm{C}$	44.8 / 43.8 / D
	Hay Rd to SR 12	Class I Highway		
	NB		46.1 / 48.2 / C	44.9 / 45.3 / D
	SB		45.7 / 30.5 / C	44.9 / 50.4 / D
Hay Rd	SR 113 to Daily Rd	Class I Highway		
	EB		49.7 / 24.9 / C	49.5 / 26.4 / C
	WB		49.7 / 24.9 / C	49.4 / 15.1 / C

ATS - average travel speed
PTSF - percent time spent following

Non-Automobile Transportation

Public Transit. Various bus services are provided within Solano County. These include the Fairfield and Suisun Transit System (FAST), Rio Vista Delta Breeze, Solano Express and Vacaville City Coach. These services provide local and intercity routes along the I-80 corridor; however, there are no routes along Midway Road or SR 113.

Bicycle and Pedestrian Facilities. Due to the rural nature of the project location there are no bike facilities or pedestrian facilities present.

Existing Plus Project Conditions

Under Section 15126.2 of the CEQA guidelines, a project must be evaluated individually and cumulatively to determine whether the project causes a significant effect on the environment. Individually, the project is evaluated under Existing conditions, i.e., Existing plus Project conditions while cumulatively, it is analyzed under future conditions which may include either a list of past, present and probably future projects producing related or cumulative impacts or a summary of projections contained in an adopted local, regional or statewide plan or related planning document.

This project is intended to amend the existing Conditional Use Permit by allowing up to 3,400 tons of refuse to be delivered to the site, while maintaining an average 7-day average of 3,200 tons per day.

The 2016 data (tonnage received and vehicle trips) is an appropriate baseline against which to assess the potential net growth in vehicles travelling to and from the landfill as a result of the project. During 2017 and 2018, the landfill assisted in the disposal of fire debris from wildfires in Northern California, which resulted in the accommodation of additional tonnage within the disposal area and additional vehicles travelling to and from the landfill. Table 5 identifies the annual tonnage received, with and without the fire debris and the number of vehicles travelling to and from the landfill during those periods. Because the acceptance of fire debris was in response to an emergency condition, the additional tonnage received and trips conducted were not subject to the established limits within the CUP for the landfill. As a result, use of either 2017 or 2018 tonnage data as part of the baseline against which the potential impacts of an amended CUP would be assessed is considered inappropriate and potentially misleading because it does not represent the landfill's typical operating condition.

TABLE 5
HISTORICAL ANNUAL TONNAGE 2016-2018

Year	Baseline Tonnage	Baseline Vehicles
2016	1,682	425
2017 (with fire debris)	1,947	471
2018 (with fire debris)	2,083	465

Italics: Baseline

Trip Generation. The 2016 7-day tonnage averaged about 1,682 per day. Recology Hay Road projects that most new municipal solid waste (MSW) associated with the proposed project will arrive from outside the local area using semitrailer. MSW tonnage arriving to the site is projected as follows:

- 90\% 20-ton transfer trucks
- 8% 7-ton packer trucks
- $2 \% 1 / 2$-ton self-haul vehicles

Table 6 presents the projected additional trips, broken down by vehicle type, based on the proposed expansion of the site. Both average daily and peak day MSW tonnage to the site were considered. Peak tonnage was based on the difference between the maximum proposed peak tonnage per day (maximum 3,400 tons per day) and the average 2016 weekday tonnage 1,682 tons per day). The project will generate an additional 1,718 tons of MSW under a peak day while the additional average daily MSW will be 1,518 tons per day.

Based on the projected additional daily tonnage and the various vehicles bringing MSW to the site it is projected that 195 new inbound and 195 new outbound trips will be generated daily by the project. This is shown in Table 6. Of these trips, 91 new semi-trailer trips will be generated, with 23 additional packer trucks and 81 new self-haul vehicles.

TABLE 6

PROJECTED DAILY TRIPS*

Average MSW Tons			Average Daily Tonnage per Week (Proposed)	Maximum Daily Tonnage (Proposed)	Net New Tonnage		
(a)	(b)		(c)		(e)		(f)
Weekday	Weekend						Maximum
1,682	924	3,200		3,400	1,518 ${ }^{1}$		1,768 ${ }^{2}$
PEAK TONNAGE VEHICLES							
Maximum Daily Tonnage	Transfer Trucks $\mathbf{9 0 \%}$ of entering vehicles (20 tons / vehicle)		Packer Trucks $\mathbf{8 \%}$ of entering vehicles (7 tons / vehicle)		Self-Haul vehicles 2% of entering vehicles (0.5 tons / vehicle)		Total Vehicles
(g)	In	Out	In	Out	In	Out	
1,718 (Inbound)	91^{3}		23^{4}		81^{5}		195
Empty (Outbound)		91		23		81	195

* Based on 2016 traffic at Recology Hay Road site

MSW - municipal solid waste
${ }^{1}$ (c) $-(\mathrm{a})$
2 (d) - (a)
${ }^{3}[(\mathrm{~g}) * 0.90] / 20$
${ }^{4}[(\mathrm{~g}) * 0.08] / 7$
${ }^{5}[(\mathrm{~g}) * 0.02] / 0.5$

The projected peak hour traffic was estimated based on current traffic into the site compared to historical daily traffic and proportioned based on the existing conditions. On a peak day the project is expected to generate 46 additional a.m. peak hour trips and 27 additional p.m. peak hour trips. Table 7 presents the projected a.m. and p.m. peak hour trips including a breakdown by trip type.

TABLE 7
PROJECTED PEAK HOUR TRIPS

Existing Conditions				
Avg Total Daily Vehicles	AM		PM	
	In	Out	In	Out
526 vehicles*	$69 \dagger$	53†	$3+$	53\%
Percent Traffic \diamond	13.1\%	10.1\%	0.6\%	13.1\%
Project Traffic				
New Daily Vehicles	AM		PM	
	In	Out	In	Out
195 vehicles				
Peak Hour Traffic	$26 *$	20	1	26
Transfer Truck	12 ϕ	9	1	12
Packer	3μ	2	0	3
Self-Haul	11β	8	0	11
* average entering midweek vehicles \ddagger existing p.m. peak hour traffic - (195 daily vehicles* 13.1%) typ. $\mu 26^{*}(23 / 195)$ typ.	ting a.m. ctional p $(91 / 195)$ $(81 / 195)$	ur traffic		

Recology is projecting that Saturday traffic volumes will be similar to mid-week volumes. Weekend traffic generates about 459 vehicles to the site on a typical Saturday. Table 8 presents the projected Saturday peak hour trips based on current inbound and outbound peak hour Saturday trips relative to the total daily Saturday trips. Eleven inbound and nine outbound transfer trucks are projected during the peak hour with three inbound and two outbound packer trucks and ten inbound and eight outbound additional self-haul vehicles are projected with the increase in daily tonnage.

TABLE 8
PROJECTED SATURDAY DAILY TRIPS

Existing Conditions						
Avg Total Daily Vehicles				In	Out	
459 vehicles				$55 \dagger$	43!	
Percent Traffic				12.0\%	9.4\%	
Project Traffic						
Transfer Trucks		Packer Trucks		Self-Haul Vehicles		Total Vehicles
In	Out	In	Out	In	Out	
11^{1}	9^{2}	3^{3}	2^{4}	10^{5}	8^{6}	43
\dagger entering Saturday vehicles ${ }^{1}$ (91 weekday transfer trucks)* 12.0% ${ }^{3}$ (23 weekday packer trucks)* 12.0% ${ }^{5}$ (81 weekday self-haul)* 12.0%			\ddagger exiting Saturday vehicles ${ }^{2}$ (91 weekday transfer trucks)*9.4\% ${ }^{4}$ (23 weekday packer trucks)*9.4\% ${ }^{6}$ (81 weekday self-haul)*9.4\%			

Vehicle Trip Distribution. The distribution of project vehicular traffic was determined based on the haul routes for semi-trailer and packer vehicles and a review of existing traffic counts at the surrounding intersections. Table 9 displays the trip distribution assumptions used for the proposed projects.

TABLE 9
TRIP DISTRIBUTION

Route	\% of Total Trips		
	AM	PM	Saturday
To / From I-80 west of Midway Rd	62%	46%	48%
West on Hay Road	20%	30%	30%
To / From SR 12 east of SR 113	9%	8%	10%
To / From SR 12 west of SR 113	0%	8%	6%
North on SR 113	9%	8%	6%
Total	100%	100%	100%

Vehicle Trip Assignment. Traffic generated by the project was assigned to the study roadway system based on the projected distribution percentages. Figure 3 displays the project generated traffic. Figure 4 displays the resulting sum of existing a.m., p.m. and Saturday peak hour volumes and project trips at the study intersections for the Existing plus Project condition.

KD Anderson \& Associates, Inc. Transportation Engineers
Transportation Engineer

1 Oday Rd/ I-80 WB Ramps	2 Oday Rd/ Midway Rd
3	4
 I-80 EB Ramps/ Midway Rd	Porter Rd/ Midway Rd
	6
SR 113/ Midway Rd	SR 113/ Hay Rd
7	8
	$\checkmark{ }^{0}{ }^{0(0)(1)} \mathbf{0} 16$
SR 113/ SR 12	Project Access/ Hay Rd

**Note: Intersections 1-4 not analyzed on Saturday

PROJECT ONLY TRAFFIC VOLUMES AND LANE CONFIGURATIONS

**Note: Intersections 1-4 not analyzed on Saturday

Existing Plus Project Level of Service Impacts

Intersection Levels of Service. Table 10 displays the a.m., p.m. and Saturday peak period levels of service at each study intersection under Existing plus Project conditions. All intersections except the SR 12/ SR 113 intersection will continue to operate at or above the level of service thresholds, at LOS C or better. The SR 12 / SR 113 intersection will continue to operate at LOS E in the a.m. peak hour and LOS F in the p.m. peak hour. As identified in the Existing Conditions the intersection is scheduled to have a roundabout installed and completed by Fall 2019. No mitigations are necessary.

Roadway Levels of Service. Table 11 presents the peak hour roadway segment traffic volumes along the five study segments. All roadway segments along County roads will operate at LOS C or better while all roadway segments along SR 113 will operate at LOS D or better. These are within the acceptable thresholds.

TABLE 10
EXISTING PLUS PEAK HOUR LEVELS OF SERVICE AT INTERSECTIONS

Location	Control	Existing plus Project AM Peak Hour		Existing plus Project PM Peak Hour		Existing plus Project Saturday Peak Hour		Peak Hour Warrant Met?
		LOS	Average Delay (secs)	LOS	Average Delay (secs)	LOS	Average Delay (secs)	
1. I-80 Westbound Ramps / Oday Rd SB Left WB	WB Stop	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 7.7 \\ 10.3 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.6 \end{aligned}$		----	No
2. Midway Road / Oday Rd SB EB Left	SB Stop	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 11.1 \\ 7.8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.8 \\ & 7.6 \\ & \hline \end{aligned}$	---	---	No
3. I-80 Eastbound Ramps / Midway Rd NB EB Left	NB Stop	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 13.2 \\ 8.2 \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{B} \\ \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} 12.4 \\ 8.1 \\ \hline \end{gathered}$	----	----	No
4. Midway Rd / Porter Rd WB	WB Stop	A	9.1	A	8.9	---	---	No
	EB/EB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 7.7 \\ 7.5 \\ 14.3 \\ 11.8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 7.7 \\ 7.6 \\ 12.3 \\ 14.2 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 7.5 \\ 7.4 \\ 10.5 \\ 10.0 \\ \hline \end{gathered}$	No
6. SR 113 / Hay Rd NB Left EB	EB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 7.6 \\ 11.2 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 7.8 \\ 12.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{r} 7.5 \\ 9.9 \\ \hline \end{array}$	No
	$\begin{gathered} \text { NB / SB } \\ \text { Stop } \end{gathered}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{E} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 11.9 \\ 39.4 \\ 0.0 \\ 7.8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~F} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 17.8 \\ 376.1 \\ 8.6 \\ 9.3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 20.6 \\ 8.6 \\ 7.9 \\ \hline \end{gathered}$	Yes
8. Hay Rd / Project Entrance NB WB Left	NB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.3 \\ & 7.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.2 \\ & 7.4 \end{aligned}$	No

AWS - multi-way stop

TABLE 11
EXISTING PLUS PROJECT ROADWAY SEGMENT LEVELS OF SERVICE

			ATS/PTSF/LOS	ATS/PTSF/LOS
Roadway	Location	Facility Classification	Existing plus Project AM	Existing plus Project PM
Midway Rd	I-80 to Porter Rd	Class I Highway		
	EB		46.4 / 45.4 / C	45.8 / 55.6 / C
	WB		46.3 / 55.3 / C	45.9 / 51.3 / C
	Porter Rd to SR 113	Class I Highway		
			47.9 / 37.5 / C	49.8 / 13.3 / C
	WB		47.6 / 32.3 / C	50.1 / 29.6 / B
SR 113	Midway Rd to Fry Rd	Class I Highway		
	NB		47.2 / 31.0 / C	45.7 / 38.5 / C
	SB		47.0 / 28.1 / C	45.7 / 37.7 / C
	Fry Rd to Hay Rd	Class I Highway		
	NB		45.3 / 45.3 / C	44.7 / 47.8 / D
			$45.3 \text { / } 34.0 \text { / C }$	44.7 / 44.1 / D
	Hay Rd to SR 12	Class I Highway		
	NB		46.0 / 48.5 / C	44.8 / 45.0 / D
	SB		45.7 / 30.9 / C	44.8 / 50.7 / D
Hay Rd	SR 113 to Daily Rd	Class I Highway		
	EB		49.0 / 27.2 / C	49.3 / 29.3 / C
	WB		49.0 / 21.8 / C	49.2 / 13.1 / C

ATS - average travel speed
PTSF - percent time spent following

CUMULATIVE IMPACTS

The analysis of Cumulative impacts was considered when accommodating the peak tonnage increase for the site.

Year 2030 Traffic Forecasts and Lane Configurations

The traffic impacts associated with revising the allowable daily tonnage increase at the Hay Road Landfill site was evaluated within the context of future traffic conditions occurring in this area of Solano County. The most recent Napa-Solano regional travel demand model was used to estimate cumulative traffic in the project's vicinity.

Year 2030 daily traffic volume forecasts generated by the traffic model was the basis for future background traffic conditions. Cumulative volumes along the roadway links were developed using the difference method, i.e., using the projected model growth (i.e. 2010 to 2030) and adding this to existing traffic counts.

The "balancing" of future year intersection turning movement traffic volumes was conducted using methods described in the Transportation Research Board's (TRB's) National Cooperative Highway Research Program (NCHRP) Report 255, Highway Traffic Data for Urbanized Area Project Planning and Design. The NCHRP 255 method applies the desired peak hour directional volumes to the intersection turning movement volumes, using an iterative process to balance and adjust the resulting forecasts to match the desired peak hour directional volumes. The development of future year intersection turning movement traffic volumes requires that the turning movements at each intersection "balance". To achieve the balance, inbound traffic volumes must equal the outbound traffic volumes, and the volumes must be distributed among the various left-turn, through, and right-turn movements at each intersection. Figure 5 presents the projected turning movements at the study intersections.

A single lane roundabout at the SR 12 / SR 113 intersection is the only road improvement identified within the project limits.

2030 Conditions

Intersection Levels of Service. Table 12 displays the a.m. peak hour Levels of Service at each study intersection in the Cumulative 2030 condition. Two intersections will operate below County and Caltrans LOS thresholds in the 2030 No Project condition. The SR 113 / Midway Road intersection will decline to a LOS E condition in the a.m. peak hour (38.5 spv) and p.m. peak hour (46.0 spv). The SR 12/ SR 113 intersection is projected to operate at a LOS F condition in the p.m. peak hour (124.4 spv). The SR 113 / Midway Road intersection will meet the peak hour signal warrant in the a.m. and p.m. peak hours. The SR 113 / Hay Road intersection will also meet the peak hour signal warrant in the p.m. peak hour; however, the intersection operates at LOS C or better.

TABLE 12
2030 PEAK HOUR LEVELS OF SERVICE AT INTERSECTIONS

Location	Control	2030 AM Peak Hour		2030PM Peak Hour		2030Saturday Peak Hour		Peak Hour Warrant Met?
		LOS	Average Delay (secs)	LOS	Average Delay (secs)	LOS	Average Delay (secs)	
1. I-80 Westbound Ramps / Oday Rd SB Left WB	WB Stop	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 7.9 \\ 11.2 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 7.6 \\ 10.1 \end{gathered}$	----	----	No
2. Midway Road / Oday Rd SB EB Left	SB Stop	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 13.3 \\ 8.1 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 11.2 \\ 7.9 \\ \hline \end{gathered}$	----	---	No
3. I-80 Eastbound Ramps / Midway Rd NB EB Left	NB Stop	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 16.4 \\ 8.6 \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 16.0 \\ 8.5 \end{gathered}$	---	---	No
4. Midway Rd / Porter Rd WB	WB Stop	A	9.2	A	9.1	---	---	No
5. SR 113 / Midway Rd NB Left SB Left EB WB	EB/EB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{E} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 8.0 \\ 7.8 \\ 38.5 \\ 16.1 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{E} \\ & \hline \end{aligned}$	$\begin{gathered} 8.1 \\ 7.9 \\ 23.6 \\ 46.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 7.7 \\ 7.6 \\ 13.2 \\ 11.1 \\ \hline \end{gathered}$	Yes ${ }^{1}$
6. SR 113 / Hay Rd NB Left EB	EB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 14.1 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{gathered} 8.4 \\ 21.2 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 7.6 \\ 10.7 \end{gathered}$	Yes ${ }^{2}$
7. SR 113 / SR 12	Roundabout	C	20.8	F	124.4	B	10.4	N/A
8. Hay Rd / Project Entrance NB WB Left	NB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.6 \\ & 7.4 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.2 \\ & 7.4 \end{aligned}$	No

AWS - multi-way stop
N/A - not applicable
${ }^{1}$ meets peak hour traffic signal warrant (a.m. and p.m.)
${ }^{2}$ meets peak hour traffic signal warrant (p.m.)

