Appendix J.2

Water Quality Management Plan (WQMP) Proactive Engineering, 2021

Travertine SPA
Draft EIR
SCH# 201811023
Technical Appendices

Project Specific Water Quality Management Plan

For: TRAVERTINE PROJECT

City of La Quinta, County of Riverside

DEVELOPMENT NO. TENTATIVE TRACT MAP 37387 DESIGN REVIEW NO.

Prepared for:

Hofmann Land Development Co. P.O. Box 907 Concord, CA 94522 Telephone: (925) 478-2000

Prepared by:

Mark Anderson, PE Proactive Engineering Consultants 27042 Towne Centre Drive, Suite 110 Foothill Ranch, CA 92610 Telephone: (949) 716-7460

Original Date Prepared: September 2021

Revision Date(s):

OWNER'S CERTIFICATION

This project-specific Water Quality Management Plan (WQMP) has been prepared for:

Hofmann Land Development Co for the project known as **Travertine Project** in the City of La Quinta, Riverside County

This WQMP is intended to comply with the requirements of City of La Quinta for Travertine Project TTM 37387 which includes the requirement for the preparation and implementation of a project-specific WQMP.

The undersigned, while owning the property/project described in the preceding paragraph, shall be responsible for the implementation of this WQMP and will ensure that this WQMP is amended as appropriate to reflect up-to-date conditions on the site. This WQMP will be reviewed with the facility operator, facility supervisors, employees, tenants, maintenance and service contractors, or any other party (or parties) having responsibility for implementing portions of this WQMP. At least one copy of this WQMP will be maintained at the project site or project office in perpetuity.

The undersigned is authorized to certify and to approve implementation of this WQMP. The undersigned is aware that implementation of this WQMP is enforceable under City of La Quinta Water Quality Ordinance (Municipal Code Section 493).

If the undersigned transfers its interest in the subject property/project, the undersigned shall notify the successor in interest of its responsibility to implement this WQMP.

"I, the undersigned, certify under penalty of law that I am the owner of the property that is the subject of this WQMP, and that the provisions of this WQMP have been reviewed and accepted and that the WQMP will be transferred to future successors in interest."

	ATTEST	
Owner's Signature		
Lisa Hofmann Morgan		
Owner's Printed Name	Notary Signature	
Owner's Title/Position	Printed Name	
Date	Title/Position	
Hofmann Land Development Co. P.O. Box 907 Concord, CA 94522	Date	

Contents

SEC	<u>Pa</u>	4GE
I.	Project Description	1
II.	Site Characterization	4
III.	Pollutants of Concern	6
IV.	Hydrologic Conditions of Concern	7
V.	Best Management Practices	
. •	V.1 SITE DESIGN BMP CONCEPTS, LID/SITE DESIGN AND TREATMENT CONTROL BMPS.	
	V.1.A SITE DESIGN BMP CONCEPTS AND LID/SITE DESIGN BMPS	
	V.1.B Treatment Control BMPs	
	V.1.C MEASURABLE GOAL SUMMARY	
	V.2 SOURCE CONTROL BMPs	
	V.3 EQUIVALENT TREATMENT CONTROL BMP ALTERNATIVES	
	V.4 REGIONALLY-BASED BMPS	
VI.	Operation and Maintenance Responsibility for BMPs	24
VII	Funding	25
TAB TAB TAB TAB	E 2. BMP SELECTION MATRIX BASED UPON POLLUTANT OF CONCERN REMOVAL EFFICIENCY E 3. IMPLEMENTATION OF SITE DESIGN BMP CONCEPTS E 4. LID/SITE DESIGN BMPS MEETING THE LID/SITE DESIGN MEASURABLE GOAL E 5: TREATMENT CONTROL BMP SUMMARY E 6: MEASURABLE GOAL SUMMARY E 7. SOURCE CONTROL BMPS	9 11 17 18 19 20
	ENDICES	
	ONDITIONS OF APPROVAL	
	TICINITY MAP, WQMP SITE PLAN, AND RECEIVING WATERS MAP	
	UPPORTING DETAIL RELATED TO HYDROLOGIC CONDITIONS OF CONCERN (IF APPLICABLE)	
	DUCATIONAL MATERIALS	
	OILS REPORT (IF APPLICABLE)	
F.	TRUCTURAL BMP AND/OR RETENTION FACILITY SIZING CALCULATIONS AND DESIGN DETAILS	
	GREEMENTS – CC&Rs, COVENANT AND AGREEMENTS, BMP MAINTENANCE AGREEMENTS ANI OTHER MECHANISMS FOR ENSURING ONGOING OPERATION, MAINTENANCE, FUNDING AND RANSFER OF REQUIREMENTS FOR THIS PROJECT-SPECIFIC WQMP	O/OR
	HASE 1 ENVIRONMENTAL SITE ASSESSMENT – SUMMARY OF SITE REMEDIATION CONDUCTED A $^{\prime}$ SE RESTRICTIONS	.ND
Ī	ROJECT-SPECIFIC WOMP SLIMMARY DATA FORM	

September 2021

I. Project Description

Project Owner: Hofmann Land Development Co.

P.O. Box 907

Concord, CA 94522

WQMP Preparer: Mark Anderson, PE

Proactive Engineering Consultants

Towne Centre Drive, Suite 110

Foothill Ranch, CA 92610

(949) 716-7460

Project Site Address: West of Madison Street, East of Jefferson Street along Avenue 62

City of La Quinta, CA

Planning Area/ Coachella Valley Planning Area

Community Name/ City of La Quinta

Development Name: Travertine Project, TTM 37387

APN Number(s): 766-110-003, 766-110-004, 766-110-007, 766-110-009, 766-120-

 $001,\,766\text{-}120\text{-}002,\,766\text{-}120\text{-}003,\,766\text{-}120\text{-}006,\,766\text{-}120\text{-}016,\,766\text{-}$

120-018, 766-120-015, 766-120-021, 766-120-023, 766-280-057,

764-280-059, 764-280-061, 753-040-014, 753-040-017, 753-040-

016, 743-050-029, 753-050-007, 753-060-003.

Latitude & Longitude: 33.60194444, -116.26111111

Receiving Water: None – The site retains 100% of the runoffs behind dike #4

Project Site Size: 855.4 acres, 514.2 acres disturbed

Formation of Home Owners' Association (HOA)

or Property Owners Association (POA):

Y N N

Additional Permits/Approvals required for the Project:

AGENCY	Permit required
State Department of Fish and Wildlife, Fish and Game Code §1602 Streambed Alteration Agreement	Y 🖾 N
State Water Resources Control Board, Clean Water Act (CWA) Section 401 Water Quality Certification	Y 🖾 N
US Army Corps of Engineers, CWA Section 404 permit	Y □ N⊠
US Fish and Wildlife, Endangered Species Act Section 7 biological opinion	Y 🖾 N
Statewide Construction General Permit Coverage	Y⊠ N□
Statewide Industrial General Permit Coverage	Y 🗌 N🖂
Other (please list in the space below as required) City of La Quinta Building Permit City of La Quinta Grading Permit	

The Travertine Project is an 855.4-acre site with 514.2-acre being disturbed for development. The project is located west of Madison Street, and east of Jefferson Street along Avenue 62 in the City of La Quinta. Currently, the site is undeveloped and includes an abandoned vineyard. Drainages sheet flow from the west San Jacinto and Santa Rosa mountain ranges. There are several dikes that have been constructed to protect the vineyard areas from the mountain slope drainages. The project site is located upstream behind CVWD Dike #4. The drainages are contained behind the dike where storm water runoff is retained and infiltrated.

The proposed project is a residential and park development. Several improvements are planned for the development including road improvements, drainage systems, two infiltration basins and water/sewer systems to serve the proposed community. The project is generally bounded by mountain ranges to the west, Coachella Valley Water District (CVWD) spreading basins and Madison Street to the east, and 62nd Street and undeveloped area to the south. The preliminary drainage plan for the Travertine Project proposes a system of underground storm drains and catch basins to intercept and convey the runoffs generated by the project site.

The project site is unique because it is located upstream behind CVWD dike #4 Groundwater Recharge Facility (see Travertine site map). 100% of the pre and post development drainages are contained behind the dike where they are retained and infiltrated. The two proposed infiltration basins within the project site are water quality basins designed to capture and infiltrate the 2-yr. storm event. Additionally the 100 year 24-hr runoff volume delta between the existing and proposed condition will infiltrate through the proposed basins. Peak flows will be outletted at or below existing condition peak flows. Emergency overflow spillways have been designed to route flows to the area behind Dike #4 as in the existing condition.

Appendix A of this project-specific WQMP includes a complete copy of the final Conditions of Approval. Appendix B of this project-specific WQMP includes:

- a. A Vicinity Map identifying the project site and surrounding planning areas in sufficient detail; and
- b. A Site Plan for the project. The Site Plan included as part of Appendix B depicts the following project features:
 - Location and identification of all structural BMPs, including Source Control, LID/Site Design and Treatment Control BMPs.
 - Landscaped areas.
 - Paved areas and intended uses (i.e., parking, outdoor work area, outdoor material storage area, sidewalks, patios, tennis courts, etc.).
 - Number and type of structures and intended uses (i.e., buildings, tenant spaces, dwelling units, community facilities such as pools, recreation facilities, tot lots, etc.).
 - Infrastructure (i.e., streets, storm drains, etc.) that will revert to public agency ownership and operation.
 - Location of existing and proposed public and private storm drainage facilities (i.e., storm drains, channels, basins, etc.), including eatch basins and other inlets/outlet structures. Existing and proposed drainage facilities should be clearly differentiated.
 - Location(s) of Receiving Waters to which the project directly or indirectly discharges.
 - Location of points where onsite (or tributary offsite) flows exit the property/project site.
 - Delineation of proposed drainage area boundaries, including tributary offsite areas, for each location where flows exit the project site and existing site (where existing site flows are required to be addressed). Each tributary area should be clearly denoted.
 - Pre- and post-project topography.

Appendix I is a one page form that summarizes pertinent information relative to this project-specific WQMP.

II. Site Characterization

 Land Use Designation or Zoning:
 Current Zoning: Low Density Residential, Golf Course, Neighborhood and Tourist Commercial, Medium High Density Residential and Commercial Park.

 Current Property Use:
 Vacant and Undeveloped

 Proposed Property Use:
 Residential, Commercial, Golf Course & Open Space

 Availability of Soils Report:
 Y ⋈ Note: A soils report is required if infiltration BMPs are utilized. Attach report in Appendix E.

 Phase 1 Site Assessment:
 Y ⋈ Note: If prepared, attached remediation summary and use restrictions in Appendix H.

Receiving Waters for Urban Runoff from Site

Receiving Waters	EPA Approved 303(d) List Impairments	Designated Beneficial Uses	Proximity to RARE Beneficial Use Designated Receiving Waters
None			

^{*}There are no runoffs to the receiving water. 100% of the runoffs is contained behind dike #4.

III. Pollutants of Concern

Table 1. Pollutant of Concern Summary

Pollutant Category	Potential for Project and/or Existing Site	Causing Receiving Water Impairment
Bacteria/Virus (Pathogens)	Y	None – 100% Containment behind Dike #4
Heavy Metals	Y	None – 100% Containment behind Dike #4
Nutrients	Y	None – 100% Containment behind Dike #4
Toxic Organic Compounds	Y	None – 100% Containment behind Dike #4
Sediment/Turbidity	Y	None – 100% Containment behind Dike #4
Trash & Debris	Y	None – 100% Containment behind Dike #4
Oil & Grease	Y	None – 100% Containment behind Dike #4
Toxaphene, Dieldrin, DDT, PCB, Toxicity Ammonia	N	None – 100% Containment behind Dike #4

Note: Toxaphene, Dieldrin, DDT& PCB are banned substances in the US.

IV. Hydrologic Conditions of Concern

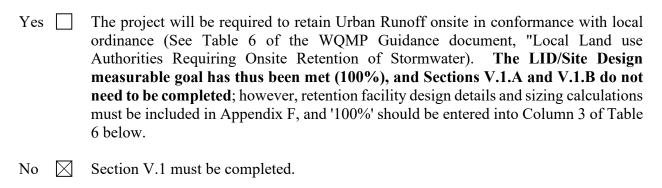
Local Jurisdiction Requires On-Site Retention of Urban Runoff:

Yes	The project will be required to retain urban runoff onsite in conformance with local ordinance (See Table 6 of the WQMP Guidance document, "Local Land use Authorities Requiring Onsite Retention of Stormwater"). This section does not need to be completed; however, retention facility design details and sizing calculations must be included in Appendix F.
No 🖂	This section must be completed.
This Pro	ect meets the following condition:
	Condition A: 1) Runoff from the Project is discharged directly to a publicly-owned, operated and maintained MS4 or engineered and maintained channel, 2) the discharge is in full compliance with local land use authority requirements for connections and discharges to the MS4 (including both quality and quantity requirements), 3) the discharge would not significantly impact stream habitat in proximate Receiving Waters, and 4) the discharge is authorized by the local land use authority.
	Condition B : The project disturbs less than 1 acre and is not part of a larger common plan of development that exceeds 1 acre of disturbance. The disturbed area calculation must include all disturbances associated with larger plans of development.
	Condition C: The project's runoff flow rate, volume, velocity and duration for the post-development condition do not exceed the pre-development condition for the 2-year, 24-hour and 10-year 24-hour rainfall events. This condition can be achieved by, where applicable, complying with the local land use authority's on-site retention ordinance, or minimizing impervious area on a site and incorporating other Site-Design BMP concepts and LID/Site Design BMPs that assure non-exceedance of pre-development conditions. This condition must be substantiated by hydrologic modeling methods acceptable to the local land use authority.

Supporting engineering studies, calculations, and reports are included in Appendix C.

document for additional requirements.

	2 year –	24 hour	10 year – 24 hour				
	Precondition	Precondition Post-condition		Post-condition			
Discharge (cfs)							
Velocity (fps)							
Volume (cubic feet)	N/A-SEE APPENDIX C		N/A-SEE APPENDIX C				
Duration (minutes)							


None: Refer to Section 3.4 of the Whitewater River Region WQMP Guidance

V. Best Management Practices

This project implements Best Management Practices (BMPs) to address the Pollutants of Concern that may potentially be generated from the use of the **Project Site**. These BMPs have been selected and implemented to comply with Section 3.5 of the WQMP Guidance document, and consist of Site Design BMP concepts, Source Control, LID/Site Design and, if/where necessary, Treatment Control BMPs as described herein.

V.1 SITE DESIGN BMP CONCEPTS, LID/SITE DESIGN AND TREATMENT CONTROL BMPS

Local Jurisdiction Requires On-Site Retention of Urban Runoff:

This section of the Project-Specific WQMP documents the LID/Site Design BMPs and, if/where necessary, the Treatment Control BMPs that will be implemented on the project to meet the requirements detailed within Section 3.5.1 of the WQMP Guidance document. Section 3.5.1 includes requirements to implement Site Design Concepts and BMPs, and includes requirements to address Pollutants of Concern with BMPs. Further, sub-section 3.5.1.1 specifically requires that Pollutants of Concern be addressed with <u>LID/Site Design</u> BMPs to the extent feasible.

LID/Site Design BMPs are those BMPs listed within Table 2 below which promote retention and/or feature a natural treatment mechanism; off-site and regionally-based BMPs are also LID/Site Design BMPs, and therefore count towards the measurable goal, if they fit these criteria. This project incorporates LID/Site Design BMPs to fully address the Treatment Control BMP requirement where and to the extent feasible. If and where it has been acceptably demonstrated to the local land use authority that it is infeasible to fully meet this requirement with LID/Site Design BMPs, Section V.1.B (below) includes a description of the conventional Treatment Control BMPs that will be substituted to meet the same requirements.

In addressing Pollutants of Concern, BMPs are selected using Table 2 below.

Table 2. BMP Selection Matrix Based Upon Pollutant of Concern Removal Efficiency (1)

(Sources: Riverside County Flood Control & Water Conservation District Design Handbook for Low Impact Development Best Management Practices, dated September 2011, the Orange County Technical Guidance Document for Water Quality Management Plans, dated May 19, 2011, and the Caltrans Treatment BMP Technology Report, dated April 2010 and April 2008)

Pollutant of Concern	Landscape Swale ^{2, 3}	Landscape Strip ^{2, 3}	Biofiltration (with underdrain) ^{2, 3}	Extended Detention Basin ²	Sand Filter Basin ²	Infiltration Basin ²	Infiltration Trench ²	Permeable Pavement ²	Bioretention (w/o underdrain) ^{2, 3}	Other BMPs Including Proprietary BMPs ^{4, 6}
Sediment & Turbidity	M	М	Н	М	Н	Н	Н	Н	Н	
Nutrients	L/M	L/M	М	L/M	L/M	Н	Н	Н	Н	
Toxic Organic Compounds	M/H	M/H	M/H	L	L/M	Н	Н	Н	Н	Varies by Product⁵
Trash & Debris	L	L	Н	Н	Н	Н	Н	L	Н	s by F
Bacteria & Viruses (also: Pathogens)	L	М	Н	L	М	Н	Н	Н	Н	Varie
Oil & Grease	М	М	Н	M	Н	Н	Н	Н	Н	
Heavy Metals	M	M/H	M/H	L/M	М	Н	Н	Н	Н	

Abbreviations:

L: Low removal efficiency

M: Medium removal efficiency

H: High removal efficiency

Notes:

- (1) Periodic performance assessment and updating of the guidance provided by this table may be necessary.
- (2) Expected performance when designed in accordance with the most current edition of the document, "Riverside County, Whitewater River Region Stormwater Quality Best Management Practice Design Handbook".
- (3) Performance dependent upon design which includes implementation of thick vegetative cover. Local water conservation and/or landscaping requirements should be considered; approval is based on the discretion of the local land use authority.
- (4) Includes proprietary stormwater treatment devices as listed in the CASQA Stormwater Best Management Practices Handbooks, other stormwater treatment BMPs not specifically listed in this WQMP (including proprietary filters, hydrodynamic separators, inserts, etc.), or newly developed/emerging stormwater treatment technologies.
- (5) Expected performance should be based on evaluation of unit processes provided by BMP and available testing data. Approval is based on the discretion of the local land use authority.
- (6) When used for primary treatment as opposed to pre-treatment, requires site-specific approval by the local land use authority.

V.1.A SITE DESIGN BMP CONCEPTS AND LID/SITE DESIGN BMPS

This section documents the Site Design BMP concepts and LID/Site Design BMPs that will be implemented on this project to comply with the requirements detailed in Section 3.5.1 of the WQMP Guidance document.

- Table 3 herein documents the implementation of the Site Design BMP Concepts described in sub-sections 3.5.1.3 and 3.5.1.4.
- Table 4 herein documents the extent to which this project has implemented the LID/Site Design goals described in sub-section 3.5.1.1.

Table 3. Implementation of Site Design BMP Concepts

_			Included				
Design Concept	Technique	Specific BMP	Yes	No	N/A	Brief Reason for BMPs Indicated as No or N/A	
		Conserve natural areas by concentrating or clustering development on the least environmentally sensitive portions of a site while leaving the remaining land in a natural, undisturbed condition.	\boxtimes			The south of the project site is preserved as Open space	
		Conserve natural areas by incorporating the goals of the Multi- Species Habitat Conservation Plan or other natural resource plans.	\boxtimes			The south of the project site is preserved as Open space	
		Preserve natural drainage features and natural depressional storage areas on the site.				The south of the project site is preserved as Open space	
Site Design BMP Concept 1	Minimize Urban Runoff,	Maximize canopy interception and water conservation by preserving existing native trees and shrubs, and planting additional native or drought tolerant trees and large shrubs.				Project site will be a fill site. In addition, there are no existing native trees or shrubs	
P Con	Minimize Impervious	Use natural drainage systems.		\boxtimes		The majority of on-site drainages are disturbed by grading for residential pads	
n BM	Footprint, and Conserve	Footprint, and Conserve	Where applicable, incorporate Self-Treating Areas	\boxtimes			Areas of landscaping and/or vegetation are included for Self-Treating Areas
Design	Natural Areas	Where applicable, incorporate Self-Retaining Areas	\boxtimes			Areas of landscaping and/or vegetation are included for Self-Treating Areas	
Site 1	(See WQMP Section 3.5.1.3)	Increase the building floor to area ratio (i.e., number of stories above or below ground).			\boxtimes	Development is for Residential Use	
	widths necessary, provide	Construct streets, sidewalks and parking lot aisles to minimum widths necessary, provided that public safety and a walkable environment for pedestrians are not compromised.	\boxtimes			Streets, sidewalks and parking lot aisles are constructed to minimize widths necessary, provided that public safety & a walkable environment for pedestrians are not compromised.	
		Reduce widths of streets where off-street parking is available.				Widths of streets are reduced where off- street parking is available.	
		Minimize the use of impervious surfaces, such as decorative concrete, in the landscape design.	\boxtimes			Decorative concrete can be used within landscape area in place of concrete to minimize the impervious surfaces.	

2014 Whitewater River Region WQMP

Other comparable and equally effective Site Design concept(s) as approved by the local land use author Additional narrative required to describe BMP and addresses site design concept).	rity (Note:	\boxtimes	None available

Table 3. Site Design BMP Concepts (continued)

			I	nclude	d	
Design Concept	Technique	Specific BMP	Yes	No	N/A	Brief Reason for Each BMP Indicated as No or N/A
		Design residential and commercial sites to contain and infiltrate roof runoff, or direct roof runoff to landscaped swales or buffer areas.		\boxtimes		Storm runoff will be conveyed via drive aisle, streets and underground storm drain system and discharged into retention/infiltration basins.
		Drain impervious sidewalks, walkways, trails, and patios into adjacent landscaping.				Storm runoff will be conveyed via drive aisle, streets and underground storm drain system and discharged into retention/infiltration basins.
		Incorporate landscaped buffer areas between sidewalks and streets.	\boxtimes			Landscape area between sidewalks and streets could be used to treat the impervious surface of the sidewalk.
Concept 2	Minimize Directly Connected	Use natural or landscaped drainage swales in lieu of underground piping or imperviously lined swales.				Storm runoff will be conveyed via drive aisle, streets and underground storm drain system and discharged into retention/infiltration basins.
Site Design BMP Concept 2	Impervious Area (See WOMP	Where soil conditions are suitable, use perforated pipe or gravel filtration pits for low flow infiltration.		\boxtimes		Storm runoff will be conveyed via drive aisle, streets and underground storm drain system and discharged into retention/infiltration basins.
Site Des	Section 3.5.1.4)	Maximize the permeable area by constructing walkways, trails, patios, overflow parking, alleys, driveways, low-traffic streets, and other low-traffic areas with open-jointed paving materials or permeable surfaces such as pervious concrete, porous asphalt, unit pavers, and granular materials.		\boxtimes		Storm runoff will be conveyed via drive aisle, streets and underground storm drain system and discharged into retention/infiltration basins.
		Use one or more of the following:				
		Rural swale system: street sheet flows to landscaped swale or gravel shoulder, curbs used at street corners, and culverts used under driveways and street crossings.				Storm runoff will be conveyed via drive aisle, streets and underground storm drain system and discharged into retention/infiltration basins.
		Urban curb/swale system: street slopes to curb; periodic swale inlets drain to landscaped swale or biofilter.				Storm runoff will be conveyed via drive aisle, streets and underground storm drain system and discharged into retention/infiltration basins.

2014 Whitewater River Region WQMP

			I	nclude	d	
Design Concept	Technique	Specific BMP	Yes	No	N/A	Brief Reason for Each BMP Indicated as No or N/A
		Dual drainage system: first flush captured in street catch basins and discharged to adjacent vegetated swale or gravel shoulder; high flows connect directly to MS4s.				Storm runoff will be conveyed via drive aisle, streets and underground storm drain system and discharged into retention/infiltration basins.
		Other comparable and equally effective Site Design BMP concept(s) as approved by the local land use authority (Note: Additional narrative required to describe BMP and how it addresses site design concept).				Storm runoff will be conveyed via drive aisle, streets and underground storm drain system and discharged into retention/infiltration basins.
		Use one or more of the following for design of driveways and privat	e resido	ential p	arking	areas:
		Design driveways with shared access, flared (single lane at street), or wheel strips (paving only under the tires).			\boxtimes	Does not meet City standards
		Uncovered temporary or guest parking on residential lots paved with a permeable surface, or designed to drain into landscaping.			\boxtimes	Does not meet City standards

Table 3. Site Design BMP Concepts (continued)

					ed	Brief Reason for Each BMP		
Design Concept	Technique	Specific BMP	Yes	No	N/A	Indicated as No or N/A		
2	Minimize	Other comparable and equally effective Site Design BMP concept(s) as approved by the local land use authority (Note: Additional narrative required to describe BMP and how it addresses site design concept).				None available		
Concept	Directly Connected Impervious Area (See WQMP Section 3.5.1.4)	Use one or more of the following for design of parking areas:						
Site Design BMP Cor (cont'd)		Where landscaping is proposed in parking areas, incorporate parking area landscaping into the drainage design.		\boxtimes		Storm runoff will be conveyed via drive aisle, streets and underground storm drain system and discharged into retention/infiltration basins.		
		Overflow parking (parking stalls provided in excess of the Permittee's minimum parking requirements) may be constructed with permeable pavement.			\boxtimes	No overflow parking proposed		
		Other comparable and equally effective Site Design BMP (or BMPs) as approved by the local land use authority (Note: Additional narrative required describing BMP and how it addresses site design concept).			\boxtimes	None available		

Project Site Design BMP Concepts:

The project will implement two (2) separate retention/infiltration basins to treat the required stormwater runoff. Runoff from roof drains and other impervious area will be conveyed to each basin by way of drive aisles, streets and underground storm system. These basins will also infiltrate the delta of the largest volume 100 year storm, for full details see Hydrology study contained in Appendix F.

Table 4. LID/Site Design BMPs Meeting the LID/Site Design Measurable Goal

(1) DRAINAGE SUB-AREA ID OR NO.	(2) LID/SITE DESIGN BMP TYPE*	(3) POTENTIAL POLLUTANTS OF CONCERN WITHIN DRAINAGE SUB-AREA	(4) POTENTIAL POLLUTANTS WITHIN SUB- AREA CAUSING RECEIVING WATER IMPAIRMENTS	(5) EFFECTIVENESS OF LID/SITE DESIGN BMP AT ADDRESSING IDENTIFIED POTENTIAL POLLUTANTS	(6) BMP MEETS WHICH DESIGN CRITERIA?	(7) TOTAL AREA WITHIN DRAINAGE SUB-AREA
	(See Table 2)	(Refer to Table 1)	(Refer to Table 1)	(U, L, M, H/M, H; see Table 2)	(Identify as VBMP OR QBMP)	(Nearest 0.1 acre)
A	INFILTRATION BASIN		PATHOGENS	Н	V_{BMP}	218.5
В	INFILTRATION BASIN	SEDIMENT & TURBIDITY,	PATHOGENS	Н	V_{BMP}	295.7
		NUTRIENTS, TOXIC ORGANIC COMPOUNDS, TRASH & DEBRIS, BACTERIA & VIRUSES, OIL & GREASE AND HEAVY METALS				
	TOTAL	PROJECT AREA TREATED V	VITH LID/SITE DES	SIGN BMPs (NEARE	ST 0.1 ACRE)	514.2

^{*} LID/Site Design BMPs listed in this table are those that <u>completely</u> address the 'Treatment Control BMP requirement' for their drainage sub-area.

Justification of infeasibility for sub-areas not addressed with LID/Site Design BMPs

Open space within the project site do not need to be addressed with LID/Site Design BMPs. These areas are slopes, parks and are usually pervious. Some of these areas may be even areas that are undisturbed. Drainages from these areas are routed behind Dike #4 where it is retained and infiltrated. For Madison Street, the entire length of the street slope towards the dike #4. It is infeasible to bring a pipe up in order to drain back to the basin #1 (See WQMP site map).

V.1.B TREATMENT CONTROL BMPS

Conventional Treatment Control BMPs shall be implemented to address the project's Pollutants of Concern as required in WQMP Section 3.5.1 where, and to the extent that, Section V.1.A has demonstrated that it is infeasible to meet these requirements through implementation of LID/Site Design BMPs.

The LID/Site Design BMPs described in Section V.1.A of this project-specific WQMP completely address the 'Treatment Control BMP requirement' for the entire project site (and where applicable, entire existing site) as required in Section 3.5.1.1 of the WQMP Guidance document. Supporting documentation for the sizing of these LID/Site Design BMPs is included in Appendix F. *Section V.1.B does not need to be completed.
The LID/Site Design BMPs described in Section V.1.A of this project-specific WQMP do NOT completely address the 'Treatment Control BMP requirement' for the entire project site (or where applicable, entire existing site) as required in Section 3.5.1.1 of the WQMP. *Section V.1.B must be completed.

Table 5: Treatment Control BMP Summary – N/A

V.1.C MEASURABLE GOAL SUMMARY

This section documents the extent to which this project has met the measurable goal described in WQMP Section 3.5.1.1 of addressing 100% of the project's 'Treatment Control BMP requirement' with LID/Site Design BMPs. Projects required to retain Urban Runoff onsite in conformance with local ordinance are considered to have met the measurable goal; for these instances, '100%' is entered into Column 3 of the Table.

Table 6: Measurable Goal Summary

(1)	(2)	(3)		
Total Area Treated with LID/Site Design BMPs	Total Area Treated with Treatment Control BMPs	% of Treatment Control BMP Requirement addressed with LID/Site Design BMPs		
(Last row of Table 4)	(Last row of Table 5)			
514.2	0	100%		

V.2 SOURCE CONTROL BMPs

This section identifies and describes the Source Control BMPs applicable and implemented on this project.

Table 7. Source Control BMPs

	Chec	k One	If not applicable, state brief reason				
BMP Name	Included	Not Applicable					
Non-Structural Source Control BMPs							
Education for Property Owners, Operators, Tenants, Occupants, or Employees	\boxtimes						
Activity Restrictions							
Irrigation System and Landscape Maintenance	\boxtimes						
Common Area Litter Control	\boxtimes						
Street Sweeping Private Streets and Parking Lots							
Drainage Facility Inspection and Maintenance	\boxtimes						
Structural Source Control BMPs							
Storm Drain Inlet Stenciling and Signage							
Landscape and Irrigation System Design							
Protect Slopes and Channels							
Provide Community Car Wash Racks		\boxtimes	No community car wash Racks				
Properly Design*:							
Fueling Areas			No fueling areas on-site				
Air/Water Supply Area Drainage		\boxtimes	No air/water supply area drainage on-site				
Trash Storage Areas							
Loading Docks		\boxtimes	No loading docks on-site				
Maintenance Bays			No maintenance bay on-site				
Vehicle and Equipment Wash Areas			No vehicle and equipment wash areas on-site				
Outdoor Material Storage Areas			No outdoor material storage areas on-site				
Outdoor Work Areas or Processing Areas			No outdoor work areas or processing areas on-site				
Provide Wash Water Controls for Food Preparation Areas			No food preparation areas on-si				

^{*}Details demonstrating proper design must be included in Appendix F.

Appendix D includes copies of the educational materials (described in Section 3.5.2.1 of the WQMP Guidance document) that will be used in implementing this project-specific WQMP.

Education for Property Owners, Operators, Tenants, Occupants or Employees – For developments with no Property Owners Association (POA) or with POAs of less than fifty (50) dwelling units, practical information materials will be provided to the first residents/occupants/tenants on general good housekeeping practices that contribute to protection of storm water quality initially these materials will be provided by the developer. Thereafter such materials will be available through the Permittees' education program. Different materials for residential, office commercial, retail commercial, vehicle-related commercial, and industrial uses will be involved.

For developments with POA and residential projects of more than fifty (50) dwelling units, project conditions of approval will require that the POA provide environmental awareness education materials, mad available by the municipalities, to all members periodically. Among other things, these materials will describe the use of chemicals (including household type) that should be limited to the property. With no discharge of specified wastes via hosing or other direct discharge to gutters, catch basins and storm drains.

Activity Restrictions – If a POA is formed, conditions, covenants, and restrictions shall be prepared by the developer for the purpose of surface water quality protection. Alternatively, use restrictions may be developed by a building operator through lease terms, etc.

Irrigation System and Landscape Maintenance – Landscape Management Includes:

- Mitigation of the potential dangers of fertilizer and pesticide usage through the incorporation of an Integrated Pest Management Program (IPM).
- Monitor for runoff and efficiency regularly
- Implementation of a water budget
- Irrigation systems shall be automatically controlled and designed, installed and maintained so
 as to minimize overspray and runoff onto streets, sidewalks, driveways, structures, windows,
 walls and fences.
- Use of native and drought tolerant species when replanting.

Common Area Litter Control – For developments with POAs, the POA will be required to implement trash management and litter control procedures in the common areas aimed at reducing pollution of drainage water. The Associations may contract with their landscape maintenance firms to provide this service during regularly scheduled maintenance, which should consist of litter patrol, emptying of trash receptacles in common area, and noting trash disposal violations by homeowners or businesses and reporting the violations to the Association for investigation.

Street Sweeping Private Streets and Parking Lot – For developments with POAs and privately owned streets and parking lots, require the streets and parking lots be swept prior to the storm season, no later than October 15 each year.

Drainage Facility Inspection and Maintenance – Municipal staff should regularly inspect facilities to ensure the following: - Immediate repair of any deterioration threatening structural integrity. -Cleaning before the sump is 40% full. Catch basins should be cleaned as frequently as needed to meet this standard. -Stenciling of catch basins and inlets (see SC-75 Waste Handling and Disposal). Clean catch basins, storm drain inlets, and other conveyance structures in high pollutant load areas just before the wet season to remove sediments and debris accumulated during the summer. Conduct inspections more frequently during the wet season for problem areas where sediment or trash accumulates more often. Clean and repair as needed. Keep accurate logs of the number of catch basins cleaned. Record the amount of waste collected. Store wastes collected from cleaning activities of the drainage system in appropriate containers or temporary storage sites in a manner that prevents discharge to the storm drain. Dewater the wastes with outflow into the sanitary sewer if permitted. Water should be treated an appropriate filtering device prior to

discharge to the sanitary sewer. If discharge to the sanitary sewer is not allowed, water should be pumped or vacuumed to a tank and properly disposed of. Do not dewater near a storm drain or stream. Except for small communities with relatively few catch basins that may be cleaned manually, most municipalities will require mechanical cleaners such as vacuums or bucket loaders. Storm Drain Conveyance System Locate reaches of storm drain with deposit problems and develop a flushing schedule that keeps the pipe clear of excessive buildup. Collect flushed effluent and pump to the sanitary sewer for treatment.