KD Anderson \& Associates, Inc Transportation Engineers | Transportation Engineers |
| :--- |
| $0563-002$ RA 10/18/2018 |

**NOTE: Intersections 1-4 not analyzed on Saturday

2030 Roadway Segment Levels of Service. Table 13 summarizes the Levels of Service based on the projected 2030 traffic volumes on study area roads with the existing two-lane roadway configuration. All roadway segments except the Midway Road segment between I-80 and Porter Road are projected to operate acceptably, at LOS C along County roads and at LOS D or better along SR 113. The Level of Service along Midway Road between I-80 and Porter Road is projected to decline to LOS D in the p.m. peak hour in both eastbound and westbound directions.

TABLE 13
2030 ROADWAY SEGMENT LEVELS OF SERVICE

		Facility	ATS/PTSF/LOS	ATS/PTSF/LOS
Roadway	Location	Classification	2030 AM	2030 PM
Midway Rd	I-80 to Porter Rd	Class I Highway		
	EB		45.5 / 45.3 / C	42.6 / 72.3 / D
	WB		45.4 / 62.2 / C	43.0 / 59.2 / D
	Porter Rd to SR 113	Class I Highway		
	EB		46.5 / 44.5 / C	47.3 / 36.1 / C
	WB		46.7 / 42.3 / C	47.3 / 39.8 / C
SR 113	Midway Rd to Fry Rd	Class I Highway		
	NB		44.3 / 41.4 / D	43.5 / 52.8 / D
			$43.7 \text { / } 53.6 \text { / D }$	$43.5 / 53.1 / \mathrm{D}$
	Fry Rd to Hay Rd	Class I Highway		
	NB		42.9 / 59.6 / D	41.7 / 63.1 / D
	SB		43.1 / 46.6 / D	41.8 / 60.4 / D
	Hay Rd to SR 12	Class I Highway		
	NB		43.1 / 63.0 / D	41.9 / 59.6 / D
	SB		43.4 / 44.2 / D	41.8 / 65.7 / D
Hay Rd	SR 113 to Daily Rd	Class I Highway		
	EB		49.2 / 16.6 / C	49.0 / 36.7 / C
	WB		49.2 / 29.3 / C	48.6 / 7.9 / C

ATS - average travel speed
PTSF - percent time spent following

2030 Plus Project Level of Service Impacts

Intersection Levels of Service. Figure 6 presents the projected turning movements at the study intersections under 2030 plus Project conditions. Table 14 displays the a.m. peak hour Levels of Service at each study intersection in the 2030 plus Project condition. Two intersections will operate below County and Caltrans LOS thresholds. The SR 113 / Midway Road intersection will operate at a LOS E condition in the a.m. peak hour (45.7 spv) and LOS F condition in the p.m. peak hour (53.6 spv). This intersection will meet the peak hour signal warrant in the a.m. and p.m. peak hour. The SR 12/ SR 113 intersection is projected to operate at a LOS F condition in the p.m. peak hour (125.3 spv). The SR 113 / Hay Road intersection will also meet the peak hour signal warrant in the p.m. peak hour; however, the intersection operates at LOS C or better.

Roadway Levels of Service. Table 15 summarizes the Levels of Service based on the projected 2030 plus Project traffic volumes on study area roads. All roadway segments except the Midway Road segment between I-80 and Porter Road are projected to operate acceptably, at LOS C along County roads and at LOS D or better along SR 113. The Level of Service along Midway Road between I-80 and Porter Road is projected to decline to LOS D in the p.m. peak hour in both eastbound and westbound directions.

**Note: Intersections 1-4 not analyzed on Saturday

TABLE 14
2030 PLUS PEAK HOUR LEVELS OF SERVICE AT INTERSECTIONS

Location	Control	2030 plus Project AM Peak Hour		2030 plus Project PM Peak Hour		2030 plus Project Saturday Peak Hour		Peak Hour Warrant Met?
		LOS	Average Delay (secs)	LOS	Average Delay (secs)	LOS	Average Delay (secs)	
1. I-80 Westbound Ramps / Oday Rd SB Left WB	WB Stop	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 8.0 \\ 11.3 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 7.7 \\ 10.2 \end{gathered}$	----	----	No
2. Midway Road / Oday Rd SB EB Left	SB Stop	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 13.4 \\ 8.1 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 11.3 \\ 7.9 \\ \hline \end{gathered}$	---	----	No
3. I-80 Eastbound Ramps / Midway Rd NB EB Left	NB Stop	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 16.6 \\ 8.6 \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 16.2 \\ 8.6 \end{gathered}$	----	----	No
4. Midway Rd / Porter Rd WB	WB Stop	A	9.3	A	9.2	---	---	No
5. SR 113 / Midway Rd NB Left SB Left EB WB	EB/EB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{E} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 8.1 \\ 7.8 \\ 45.7 \\ 17.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{D} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{gathered} 8.1 \\ 7.9 \\ 25.3 \\ 53.6 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 7.7 \\ 7.6 \\ 13.3 \\ 11.3 \\ \hline \end{gathered}$	Yes ${ }^{1}$
6. SR 113 / Hay Rd NB Left EB	EB Stop	A C	$\begin{gathered} 8.0 \\ 15.4 \\ \hline \end{gathered}$	A C	$\begin{gathered} 8.4 \\ 23.1 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 7.6 \\ 11.1 \end{gathered}$	Yes ${ }^{2}$
7. SR 113 / SR 12	Roundabout	C	21.0	F	125.3	B	10.5	N/A
8. Hay Rd / Project Entrance NB WB Left	NB Stop	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.8 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.7 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.4 \\ & 7.4 \end{aligned}$	No

AWS - multi-way stop
N/A - not applicable
${ }^{1}$ meets peak hour traffic signal warrant (a.m. and p.m.)
${ }^{2}$ meets peak hour traffic signal warrant (p.m.)

TABLE 15
2030 PLUS PROJECT ROADWAY SEGMENT LEVELS OF SERVICE

Roadway	Location	Facility Classification	ATS/PTSF/LOS	ATS/PTSF/LOS
			2030 plus Project AM	2030 plus Project PM
Midway Rd	I-80 to Porter Rd EB WB	Class I Highway	$\begin{aligned} & 45.3 / 47.4 / \mathrm{C} \\ & 45.1 / 61.4 / \mathrm{C} \end{aligned}$	$\begin{aligned} & 42.6 / 72.9 / D \\ & 42.9 / 60.2 / D \end{aligned}$
	Porter Rd to SR 113 EB WB	Class I Highway	$\begin{aligned} & 46.5 / 44.5 / \mathrm{C} \\ & 46.5 / 44.0 / \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 47.2 / 35.1 / \mathrm{C} \\ & 47.2 / 41.1 / \mathrm{C} \end{aligned}$
SR 113	Midway Rd to Fry Rd NB SB	Class I Highway	$\begin{aligned} & 44.0 / 42.8 / D \\ & 42.9 / 47.7 / D \end{aligned}$	$\begin{aligned} & 43.4 / 54.1 / \mathrm{D} \\ & 43.4 / 53.6 / \mathrm{D} \end{aligned}$
	Fry Rd to Hay Rd NB SB	Class I Highway	$\begin{aligned} & 42.6 / 61.1 / D \\ & 42.8 / 49.2 / D \end{aligned}$	$\begin{aligned} & 41.6 / 63.7 / D \\ & 41.7 / 60.7 / D \end{aligned}$
	Hay Rd to SR 12 NB SB	Class I Highway	$\begin{aligned} & 43.0 / 63.0 / D \\ & 43.3 / 44.4 / D \end{aligned}$	$\begin{aligned} & 41.9 / 60.5 / D \\ & 41.7 / 66.0 / D \end{aligned}$
Hay Rd	SR 113 to Daily Rd EB WB	Class I Highway	$\begin{aligned} & 48.7 / 19.0 / \mathrm{C} \\ & 48.9 / 31.6 / \mathrm{C} \end{aligned}$	$\begin{gathered} 48.9 / 38.7 / \mathrm{C} \\ 48.3 / 7.6 / \mathrm{C} \end{gathered}$

ATS - average travel speed
PTSF - percent time spent following

TEMPORARY BALE STORAGE OF RECYCLABLE MATERIALS

Due to recent import restrictions imposed by China on recyclable materials, baled, single-stream recyclable materials are planned to be temporarily stored at the Hay Road landfill site until the restrictions are lifted and/or new markets are developed to accept the material. The landfill site is proposing to store up to 3,680 bales for up to six months before being transported to off-site processing facilities. Each truck delivering bales would contain approximately 50 bales. The project applicant proposes to deliver on average five trucks per day and up to twenty trucks on a given day of baled recyclable materials. If deliveries were to occur daily the landfill would reach its storage limit in 4 to 15 days. It is assumed that similar shipments outbound would be made to the processing facilities or buyer, however, the potential destination of the material is not able to be determined. Trucks could return to the San Francisco Bay Area along westbound I-80, could head east toward Sacramento along eastbound I-80 or east toward Stockton via SR 12.

Because a reasonable projection of the number of vehicles (591) traveling to the landfill with implementation of the proposed project are not anticipated to exceed the daily vehicle limit (620) evaluated in this analysis, the potential additional truck trips associated with the delivery of bales to the landfill is within the modeling results identified above. A further qualitative assessment was conducted to determine what impacts the addition of five trucks per day would have on the local road system. As noted above the site could be filled in 15 days with no additional storage available until on-site material is shipped off-site. It is expected that the maximum of 20 truck shipments could occur on a rare basis, with the five-truck average being more likely, given the amount of storage space available and the expected storage time. With five trucks delivering recyclables and five trucks hauling recyclables to a processing facility this would add 10 round trip truck trips per day to the roadway network. While delivery and shipping times are unknown Recology has stated in their Bale Storage Management Plan that they would attempt to avoid peak hours to the extent possible. All bales would be shipped along I- 80 with 75% of the baled material west of the Midway Road interchange and 25% of the baled material east of the interchange. Since Recology aims to avoid the peak hours these vehicles would not be part of the intersection or roadway analyses. The additional trips would not occur every day and would be part of the daily fluctuation in traffic. Based on this information the quantitative analysis did not include these recyclable material trips. Under Existing plus Project conditions all study intersections between the I-80 / Midway Road interchange and the site have adequate capacity to accommodate additional peak hour round trips. All roadway segments will have capacity to accommodate the additional peak hour truck traffic.

If the import restriction continues through 2030 the two intersections identified under 2030 Cumulative plus Project conditions, SR 113 at Midway Road and SR 12 at SR 113, will continue to operate at LOS E or F, below Caltrans' LOS D threshold. The Midway Road segment between I-80 and Porter Road will also continue to operate below the County's LOS C threshold.

MITIGATION MEASURES

The preceding analysis has identified project-specific and cumulative (2030) impacts that may occur without mitigation. The following discussion identifies a strategy for mitigating the impacts and contribution to impacts of the proposed project. Recommendations are identified for facilities that require improvement but the need for improvement is not a result of the proposed project. If the project causes or contributes to a significant impact, mitigations are identified for the facility.

Existing Conditions

The SR 12 / SR 113 intersection currently operates at LOS E in the a.m. peak hour and LOS F in the p.m. peak hour. Caltrans has an identified safety project that would construct a single lane roundabout at this intersection. Construction is slated to be completed Fall 2019. Under the roundabout condition the intersection will operate at LOS A in the a.m. peak period (7.0 spv) and LOS C in the p.m. peak hour (18.8 spv). The remaining intersections and roadway segments operate within the Caltrans and County LOS thresholds.

Existing Plus Project Conditions

Under Existing plus Project conditions, all intersections except the SR 12 / SR 113 intersection will operate within acceptable County and Caltrans LOS thresholds. The SR 12 / SR 113 intersection will continue to operate at LOS E in the a.m. peak hour and LOS F in the p.m. peak hour. As identified under Existing Conditions Caltrans has an identified safety project that would construct a single lane roundabout at this intersection. With this project completed the intersection will operate at LOS A in the a.m. peak hour (7.1 spv) and LOS C in the p.m. peak hour (19.1 spv). All roadways will continue to operate within the Caltrans and County LOS thresholds.

No additional mitigations are necessary.

2030 Conditions

Under 2030 conditions the SR 113 / Midway Road intersection will decline to an LOS E condition in the a.m. peak hour (45.7 spv) and LOS F condition in the p.m. peak hour (53.6 spv). The intersection will not meet the peak hour traffic signal warrant. The SR 12 / SR 113 intersection will decline to LOS F in the p.m. peak hour (124.4 spv). One roadway segment, Midway Road between the I-80 Eastbound Ramps intersection and Porter Road will decline to LOS D in both directions. The remaining intersections and roadway segments will operate within County and Caltrans LOS thresholds.

The following recommendations are made:

Recommendations:

- SR 113 / Midway Road: Installation of all-way stop control will improve the level of service to LOS B in both a.m. (13.3 spv) and p.m. (13.7 spv) peak hours. Caltrans has
identified a conceptual project to widen shoulders, construct a median and install a traffic signal at the SR 113 / Midway Road intersection to enhance safety; however, this project is not yet included in a planning or programming document.
- SR 12 / SR 113: Installation of a second eastbound lane through the roundabout will improve the level of service to a LOS C (21.5 spv) condition in the p.m. peak hour. Caltrans would have jurisdiction over this improvement. Additionally, there is no funding mechanism for this improvement, and no agencies with jurisdiction currently have plans for any improvements at this intersection.
- Midway Road - I-80 Eastbound Ramps to Porter Road (both directions): A 0.30 mile long passing lane in both eastbound and westbound directions would be needed to improve the roadway segment to an acceptable level of service, LOS C (EB ATS - 45.1 / PTSF - 52.8; WB ATS - 45.3 / PTSF - 43.0). However, Caltrans would have jurisdiction over these improvements. Additionally, there is no funding mechanism for this improvement, and no agencies with jurisdiction currently have plans for any improvements at this intersection.

No additional recommendations are noted.

2030 Plus Project Conditions

The SR 113 / Midway Road intersection and the SR 12 / SR 113 intersection will continue to operate below the Caltrans LOS D threshold with implementation of the project. Additionally, both directions of Midway Road, between the I-80 Eastbound Ramps intersection and Porter Road will operate at LOS D with implementation of the project. The remaining intersections and all roadway segments will operate within County and Caltrans LOS thresholds. The following mitigation measures have been identified for the aforementioned facilities to which the project would contribute to unacceptable LOS:

Mitigations:

- SR 113 / Midway Road: As identified in the 2030 No Project Recommendations installation of all-way stop control will improve the level of service to LOS B in both a.m. (13.7 spv) and p.m. (13.8 spv) peak hours. This intersection is under the jurisdiction of Caltrans, and Caltrans has identified a conceptual project to widen shoulders, construct a median and install a traffic signal at the SR 113 / Midway Road intersection to enhance safety. However, this project is not yet included in a planning or programming document. Any improvement of the intersection would require Caltrans concurrence and approval. The project applicant and Solano County shall coordinate with Caltrans on implementation of this improvement. However, because the final approval of the proposed improvement is outside the jurisdiction and control of the Applicant and County, there is no guarantee that this mitigation measure would be implemented prior to project-related trips occurring at this intersection. Therefore, this is considered a significant and unavoidable impact.
- SR 12 / SR 113: As identified in the 2030 No Project Recommendations installation of a second eastbound lane through the roundabout will improve the level of service to a LOS C (21.7 spv) condition in the p.m. peak hour. This improvement is under the jurisdiction of Caltrans. Any improvement of the intersection would require Caltrans concurrence and approval. The project applicant and Solano County shall coordinate with Caltrans on implementation of this improvement. However, because the final approval of the proposed improvement is outside the jurisdiction and control of the Applicant and County, there is no guarantee that this mitigation measure would be implemented prior to project-related trips occurring at this intersection. Additionally, Caltrans does not currently have plans for any improvements at this intersection. Therefore, this is considered a significant and unavoidable impact.
- Midway Road - I-80 Eastbound Ramps to Porter Road (both directions): As identified in the 2030 No Project Recommendations a 0.30 mile long passing lane in both eastbound and westbound directions would be needed to improve the roadway segment LOS to an acceptable level of LOS C (EB ATS - $45.0 /$ PTSF - 53.2; WB ATS - 45.2 / PTSF 43.7). This improvement is under the jurisdiction of Solano County. The project applicant shall coordinate with Solano County and shall fund the improvement of this segment to be constructed prior to vehicle trips to the landfill exceeding 2,400 per day. Therefore, with mitigation, this is considered a less-than-significant impact.

No additional mitigations are identified.

REFERENCES

Documents Cited

Solano County. November 2008. Solano County General Plan.
Solano County. February 2006. Road Improvement Standards and Land Development Requirements.

California Department of Transportation. California Manual on Uniform Traffic Control Devices for Streets and Highways - 2014 Edition. Sacramento, CA

California Department of Transportation. District 4, Planning and Local Assistance, System Planning, Transportation Concept Report for Route 113, April 2012.
http://www.dot.ca.gov/dist4/systemplanning/docs/rcr/sr113_tcr_finalsigned_040211.pdf
California Department of Transportation. Traffic and Vehicle Data Systems. http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/

Solano County. Initial Study / Mitigated Negative Declaration Recology Hay Road Land Use Permit Application No. U-11-09, August 1, 2012

Transportation Research Board. Highway Capacity Manual 2010. Washington, D.C.
Transportation Research Board. 1982. National Cooperative Highway Research Program (NCHRP) Report 255, Highway Traffic Data for Urbanized Area Project Planning and Design. Washington, D.C.

California Department of Transportation. District 3, Planning and Local Assistance, System Planning, Transportation Concept Report for Route 113, July 2014.
http://www.dot.ca.gov/dist3/departments/planning/tcr/tcr113.pdf

APPENDIX

(under separate cover)

TECHNICAL APPENDIX

FOR

RECOLOGY HAY ROAD LANDFILL EXPANSION PROJECT TRAFFIC IMPACT ANALYSIS

Solano County, CA

Prepared For:

ASCENT ENVIRONMENTAL, INC.

455 Capitol Mall, Suite 300
Sacramento, CA 95814

Prepared By:
KD Anderson \& Associates, Inc.
3853 Taylor Road, Suite G
Loomis, CA 95650
(916) 660-1555

December 5, 2018

0563-002

Intersection						
Int Delay, s/veh	3.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			F		F	
Traffic Vol, veh/h	5		44	192	95	60
Future Vol, veh/h	5	102	44	192	95	60
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	7	7	2
Mvmt Flow	5	111	48	209	103	65

Major/Minor	Major1	Major2						Minor2		
Conflicting Flow All	257	0	-	0	274	153				
\quad Stage 1	-	-	-	-	153	-				
\quad Stage 2	-	-	-	-	121	-				
Critical Hdwy	4.12	-	-	-	6.47	6.22				
Critical Hdwy Stg 1	-	-	-	-	547	-				
Critical Hdwy Stg 2	-	-	-	-5.47	-					
Follow-up Hdwy	2.218	-	-	-3.563	3.318					
Pot Cap-1 Maneuver	1308	-	-	-705	893					
\quad Stage 1	-	-	-	-	863	-				

Stage 2	-	-	-	-	892
Platoon blocked, \%		-	-	-	
Mov Cap-1 Maneuver	1308	-	-	-	702
Mov Cap-2 Maneuver	-	-	-	-	702
Stage 1	-	-	-	-	
Stage 2	-	-	-	-860	-

Approach	EB	WB	SB
HCM Control Delay, s	0.4	0	11
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1308	-	-	-
665				
HCM Lane V/C Ratio	0.004	-	-	-
HCM Control Delay (s)	7.8	0	-	-
HCM Lane LOS	A	A	-	-
HCM 95 th \%tile Q(veh)	0	-	-	-
H	0.8			

Major/Minor	Minor2	Major1	Major2			
Conflicting Flow All	443	157	172	0	-	0
\quad Stage 1	157	-	-	-	-	-
Stage 2	286	-	-	-	-	-
Critical Hdwy	6.47	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.47	-	-	-	-	-
Critical Hdwy Stg 2	5.47	-	-	-	-	-
Follow-up Hdwy	3.563	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	563	889	1405	-	-	-
\quad Stage 1	859	-	-	-	-	-
\quad Stage 2	751	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	555	889	1405	-	-	-
Mov Cap-2 Maneuver	555	-	-	-	-	-
Stage 1	847	-	-	-	-	-
Stage 2	751	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	10.6	0.5	0

HCMLOS B

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1405	-670	-	-	
HCM Lane V/C Ratio	0.012	-0.039	-	-	
HCM Control Delay (s)	7.6	0	10.6	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.1	-	-

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	190	802	742	-	-1327	-	-1235	460	
HCM Lane V/C Ratio	0.006	0.007	-	-	-0.016	-	-0.578	0.007	
HCM Control Delay (s)	24.1	9.5	0	-	-	7.8	-	-39.4	12.9
HCM Lane LOS	C	A	A	-	-	A	-	-	E

Intersection						
Int Delay, s/veh	4.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			$\mathbf{7}$	Mr	
Traffic Vol, veh/h	8	49	30	14	36	17
Future Vol, veh/h	8	49	30	14	36	17
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	9	53	33	15	39	18

Intersection						
Int Delay, s/veh	2.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\neq	\uparrow		Mr	
Traffic Vol, veh/h	10	143	51	122	22	78
Future Vol, veh/h	10	143	51	122	22	78
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	7	7	2
Mvmt Flow	11	155	55	133	24	85

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	188	0	-	0	299	122
Stage 1					122	
Stage 2	-				177	
Critical Hdwy	4.12	-	-	-	6.47	6.22
Critical Hdwy Stg 1	-	-	-	-	5.47	
Critical Hdwy Stg 2		-	-	-	5.47	
Follow-up Hdwy	2.218	-			3.563	3.318
Pot Cap-1 Maneuver	1386				682	929
Stage 1	-	-	-	-	891	
Stage 2	-	-	-	-	842	
Platoon blocked, \%			-	-		
Mov Cap-1 Maneuver	1386	-	-		676	929
Mov Cap-2 Maneuver	-		-		676	
Stage 1		-	-		883	
Stage 2	-	-	-	-	842	

Approach	EB	WB	SB
HCM Control Delay, s	0.5	0	9.8
HCM LOS			A

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1386	-	-	-858
HCM Lane V/C Ratio	0.008	-	-	-0.127
HCM Control Delay (s)	7.6	0	-	-
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-
A	0.4			

Intersection													
Int Delay, s/veh	1.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\uparrow			$\hat{\square}$			\uparrow	「				
Traffic Vol, veh/h	72	76	0	0	150	112	13	1	227	0	0	0	
Future Vol, veh/h	72	76	0	0	150	112	13	1	227	0	0	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	None	
Storage Length	-	-	-	-	-	-	50	-	0	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-		6965	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	7	7	2	2	7	7	7	2	7	2	2	2	
Mvmt Flow	78	83	0	0	163	122	14	1	247	0	0	0	

Intersection												
Int Delay, s/veh	4.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\uparrow		${ }^{*}$	个		${ }^{1 /}$	\uparrow	
Traffic Vol, veh/h	12	27	11	80	24	15	24	111	48	22	94	56
Future Vol, veh/h	12	27	11	80	24	15	24	111	48	22	94	56
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	120	-	-	120	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	7	2	2	2	7	7	2	2	7	2
Mvmt Flow	13	29	12	87	26	16	26	121	52	24	102	61

Major/Minor	Minor2	Major1		Major2		
Conflicting Flow All	521	263	264	0	-	0
\quad Stage 1	263	-	-	-	-	-
Stage 2	258	-	-	-	-	-
Critical Hdwy	6.47	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.47	-	-	-	-	-
Critical Hdwy Stg 2	5.47	-	-	-	-	-
Follow-up Hdwy	3.563	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	507	776	1300	-	-	-
\quad Stage 1	770	-	-	-	-	-
\quad Stage 2	774	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	501	776	1300	-	-	-
Mov Cap-2 Maneuver	501	-	-	-	-	-
Stage 1	762	-	-	-	-	-
Stage 2	774	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	12.1	0.4	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1300	-576	-	-	
HCM Lane V/C Ratio	0.009	-0.123	-	-	
HCM Control Delay (s)	7.8	0	12.1	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.4	-	-

Major/Minor \quad N	Major1	Major2				Minor1				Minor2				
Conflicting Flow All	547	0	0	784	0		0	1248	1351	782	1149	1140	334	
Stage 1	-	-	-		-			796	796		342	342		
Stage 2	-	-	-		-		-	452	555		807	798		
Critical Hdwy	4.17	-	-	4.12	-			7.12	6.52	6.22	7.17	6.52	6.27	
Critical Hdwy Stg 1	-	-	-	-	-			6.12	5.52	-	6.17	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	-			6.12	5.52	-	6.17	5.52	-	
Follow-up Hdwy	2.263	-		2.218	-			- 3.518	4.018	3.318	3.563	4.018	3.363	
Pot Cap-1 Maneuver	998	-	-	834	-		-	150	150	394	~ 172	201	697	
Stage 1	-	-	-	-	-			380	399		663	638	-	
Stage 2	-	-	-	-	-			587	513	-	368	398	-	
Platoon blocked, \%		-	-		-		-							
Mov Cap-1 Maneuver	998	-	-	834	-		-	146	148	394	~160	199	697	
Mov Cap-2 Maneuver	-	-	-	-	-		-	146	148		~160	199	-	
Stage 1	-	-	-	-	-			377	396		658	635	-	
Stage 2	-	-	-	-	-			578	510	-	346	395	-	
Approach	EB			WB				NB			SB			
HCM Control Delay, s	0.1			0.1				17.8			\$ 373.3			
HCM LOS								C			F			
Minor Lane/Major Mvmt		NBLn1	NBLn2	EBL	EBT		EBR	WBL	WBT	WBR	SBLn1	SBLn2		
Capacity (veh/h)		148	394	998	-		-	- 834	-	-	160	697		
HCM Lane V/C Ratio		0.029	0.041	0.007	-		-	- 0.005	-	-	1.678	0.008		
HCM Control Delay (s)		30.1	14.5	8.6	-		-	9.3	-		\$ 380.7	10.2		
HCM Lane LOS		D	B	A	-		-	A	-		F	B		
HCM 95th \%tile Q(veh)		0.1	0.1	0	-		-	0	-	-	18.9	0		
Notes														
\sim : Volume exceeds cap	pacity	\$: De	lay exc	ceeds			Com	mputation	Not D	efined	*: All	major v	volume	in platoon

Intersection						

Intersection						

Major/Minor \quad M	Major1		Major2		Minor1		
Conflicting Flow All	0	0	67	0	68	41	
Stage 1	-	-	-	-	41	-	
Stage 2	-	-	-	-	27	-	
Critical Hdwy	-	-	4.12	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-		5.42	-	
Critical Hdwy Stg 2	-	-	-		5.42	-	
Follow-up Hdwy	-		2.218		3.518	3.318	
Pot Cap-1 Maneuver	-	-	1535	-	937	1030	
Stage 1	-	-	-		981	-	
Stage 2	-	-	-		996	-	
Platoon blocked, \%	-	-		-			
Mov Cap-1 Maneuver	-	-	1535		932	1030	
Mov Cap-2 Maneuver	-	-	-		932	-	
Stage 1	-	-	-		976	-	
Stage 2	-	-	-		996	-	
Approach	EB		WB		NB		
HCM Control Delay, s	0		3		9		
HCM LOS					A		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR WBL WBT			
Capacity (veh/h)		55	-	-	1535	-	
HCM Lane V/C Ratio			-		0.005	-	
HCM Control Delay (s)		9	-	-	7.4	0	
HCM Lane LOS		A	-	-	A	A	
HCM 95th \%tile Q(veh)		0.2	-	-	0	-	

Major/Minor	Major1	Major2	Minor2	
Conflicting Flow All	270	0	0280	159
Stage 1	-	- -	159	
Stage 2	-	- -	121	
Critical Hdwy	4.12	- -	- 6.47	6.22
Critical Hdwy Stg 1		- -	- 5.47	
Critical Hdwy Stg 2		- -	5.47	
Follow-up Hdwy	2.218	- -	- 3.563	3.318
Pot Cap-1 Maneuver	1293	- -	- 699	886
Stage 1		- -	- 858	

Stage 2	-	-	-	-	892	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1293	-	-	-	696	886
Mov Cap-2 Maneuver	-	-	-	-	696	-
Stage 1	-	-	-	-	855	-
Stage 2	-	-	-	-	892	-

Approach	EB	WB	SB
HCM Control Delay, s	0.4	0	11.1

HCMLOS B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)	1293	-	-	-759	
HCM Lane V/C Ratio	0.004	-	-	-0.222	
HCM Control Delay (s)	7.8	0	-	-11.1	
HCM Lane LOS	A	A	-	-	B
HCM 95th \%tile Q(veh)	0	-	-	-	0.8

Major/Minor	Minor1	Major1	Major2		
Conflicting Flow All	1	0	0	-	-
Stage 1	0	-	-	-	-
\quad Stage 2	1	-	-	-	-

Intersection													
Int Delay, s/veh	6.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			¢		\%	F		\%	F		
Traffic Vol, veh/h	128	19	36	15	23	13	37	89	18	14	78	95	
Future Vol, veh/h	128	19	36	15	23	13	37	89	18	14	78	95	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control St	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	120	-	-	120	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	7	2	2	2	7	7	2	2	7	2	
Mvmt Flow	139	21	39	16	25	14	40	97	20	15	85	103	

Intersection						

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	190	802	740	-	-1327	-	-235	460	
HCM Lane V/C Ratio	0.006	0.007	-	-	-0.016	-	-0.587	0.007	
HCM Control Delay (s)	24.1	9.5	0	-	-	7.8	-	-	40
12.9									
HCM Lane LOS	C	A	A	-	-	A	-	-	E

Intersection						
Int Delay, s/veh	5.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\mathbf{F}			\uparrow		
Traffic Vol, veh/h	8	54	51	14	40	32
Future Vol, veh/h	8	54	51	14	40	32
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	- None	-	None	
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	9	59	55	15	43	35

Stage 2 - - - - 901

Approach	EB	WB	NB
HCM Control Delay, s	0	5.8	9.5

HCMLOS A

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\neq	1		M	
Traffic Vol, veh/h	10	143	51	134	22	78
Future Vol, veh/h	10	143	51	134	22	78
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	7	7	2
Mvmt Flow	11	155	55	146	24	85

Intersection						
Int Delay, s/veh	8.8					
Movement	NBL	NBR	NET	NER	SWL	SWT
Lane Configurations	$\mathbf{1}$	\mathbf{T}	$\mathbf{4}$			4
Traffic Vol, veh/h	75	0	0	0	0	0
Future Vol, veh/h	75	0	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	50	-	-	-	-
Veh in Median Storage,	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	7	2	2	2	2	2
Mvmt Flow	82	0	0	0	0	0

Intersection						
Int Delay, s/veh	2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	\uparrow	
Traffic Vol, veh/h	55	28	11	215	240	4
Future Vol, veh/h	55	28	11	215	240	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	7	2	2	7	7	7
Mvmt Flow	60	30	12	234	261	4

Approach	EB	NB	SB
HCM Control Delay, s	12.5	0.4	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1299	-569	-	-	
HCM Lane V/C Ratio	0.009	-0.159	-	-	
HCM Control Delay (s)	7.8	0	12.5	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.6	-	-

Major/Minor \quad N	Major1	Major2					Minor1			Minor2				
Conflicting Flow All	547	0	0	784	0		0	1250	1351	782	1149	1140	334	
Stage 1	-	-	-		-			796	796		342	342		
Stage 2	-	-	-		-		-	454	555		807	798		
Critical Hdwy	4.17	-	-	4.12	-			7.12	6.52	6.22	7.17	6.52	6.27	
Critical Hdwy Stg 1	-	-	-	-	-			6.12	5.52	-	6.17	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	-			6.12	5.52	-	6.17	5.52	-	
Follow-up Hdwy	2.263	-		2.218	-			- 3.518	4.018	3.318	3.563	4.018	3.363	
Pot Cap-1 Maneuver	998	-	-	834	-		-	150	150	394	~ 172	201	697	
Stage 1	-	-	-	-	-			380	399		663	638	-	
Stage 2	-	-	-	-	-			586	513	-	368	398	-	
Platoon blocked, \%		-	-		-		-							
Mov Cap-1 Maneuver	998	-	-	834	-		-	146	148	394	~160	199	697	
Mov Cap-2 Maneuver	-	-	-	-	-		-	146	148		~160	199	-	
Stage 1	-	-	-	-	-			377	396		658	635	-	
Stage 2	-	-	-	-	-			575	510	-	346	395	-	
Approach	EB			WB				NB			SB			
HCM Control Delay, s	0.1			0.1				17.8			\$ 376.1			
HCM LOS								C			F			
Minor Lane/Major Mvmt		NBLn1	NBLn2	EBL	EBT		EBR	WBL	WBT	WBR	SBLn1	SBLn2		
Capacity (veh/h)		148	394	998	-		-	- 834	-	-	160	697		
HCM Lane V/C Ratio		0.029	0.041	0.007	-		-	- 0.005	-	-	1.692	0.011		
HCM Control Delay (s)		30.1	14.5	8.6	-		-	9.3	-		\$ 386.4	10.2		
HCM Lane LOS		D	B	A	-		-	A	-		F	B		
HCM 95th \%tile Q(veh)		0.1	0.1	0	-		-	0	-	-	19.1	0		
Notes														
\sim : Volume exceeds cap	pacity	\$: De	lay exc	ceeds			Com	mputation	Not D	efined	*: All	major v	volume	in platoon