Storm Drain Inlet Stenciling and Signage – Phrase "No Dumping – Drains to Ocean" or equally effective phrase to be stenciled on catch basins to alert the public to the destination of pollutants discharged into stormwater.

Protect slopes and Channels – Convey runoff safely from the tops of slopes. Avoid disturbing steep or unstable slopes. Avoid disturbing natural channels. Stabilize disturbed slopes as quickly as possible. Vegetate slopes with native or drought tolerant vegetation. Control and treat flows in landscaping and/or other controls prior to reaching existing natural drainage systems. Stabilize temporary and permanent channel crossings as quickly as possible and ensure that increases in run-off velocity and frequency caused by the project do not erode the channel. Install energy dissipaters, such as riprap, at the outlets of new storm drains, culverts, conduits or channels that enter unlined channels in accordance with applicable specifications to minimize erosion. Energy dissipaters shall be installed in such a way as to minimize impacts to receiving waters. Line on-site conveyance channels where appropriate, to reduce erosion caused by increased flow velocity due to increases in tributary impervious area. The first choice for linings should be grass or some other vegetative surface, since these materials not only reduce runoff velocities, but also provide water quality benefits from filtration and infiltration. If velocities in the channel are high enough to erode grass or other vegetative linings, riprap, concrete, soil cement, or geo-grid stabilization are other alternatives. Consider other design principles that are comparable and equally effective.

Trash Storage Areas – Design trash container areas so that drainage from adjoining roofs and pavement is diverted around the areas(s) to avoid run-on. This might include berm or grading the waste handling area to prevent run-on of stormwater. Make sure trash container areas are screened or walled to prevent off-site transport of trash. Use lined bins or dumpsters to reduce leaking of liquid waste. Provide roofs, awnings, or attached lids on all trash containers to minimize direct precipitation and prevent rainfall from entering containers. Pave trash storage areas with an impervious surface to mitigate spills. Do not locate storm drains in immediate vicinity of the trash storage area. Post signs on all dumpsters informing users that hazardous materials are not to be disposed of therein.

V.3 EQUIVALENT TREATMENT CONTROL BMP ALTERNATIVES

Not applicable

V.4 REGIONALLY-BASED BMPS

Not applicable

VI. Operation and Maintenance Responsibility for BMPs

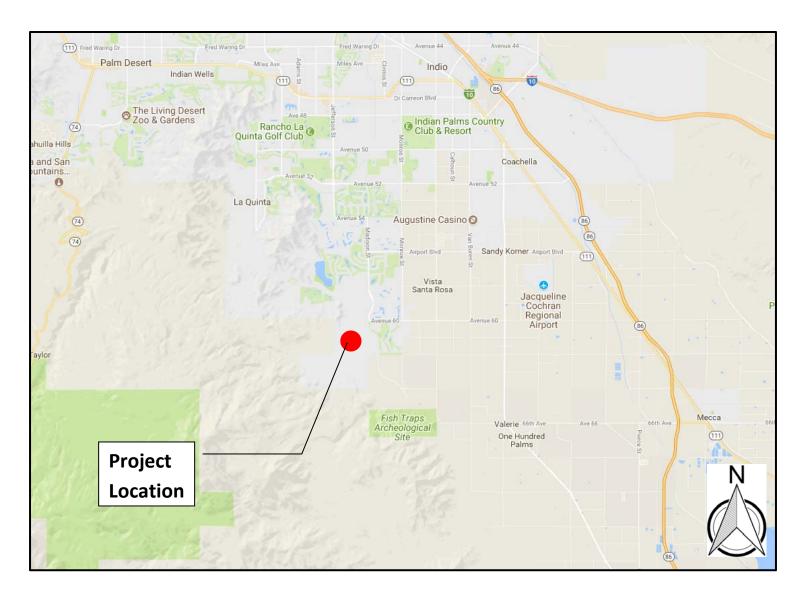
Appendix G of this project-specific WQMP includes copies of CC&Rs, Covenant and Agreements, BMP Maintenance Agreement and/or other mechanisms used to ensure the ongoing operation, maintenance, funding, transfer and implementation of the project-specific WQMP requirements.

VII.Funding

Funding for this project will be provided by the owner:

Hofmann Land Development Co. P.O. Box 907 Concord, CA 94522

2014 Whitewater River Region WQMP


Appendix A

	Conditions of Approv		
Planning Comm	nission Resolution		
	Dated		

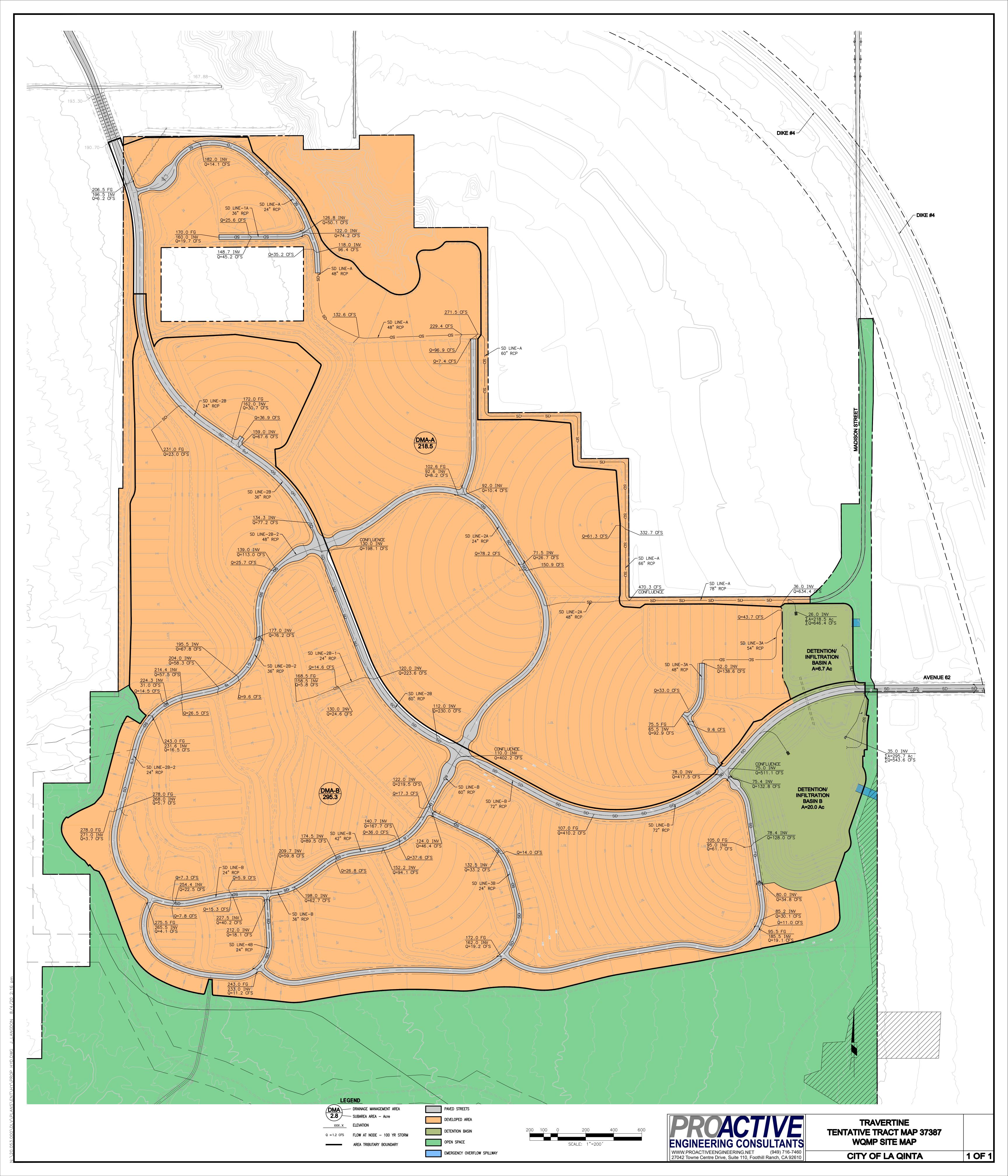
Not applicable; project is in the preliminary phase. COA will be provided when available

Appendix B

Vicinity Map,	WQMP S	ite Plan, a	and Receiv	ing Wate	rs Map

VICINITY MAP

N.T.S.



PROJECT DEVELOPED AREA:

PROJECT DEVELOPED 514.2 Ac.

PROACTIVEENGINEERING.NET (949) 716-7460 27042 Towne Centre Drive, Suite 110, Foothill Ranch, CA 92610

TRAVERTINE SITE MAP

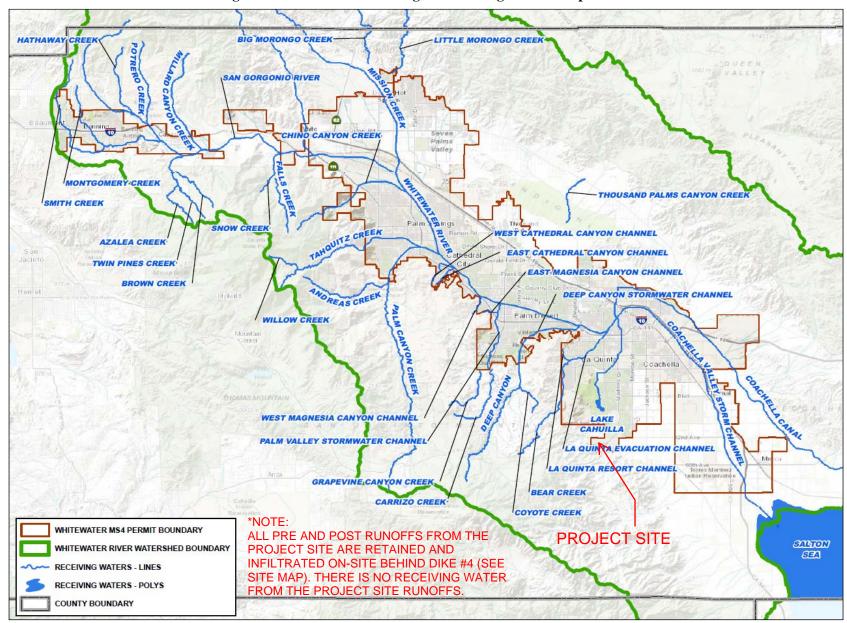


Figure 2. Whitewater River Region Receiving Waters Map

June 2014 10

Appendix C

Supporting Detail Related to Hydrologic Conditions of Concern

Not applicable at this stage of the project; The existing conditions and proposed condition 2-year 24-hour and 10-year 24-hour hydrology and basin routing calculations will be performed during the final engineering stage.

Furthermore, existing and post development stormwater flows will be 100% retained behind Dike#4, therefore there is no concern for downstream hydraulic conditions.

2014 Whitewater River Region WQMP

Appendix D

Educational Materials

See Project Operation & Maintenance Plan

WQMP Operation & Maintenance (O&M) Plan

Project Name: Travertine Project (TTM 37387)

City of La Quinta, County of Riverside, State of California

Prepared on: September 23, 2020

This O&M Plan describes the designated responsible party for implementation of this WQMP, including: operation and maintenance of all the structural BMP(s), conducting the training/educational program and duties, and any other necessary activities. The O&M Plan includes detailed inspection and maintenance requirements for all structural BMPs, including copies of any maintenance contract agreements, manufacturer's maintenance requirements, permits, etc.

8.1.1 Project Information

APN: 766-110-003, 766-110-004, 766-110-007, 766-110-009, 766-120-001, 766-120-002, 766-120-003, 766-120-006, 766-120-016, 766-120-018, 766-120-015, 766-120-021, 766-120-023, 766-280-057, 764-280-059, 764-280-061, 753-040-014, 753-040-017, 753-040-016, 743-050-029, 753-050-007, 753-060-003.

Address: West of Madison Street, East of Jefferson Street along Avenue 62, La Quinta, CA

Site Size: 855.4 acres

List Structural BMPs, number of each, etc.: Two (2) retention/infiltration basins

How many dwelling units, commercial tenants, etc.: Mixed residential and resort development.

All stormwater runoff generated on-site will be conveyed via drive isles, streets and underground storm drain piping and discharged into retention/ infiltration basins.

8.1.2 Responsible Party

The responsible party for implementation of this WQMP is:

Hofmann Land Development Co. P.O. Box 907 Concord, CA 94522 (925) 478-2000

8.1.3 Record Keeping

Parties responsible for the O&M plan shall retain records for at least 5 years.

All training and educational activities and BMP operation and maintenance shall be documented to verify compliance with this O&M Plan. A sample Training Log and Inspection and Maintenance Log are included in Appendix C of this document.

The **WQMP Verification Form** (Appendix D) shall be completed accurately and submitted, with associated documentation, to the City of La Quinta by September 30 of each year, or as requested by the City. **Failure to complete and submit the verification form will result in a noncompliance and enforcement actions may be taken.**

8.1.4 Electronic Data Submittal

This document along with the Site Plan and Attachments shall be provided in PDF format. Autocad files and/or GIS coordinates of BMPs shall also be submitted to the City.

8.1.5 Vector Control

Standing water which exists for longer than 72 hours may contribute to mosquito breeding areas. Best Management Practices (BMPs) shall be inspected for standing water on a regular basis. Standing water may indicate that the BMP is not functioning properly and proper action to remedy the situation shall be taken in a timely manner.

Elimination of standing water and managing garbage, lawn clippings, and pet droppings, can help decrease the presence of mosquitoes and flies in the area.

8.1.6 Required Permits

No additional permits are required.

8.1.7 Inspections

The City may conduct a site inspection to evaluate compliance with the Project WQMP, at any time, in accordance with City of La Quinta Water Quality Ordinance (Ordinance No. 493).

8.1.8 Monitoring Plan

The City or other agencies may require a monitoring plan. Details regarding monitoring plan, such as parameters to be tested, frequency, testing locations, laboratory, etc. shall be included as appropriate.

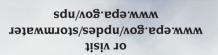
No monitoring is required for this project.

8.1.9 Operation and Maintenance Requirements

ВМР	Implementation, Inspection and Maintenance Requirements	Frequency
,	RP will insure that all owners & tenants will be given a copy of the recorded CC&R's which will contain a section outlining the environmental awareness education materials at the close of escrow.	
	RP shall distribute appropriate materials to owners, tenants and/or occupants via contract language, mailings, website or meeting.	Information to be initially provided to owners & tenants upon sale or lease
	Brochures can be requested or downloaded from www.ocwatersheds.com .	agreement. Educational materials will
N1. Education for Property Owners, Tenants and Occupants	Brochures and educational articles for RP distribution can also be requested from City Water Quality Engineer.	be provided to owners and/or tenants annually, thereafter.
N2. Activity Restriction	Within the CC&R's or lease agreement, the following activity restrictions shall be enforced:	Continuous.

ВМР	Implementation, Inspection and	Frequency
	Maintenance Requirements	
	Landscape Management Includes:	
	Mitigation of the potential dangers of fertilizer and pesticide usage through the incorporation of an Integrated Pest Management Program (IPM).	
	Monitor for runoff and efficiency regularly.	
	Implementation of a water budget.	
N3. Common Area Landscape	 Irrigation systems shall be automatically controlled and designed, installed, and maintained so as to minimize overspray and runoff onto streets, sidewalks, driveways, structures, windows, walls, and fences. 	
Management & Efficient Landscape Design	Use of native and drought tolerant species when replanting	Inspected once a week.
N11. Common Area Litter Control	Weekly sweeping and trash pick up as necessary within all project areas and common landscape areas. Daily inspection of trash receptacles to ensure that lids are closed and pick up any excess trash on the ground, noting trash disposal violations by homeowners and reporting the violations to the HOA/RP for investigation.	Daily inspection and weekly sweeping and clean-up or as needed.
N12. Contractor/Employee Training	All contractors shall be trained and made aware of this WQMP and operation and maintenance requirements of BMPs.	At first hire and annually thereafter for POA personnel and employees, to include the educational materials contained in the approved Water Quality Management Plan.
N14. Common Area Catch Basin Inspection	Catch basins will be owned, inspected and maintained by the HOA/RP. Catch basins will be inspected at a minimum on a yearly basis, and prior to the storm season, no later than October 1st of each year.	At a minimum, basins will be inspected and cleaned around October 1 ST of each year, prior to "first flush" storm, or as necessary after large storm events to clear inlets of trash, debris and silt.
N15. Street Sweeping Private Streets and Parking Lots	Vacuum street sweeping will occur on a weekly basis.	Streets will be vacuumed and swept on a weekly basis.
SD-13 Provide Storm Drain System Stenciling and Signage	All catch basins where applicable in paved areas, will be marked or stenciled with "No Dumping - Drains to Ocean, No Descargue Basura" language. This will be done in a location that can be clearly seen by all and will be routinely inspected and relabeled, as necessary. Thereafter, the owner/operator shall routinely inspect and re-label the catch basins, as necessary.	Catch basin labels will be inspected once annually and re-labeled as necessary to maintain legibility.

ВМР	Implementation, Inspection and Maintenance Requirements	Frequency
Sd-32 Design and Construct Trash and Waste Storage Areas to Reduce Pollutant Introduction	Trash will be removed by the local private solid waste management contractor on a weekly basis for proper disposal of the trash to landfill; with recyclable materials and green wastes to be processed offsite.	Trash dumpster shall be kept in a non-leaking condition.


A Citizen's Auide to Understanding Stormwater

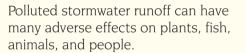
Eby 833-B-03-002

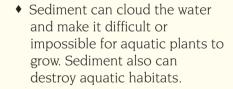
anuary 2003

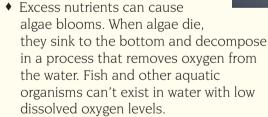
For more information contact:

Myote shown

What is stormwater runoff?

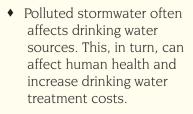

Stormwater runoff occurs when precipitation from rain or snowmelt flows over the ground. Impervious surfaces like driveways, sidewalks, and streets prevent stormwater from naturally soaking into the ground.


Why is stormwater runof



Stormwater can pick up debris, chemicals, dirt, and other pollutants and flow into a storm sewer system or directly to a lake, stream, river, wetland, or coastal water. Anything that enters a storm sewer system is discharged untreated into the waterbodies we use for swimming, fishing, and providing drinking water.

The effects of pollution



- Bacteria and other pathogens can wash into swimming areas and create health hazards, often making beach closures necessary.
- ◆ Debris—plastic bags, six-pack rings, bottles, and cigarette butts-washed into waterbodies can choke, suffocate, or disable aquatic life like ducks, fish, turtles, and birds.
- Household hazardous wastes like insecticides, pesticides, paint. solvents, used motor oil, and other auto fluids can poison aquatic life. Land animals and people can become sick or die from eating diseased fish and shellfish or ingesting polluted water.

Stormwater Pollution Solutions

Septic

poorly

septic

systems

Leaking and

maintained

systems release nutrients and

viruses) that can be picked up

by stormwater and discharged

Pathogens can cause public

◆ Inspect your system every

3 years and pump your

household hazardous

waste in sinks or toilets.

tank as necessary (every 3

pathogens (bacteria and

into nearby waterbodies.

environmental concerns.

health problems and

Recycle or properly dispose of household products that contain chemicals, such as insecticides, pesticides, paint, solvents, and used motor oil and other auto fluids. Don't pour them onto the ground or into storm drains.

Lawn care

Excess fertilizers and pesticides applied to lawns and gardens wash off and pollute streams. In addition, yard clippings and leaves can wash

into storm drains and contribute nutrients and organic matter to streams.

- ◆ Don't overwater your lawn. Consider using a soaker hose instead of a sprinkler.
- Use pesticides and fertilizers sparingly. When use is necessary, use these chemicals in the recommended amounts. Use organic mulch or safer pest control methods whenever possible.
- ◆ Compost or mulch yard waste. Don't leave it in the street or sweep it into storm drains or streams.
- ◆ Cover piles of dirt or mulch being used in landscaping projects.

Auto care

Washing your car and degreasing auto parts at home can send detergents and other contaminants through the storm sewer system. Dumping automotive fluids into storm drains has the same result as dumping the materials directly into a waterbody.

- ♦ Use a commercial car wash that treats or recycles its wastewater, or wash your car on your yard so the water infiltrates into the
- ◆ Repair leaks and dispose of used auto fluids and batteries at designated drop-off or recycling locations.

Pet waste

Pet waste can be bacteria and excess nutrients

a major source of in local waters.

Education is essential to changing people's behavior. Signs and markers near storm drains warn residents that pollutants entering the drains will be carried untreated into a local waterbody.

Residential landscaping

Permeable Pavement—Traditional concrete and asphalt don't allow water to soak into the ground. Instead these surfaces rely on storm drains to divert unwanted water. Permeable pavement systems allow rain and snowmelt to soak through, decreasing stormwater runoff.

Rain Barrels—You can collect rainwater from rooftops in mosquitoproof containers. The water can be used later on lawn or garden areas.

Rain Gardens and Grassy Swales—Specially designed areas planted

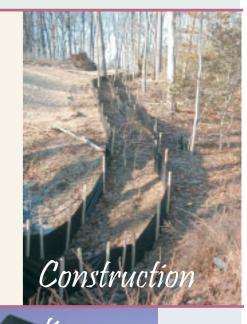
with native plants can provide natural places for

rainwater to collect and soak into the ground. Rain from rooftop areas or paved areas can be diverted into these areas rather than into storm drains.

Vegetated Filter Strips—Filter strips are areas of native grass or plants created along roadways or streams. They trap the pollutants stormwater picks up as it flows across driveways and streets.

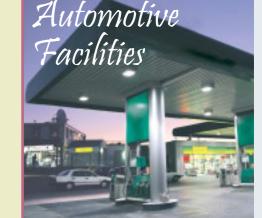
Agriculture

Dirt, oil, and debris that collect in parking lots and paved areas can be washed into the storm sewer system and eventually enter local waterbodies.

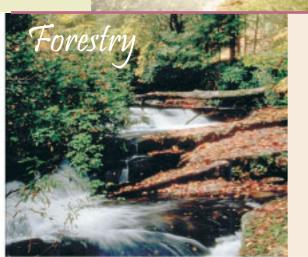

to 5 years).

• Don't dispose of

- ◆ Sweep up litter and debris from sidewalks, driveways and parking lots, especially around storm drains.
- ◆ Cover grease storage and dumpsters and keep them clean to avoid leaks.
- ◆ Report any chemical spill to the local hazardous waste cleanup team. They'll know the best way to keep spills from harming the environment.


Erosion controls that aren't maintained can cause excessive amounts of sediment and debris to be carried into the stormwater system. Construction vehicles can leak fuel, oil, and other harmful fluids that can be picked up by stormwater and deposited into local waterbodies.

- ♦ Divert stormwater away from disturbed or exposed areas of the construction site.
- ◆ Install silt fences, vehicle mud removal areas, vegetative cover, and other sediment and erosion controls and properly maintain them, especially after rainstorms.
- Prevent soil erosion by minimizing disturbed areas during construction projects, and seed and mulch bare areas as soon as possible.


Lack of vegetation on streambanks can lead to erosion. Overgrazed pastures can also contribute excessive amounts of sediment to local waterbodies. Excess fertilizers and pesticides can poison aquatic animals and lead to destructive algae blooms. Livestock in streams can contaminate waterways with bacteria, making them unsafe for human contact.

- Keep livestock away from streambanks and provide them a water source away from waterbodies.
- Store and apply manure away from waterbodies and in accordance with a nutrient management plan.
- Vegetate riparian areas along waterways.
- Rotate animal grazing to prevent soil erosion in fields.
- Apply fertilizers and pesticides according to label instructions to save money and minimize pollution.

Uncovered fueling stations allow spills to be washed into storm drains. Cars waiting to be repaired can leak fuel, oil, and other harmful fluids that can be picked up by stormwater.

- Clean up spills immediately and properly dispose of cleanup materials.
- Provide cover over fueling stations and design or retrofit facilities for spill containment.
- Properly maintain fleet vehicles to prevent oil, gas, and other discharges from being washed into local waterbodies.
- Install and maintain oil/water separators.

Improperly managed logging operations can result in erosion and

- Conduct preharvest planning to prevent erosion and lower costs.
- Use logging methods and equipment that minimize soil disturbance.
- ♦ Plan and design skid trails, yard areas, and truck access roads to minimize stream crossings and avoid disturbing the forest floor.
- ♦ Construct stream crossings so that they minimize erosion and physical changes to streams.
- Expedite revegetation of cleared areas.

Helpful telephone numbers and links:

Riverside County Stormwater Protection Partners

Flood Control District	(951) 955-1200
County of Riverside	(951) 955-1000
City of Banning	(951) 922-3105
City of Beaumont	(951) 769-8520
City of Calimesa	(909) 795-9801
City of Canyon Lake	(951) 244-2955
Cathedral City	(760) 770-0327
City of Coachella	(760) 398-4978
City of Corona	(951) 736-2447
City of Desert Hot Springs	(760) 329-6411
City of Eastvale	(951) 361-0900
City of Hemet	(951) 765-2300
City of Indian Wells	(760) 346-2489
City of Indio	(760) 391-4000
City of Lake Elsinore	(951) 674-3124
City of La Quinta	(760) 777-7000
City of Menifee	(951) 672-6777
City of Moreno Valley	(951) 413-3000
City of Murrieta	(951) 304-2489
City of Norco	(951) 270-5607
City of Palm Desert	(760) 346-0611
City of Palm Springs	(760) 323-8299
City of Perris	(951) 943-6100
City of Rancho Mirage	(760) 324-4511
City of Riverside	(951) 361-0900
City of San Jacinto	(951) 654-7337
City of Temecula	(951) 694-6444
City of Wildomar	(951) 677-7751

REPORT ILLEGAL STORM DRAIN DISPOSAL 1-800-506-2555 or e-mail us at fcnpdes@rcflood.org

 Riverside County Flood Control and Water Conservation District www.rcflood.org

Online resources include:

- California Storm Water Quality Association www.casqa.org
- State Water Resources Control Board www.waterboards.ca.gov
- Power Washers of North America www.thepwna.org

Stormwater Pollution

What you should know for...

Outdoor Cleaning Activities and Professional Mobile Service Providers

Storm drain pollution prevention information for:

- Car Washing / Mobile Detailers
- Window and Carpet Cleaners
- Power Washers
- Waterproofers / Street Sweepers
- Equipment cleaners or degreasers and all mobile service providers

Do you know where street flows actually go?

Storm drains are NOT connected to sanitary sewer systems and treatment plants!

The primary purpose of storm drains is to carry <u>rain</u> water away from developed areas to prevent flooding. Pollutants discharged to storm drains are transported directly into rivers, lakes and streams. Soaps, degreasers, automotive fluids, litter and a host of materials are washed off buildings, sidewalks, plazas and parking areas. Vehicles and equipment must be properly managed to prevent the pollution of local waterways.

Unintentional spills by mobile service operators can flow into storm drains and pollute our waterways. Avoid mishaps. Always have a Spill Response Kit on hand to clean up unintentional spills. Only emergency Mechanical repairs should be done in City streets, using drip pans for spills. Plumbing should be done on private property. Always store chemicals in a leak-proof container and keep covered when not in use. Window/Power Washing waste water shouldn't be released into the streets, but should be disposed of in a sanitary sewer, landscaped area or in the soil. Soiled Carpet Cleaning wash water should be filtered before being discharged into the sanitary sewer. Dispose of all filter debris properly. Car Washing/Detailing operators should wash cars on private property and use a regulated hose nozzle for water flow control and runoff prevention. Capture and dispose of waste water and chemicals properly. Remember, storm drains are for receiving rain water runoff only.

REPORT ILLEGAL STORM DRAIN DISPOSAL 1-800-506-2558

Help Protect Our Waterways!

Use these guidelines for Outdoor Cleaning Activities and Wash Water Disposal

Did you know that disposing of pollutants into the street, gutter, storm drain or body of water is PROHIBITED by law and can result in stiff penalties?

Best Management Practices

Waste wash water from Mechanics, Plumbers, Window/Power Washers, Carpet Cleaners, Car Washing and Mobile Detailing activities may contain significant quantities of motor oil, grease, chemicals, dirt, detergents, brake pad dust, litter and other materials.

Best Management Practices, or BMPs as they are known, are guides to prevent pollutants from entering the storm drains. *Each of us* can do our part to keep stormwater clean by using the suggested BMPs below:

Simple solutions for both light and heavy duty jobs:

Do...consider dry cleaning methods first such as a mop, broom, rag or wire brush. Always keep a spill response kit on site.

Do...prepare the work area before power cleaning by using sand bags, rubber mats, vacuum booms, containment pads or temporary berms to keep wash water <u>away</u> from the gutters and storm drains.

Do...use vacuums or other machines to remove and collect loose debris or litter before applying water.

Do...obtain the property owner's permission to dispose of *small amounts* of power washing waste water on to landscaped, gravel or unpaved surfaces.

Do...check your local sanitary sewer agency's policies on wash water disposal regulations before disposing of wash water into the sewer. (See list on reverse side)

Do...be aware that if discharging to landscape areas, soapy wash water may damage landscaping. Residual wash water may remain on paved surfaces to evaporate. Sweep up solid residuals and dispose of properly. Vacuum booms are another option for capturing and collecting wash water.

Do...check to see if local ordinances prevent certain activities.

Do not let...wash or waste water from sidewalk, plaza or building cleaning go into a street or storm drain.

Report illegal storm drain disposal
Call Toll Free
1-800-506-2555

Using Cleaning Agents

Try using biodegradable/phosphate-free products. They are easier on the environment, but don't confuse them with being toxic free. Soapy water entering the storm drain system <u>can</u> impact the delicate aquatic environment.

When cleaning surfaces with a high-pressure washer or steam cleaner, additional precautions should be taken to prevent the discharge of pollutants into the storm drain system. These two methods of surface cleaning can loosen additional material that can contaminate local waterways.

Think Water Conservation

Minimize water use by using high pressure, low volume nozzles. Be sure to check all hoses for leaks. Water is a precious resource, don't let it flow freely and be sure to shut it off in between uses.

Screening Wash Water

Conduct thorough dry cleanup before washing exterior surfaces, such as buildings and decks *with loose paint*, sidewalks or plaza areas. Keep debris from entering the storm drain after cleaning by first passing the wash water through a "20 mesh" or finer screen to catch the solid materials, then dispose of the mesh in a refuse container. Do not let the remaining wash water enter a street, gutter or storm drain.

Drain Inlet Protection & Collection of Wash Water

- Prior to any washing, block all storm drains with an impervious barrier such as sandbags or berms, or seal the storm drain with plugs or other appropriate materials.
- Create a containment area with berms and traps or take advantage of a low spot to keep wash water contained.
- Wash vehicles and equipment on grassy or gravel areas so that the wash water can seep into the ground.
- Pump or vacuum up all wash water in the contained area.

Concrete/Coring/Saw Cutting and Drilling Projects

Protect any down-gradient inlets by using dry activity techniques whenever possible. If water is used, minimize the amount of water used during the coring/drilling or saw cutting process. Place a barrier of sandbags and/or absorbent berms to protect the storm drain inlet or watercourse. Use a shovel or wet vacuum to remove the residue from the pavement. Do not wash residue or particulate matter into a storm drain inlet or watercourse.

andscaping and garden maintenance activities can be major contributors to water pollution. Soils, yard wastes, over-watering and garden chemicals become part of the urban runoff mix that winds its way through streets, gutters and storm drains before entering lakes, rivers, streams, etc. Urban runoff pollution contaminates water and harms aquatic life!

In Riverside County, report illegal discharges into the storm drain, call
1-800-506-2555
"Only Rain Down the Storm Drain"

Important Links:

Riverside County Household Hazardous Waste Collection Information 1-800-304-2226 or www.rivcowm.org

> Riverside County Backyard Composting Program 1-800-366-SAVE

Integrated Pest Management (IPM) Solutions www.ipm.ucdavis.edu

California Master Gardener Programs
<u>www.mastergardeners.org</u>
<u>www.camastergardeners.ucdavis.edu</u>

California Native Plant Society www.cnps.org

The Riverside County "Only Rain Down the Storm Drain"
Pollution Prevention Program gratefully acknowledges
Orange County's Storm Water Program for their
contribution to this brochure.

...Only Rain Down ...the Storm Drain

What you should know for... Landscape and Gardening

Best Management tips for:

- Professionals
- Novices
- Landscapers
- Gardeners
- Cultivators

Tips for Landscape & Gardening

This brochure will help you to get the most of your lawn and gardening efforts and keep our waterways clean. Clean waterways provide recreation, establish thriving fish habitats, secure safe sanctuaries for wildlife, and add beauty to our communities. NEVER allow gardening products or waste water to enter the street, gutter or storm drain.

General Landscaping Tips

- Protect stockpiles and materials from wind and rain by storing them under tarps or secured plastic sheeting.
- Prevent erosion of slopes by planting fastgrowing, dense ground covering plants. These will shield and bind the soil.
- Plant native vegetation to reduce the amount of water, fertilizers and pesticides applied to the landscape.

 Never apply pesticides or fertilizers when rain is predicted within the next 48 hours.

Garden & Lawn Maintenance

 Do not overwater. Use irrigation practices such as drip irrigation, soaker hoses or microspray systems. Periodically inspect and fix leaks and misdirected sprinklers. Do not rake or blow leaves, clippings or pruning waste into the street, gutter or storm

drain. Instead, dispose of green waste by composting, hauling it to a permitted landfill, or recycling it through your city's program.

- Consider recycling your green waste and adding "nature's own fertilizer" to your lawn or garden.
- Read labels and use only as directed. Do not over-apply pesticides or fertilizers. Apply to spots as needed, rather than blanketing an entire area.
- Store pesticides, fertilizers and other chemicals in a dry covered area to prevent exposure that may result in the deterioration of containers and packaging.
- Rinse empty pesticide containers and re-use rinse water as you would use the product. Do not dump rinse water down storm drains or sewers. Dispose of empty containers in the trash.
- When available, use non-toxic alternatives to traditional pesticides, and use pesticides specifically designed to control the pest you are targeting.