Intersection						
Int Delay, s/veh	5.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			$\mathbf{7}$	Mr	
Traffic Vol, veh/h	28	20	18	15	51	47
Future Vol, veh/h	28	20	18	15	51	47
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	30	22	20	16	55	51

Major/Minor	Minor2	Minor1									
Conflicting Flow All	237	229	80	241	242	72	98	0	0	77	0
\quad Stage 1	96	96	-	128	128	-	-	-	-	-	-

Intersection						

MOVEMENT SUMMARY

Site: 7 [SR 12 / SR 113]
Cumulative AM
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd												
3	L2	5	3.0	0.032	7.5	LOS A	0.1	2.6	0.56	0.52	0.56	33.0
8	T1	5	3.0	0.032	7.5	LOS A	0.1	2.6	0.56	0.52	0.56	33.0
18	R2	5	3.0	0.032	7.5	LOS A	0.1	2.6	0.56	0.52	0.56	32.0
Appr		16	3.0	0.032	7.5	LOS A	0.1	2.6	0.56	0.52	0.56	32.7
East: SR 12												
1	L2	16	3.0	0.858	17.2	LOS C	11.8	317.6	0.23	0.06	0.23	29.6
6	T1	1201	10.0	0.858	17.3	LOS C	11.8	317.6	0.23	0.06	0.23	29.5
16	R2	250	7.0	0.858	17.2	LOS C	11.8	317.6	0.23	0.06	0.23	28.7
Appr		1467	9.4	0.858	17.3	LOS C	11.8	317.6	0.23	0.06	0.23	29.3
North: SR 113												
7	L2	217	7.0	0.847	61.4	LOS F	5.7	150.1	0.93	1.36	2.57	18.2
4	T1	5	3.0	0.847	60.9	LOS F	5.7	150.1	0.93	1.36	2.57	18.2
14	R2	11	7.0	0.847	61.4	LOS F	5.7	150.1	0.93	1.36	2.57	17.9
Appr		234	6.9	0.847	61.4	LOS F	5.7	150.1	0.93	1.36	2.57	18.2
West: SR 12												
5	L2	5	7.0	0.574	12.3	LOS B	4.4	117.8	0.54	0.55	0.74	31.5
2	T1	489	10.0	0.574	12.4	LOS B	4.4	117.8	0.54	0.55	0.74	31.5
12	R2	5	3.0	0.574	12.1	LOS B	4.4	117.8	0.54	0.55	0.74	30.8
Approach		500	9.9	0.574	12.4	LOS B	4.4	117.8	0.54	0.55	0.74	31.5
All V	icles	2217	9.2	0.858	20.8	LOS C	11.8	317.6	0.38	0.31	0.60	27.9

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Intersection						

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	375	0		0	419	223
Stage 1	-	-		-	223	
Stage 2	-	-	-	-	196	
Critical Hdwy	4.12	-	-	-	6.47	6.22
Critical Hdwy Stg 1	-	-		-	5.47	
Critical Hdwy Stg 2	-	-		-	5.47	
Follow-up Hdwy	2.218	-			3.563	3.318
Pot Cap-1 Maneuver	1183	-	-	-	581	817
Stage 1	-	-	-	-	802	
Stage 2	-	-	-	-	825	
Platoon blocked, \%		-				
Mov Cap-1 Maneuver	1183	-			575	817
Mov Cap-2 Maneuver	-	-	-	-		
Stage 1	-	-			794	
Stage 2	-	-	-	-	825	

Approach	EB	WB	SB
HCM Control Delay, s	0.5	0	13.3
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1183	-	-	-640
HCM Lane V/C Ratio	0.009	-	-	-0.323
HCM Control Delay (s)	8.1	0	-	-13.3
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-1.4

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1211	-	-340	464	1339	-	-
HCM Lane V/C Ratio	0.022	-	-0.719	0.305	0.028	-	-
HCM Control Delay (s)	8	-	-	38.5	16.1	7.8	-
HCM Lane LOS	A	-	-	E	C	A	-
HCM 95th \%tile Q(veh)	0.1	-	-	5.3	1.3	0.1	-

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			-	F	
Traffic Vol, veh/h	25	20	30	420	235	50
Future Vol, veh/h	25	20	30	420	235	50
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	7	2	2	7	7	7
Mvmt Flow	27	22	33	457	255	54

MOVEMENT SUMMARY

Site: 7 [SR 12 / SR 113]
Cumulative PM
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	Turn	Deman Total veh/h	$\begin{array}{r} \text { Flows } \\ \text { HV } \\ \% \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd												
3	L2	5	3.0	0.088	13.2	LOS B	0.3	6.7	0.74	0.74	0.74	30.8
8	T1	11	3.0	0.088	13.2	LOS B	0.3	6.7	0.74	0.74	0.74	30.8
18	R2	11	3.0	0.088	13.2	LOS B	0.3	6.7	0.74	0.74	0.74	30.0
Appr		27	3.0	0.088	13.2	LOS B	0.3	6.7	0.74	0.74	0.74	30.4
East: SR 12												
1	L2	5	3.0	0.685	10.7	LOS B	5.4	145.8	0.24	0.09	0.24	32.3
6	T1	647	10.0	0.685	10.9	LOS B	5.4	145.8	0.24	0.09	0.24	32.1
16	R2	375	7.0	0.685	10.8	LOS B	5.4	145.8	0.24	0.09	0.24	31.3
Appr		1027	8.9	0.685	10.9	LOS B	5.4	145.8	0.24	0.09	0.24	31.8
North: SR 113												
7	L2	321	7.0	0.709	25.8	LOS D	5.5	146.2	0.79	1.08	1.72	25.3
4	T1	22	3.0	0.709	25.6	LOS D	5.5	146.2	0.79	1.08	1.72	25.3
14	R2	22	7.0	0.709	25.8	LOS D	5.5	146.2	0.79	1.08	1.72	24.7
Approach		364	6.8	0.709	25.8	LOS D	5.5	146.2	0.79	1.08	1.72	25.3
West: SR 12												
5	L2	33	7.0	1.499	245.7	LOS F	162.5	4380.5	1.00	5.40	11.51	7.4
2	T1	1223	10.0	1.499	245.8	LOS F	162.5	4380.5	1.00	5.40	11.51	7.4
12	R2	27	3.0	1.499	245.5	LOS F	162.5	4380.5	1.00	5.40	11.51	7.4
Appr		1283	9.8	1.499	245.8	LOS F	162.5	4380.5	1.00	5.40	11.51	7.4
All V	icles	2701	9.0	1.499	124.4	LOS F	162.5	4380.5	0.68	2.75	5.80	12.3

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Intersection						
Int Delay, s/veh	2.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	F		Mr	
Traffic Vol, veh/h	10	245	120	170	30	85
Future Vol, veh/h	10	245	120	170	30	85
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	7	7	2
Mvmt Flow	11	266	130	185	33	92

Major/Minor M	Major1		Major2		Minor2	
Conflicting Flow All	315	0	0	0	511	223
Stage 1	-	-	-	-	223	-
Stage 2	-	-	-	-	288	-
Critical Hdwy	4.12	-	-	-	6.47	6.22
Critical Hdwy Stg 1	-	-	-	-	5.47	-
Critical Hdwy Stg 2	-	-	-	-	5.47	-
Follow-up Hdwy	2.218	-	-	-	3.563	3.318
Pot Cap-1 Maneuver	1245	-	-	-	514	817
Stage 1	-		-	-	802	-
Stage 2	-		-	-	750	-
Platoon blocked, \%			-	-		
Mov Cap-1 Maneuver	1245	-	-	-	509	817
Mov Cap-2 Maneuver	-		-	-	509	-
Stage 1	-		- -	-	794	-
Stage 2	-		- -	-	750	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		11.2	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1245	-	-	-	706
HCM Lane V/C Ratio		0.009	9	-	-	0.177
HCM Control Delay (s)		7.9	0	-	-	11.2
HCM Lane LOS		A	A A	-	-	B
HCM 95th \%tile Q(veh)		0	0	-	-	0.6

Major/Minor	Major1	Major2							
Conflicting Flow All	440	0	-	-	-	0	770	859	-
\quad Stage 1	-	-	-	-	-	-	419	419	-
\quad Stage 2	-	-	-	-	-	-	351	440	-
Criticat Hdwy	4.17	-	-	-	-	-	6.47	6.52	-
Critical Hdwy Stg 1	-	-	-	-	-	-	5.47	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5.47	5.52	-
Follow-up Hdwy	2.263	-	-	-	-	-3.563	4.018	-	
Pot Cap-1 Maneuver	1094	-	0	0	-	-	362	294	0
\quad Stage 1	-	-	0	0	-	-	653	590	0
\quad Stage 2	-	-	0	0	-	-	702	578	0
Platoon blocked, \%		-			-	-			
Mov Cap-1 Maneuver	1094	-	-	-	-	-	334	0	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	334	0	-
\quad Stage 1	-	-	-	-	-	-	603	0	-
Stage 2	-	-	-	-	-	-	702	0	-

Approach	EB	WB	NB
HCM Control Delay, s	1.7	0	16
HCM LOS		C	

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBL	EBT	WBT	WBR
Capacity (veh/h)	334	-1094	-	-	-
HCM Lane V/C Ratio	0.016	-0.065	-	-	-
HCM Control Delay (s)	16	0	8.5	0	-
HCM Lane LOS	C	A	A	A	-
HCM 95th \%tile Q(veh)	0.1	-	0.2	-	-

| Intersection | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

Approach	EB	NB	SB
HCM Control Delay, s	21.2	0.4	0
HCM LOS	C		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1090	-351	-	-	
HCM Lane V/C Ratio	0.02	-0.372	-	-	
HCM Control Delay (s)	8.4	0	21.2	-	-
HCM Lane LOS	A	A	C	-	-
HCM 95th \%tile Q(veh)	0.1	-	1.7	-	-

Intersection						
Int Delay, s/veh	3.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			-1	Mr	
Traffic Vol, veh/h	90	20	15	10	45	30
Future Vol, veh/h	90	20	15	10	45	30
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	98	22	16	11	49	33

Major/Minor	Major1	Major2				
Minor1						
Conflicting Flow All	0	0	120	0	152	109
\quad Stage 1	-	-	-	-	109	-
Stage 2	-	-	-	-	43	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-5.42	-	
Follow-up Hdwy	-	-2.218	-3.518	3.318		
Pot Cap-1 Maneuver	-	-1468	-840	945		
\quad Stage 1	-	-	-	-	916	-
Stage 2	-	-	-	-	979	-
Platoon blocked, \%	-	-	-			
Mov Cap-1 Maneuver	-	-	1468	-	831	945
Mov Cap-2 Maneuver	-	-	-	-	831	-
Stage 1	-	-	-	-	906	-
Stage 2	-	-	-	-	979	-

	EB	WB	NB
Approach			
HCM Control Delay, s	0	4.5	9.5
HCM LOS			A

MOVEMENT SUMMARY

Site: 7 [SR 12 / SR 113]

Cumulative Saturday
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd												
3	L2	5	3.0	0.047	8.4	LOS A	0.1	3.7	0.59	0.59	0.59	32.8
8	T1	5	3.0	0.047	8.4	LOS A	0.1	3.7	0.59	0.59	0.59	32.7
18	R2	11	3.0	0.047	8.4	LOS A	0.1	3.7	0.59	0.59	0.59	31.8
Appr		22	3.0	0.047	8.4	LOS A	0.1	3.7	0.59	0.59	0.59	32.3
East: SR 12												
1	L2	5	3.0	0.543	7.3	LOS A	3.3	88.2	0.10	0.03	0.10	34.0
6	T1	723	10.0	0.543	7.5	LOS A	3.3	88.2	0.10	0.03	0.10	33.8
16	R2	163	7.0	0.543	7.4	LOS A	3.3	88.2	0.10	0.03	0.10	32.8
Appr		891	9.4	0.543	7.5	LOS A	3.3	88.2	0.10	0.03	0.10	33.6
North: SR 113												
7	L2	168	7.0	0.414	15.0	LOS B	1.8	46.9	0.68	0.76	0.96	28.7
4	T1	11	3.0	0.414	14.7	LOS B	1.8	46.9	0.68	0.76	0.96	28.8
14	R2	16	7.0	0.414	15.0	LOS B	1.8	46.9	0.68	0.76	0.96	28.0
Appr		196	6.8	0.414	15.0	LOS B	1.8	46.9	0.68	0.76	0.96	28.6
West: SR 12												
5	L2	5	7.0	0.641	13.0	LOS B	5.7	154.4	0.53	0.48	0.68	31.2
2	T1	620	10.0	0.641	13.1	LOS B	5.7	154.4	0.53	0.48	0.68	31.2
12	R2	5	3.0	0.641	12.9	LOS B	5.7	154.4	0.53	0.48	0.68	30.5
Approach		630	9.9	0.641	13.1	LOS B	5.7	154.4	0.53	0.48	0.68	31.2
All V	icles	1739	9.2	0.641	10.4	LOS B	5.7	154.4	0.33	0.28	0.42	32.0

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1373	-	-	524	673	1429	-

Intersection						
l						

HCM LOS B

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1416	-661	-	-	
HCM Lane V/C Ratio	0.012	-0.041	-	-	
HCM Control Delay (s)	7.6	0	10.7	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.1	-	-

MOVEMENT SUMMARY

Site: 7 [SR 12/SR 113]
Cumulative plus Project AM
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd												
3	L2	5	3.0	0.032	7.6	LOS A	0.1	2.6	0.56	0.52	0.56	33.0
8	T1	5	3.0	0.032	7.6	LOS A	0.1	2.6	0.56	0.52	0.56	32.9
18	R2	5	3.0	0.032	7.6	LOS A	0.1	2.6	0.56	0.52	0.56	32.0
Appr		16	3.0	0.032	7.6	LOS A	0.1	2.6	0.56	0.52	0.56	32.7
East: SR 12												
1	L2	16	3.0	0.859	17.2	LOS C	11.9	319.5	0.23	0.06	0.23	29.6
6	T1	1201	10.0	0.859	17.4	LOS C	11.9	319.5	0.23	0.06	0.23	29.4
16	R2	252	7.0	0.859	17.3	LOS C	11.9	319.5	0.23	0.06	0.23	28.7
Appr		1470	9.4	0.859	17.4	LOS C	11.9	319.5	0.23	0.06	0.23	29.3
North: SR 113												
7	L2	220	7.0	0.855	62.8	LOS F	5.9	154.8	0.93	1.37	2.63	18.0
4	T1	5	3.0	0.855	62.3	LOS F	5.9	154.8	0.93	1.37	2.63	18.0
14	R2	11	7.0	0.855	62.8	LOS F	5.9	154.8	0.93	1.37	2.63	17.7
Appr		236	6.9	0.855	62.8	LOS F	5.9	154.8	0.93	1.37	2.63	18.0
West: SR 12												
5	L2	5	7.0	0.576	12.4	LOS B	4.4	119.9	0.55	0.56	0.75	31.5
2	T1	489	10.0	0.576	12.5	LOS B	4.4	119.9	0.55	0.56	0.75	31.5
12	R2	5	3.0	0.576	12.2	LOS B	4.4	119.9	0.55	0.56	0.75	30.7
Approach		500	9.9	0.576	12.5	LOS B	4.4	119.9	0.55	0.56	0.75	31.4
All V	icles	2222	9.2	0.859	21.0	LOS C	11.9	319.5	0.38	0.31	0.61	27.9

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Intersection						
Int Delay, s/veh	3.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	F		Mr	
Traffic Vol, veh/h	10	160	65	292	125	65
Future Vol, veh/h	10	160	65	292	125	65
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	7	7	2
Mvmt Flow	11	174	71	317	136	71

Intersection													
Int Delay, s/veh	14.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		${ }_{*}$			¢		\%	F		\%	¢		
Trafic Vol, veh/h	185	20	36	35	45	50	37	182	30	35	147	150	
Future Vol, veh/h	185	20	36	35	45	50	37	182	30	35	147	150	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	120	-	-	120	-	-	
Veh in Median Storage,	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	7	2	2	2	7	7	2	2	7	2	
Mumt Flow	201	22	39	38	49	54	40	198	33	38	160	163	

Intersection						
l						

Intersection						
Int Delay, s/veh	4.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	Mr	
Traffic Vol, veh/h	30	55	51	50	39	30
Future Vol, veh/h	30	55	51	50	39	30
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	33	60	55	54	42	33

Major/Minor	Major1	Major2	Minor1		
Conflicting Flow All	0	93	0	227	63
Stage 1	-	- -	-	63	
Stage 2	-	- -	-	164	
Critical Hdwy		4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	- -	-	5.42	
Critical Hdwy Stg 2		- -	-	5.42	
Follow-up Hdwy		- 2.218		3.518	3.318
Pot Cap-1 Maneuver		1501	-	761	1002
Stage 1		- -	-	960	
Stage 2		- -	-	865	
Platoon blocked, \%	-	-	-		
Mov Cap-1 Maneuver		- 1501	-	732	1002
Mov Cap-2 Maneuver	-	- -	-	732	
Stage 1		- -	-	924	
Stage 2	-	- -	-	865	

	EB	WB	NB
Approach	HCM Control Delay, s	0	3.8
HCM LOS		9.8	
A			

MOVEMENT SUMMARY

Site: 7 [SR 12/SR 113]
Cumulative plus Project PM
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{gathered} \mathrm{Mov} \\ \mathrm{ID} \end{gathered}$	Turn	Deman Total veh/h	$\begin{array}{r} \text { Flows } \\ \text { HV } \\ \% \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd												
3	L2	5	3.0	0.088	13.2	LOS B	0.3	6.7	0.73	0.73	0.73	30.8
8	T1	11	3.0	0.088	13.2	LOS B	0.3	6.7	0.73	0.73	0.73	30.8
18	R2	11	3.0	0.088	13.2	LOS B	0.3	6.7	0.73	0.73	0.73	30.0
Appr		27	3.0	0.088	13.2	LOS B	0.3	6.7	0.73	0.73	0.73	30.4
East: SR 12												
1	L2	5	3.0	0.684	10.7	LOS B	5.4	145.7	0.24	0.09	0.24	32.3
6	T1	647	10.0	0.684	10.9	LOS B	5.4	145.7	0.24	0.09	0.24	32.1
16	R2	375	7.0	0.684	10.8	LOS B	5.4	145.7	0.24	0.09	0.24	31.3
Appr		1027	8.9	0.684	10.8	LOS B	5.4	145.7	0.24	0.09	0.24	31.8
North: SR 113												
7	L2	323	7.0	0.717	26.4	LOS D	5.7	150.9	0.80	1.10	1.76	25.1
4	T1	22	3.0	0.717	26.1	LOS D	5.7	150.9	0.80	1.10	1.76	25.2
14	R2	24	7.0	0.717	26.4	LOS D	5.7	150.9	0.80	1.10	1.76	24.6
Approach		368	6.8	0.717	26.4	LOS D	5.7	150.9	0.80	1.10	1.76	25.1
West: SR 12												
5	L2	33	7.0	1.504	247.7	LOS F	163.1	4397.0	1.00	5.43	11.59	7.4
2	T1	1223	10.0	1.504	247.8	LOS F	163.1	4397.0	1.00	5.43	11.59	7.4
12	R2	27	3.0	1.504	247.5	LOS F	163.1	4397.0	1.00	5.43	11.59	7.3
Approach		1283	9.8	1.504	247.8	LOS F	163.1	4397.0	1.00	5.43	11.59	7.4
All Vehicles		2705	9.0	1.504	125.3	LOS F	163.1	4397.0	0.68	2.76	5.83	12.2

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Intersection						
Int Delay, s/veh	4.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	T	$\mathbf{7}$	\mathbf{F}			$\mathbf{-}$
Traffic Vol, veh/h	145	0	5	192	5	5
Future Vol, veh/h	145	0	5	192	5	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	7	2	2	7	2	2
Mvmt Flow	158	0	5	209	5	5

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	125	110	0	0	214	0	
Stage 1	110	-	-	-	-	-	
Stage 2	15	-	-	-	-	-	
Critical Hdwy	6.47	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.47		-	-	-	-	
Critical Hdwy Stg 2	5.47	-	-	-	-	-	
Follow-up Hdwy	3.563	3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	858	943	-	-	1356	-	
Stage 1	902	-	-	-	-	-	
Stage 2	995	-	-	-	-	-	
Platoon blocked, \%			-	-		-	
Mov Cap-1 Maneuver	855	943	-	-	1356	-	
Mov Cap-2 Maneuver	855	-	-	-	-	-	
Stage 1	898	-	-	-	-	-	
Stage 2	995	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	10.2		0		3.8		
HCM LOS	B						
Minor Lane/Major Mvmt		NBT NBRWBLn1WBLn2				NBRWBLn1WBLn2 SBL SBT	
Capacity (veh/h)		-	-	855	-	1356	-
HCM Lane V/C Ratio		-	-	0.184	-	0.004	-
HCM Control Delay (s)		-	-	10.2	0	7.7	0
HCM Lane LOS		-	-	B	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.7	-	0	-

Major/Minor M	Major1		Major2		Minor2	
Conflicting Flow All	328	0		0	517	229
Stage 1	-	-	- -	-	229	-
Stage 2	-	-	- -	-	288	-
Critical Hdwy	4.12	-	-	-	6.47	6.22
Critical Hdwy Stg 1	-	-	- -	-	5.47	-
Critical Hdwy Stg 2	-	-	- -	-	5.47	-
Follow-up Hdwy	2.218	-	- -	-	3.563	3.318
Pot Cap-1 Maneuver	1232	-	- -	-	510	810
Stage 1	-	-	- -	-	797	-
Stage 2	-	-	- -	-	750	-
Platoon blocked, \%		-	- -	-		
Mov Cap-1 Maneuver	1232	-	- -	-	505	810
Mov Cap-2 Maneuver	-	-	- -	-	505	-
Stage 1	-	-	- -	-	789	-
Stage 2	-	-	- -	-	750	-
Approach	EB		WB		SB	
HCM Control Delay, s	S 0.3		0		11.3	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		1232	-	-	-	700
HCM Lane V/C Ratio		0.009	-	-	-	0.179
HCM Control Delay (s)		7.9	0	-	-	11.3
HCM Lane LOS		A	A	-	-	B
HCM 95th \%tile Q(veh)		0	A	-	-	0.6

Intersection													
Int Delay, s/veh	0.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\uparrow			F			\uparrow	F				
Traffic Vol, veh/h	65	255	0	0	252	165	5	0	325	0	0	0	
Future Vol, veh/h	65	255	0	0	252	165	5	0	325	0	0	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	None	
Storage Length	-	-	-	-	-	-	50	-	0	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-		16965	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	7	7	2	2	7	7	7	2	7	2	2	2	
Mvmt Flow	71	277	0	0	274	179	5	0	353	0	0	0	

Major/Minor	Major1	Major2						
Conflicting Flow All	453	0	-	-	-	0	783	872
\quad Stage 1	-	-	-	-	-	-	419	419
\quad Stage 2	-	-	-	-	-	-	364	453

Approach	EB	WB	NB
HCM Control Delay, s	1.7	0	16.2

HCM LOS C

Minor Lane/Major Mvmt	NBLn1 NBLn2		EBL	EBT	WBT	WBR
Capacity (veh/h)	327	-1082	-	-	-	
HCM Lane V/C Ratio	0.017	-0.065	-	-	-	
HCM Control Delay (s)	16.2	0	8.6	0	-	-
HCM Lane LOS	C	A	A	A	-	-
HCM 95th \%tile Q(veh)	0.1	-	0.2	-	-	-

Intersection						

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1228	-	-	363	241	1265	-

Intersection						
Int Delay, s/veh	3.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			-1	\uparrow	
Traffic Vol, veh/h	89	49	20	385	430	6
Future Vol, veh/h	89	49	20	385	430	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	7	2	2	7	7	7
Mvmt Flow	97	53	22	418	467	7

Approach	EB	NB	SB
HCM Control Delay, s	23.1	0.4	0
HCM LOS	C		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1088	-346	-	-	
HCM Lane V/C Ratio	0.02	-0.434	-	-	
HCM Control Delay (s)	8.4	0	23.1	-	-
HCM Lane LOS	A	A	C	-	-
HCM 95th \%tile Q(veh)	0.1	-	2.1	-	-

Intersection						
Int Delay, s/veh	4.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			-1	Mr	
Traffic Vol, veh/h	90	20	16	10	53	48
Future Vol, veh/h	90	20	16	10	53	48
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	98	22	17	11	58	52

Major/Minor	Major1	Major2				
Minor1						
Conflicting Flow All	0	0	120	0	154	109
\quad Stage 1	-	-	-	-	109	-
Stage 2	-	-	-	-	45	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-5.42	-	
Follow-up Hdwy	-	-2.218	-3.518	3.318		
Pot Cap-1 Maneuver	-	-1468	-838	945		
\quad Stage 1	-	-	-	-	916	-
Stage 2	-	-	-	-	977	-
Platoon blocked, \%	-	-	-			
Mov Cap-1 Maneuver	-	-	1468	-	828	945
Mov Cap-2 Maneuver	-	-	-	-	828	-
Stage 1	-	-	-	-	905	-
Stage 2	-	-	-	-	977	-

	EB	WB	NB
Approach	CCM Control Delay, s	0	4.6
HCM LOS		9.7	
A			

MOVEMENT SUMMARY

Site: 7 [SR 12 / SR 113]

Cumulative plus Project Saturday
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Deman Total veh/h	$\begin{gathered} \text { =lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd												
3	L2	5	3.0	0.047	8.5	LOS A	0.1	3.7	0.59	0.59	0.59	32.8
8	T1	5	3.0	0.047	8.5	LOS A	0.1	3.7	0.59	0.59	0.59	32.7
18	R2	11	3.0	0.047	8.5	LOS A	0.1	3.7	0.59	0.59	0.59	31.8
Appr		22	3.0	0.047	8.5	LOS A	0.1	3.7	0.59	0.59	0.59	32.3
East: SR 12												
1	L2	5	3.0	0.548	7.5	LOS A	3.3	89.8	0.11	0.03	0.11	33.9
6	T1	723	10.0	0.548	7.6	LOS A	3.3	89.8	0.11	0.03	0.11	33.7
16	R2	165	7.0	0.548	7.5	LOS A	3.3	89.8	0.11	0.03	0.11	32.8
Appr		893	9.4	0.548	7.6	LOS A	3.3	89.8	0.11	0.03	0.11	33.6
North: SR 113												
7	L2	171	7.0	0.421	15.2	LOS C	1.8	48.2	0.68	0.77	0.98	28.6
4	T1	11	3.0	0.421	14.9	LOS B	1.8	48.2	0.68	0.77	0.98	28.7
14	R2	17	7.0	0.421	15.2	LOS C	1.8	48.2	0.68	0.77	0.98	27.9
Appr		199	6.8	0.421	15.2	LOS C	1.8	48.2	0.68	0.77	0.98	28.6
West: SR 12												
5	L2	7	7.0	0.644	13.2	LOS B	6.0	161.0	0.54	0.50	0.71	31.2
2	T1	620	10.0	0.644	13.3	LOS B	6.0	161.0	0.54	0.50	0.71	31.1
12	R2	5	3.0	0.644	13.1	LOS B	6.0	161.0	0.54	0.50	0.71	30.4
Approach		632	9.9	0.644	13.3	LOS B	6.0	161.0	0.54	0.50	0.71	31.1
All V	icles	1746	9.2	0.644	10.5	LOS B	6.0	161.0	0.33	0.29	0.43	32.0

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

HCMLOS B B

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1372	-	-533	654	1428	-	-
HCM Lane V/C Ratio	0.019	-	-0.186	0.133	0.015	-	-
HCM Control Delay (s)	7.7	-	-13.3	11.3	7.6	-	-
HCM Lane LOS	A	-	-	B	B	A	-
HCM 95th \%tile Q(veh)	0.1	-	-	0.7	0.5	0	-

Intersection						

Major/Minor	Minor2	Major1		Major2		
Conflicting Flow All	451	159	176	0	-	0
\quad Stage 1	159	-	-	-	-	-
Stage 2	292	-	-	-	-	-
Critical Hdwy	6.47	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.47	-	-	-	-	-
Critical Hdwy Stg 2	5.47	-	-	-	-	-
Follow-up Hdwy	3.563	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	557	886	1400	-	-	-
\quad Stage 1	858	-	-	-	-	-
\quad Stage 2	747	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	548	886	1400	-	-	-
Mov Cap-2 Maneuver	548	-	-	-	-	-
Stage 1	843	-	-	-	-	-
Stage 2	747	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	11.1	0.6	0

HCM LOS B

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1400	-630	-	-	
HCM Lane V/C Ratio	0.015	-0.066	-	-	
HCM Control Delay (s)	7.6	0	11.1	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.2	-	-

Intersection						
Int Delay, s/veh	5.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			-1	Mr	
Traffic Vol, veh/h	10	57	46	5	41	28
Future Vol, veh/h	10	57	46	5	41	28
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	11	62	50	5	45	30

MOVEMENT SUMMARY

Site: 7 [SR 12/SR 113]
MITIG8 Existing AM
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	Turn	Deman Total veh/h	$\begin{array}{r} \text { Flows } \\ \text { HV } \\ \% \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd												
3	L2	1	3.0	0.010	5.0	LOS A	0.0	0.9	0.42	0.28	0.42	34.8
8	T1	1	3.0	0.010	5.0	LOS A	0.0	0.9	0.42	0.28	0.42	34.7
18	R2	5	3.0	0.010	5.0	LOS A	0.0	0.9	0.42	0.28	0.42	33.7
Appr		8	3.0	0.010	5.0	LOS A	0.0	0.9	0.42	0.28	0.42	34.0
East: SR 12												
1	L2	21	3.0	0.502	6.4	LOS A	2.9	76.9	0.04	0.00	0.04	34.4
6	T1	650	10.0	0.502	6.5	LOS A	2.9	76.9	0.04	0.00	0.04	34.2
16	R2	239	7.0	0.502	6.4	LOS A	2.9	76.9	0.04	0.00	0.04	33.3
Appr		910	9.1	0.502	6.5	LOS A	2.9	76.9	0.04	0.00	0.04	34.0
North: SR 113												
7	L2	134	7.0	0.275	11.2	LOS B	0.9	24.5	0.62	0.62	0.62	29.9
4	T1	2	3.0	0.275	10.9	LOS B	0.9	24.5	0.62	0.62	0.62	30.0
14	R2	3	7.0	0.275	11.2	LOS B	0.9	24.5	0.62	0.62	0.62	29.2
Approach		139	6.9	0.275	11.2	LOS B	0.9	24.5	0.62	0.62	0.62	29.9
West: SR 12												
$\begin{aligned} & 5 \\ & 2 \\ & 12 \\ & \hline \end{aligned}$	L2	1	7.0	0.266	6.6	LOS A	1.0	27.4	0.33	0.22	0.33	34.2
	T1	237	10.0	0.266	6.7	LOS A	1.0	27.4	0.33	0.22	0.33	34.2
	R2	3	3.0	0.266	6.5	LOS A	1.0	27.4	0.33	0.22	0.33	33.3
Approach		241	9.9	0.266	6.7	LOS A	1.0	27.4	0.33	0.22	0.33	34.2
All Vehicles		1298	8.9	0.502	7.0	LOS A	2.9	76.9	0.15	0.11	0.15	33.5

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: KD ANDERSON \& ASSOCIATES INC. | Processed: Monday, October 8, 2018 1:05:00 PM Project: C:IUsers\JDF\KDAIReportsISolano County\Hay Road Landfilli00 UPDATED PROJECT 9-2018ISIDRAI13 MITIG8 1 SR 12 SR 113 Exist AM.sip8

MOVEMENT SUMMARY

Site: 7 [SR 12 / SR 113]
mitig8 Existing PM
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{gathered} =\text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd												
3	L2	1	3.0	0.063	11.4	LOS B	0.2	4.8	0.70	0.70	0.70	31.9
8	T1	4	3.0	0.063	11.4	LOS B	0.2	4.8	0.70	0.70	0.70	31.8
18	R2	16	3.0	0.063	11.4	LOS B	0.2	4.8	0.70	0.70	0.70	31.0
Appr		22	3.0	0.063	11.4	LOS B	0.2	4.8	0.70	0.70	0.70	31.2
East: SR 12												
1	L2	4	3.0	0.339	4.9	LOS A	1.5	40.6	0.07	0.01	0.07	35.2
6	T1	334	10.0	0.339	5.1	LOS A	1.5	40.6	0.07	0.01	0.07	35.0
16	R2	213	7.0	0.339	5.0	LOSA	1.5	40.6	0.07	0.01	0.07	34.0
Appr		551	8.8	0.339	5.0	LOS A	1.5	40.6	0.07	0.01	0.07	34.6
North: SR 113												
7	L2	266	7.0	0.376	9.8	LOS A	1.5	40.2	0.53	0.50	0.53	30.4
4	T1	2	3.0	0.376	9.6	LOS A	1.5	40.2	0.53	0.50	0.53	30.5
14	R2	5	7.0	0.376	9.8	LOS A	1.5	40.2	0.53	0.50	0.53	29.7
Appr		274	7.0	0.376	9.8	LOS A	1.5	40.2	0.53	0.50	0.53	30.4
West: SR 12												
5	L2	7	7.0	0.895	31.7	LOS D	25.8	697.7	0.90	1.56	2.55	24.9
2	T1	782	10.0	0.895	31.8	LOS D	25.8	697.7	0.90	1.56	2.55	24.8
12	R2	2	3.0	0.895	31.6	LOS D	25.8	697.7	0.90	1.56	2.55	24.4
Approach		790	10.0	0.895	31.8	LOS D	25.8	697.7	0.90	1.56	2.55	24.8
All V	icles	1637	9.0	0.895	18.8	LOS C	25.8	697.7	0.56	0.85	1.35	28.5

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: KD ANDERSON \& ASSOCIATES INC. | Processed: Monday, October 8, 2018 1:06:46 PM Project: C:IUsers\JDF\KDAIReportsISolano County\Hay Road Landfilli00 UPDATED PROJECT 9-2018ISIDRAI13 MITIG8 2 SR 12 SR 113 Exist PM.sip8