- Try natural long-term common sense solutions first. Integrated Pest Management (IPM) can provide landscaping guidance and solutions, such as:
 - Physical Controls Try hand picking, barriers, traps or caulking holes to control weeds and pests.
 - Biological Controls Use predatory insects to control harmful pests.
 - Chemical Controls Check out <u>www.ipm.ucdavis.edu</u> before using chemicals. Remember, all chemicals should be used cautiously and in moderation.
- If fertilizer is spilled, sweep up the spill before irrigating. If the spill is liquid, apply an absorbent material such as cat litter, and then sweep it up and dispose of it in the trash.
- Take unwanted pesticides to a Household Waste Collection Center to be recycled.
- Dumping toxics into the street, gutter or storm drain is illegal!

www.bewaterwise.com Great water conservation tips and drought tolerant garden designs.

www.ourwaterourworld.com Learn how to safely manage home and garden pests.

Additional information can also be found on the back of this brochure.

Saltwater Pools

- Salt water pools, although different from regular pools, are in fact, sanitized using chlorine. A saltchlorine generator separates the chlorine and sodium molecules in salt and reintroduces them into the pool water. The same harmful effects of chlorine still apply.
- A salt water pool is still maintained with chemicals such as Muriatic acid, soda ash and sodium carbonate to help keep a proper pH, total Alkalinity, Calcium Hardness and Stabilizer levels.

It may be illegal to discharge salt water to land. The salt may kill plants and the build-up of salt in soil puts animals, plants, and groundwater at risk. Consult your city representatives to determine local requirements regarding salt water drainage.

NEVER put unused chemicals into the trash, onto the ground or down a storm drain.

IMPORTANT: The discharge of pollutants into the street, gutter, storm drain system or waterways without a permit or waiver - is strictly prohibited by local ordinances, state and federal law. Violations may result in monetary fines and enforcement actions.

Helpful telephone numbers and links

RIVERSIDE COUNTY WATER AGENCIES:

C: CD :	(051) 022 2120
City of Banning	(951) 922-3130
City of Beaumont/Cherry Valley	(951) 845-9581
City of Blythe	(760) 922-6161
City of Coachella	(760) 398-3502
City of Corona	(951) 736-2263
City of Hemet	(951) 765-3710
City of Norco	(951) 270 5607
City of Riverside Public Works	(951) 351-6140
City of San Jacinto	
Coachella Valley Water District	(760) 398-2651
Desert Water Agency (Palm Springs)	
Eastern Municipal Water District	
Elsinore Valley Municipal Water District	
Elsinore Water District	
Farm Mutual Water Company	(951) 244-4198
Idyllwild Water District	
Indio Water Authority	
Jurupa Community Services District	(951) 685-7434
Lee Lake Water	
Mission Springs Water	
Rancho California Water District	
Ripley, CSA #62	(760) 922-4951
Riverside Co. Service Area #51	(760) 227-3203
Rubidoux Community Services District	
Valley Sanitary District	
Western Municipal Water District	
Yucaipa Valley Water District	

CALL 1-800-506-2555 to:

- · Report clogged storm drains or illegal storm drain disposal from residential, industrial, construction and commercial sites into public streets, storm drains and/or water bodies.
- Find out about our various storm drain pollution prevention materials.
 Locate the dates and times of Household Hazardous Waste (HHW)
- Request adult, neighborhood, or classroom presentations.
- · Locate other County environmental services.
- Receive grasscycling information and composting workshop information.

Or visit our

Riverside County Flood Control and Water Conservation District website at: www.rcflood.org

Other links to additional storm drain pollution information:

- · County of Riverside Environmental Health: www.rivcoeh.org
- State Water Resources Control Board: www.waterboards.ca.gov
- California Stormwater Quality Association: www.casqa.org
- United States Environmental Protection Agency (EPA):
- www.epa.gov/compliance/assistance (compliance assistance information)

ide County's, "Only Rain Down the Storm Drain" Pollution Prevention Progra acknowledges the Bay Area Stormwater Management Agencies Association and the Equipment Trade Association for information provided in this brochure.

Guidelines for Maintaining your...

Swimming Pool, **Jacuzzi** and **Garden Fountain**

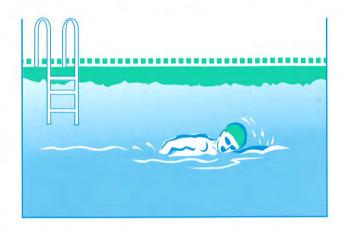
Where does the water go?

Discharge Regulations

Maintenance & Chemicals

Pool, Jacuzzi and Fountain wastewater and rain water runoff (also called stormwater) that reach streets can enter the storm drain and be conveyed directly into local streams, rivers and lakes.

A storm drain's purpose is to prevent flooding by carrying rain water away from developed areas. Storm drains are not connected to sanitary sewers systems and treatment plants!


Wastewater, from residential swimming pools, Jacuzzis, fishponds and fountains, often contains chemicals used for sanitizing or cleansing purposes. Toxic chemicals (such as chlorine or copper-based algaecides) may pollute the environment when discharged into a storm drain system.

The Cities and County of Riverside have adopted ordinances that prohibit the discharge of wastewater to the street and storm drain system.

Regulatory requirements for discharging wastewater from your pool may differ from city to city. Chlorinated water should not be discharged into the street, storm drain or surface waters. Check with your water agency to see if disposal to the sanitary sewer line is allowed for pool discharges (see reverse for Riverside County sewer agencies).

If allowed, a hose can be run from the pool Jacuzzi, or fountain to the private sewer cleanout, washing machine drain or a sink or bathtub.

If you cannot discharge to the sewer, you may drain your fountain, pool, or jacuzzi to your landscaping by following these guidelines:

First, reduce or eliminate solids (e.g. debris, leaves or dirt) in the pool water and allow the chemicals in the pool water to dissipate before draining the pool (this could take up to 7 days, verify using a home pool test kit).

Second, slowly drain to a landscaped area away from buildings or structures. Control the flow to prevent soil erosion; it may take more than one day to empty. Do not allow sediment to enter the street, gutter or storm drain.

Cleaning Filters

Filter rinse water and backwash must be discharged to the sanitary sewer, on-site septic tank and drain field system (if properly designed and adequately sized), or a seepage pit. Alternatively, rinse

water or backwash may be diverted to landscaped or dirt areas. Filter media and other non-hazardous solids should be picked up and disposed of in the trash.

Algaecides

Avoid using copper-based algaecides unless absolutely necessary. Control algae with chlorine, organic polymers or other alternatives to copper-based pool chemicals. Copper is a heavy metal that can be toxic to aquatic life when you drain your pool.

Chemical Storage and Handling

- Use only the amount indicated on product labels
- Store chlorine and other chemicals in a covered area to prevent runoff. Keep out of reach of children and pets.
- Chlorine kits, available at retail swimming pool equipment and supply stores, should be used to monitor the chlorine and pH levels before draining your pool.
- Chlorine and other pool chemicals should never be allowed to flow into the gutter or storm drain system.

Take unwanted chemicals to a Household Hazardous Waste (HHW) Collection Event. There's no cost for taking HHW items to collection events – it's FREE! Call 1-800-506-2555 for a schedule of HHW events in your community.

IRRIGATION RUNOFF

STORMWATER FACT SHEET

Report Irrigation Runoff or Stormwater Pollution: 800,506,255

OVERWATERING

Overwatering causes irrigation runoff that may contain pollutants such as pesticides, herbicides, fertilizers, pet waste, yard waste, and sediments which can be hazardous to residents and harmful to our environment. Runoff can also serve as a transport mechanism for other pollutants already on the ground or in the curb gutter. Irrigation runoff entering the storm drain system is an illicit discharge.

BEST PRACTICES

Urban runoff begins when yards and landscaped areas are over-irrigated. Irrigation systems require regular maintenance and visual inspection of the system should be performed to prevent over-spray, leaks, and other problems that result in runoff to storm drains, curbs and gutters.

You can **prevent pollution** by conserving water on your property. Water during cooler times of the day (before 10am and after 6pm).

- Adjust sprinklers to stop overspray and runoff.
- Make needed repairs immediately.
- Use drip irrigation, soaker hoses, or micro-spray systems.
- Use an irrigation timer to pre-set watering times.
- Use a control nozzle or similar mechanism when watering by hand.
- Switch to a water-wise landscape native plants need less fertilizers, herbicides, pesticides and water.

PROTECT OUR WATERSHED

Many people think that when water flows into a storm drain it is treated, but the storm drain system and the sanitary sewer system are not connected. Everything that enters storm drains flows untreated directly into our creeks, rivers, lakes, beaches and ultimately the ocean. Storm water often contains pollutants, including chemicals, trash, and automobile fluids, all of which pollute our watershed and harm fish and wildlife.

Whether at home or work, you can help reduce pollution and improve water quality by using the above Best Management Practices (BMP's) as part of your daily clean up and maintenance routine.

For Information:

To report illegal dumping or a clogged storm drain 1-800-506-2555

Hazardous Materials Disposal, Recycling/Disposal Vendors call: 951-486-3200 or 1-800-506-2555

County Code Enforcement Offices (unincorporated area)

(dillicorporated	ur cu)
Lake Elsinore/Mead Valley	951-245-3186
Jurupa Valley	951-275-8739
Moreno Valley/Banning	951-485-5840
Murrieta So. County	951-600-6140
Thousand Palms District	760-343-4150

Environmental Crimes 1-800-304-6100

Spill Response Agency 1-800-304-2226 or 951-358-5172

Recycling and Hazardous Waste Disposal 1-800-366-SAVE

For pollution prevention brochures or to obtain information on other County Environmental Services, call 1-800-506-2555

Popular links: www.rcflood.org www.cabmphandbooks.com www.cfpub.epa.gov/npdes

ONLY RAIN DOWN THE STORM DRAIN POLLUTION PREVENTION PROGRAM 1-800-506-2555

Riverside County's "Only Rain Down the Storm Drain" Pollution Prevention Program members include:

Banning
Beaumont
Calimesa
Canyon Lake
Cathedral City
City of Riverside
Corona
Coachella
Coachella Valley
Water District

Desert Hot Springs Hemet Indian Wells Indio Lake Elsinore La Quinta Menifee Murrieta Moreno Valley Norco

rings Palm Desert
Palm Springs
Perris
Rancho Mirage
Riverside County
San Jacinto
Temecula
Wildomar

Stormwater Pollution

What you should know for...

Automotive Maintenance and Car Care

Best Management Practices (BMPS) for:

- Auto Body Shops
- Auto Repair Shops
- Car Dealerships
- Gas Stations
- Fleet Service Operations

Stormwater Pollution...What You Should Know

Riverside County has three major river systems, or watersheds, that are important to our communities and the environment. Improper automotive maintenance, storage and washing activities can cause pollution that endangers the health of these rivers.

Pollutants that can collect on the ground from automotive repair, storage and washing areas such as antifreeze, oil, grease, gas, lubricants, soaps and dirt can be washed into the street by rain, over-irrigation or wash water runoff. Once these pollutants are in the streets they can be carried to these rivers by the storm drain system. Unlike the sewer system, the storm drain system carries water (and pollution) to our rivers without treatment. Pollution from storm drains is a form of storm water pollution.

A common storm water pollution problem associated with automotive shops and businesses is the activity of hosing down service bays without proper capture of runoff water, illegal dumping of fluids to the street or storm drain inlets and not properly storing hazardous materials. Examples of pollutants that can be mobilized by these activities include oil and grease from cars, copper and asbestos from worn break linings, zinc from tires and toxics from spilled fluids.

The Cities and County of Riverside have adopted ordinances, in accordance with state and federal law, which prohibit the discharge of pollutants into the storm drain system or local lakes, rivers or streams. This brochure provides common practices that can prevent storm water pollution and keep your shop in compliance with the law.

Best Management Practices for Auto Body & Repair Shops, Car Dealerships, Gas Stations and Fleet Service Operations

Changing Automotive Fluids

- Locate storm drains on or near your property. Do not allow material to flow to these drains.
- Ocllect, and separately recycle motor oil, antifreeze, transmission fluid and gear oil. Combining waste fluid prevents recycling.
- Drain brake fluid and other nonrecyclables into a proper container and handle as a hazardous waste.
- Use a recyclable radiator flushing fluid and discard safely.

Only rain is allowed down the storm drain! Don't be an offender!! Violations of local ordinances are prosecuted to the fullest extent of the law.

Identify specific activities with the potential to cause spills or release pollutants such as oil, grease, fuel, etc. Post signs and train employees on how to prevent and clean up spills during activities.

YOU can prevent Stormwater Pollution following these practices...

Working on Transmissions, Engines and Miscellaneous Repairs

- Keep a drip pan or a wide lowrimmed container under vehicles to catch fluids whenever you unclip hoses, unscrew filters, or change parts, to contain unexpected leaks.
- Drain all fluids from wrecked vehicles into proper containers before disassembly or repair.
- Store batteries indoors, on an open rack.
- Return used batteries to a battery vendor.
- Contain cracked batteries to prevent hazardous spills.
- Catch metal filings in an enclosed unit or on a tarpaulin.
- Sweep filing areas to prevent washing metals into floor drains.

Cleaning Parts

 Clean parts in a self-contained unit, solvent sink, or parts washer to prevent solvents and grease from entering a storm drain.

Fueling Vehicles

- Clean-up minor spills with a dry absorbent, rather than allowing them to evaporate.
- Use a damp cloth and a damp mop to keep the area clean rather than a hose or a wet mop.

Keeping your shop or work area pollutant clean and environmentally safe

- Never hose down your work area, as pollutants could be washed into the storm drain.
- Sweep or vacuum the shop floor frequently.
- Routinely check equipment. Wipe up spills and repair leaks.
- Use large pans or an inflatable portable berm under wrecked cars.
- Avoid spills by emptying and wiping drip pans, when they are half-full.
- Keep dry absorbent materials and/or a wet/dry vacuum cleaner on hand for mid-sized spills.
- Train your employees to be familiar with hazardous spill response plans and emergency procedures.

 Immediately report hazardous material spills that have entered the street or storm drain to OES and local authorities.

Outdoor Parking and Auto Maintenance

- Use covered or controlled areas to prevent offsite spills.
- Sweep-up trash and dirt from outdoor parking and maintenance areas. Do not hose down areas.
 All non-stormwater discharges to the street of storm drain are prohibited.

Storing and Disposing of Waste

- Store recyclable and nonrecyclable waste separately.
- Place liquid waste (hazardous or otherwise) in proper containers with secondary containment.
- Cover outdoor storage areas to prevent contact with rain water.
- Collect used parts for delivery to a scrap metal dealer.

Washing vehicles and steam cleaning equipment

- For car washing, minimize wash water used and use designated areas. Never discharge wash water to the street, gutters or storm drain.
- Be sure to keep waste water from engine parts cleaning or steam cleaning from being discharged to the street, gutter or storm drain.
- Wash vehicles and steam clean with environmentally friendly soaps and polishes.

Selecting and Controlling Inventory

- Purchase recyclable or non-toxic materials.
- Select "closed-loop" suppliers and purchase supplies in bulk.

Appendix C

BMP OPERATION & MAINTENANCE AND TRAINING LOGS

BMP OPERATION & MAINTENANCE LOG

Today's	Date:			
Name of Person Performing Activity (Printed):				
Signa	ature:			
BMP Name (As Shown in O&M Plan)	Brief Description of Implementation, Maintenance, and Inspection Activity Performed			

TRAINING / EDUCATIONAL LOG

·	ature:
Name of Participant	Signature of Participant

For newsletter or mailer educational activities, please include the following information:

- Date of mailing
- Number distributed
- Method of distribution
- Topics addressed

If a newsletter article was distributed, please include a copy of it.

APPENDIX D

CITY OF LA QUINTA WATER QUALITY MANAGEMENT PLAN (WQMP) VERIFICATION SURVEY

Pro	oject Name/Site A	ddress	:
Re	esponsible Party :		
Со	ontact Phone:		Contact Email:
1.			andscape, maintenance, etc.) been educated regarding the to prevent pollution as outlined in the WQMP?
	☐ Yes	☐ No	Name of Landscape/Maintenance Contractor:
	Method of education	n (contra	act language, Copy of O&M, educational brochures, etc.):
2.	Have the storm d prior to Oct 1?	rains ar	nd inlets been inspected and maintained, at a minimum, annually
	☐ Yes	☐ No	Date of Last Inspection/Maintenance:
			Maintenance conducted by:
3.	Have you observe	ed any r	unoff from the irrigation system?
	☐ Yes	□ No	If yes, how was the problem resolved?:
4.	What type of Inte	egrated	Pest Management (IPM) practices are used on site?
5.	Are native and/or landscaping?	r drougl	nt tolerant plants established and considered for any new
	☐ Yes		□ No
6.	Have the storm d	rain ste	ncils been inspected annually for legibility prior to Oct. 1?
	Yes	☐ No	Total number of stencils on site:
	How many inlets red	quired re	estenciling / date of restenciling?/
7.	Have education n	naterial	s been distributed to the residents/tenants/contractors within

	Yes	☐ No	Topic	/ Date of Distrib	oution:		_/	
	Method of	Distribution	on: news	sletter, billing in:	sert, etc.:			
8.	Is street	sweepin	g condu	cted weekly?				
	☐ Yes		□ No	Contractor:				
9.	Are trash	areas in	commo	on area inspec	ted daily?			
	☐ Yes		☐ No					
10.					ed (standing wa ontrol District a			, etc.). if yes,
	☐ Yes		☐ No					
11.					ted and mainta ection/mainten			er
	☐ Yes		□No					
12.	Have the units?	re been a	any issu	es with opera	tion and mainte	enance of	the treatme	ent BMPs
and		and maint			that the BMPs fo the Operation a			
— Pri	nt Name	of Resp	onsible	Party				
Siç	gnature (r	equired)			Date			

This form must be completed and submitted to the City by September 30 each year.

2014 Whitewater River Region WQMP

Appendix E

Soils Report

August 27, 2021

Project No. 18186-01

To: Hofmann Management Company

c/o TRG Land Design 898 Production Place

Newport Beach, California 92663

Attention: Mr. Mark Rogers

Subject: Preliminary Geotechnical Evaluation and Planning Study, Proposed Residential

Development at Travertine, City of La Quinta, California

In accordance with your authorization, NMG Geotechnical, Inc. (NMG) has performed a preliminary geotechnical evaluation and planning study for the proposed Travertine mixed-use development in the city of La Quinta, California. We have reviewed the grading plan prepared by ProActive Engineering Consultants, received by NMG on May 20, 2019, in light of the geotechnical conditions at the site in order to provide geotechnical recommendations for the proposed grading and development. This report will also be used for preparation of the project Environmental Impact Report (EIR).

Prior subsurface investigations have been performed at and adjacent to the site by various consultants (Appendix A). In addition, NMG conducted geophysical surveys at three locations, performed geologic mapping of the site, and completed an infiltration study for the two proposed water quality basins in the eastern portion of the site. The infiltration study included drilling of seven hollow-stem- auger borings to depths of 20 to 40 feet, percolation testing in five of the borings, laboratory testing, and evaluation of design infiltration rates. The collected data was compiled and are the basis for our findings, conclusions, and recommendations presented in this report. The 200-scale grading plan was used as the base map to present boring and test pit locations and geologic mapping for the site (Preliminary Geotechnical Map: Plates 1 and 2). The 200-scale grading and topographic maps and test pit data were also utilized to prepare an Approximate Rock Distribution Map (Plate 3).

This report presents our findings and provides preliminary remedial grading and foundation design recommendations for the proposed development concept. Based on our findings, we conclude that the proposed development is feasible provided it is designed, graded and constructed in accordance with the preliminary geotechnical recommendations in this report. Additional geotechnical exploration, review, and analysis may need to be performed during the future design phases and as rough grading plans become available. The recommendations provided herein will then be confirmed and/or updated as necessary based on our findings.

If you have any questions regarding this report, please contact our office. We appreciate the opportunity to provide our services.

Respectfully submitted,

NMG GEOTECHNICAL, INC.

Anthony Zepeda, CEG 2681

Project Geologist

Shahrooz "Bob" Karimi, RCE 54250 Principal Engineer

Terri Wright, CEG 1342 Principal Geologist

TW/AZ/SBK/grd

Distribution: (1) Addressee (E-Mail)

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Purpose and Scope of Work	1
1.2	Site Location and Description	
1.3	Proposed Conceptual Development and Grading	
1.4	Site History and Prior Investigations/Grading	
1.5	Field Exploration	
1.6	Laboratory Testing	
2.0	GEOTECHNICAL FINDINGS	7
2.1	Geologic Setting and Soil Mapping	7
2.2	Earth Units.	
2.3	Laboratory Testing and Soil Properties	
2.4	Groundwater and Surface Water/Flood Potential	
2.5	Regional Faulting and Seismicity	
2.6	Slope Stability and Mass Movements	
2.7	Settlement	
2.8	Regional Subsidence	
2.9	Erosion Potential and Scour Protection.	
2.10	Rippability and Oversize Rocks	
2.11	Infiltration Testing.	
2.12	Earthwork Bulking/Shrinking and Subsidence	
3.0	CONCLUSION AND PRELIMINARY RECOMMENDATIONS	16
3.1	General Conclusion and Recommendation	16
3.2	Earthwork and Grading Specifications	
3.3	Remedial Grading and Overexcavation	
3.4	Rippability	
3.5	Oversize Rock Crushing.	
3.6	Placement of Oversize Material	
3.7	Slope Stabilization.	18
3.8	Groundwater Conditions	19
3.9	Settlement	19
3.10	Foundation Design	19
3.11	Storm Water Infiltration Feasibility	20
3.12	Trench Excavations and Backfill	20
3.13	Lateral Earth Pressures	
3.14	Preliminary Pavement Design	21
3.15	Structural Setbacks	
3.16	Seismic Design Guidelines	
3.17	Subdrains	
3.18	Expansion Potential	
3.19	Cement Type and Corrosivity	
3.20	Exterior Concrete	
3.21	Slope Maintenance and Protection	
3.22	Surface Drainage	25

210827 update report

iii

3.23	Additional Geotechnical Investigation and Plan Reviews	25
3.24	Geotechnical Observation and Testing During Grading and Construction	25
4.0	LIMITATIONS	27

Appendices

Appendix A – References and Definitions
Appendix B – Boring and Test Pit Logs
Appendix C – Laboratory Test Results
Appendix D – Seismic Parameters
Appendix E – Geophysical Study
Appendix F – Infiltration Testing Data
Appendix G – General Earthwork and Grading Specifications

Figures and Plates

```
Figure 1 – Site Location Map – Rear of Text
Figure 2 – USDA Soil Map – Rear of Text
Figure 3 – Regional Geology Map (Dibblee, 2008) – Rear of Text
Figure 4 – Regional Geology Map (CGS, 2012) – Rear of Text
Figure 5 – Regional Fault Map – Rear of Text
Figure 6 – Seismic Hazards Map – Rear of Text
Figure 7 – Retaining Wall Drainage Detail – Rear of Text
```

Plates 1 and 2 – Preliminary Geotechnical Map – In Pocket Plate 3 – Approximate Rock Distribution Map – In Pocket

1.0 INTRODUCTION

1.1 Purpose and Scope of Work

NMG Geotechnical, Inc. (NMG) has prepared this report of geotechnical evaluation and planning-level study for the proposed Travertine mixed-use development in the city of La Quinta, California. We have reviewed the proposed grading and development in light of the geotechnical conditions at the site in order to provide preliminary geotechnical recommendations for the proposed grading and development. This report will also serve as the technical Appendix G for the EIR.

We have reviewed the grading plan prepared by ProActive Engineering, received by NMG on May 20, 2019. The grading plan was used as the base map for our Preliminary Geotechnical Map (Plates 1 and 2) to present the geologic mapping and locations of geotechnical borings, percolation test borings, seismic lines, and test pits at the site. The 200-scale grading and topographic maps and test pit data were also utilized to prepare an Approximate Rock Distribution Map (Plate 3).

Our scope of work was as follows:

- Acquisition, review and compilation of available geologic/geotechnical reports and maps for the subject site and surrounding area. A reference list and definitions of terms used in this report are included in Appendix A.
- The 200-scale Preliminary Geotechnical Map (Plates 1 and 2) provides a compilation of the boring and test pit locations at and adjacent to the site from this and previous geotechnical studies. Boring and test pit logs by NMG and others are included in Appendix B.
- Review of historic aerial photographs dating back to the late 1940s and historic topographic maps dating back to the early 1900s. A list of reviewed photographs is included in Appendix A.
- Geologic mapping of alluvial fans and exposures of bedrock in the mountains and hills adjacent to the proposed development. Geologic field mapping was performed on May 9 and 10, 2019. The geologic mapping is presented on the Preliminary Geotechnical Map (Plates 1 and 2).
- A geophysical study was performed on May 9, 2019 to evaluate the rippability potential of the onsite materials at the anticipated locations of the deepest cuts. The approximate locations of the seismic lines are provided on the Preliminary Geotechnical Map (Plates 1 and 2). The complete geophysical refraction study is included in Appendix E.
- An infiltration study was performed August 9 through 12, 2021, that included drilling and sampling of seven hollow-stem-auger borings at the two proposed water quality basins in the eastern portion of the site. Percolation testing was performed in five of the borings in general conformance with the Riverside County Design Handbook for Low Impact Development Best Management Practices. The boring logs are included in Appendix B. The percolation test data are presented in Appendix F.
- An Approximate Rock Distribution Map (Plate 3) was prepared based on the percentages of boulders (oversize) recorded in the test pits to show the amount of oversize that may be generated during grading.

210827 update report 1

- Laboratory testing by NMG included moisture density, grain size and collapse testing. We also reviewed laboratory test results by others, including grain size distribution, consolidation, maximum density, optimum moisture content, permeability, expansion index, and corrosion potential. Laboratory test results by NMG and others are included in Appendix C, the in-situ moisture and density test results are included on the boring logs in Appendix B.
- Evaluation of faulting and seismicity in accordance with the 2019 California Building Code (CBC) and the current standard of practice. Seismic design parameters are included in Section 3.16 and the data in Appendix D.
- Geotechnical evaluation and analysis of the compiled data with respect to the proposed development. Geologic analysis included preparation of the geotechnical map and review of prior data compiled for this report. Geotechnical analysis included evaluation of rippability, rock (oversize) quantification, groundwater, settlement, slope stability, infiltration rate calculation, and development of preliminary grading recommendations. This task also included review of the preliminary grading plan in light of the geotechnical conditions. Geotechnical grading recommendations are included in Sections 3.2 to 3.7, and the General Earthwork and Grading Specifications are provided in Appendix G.
- Preparation of this report with our findings, conclusions, and preliminary recommendations for the subject development.

1.2 Site Location and Description

The approximately 855-acre site is located in the southern most portion of the City of La Quinta. The property is accessed from the east, via a gate and dirt road over the levee from the western end of 62^{nd} Avenue (Plate 2). The site consists of east-facing mountain-front alluvial fan, sloping gently at approximately 3 to 6 percent toward the east. Existing elevations vary from a high of 270 feet above mean sea level (msl) in the west, to a low of 30 feet above msl in the east near 62^{nd} Avenue. Locally, where 62^{nd} Avenue and Madison Avenue are proposed to cross the existing levee, elevations at the toes of the levee are below sea level (-10 feet msl). The highest elevation within the boundary of the grading is 455 feet msl in the southwest corner where two water tanks are proposed.

Site drainage sheet flows over the land surface toward existing washes and ultimately drains to the east. These flows historically made their way into the Whitewater River located 7 miles to the east of the site; however, a levee was constructed with infiltration ponds (Thomas E. Levy Groundwater Replenishment Facility) west of the levee. Surface flows are now impounded and infiltrate into the Coachella Valley groundwater basin.

An abandoned vineyard is present within the central portion of the site. Miscellaneous remnants of this operation are still present, consisting of trellises, root balls, irrigation-related pipelines and well pads, and scattered rock piles likely generated during grading of the vineyard. The remainder of the site is essentially in its native condition, with sparse vegetation and abundant cobbles and boulders at the surface.

There were limited utilities noted during our site reconnaissance, including overhead electric and remnants of water/irrigation, which previously supplied water for the vineyard. A water line is

2

210827 update report

present along 62nd Avenue, crossing the existing levee, which supplies water to the Thomas E. Levy Groundwater Replenishment Facility east of the project area.

1.3 Proposed Conceptual Development and Grading

The proposed project covers an area of approximately 855 acres and will be comprised of a variety of land uses. Residential land uses will range from low to medium density (1.5 to 8.5 dwelling units per acre) and total up to 1,200 dwelling units of varying product types. A resort/spa facility is planned in the northern portion of the community to serve residents, tourists and recreational visitors. The facility features a 45,000 square foot boutique hotel with a 175-seat restaurant, 97,500 square feet of lodging to allow 100 villas, and an 8,700 square foot spa and wellness center.

A 4-hole golf practice facility with a clubhouse is planned in the southeast portion of the site and will include a driving range, tracking bays, putting course, pro-shop, restaurant and bar, banquet and restaurant facility to be shared with wedding garden facilities. Bike lanes, pedestrian walkways, and a Travertine community trail system is proposed throughout the community. Recreational open space uses include picnic tables, barbeques, tot lot playground, two community parks and staging facilities for the regional interpretive trail.

Proposed grading will consist of design cuts and fills up to 40 and 60 feet thick, respectively. The preliminary grading plan shows cut and fill slopes within the interior of the project at 3H:1V (horizontal to vertical) inclinations or flatter, up to 80 feet high. The perimeter slopes of the project are at inclinations of 2H:1V or flatter, up to 30 feet high. There will be perimeter flood protection along the western and southern boundaries, that consists of a raised edge condition (2H:1V slope) with armored lining to protect against scour and erosion.

There will be two paved public access roads and a paved emergency access road. Both 62nd Avenue and Madison Street extensions will include grading adjacent to and over the existing flood control levee, from the east and north, respectively. Jefferson Street will also be extended to the north (Plate 1), to connect to the Coral Canyon portion of Jefferson Street, ultimately connecting to 58th Avenue. Madison Street will be the emergency access, to connect to 60 Avenue and used by CVWD for access to their facilities. 62nd Avenue will be the main entrance to the site and the existing approach on the eastern side of the levee will be lengthened to soften grade with embankments likely supported with retaining structures. Additionally, culvert/arch crossings are anticipated to support the roadway extensions on the west side of the levee at 62nd Avenue and the south side of the levee for Madison Street. The alignment of Jefferson Street will cross over the Guadalupe dike at the northwest corner of the project, and may also include culvert/arch crossings.

1.4 Site History and Prior Investigations/Grading

Based on historic aerial photographs dating back to the 1940s and historic topographic maps dating back to the early 1900s, the following site history can be detailed:

• The earliest topographic map reviewed was from 1904. The natural drainages and dry creeks appear roughly in the same location as today. The map indicates very little development of structures and roadways within the Coachella Valley area.

3

NMG

210827 undate report

- In 1949, the site appears to be in its natural condition and predates the flood control levee (Dike No. 4) to the east. Visible lineaments representing the shoreline of ancient Lake Cahuilla are evident in the photographs. Other geomorphic features, such as the Martinez Landslide and varying-age alluvial fans and desert varnish/pavement are visible. The site remained in this condition through the 1950s.
- By 1977, the flood control levee and associated control/conveyance levees were constructed.
 No infiltration ponds were yet constructed. The remainder of the project area appears to be in its native condition.
- By 1998, a portion of the site was being utilized for agriculture (vineyard) and appears to generally be in the present-day condition.
- Between 2006 and 2009, the Thomas E. Levy groundwater replenishment infiltration ponds were graded on the western side of the flood control levee.

We have compiled and reviewed the data from numerous geotechnical studies performed at and near the site. A summary of the reports obtained and the investigations performed is presented below. A complete reference list is provided in Appendix A. The boring and test pit logs by others are included in Appendix B and the laboratory test results by others in Appendix C.

- Sladden Engineering (2001) performed a geotechnical evaluation of the existing levee (Dike No. 4 Flood Control Levee) adjacent to the development. The evaluation included excavation of 10 hollow-stem-auger borings to depths of 11.5 to 46.5 feet.
- URS Corporation (2002) performed a geotechnical investigation near the site for the proposed recharge facility. Their investigation included 12 hollow-stem borings to depths of 26.5 to 28 feet, 8 test pits to depths of 11 to 15 feet, installation of two groundwater wells and geotechnical laboratory testing.
- Sladden Engineering (2005a) performed a geotechnical exploration for adjacent development immediately north of the subject site ("Coral Canyon" Development). This exploration included drilling of 12 hollow-stem-auger borings to depths of 8.0 to 30.5 feet.
- Earth Systems Southwest (2007b) performed a geotechnical exploration for the proposed extension of Madison Street. This study included excavation of four hollow-stem-auger borings, laboratory testing, and preparation of the report.
- Earth Systems Southwest (2007c) performed infiltration testing for storm water facilities proposed for the Travertine project. This study included excavation of seven hollow-stemauger borings, in-situ infiltration testing, collection of surface samples, laboratory testing, and preparation of a report summarizing their findings.
- Earth Systems Southwest (2007d) later prepared a geotechnical engineering report for the Travertine project, which included a field exploration consisting of excavation of 49 test pits ranging in depth from 7 to 26 feet below existing grade, sample collection, and laboratory testing. This report includes the bulk of the data utilized during our review and development of the preliminary geotechnical recommendations provided herein.

210827 update report 4

1.5 Field Exploration

Our field exploration started with two days of site reconnaissance and geologic mapping performed on May 9 and 10, 2019. The geologic mapping is shown on the Preliminary Geotechnical Map (Plates 1 and 2) utilizing the existing topography and rough grading plan as the base map. The map represents a compilation of the regional geologic mapping, along with aerial photograph interpretation and site-specific mapping.

A seismic refraction survey was performed onsite within areas of the deepest planned cuts in order to review rippability and the potential presence of buried granitic rock. The survey consisted of three seismic lines ranging from 350 to 470 feet long with geophone spacing ranging from 7.5 to 10 feet apart. The locations of the seismic lines are shown on the Preliminary Geotechnical Map (Plates 1 and 2) and the complete seismic refraction survey report is included in Appendix E.