MOVEMENT SUMMARY

Site: 7 [SR 12 / SR 113]
MITIG8 Existing plus Project AM
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd 0 des												
3	L2	1	3.0	0.010	5.0	LOS A	0.0	0.9	0.42	0.29	0.42	34.8
8	T1	1	3.0	0.010	5.0	LOS A	0.0	0.9	0.42	0.29	0.42	34.7
18	R2	5	3.0	0.010	5.0	LOS A	0.0	0.9	0.42	0.29	0.42	33.7
Appr		8	3.0	0.010	5.0	LOS A	0.0	0.9	0.42	0.29	0.42	34.0
East: SR 12												
1	L2	21	3.0	0.503	6.4	LOS A	2.9	77.3	0.04	0.00	0.04	34.4
6	T1	650	10.0	0.503	6.5	LOS A	2.9	77.3	0.04	0.00	0.04	34.2
16	R2	241	7.0	0.503	6.5	LOS A	2.9	77.3	0.04	0.00	0.04	33.3
Appr		912	9.0	0.503	6.5	LOS A	2.9	77.3	0.04	0.00	0.04	34.0
North: SR 113												
7	L2	136	7.0	0.280	11.3	LOS B	1.0	25.1	0.62	0.62	0.63	29.9
4	T1	2	3.0	0.280	11.0	LOS B	1.0	25.1	0.62	0.62	0.63	29.9
14	R2	3	7.0	0.280	11.3	LOS B	1.0	25.1	0.62	0.62	0.63	29.1
Approach		141	6.9	0.280	11.3	LOS B	1.0	25.1	0.62	0.62	0.63	29.9
West: SR 12												
$\begin{array}{\|l\|} \hline 5 \\ 2 \\ 12 \\ \hline \end{array}$	L2	1	7.0	0.267	6.7	LOS A	1.0	27.5	0.33	0.22	0.33	34.2
	T1	237	10.0	0.267	6.8	LOS A	1.0	27.5	0.33	0.22	0.33	34.2
	R2	3	3.0	0.267	6.5	LOS A	1.0	27.5	0.33	0.22	0.33	33.3
Approach		241	9.9	0.267	6.8	LOS A	1.0	27.5	0.33	0.22	0.33	34.2
All Vehicles		1302	8.9	0.503	7.1	LOS A	2.9	77.3	0.16	0.11	0.16	33.5

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: KD ANDERSON \& ASSOCIATES INC. | Processed: Monday, October 8, 2018 1:08:25 PM Project: C:IUsers\JDF\KDAIReportsISolano County\Hay Road Landfill 00 UPDATED PROJECT 9-2018ISIDRAI13 MITIG8 4 SR 12 SR 113 EPP AM.sip8

MOVEMENT SUMMARY

Site: 7 [SR 12/SR 113]
MITIG8 Existing plus Project PM
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{gathered} \text { Mov } \\ \text { ID } \end{gathered}$	Turn	Deman Total veh/h	$\begin{array}{r} \text { Flows } \\ \text { HV } \\ \% \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd												
3	L2	1	3.0	0.063	11.4	LOS B	0.2	4.8	0.70	0.70	0.70	31.9
8	T1	4	3.0	0.063	11.4	LOS B	0.2	4.8	0.70	0.70	0.70	31.8
18	R2	16	3.0	0.063	11.4	LOS B	0.2	4.8	0.70	0.70	0.70	30.9
Appr		22	3.0	0.063	11.4	LOS B	0.2	4.8	0.70	0.70	0.70	31.2
East: SR 12												
1	L2	4	3.0	0.339	4.9	LOS A	1.5	40.6	0.07	0.01	0.07	35.2
6	T1	334	10.0	0.339	5.1	LOS A	1.5	40.6	0.07	0.01	0.07	35.0
16	R2	213	7.0	0.339	5.0	LOS A	1.5	40.6	0.07	0.01	0.07	34.0
Appr		551	8.8	0.339	5.0	LOS A	1.5	40.6	0.07	0.01	0.07	34.6
North: SR 113												
7	L2	268	7.0	0.382	9.9	LOS A	1.6	41.0	0.53	0.50	0.53	30.4
4	T1	2	3.0	0.382	9.7	LOS A	1.6	41.0	0.53	0.50	0.53	30.5
14	R2	8	7.0	0.382	9.9	LOS A	1.6	41.0	0.53	0.50	0.53	29.6
Approach		278	7.0	0.382	9.9	LOS A	1.6	41.0	0.53	0.50	0.53	30.4
West: SR 12												
5	L2	7	7.0	0.898	32.2	LOS D	26.1	704.6	0.91	1.58	2.58	24.7
2	T1	782	10.0	0.898	32.3	LOS D	26.1	704.6	0.91	1.58	2.58	24.7
12	R2	2	3.0	0.898	32.0	LOS D	26.1	704.6	0.91	1.58	2.58	24.2
Appr		790	10.0	0.898	32.3	LOS D	26.1	704.6	0.91	1.58	2.58	24.7
All V	icles	1641	9.0	0.898	19.1	LOS C	26.1	704.6	0.56	0.86	1.36	28.4

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: KD ANDERSON \& ASSOCIATES INC. | Processed: Monday, October 8, 2018 1:20:09 PM Project: C:IUsers\JDF\KDAIReportsISolano County\Hay Road Landfill 00 UPDATED PROJECT 9-2018ISIDRAI13 MITIG8 5 SR 12 SR 113 EPP PM.sip8

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 13.3 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\leqslant			\&		${ }^{*}$	$\hat{\beta}$		*	\uparrow	
Traffic Vol, veh/h	185	20	20	35	45	50	25	180	30	35	145	150
Future Vol, veh/h	185	20	20	35	45	50	25	180	30	35	145	150
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	7	2	2	2	7	7	2	2	7	2
Mvmt Flow	201	22	22	38	49	54	27	196	33	38	158	163
Number of Lanes	0	1	0	0	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			1			1		
HCM Control Delay	13.4			11			12.8			14.5		
HCM LOS	B			B			B			B		

Lane	NBLn1	NBLn2	EBLn1	WBLn1	SBLn1	SBLn2
Vol Left, \%	100%	0%	82%	27%	100%	0%
Vol Thru, \%	0%	86%	9%	35%	0%	49%
Vol Right, \%	0%	14%	9%	38%	0%	51%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	25	210	225	130	35	295
LT Vol	25	0	185	35	35	0
Through Vol	0	180	20	45	0	145
RT Vol	0	30	20	50	0	150
Lane Flow Rate	27	228	245	141	38	321
Geometry Grp	7	7	2	2	7	7
Degree of Util (X)	0.052	0.397	0.412	0.237	0.07	0.523
Departure Headway (Hd)	6.874	6.263	6.067	6.028	6.652	5.867
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	519	571	589	591	536	612
Service Time	4.647	4.036	4.143	4.115	4.418	3.633
HCM Lane V/C Ratio	0.052	0.399	0.416	0.239	0.071	0.525
HCM Control Delay	10	13.1	13.4	11	9.9	15
HCM Lane LOS	A	B	B	B	A	B
HCM 95th-tile Q	0.2	1.9	2	0.9	0.2	3

Intersection		
Intersection Delay, s/veh	13.7	
Intersection LOS	B	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{*}$			¢		*	¢		*	¢	
Traffic Vol, veh/h	40	85	50	115	35	15	55	190	80	30	170	110
Future Vol, veh/h	40	85	50	115	35	15	55	190	80	30	170	110
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	7	2	2	2	7	7	2	2	7	2
Mvmt Flow	43	92	54	125	38	16	60	207	87	33	185	120
Number of Lanes	0	1	0	0	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			1			1		
HCM Control Delay	12.2			12.4			14.2			14.6		
HCM LOS	B			B			B			B		

Lane	NBLn1	NBLn2	EBLn1	WBLn1	SBLn1	SBLn2
Vol Left, \%	100%	0%	23%	70%	100%	0%
Vol Thru, \%	0%	70%	49%	21%	0%	61%
Vol Right, \%	0%	30%	29%	9%	0%	39%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	55	270	175	165	30	280
LT Vol	55	0	40	115	30	0
Through Vol	0	190	85	35	0	170
RT Vol	0	80	50	15	0	110
Lane Flow Rate	60	293	190	179	33	304
Geometry Grp	7	7	2	2	7	7
Degree of Util (X)	0.113	0.498	0.325	0.317	0.061	0.513
Departure Headway (Hd)	6.829	6.109	6.142	6.368	6.772	6.069
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	522	587	580	560	526	590
Service Time	4.61	3.889	4.235	4.463	4.552	3.849
HCM Lane V/C Ratio	0.115	0.499	0.328	0.32	0.063	0.515
HCM Control Delay	10.5	14.9	12.2	12.4	10	15.1
HCM Lane LOS	B	B	B	B	A	C
HCM 95th-tile Q	0.4	2.8	1.4	1.4	0.2	2.9

MOVEMENT SUMMARY

Site: 7 [SR 12/SR 113]
MITIG8 Cumulative PM
Add 2nd EB Lane
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h		Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd												
3	L2	5	3.0	0.083	12.4	LOS B	0.2	5.1	0.72	0.72	0.72	31.1
8	T1	11	3.0	0.083	12.4	LOS B	0.2	5.1	0.72	0.72	0.72	31.1
18	R2	11	3.0	0.083	12.4	LOS B	0.2	5.1	0.72	0.72	0.72	30.3
Appr		27	3.0	0.083	12.4	LOS B	0.2	5.1	0.72	0.72	0.72	30.8
East: SR 12												
1	L2	5	3.0	0.713	11.8	LOS B	6.0	159.9	0.30	0.12	0.30	31.8
6	T1	647	10.0	0.713	12.0	LOS B	6.0	159.9	0.30	0.12	0.30	31.6
16	R2	375	7.0	0.713	11.9	LOS B	6.0	159.9	0.30	0.12	0.30	30.8
Appr		1027	8.9	0.713	12.0	LOS B	6.0	159.9	0.30	0.12	0.30	31.3
North: SR 113												
7	L2	321	7.0	0.709	25.8	LOS D	5.5	146.2	0.79	1.08	1.72	25.3
4	T1	22	3.0	0.709	25.6	LOS D	5.5	146.2	0.79	1.08	1.72	25.3
14	R2	22	7.0	0.709	25.8	LOS D	5.5	146.2	0.79	1.08	1.72	24.7
Appr		364	6.8	0.709	25.8	LOS D	5.5	146.2	0.79	1.08	1.72	25.3
West: SR 12												
5	L2	33	7.0	0.855	29.7	LOS D	17.3	466.8	0.86	1.47	2.37	25.3
2	T1	1223	10.0	0.855	28.0	LOS D	17.3	466.8	0.84	1.40	2.23	25.9
12	R2	27	3.0	0.817	25.9	LOS D	14.3	385.7	0.82	1.33	2.08	25.9
Approach		1283	9.8	0.855	28.0	LOS D	17.3	466.8	0.84	1.40	2.23	25.9
All Vehicles		2701	9.0	0.855	21.5	LOS C	17.3	466.8	0.63	0.87	1.41	27.6

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 I Copyright © 2000-2018 Akcelik and Associates Pty Ltd I sidrasolutions.com
Organisation: KD ANDERSON \& ASSOCIATES INC. | Processed: Monday, October 8, 2018 1:22:04 PM
Project: C:IUsers\JDFIKDAIReports\Solano CountylHay Road Landfilll00 UPDATED PROJECT 9-2018ISIDRAI13 MITIG8 8 SR 12 _SR 113 Cum PM.sip8

SITE LAYOUT

Site: 7 [SR 12 /SR 113]
MITIG8 Cumulative PM
Add 2nd EB Lane
Site Category: (None)
Roundabout

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: KD ANDERSON \& ASSOCIATES INC. | Created: Thursday, May 17, 2018 10:19:14 AM
Project: C:\Users\JDFIKDAIReportsISolano CountylHay Road Landfill

Intersection		
Intersection Delay, s/veh	13.7	B
Intersection LOS	B	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢		${ }^{7}$	F		${ }^{7}$	F	
Traffic Vol, veh/h	185	20	36	35	45	50	37	182	30	35	147	150
Future Vol, veh/h	185	20	36	35	45	50	37	182	30	35	147	150
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	7	2	2	2	7	7	2	2	7	2
Mvmt Flow	201	22	39	38	49	54	40	198	33	38	160	163
Number of Lanes	0	1	0	0	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			1			1		
HCM Control Delay	14			11.2			13			14.9		
HCMLOS	B			B			B			B		

Lane	NBLn1	NBLn2	EBLn1	WBLn1	SBLn1	SBLn2
Vol Left, \%	100%	0%	77%	27%	100%	0%
Vol Thru, \%	0%	86%	8%	35%	0%	49%
Vol Right, \%	0%	14%	15%	38%	0%	51%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	37	212	241	130	35	297
LT Vol	37	0	185	35	35	0
Through Vol	0	182	20	45	0	147
RT Vol	0	30	36	50	0	150
Lane Flow Rate	40	230	262	141	38	323
Geometry Grp	7	7	2	2	7	7
Degree of Util (X)	0.078	0.406	0.443	0.241	0.071	0.535
Departure Headway (Hd)	6.957	6.347	6.084	6.138	6.75	5.968
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	512	565	587	579	528	600
Service Time	4.739	4.128	4.166	4.233	4.525	3.742
HCM Lane V/C Ratio	0.078	0.407	0.446	0.244	0.072	0.538
HCM Control Delay	10.3	13.5	14	11.2	10	15.5
HCM Lane LOS	B	B	B	B	A	C
HCM 95th-tile Q	0.3	2	2.3	0.9	0.2	3.2

Intersection		
Intersection Delay, s/veh	13.8	
Intersection LOS	B	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			${ }_{\text {¢ }}$		${ }^{7}$	$\hat{}$		\%	$\hat{\dagger}$	
Traffic Vol, veh/h	40	85	50	115	35	15	67	192	80	30	170	110
Future Vol, veh/h	40	85	50	115	35	15	67	192	80	30	170	110
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	7	2	2	2	7	7	2	2	7	2
Mvmt Flow	43	92	54	125	38	16	73	209	87	33	185	120
Number of Lanes	0	1	0	0	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			1			1		
HCM Control Delay	12.3			12.5			14.2			14.8		
HCMLOS	B			B			B			B		

Lane	NBLn1	NBLn2	EBLn1	WBLn1	SBLn1	SBLn2
Vol Left, \%	100%	0%	23%	70%	100%	0%
Vol Thu, $\%$	0%	71%	49%	21%	0%	61%
Vol Right, \%	0%	29%	29%	9%	0%	39%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	67	272	175	165	30	280
LT Vol	67	0	40	115	30	0
Through Vol	0	192	85	35	0	170
RT Vol	0	80	50	15	0	110
Lane Flow Rate	73	296	190	179	33	304
Geometry Grp	7	7	2	2	7	7
Degree of Util (X)	0.138	0.503	0.326	0.319	0.062	0.516
Departure Headway (Hd)	6.84	6.121	6.179	6.405	6.805	6.102
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Cap	521	585	576	556	523	587
Service Time	4.62	3.901	4.276	4.503	4.584	3.881
HCM Lane V/C Ratio	0.14	0.506	0.33	0.322	0.063	0.518
HCM Control Delay	10.7	15	12.3	12.5	10	15.3
HCM Lane LOS	B	B	B	B	A	C
HCM 95th-tile Q	0.5	2.8	1.4	1.4	0.2	3

MOVEMENT SUMMARY

Site: 7 [SR 12 / SR 113]

MITIG8 Cumulative plus Project PM
Add 2nd EB Lane
Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h		Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: Birds Landing Rd												
3	L2	5	3.0	0.083	12.4	LOS B	0.2	5.1	0.72	0.72	0.72	31.1
8	T1	11	3.0	0.083	12.4	LOS B	0.2	5.1	0.72	0.72	0.72	31.1
18	R2	11	3.0	0.083	12.4	LOS B	0.2	5.1	0.72	0.72	0.72	30.3
Appr		27	3.0	0.083	12.4	LOS B	0.2	5.1	0.72	0.72	0.72	30.8
East: SR 12												
1	L2	5	3.0	0.713	11.8	LOS B	6.0	159.9	0.30	0.12	0.30	31.8
6	T1	647	10.0	0.713	12.0	LOS B	6.0	159.9	0.30	0.12	0.30	31.6
16	R2	375	7.0	0.713	11.9	LOS B	6.0	159.9	0.30	0.12	0.30	30.8
Appr		1027	8.9	0.713	12.0	LOS B	6.0	159.9	0.30	0.12	0.30	31.3
North: SR 113												
7	L2	323	7.0	0.717	26.4	LOS D	5.7	150.9	0.80	1.10	1.76	25.1
4	T1	22	3.0	0.717	26.1	LOS D	5.7	150.9	0.80	1.10	1.76	25.2
14	R2	24	7.0	0.717	26.4	LOS D	5.7	150.9	0.80	1.10	1.76	24.6
Appr		368	6.8	0.717	26.4	LOS D	5.7	150.9	0.80	1.10	1.76	25.1
West: SR 12												
5	L2	33	7.0	0.857	30.1	LOS D	17.5	471.0	0.87	1.49	2.39	25.2
2	T1	1223	10.0	0.857	28.4	LOS D	17.5	471.0	0.85	1.42	2.25	25.8
12	R2	27	3.0	0.820	26.2	LOS D	14.4	388.9	0.83	1.34	2.10	25.8
Approach		1283	9.8	0.857	28.4	LOS D	17.5	471.0	0.85	1.42	2.25	25.8
All Vehicles		2705	9.0	0.857	21.7	LOS C	17.5	471.0	0.63	0.87	1.43	27.5