Additional field exploration was performed on August 9 and 10, 2021 in the southeast portion of the site, where two water quality basins are proposed near 62nd Avenue. This work included drilling, logging, and sampling of seven 8-inch-diameter hollow-stem borings (H-1, H-2, P-1 through P-5) to depths between 20 and 40 feet below ground surface with a truck-mounted drill rig. Samples were taken using the Standard Penetration Test (SPT) (1.38-inch inside-diameter) and modified California split-barrel ring sampler (2.5-inch inside-diameter). The samplers were driven into the soil with a 140-pound automatic safety hammer, free-falling 30 inches on the truck-mounted rig. The drive samples were also used to obtain a measure of resistance of the soil to penetration (recorded as blows-per-foot on our geotechnical boring log). Representative bulk samples of onsite soil were collected from the drill cuttings and SPT samples. Relatively undisturbed samples were also collected using the modified California split barrel ring sampler. The borings were backfilled with cuttings and tamped for compaction. The approximate locations of these and prior borings are shown on the Geotechnical Map (Plates 1 and 2). The boring logs are included in Appendix B.

Percolation testing was performed in five borings (P-1 through P-5) on August 10 and 12, 2021 in general conformance with the Riverside County Whitewater River Region Stormwater Quality Best Management Practice Design Handbook for Low Impact Development (2014). This method was approved by the city for use on the Travertine site prior to the work being performed. Two-inch-diameter slotted PVC pipe and granular sand (No. 3) backfill (annular space) was installed within the borings to prevent caving of the native sandy soils during testing. A 4,000-gallon heavy-duty water truck was used to supply water during testing. Percolation test results are discussed in Section 2.11 and presented in Appendix F.

1.6 Laboratory Testing

Due to the dry clean sandy nature of the alluvial soils at the site, undisturbed samples were difficult to collect. Therefore, the majority of laboratory testing was performed on selected bulk and disturbed soil samples. The testing performed included:

5

- Moisture content and dry density as possible;
- Grain size; and
- Collapse tests.

NMG

210827 update report

Laboratory tests were conducted in general conformance with applicable ASTM standards. Laboratory test results by NMG and others are presented in Appendix C. In-situ moisture and dry density results are included on the geotechnical boring logs (Appendix B).

2.0 GEOTECHNICAL FINDINGS

2.1 Geologic Setting and Soil Mapping

The site is situated on substantial alluvial fan deposits at the base of the Santa Rosa Mountains, located within the Peninsular Range geomorphic province of southern California. The project area lies along the west side of Coachella Valley, approximately 14 miles northwest of the Salton Sea. The site is situated west of ancient Lake Cahuilla that once inundated the Coachella Valley. Bedrock is exposed along the northern perimeter and southwest corner of the site and consists of Mesozoic-age plutonic (granitic) rocks. Bedrock units present in the adjacent Santa Rosa Mountains to the west include both Mesozoic-age granitic rock and Pre-Cenozoic-age granitic and metamorphic rocks. Surficial deposits include numerous generations of Quaternary-age alluvial fan deposits.

Soil mapping by the U.S. Department of Agriculture (USDA, 2020) only covers portions of the project area. We have used the existing available data and modified/extended the soil mapping to cover the project area based on the soil types presented in the USDA mapping and our field mapping. Figure 2 presents the combined soils mapping. The granitic bedrock outcrops and elevated older alluvial fan deposits largely composed of cobbles and boulders have been designated as Rock Outcrop and Rubble Land, respectively, in the USDA mapping. The lowerlying younger alluvial fans and active wash materials are also designated as the Carrizo stony sand and Carsitas gravelly sand. This material is generally granular and subject to erosion.

2.2 Earth Units

The site is generally underlain by young and old alluvial fan deposits. Locally along the project perimeter, granitic bedrock is mapped. Undocumented artificial fill associated with grading of flood control levees and the abandoned vineyard are present at the site. Mapped earth units within the development area are described below, in the order of oldest to youngest. The approximate limits of the earth units are shown on the Preliminary Geotechnical Map (Plates 1 and 2). The earth units were based on regional mapping by others (Figures 3 and 4; Dibblee, 2008 and CGS, 2012), and site-specific mapping by Earth Systems Southwest (2007d). NMG refined the units based on review of aerial photographs and field mapping.

Granitic Bedrock (gr): Exposed Mesozoic-age granitic bedrock is mapped within the adjacent mountains to the west-southwest and in the north-south trending ridgeline at the north end of the project area. The medium-grained, massive to foliated, granitic rock was found to be highly fractured and jointed near-surface with veins of feldspar and quartz. The Santa Rosa Mountains to the west expose granitic and metamorphic bedrock that are the source of the fan deposits that underlie the subject site.

Older Alluvial Fan Deposits (Qof) were predominately mapped along the central and southwestern portions of the project area within the elevated fans. This unit was assigned based on fan morphology, relative elevation, magnitude of channel incision, and strong desert pavement and varnish development (Christenson and Purcell, 1985). While many generations of older alluvial fans may be present across the project area, we have designated this unit to represent older fans outside of the active alluvial fan.

210827 update report 7

Based on test pits excavated and geotechnically logged by Earth Systems Southwest (2007d), TP-30 through TP-32 and TP-39 encountered this earth unit. The material was found to generally consist of light brown to white well-graded fine to coarse sands (SW) with trace to little gravel that were dry and medium dense. The percentage of larger rock (cobbles and boulders) was found to generally range from 20 to 30 percent with an abundance near-surface (80+ percent) at some locations, likely representing the desert pavement. Based on our review of the site-specific data, there is no distinct correlation between earth unit and presence/quantity of cobbles and boulders. This is likely more closely linked to mountain-front proximity. An Approximate Rock Distribution Map (Plate 3) was prepared to distinguish the limits and distribution of oversize material (boulders over 12 inches in the maximum diameter) based on the existing test pit logs and field descriptions.

Younger Alluvial Fan Deposits (Qyf) were mapped across the majority of the project area and is the most prevalent earth unit within the development area. The younger alluvial fans were generally found to have little to no desert pavement or varnish development, mild channel incision, and a braided channel drainage pattern. Based on our mapping, the fan deposits include rocks of both granitic and metamorphic composition that are very hard and not weathered. These rocks are primarily rounded to subangular, cobble to small boulder (12- to 24-inch) size over much of the site, and with boulders up to 2 to 4 feet in the fans to the west.

This unit was encountered in all exploratory trenches by Earth Systems Southwest, except TP-30 through TP-32 and TP-39. The material was found to generally consist of light brown to white well-graded fine to coarse sand (SW) with trace to some gravel, locally with trace to little fines (silts and clays). Additionally, some of the material was found to consist of fine to coarse sandy gravel (GW). The sands and gravels were dry to damp, medium dense to dense, and friable. The test pit logs indicate that the percentage of cobbles and boulders was found to generally range from 2 to 50 percent, with a number of locations as high as 60 to 80 percent. The amount and size of boulders generally decreased to the east, away from the mountains.

The younger alluvial fan deposits were found in our borings drilled in the eastern portion of the site near the future basins and the 62nd Avenue extension. Borings H-1 and H-2 were drilled to depths of 40 feet and encountered primarily gray to brownish-gray fine to coarse sands (SW, SP, SW-SM) with gravelly sand layers (SW/GW) that were between 5 and 10 feet thick. Continuous sampling performed to depths of 20 to 23 feet below the bottom of the basins did not encounter clayey or silty confining layers. Five borings P-1 through P-5 that were drilled to depths of 20 to 30 feet, also encountered similar younger alluvial fan deposits.

Undocumented Artificial Fills (Afu): There are several generations of artificial fill onsite, including undocumented fill associated with vineyard and flood control levee grading. No test pits or exploration was performed within vineyard artificial fill. The fill appears to be of relatively minor thickness and of similar composition to the alluvial fans. More significant grading appears to have been performed along the western and southern perimeters of the vineyard where the natural drainage courses were realigned. This portion of artificial fill appears to have a large concentration of cobbles and boulders, likely to protect the vineyard from scour and heavy flows during rain. Additional piles of undocumented artificial fills are present at the northwestern portion of the vineyard and appear to be composed largely of cobbles and boulders.

NMG

210827 update report 8

Other artificial fills exist along the eastern perimeters of the site (future 62nd Avenue extension), where flood control levees were constructed under the jurisdiction of the Bureau of Reclamation. The levee is constructed with sloping sides, approximately 2H:1V, and 30 to 35 feet above the adjacent natural elevations. A geotechnical study that included field exploration and borings was performed to evaluate the soil conditions within the levee and underlying native soils to determine the adequacy of the levee (Sladden, 2001). The soils were reportedly found to be an inconsistent mixture of brown silty sand (SM) and sandy silt (ML) with scattered gravel. The fill materials were found to be generally very firm, dense, dry to moist and adequate for levee support (Sladden, 2001). The report also indicates that the core was typically siltier than the soils exposed on the embankment. No report documenting the original construction of levee was available for our review.

2.3 Laboratory Testing and Soil Properties

Based on our limited exploration, the matrix materials within the younger alluvial fan deposits encountered in the borings predominantly consisted of clean sands with gravel and varying amount of silt. The majority of the driven samples during our exploration were disturbed due to the presence of gravels and the dry nature of the sandy soils. The in-place moisture contents varied between 0.3 and 7.3 percent. Dry densities were obtained in eleven of the 63 samples and the densities varied between 116.7 and 126.5 pcf. In addition, blow counts generally varied between 20 and 80 blows per foot.

Moisture contents and dry densities for the flood control levee fill ranged from 0.5 to 8.7 percent and 95 to 129 pcf, respectively (Sladden, 2001). Blow counts reportedly ranged from 26 to 100+blows per foot.

Grain Size Distribution: Grain-size distribution tests were conducted by NMG and others on bulk and/or ring samples. These samples were classified as poorly or well-graded sands with fines contents (passing Sieve No. 200) of 13 percent or less with a Unified Soil Classification System (USCS) of SW, SP or SW-SM. Note that it is likely most cobbles and boulders were screened out during sample collection and preparation. The grain size analysis represents the matrix materials (clay, silt, sand, and gravel) and should be reviewed with the associated test pit log for a more complete representation of the earth units.

Grain-size distribution tests for the flood control levee fill were conducted on 69 bulk and/or ring samples. Sixty-six of these samples were classified as silty or clayey sands with fines contents in the range of 13 to 49 percent (USCS classification of SM or SC). Three of the samples were classified as sandy silt (USCS classification of ML) with fines contents in the range of 52 to 56 percent.

Maximum Density and Optimum Moisture Content: The results of the maximum dry density testing by others indicate that the near-surface soils at depths of 0 to 5 feet have maximum dry densities ranging from 115.5 to 131.0 pcf with optimum moisture contents ranging from 3 to 12 percent.

9

Maximum dry density testing of the flood control levee fill indicated that the near-surface soils at depths of 0 to 5 feet have maximum dry densities ranging from 131 to 134 pcf with optimum moisture contents ranging from 7 to 8 percent.

Consolidation/Collapse: NMG performed hydro-consolidation tests on two relatively undisturbed ring samples collected at depths of 20 to 30 feet. Hydro-consolidation potential of the samples was estimated under the vertical load of 3.2 ksf, which is near or above the existing overburden pressures of the samples. The estimated hydro-consolidation potential of the samples ranged from 1.4 to 1.6 percent, which is considered to be moderate.

The consolidation test results for the flood control levee fill indicated a collapse potential of less than 3.1 percent and swell potential of less than 0.1 percent upon addition of water at 0.575 and 0.72 kips per square foot (ksf) (Sladden, 2001). The report concluded that the higher collapse potential in the samples may have been attributed to the sample disturbance resulting from very high blow counts during collection. Consolidation testing of onsite materials was not performed during prior studies. The results of the consolidation tests are included in Appendix C.

Corrosivity: Laboratory testing of the soil samples indicated that the onsite soils and those of the flood control levee are considered to be corrosive to severely corrosive to ferrous metals. Soluble sulfate exposure of levee soils is classified as "S0" per Table 19.3.1.1 of ACI-318-14. (Sladden, 2001).

2.4 Groundwater and Surface Water/Flood Potential

Groundwater: The subject site lies within the East Whitewater River sub-basin of the Colorado River groundwater basin. Groundwater has not been encountered in borings or test pits excavated during any of the prior exploratory work. Based on our review of Coachella Valley Water District (CVWD) engineering report, groundwater is at great depth, approximate elevation of -75 feet below msl (CVWD, 2019). Ongoing replenishment has substantially increased the groundwater table over the past decade. Due to the location and elevation of the existing replenishment facility immediately east of the project area, we do not expect groundwater elevations to rise within 50 feet of the planned development.

There are several known water wells onsite within the Thomas E. Levy Groundwater Replenishment Facility. These well locations and groundwater levels were obtained from CVWD and are shown on Plates 1 and 2. Based on data from CVWD, the groundwater in the wells near 62nd Avenue extension varied from 84 to 124.5 feet in depth (or elevations of -75 to -80 feet below msl) on December 16, 2019. The groundwater levels in wells near Madison Avenue were approximately 60 feet deep (or elevation of -80 feet below msl) on December 18, 2019.

Surface Water and Flood Potential: Currently, the U.S. Federal Emergency Management Agency (FEMA) mapping does not cover the project area west of Dike No. 4. We understand that the flooding potential and associated hazards are being reviewed by the project hydrologist and that the development elevations will be situated above anticipated flood elevations, and appropriate scour and erosion protection will provided on the project perimeter slopes.

2.5 Regional Faulting and Seismicity

Faulting: A bedrock fault is mapped within the project area in the northern portion of the site extending toward the south and buried under the alluvial fan (Rogers, 1965 and Earth Systems Southwest, 2007d). This fault was also shown on the Technical Background Report of the Safety Element of the La Quinta 2035 General Plan (Earth Consultants International, 2010) as an inactive fault. There are no faults mapped at the site by other published maps (Dibblee, 2008 and CGS, 2012). The site is not located within a fault-rupture hazard zone as defined by the Alquist-Priolo Special Studies Zones Act (CGS, 2018) or within an active or potentially active fault zone defined by Riverside County (2021).

There are several regionally active faults that could produce an earthquake that results in strong ground shaking at the site. The closest seismically active faults are the San Andreas Fault located 9.8 miles to the northeast, and the San Jacinto Fault located 14.8 miles southwest, as shown on Figure 5. The other regionally active, more distant faults that could produce ground shaking at the site include, but are not limited to, the Elsinore Fault and Brawley Seismic Zone.

Seismicity: Properties in southern California are subject to seismic hazards of varying degrees, depending upon the proximity, degree of activity, and capability of nearby faults. These hazards can be primary (i.e., directly related to the energy release of an earthquake such as surface rupture and ground shaking) or secondary (i.e., related to the effect of earthquake energy on the physical world, which can cause phenomena such as liquefaction and ground lurching). Since there are no active faults at the site, the potential for primary ground rupture is considered very low. The primary seismic hazard for this site is ground shaking due to a future earthquake on one of the major regional active faults listed above.

Using the USGS computer program (USGS, 2020) and the site coordinates of 33.60143 degrees north latitude and -116.26159 degrees west longitude, the controlling fault for the site is the San Andreas Fault, with the maximum moment magnitude of $7.7 \, M_W$.

Based on the 2019 CBC and underlying site soil conditions, the site may be classified as Site Class D.

Secondary Seismic Hazards: Both the City of La Quinta Technical Background Report to the Safety Element of the 2035 General Plan (Earth Consultants International, 2010) and Riverside County (2021) provide mapping of potential secondary seismic hazards, such as liquefaction susceptibility and earthquake-induced slope instability. Zones of potentially liquefiable soil, as defined by the County of Riverside, are included on Figure 6 and indicate low to very low liquefaction susceptibility. Based on the depth to groundwater summarized in Section 2.4, the liquefaction potential at the site is considered very low. Mass movements and slope stability are discussed in detail in Section 2.6.

The potential for other secondary seismic hazards, such as tsunami and seiche, are considered very low as the site is located away from bodies of water and at elevation greater than 50 feet above msl.

11

2.6 Slope Stability and Mass Movements

Permanent Structural Slopes: There are planned 3H:1V cut and fill slopes up to 80 feet high that will be cut from and/or underlain by alluvial fan materials. The proposed slopes are anticipated to be globally stable and likely surficially unstable or subject to erosion due to the lack of fines and cohesion in the native soils. Detailed slope stability analysis will need to be performed at the design-level study. (See further discussions in Section 3.7.)

Temporary Slopes: Temporary excavations may expose varying earth materials, including both compacted and undocumented fills, and alluvial fan deposits. Temporary slopes in alluvial fans are anticipated to be subject to failure due to the sandy nature of the alluvium and lack of cohesion. A detailed slope stability analysis will need to be performed at the design-level study.

Mass Movements and Natural Slopes: The Martinez Rockslide is located south of the site. The rockslide spans over 4.5 miles in length and broke away from the mountainside at an elevation of 6,320 feet above msl, from the top of the Santa Rosa Mountains. It deposited and came to a stop onto the flatter desert floor. The toe area consists of a bouldery landslide material with a slope that is 200 to 300 feet above the adjacent alluvial fan. One study by Bock (1977) tentatively dated the rockslide as Holocene due to remnants of older alluvial fan material beneath the toe of the slide. It is hypothesized that the initiating force was a large seismic event located near Martinez Mountain. The development has been set back approximately 900 feet from the toe of the rockslide. Based on the setback distance and lack of potential energy and upslope materials, we do not anticipate the rockslide will have any impact to the project. However, due to the steep slope at the toe of the rockslide and presence of cobbles and boulders, rockfall hazard exists within the setback area.

The granitic bedrock ridge at the north end of the development was found to generally be fractured and jointed and has been mapped as a potential rockfall hazard (Earth Consultants International, 2010). In general, the plan set indicates 100-foot offset from this bedrock ridge.

Rockfall hazard review and/or analysis should be performed at a later date for both locations discussed above once plans are further developed to evaluate this hazard and provide mitigation recommendations (i.e., impact walls or berms/channels) if required.

2.7 Settlement

Based upon our review of the existing subsurface data and laboratory data, the near-surface soil at the site generally consists of weathered, low density and/or porous material and undocumented fill material. This unsuitable soil is prone to significant collapse and/or consolidation and has poor bearing properties. Below this zone, the native materials appear to be dense, as reported by the high blow counts on the boring logs from adjacent projects. The amount of potential settlement can vary significantly over the site due to variations in subsurface conditions and depths of planned cuts and fills. In conducting our preliminary settlement evaluation, we have assumed that remedial removals will be implemented to remove the undocumented fill materials and weathered alluvial fan deposits; that fill loading will be a maximum of 60 feet over existing ground; and structures will be of low-rise wood-framed construction (one to two stories).

We anticipate the total consolidation settlement at the completion of grading to be on the order of 1 to $1\frac{1}{2}$ inches. The differential settlement is then expected to be on the order of $\frac{3}{4}$ -inch over a 40-foot span.

2.8 Regional Subsidence

Regional land subsidence as a result of groundwater withdrawal in the Coachella Valley has been studied by the U.S. Geological Survey over the past 25 years (USGS, 2014). Since the 1900s, increasing agricultural, domestic, and municipal groundwater withdrawal has lowered the water table in Coachella Valley as much as 50 vertical feet, which in turn resulted in wide spread land subsidence. Water levels were measured between 1995 and 2010 and found that groundwater levels were the lowest recorded in 2010. The majority of this measured subsidence occurred in the central portions of the city of La Quinta, north of 60th Avenue, where up to 2 feet was recorded. Interferometric Synthetic Aperture Radar detection indicated that land-surface elevation changes within the project area ranged from 0 to approximately 1.3 inches. Additionally, the study has noted that groundwater levels within the La Quinta area have shown recovery coinciding with increased groundwater replenishment at the Thomas E. Levy Facility beginning in mid-2009. As CVWD continues to monitor and maintain groundwater replenishment and reduce reliance on groundwater resources through water-supply management, we anticipate that regional subsidence will continue to decline.

2.9 Erosion Potential and Scour Protection

The alluvial fan deposits onsite are sandy with generally less than 10 percent fines and are considered highly erodible when exposed to environmental elements without protection. Design cut and fill slopes will need to have surface protection and proper drainage devices. Please note that the design cut slopes are laid back to 3H:1V inclination or flatter to reduce the potential for slope instability and erosion. To reduce the erosion and surficial slumping potential of the graded slopes, permanent manufactured slopes should be protected from erosion by planting with appropriate ground cover or by placing suitable erosion protection (i.e., jute matting, polymer coating, etc.). These measures should be applied as soon as is practical.

The perimeter slopes are designed at 2H:1V and will require additional measures to reduce the erosion and scour potential in order to protect the slopes from flood waters. We understand that scour protection will be designed to depths on the order of 20 feet. Rip-rap or other surface protection will be provided on the slope face below the potential flood levels. These mitigation measures will be designed during future site-specific hydrological studies by others.

2.10 Rippability and Oversize Rocks

A seismic refraction study (Appendix E) was performed within the alluvial fan deposits at the locations of the deepest planned cuts, as shown on the Preliminary Geotechnical Maps (Plates 1 and 2). In general, the <u>primary wave</u> velocities recorded in the uppermost 20 feet of alluvial fan material ranged from 1,500 to 2,500 feet per second (fps) Below 20 feet, velocities were consistently higher, generally 2,500 to 3,500 fps to our total study depth of 80 feet. Additionally, test pits were previously performed across the site to total depths of up to 25 feet with a track-

13

mounted Deere 370C excavator. This work encountered refusal in 6 of 49 total test pit excavations due to large boulders.

While the materials are generally considered rippable, considerable oversize rocks may be generated from the alluvial fan deposits. An Approximate Rock Distribution Map (Plate 3) was prepared to distinguish the limits and distribution of oversize material (boulders over 12 inches in the maximum diameter) that are anticipated to be encountered during grading in each of the cut or remedial removal areas. These percentages are based on the visual observations by Earth Systems Southwest (2007d) personnel while performing the excavator test pits onsite. Based on preliminary calculations, we anticipate that a significant amount of oversize rocks will need to be crushed to complete the proposed grading. With additional rock quality testing (hardness, durability, etc.), we anticipate that the crushed material should meet the Greenbook specifications for Crushed Aggregate Base (CAB). The rock may also be crushed to use as gravel or cobble sizes for use in erosion protection. It is unlikely the rock could be broken to use as rip-rap since the majority of the rock is smaller than the typical rip-rap material.

2.11 Infiltration Testing

There are two water quality basins planned at the site, a 2.5-acre basin north of 62^{nd} Avenue and a 10-acre basin located south of 62^{nd} Avenue. The basins have proposed finish grade elevations, which are 15 to 30 feet below existing grade. Two borings (H-1 and H-2) were drilled to 40 feet bgs, or approximately 20 to 23 feet below the bottom of the proposed basins. Samples below the bottom of the proposed basin elevation were taken continuously with alternating ring samples and SPTs in order to verify that there were no fine-grained confining layers within the effective depths of the basins, per City of La Quinta Engineering Bulletin #06-16.

Five additional borings (P-1 through P-5) were drilled to depths of 20 to 30 feet bgs (or 3 to 7 feet below the bottom of the future basins) for percolation testing. Two-inch diameter slotted PVC pipe and granular sand (No. 3) backfill (annular space) was installed within the borings to prevent caving of the native sandy soils during percolation testing.

The Boring Percolation Tests were performed in P-1 through P-5 on August 10 and 12, 2021 in general conformance with the Riverside County Whitewater River Region Stormwater Quality Best Management Practice Design Handbook for Low Impact Development (2014). Per discussion with the City, they have allowed for preliminary testing and infiltration rate determination to be performed using the established County of Riverside methods.

Initial testing was performed to confirm the "sandy soil criteria," after the pre-soaking period. The final measurements at the end of testing were used to convert percolation rates to infiltration rates using the equations presented in the County design handbook. The field test data sheets that include percolation rates are provided in Appendix F.

The calculated infiltration rates are tabulated below and include rates with a factor-of-safety of 3, as required. The infiltration test results are representative of the location and depth the tests were performed. Due to the inherent variation of subsurface conditions, infiltration rates could vary substantially across the site.

14

Boring No.	Tested Depth (ft.)	Infiltration Rate (in./hr.)	Infiltration Rate (in./hr.) <u>with</u> Factor of Safety
P-1	21 to 23.5	18.0	6.0
P-2	19 to 23.5	26.7	8.9
P-3	18.5 to 20	26.6	8.9
P-4	21.5 to 24.5	43.7	14.6
P-5	26.5 to 29.5	19.3	6.4

2.12 Earthwork Bulking/Shrinking and Subsidence

The loss or gain of volume (shrink/bulk) of excavated natural materials and recompaction as fill varies according to earth material type and location. This volume change is represented as percent shrinkage (volume loss) and as percent bulking (volume gain) after recompaction of a unit volume of cut in this same material in its natural state. The onsite materials will have varying shrinkage or bulking characteristics. We anticipate that mass excavation and remedial removals will result in a 10 and 15 percent shrinkage, respectively. Note that the onsite materials have little to abundant cobbles and boulders. Crushing will be required to generate fill materials, as discussed in Section 2.10. Crushing rock may result in bulking on the order of 15 percent.

Ground subsidence at the site is estimated to be on the order of 0.2 foot.

3.0 CONCLUSION AND PRELIMINARY RECOMMENDATIONS

3.1 General Conclusion and Recommendation

Based on our study, the site is considered geotechnically suitable for the proposed residential development provided the preliminary geotechnical recommendations in this report are implemented during design, grading and construction. This report should also serve as the geotechnical appendix for the project EIR.

Geotechnical observation/testing and mapping during grading is essential to verify the anticipated conditions and evaluate the recommended remedial design measures. The recommendations in this report are considered minimum and may be superseded by more restrictive requirements of others. These preliminary recommendations will need to be confirmed and updated as necessary during the design phase and through additional geotechnical investigation, testing and analysis.

3.2 Earthwork and Grading Specifications

Grading and excavations should be performed in accordance with the City of La Quinta Code and regulations and the General Earthwork and Grading Specifications in Appendix G. Clearing and grubbing of the site should include removal of any pavement or concrete, turf, landscaping, miscellaneous trash and debris, and disposal of deleterious material offsite. After removals and/or overexcavation, the bottoms should be scarified and moisture-conditioned prior to placement of fill. Fill should be placed in nearly horizontal loose lifts less than 8 inches in thickness, moisture-conditioned and compacted to a minimum relative compaction of 90 percent (per ASTM D1557). Fills placed against ground sloping more than 5H:1V should be keyed and benched into competent material as the new fill is placed.

Onsite soil materials are generally considered suitable to be used as fill materials. As noted, the onsite materials have little to abundant cobbles and boulders. Crushing may be required to generate fill material, as discussed in Section 3.5.

The soil engineering properties of imported soil (if any) should be evaluated to determine if any of the recommendations provided herein will need modification.

3.3 Remedial Grading and Overexcavation

Remedial Removals: Unsuitable earth materials should be removed prior to placement of compacted fill. Unsuitable materials at the site include undocumented fills and weathered alluvial fan deposits. Removal depths in native soils across the site should extend 4 feet below existing grade. Locally, where thicker undocumented fills are located, remedial removals should extend deeper to remove the fill and unsuitable native soils. Removal bottoms should expose competent native material and should be reviewed and accepted by the geotechnical consultant prior to placement of fill.

Grading over the levee for the proposed 62nd Avenue extension should bench into competent existing fills on the sides with minimal removals on the top (1 to 2 feet). Grading on the levee fill should be performed under the direction of the Bureau of Reclamation representatives.

Overexcavation: The proposed grading is anticipated to expose cut and fill transitions at finish grade. Shallow fill areas and cut portions of lots should be overexcavated and replaced with compacted fill to provide a minimum of 4 feet of uniform fill cap over each lot. Streets should be overexcavated 2 feet below subgrade to provide uniform fill below the pavement section. Alternatively, streets may be overexcavated 2 feet below the deepest utility to reduce the amount of oversize materials encountered and facilitate utility excavation/installation.

3.4 Rippability

Based on the geophysical studies and prior excavation work performed onsite, the alluvial fan earth units are anticipated to be rippable/excavatable with conventional earthmoving equipment (i.e., scrapers, excavators and backhoes). Seismic refraction surveys indicate the <u>primary wave</u> velocities vary from 1,200 fps near-surface to 3,500 fps at depth. Excavation difficulty due to the abundancy of cobbles and boulders should be expected. The geophysical results are provided in Appendix E.

Buried hard granitic rock out-crops were not encountered at the location of the seismic surveys. However, small exposures of granitic bedrock may be encountered locally along the northern perimeter of the site, adjacent to the southernmost proposed tank site. This rock may not be rippable with conventional earth-moving equipment; requiring larger bulldozers, excavators and rock breaking equipment.

3.5 Oversize Rock Crushing

We anticipate there will be more oversize rocks generated during grading than can be placed in the onsite fills. The Approximate Rock Distribution Map (Plate 3) shows the approximate percentages of oversize rocks/boulders by area that will be generated from different areas at the site during mass excavation and remedial grading. Therefore, we anticipate that rock crushing may be needed during the grading operations. For crushing purposes, we anticipate that the planned operations should be to break the oversize boulders of 1 to 4 feet in maximum dimension down to make fill materials with the crushed product. We understand that larger boulders may need to be pre-broken, down to 2.5 to 3 feet in diameter prior to crushing. We anticipate the rocks could be crushed to make aggregate base materials or other rock products, but would need laboratory testing to confirm.

3.6 Placement of Oversize Material

Oversize rocks larger than 12 inches in the maximum diameter should not be placed in the upper 10 feet of design fills or within 2 feet below the deepest utility in the streets. Oversized rocks greater than 24 inches in the maximum diameter will need to be placed in windrows in the deeper fills. Rocks that have a maximum diameter greater than approximately 4 feet should either be broken with pneumatic hammers and/or crushers prior to placement in windrows, or they should be handled by special placement as individual rocks in deep fill areas. The Grading and Earthwork Specifications in Appendix G include a detail for placement of oversize rocks.

3.7 Slope Stabilization

General Slope Stability: As discussed previously, the proposed slopes, as shown on the preliminary grading plan, are anticipated to be grossly stable under static and pseudo-static loading conditions, provided the remedial removals recommended in this report are performed and the slopes are adequately compacted.

The onsite native materials consist of highly erodible, cohesionless materials that contain oversize material. In order to reduce the potential rockfall hazard, and to help with surficial stability, stabilization fills are recommended for cut slopes at the site. Preliminary sizing of stabilization fill keys are a minimum depth of 4 feet and 15 feet wide for slopes up to 40 feet high, with the width increasing to 20 feet for those greater than 40 feet in height.

During grading, slope excavations and any backcuts or keyway excavations should be mapped and evaluated by the geotechnical consultant to verify the anticipated conditions. If the conditions are different than anticipated, geotechnical analysis should be performed and the remedial grading measures modified as necessary. The excavations should be evaluated and accepted by the geotechnical consultant prior to placement of compacted fill.

The reworked onsite soils are anticipated to provide adequate strength for the gross stability of the proposed fill slopes at the proposed slope inclination of 2H:1V and flatter. A base fill key should be provided for these fill slopes. The depth of the key should be a minimum of 2 feet into competent material, at least 15 feet wide, and have a one-foot tilt back into the slope. Fill slopes are anticipated to be stable as designed provided they are constructed in accordance with the details provided in our General Grading and Earthwork Specifications (Appendix G). Fill slopes and stabilization fills should be overbuilt approximately 3 feet thick and trimmed back to the proposed slope face in order to provide a uniform compacted slope face. Slopes will be subject to surficial erosion and should be planted as soon as practical.

Temporary Slope Stability: Temporary slopes will be created as a result of the backcuts for recommended stabilization fill keys. The actual stability of the backcuts will depend on many factors, including the geologic conditions and the amount of time the excavation remains exposed. Excavations should not be left open for long periods of time and should be backfilled as soon as practical (i.e., backfilled prior to the weekend or holiday, if possible). Extra care and attention should be provided while grading next to adjacent properties.

The backcut should be "slope-boarded" on a routine basis so that the geotechnical consultant can map the slope carefully during excavation and help to notify the project team of critically unstable areas. This will also allow those working below the excavation to observe any potential failures.

Mass Movements and Natural Slopes: The development has been set back approximately 900 feet from the toe of the Martinez Rockslide. Based on the setback distance and lack of potential energy and upslope materials, we do not anticipate the rockslide to have any adverse impact on the project. However, due to the steep slope at the toe of the rockslide and presence of cobbles and boulders, a rockfall hazard exists within the setback area.

210827 update report 18

The granitic bedrock ridge at the north end of the development, was found to generally be fractured and jointed and has been mapped as a potential rockfall hazard (Earth Consultants International, 2010).

Rockfall hazard analysis should be performed at a later date for both locations discussed above once plans are further developed in order to evaluate this hazard and provide mitigation recommendations (i.e., impact walls or berms/channels) if required.

3.8 Groundwater Conditions

Based on review of the existing groundwater data, we anticipate groundwater to remain deep below the site, in excess of 50 feet. Groundwater is not anticipated to be encountered during grading or construction at the site.

3.9 Settlement

As discussed in Section 2.7, the total settlement as a result of fill placement in the areas underlain by native alluvial fan deposits, is estimated to be on the order of 1 to $1\frac{1}{2}$ inches. The differential settlement is anticipated to be on the order of $\frac{3}{4}$ -inch over a span of 40 feet.

The amount of anticipated settlement will also depend on the type of foundation(s) selected. Additional evaluation will need to be performed once the actual design grades, foundation type, foundation loads and layouts are known.

3.10 Foundation Design

The design of foundation and slabs is the purview of the project structural engineer. Following completion of grading operations, the onsite soils at the site are anticipated to have "very low" to "low" expansion potential.

An allowable bearing pressure of 1,800 psf may be assumed for foundations in compacted fill soils having a minimum depth of 12 inches below the lowest adjacent grade with a minimum width of 12 inches. The allowable bearing pressure may be increased for each additional foot of width and/or depth by 300 psf up to a maximum of 3,000 psf.

The allowable bearing pressure may be increased by one-third for wind and seismic loading. The allowable bearing pressure may also be applied to post-tensioned and mat slabs, if needed for design. The footings of freestanding structures (including walls and pilasters) should have a minimum embedment depth of 24 inches into approved soils.

For lateral resistance against sliding, a friction coefficient of 0.38 may be used at the soil-foundation interface. This value may be increase by one-third for wind and seismic loading.

For non-post-tensioned slabs-on-grade and foundations, in accordance with Wire Reinforcement Institute (WRI) method (per the 2019 California Building Code), an effective Plasticity Index of 15 is considered appropriate for the upper 15 feet of soil. For such slabs, we recommend a minimum embedment of 18 inches below the lowest adjacent grade for the perimeter footings.

The slabs should also be designed to satisfy the settlement criteria presented in Section 3.9 of these recommendations

3.11 Storm Water Infiltration Feasibility

Based on our evaluation and analysis as described herein, we conclude that onsite storm water infiltration is geotechnically feasible. As discussed in Section 2.11, a minimum factor-of-safety of 3 has been applied to the results for preliminary design purposes. Per City of La Quinta Engineering Bulletin #06-16, the maximum allowable rate for retention basin design is two inches per hour. The infiltration rates obtained from testing exceed the maximum allowable rate dictated by the City; varying between 6.0 and 14.6 inches per hour. In addition, the two borings (H-1 and H-2) drilled with continuous sampling to a depth of 20 to 23 feet below the bottom of the proposed basins encountered sandy and gravelly alluvium without a confining layer.

Infiltration systems should be constructed per the recommendations outlined in the Riverside County Whitewater River Region Stormwater Quality Best Management Practice Design Handbook for Low Impact Development (2014. Special care should be taken so as to limit disturbance to native soils utilized as the infiltration surface in a manner that may affect infiltration performance. Proper and routine maintenance should be provided for the infiltration systems.

3.12 Trench Excavations and Backfill

Excavations should conform to all applicable safety requirements. Trench excavations are anticipated to expose varying earth units, including fill and native alluvial fan deposits. Excavations should be considered Type C soils per Cal/OSHA regulations and should be excavated at 1.5H:1V or flatter, with no vertical excavation near the bottom. If the excavations cannot be made within the subject site, temporary shoring would be needed. The shoring would likely require shields or lagging for potential caving sands. Clean sands were encountered through the project, with caving conditions noted in some exploratory test pits.

Native soils should be suitable for use as trench backfill. The cobbly materials may be difficult to use without mixing with cleaner sands and/or screening the rock. Cobbles larger than 3 inches in size should not be placed within the pipe zone. Trenches, including interior utility lines, should be either backfilled with native soil and compacted to 90 percent relative compaction, or backfilled with clean sand (SE 30 or better), which can be densified with water jetting and flooding. Trenches excavated next to structures and foundations should also be properly backfilled and compacted to provide full lateral support and reduce settlement potential.

3.13 Lateral Earth Pressures

The recommended lateral earth pressures for the drained onsite materials are as follows:

Equivalent Fluid Pressure (psf/ft)					
Conditions	Conditions Level 2:1 Sloping				
Active	35	50			
At-Rest	55				
Passive	400	230 sloping down			

These parameters are based on a soil internal friction angle of 33 degrees and soil unit weight of 120 pcf. The above parameters do not apply for backfill that is highly expansive.

To design an unrestrained retaining wall, such as a cantilever wall, the active earth pressure may be used. For a restrained retaining wall, such as a vault, basement or at restrained wall corners, the at-rest pressure should be used. Passive pressure is used to compute lateral soils resistance developed against lateral structural movement. Passive pressure may be increased by one-third for wind and seismic loading. Future landscaping/planting and improvements adjacent to retaining walls should also be taken into account in the design of the retaining walls. Excessive soil disturbance, trenches (excavation and backfill), future landscaping adjacent to footings, and oversaturation can adversely impact retaining structures and result in reduced lateral resistance.

For sliding resistance, the friction coefficient of 0.40 may be used at the concrete and soil interface. This value may be increased by one-third for wind and seismic loading. The passive resistance is taken into account only if it is ensured that the soil against embedded structure will remain intact with time. The retaining walls will also need to be designed for additional lateral loads if other structures or walls are planned within a 1H:1V projection.

The seismic lateral earth pressure for walls retaining more than 6 feet of soil may be estimated to be an additional 15 pcf for active and at-rest conditions. The earthquake soil pressure has a triangular distribution and is added to the static pressures. For the active and at-rest conditions, the additional earthquake loading is zero at the top and maximum at the base. The seismic lateral earth pressure does not apply to walls retaining less than 6 feet of soil (2016 CBC Section 1803.5.12).

Retaining structures should be waterproofed and provided with suitable backdrain systems to reduce the potential hydrostatic pressure on the walls. Figure 7 presents alternatives for wall-backdrain systems. Specific drainage connections, outlets and avoiding open joints should be considered for the retaining wall design.

3.14 Preliminary Pavement Design

A preliminary pavement section based on assumed R-value of 40 and Traffic Index (TI) of 7 for the main drive areas and roadways and TI of 4 for residential streets and parking lots, consists of 4 inches of asphalt concrete over 7 inches of aggregate base and 3 inches of asphalt concrete over 4 inches of aggregate base, respectively. The final pavement section recommendations should be based on the anticipated Traffic Index (TI) of the roadways and the R-value of the subgrade soils. Pavement design and construction should be performed in accordance with the requirements of the City of La Quinta and the Greenbook.

3.15 Structural Setbacks

The footings of structures (including retaining walls) located above descending slopes should be setback from the slope face. The setback distance is measured from the outside edge of the footing bottom along a horizontal line to the face of the slope. The table below summarizes the minimum setback criteria for structures above descending slopes.

Structural Setback Requirements for Footings Above Descending Slopes				
Slope Height [H] (feet)	Minimum Setback from Slope Face (feet)			
Less than 10	5			
10 to 20	½ * H			
20 to 30	10			
30 to 120	1/3 * H			
More than 120	40			

3.16 Seismic Design Guidelines

The following table summarizes the seismic design criteria for the subject site. The seismic design parameters are developed in accordance with ASCE 7-16 and 2019 CBC (Appendix D). Please note that considering the proposed structures and the anticipated structural periods, site-specific ground hazard analysis was not performed for the site. The seismic design coefficient, C_s, should be determined per the parameters provided below and using equation 12.8-2 of ASCE 7-16.

Selected Seismic Design Parameters from 2019 CBC/ASCE 7-16	Seismic Design Values	Reference
Latitude	33.60143 North	
Longitude	-116.26159 West	
Controlling Seismic Source	San Andreas Fault	USGS, 2020
Distance to Controlling Seismic Source	9.8 mi	USGS, 2020
Site Class per Table 20.3-1 of ASCE 7-16	D	
Spectral Acceleration for Short Periods (Ss)	1.5 g	SEA/OSHPD, 2020
Spectral Accelerations for 1-Second Periods (S1)	0.58 g	SEA/OSHPD, 2020
Site Coefficient F _a , Table 11.4-1 of ASCE 7-16	1.0	SEA/OSHPD, 2020
Site Coefficient F _v , Table 11.4-2 of ASCE 7-16	1.72	
Design Spectral Response Acceleration at Short Periods (S _{DS}) from Equation 11.4-3 of ASCE 7-16	1.0 g	SEA/OSHPD, 2020
Design Spectral Response Acceleration at 1-Second Period (S _{D1}) from Equation 11.4-4 of ASCE 7-16	0.67 g	
T _S , S _{D1} / S _{DS} , Section 11.4.6 of ASCE 7-16	0.67 sec	
T _L , Long-Period Transition Period	8 sec	SEA/OSHPD, 2020
Peak Ground Acceleration (PGA _M) Corrected for Site Class Effects from Equation 11.8-1 of ASCE 7-16	0.58 g	SEA/OSHPD, 2020
Seismic Design Category, Section 11.6 of ASCE 7-16	D	

3.17 Subdrains

Backdrains should be provided for stabilization fills at 30-foot-vertical intervals with outlets every 100 feet through the slope face. Backdrains should consist of 4-inch perforated Schedule 40 PVC pipe inserted into a minimum of 3 cubic feet per linear foot of ³/₄-inch gravel wrapped in geotextile filter fabric (Mirafi 140N or equivalent). Backdrain details are included in the General Earthwork and Grading Specifications (Appendix G). During grading, additional subdrains may be necessary for areas where seepage is encountered.

Proper surface drainage, such as a concrete V-ditch, should also be provided along the top of walls. Downdrains (outlets) for surface drainage should <u>not</u> be tied into the subdrain system for walls. (They should be outlet separately.)

Protection of Subdrain Outlets: The outlet pipe should be protected by installation of devices per exhibit labeled "Subdrain Outlet Marker Detail" in the Grading and Earthwork Specifications (Appendix G). This will allow the pipe outlets to be protected in the future during landscaping and make them easier to find, if necessary.

3.18 Expansion Potential

Based on the onsite soil properties, the expansion potential is anticipated to generally range from "Very Low" to "Low." Additional laboratory testing should be performed following completion of grading operations to determine the expansion potential of the near-surface soils.

3.19 Cement Type and Corrosivity

Based on prior laboratory testing on adjacent projects, the soluble sulfates exposure in the onsite soils are anticipated to be classified as "S0" to "S1" per Table 19.3.1.1 of ACI-318-14. Structural concrete elements in contact with soil include footings and building slabs-on-grade. Concrete mix for these elements may be preliminarily based on the "S1" soluble sulfate exposure class of Table 19.3.2.1 in ACI-318-14. Other American Concrete Institute (ACI) guidelines for structural concrete are recommended.

Also, the site soils are anticipated to be corrosive to very corrosive to ferrous metals and may also be deleterious to copper. Where metals will be in contact with onsite soils for a long period of time (such as buried iron or steel pipe), corrosion-control measures should be taken to prolong their life.

Additional laboratory testing should be performed following completion of grading operations to determine the corrosion potential of onsite soils and to provide recommendations for corrosion protection.

3.20 Exterior Concrete

Exterior concrete elements, such as curb and gutter, driveways, sidewalks and patios, are susceptible to lifting and cracking when constructed over expansive soil. Please also note that reducing concrete problems is often a function of proper slab design, concrete mix design, placement, and curing/finishing practices. Adherence to guidelines of the ACI is recommended.

23

Also, the amount of post-construction watering, or lack thereof, can have a very significant impact on the adjacent concrete flatwork.

For reducing the potential effects of expansive soils, we recommend a combination of presaturation of subgrade soils; reinforcement; moisture barriers/drains; and a sublayer of granular material. Though these types of measures may not completely eliminate adverse impacts, application of these measures can significantly reduce the impacts from post-construction expansion of soil. The degrees and combinations of these measures will depend upon the expansion potential of the subgrade soil, moisture migration potential, feasibility of the measures, and the economics of the measures versus the benefits. These factors should be weighed by the project owner determining the measures to be applied on a project-by-project basis, subject to the requirements of the local building/grading department.

The following table provides our recommendations for varying expansion characteristics of subgrade soils. Additional considerations are also provided after the table. We recommend that the "Low" category be preliminarily used during design of the project.

TYPICAL RECOMMENDATIONS FOR CONCRETE FLATWORK/HARDSCAPE					
	Expansion Potential (Index)				
Recommendations	<i>Very Low</i> (< 20)	Low (20 – 50)	Medium (51 – 90)	High (91 – 130)	Very High (> 130)
Slab Thickness (Min.): Nominal thickness except where noted.	4"	4"	4"	4"	4" Full
Subbase : Thickness of sand or gravel layer below concrete	N/A	N/A	Optional	2" – 4"	2" – 4"
Presaturation : Degree of optimum moisture content (opt.) and depth of saturation	Pre-wet Only	1.1 x opt. to 6"	1.2 x opt. to 12"	1.3 x opt. to 18"	1.4 x opt. to 24"
<i>Joints:</i> Maximum spacing of control joints. Joint should be ¹ / ₄ of total thickness	10'	10'	8'	6'	6'
Reinforcement: Rebar or equivalent welded wire mesh placed near mid-height of slab	N/A	N/A	Optional (WWF 6 x 6 – W1.4xW1.4)	No. 3 rebar, 24" O.C. both ways or equivalent wire mesh	No. 3 rebar, 24" O.C. both ways
Restraint: Slip dowels across cold joints; between sidewalk and curb	N/A	N/A	Optional	Across cold joints	Across cold joints (and into curb)

The procedure and timing of presaturation should be carefully planned in advance of construction.

Design and maintenance of proper surface drainage is also very important. If the concrete will be subject to heavy loading from cars/trucks or other heavy objects, thicker slabs should be used. The above recommendations typically are not applied to curb and gutter.

3.21 Slope Maintenance and Protection

To reduce the erosion and surficial slumping potential of the graded slopes, permanent manufactured slopes should be protected from erosion by planting with appropriate ground cover or by placing suitable erosion protection (i.e., jute matting, polymer coating, etc.). These measures should be applied as soon as is practical. Proper drainage should be designed and maintained to collect surface waters and direct them away from slopes. A rodent-control program should be established and maintained as well, in order to reduce the potential for damage related to burrowing. In addition, the design and construction of improvements and landscaping should also provide appropriate drainage measures.

3.22 Surface Drainage

Surface drainage should be carefully taken into consideration during all grading, landscaping, and building construction. Positive surface drainage should be provided to direct surface water away from structures and slopes and toward the street or suitable drainage devices. Ponding of water adjacent to the structures or tops of slopes should not be allowed. Paved areas should be provided with adequate drainage devices, gradients, and curbing to reduce run-off flowing from paved areas onto adjacent unpaved areas.

3.23 Additional Geotechnical Investigation and Plan Reviews

Additional geotechnical evaluation and investigation are recommended during the design phase of work. This additional analysis and investigation would occur after entitlement, when grading and building plans are in progress or finalized, and before obtaining grading permits. NMG has solely relied upon the observations and laboratory testing of others, we recommend additional exploratory borings and test pits to verify the findings of others. Additionally, percolation testing conforming with current city/county standards may need to be performed.

Also, additional borings will be needed along the proposed extension of 62nd Avenue in order to evaluate the underlying native soils within the vicinity of the proposed improvements.

NMG should also review the project plans during the design phase, including but not limited to, rough and precise grading, foundation, retaining walls (if any), and street and utility plans.

Geotechnical review reports will be prepared for these plan reviews, which will be submitted to the City for review and approval (if required).

3.24 Geotechnical Observation and Testing During Grading and Construction

Geotechnical observation and testing should be performed by the geotechnical consultant during the following phases of grading and construction:

• During site preparation and clearing;

- During earthwork operations, including remedial removals and pad overexcavation;
- During all fill placement;
- During temporary excavations and slope stabilization measures;
- During installation of subdrains;
- Upon completion of any excavation for buildings or retaining walls, prior to pouring concrete;
- During slab and pavement subgrade preparation, prior to pouring of concrete;
- During and after installation of subdrains for retaining walls;
- During placement of backfill for utility trenches and retaining walls; and
- When any unusual soil conditions are encountered.

4.0 LIMITATIONS

This report has been prepared for the exclusive use of our client, Hofmann Management Company, within the specific scope of services requested by our client for the planning study discussed in this report. This report or its contents should not be used or relied upon for other projects or purposes or by other parties without the written consent of NMG. Our methodology for this study is based on local geotechnical standards of practice, care, and requirements of governing agencies. No warranty or guarantee, express or implied is given.

The findings, conclusions, and recommendations are professional opinions based on interpretations and inferences made from geologic and engineering data from specific locations and depths, observed or collected at a given time. By nature, geologic conditions can be very different in between points, and can also change over time. Our conclusions and recommendations are subject to verification and/or modification with more exploration and/or during grading and construction when more subsurface conditions are exposed.

NMG's expertise and scope of services did not include assessment of potential subsurface environmental contaminants or environmental health hazards.

SITE LOCATION MAP

TRAVERTINE RESIDENTIAL DEVELOPMENT Project Number: 18186-01 CITY OF LA QUINTA RIVERSIDE COUNTY, CALIFORNIA

By: TW/SBK

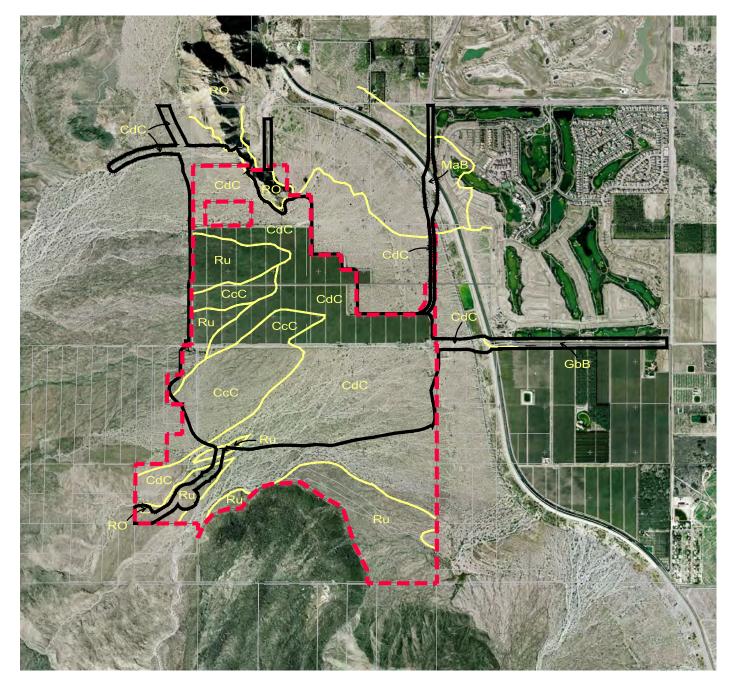

Project Name: Hofmann/Travertine

Figure 1 Date: 8/27/2021

■Miles

1 inch = 1 miles

LEGEND

CcC CARRIZO STONY SAND,

2-9% SLOPES

CdC CARSITAS GRAVELLY SAND,

0-9% SLOPE

GbB GILMAN FINE SANDY LOAM

Mab MYOMA FINE SAND

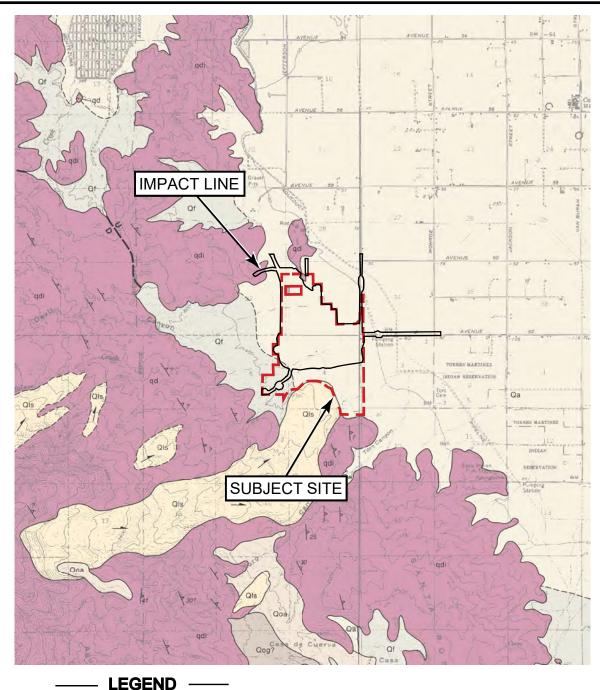
RO ROCK OUTCROP

Ru RUBBLE LAND

SOIL SURVEY INFORMATION FROM NATURAL RESOURCES CONSERVATION SERVICE

IMPACT LINE

LIMIT LINE


TRAVERTINE RESIDENTIAL DEVELOPMENT
CITY OF LA QUINTA
COUNTY OF RIVERSIDE, CALIFORNIA

Project No.: 18186-01

Project Name: Jofmann / Travertine

Date: 8/27/21 Figure No. 2

LOCATIONS ARE APPROXIMATE

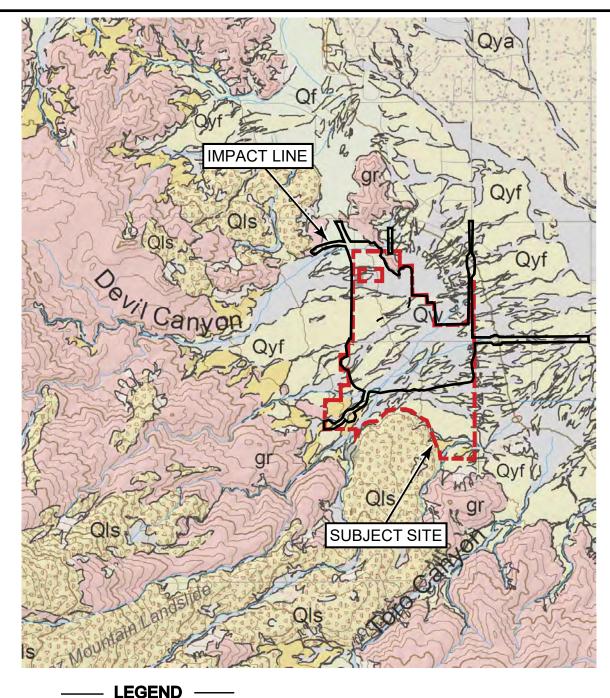
Qa Alluvium

Qls Landslide

Qf Alluvial Fan

qdi Quartz Diorite

REGIONAL GEOLOGY MAP (DIBBLEE, 2008)


Z

TRAVERTINE RESIDENTIAL DEVELOPMENT CITY OF LA QUINTA COUNTY OF RIVERSIDE, CALIFORNIA Project Number: 18186-01 By: TW/SBK

Project Name: Hofmann / Travertine

Date: 8/27/2021 Figure 3

LOCATIONS ARE APPROXIMATE

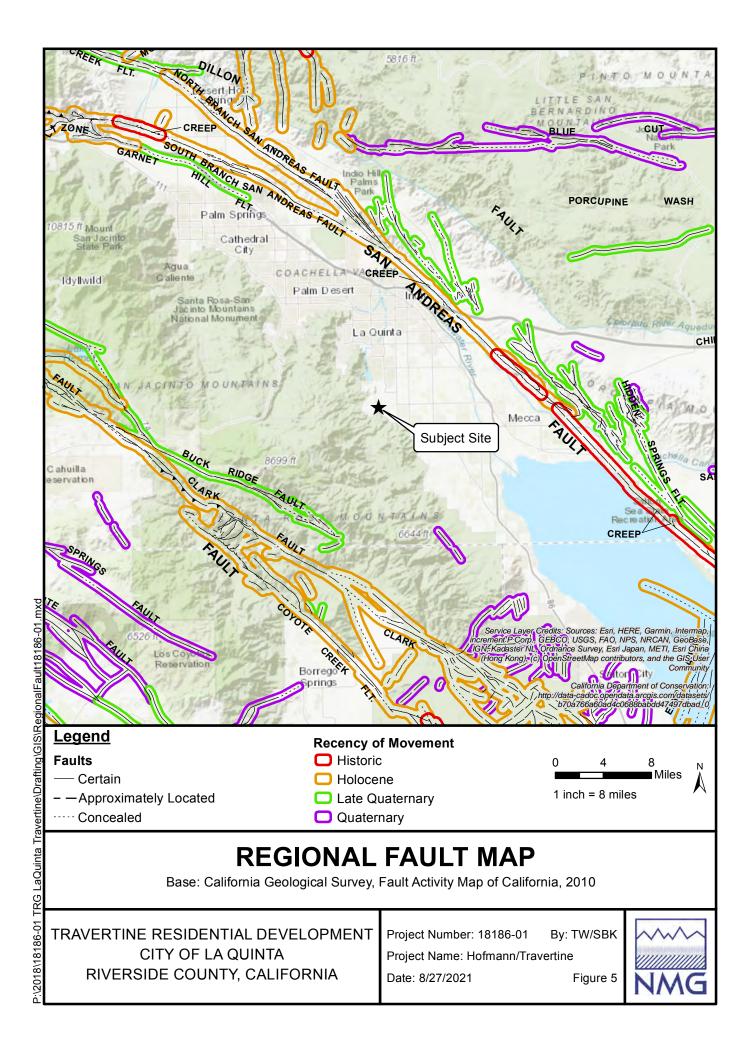
QIs Landslide Deposits

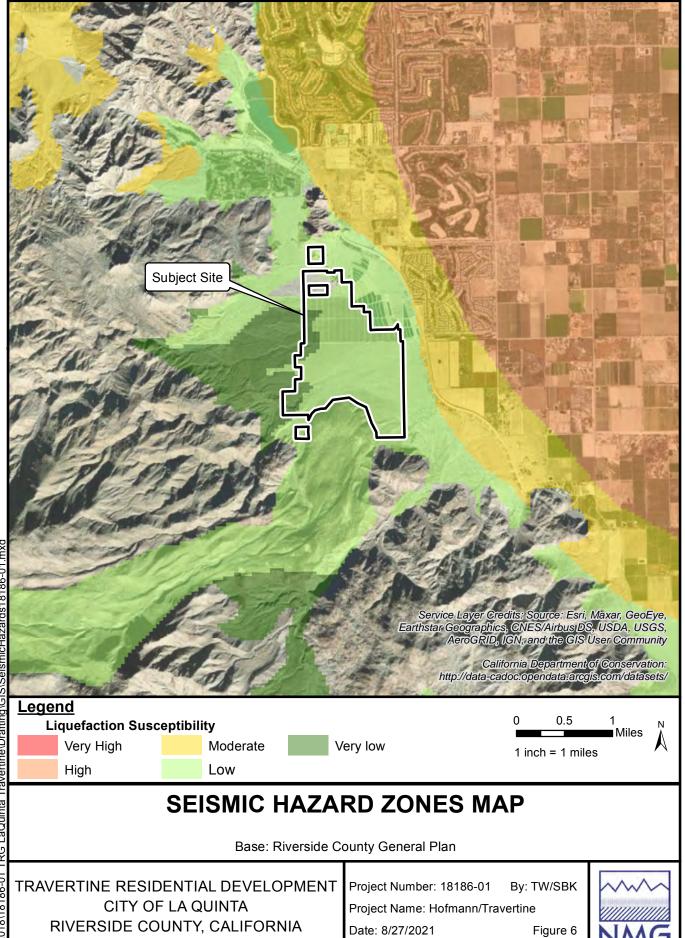
Qyf Young Alluvial Fan Deposits

Qw Alluvial Wash Deposits

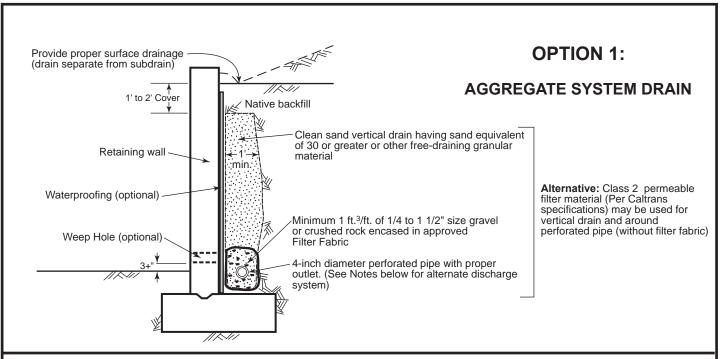
Granitic and other Intrusive Crystalline Rocks of all ages

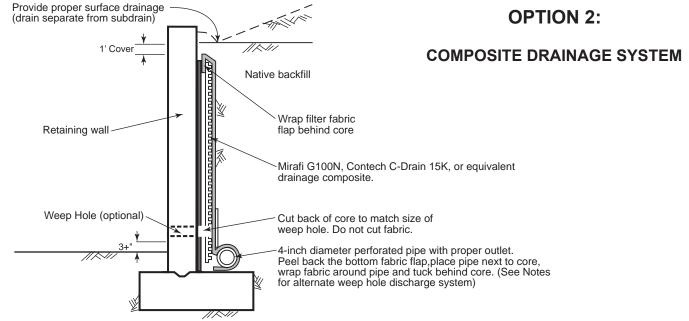
REGIONAL GEOLOGY MAP (CGS, 2012)


gr


TRAVERTINE RESIDENTIAL DEVELOPMENT CITY OF LA QUINTA COUNTY OF RIVERSIDE, CALIFORNIA Project Number: 18186-01 By: TW/SBK

Project Name: Hofmann / Travertine


Date: 8/27/2021 Figure 4



P:\2018\18186-01 TRG LaQuinta Trav

NOTES:

- 1. PIPE TYPE SHOULD BE PVC OR ABS, SCHEDULE 40 OR SDR35 SATISFYING THE REQUIREMENTS OF ASTM TEST STANDARD D1527, D1785, D2751, OR D3034.
- 2. FILTER FABRIC SHALL BE APPROVED PERMEABLE NON-WOVEN POLYESTER, NYLON, OR POLYPROPYLENE MATERIAL.
- 3. DRAIN PIPE SHOULD HAVE A GRADIENT OF 1 PERCENT MINIMUM.
- 4. WATERPROOFING MEMBRANE MAY BE REQUIRED FOR A SPECIFIC RETAINING WALL (SUCH AS A STUCCO OR BASEMENT WALL)
- 5. WEEP HOLES MAY BE PROVIDED FOR LOW RETAINING WALLS (LESS THAN 3 FEET IN HEIGHT) IN LIEU OF A VERTICAL DRAIN AND PIPE AND WHERE POTENTIAL WATER FROM BEHIND THE RETAINING WALL WILL NOT CREATE A NUISANCE WATER CONDITION. IF EXPOSURE IS NOT PERMITTED, A PROPER SUBDRAIN OUTLET SYSTEM SHOULD BE PROVIDED.
- 6. IF EXPOSURE IS PERMITTED, WEEP HOLES SHOULD BE 2-INCH MINIMUM DIAMETER AND PROVIDED AT 25-FOOT MAXIMUM SPACING ALONG WALL. WEEP HOLES SHOULD BE LOCATED 3+ INCHES ABOVE FINISHED GRADE.
- 7. SCREENING SUCH AS WITH A FILTER FABRIC SHOULD BE PROVIDED FOR WEEP HOLES/OPEN JOINTS TO PREVENT EARTH MATERIALS FROM ENTERING THE HOLES/JOINTS.
- 8. OPEN VERTICAL MASONRY JOINTS (I.E., OMIT MORTAR FROM JOINTS OF FIRST COURSE ABOVE FINISHED GRADE) AT 32-INCH MAXIMUM INTERVALS MAY BE SUBSTITUTED FOR WEEP HOLES.
- 9 THE GEOTECHNICAL CONSULTANT MAY PROVIDE ADDITIONAL RECOMMENDATIONS FOR RETAINING WALLS DESIGNED FOR SELECT SAND BACKFILL.

RETAINING WALL DRAINAGE DETAIL

APPENDIX A REFERENCES

- Bock, C.G., 1977, Martinez Mountain Rock Avalanche, Geological Society of America Reviews in Engineering Geology, Volume III.
- California Division of Mines and Geology, 1965, Geologic Map of Southern California, Santa Ana Sheet, Compilation by Rogers, T.H.
- California Geological Survey, 2008, Guidelines for Evaluating and Mitigating Seismic Hazards in California, Special Publication 117, Originally Adopted March 13, 1997, Revised and Re-adopted September 11, 2008.
- California Geological Survey, 2010, Fault Activity Map of California and Adjacent Areas (Scale 1: 750,000), Geologic Data Map No. 6, Compiled and Interpreted by Charles W. Jennings and William A. Bryant.
- California Geological Survey, 2012, Preliminary Geologic Map of Quaternary Surficial Deposits in Southern California, Palm Springs 30'X60' Quadrangle, Special Report 217, Plate 24, by Lancaster, J.T., Hayhurst, C.A., and Bedrossian, T.L.
- California Geological Survey (CGS), 2018, Earthquake Fault Zones, A Guide for Government Agencies, Property Owners / Developers, and Geoscience Practitioners for Assessing Fault Rupture Hazards in California, Special Publication 42, Revised 2018.
- Christenson, G.E., and Purcell, C., 1985, Correlation and age of Quaternary alluvial-fan sequences, Basin and Range Province, Southwestern United States, Geological Society of America Special Paper 203.
- City of La Quinta, 2004, Ordinance No. 406, Chapter 8.80 (Grading) to M.C., Adopted May 4, 2004.
- City of La Quinta, 2006, Engineering Bulletin #06-16, Hydrology and Hydraulic Report Criteria for Storm Drain Systems, Revised Effective Data of October 3, 2020.
- City of La Quinta, 2013, City of La Quinta 2035 General Plan, Adopted February 19, 2013.
- Coachella Valley Water District, 2012, Coachella Valley Water Management Plan Update, Final Report, Dated January 2012.
- Coachella Valley Water District, 2018, Engineer's Report on Water Supply and Replenishment Assessment, 2018-2019, dated April 2018.
- Coachella Valley Water District, 2019, Engineer's Report on Water Supply and Replenishment Assessment, 2019-2020, dated April 2019.
- Construction Testing and Engineering, Inc., 2007, Geotechnical Assessment, Two Existing Drainage Basins, Avenue 62, West of Monroe, Riverside County, California, Job No. 40-2251, dated July 23, 2007.
- Dibblee, T.W, 2008, Geologic Map of the Palm Desert & Coachella 15 Minute Quadrangles, Dibblee Geology Center Map #DF-373, March 2008.

REFERENCES (CONTINUED)

- Earth Consultants International, 2010, Technical Background Report to the Safety Element of the La Quinta 2035 General Plan Update, Seismic Hazards, Geologic Hazards, Flooding Hazards, Dated June 2010, Revised September 7, 2010.
- Earth Systems Southwest, 2007a, Suitability of Borrow Site Soils for Fill of Proposed Madison and Jefferson Streets, Travertine Project, Between Avenues 60 and 64 West of Proposed Madison and Jefferson Streets, La Quinta, California, File No.: 11112-01, 07-05-764R, dated May 14, 2007, revised May 25, 2007.
- Earth Systems Southwest, 2007b, Geotechnical Engineering Report, Travertine Project, Proposed Madison Street Extension, La Quinta, California, File No.: 11112-02 07-06-706, dated September 12, 2007.
- Earth Systems Southwest, 2007c, Report of Infiltration Testing for Stormwater Retention, Proposed Travertine Project, Between Avenues 60 and 64, West of Madison Street, La Quinta, California, File No.: 11112-04, 07-09-773, dated September 24, 2007.
- Earth Systems Southwest, 2007d, Geotechnical Engineering Report, Proposed Travertine Project, Between Avenues 60 and 64, West of Madison Street, La Quinta, Riverside County, California, File No.: 11112-04, 07-11-804, dated November 21, 2007.
- Leighton and Associates, Inc., 2011, Geotechnical Evaluation Report, Soughing Pond Embankments, Thomas E. Levey Groundwater Replenishment Facility, 80800± 62nd Avenue, La Quinta, California, Project No. 602953-001, dated January 10, 2011.
- MTG_L Geotechnical Engineering Services, 2011, Siltation Investigation, Thomas E. Levy Groundwater Recharge Facility, Avenue 62 & Monroe Street, La Quinta, California, Project No. 1681-A36, dated June 3 and 11, 2011.
- Riverside County Flood Control and Water Conservation District, 2014, Whitewater River Region, Stormwater Quality Best Management Practice Design Handbook for Low Impact Development, dated Jun 2014.
- Riverside County, 2021, Riverside County Information Technology (RCIT), Riverside County GIS, Fault and Liquefaction Potential Maps, 2019, website address: https://gis1.countyofriverside.us/Html5Viewer/index.html?viewer=MMC_Public; Date Accessed: August 19, 2021.
- Rogers, T.H., 1965, Geologic Map of California, Santa Ana Sheet.
- Sladden Engineering, 2001, Geotechnical Investigation, CVWD Dike No. 4 Flood Control Levee, Avenue 60 to Avenue 65 Dike No. 4, West of the Trilogy at La Quinta, La Quinta Area of Riverside County, California, Project No.: 544-1211, 01-10-507, dated October 11, 2001.
- Sladden Engineering, 2002, Infiltration Testing for Stormwater Retention, CVWD Dike No. 4 Flood Control Levee, West of Trilogy at La Quinta Project Site, La Quinta Area of Riverside County, California, Project No.: 544-1211, 02-03-168, dated March 14, 2002.