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 I Copyright © 2000-2018 Akcelik and Associates Pty Ltd I sidrasolutions.com
Organisation: KD ANDERSON \& ASSOCIATES INC. | Processed: Monday, October 8, 2018 1:25:25 PM
Project: C:IUsers\JDFIKDAIReports\Solano County/Hay Road Landfilll00 UPDATED PROJECT 9-2018ISIDRAI13 MITIG8 11 SR 12_SR 113 CPP PM.sip8

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist AM	Highway / Direction of Travel Midway Rd From/To west of Porter Rd EB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.4
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	234
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ (Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}^{-}} \mathrm{f}_{\mathrm{A}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $46.6 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 89.4% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}^{*}} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	228 305
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	26.5
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	38.2
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	42.8
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.14

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist AM	Highway / Direction of Travel Midway Rd From/To west of Porter Rd WB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.5
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.966
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	312 234
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.4 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}}{ }^{-\mathrm{f}_{\mathrm{A}}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $46.5 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 89.2% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	305 228
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	31.4
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	38.2
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	53.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.18

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 19$ Analysis Time Period Exist PM	Highway / Direction of Travel Midway Rd From/To west of Porter Rd EB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.4
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}($ Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	338 293
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $88.1 \mathrm{\%}$ Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	332 287
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	34.6
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	38.0
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	55.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.20

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist PM	Highway / Direction of Travel Midway Rd From/To west of Porter Rd WB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.4
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	293 338
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $46.0 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 88.1% Percent free flow speed, PFFS 8
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	287 - 332
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	32.2
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	38.0
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+f_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	49.8
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.17

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 south of Midway Rd NB From/To Jurisiction Caltrans Analysis Year 2018	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.7 1.8	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.953 0.947	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	148 127	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15) $0.5 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\right.$ FSS $\left.=\mathrm{BFFS}-\mathrm{f}_{\mathrm{Ls}}{ }^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=$ FFSS- $0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.7 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 94.8%	
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	142 \| 121	
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	16.0	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	24.3	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	29.1	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, V / c	0.09	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 south of Midway Rd SB From/To Jurisidition Caltrans Analysis Year 2018	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.8 1.7	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.947 0.953	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	127	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.7 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit $15-7)$ $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\right.$ FSS $=$ BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=$ FFSS- $0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.5 \mathrm{mi} / \mathrm{h}$ $\left.v_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 94.4%	
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	121 \|l	r
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	13.8	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	24.3	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	25.0	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, V / c	0.07	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 south of Midway Rd NB From/To Jurisiction Caltrans Analysis Year 2018	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.5	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.966	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	206 208	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit $15-7)$ $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ (Exhibit $15-8)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)$ Percent free flow speed, PFFS 91.2%	
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	200 202	
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	21.4	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	31.0	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	36.8	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, V / c	0.12	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 south of Midway Rd SB From/To Jurisidition Caltrans Analysis Year 2018	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.5	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.966	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	208 206	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{f}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)$ - $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 91.2% Percent free flow speed, PFFS	
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	202 200	
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	21.7	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	31.0	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	37.3	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, V / c	0.12	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 south of Hay Rd NB From/To Jurisdiction Caltrans Analysis Year 2018	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.7	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.953	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	277 162	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15) $0.8 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit $15-7)$ $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ (Exhibit $15-8)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $46.1 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)$ Percent free flow speed, PFFS 91.6%	
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	271	
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	27.8	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	32.0	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	48.2	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, V / c	0.16	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 south of Hay Rd SB From/To Caltrans Jurisdiction Analysis Year	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.7 1.4	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.953 0.973	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	162 277	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$		
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	155 271	
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	18.9	
Adj. for no-passing zone, $\mathrm{f}_{\text {np, PTSF }}$ (Exhibit 15-21)	32.0	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	30.5	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, V / c	0.10	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 south of Hay Rd NB From/To Jurisdiction Caltrans Analysis Year 2018	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.4	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.973	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	254	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{f}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $44.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)$ - $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 89.2% Percent free flow speed, PFFS	
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	247 289	
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	28.8	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	35.9	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	45.3	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	D	
Volume to capacity ratio, V / c	0.15	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 south of Hay Rd SB From/To Caltrans Jurisdiction Analysis Year	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.5	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.966	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	295	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\right.$ FSS $\left.=\mathrm{BFFS}-\mathrm{f}_{\mathrm{Ls}}{ }^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=$ FFSS- $0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $44.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 89.2%	
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	289 247	
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	31.0	
Adj. for no-passing zone, $\mathrm{f}_{\text {np, PTSF }}$ (Exhibit 15-21)	35.9	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	50.4	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	D	
Volume to capacity ratio, V / c	0.17	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist + Project AM	Highway / Direction of Travel Midway Rd From/To west of Porter Rd EB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.4
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	252 325
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}$, BFFS $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{ff}_{\mathrm{A}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $46.4 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 88.9% Percent free flow speed, PFFS 8.9
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{~F}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	245
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	28.8
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	38.3
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	45.4
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.15

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist AM	Highway / Direction of Travel Midway Rd From/To west of Porter Rd WB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.5
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.966
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}($ Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	325 252
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.4 \mathrm{mi} / \mathrm{h}$	
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	319 245
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	33.6
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	38.3
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	55.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.19

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist plus Project PM	Highway / Direction of Travel Midway Rd From/To west of Porter Rd EB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.4
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}($ Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	338 306
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.8 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 87.9% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	332 300
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	35.7
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	37.9
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	55.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.20

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist plus Project PM	Highway / Direction of Travel Midway Rd From/To west of Porter Rd WB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.4
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	306 338
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 87.9% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	300 332
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	33.3
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	37.9
\qquad	51.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.18

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist + Project AM	Highway / Direction of Travel Midway Rd From/To west of SR 113 EB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.6
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.960
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}($ Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	206175
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $51.9 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 92.3% Percent free flow speed, PFFS 9.
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	200 170
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	21.5
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	29.6
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	37.5
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.12

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist + Project AM	Highway / Direction of Travel Midway Rd From/To west of SR 113 WB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.6 1.5
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.960 0.966
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	175
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776(\mathrm{v} / \mathrm{f} \mathrm{HV}, \mathrm{ATS}$) Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $51.9 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.6 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 91.8%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	170 200
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	18.7
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	29.6
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	32.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.10

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist plus Projcet PM	Highway / Direction of Travel Midway Rd From/To west of SR 113 EB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.9 1.8
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.941 0.947
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	58 133
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\text {FM }}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.6 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{ff}_{\mathrm{A}}\right)$ $51.9 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $49.8 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 95.9% Percent free flow speed, PFFS 9.9
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{~F}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	55 127
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	6.7
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	21.8
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	13.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.03

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist plus Project PM	Highway / Direction of Travel Midway Rd From/To west of SR 113 WB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.8 1.9
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.947 0.941
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	133 58
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $51.9 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $50.1 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 96.5%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	127
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	14.4
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	21.8
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	29.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	B
Volume to capacity ratio, v/c	0.08

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist + Project AM Prol	Highway / Direction of Travel SR 113 From/To south of Midway Rd NB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.7 1.7
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.953 0.953
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	163 147
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.7 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}}{ }^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.2 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 93.8%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}^{*}} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	157 141
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	17.4
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	25.8
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	31.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.10

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist + Project AM Prol	Highway / Direction of Travel SR 113 From/To south of Midway Rd SB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.7 1.7
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.953 0.953
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	147
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.8 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ (Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}^{-}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.0 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 93.5% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}^{*}} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	141
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	15.9
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	25.8
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	28.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.09

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist plus Project PM	Highway / Direction of Travel SR 113 From/To south of Midway Rd NB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.5
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.966
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	222 209
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}}{ }^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.7 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 90.9%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}^{*}} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	216 204
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	22.9
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	30.4
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	38.5
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.13

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist plus Projcet PM	Highway / Direction of Travel SR 113 From/To south of Midway Rd SB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.5
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.966
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	209222
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ (Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}^{-}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.7 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 91.0% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}^{*}} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	204 216
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	22.9
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	30.4
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	37.7
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.12

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist + Project AM	Highway / Direction of Travel SR 113 From/To north of Hay Rd NB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.5
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.966
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	288 199
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776(\mathrm{~V} / \mathrm{f} \mathrm{HV}, \mathrm{ATS}$) Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.3 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 90.1%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	282 194
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	28.8
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	27.9
\qquad	45.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.17

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist + Project AM	Highway / Direction of Travel SR 113 From/To north of Hay Rd SB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.4
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}($ Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	199 288
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	194 282
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	22.6
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	27.9
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	34.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.12

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist plus Project PM	Highway / Direction of Travel SR 113 From/To north of Hay Rd NB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.4
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	302 273
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}^{*}} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	296 267
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	32.4
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	29.2
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	47.8
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.18

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist plus Project PM	Highway / Direction of Travel SR 113 From/To north of Hay Rd SB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.4
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	273 302
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	267 296
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	30.3
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	29.2
\qquad	44.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.16

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist + Project AM	Highway / Direction of Travel SR 113 From/To south of Hay Rd NB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.7
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.953
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	279 164
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.9 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $46.0 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 91.5% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	274
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	28.1
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	32.1
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	48.5
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.16

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist + Project AM	Highway / Direction of Travel SR 113 From/To south of Hay Rd SB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.7 1.4
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.953 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}($ Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	164 279
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit $15-7)$ $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.7 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 90.8 m Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	158 274
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	19.2
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	32.1
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	30.9
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.10

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist plus Project PM	Highway / Direction of Travel SR 113 From/To south of Hay Rd NB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.4
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}($ Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	254 299
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $44.8 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 89.2% Percent free flow speed, PFFS 8.2
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	247 293
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	28.6
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	35.8
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	45.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.15

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist plus Project PM	Highway / Direction of Travel SR 113 From/To south of Hay Rd SB Jurisdiction Caltrans Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.5
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.966
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	299 254
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	293 247
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	31.3
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	35.8
\qquad	50.7
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.18

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist + Project AM	Highway / Direction of Travel Hay Rd From/To west of SR 113 EB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.9 1.9
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.941 0.941
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	94 75
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{ff}_{\mathrm{A}}\right)$ $50.5 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $49.0 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 96.9% Percent free flow speed, PFFS 9.9
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{~F}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	89 71
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	10.5
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	30.0
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	27.2
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.05

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist AM	Highway / Direction of Travel Hay Rd From/To west of SR 113 WB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.9 1.9
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.941 0.941
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	75 94
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776(\mathrm{v/f} \mathrm{fV}, \mathrm{ATS})$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ (Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}^{-}} \mathrm{f}_{\mathrm{A}}\right)$ $50.5 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $49.0 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 96.9% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RV , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	71 年 89
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	8.5
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	30.0
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	21.8
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.04

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period Exist plus Project PM	Highway / Direction of Travel Hay Rd From/To west of SR 113 EB Jurisdiction Solano County Analysis Year 2018
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.9 1.9
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.941 0.941
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	87 (38
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{ff}_{\mathrm{A}}\right)$ $50.5 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $49.3 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 97.6% Percent free flow speed, PFFS 9.6
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{~F}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	82 36
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	9.7
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	28.2
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	29.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.05

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed Exist plus Project PM Analysis Time Period	Highway / Direction of Travel Hay Rd From/To west of SR 113 WB Jurisdiction Solano County Analysis Year 2018	
Project Description: Recology Hay Rd Landfill		
Input Data		
	 highway Terrain Grade Le Peak-hou No-passin \% Trucks \% Recrea Access p	
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	2.6	1.9
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.1	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.899	0.941
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	0.78	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	51	87
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.2 \mathrm{mi} / \mathrm{h}$		
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000	0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	36	82
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	4.5	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	28.2	
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	13.1	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, v/c	0.03	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period $A M$	Highway / Direction of Travel Midway Rd From/To west of Porter Rd EB Jurisdiction Solano County Analysis Year Cumulative
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.979
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	274
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\text {FM }}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}$, BFFS $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{ff}_{\mathrm{A}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.5 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 87.3% Percent free flow speed, PFFS 8.3
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.0
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{~F}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	268 早 418
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	32.3
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	33.2
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	45.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.16

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed AM Analysis Time Period	Highway / Direction of Travel Midway Rd From/To west of Porter Rd WB Jurisdiction Solano County Analysis Year Cumulative
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3 1.4
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.979 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	427 274
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.4 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 87.0% Percent free flow speed, PFFS 8
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	418 268
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	42.0
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	33.2
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	62.2
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.25

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed $P M$ Analysis Time Period	Highway / Direction of Travel Midway Rd From/To west of Porter Rd EB Jurisdiction Solano County Analysis Year Cumulative
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.1 1.3
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.993 0.979
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	635 450
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{\text {FM }}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v/} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{ff}_{\mathrm{A}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $42.6 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 81.7% Percent free flow speed, PFFS 8.7
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	630 440
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	57.6
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	24.9
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	72.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.37

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period PM	Highway / Direction of Travel Midway Rd From/To west of Porter Rd WB Jurisdiction Solano County Analysis Year Cumulative
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3 1.1
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.979 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	450 635
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776(\mathrm{~V} / \mathrm{f} \mathrm{HV}, \mathrm{ATS}$) Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.7 \mathrm{mi} / \mathrm{h}$	
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	440 年 630
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	49.0
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	24.9
\qquad	59.2
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.26

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period $A M$	Highway / Direction of Travel Midway Rd From/To west of SR 113 EB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	269 259
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{ff}_{\mathrm{A}}\right)$ $51.9 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $46.5 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 89.7% Percent free flow speed, PFFS 8.7
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{~F}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	264 254
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	28.7
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	31.0
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	44.5
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.16

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed An Analysis Time Period $A M$	Highway / Direction of Travel SR 113 Fouth of Midway Rd NB From/To Jurisiction Caltrans Analysis Year Cumulative	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.3	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.979	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	263 366	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$		
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	257 \| 361	
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	29.8	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	27.8	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	41.4	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	D	
Volume to capacity ratio, V / c	0.15	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 Fouth of Midway Rd NB From/To Jurisiction Caltrans Analysis Year Cumulative	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3 1.3	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.979 0.979	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	361 372	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit $15-7)$ $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\right.$ FSS $=$ BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=$ FFSS- $0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $43.5 \mathrm{mi} / \mathrm{h}$ $\left.v_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 86.5%	
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	356 \|	r 367
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	39.3	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	27.4	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	52.8	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	D	
Volume to capacity ratio, V / c	0.21	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 South of Midway Rd SB From/To Jurisiction Caltrans Analysis Year Cumulative	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3 1.3	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.979 0.979	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	372 361	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit $15-7)$ $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ (Exhibit $15-8)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $43.5 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)$ Percent free flow speed, PFFS 86.4%	
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	367 \|	r 356
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	39.2	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	27.4	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	53.1	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	D	
Volume to capacity ratio, V / c	0.22	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed An Analysis Time Period $A M$	Highway / Direction of Travel SR 113 From/To south of Hay Rd NB Jurisdiction Caltrans Analysis Year Cumulative	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.2 1.4	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.986 0.973	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	496	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$		
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.1	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 0.993	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	489 279	
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	46.3	
Adj. for no-passing zone, $\mathrm{f}_{\text {np, PTSF }}$ (Exhibit 15-21)	26.2	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	63.0	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	D	
Volume to capacity ratio, v / c	0.29	

Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1654
Capacity, $\mathrm{C}_{\mathrm{d}, \text { PTSF }}$ (Equation 15-13) veh/h	1688
Percent Free-Flow Speed PFFS d $^{\text {(Equation 15-11-Class III only) }}$	85.6
Bicycle Level of Service	
Directional demand flow rate in outside lane, v_{OL} (Eq. 15-24) veh/h	489.1
Effective width, Wv (Eq. 15-29) ft	12.50
Effective speed factor, S_{t} (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	6.06
Bicycle level of service (Exhibit 15-4)	F
Notes	
1. Note that the adjustment factor for level terrain is 1.00 ,as level ter downgrade segments are treated as level terrain. 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{o}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis--the LOS is F. 3. For the analysis direction only and for $v>200$ veh $/ h$. 4. For the analysis direction only 5. Exhibit 15-20 provides coefficients a and b for Equation 15-10. 6. Use alternative Exhibit $15-14$ if some trucks operate at crawl spee	ose ol

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 From/To south of Hay Rd NB Jurisdiction Caltrans Analysis Year Cumulative	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3 \|	r 1.2
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.979 0.986	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	450 524	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\text {np,ATS }}$ (Exhibit 15-15) $0.8 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit $15-7)$ $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\right.$ FSS $=$ BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=$ FFSS- $0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $41.9 \mathrm{mi} / \mathrm{h}$ $\left.v_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 83.4%	
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.0	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	440 516	
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	47.2	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	27.0	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	59.6	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	D	
Volume to capacity ratio, V / c	0.26	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $4 / 13 / 2018$ Date Performed Analysis Time Period	Highway / Direction of Travel SR 113 south of Hay Rd SB From/To Jurisdiction Caltrans Analysis Year Cumulative	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d) \quad Opposing Direction (o)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.2 1.3	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.986 0.979	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00	
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	524	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.0 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{f}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $41.8 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)$ - $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 83.0% Percent free flow speed, PFFS 8	
Percent Time-Spent-Following		
	Analysis Direction (d) ${ }^{\text {d }}$ (\|l	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.0	
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000	
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00	
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}\right.$ g,PTSF $)$	516 440	
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	51.1	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	27.0	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}{ }^{+f}{ }_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}{ }^{+}\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	65.7	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	D	
Volume to capacity ratio, v / c	0.31	

Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1600
Capacity, $\mathrm{C}_{\mathrm{d}, \text { PTSF }}$ (Equation 15-13) veh/h	1688
Percent Free-Flow Speed PFFS ${ }_{\text {d }}$ (Equation 15-11-Class III only)	97.3
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\text {OL }}$ (Eq. 15-24) veh/h	48.9
Effective width, Wv (Eq. 15-29) ft	23.08
Effective speed factor, S_{t} (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	3.01
Bicycle level of service (Exhibit 15-4)	C
Notes	
1. Note that the adjustment factor for level terrain is 1.00 , as level terrain is one of the base conditions. For the purpose of grade adjustment, specific downgrade segments are treated as level terrain. 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{o}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis--the LOS is F. 3. For the analysis direction only and for $v>200$ veh $/ \mathrm{h}$. 4. For the analysis direction only 5. Exhibit 15-20 provides coefficients a and b for Equation 15-10. 6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period $A M$	Highway / Direction of Travel Midway Rd From/To west of Porter Rd EB Jurisdiction Solano County Analysis Year Cumulative + Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.3
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.979
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	292441
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776(\mathrm{~V} / \mathrm{f} \mathrm{HV}, \mathrm{ATS}$) Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.3 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 86.9%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.0
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	286
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	34.6
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	32.2
\qquad	47.4
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.17

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed AM Analysis Time Period	Highway / Direction of Travel Midway Rd From/To west of Porter Rd WB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3 1.4
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.979 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	441
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $45.1 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 86.5%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	432 286
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	42.0
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	32.2
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+f_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	61.4
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.26

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed $P M$ Analysis Time Period	Highway / Direction of Travel Midway Rd From/To west of Porter Rd EB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.1 1.2
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.993 0.986
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	635 460
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $42.6 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 81.6% Percent free flow speed, PFFS 8
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	630 453
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	58.4
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	24.9
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+f_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	72.9
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.37

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed $P M$ Analysis Time Period	Highway / Direction of Travel Midway Rd From/To west of Porter Rd WB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.2 1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.986 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	460 635
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.7 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $52.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $42.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 82.4%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	453 年 630
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	49.8
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	24.9
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	60.2
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.27

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period $A M$	Highway / Direction of Travel Midway Rd From/To west of SR 113 EB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	269 259
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{ff}_{\mathrm{A}}\right)$ $51.9 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $46.5 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 89.7% Percent free flow speed, PFFS 8.7
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{~F}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	264 254
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	28.7
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	31.0
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	44.5
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.16

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period $A M$	Highway / Direction of Travel Midway Rd From/To west of SR 113 WB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.4
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}($ Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	259 269
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $51.9 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $46.5 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ $89.7 \mathrm{\%}$ Percent free flow speed, PFFS 8
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	254 264
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	28.8
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	31.0
\qquad	44.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.15

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period PM	Highway / Direction of Travel Midway Rd From/To west of SR 113 EB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.5
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.966
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	197 239
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $51.9 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.2 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 91.0% Percent free flow speed, PFFS 9.0
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{~F}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	192 232
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	21.3
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	30.4
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	35.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.12

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period PM	Highway / Direction of Travel Midway Rd From/To west of SR 113 WB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.5 1.5
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.966 0.966
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	239 197
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.3 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $2.6 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $51.9 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $47.2 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 91.0% Percent free flow speed, PFFS 9.0
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{~F}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	232 192
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	24.5
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	30.4
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	41.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.14

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period AM	Highway / Direction of Travel SR 113 From/To south of Midway Rd NB Jurisdiction Caltrans Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.3
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.979
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	277
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ (Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}^{-}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $44.0 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 87.5% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	271
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	31.6
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	26.9
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	42.8
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v / c	0.16

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst $J F$ Agency or Company $1018 / 18$ Date Performed AM Analysis Time Period Pre	Highway / Direction of Travel SR 113 From/To south of Midway Rd SB Jurisdiction Caltrans Analysis Year Cumulative plus Project	
Project Description: Recology Hay Rd Landfill		
Input Data		
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3	1.4
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.979	0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00	1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	386	277
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$		
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993	0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { PTSF }}$ (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	381	271
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\mathrm{d}}(\%)=100\left(1-\mathrm{e}^{\mathrm{av}_{\mathrm{d}}{ }^{\text {b }} \text {) }}\right.$	39.1	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	26.9	
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	54.8	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	D	
Volume to capacity ratio, v / c	0.23	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period PM	Highway / Direction of Travel SR 113 From/To south of Midway Rd NB Jurisdiction Caltrans Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3 1.3
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.979 0.979
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	376
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}^{*}} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	371
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	40.4
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	27.3
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	54.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.22

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period $P M$	Highway / Direction of Travel SR 113 From/To south of Midway Rd SB Jurisdiction Caltrans Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3 1.3
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.979 0.979
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{ATS}}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	373
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.1
Passenger-car equivalents for RV , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	368 371
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	40.0
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	27.3
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	53.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v / c	0.22

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed AM Analysis Time Period	Highway / Direction of Travel SR 113 From/To north of Hay Rd NB Jurisdiction Caltrans Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.2 1.4
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.986 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	505 338
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $42.6 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 84.7%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	498 332
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	47.9
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	22.0
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	61.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.30

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period AM	Highway / Direction of Travel SR 113 From/To north of Hay Rd SB Jurisdiction Caltrans Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.2
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.986
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	338 505
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.9 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}}{ }^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $42.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 85.3% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.0
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	332 498
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{d}{ }^{\text {b }}\right.$)	38.9
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	22.0
Percent time-spent-following, $\operatorname{PTSF}_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / \mathrm{v}_{d, \mathrm{PTSF}}{ }^{+}\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	47.7
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v / c	0.20

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed $P M$ Analysis Time Period	Highway / Direction of Travel SR 113 From/To north of Hay Rd NB Jurisdiction Caltrans Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.2 1.2
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.986 0.986
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	523 481
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.9 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $41.6 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 82.7%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	515 474
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	51.8
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	22.9
\qquad	63.7
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.31

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed $P M$ Analysis Time Period	Highway / Direction of Travel SR 113 From/To north of Hay Rd SB Jurisdiction Caltrans Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.2 1.2
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.986 0.986
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	481523
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.8 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ (Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{fsS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $41.7 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 82.9%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	474
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	49.7
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	22.9
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	60.7
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.28

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst JF Agency or Company $10 / 8 / 18$ Date Performed AM Analysis Time Period	Highway / Direction of Travel SR 113 From/To south of Hay Rd NB Jurisdiction Caltrans Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.2 1.4
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.986 0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	498 287
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776(\mathrm{v/f} \mathrm{fV}, \mathrm{ATS})$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ (Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}^{-}} \mathrm{f}_{\mathrm{A}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $43.0 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 85.6% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	491 281
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	46.4
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	26.1
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	63.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.29

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period $A M$	Highway / Direction of Travel SR 113 From/To south of Hay Rd SB Jurisdiction Caltrans Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.4 1.2
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.973 0.986
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	287 年 498
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.9 \mathrm{mi} / \mathrm{h}$	
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1 1.0
Passenger-car equivalents for RVs , E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	281
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	34.9
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	26.1
\qquad	44.4
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.17

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed $P M$ Analysis Time Period	Highway / Direction of Travel SR 113 From/To south of Hay Rd NB Jurisdiction Caltrans Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.3 1.2
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.979 0.986
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	450528
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.8 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $41.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 83.3%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	440 521
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	48.2
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	26.9
\qquad	60.5
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.26

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed $P M$ Analysis Time Period	Highway / Direction of Travel SR 113 From/To south of Hay Rd SB Jurisdiction Caltrans Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.2 1.3
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.986 0.979
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	528 450
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $1.0 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ (Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{fsS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.3 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $41.7 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 82.9%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.0 1.0
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	521 440
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	51.4
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	26.9
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+{ }_{n p, \mathrm{PTSF}}{ }^{*}\left(v_{d, \mathrm{PTSF}} / v_{d, \mathrm{PTSF}}+\right.$ $\mathrm{v}_{\mathrm{o}, \mathrm{PTSF}}$)	66.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	D
Volume to capacity ratio, v/c	0.31

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed AM Analysis Time Period	Highway / Direction of Travel Hay Rd From/To west of SR 113 EB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.9 1.9
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.941 0.941
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	69 117
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.4 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.5 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $48.7 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 96.3%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	66 111
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	7.9
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	29.9
Percent time-spent-following, PTSF $_{d}(\%)=$ BPTSF $_{d}+f_{n p, \text { PTSF }}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right.$ $\mathrm{V}_{\mathrm{o}, \mathrm{PTSF}}$)	19.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.04

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company Date Performed $10 / 8 / 18$ Analysis Time Period $A M$	Highway / Direction of Travel Hay Rd From/To west of SR 113 WB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.9 1.9
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.941 0.941
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}($ Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	117 年 69
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.5 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $48.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 96.7%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	111 年 66
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	12.8
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	29.9
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	31.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.07

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed $P M$ Analysis Time Period	Highway / Direction of Travel Hay Rd From/To west of SR 113 EB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.7 1.9
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.953 0.941
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}($ Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	157 (30
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $50.5 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $48.9 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 96.7% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RVs, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	151 28
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	16.9
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	25.9
\qquad	38.7
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.09

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst $J F$ Agency or Company $10 / 8 / 18$ Date Performed $P M$ Analysis Time Period	Highway / Direction of Travel Hay Rd From/To west of SR 113 WB Jurisdiction Solano County Analysis Year Cumulative plus Project
Project Description: Recology Hay Rd Landfill	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	1.9 1.7
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-11 or 15-13)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.941 0.953
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	1.00 1.00
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	30 157
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $0.8 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $4.2 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $0.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $50.5 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $48.3 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 95.5%
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.1
Passenger-car equivalents for RV s, E_{R} (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.993 0.993
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	28 \| 151
Base percent time-spent-following ${ }^{4}$, PPTSF $_{\text {d }}(\%)=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	3.5
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	25.9
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	7.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.02

Percent time-spent-following including passing lane ${ }^{3}$, PTSF $_{\text {pl }}(\%)$ $\operatorname{PTSF}_{\mathrm{pl}}=\mathrm{PTSF}_{\mathrm{d}}\left[\mathrm{~L}_{\mathrm{u}}+\mathrm{L}_{\mathrm{d}}+\mathrm{f}_{\mathrm{pl}, P T S F} \mathrm{~L}_{\mathrm{pl}}+\left(\left(1+\mathrm{f}_{p l, P T S F}\right) / 2\right) \mathrm{L}_{\mathrm{de}} / \mathrm{L}_{\mathrm{t}}\right.$	43.0
Level of Service and Other Performance Measures ${ }^{4}$	
Level of service including passing lane LOS ${ }_{\text {pl }}$ (Exhibit 15-3)	C
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $\quad \mathrm{TT}_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}_{\mathrm{pl}}$	4.9
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\text {OL }}$ (Eq. 15-24) veh/h	440.2
Effective width, W_{v} (Eq. 15-29) ft	15.00
Effective speed factor, S_{t} (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	5.66
Bicycle level of service (Exhibit 15-4)	F
Notes	
1. If $\operatorname{LOS}_{d}=F$, passing lane analysis cannot be performed. 2. If $\mathrm{L}_{\mathrm{d}}<0$, use alternative Equation 15-18. 3. If $\mathrm{L}_{\mathrm{d}}<0$, use alternative Equation 15-16. 4. v/c, VMT_{15} and VMT_{60} are calculated on Directional Two-Lane	

Percent time-spent-following including passing lane ${ }^{3}, \operatorname{PTSF}_{\mathrm{pl}}(\%)$ $\operatorname{PTSF}_{\mathrm{pl}}=\operatorname{PTSF}_{\mathrm{d}}\left[\mathrm{~L}_{\mathrm{u}}+\mathrm{L}_{\mathrm{d}}+\mathrm{f}_{\mathrm{pl}, P T S F} \mathrm{~L}_{\mathrm{pl}}+\left(\left(1+\mathrm{f}_{p l, P T S F}\right) / 2\right) \mathrm{L}_{\mathrm{de}}\right] / \mathrm{L}_{\mathrm{t}}$	53.2
Level of Service and Other Performance Measures ${ }^{4}$	
Level of service including passing lane LOS ${ }_{\text {pl }}$ (Exhibit 15-3)	C
Peak 15-min total travel time, $\mathrm{TT}_{15}(\mathrm{veh}-\mathrm{h}) \quad \mathrm{TT}_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}_{\mathrm{pl}}$	7.0
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\text {OL }}$ (Eq. 15-24) veh/h	630.4
Effective width, W_{v} (Eq. 15-29) ft	15.00
Effective speed factor, S_{t} (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	5.84
Bicycle level of service (Exhibit 15-4)	F
Notes	
1. If $\operatorname{LOS}_{d}=F$, passing lane analysis cannot be performed. 2. If $\mathrm{L}_{\mathrm{d}}<0$, use alternative Equation 15-18. 3. If $L_{d}<0$, use alternative Equation 15-16. 4. $\mathrm{v} / \mathrm{c}, \mathrm{VMT}_{15}$ and VMT_{60} are calculated on Directional Two-Lane H	

Percent time-spent-following including passing lane ${ }^{3}, \operatorname{PTSF}_{\mathrm{pl}}(\%)$ $\operatorname{PTSF}_{\mathrm{pl}}=\operatorname{PTSF}_{\mathrm{d}}\left[\mathrm{~L}_{\mathrm{u}}+\mathrm{L}_{\mathrm{d}}+\mathrm{f}_{\mathrm{pl}, P T S F} \mathrm{~L}_{\mathrm{pl}}+\left(\left(1+\mathrm{f}_{p l, P T S F}\right) / 2\right) \mathrm{L}_{\mathrm{de}}\right] / \mathrm{L}_{\mathrm{t}}$	43.7
Level of Service and Other Performance Measures ${ }^{4}$	
Level of service including passing lane LOS ${ }_{\text {pl }}$ (Exhibit 15-3)	C
Peak 15-min total travel time, $\mathrm{TT}_{15}(\mathrm{veh}-\mathrm{h}) \quad \mathrm{TT}_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}_{\mathrm{pl}}$	5.0
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\text {OL }}$ (Eq. 15-24) veh/h	453.3
Effective width, W_{v} (Eq. 15-29) ft	15.00
Effective speed factor, S_{t} (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	5.67
Bicycle level of service (Exhibit 15-4)	F
Notes	
1. If $\operatorname{LOS}_{d}=F$, passing lane analysis cannot be performed. 2. If $\mathrm{L}_{\mathrm{d}}<0$, use alternative Equation 15-18. 3. If $L_{d}<0$, use alternative Equation 15-16. 4. $\mathrm{v} / \mathrm{c}, \mathrm{VMT}_{15}$ and VMT_{60} are calculated on Directional Two-Lane H	

Figure 4C-3. Warrant 3, Peak Hour

Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshoid volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 RAPH ON MA.JOR STREET) ODAY/I. 80 WB RAMP ${ }^{\circ}$

```
        - AM
```

- DAY/midmay
$O A M$
$\times \quad P M$

MIDWAY/I-80 EB RAMP
$\therefore \quad A M$
PORTER/MIDWAI
0 AM
$\times{ }^{\circ} \mathrm{Am}$

Chapter 4C - Traffic Control Signal Needs Studies Part 4 - Highway Traffic Signals

Figure 4C-3. Warrant 3, Peak Hour

-Note: 150 yph applies as the lower threshold volume for a minor-street approach with two or more, lanes and 100 yph applies as the lower limeshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

- DAM/mIDMAY $0 A M$
$\times \quad P M$

MIDWAY/I-80 EG RAMP $\therefore A_{\rho M}$

PORTER /m DWA,
$\therefore{ }^{\circ} \mathrm{PM}$
MAJOR STREET -TOTAL OF BOTH APPROACHES-
VEHICLES PER HOUR (VPH)
'Note: 100 yph applies ass the lower threshold volume for a minor-streat approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.
$52103 / 00000$-6.59y

- AM
a $p M$
$+3445$
$52113 / 4 * 1 R D$
$\approx A$
$x \quad \mathrm{fa}$
- Sat

November 7, 2014

Figure $4 \mathrm{C}-3$. Warrant 3 , Peak Hour

-Note: 150 yph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

- DAY/indDwAy
$O A M$
$\times \quad P M$

MIDWAY/I-80 EG RAMP

- AM

PORTER/MIDWA1
O AM
$\times \mathrm{Am}$

MAJOR STREET - TOTAL OF BOTH APPROACHESVEHICLES PER HOUR (VPH)
'Note: 100 yph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 yph applies as the lower threshold volume for a minor-street approach with one lane.

52113/.0000 andy

- AM

11 PM
of Sit
S2 183/ HAN RD
\Leftrightarrow Al
$x \quad \mathrm{sen}$
SAT

Figure 4C-3. Warrani 3, Peak Hour

-Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the fower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 HPH ON MAAJOR STREET)

- DAM/AIDWAy
$O A M$
$\times \quad P M$

MIDWAY/I-8O EB RAMP
$\therefore \quad A M$
PORTER/MIDNA1
O AM
$\times \mathrm{Am}$

Chapter 4 C - Traffic Control Signal Needs Studies Part 4-Highway Traffic Signals