REFERENCES (CONTINUED)

- Sladden Engineering, 2005a, Geotechnical Investigation, Residential Subdivision Green Property, SWC Quarry Ranch Road and Jefferson Street, Project No.: 544-4769, 05-01-075, dated January 26, 2005.
- Sladden Engineering, 2005b, Geotechnical Addendum, Proposed Madison Street Extension, Madison Street South of Avenue 60, La Quinta, California, Project No.: 544-5301, 05-04-401, dated April 12, 2005.
- Sladden Engineering, 2006, 176 Lot Residential Subdivision Coral Canyon, SWC Quarry Ranch Road and Jefferson Street, La Quinta, California, Project No. 544-4769, dated May 12, 2006.
- Sladden Engineering, 2007, Response to City of La Quinta Review Comments, Coral Canyon TTM 33444, SWC Quarry Ranch Road and Jefferson Street, La Quinta, California, Project No. 544-4769, dated November 29, 2007.
- Sladden Engineering, Supplemental Field Investigation and Percolation Testing, Coral Canyon Tract 33444, SWC Quarry Ranch Road and Jefferson Street, La Quinta, California, Project No. 544-4769, dated November 30, 2007.
- Sladden Engineering, 2008, Response to City of La Quinta Review Comments, Coral Canyon, TTM 33444, SWC Quarry Ranch Road and Jefferson Street, La Quinta, California, Project No. 544-4769, dated May 6, 2008.
- Sladden Engineering, 2011, Geotechnical Update Report for Proposed Jefferson Street Extension Project, South of Avenue 58, Adjacent to Tentative Tract 33444, La Quinta, Project No. 544-4769, dated November 17, 2011.
- Stantec Consulting, Inc., 2009, Coachella Valley Water District Dike No. 4 Groundwater Recharge Facility Basins, Record Drawing Plan Set, 37 Sheets, dated October 1, 2009.
- Structural Engineers Association/Office of Statewide Health Planning and Development, 2020, U.S. Seismic Design Maps, web site address: https://seismicmaps.org/; Date Accessed: January 7, 2020.
- URS Corporation, 2002, Draft Report, Geotechnical Investigation Proposed Dike No. 4 Recharge Facility, Riverside County, California, File: 0643.5212, dated January 15, 2002.
- U.S. Department of Agriculture, 2020, Web Soil Survey, web site address: https://websoilsurvey.nrcs.usda.gov/app/; Date Accessed: January 7, 2020.
- U.S. Federal Emergency Management Agency, 2017, Flood Insurance Rate Map, Riverside County, California and Incorporated Areas, Panel 2900 of 3805, Map Number 06065C2900H, Revised April 19, 2017.
- U.S. Federal Emergency Management Agency, 2018, Flood Insurance Rate Map, Riverside County, California and Incorporated Areas, Panel 2925 of 3805, Map Number 06065C2925H, Revised March 6, 2018.

REFERENCES (CONTINUED)

- U.S. Geological Survey, 2014, Land Subsidence, Groundwater Levels, and Geology in the Coachella Valley, California, 1993-2010, Scientific Investigations Report 2014-5075.
- U.S. Geological Survey, 2020, Unified Hazard Tool, NSHM 2014 Dynamic Deaggregation Program; web site address: https://earthquake.usgs.gov/hazards/interactive/; Date Accessed: January 7, 2020.

AERIAL PHOTOGRAPHS REVEIWED

Date	Flight	Photos	Scale	Source
2/15/49	AXM-1F	20, 21, 22	1"=1,667'	Continental Aerial
9/20/53	AXM-3K	146, 147		UCSB
11/10/59	AXM-10W	170, 171		UCSB
2/15/77	RIV 8	6, 7, 8		Continental Aerial
8/5/98	C-122-48	7, 8, 9	1"=2,000'	Continental Aerial
8/5/98	C-122-49	57, 58, 59, 60	1"=2,000'	Continental Aerial
5/28/02	NAPP 12478	116		UCSB

DEFINITIONS

Active (Fault): A fault that is likely to have another earthquake sometime in the future. Faults are commonly considered active if they have moved one or more times in the last 11,700 years.

Alluvial Fan: A conical, depositional landform found along mountain fronts of arid and semiarid regions.

Artificial Fill: Earth material used to fill in a depression or hole, create mounds or otherwise manmade fills to change natural grades.

Backcut: An inclined temporary excavation associated with the construction of a stabilization fill key. A backcut typically begins at the top of a natural and/or design slope and extends down to the toe of slope, terminating at the back of design keyway.

Bedrock: Relatively hard, solid rock that commonly underlies soft rock, sediment, or soil. May also be exposed at the earth's surface, known as an outcrop.

Blow Count: Number of blows by a 140-pound hammer, free-falling a distance of 30 inches, required to drive a sampler 12 inches into the ground. Also, a measure of soil resistance to penetration.

Boring: A circular excavation utilizing revolving tooling.

Boulder: A rock or rock fragment with size greater than 12 inches (considered oversize material for use in this report).

Braided Channel: A stream/channel consisting of numerous intertwining channels.

Cenozoic: A time span on the geologic time scale beginning about 66 million years ago, following the Mesozoic era.

Cobble: A rock or rock fragment with size larger than 2.5 inches and up to boulder size.

Desert Pavement: A layer of coarse pebbles and cobbles created by the removal of finer material through wind erosion.

Desert Varnish: An orange to black coating found on rock surfaces exposed to the sun in arid environments. The varnish collects on the exposed surface rocks over time and indicates relatively older alluvial deposits.

Erosion: The processes of weathering and transport of sediment. The process of abrasion or wearing away by wind, water, or other natural agents.

Expansion Potential: A measure to define the severity of risk of soil or sedimentary rock movement to foundation/slab due to shrink or swell. Expansive soils typically swell when wet or shrink when dry.

Fault: A fracture or discontinuity within blocks of the earth's crust on which displacement or movement on either side has occurred relative to one another.

Fault-Rupture Hazard Zone: A regulatory zone surrounding the surface traces of active faults. Wherever an active fault exists that has potential for surface rupture, a structure for human occupancy cannot be placed over the fault and must be set back a minimum distance from the fault.

Front Cut: An inclined temporary excavation associated with the construction of a stabilization fill key. A front cut typically begins near the toe of the design slope and extends down to the front of the design key. Similar to a backcut but occurs on the toe side of a slope.

fps: Feet per second is a unit/measurement of both speed and velocity.

Geomorphology: The study of the character and origin of landforms, such as mountains, valleys, etc., on the surface of the earth.

Geophysical Survey: Surveys using various earth sensing instrumentation to collect data below the earth's surface.

Granitic Bedrock: Crystalline bedrock that largely consists of light-colored silicates (quartz) and feldspars; an intrusive igneous rock.

Groundwater Basin: An area or region underlain by permeable earth materials capable of furnishing a supply of groundwater to wells.

Hollow-Stem Auger: An auger-type drill rig typically used during geotechnical explorations and groundwater monitoring well construction. Auger flights consist of a hollow stem that acts as a temporary casing, allowing for collection of samples through the stem or for setting a groundwater monitoring device.

Hydraulic Conductivity: A factor relating to groundwater flow; it is a coefficient that takes into account the permeability of soil and viscosity of a fluid (water).

Inactive (Fault): California Geological Survey (CGS) indicates that a fault may be presumed seismically inactive (or pre-Holocene) if it does not break Holocene-age formations. CGS also suggests a fault that lacks evidence for surface displacement within Holocene time (the past 11,700 years) should not necessarily be considered inactive.

Infiltration Rate: Calculated rate from the percolation test results, usually in accordance with an agency's technical guidance document.

ksf: Kips per square foot is a unit/measurement of pressure. A kip is a unit of force (1,000-pound force) used by engineers to measure loads.

Liquefaction: A process by which saturated sediments (i.e., alluvium, alluvial fan) temporarily lose strength and act as a fluid. This effect can be caused by earthquake shaking in saturated, unconsolidated, sandy alluvium.

Mass Movement: Also called mass wasting, is the downslope movement of rock or soil under the direct influence of gravity.

Mesozoic: A time span on the geologic time scale – from between approximately 252 to 66 million years ago.

Metamorphic (rock): Rock formed by the alteration of preexisting rock deep within the earth (remaining in solid state) by heat, pressure, and/or chemically active fluids.

Moment Magnitude (Mw): Magnitude characterizes the relative size of an earthquake based on measurement of the maximum motion recorded by a seismograph. This measures earthquake magnitude based on the total energy released by an earthquake. The Moment Magnitude scale, based on the concept of seismic moment, is uniformly applicable to all sizes of earthquakes but is more difficult to compute than other types.

Overexcavation: Soil or bedrock excavated below finish-grade elevations in design cut areas.

Percolation Testing: A field test used to determine the soil-water absorption rate to assist in the design of septic drain field or stormwater infiltration devices. Testing involves measurement of known water volume dissipation over time.

pcf: Pounds per cubic foot is a measurement of the density of materials.

Primary Ground Rupture: Offset of the ground surface associated with a main/major fault when earthquake rupture occurs along the fault.

Primary Wave (P-wave): The fastest seismic wave in the earth, which travel by compression and expansion ("push-pull") of the medium.

Quaternary: The latest period of geologic time up to and including the present. The Quaternary includes the Pleistocene and Holocene Epochs, and ranges from approximately 2.58 million years ago to the present.

Refraction (Geophysics): A geophysical survey that uses seismographs and geophones on the ground surface to record seismic waves through layers of rock/soil in order to characterize the subsurface geology.

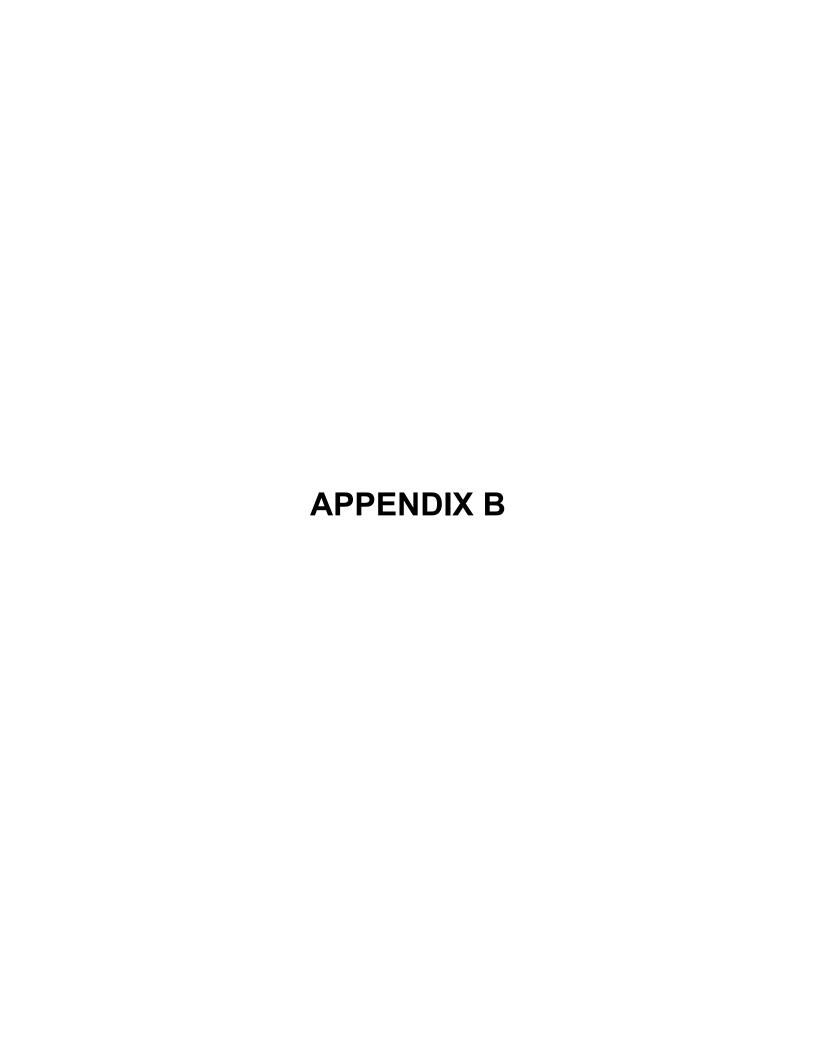
Remedial Removal: Grading necessary to remove and/or mitigate unsuitable soils prior to placement of compacted fill and/or construction of foundations or structures.

Rockslide: The rapid slide of a mass of rock downslope along planes of weakness.

Seiche: The sloshing of a closed body of water (i.e., lakes, ponds, reservoirs) from earthquake shaking.

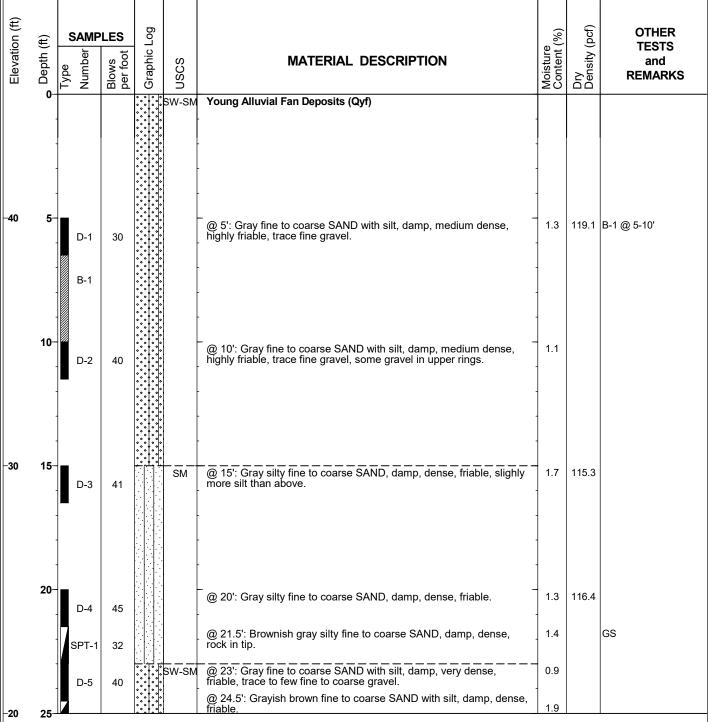
Seismic Line: A series of geophones on the ground surface used to collect geophysical data.

Slope Stability Analysis: The mathematical measure of the relative factor-of-safety against both global and surficial failure of slope material. Global failure involves either rotational or translational failure along planes/surfaces of weakness. Surficial failure includes the outer surface of the slope soil (generally 3 to 4 feet measured perpendicular to slope face) that may be affected by erosion, weathering, and gravity.


Stabilization Fill Key/Keyway: A design excavation into competent material at the toe of slope, in which compacted fill is placed to resist lateral pressure and replace slope materials with uniform compacted fill.

Subsidence: Down-warping or settlement of an area of the earth's surface. Regional subsidence can occur due to oil and/or groundwater withdrawal.

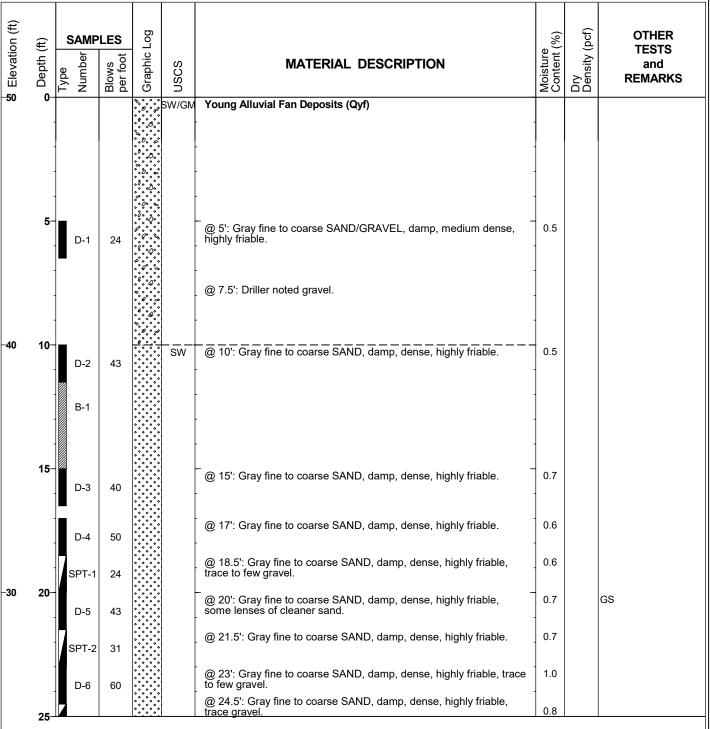
Test Pit/Trench: A mechanical excavation (backhoe, excavator) used to conduct subsurface geotechnical exploration. Typically consists of an open-pit or trench used for geologic/geotechnical evaluation and sample collection.


Tsunami: A great sea wave produced especially by a submarine earth movement, earthquake, or volcanic eruption.

USCS: Unified Soil Classification System is a system used in engineering and geology to describe the texture and grain-size of soil and is represented by a two-letter symbol (i.e. CL, ML, SC, etc.).

BORING LOGS BY NMG

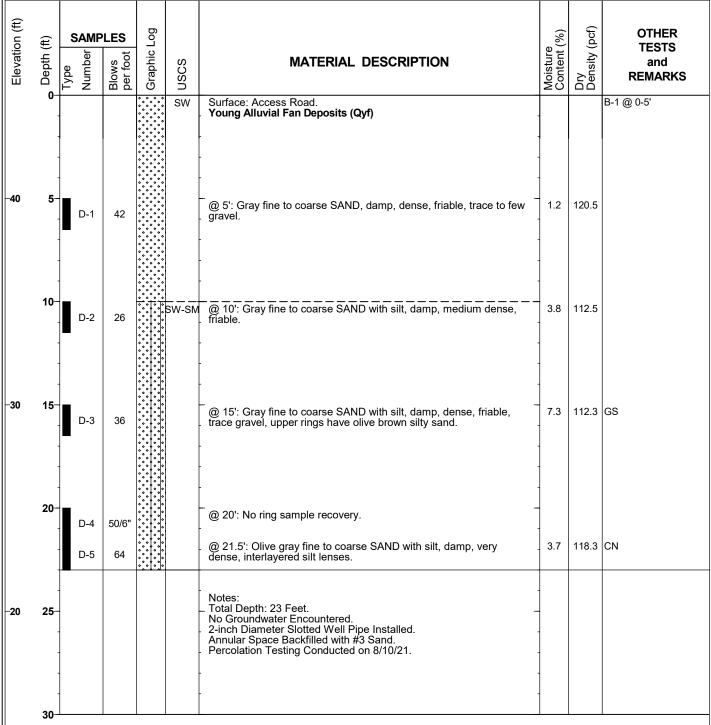
Date(s) Drilled	8/9/21	Logged By	ZKH		
Drilling Company	2R Drilling, Inc.	Drill Bit Size/Type	10"	H-1	
Drill Rig Type	CME75 Hollow Stem	Hammer Data	140 lbs. @ 30 inch drop	Sheet 1 of 2	
Sampling Method(s)	Modified California, Bulk				
Approximate 0	Groundwater Depth: No Groundw	ater Encounte	red.	Total Depth dull 40.0 40.0	
Comments		Approximate Ground Surface Elevation (ft) 45.0 msl			



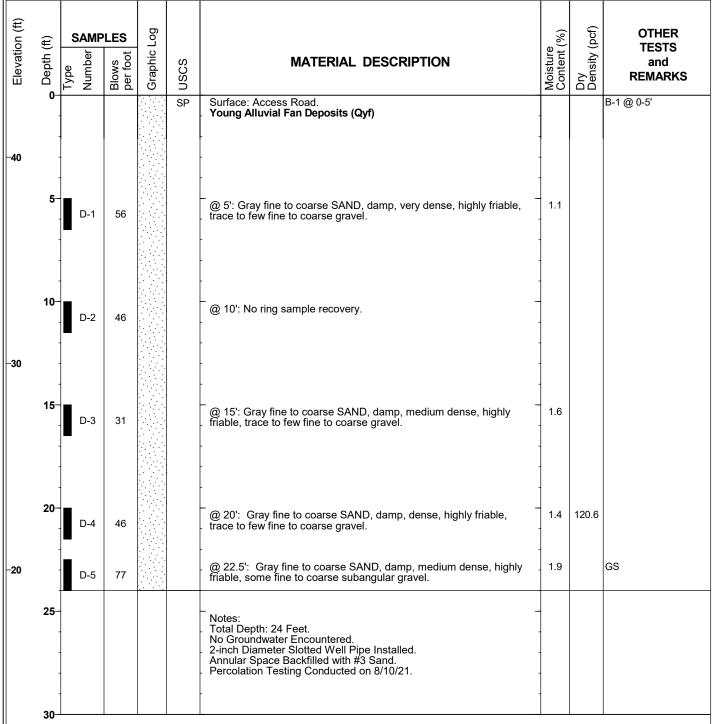
PROJECT NO. 18186-01

Report: HOLLOW STEM; Project: 18186-01.GPJ; Data Template: NMG_GINT_2016.GDT; Printed: 8/30/21

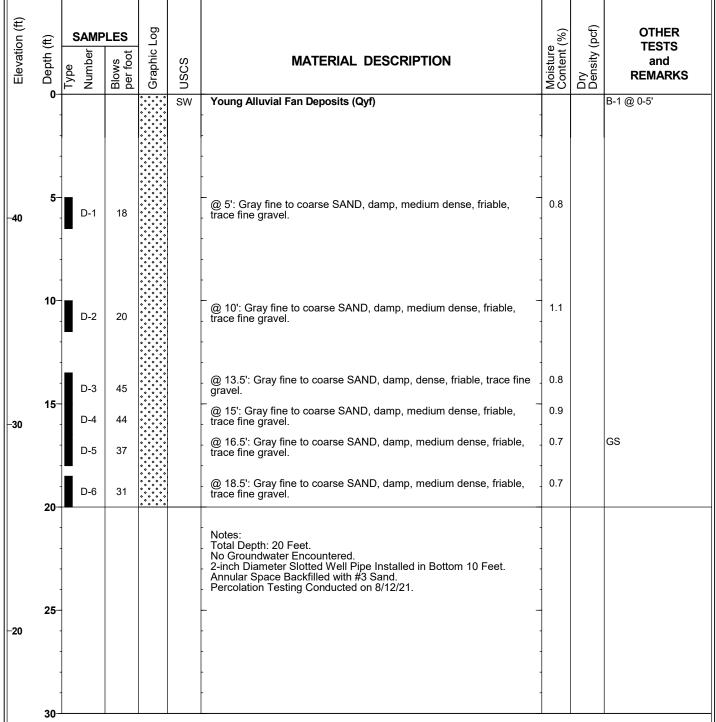
Date(s) Drilled	8/10/21	Logged By	ZKH		
Drilling Company	2R Drilling, Inc.	Drill Bit Size/Type	10"	H-2	
Drill Rig Type	CME75 Hollow Stem	Hammer Data	140 lbs. @ 30 inch drop	Sheet 1 of 2	
Sampling Method(s)	Modified California, Bulk				
Approximate 0	Groundwater Depth: No Groundwater	er Encounte	red.	Total Depth do.0	
Comments		Approximate Ground Surface Elevation (ft) 50.0 msl			



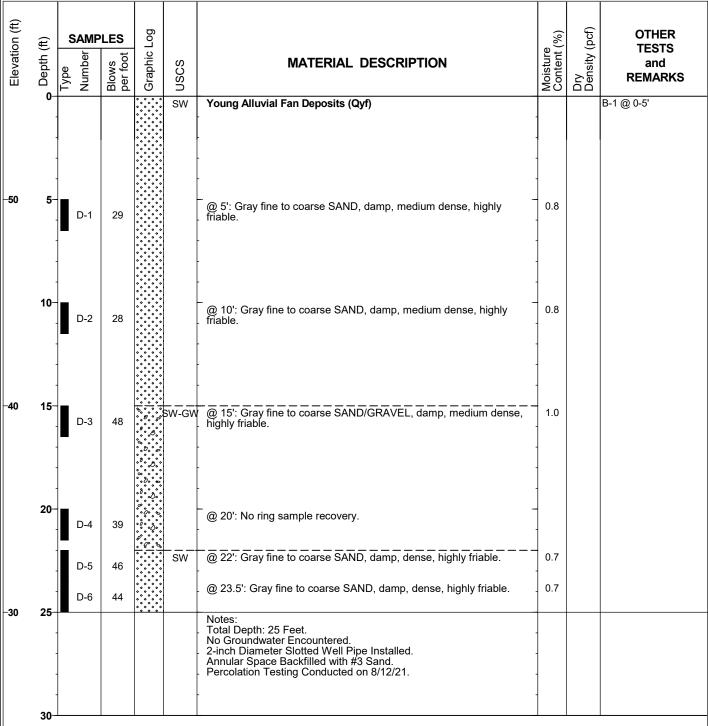
PROJECT NO. 18186-01


Report: HOLLOW STEM; Project: 18186-01.GPJ; Data Template: NMG_GINT_2016.GDT; Printed: 8/30/21

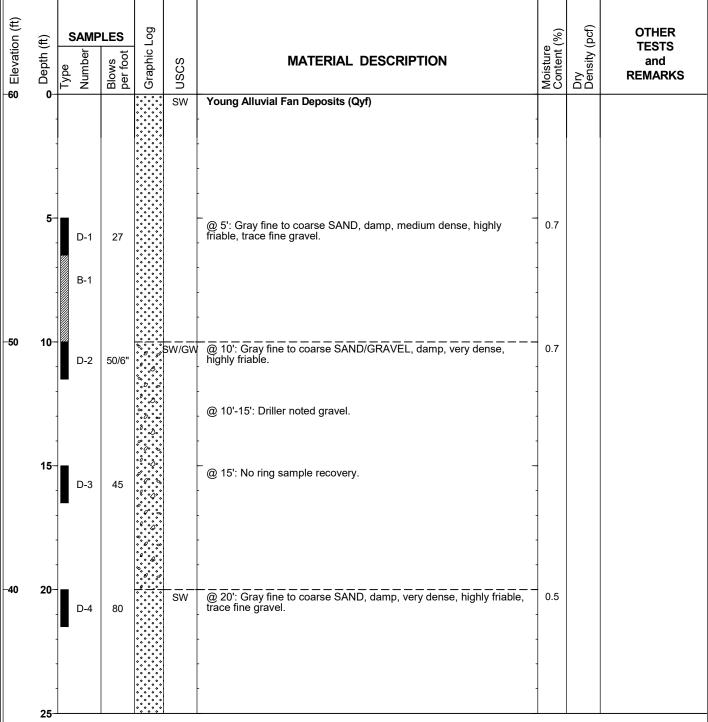
Date(s) Drilled	8/9/21	Logged By	ZKH		
Drilling Company	2R Drilling, Inc.	Drill Bit Size/Type	8"	- P-1	
Drill Rig Type	CME75 Hollow Stem	Hammer Data	140 lbs. @ 30 inch drop	Sheet 1 of 1	
Sampling Method(s)	Modified California, Bulk				
Approximate G	Groundwater Depth: No Groundwater	er Encounte	red.	Total Depth Drilled (ft) 23.0	
Comments		Approximate Ground Surface Elevation (ft) 45.0 msl			



Date(s) Drilled	8/9/21	Logged By	ZKH	
Drilling Company	2R Drilling, Inc.	Drill Bit Size/Type	8"	P-2
Drill Rig Type	CME75 Hollow Stem	Hammer Data	140 lbs. @ 30 inch drop	Sheet 1 of 1
Sampling Method(s)	Modified California, Bulk			
Approximate G	Groundwater Depth: No Groundwater	er Encounte	red.	Total Depth Drilled (ft) 24.0
Comments		Approximate Ground Surface Elevation (ft) 43.0 msl		



Date(s) Drilled	8/10/21	Logged By	ZKH			
Drilling Company	2R Drilling, Inc.	Drill Bit Size/Type	8"	P-3		
Drill Rig Type	CME75 Hollow Stem	Hammer Data	140 lbs. @ 30 inch drop	Sheet 1 of 1		
Sampling Method(s)	Modified California, Bulk					
Approximate G	Groundwater Depth: No Groundwat	er Encounte	red.	Total Depth 20.0		
Comments		Approximate Ground Surface Elevation (ft) 46.0 msl				



Date(s) Drilled	8/10/21	Logged By	ZKH		
Drilling Company	2R Drilling, Inc.	Drill Bit Size/Type	8"	P-4	
Drill Rig Type	CME75 Hollow Stem	Hammer Data	140 lbs. @ 30 inch drop	Sheet 1 of 1	
Sampling Method(s)	Modified California, Bulk				
Approximate G	Groundwater Depth: No Groundwater	er Encounte	red.	Total Depth Drilled (ft) 25.0	
Comments		Approximate Ground Surface Elevation (ft) 55.0 msl			

Logged By	ZKH	_	_			
Drill Bit Size/Type	8"	P-5				
Hammer Data	140 lbs. @ 30 inch drop	Sheet 1 of 2				
iter Encounte	red.	Total Depth Drilled (ft)	30.0			
Comments						
-	By Drill Bit Size/Type Hammer Data	Drill Bit Size/Type 8" Hammer 140 lbs @ 30 inch drop	Drill Bit Size/Type 8" Hammer Data 140 lbs. @ 30 inch drop Total Depth			

PROJECT NO. 18186-01

Report: HOLLOW STEM; Project: 18186-01.GPJ; Data Template: NMG_GINT_2016.GDT; Printed: 8/30/21

BORING AND TEST PIT LOGS BY OTHERS

BORINGS BY SLADDEN (2001)

				Trilogy at La Q La Quinta Area /					
Date	: 8-	23-0	01	La quiita ili ca i	Boring	No. 1		,	Job No.: 544-1211
Depth (in feet)	Symbol	Core	Blows/ft.	DESCRIPTION	Soil Type	Unit Dry Wt. (pcf)	% Moisture	% Relative Compaction	REMARKS
				Sandy Silt: Brown, very sandy	ML				
5	A CONTRACTOR OF THE CONTRACTOR		50-5"	" "	11	105	3.6	Accessed to Accessed	52% passing #200
10	The state of the s	\times	50-5"	Silty Sand: Brown, very silty, fine to coarse grained, clayey	SM		2.6		32% passing #200
- 15 - -			50-5"	11	P.	114	3.6	87	34% passing #200
- 20 - -	The state of the s		37/50-3"	Sandy Silt: Brown, clayey with coarse grained sand	ML	113	8.7		56% passing #200
- 25 - -			18/50-5"	и п	PF	95	7.5		56% passing #200 Native
- 30 - -			50-6"	Silty Sand: Brown, very silty, fine to coarse grained, clayey	SM	109	5.3		31% passing #200
- 35 - -			38/50-5"	Silty Sand: Brown, fine to coarse grained, slightly clayey	SM	108	4.2		28% passing #200
40		-	18/50-6"	Silty Sand: Brown, very silty, fine to coarse grained, clayey	SM	111	7.0	85	35% passing #200
- - - 45 - - - - 50				Recovered Sample Disturbed Sample					Total Depth = 41.5' No Bedrock No Groundwater
55							77.		Note: The stratification lines represent the approximate boundaries between the soil types; the transitions may be gradual.

	Trilogy at La Quinta - Flood Control Levee La Quinta Area / Riverside County, California										
Date	: 8-	23-0	01	•	Boring l	No. 2			Job No.: 544-1211		
Depth (in feet)	Symbol	Core	Blows/ft.	DESCRIPTION	Soil Type	Unit Dry Wt. (pcf)	% Moisture	% Relative Compaction	REMARKS		
- - -				Silty Sand: Brown, fine to coarse grained	SM						
5			50-6"	п	"	111	1.5		22% passing #200		
10			50-4"	Silty Sand: Brown, very silty, fine to coarse grained, clayey	SM	118	4.7	90	35% passing #200		
- 15 - -			26/50-6"	Silty Sand: Brown, fine to coarse grained, slightly clayey	SM	112	3.0		25% passing #200		
20			30/50-6"	" "	**************************************	117	2.6	87	18% passing #200		
- 25 - -	The state of the s		29/35/50	Silty Sand: Brown, very silty, fine to coarse grained, clayey	SM	113	3.1		32% passing #200		
30			21/25/50	и и	44	111	3.6		28% passing #200		
- 35 -			29/50-5"	Silty Sand: Brown, fine to medium grained, slightly clayey	SM	111	3.1		20% passing #200		
40			22/25/30	Silty Sand: Brown, very silty, fine to coarse grained, clayey	SM	112	5.2		35% passing #200		
- - - 45 - - - - 50 - - - - - 50				Recovered Sample					Note: The stratification lines represent the approximate boundaries between the soil types; the transitions may be gradual.		

				Trilogy at La Q	uinta	- Flood	Cont	rol Le	evee
Date	e: 8-	24-	01	La Quinta Area /	River Boring	No. 3	ounty	, Cali	Job No.: 544-1211
Depth (in feet)	Symbol	Core	Blows/ft.	DESCRIPTION	Soil Type	Unit Dry Wt. (pcf)	% Moisture	% Relative Compaction	REMARKS
O -				Silty Sand: Brown, fine to coarse grained	SM				
5 -			31/50-5"	11	11	122	3.6		24% passing #200
10	1 1		36/50-5"	11 11	11	129	3.1	96	17% passing #200
15			20/50-5"	Silty Sand: Brown, fine to coarse grained, slightly clayey	SM	125	5.8		32% passing #200
20			22/40/43	tt a	11	120	4.2	~~~	24% passing #200
25			14/21/28	9 u	11		4.7	3 3 3 4	31% passing #200
- 30 - -			7/19/32	Silty Sand: Brown, very silty, fine to coarse grained, clayey	SM	117	4.2		23% passing #200
- 35 - -			15/25/30	0 0	11		5.3		38% passing #200
- 40 -		-	12/20/22	Silty Sand: Brown, fine to coarse grained	SM	110	1.5	82	15% passing #200
- 45 - - - - 50				Recovered Sample Standard Penetration Sample					Boulder Refusal @ 43' No Bedrock No Groundwater
55									Note: The stratification lines represent the approximate boundaries between the soil types; the transitions may be gradual.

				Trilogy at La Q La Quinta Area					
Date	e: 8	23-	01		Boring	No. 4	1		Job No.: 544-1211
Depth (in feet)	Symbol	Core	Blows/ft.	DESCRIPTION	Soil Type	Unit Dry Wt. (pcf)	% Moisture	% Relative Compaction	REMARKS
				Silty Sand: Brown, fine to coarse grained, slightly clayey	SM				
5			18/50-6"	" "	15	117	3.6		26% passing #200
10			12/20/25	n n	***		4.2		28% passing #200
15	The second secon		24/50-6"	Silty Sand: Brown, fine to coarse grained, clayey	SM	112	5.8		26% passing #200
- 20 - -			24/31/40	" "	55		4.2		22% passing #200
- 25 - -			50-6"	Silty Sand: Brown, fine to coarse grained, slightly clayey	SM	118	2.6	88	15% passing #200
- 30 - -			12/14/24	Silty Sand: Brown, very silty, fine to coarse grained, clayey	SM		4.2		31% passing #200
- 35 - -	The state of the s		10/10/30	11	11	120	4.7	92	35% passing #200
40	100		13/15/15	11 11	"		5.8		37% passing #200
- 45 -	-	X	26/36/50	Sand: Brown, slightly silty, fine to coarse grained with gravel	SP/SM		1.5		15% passing #200
50	THE PARTY OF THE P	-		Recovered Sample Standard Penetration Sample Disturbed Sample					Total Depth = 46.5' No Bedrock No Groundwater
55									Note: The stratification lines represent the approximate boundaries between the soil types; the transitions may be gradual.

				Trilogy at La Q	uinta	- Flood	l Cont	rol Le	evee
Date	: 8-	23-	01	La Quinta Area /	Boring		ounty	, Can	Job No.: 544-1211
Depth (in feet)	Symbol	Core	Blows/ft.	DESCRIPTION	Soil Type	Unit Dry Wt. (pcf)	% Moisture	% Relative Compaction	REMARKS
0 -	1 7 3			Silty Sand: Brown, fine to coarse grained, slightly clayey	SM			-	
5			13/16/25	n n	25		4.2		28% passing #200 Scattered gravel
10			24/50-5"	Silty Sand: Brown, fine to coarse grained, clayey	SM	123	4.7		24% passing #200
15			18/23/33	Silty Sand: Brown, fine to coarse grained, slightly clayey	SM		4.2		18% passing #200 Scattered gravel
20			23/31/50	Silty Sand: Brown, very silty, fine to coarse grained, clayey	SM	118	7.5		27% passing #200 Trace gravel
25 - -			12/19/31	n n	tt		5.3		29% passing #200 Trace gravel
30			26/50-6"	u u	tt	116	6.4		29% passing #200 Trace gravel
35			13/13/13	п п	FB		4.2		30% passing #200
40	1	2		Silty Sand: Brown, fine to coarse grained, clayey	SM	112	4.2		23% passing #200
45				Recovered Sample Standard Penetration Sample					Total Depth = 41.5' No Bedrock No Groundwater
55									Note: The stratification lines represent the approximate boundaries between the soil types; the transitions may be gradual.

				Trilogy at La Qı La Quinta Area /	uinta Rive	- Flood rside C	l Cont	rol Le	evee fornia
Date	e: 8-	24-01			Boring	No. 6		, , ,	Job No.: 544-1211
Depth (in feet)	Symbol	Core Rlows/ft	77 M 20 4 6.	DESCRIPTION	Soil Type	Unit Dry Wt. (pcf)	% Moisture	% Relative Compaction	REMARKS
o - -				Silty Sand: Brown, fine to coarse grained, slightly clayey	SM		N. 1111 111 111 111 111 111 111 111 111		
5		41/50)-5"	п	n	122	3.0		28% passing #200
10		25/28	8/36	Silty Sand: Brown, fine to coarse grained, clayey	SM		0.5		26% passing #200
- 15 - -		50/50)-4''	Silty Sand: Brown, fine to coarse grained, slightly clayey	SM	129	4.5		27% passing #200
20		25/28	6/28	Silty Sand: Brown, very silty, fine to coarse grained, clayey	SM		2.5		36% passing #200
25		43/50	-5"	n n	11	112	5.0		40% passing #200
30		12/15	/21	Clayey Sand: Reddish brown, fine to coarse grained, silty	SC		7.0		45% passing #200
35 - -		30/30	/40	n n	"	129	8.0		49% passing #200
- 40 -	-	14/18/	25	n n	п		8.1		33% passing #200
45		25/30/		Silty Sand: Brown, fine to coarse grained	SM	118	5.2		20% passing #200
50			And the state of t	Recovered Sample Standard Penetration Sample					Total Depth = 46.5' No Bedrock No Groundwater
55									Note: The stratification lines represent the approximate boundaries between the soil types: the transitions may be gradual.

				Trilogy at La Qı La Quinta Area /	uinta River	- Flood side Co	Cont	rol Le . Calif	evee fornia
Date	ə: 8-	24-	01		Boring	No. 10		,	Job No.: 544-1211
Depth (in feet)	Symbol	Core	Blows/ft.	DESCRIPTION	Soil Type	Unit Dry Wt.	% Moisture	% Relative Compaction	REMARKS
- - -				Silty Sand: Brown, fine to coarse grained	SM				
5		X	21/22/30	11 11	f1		0.5		13% passing #200
- 10 -			31/50-5"	п	11		0.5		13% passing #200
				Disturbed Sample Standard Penetration Sample					Total Depth = 11.5' No Bedrock No Groundwater
- - 55									Note: The stratification lines represent the approximate boundaries between the soil types; the transitions may be gradual.

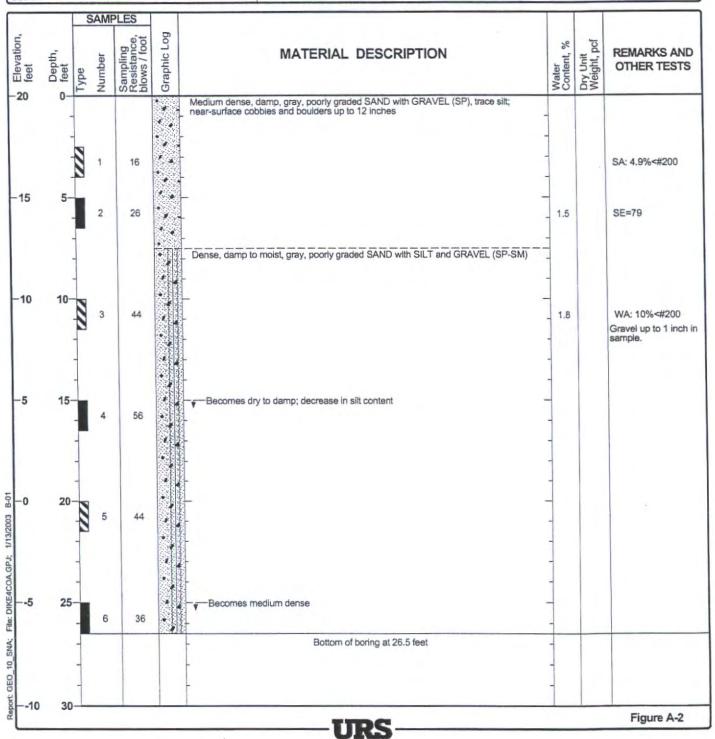
BORING AND TRENCH LOGS BY URS CORPORATION (2002)

Project: Dike No. 4 Recharge Facility Project Location: Coachella, California

Project Number: 29864604.00001

Key to Log of Boring

feet Depth, feet Type	Sampling Sarbing Resistance	Graphic Log	MATERIAL	DESCRI	PTION	Water Content, % Dry Unit Weight, pcf	REMARKS AN OTHER TEST
1 2 3 4	4 5	6		7		8 9	10
COLUMN DES	CRIPTIONS	3					
1 <u>Elevation:</u> (MSL) or site		n feet refere	enced to mean sea level	8 Wate	r Content: Water content of satory, expressed as percentage of	oil sample me of dry weight o	easured in of specimen.
2 Depth: De	pth in feet be	elow the gro	ound surface.	9 Dry L	Unit Weight: Dry weight per usured in laboratory, expressed in		
3 Sample Typ shown; samp	e: Type of pler symbols	soil sample are explain	e collected at depth interval and below.	10 Rema	arks and Other Tests: Comme	ents and obser	rvations regarding
4 Sample Nur	nber: San	nple identifi	cation number.	drillin	g or sampling made by driller or atory test results, using the follow	field personne ving abbreviat	el. Other field and ions:
5 Sampling R sampler 12 i	tesistance:	Number o	f blows to advance driven ch (seating) interval, or distance a 30-inch drop.	COM LL NP PI	P Compaction test by modifi Liquid Limit from Atterberg Non-plastic result for Atter Plasticity Index from Atterl	g Limits test rberg Limits te	
			of subsurface material plained below.	NP PI SA SE	Sieve analysis, percent pa Sand equivalent test, aven	assing #200 sieve	
may include	relative den , weathering	nsity/consist g, and streng	on of material encountered; ency, moisture, color, particle gth of formation material.	<u>WA</u>	Wash sieve, percent pass	ing #200 siev	е
10000000	ded SAND (S	Г	SILT (ML)		Lean CLAY (CL)	GRA	VEL (GP/GW)
			7777		Fat CLAY (CH)	N. F.	
. Well-grade	ed SAND (SV	w)	SILTY CLAY (CL-ML)		Tat ODAT (OTI)	SILT	Y GRAVEL (GM)
828878 838878	ed SAND (SV		SILTY CLAY (CL-ML) SILTY SAND (SM)	7777	CLAYEY SAND (SC)	PA-TON	
828878 838878	n SILT (SP-S	SM)	SILTY SAND (SM)			PA-TON	Y GRAVEL (GM) YEY GRAVEL (G0
SAND with	SILT (SP-S	SM)	SILTY SAND (SM)		CLAYEY SAND (SC)	CLAY	YEY GRAVEL (GO
TYPICAL SAN Modified C (2.5-inch C	APLER GRACALIFORMIA DD) Penetration 1	APHIC SY	SILTY SAND (SM) MBOLS California (3-inch OD)		CLAYEY SAND (SC) ER GRAPHIC SYMBOLS First water encountered at time	of drilling and	YEY GRAVEL (GO
TYPICAL SAN Modified C (2.5-inch C	APLER GRACALIFORMIA DD) Penetration 1	APHIC SY	SILTY SAND (SM) MBOLS	<u>отн</u>	CLAYEY SAND (SC) ER GRAPHIC SYMBOLS First water encountered at time (ATD) Static water level measured in b	of drilling and	YEY GRAVEL (GO d sampling secified time

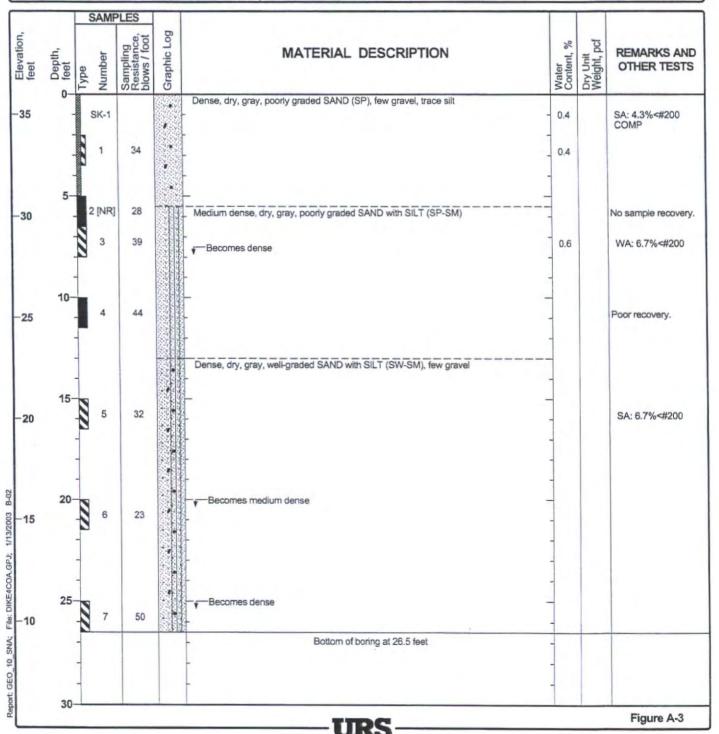

- 1. Elevations for borings are estimated from topographic maps provided by The Keith Companies.
- Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive; actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.
- Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

Project: Dike No. 4 Recharge Facility
Project Location: Coachella, California

Project Number: 29864604.00001

Log of Boring B-1

Date(s) 11/18/02	Logged By	V. Glisic	Checked By B. Gookin
Drilling Method Hollow-Stem Auger	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole 26.5 feet
Drill Rig Type Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation 20 feet MSL
Groundwater Level(s) Not encountered	Sampling Method(s)	Modified California, SPT	Hammer Data 140 lbs, 30-inch drop
Borehole Backfill Drill cuttings	Location	Refer to site plan	

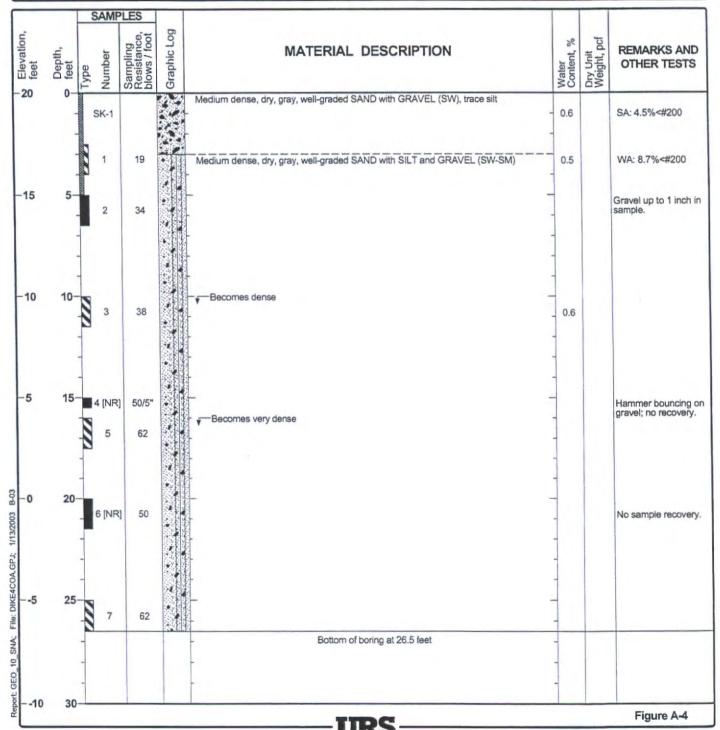


Project: Dike No. 4 Recharge Facility Project Location: Coachella, California Project Number:

29864604.00001

Log of Boring B-2

Date(s) Drilled	11/18/02	Logged By	V. Glisic	Checked By B. Gookin
Drilling Method	Hollow-Stem Auger	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole 26.5 feet
Drill Rig Type	Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation 36 feet MSL
Groundwa Level(s)	Not encountered	Sampling Method(s)	Modified California, SPT, bulk	Hammer Data 140 lbs, 30-inch drop
Borehole Backfill	Drill cuttings	Location	Refer to site plan	

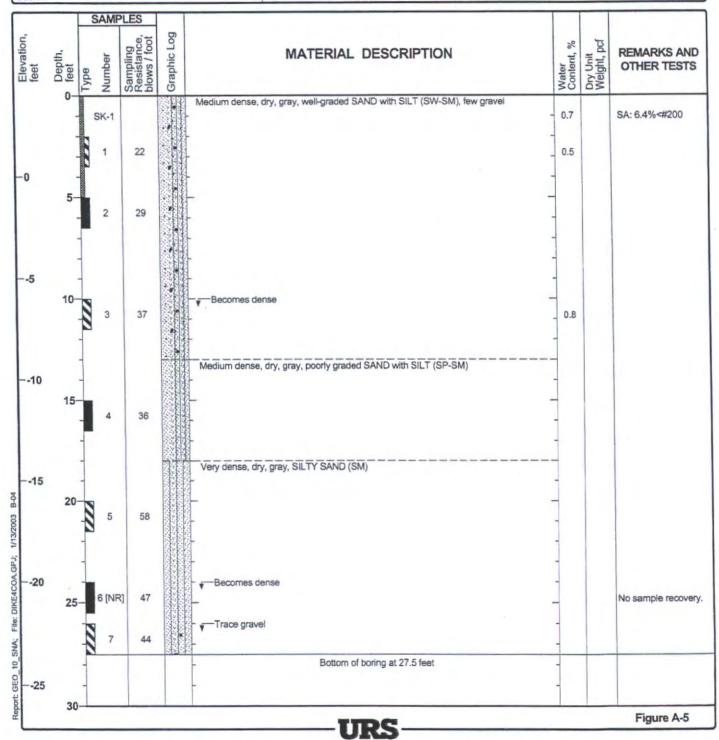


Project: Dike No. 4 Recharge Facility

Project Location: Coachella, California Project Number: 29864604.00001

Log of Boring B-3

Date(s) 11/18/02	Logged By	V. Glisic	Checked By B. Gookin
Drilling Method Hollow-Stem Auge	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole 26.5 feet
Drill Rig Type Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation 20 feet MSL
Groundwater Level(s) Not encountered	Sampling Method(s)	Modified California, SPT, bulk	Hammer Data 140 lbs, 30-inch drop
Borehole Backfill Drill cuttings	Location	Refer to site plan	

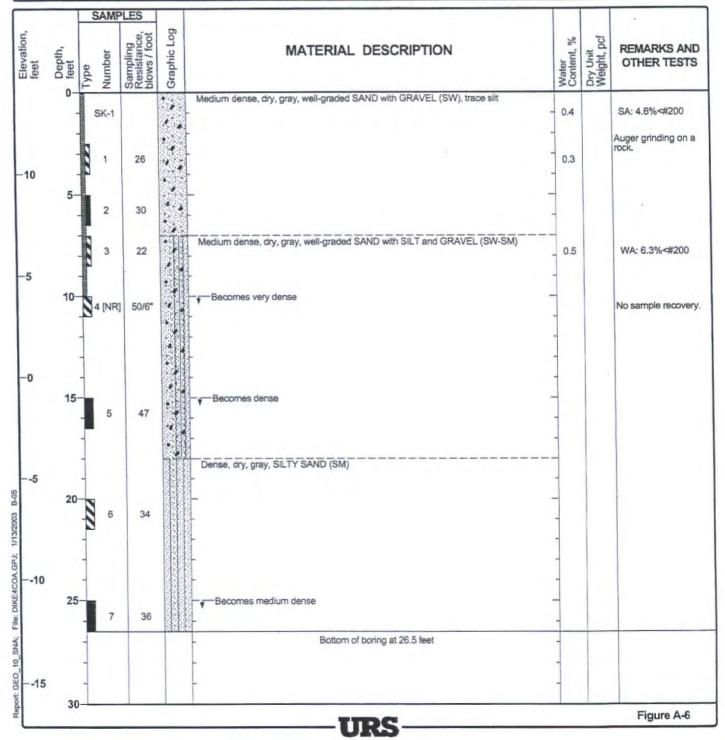


Project: Dike No. 4 Recharge Facility
Project Location: Coachella, California

Project Number: 29864604.00001

Log of Boring B-4

Date(s) Drilled	11/18/02	Logged By	V. Glisic	Checked By	B. Gookin
Drilling Method	Hollow-Stem Auger	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole	27.5 feet
Drill Rig Type	Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation	4 feet MSL
Groundwa Level(s)	ter Not encountered	Sampling Method(s)	Modified California, SPT, bulk	Hammer Data 140 lbs	s, 30-inch drop
Borehole Backfill	Drill cuttings	Location	Refer to site plan		

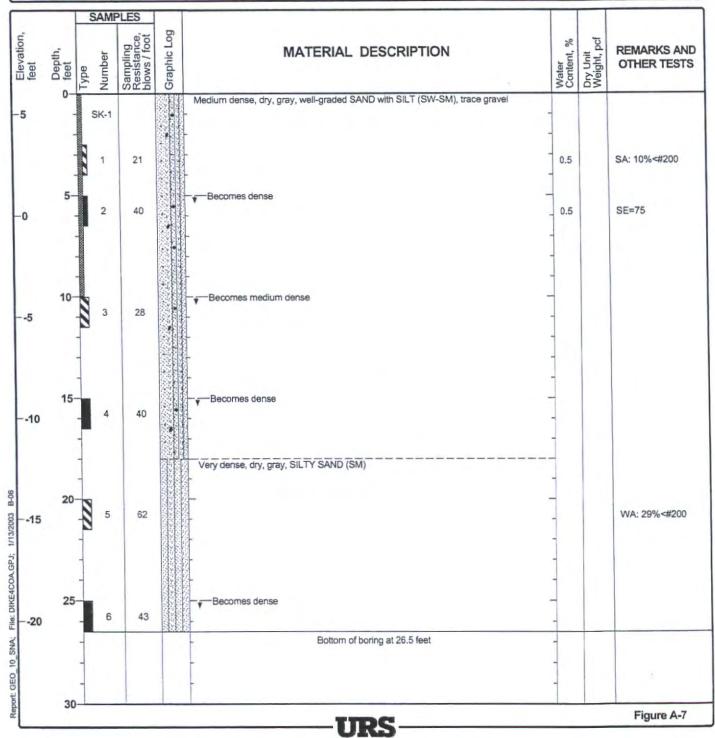


Project: Dike No. 4 Recharge Facility Project Location: Coachella, California Project Number: 29864604.00001

Log of Boring B-5

Sheet	1	of	1

Date(s) Drilled	11/18/02	Logged By	V. Glisic	Checked By B. Gookin	
Drilling Method	Hollow-Stem Auger	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole 26.5 feet	
Drill Rig Type	Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation 14 feet MSL	
Groundwa Level(s)	ter Not encountered	Sampling Method(s)	Modified California, SPT, bulk	Hammer Data 140 lbs, 30-inch drop	
Borehole Backfill	Drill cuttings	Location	Refer to site plan		

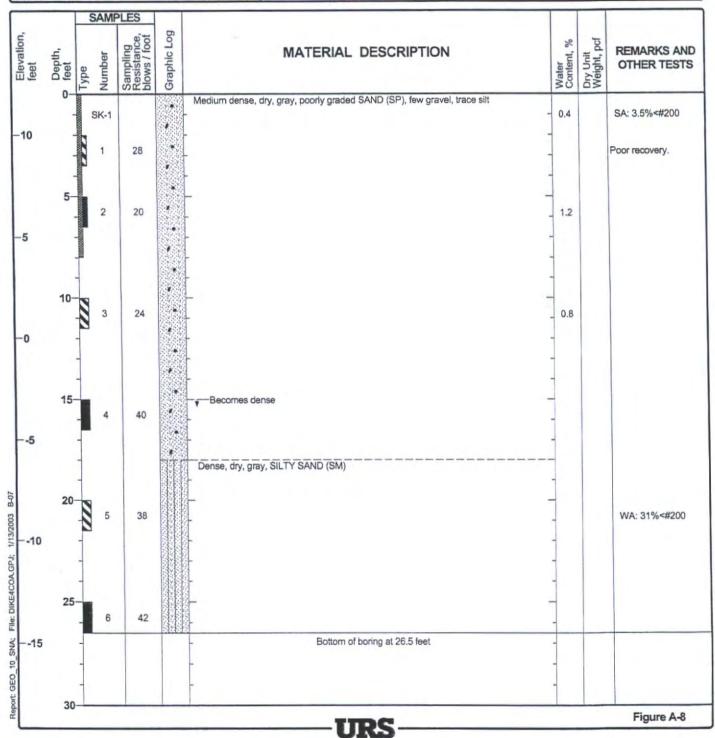

Project: Dike No. 4 Recharge Facility

Project Number:

Project Location: Coachella, California 29864604.00001

Log of Boring B-6

Date(s) Drilled	11/18/02	Logged By	V. Glisic	Checked By	B. Gookin
Drilling Method	Hollow-Stem Auger	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole	26.5 feet
Drill Rig Type	Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation	6 feet MSL
Groundwa Level(s)	ter Not encountered	Sampling Method(s)	Modified California, SPT, bulk	Hammer Data 140 II	bs, 30-inch drop
Borehole Backfill	Drill cuttings	Location	Refer to site plan		

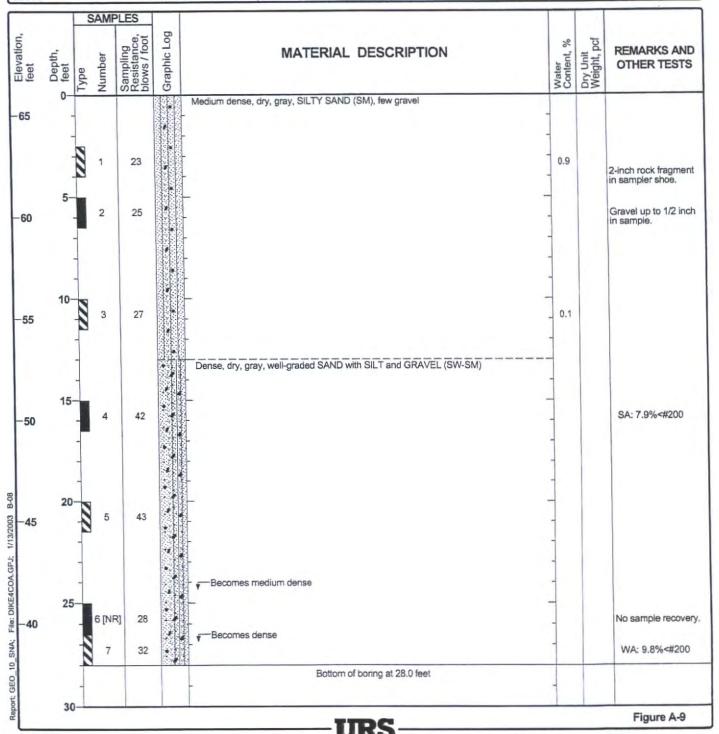


Project: Dike No. 4 Recharge Facility
Project Location: Coachella, California

Project Number: 29864604.00001

Log of Boring B-7

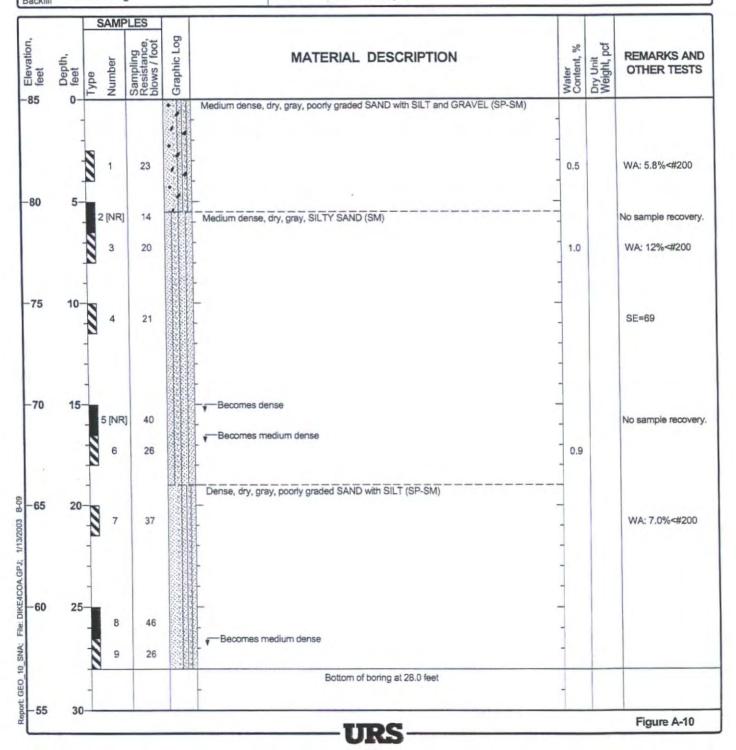
Date(s) Drilled	11/19/02	Logged By	V. Glisic	Checked By B. Gookin
Drilling Method	Hollow-Stem Auger	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole 26.5 feet
Drill Rig Type	Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation 12 feet MSL
Groundwa Level(s)	Not encountered	Sampling Method(s)	Modified California, SPT, bulk	Hammer Data 140 lbs, 30-inch drop
Borehole Backfill	Drill cuttings	Location	Refer to site plan	


Project: Dike No. 4 Recharge Facility

Project Location: Coachella, California

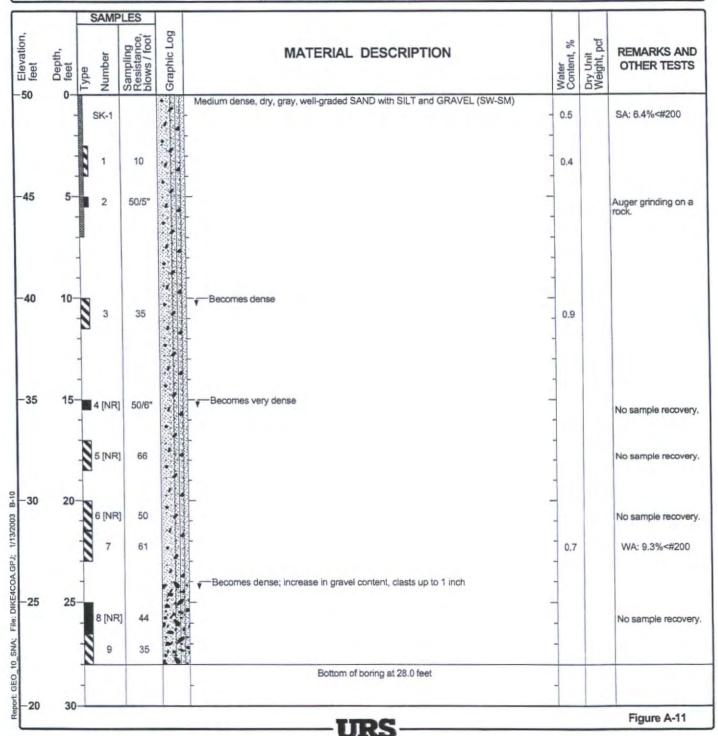
Project Number: 29864604.00001

Log of Boring B-8


Date(s) Drilled	11/19/02	Logged By	V. Glisic	Checked By B. Gookin
Drilling Method	Hollow-Stem Auger	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole 28.0 feet
Drill Rig Type	Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation 66 feet MSL
Groundwat Level(s)	er Not encountered	Sampling Method(s)	Modified California, SPT	Hammer Data 140 lbs, 30-inch drop
Borehole Backfill	Drill cuttings	Location	Refer to site plan	

Project: Dike No. 4 Recharge Facility
Project Location: Coachella, California
Project Number: 29864604.00001

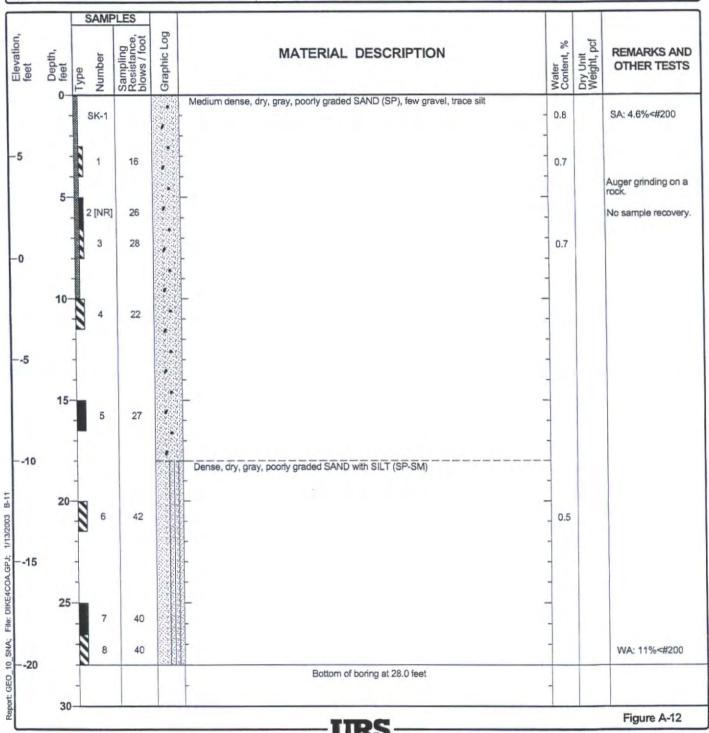
Log of Boring B-9


Date(s) Drilled	11/19/02	Logged By	V. Glisic	Checked By B. Gookin
Drilling Method	Hollow-Stem Auger	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole 28.0 feet
Drill Rig Type	Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation 85 feet MSL
Groundwa Level(s)	Not encountered	Sampling Method(s)	Modified California, SPT	Hammer Data 140 lbs, 30-inch drop
Borehole	Drill cuttings	Location	Refer to site plan	

Project: Dike No. 4 Recharge Facility
Project Location: Coachella, California
Project Number: 29864604.00001

Log of Boring B-10

Date(s) Drilled	11/19/02	Logged By	V. Glisic	Checked By B. Gookin
Drilling Method	Hollow-Stem Auger	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole 28.0 feet
Drill Rig Type	Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation 50 feet MSL
Groundwa Level(s)	Not encountered	Sampling Method(s)	Modified California, SPT, bulk	Hammer Data 140 lbs, 30-inch drop
Borehole Backfill	Drill cuttings	Location	Refer to site plan	

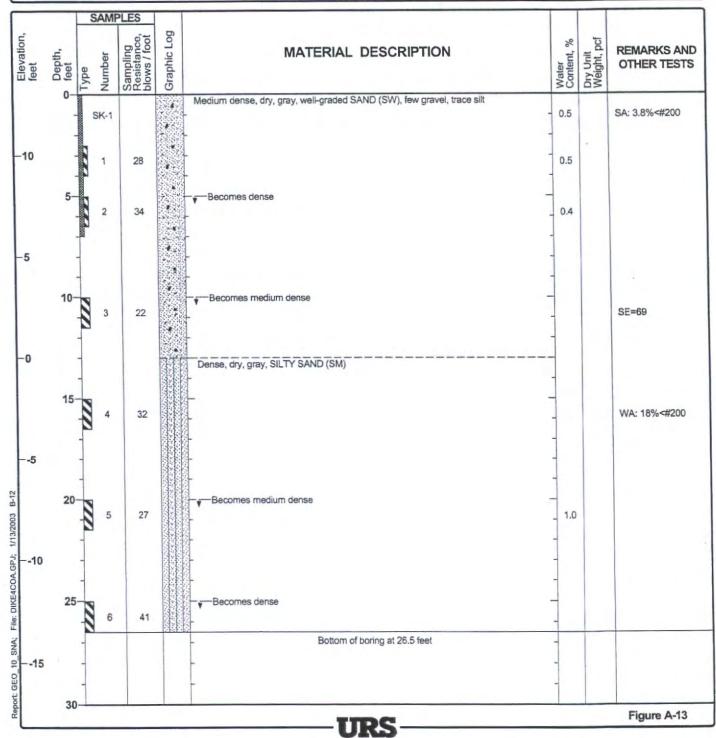


Project: Dike No. 4 Recharge Facility
Project Location: Coachella, California

Project Number: 29864604.00001

Log of Boring B-11

Date(s) Drilled	11/19/02	Logged By	V. Glisic	Checked By B. Gookin
Drilling Method	Hollow-Stem Auger	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole 28.0 feet
Drill Rig Type	Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation 8 feet MSL
Groundwa Level(s)	Not encountered	Sampling Method(s)	Modified California, SPT, bulk	Hammer Data 140 lbs, 30-inch drop
Borehole Backfill	Drill cuttings	Location	Refer to site plan	



Project: Dike No. 4 Recharge Facility
Project Location: Coachella, California

Project Number: 29864604.00001

Log of Boring B-12

Date(s) Drilled	11/19/02	Logged By	V. Glisic	Checked By B. Gookin
Drilling Method	Hollow-Stem Auger	Drill Bit Size/Type	8-inch-OD auger bit	Total Depth of Borehole 26.5 feet
Drill Rig Type	Mobile B-61	Drilling Contractor	Cal Pac Drilling	Approximate Surface Elevation 13 feet MSL
Groundwa Level(s)	ter Not encountered	Sampling Method(s)	SPT, bulk	Hammer Data 140 lbs, 30-inch drop
Borehole Backfill	Drill cuttings	Location	Refer to site plan	

Project: Dike No. 4 Recharge Facility
Project Location: Coachella, California
Project Number: 29864604.00001

Key to Log of Test Pit

Elevation feet Depth, feet Sample Type Sample Number Graphic Log	MATERIAL DESCRIPTION		% ', REMARKS A OTHER TES	
1 2 3 4 5	6		7	8
Depth: Depth in feet below the Sample Type: Type of soil sail shown; sampler symbols are expended. Sample Number: Sample ide Graphic Log: Graphic depiction encountered; typical symbols are	mpie collected at depth interval plained below. entification number.	may include color, moisture, g Water Content: Water con laboratory, expressed as pero designated specimen. Remarks and Other Tests: regarding excavation or samp Field and laboratory test resu abbreviations explained below	tent of soil sentage of dr Commentationing made builts (other that	sample measured in ry weight of the s and observations ry driller or field personnel.
TYPICAL MATERIAL GRAPHIC	SYMBOLS			
Poorly graded SAND (SP)	SILT (ML)	Lean CLAY (CL)		GRAVEL (GP/GW)
Well-graded SAND (SW)	Elastic SILT (MH)	Fat CLAY (CH)	4 A	SILTY GRAVEL (GM)
Vieli-gladed SAND (SVV)				_

TYPICAL SAMPLER GRAPHIC SYMBOLS

Bulk sample

Grab sample

GENERAL NOTES

- Elevations for test pits are estimated from topographic maps provided by The Keith Companies.
- Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive; actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.
- Descriptions on these logs apply only at the specific test pit locations and at the time the pits were excavated. They are not warranted to be representative of subsurface conditions at other locations or times.

OTHER GRAPHIC SYMBOLS

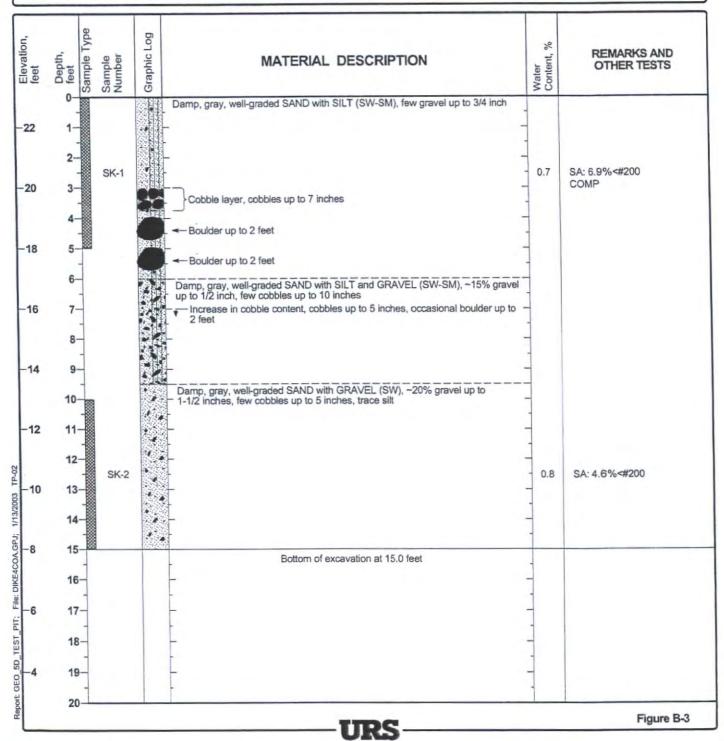
- First water encountered at time of drilling and sampling (ATD)
- Minor change in material properties within a lithologic stratum
- --- Inferred contact between soil strata or gradational lithologic change

TYPICAL LABORATORY TEST ABBREVIATIONS

COMP	Compaction test by modified effort
LL	Liquid Limit from Atterberg Limits test
NP	Non-plastic result for Atterberg Limits test
PI	Plasticity Index from Atterberg Limits test
SA	Sieve analysis, percent passing #200 sieve
WA	Wash sieve, percent passing #200 sieve

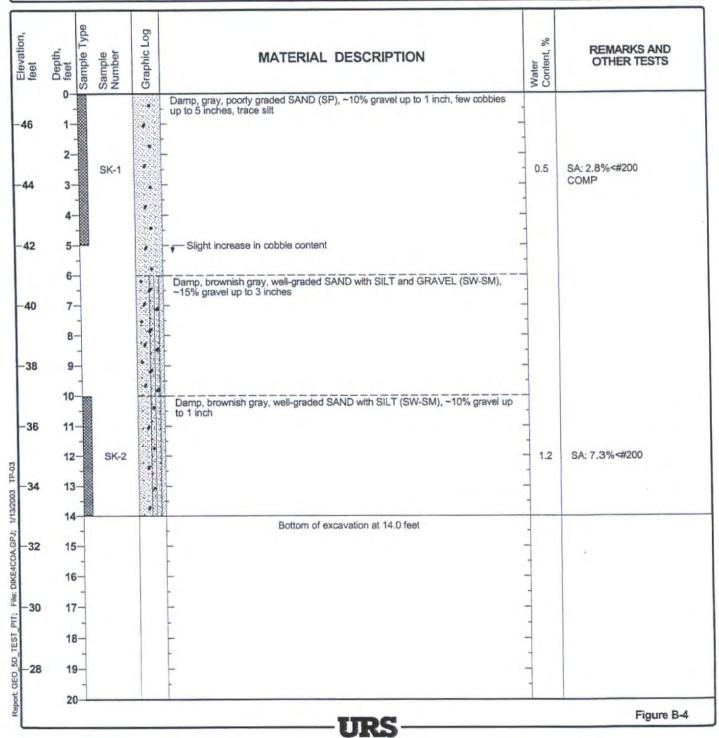
Report: GEO_5D_TEST_PIT_KEY; File: DIKE4COA.GPJ; 1772003

Project: Dike No. 4 Recharge Facility
Project Location: Coachella, California
Project Number: 29864604.00001


Log of Test Pit TP-1

Comments					
Water Observations				Approximate Pit Trend	Not recorded
Excavation Equipment	John Deere 410 Backhoe	Excavation Contractor	Demo Unlimited	Approximate Surface Elevation	6 feet MSL
Length of Excavation	10 feet	Width of Excavation	4 feet	Depth of Excavation	15.0 feet
Date(s) Excavated	11/18/02	Logged By	V. Glisic	Reviewed By	B. Gookin

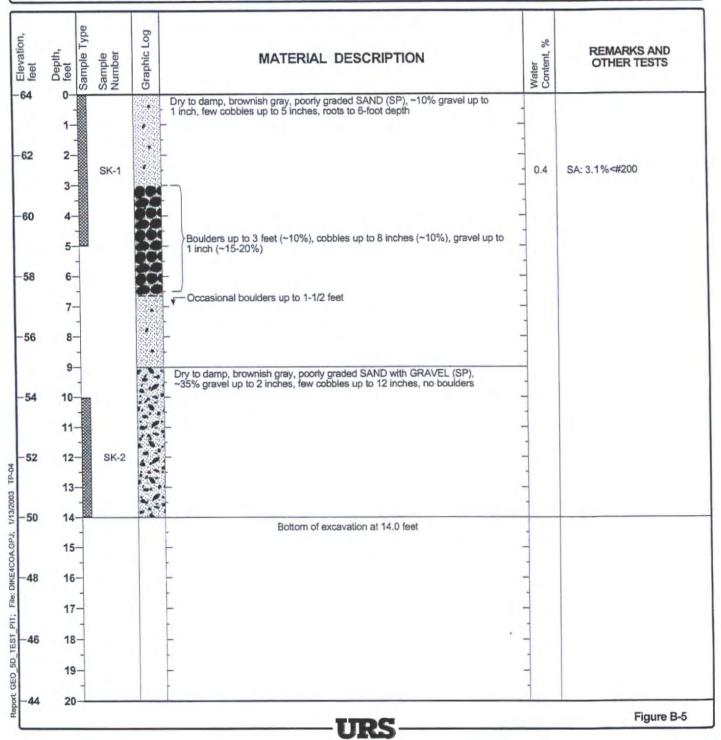
Project: Dike No. 4 Recharge Facility
Project Location: Coachella, California
Project Number: 29864604.00001


Date(s) Excavated	11/21/02	Logged By	V. Glisic	Reviewed By	B. Gookin		
Length of Excavation	10 feet	Width of Excavation	4 feet	Depth of Excavation	15.0 feet		
Excavation Equipment	John Deere 410 Backhoe	Excavation Contractor	Demo Unlimited	Approximate Surface Elevation	23 feet MSL		
Water Observations	Not observed during excavation			Approximate Pit Trend Not recorder			
Comments	Refer to site plan for excava	tion location					

Project Location: Coachella, California

Project Number: 29864604.00001

Date(s) Excavated	11/21/02	Logged By	V. Glisic	Reviewed By	B. Gookin	
Length of Excavation	10 feet	Width of Excavation	4 feet	Depth of Excavation	14.0 feet	
Excavation Equipment	John Deere 410 Backhoe	Excavation Contractor	Demo Unlimited	Approximate Surface Elevation	47 feet MSL	
Water Observations	Not observed during excavation			Approximate Pit Trend	Not recorded	
Comments	Refer to site plan for excava	tion location				

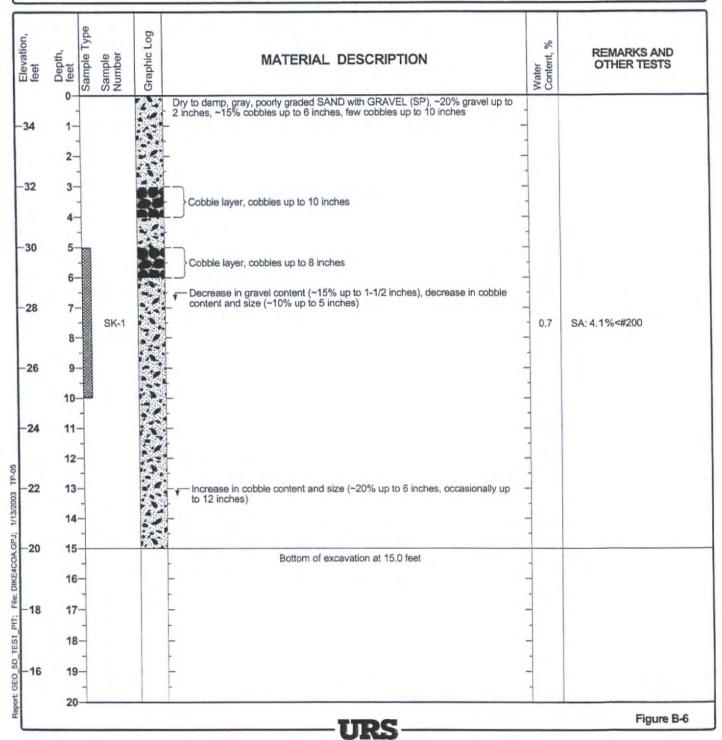


Project Location: Coachella, California

Project Number:

29864604.00001

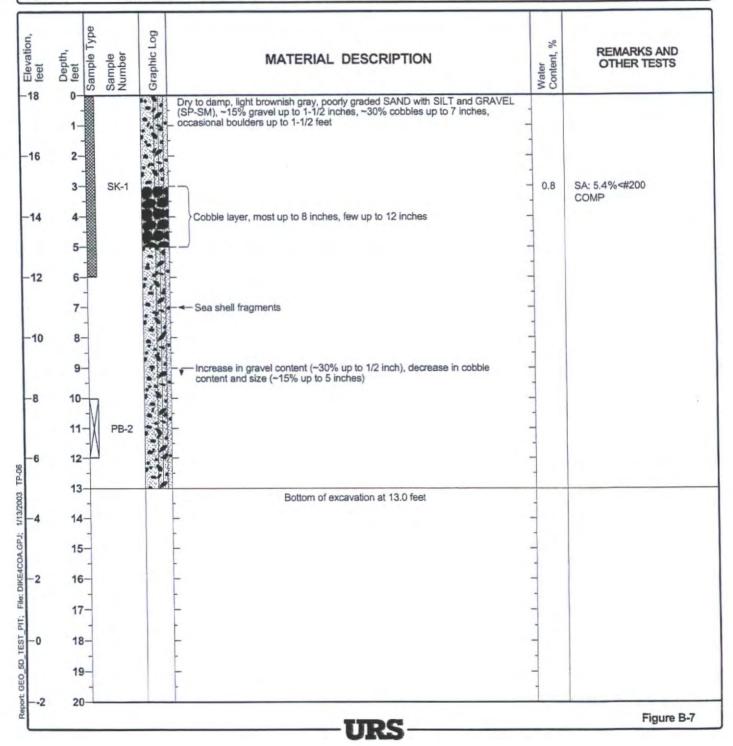
Comments	Refer to site plan for excava	tion location				
Water Observations			Approximate Pit Trend Not recorded			
Excavation Equipment	John Deere 410 Backhoe	Excavation Contractor	Demo Unlimited	Approximate Surface Elevation	64 feet MSL	
Length of Excavation	10 feet	Width of Excavation	4 feet	Depth of Excavation	14.0 feet	
Date(s) Excavated	11/21/02	Logged By	V. Glisic	Reviewed By	B. Gookin	



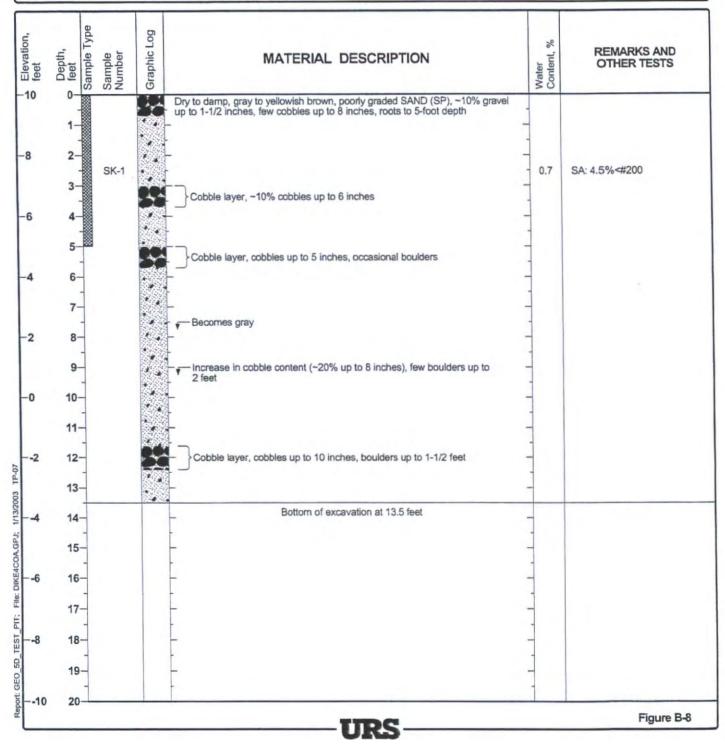
Project Location: Coachella, California

Project Number: 2986

29864604.00001


Date(s) Excavated	11/21/02	Logged By	V. Glisic	Reviewed By	B. Gookin
Length of Excavation	10 feet	Width of Excavation	4 feet	Depth of Excavation	15.0 feet
Excavation Equipment	John Deere 410 Backhoe	Excavation Contractor	Demo Unlimited	Approximate Surface Elevation	35 feet MSL
Water Observations	Not observed during excavation			Approximate Pit Trend	Not recorded
Comments	Refer to site plan for excava	tion location			

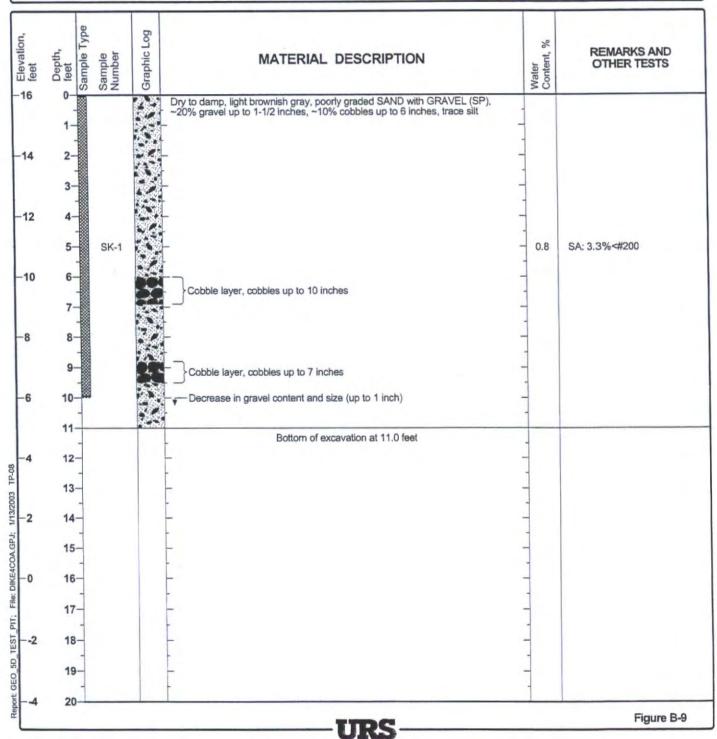
Project Location: Coachella, California


Project Number: 29864604.00001

Comments	Refer to site plan for excavation location							
Water Observations	Not observed during excava	tion	Approximate Pit Trend	Not recorded				
Excavation Equipment	John Deere 410 Backhoe	Excavation Contractor	Demo Unlimited	Approximate Surface Elevation	18 feet MSL			
Length of Excavation	10 feet	Width of Excavation	4 feet	Depth of Excavation	13.0 feet			
Date(s) Excavated	11/21/02	Logged By	V. Glisic	Reviewed By	B. Gookin			

Project: Dike No. 4 Recharge Facility
Project Location: Coachella, California
Project Number: 29864604.00001

Date(s) Excavated	11/21/02	Logged By	V. Glisic	Reviewed By	B. Gookin
Length of Excavation	10 feet	Width of Excavation	4 feet	Depth of Excavation	13.5 feet
Excavation Equipment	John Deere 410 Backhoe	Excavation Contractor	Demo Unlimited	Approximate Surface Elevation	10 feet MSL
Water Observations	Not observed during excavation			Approximate Pit Trend	Not recorded
Comments	Refer to site plan for excava	tion location			



Project Location: Coache

Coachella, California

Project Number: 29864604.00001

Comments	Refer to site plan for excava	tion location				
Water Observations			Approximate Pit Trend Not recorded			
Excavation Equipment	John Deere 410 Backhoe	Excavation Contractor	Demo Unlimited	Approximate Surface Elevation	16 feet MSL	
Length of Excavation	10 feet	Width of Excavation	4 feet	Depth of Excavation	11.0 feet	
Date(s) Excavated	11/21/02	Logged By	V. Glisic	Reviewed By	B. Gookin	

LOGS BY SLADDEN (2005a)

_		20 to 10	004	SWC Quarry Ranch Road & J			Job Ni	mhar	544-476
ate		12/3/2		Boring No. 8	Soil type	Unit Wt, pcf	Moisture, %	% Minus #200	344-470
Depui, ii	Symbol	5	Blows/6"		ii ts	it V	oist	Mii	ar red
	Syı	Core	Bic	Description	So	5	Z	%	Remarks
)					1				Native Soil
			13/17/23	Sand: Fine to Coarse Grained and 1/8" to 1/4" Gravel with Rock Fragments	SP		1	6	Brown in color
0			15/20/29	Sand: Fine to Coarse Grained and 1/8" to 1/4" Gravel with Rock Fragments	SP		1	5	Brown in color
5								111	Refusal @ ~14 Feet
0			California S Unrecovere	Split-spoon Sample					Total Depth =~14' Bedrock not encountered Groundwater not encounter
				enetration Test Sample					
5	H								
				Note: The stratification lines represent the approximate boundaries between the soil types; the transition may be gradual.					
0									
5									
0									
5									
No. of									
				W					

				SWC Quarry Ranch Road & J	errersor	Stree	Ich Ni	umber:	544-476
te:		12/3/2	004	Boring No. 9					344-470
	Symbol	Core	Blows/6"	Description	Soil type	Unit Wt, pef	Moisture, %	% Minus #200	Remarks Native Soil
		-			16	(171			Native Soil
			17/25/33	Sand: Fine to Coarse Grained and 1/8" to 1/4" Gravel with Rock Fragments	SP		1	7	Brown in color
			17/24/32	Sand: Fine to Coarse Grained and 1/8" to 1/4" Gravel with Rock Fragments	SP		Î	6	Brown in color
			28/28/35	Sand: Fine to Coarse Grained and 1/8" to 1/4" Gravel with Rock Fragments	SP		1	5	Brown in color
		基本	California S	Split-spoon Sample				1	Total Depth =~15.5' Bedrock not encountered
		\times	Unrecovere	d Sample					Groundwater not encounter
1			Caradani D	Test Semple					
			Standard Pe	enetration Test Sample	D .				
5			I.			1			
1		II.X	Man and	Note: The stratification lines represent the approximate boundaries between the soil types; the transition may be	1				
1			1	gradual.	112			1	
1					1			1	
								18.	
1									
1		1 4			1				
1				(K)	ľ				
								1	
1									
								1	
)				I.				1	
				1	1				
1				ľ		1			
5								1	
0									
			1						

				176-Lot Green Prop SWC Quarry Ranch Road & J		n Stree	t		
Dat	e:	12/3/2	2004	Boring No. 11	_		Job N		544-4769
Depth, ft	Symbol	Core	Blows/6"	Description	Soil type	Unit Wt, pcf	Moisture, %	% Minus #200	Remarks
0									Native Soil
5			5/47/28	Sand: Fine to Coarse Grained and 1/8" to 1/4" Gravel with Rock Fragments	SP		1	7	Brown in color
10			13/17/19	Sand: Fine to Coarse Grained and 1/8" to 1/4" Gravel with Rock Fragments	SP		0	6	Brown in color
15			50-5"	Sand: Fine to Coarse Grained and 1/8" to 1/4" Gravel with Rock Fragments	SP		1	10	Brown in color
18 - 20			33/44/50	Sand: Fine to Coarse Grained and 1/8" to 1/4" Gravel with Rock Fragments	SP		1	10	Brown in color
25 30 35 40 50			Unrecovere	Eplit-spoon Sample d Sample metration Test Sample Note: The stratification lines represent the approximate boundaries between the soil types; the transition may be gradual.					Total Depth =~20' Bedrock not encountered Groundwater not encountered

		4 = 1 = 1		SWC Quarry Ranch Road & J	efferson	Stree			مدهو وولي
Dat	e:	12/3/2	2004	Boring No. 12			Job N	umber	: 544-4769
o Depth, ft	Symbol	Core	Blows/6"	Description	Soil type	Unit Wt, pcf	Moisture, %	% Minus #200	Remarks Native Soil
5		B	16/23/37	Sand: Fine to Coarse Grained and 1/8" to 1/4" Gravel with Rock Fragments	SP		ĺ	8	
10			50-5"	Sand: Fine to Coarse Grained and 1/8" to 1/4" Gravel with Rock Fragments	SP		1	9	Refusal @ ~11 Feet
15 			Unrecovere	Split-spoon Sample d Sample metration Test Sample Note: The stratification lines represent the approximate boundaries between the soil types; the transition may be gradual.					Total Depth = ~ 11' Bedrock not encountered Groundwater not encountered

BORING LOGS BY

CONSTRUCTION TESTING & ENGINEERING, INC.

(2007)

PROJECT: CTE JOB NO: LOGGED BY:		DRILLER: SHEET DRILL METHOD: DRILLI SAMPLE METHOD: ELEVA	NG DATE:
Depth (Feet) – Bulk Sample Driven Type Blows/Foot Dry Density (pcf) Moisture (%)	U.S.C.S. Symbol Graphic Log	BORING LEGEND DESCRIPTION	Laboratory Tests
0		DESCRIPTION	
· - - - - - - - - -		Block or Chunk Sample	
1			<u>.</u>
		- Bulk Sample	
- +			
-5-			
	_	- Standard Penetration Test	
	.		
-10-		- Modified Split-Barrel Drive Sampler (Cal Sampler)	
III		- Thin Walled Army Corp. of Engineers Sample	
· - = •		- Groundwater Table	
	14	— Soil Type or Classification Change	·
20-		??????-	,
		Formation Change [(Approximate boundaries queried (?)]	
	БМ"	Quotes are placed around classifications where the soils exist in situ as bedrock	
		FIC	GURE: BL2

CONSTRUCTION TESTING & ENGINEERING, INC. 14538 MERIDIAN PARKWAY, SUITE À 1 RIVERSIDE. CA 92518 1 951.571.4081 1 7AX 951.571.4188

PRO CTI			O·	CVWD 40-2251		Percolati	ion Pon	. · · · · · · · · · · · · · · · · · · ·	T: 1 of 1 ING DATE: 6/25/2007
LOC				R. Ellert					ATION: basin floor
Depth (Feet)	Bulk Sample	Driven Type	Blows / 6 inch	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-1 DESCRIPTION	Laboratory Tests
-0- -2.\$		777	13 14 14 13 9 15 10 12 6 4			SM , SP-SM		Silty SAND - dry, gray, fine, traces of gravel. Poorly-graded SAND with Silt - damp, light gray, medium to coarse, traces of gravel.	GS (20.4% pass #200) HA GS (7.6% pass #200) HA
-5- 			8			ML SP-SM		at 57" - 3" lens of silt. Poorly-graded SAND with Silt becomes moist, gray-brown, with occasional gravel. Boring terminated at 6 ft. below surface.	
127									B-1

PROJECT: CVWD Dike 4 Percolation Ponds DRILLER: 2R Drilling (CME Track Rig) SHEET: CTE JOB NO: DRILL METHOD: 8" Hollow stem auger DRILLING DATE: 6/25/2007 LOGGED BY: R. Ellerbusch SAMPLE METHOD: 140 lb/30" autohammer **ELEVATION:** basin floor Dry Density (pcf) U.S.C.S. Symbol Blows / 6 inch Moisture (%) Graphic Log **BORING: B-2** Depth (Feet) **Laboratory Tests** Driven Bulk DESCRIPTION GS (10.1% pass #200) Poorly-graded SAND with Silt - dry, light gray, fine to medium, SP-SM Ž traces of gravel. 2 2 GS (8.6% pass #200) SILT with little Sand and Clay - moist, light gray GS (81.5% pass #200) ML Poorly-graded SAND with Silt - damp, gray, medium to coarse, occasional gravel. SP-SM 10 Boring terminated at 6 ft. below surface. B-2

CONSTRUCTION TESTING & ENGINEERING, INC. 14535 MERIDIAN PARKWAY, SUITE & 1 RIVERSIDE, CA 97518 1 951.571.4081 1 952.571.4081

	OJE		: NO:		CVWD 40-2251		Percolat	ion Por		: I of I ING DATE: 6/25/2007
•			BY:		R. Eller				·	ATION: basin floor
Depth (Feet)	Bulk Comple	Driven Tyne	Divell type	DiOWS / O INCH	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-3 DESCRIPTION	Laboratory Tests
-0	Ŧ	F	$\overline{}$				ML	14 8 6 4	Sandy SILT - dry to damp, light gray, traces of gravel.	
			7	5						GS (54.1% pass #200) HA GS (64.0% pass #200)
2.5			. 1				SP-SM		becomes moist at 2 ft. Poorly-graded SAND with Silt and Gravel - damp, light gray,	
<u>.</u>	-	V	1:	8			SW-SM		fine. Well graded SAND with Silt and Gravel - damp, dark grav-	WA (5.0% pass #200)
-5-		L	1	1					Boring terminated at 5 ft. below surface.	
- -	1				,					
 -7.5										
- - -										
- 1 0			-							
-1 6-	Ц	Ш								B-3

PROJECT: CVWD Dike			Dike 4	Percolat	ion Por	The state of the s	SHEET: 1 of				
CTE				40-2251				· ·	ILLING DATE		
LOG	GE	D B.	Y:	R. Ellert	ousch			SAMPLE METHOD: 140 lb/30" autohammer ELI	EVATION:	basin floor	
Depth (Feet)		Driven Type	Blows / 6 inch	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-4	Labo	oratory Tests	
L0-			·							11	
-0- -2.5- 			3 3 4 4 3 6 7 13 6 4			SM ML SW-SM		Silty Sand - dry to damp, light gray, fine. at 24" becomes medium to coarse with less fines, trace gravel. at 30" - 3" lens of silt. Well graded SAND with Silt and Gravel - damp, dark gray-brown.	GS (13	9.4% pass #200) HA 9.2% pass #200) 1.7% pass #200)	
								soring terminated at 3 it. oview surface.			
 -7. 5 											
 -12+											
										B-4	

CONSTRUCTION TESTING & ENGINEERING, INC.

14538 MERIDIAN PARKWAY, SUITE A ! RIVERSIDE. CA 92518 | 951.571.4081 | FAX 951.571.4188

PROJECT: CTE JOB NO:	CVWD Dike 4 Percolation P 40-2251		l of 1 NG DATE: 6/25/2007
LOGGED BY:	R. Ellerbusch	SAMPLE METHOD: 140 lb/30" autohammer ELEVA	
Depth (Feet) Bulk Sample Driven Type Blows / 6 inch	Dry Density (pcf) Moisture (%) U.S.C.S. Symbol Graphic Log	BORING: B-5 DESCRIPTION	Laboratory Tests
0 7	SV EN		CS (20 49/ #200)
5 5 8 8 8 10 -2.5	SM	Silty SAND with Gravel - dry, light gray, fine. becomes damp, decrease in gravel	GS (29.4% pass #200) GS (28.4% pass #200) HA GS (14.8% pass #200)
7 9 14 10	SP-SM SW-SM	Poorly-graded SAND with Silt - damp, gray, coarse, occasional gravel. Well graded SAND with Silt and Gravel - damp, dark graybrown.	
-5- - 7.5 - 10- 		Boring terminated at 5 ft. below surface.	B-5

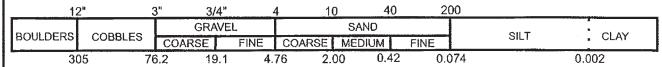
PROJECT: , CTE JOB NO:	CVWD Dike 4 Percolati 40-2251	on Ponds	DRILLER: DRILL METHOD:	2R Drilling (CME Track Rig) 8" Hollow stem auger	SHEET:	1 of 1 NG DATE: 6/25/2007
LOGGED BY:	R. Ellerbusch		SAMPLE METHOD:	140 lb/30" autohammer	ELEVA	
Depth (Feet) Bulk Sample Driven Type Blows / 6 inch	Dry Density (pcf) Moisture (%) U.S.C.S. Symbol	Graphic Log		NG: B-6		Laboratory Tests
-0 1 2	SM	ELU Very Silty	SAND - damp, light gr			GS (41.5% pass #200)
3 4 4 5	Sivi	Voly Sity	SAND - damp, ngut gi	ay, traces or graver.		HA
-2.5-			70.74763767 8 77.737377677			
6	SP-SM	medium t	ded SAND with Silt an o coarse.	d Gravei - damp, gray,	•	GS (6.1% pass #200)
8						
	277-074		THE WATER LINE OF THE P	~		GG (4 (8) #200)
8	SW-5M	brown.	ed SAND with Silt and	Gravel - damp, dark gray-		GS (4.6% pass #200)
-5		Boring terr	ninated at 5 ft. below s	urface.		
12.5						
						B-6

PROJECT: CVWD Dike 4 Percolation Ponds DRILLER: 2R Drilling (CME Track Rig) SHEET: I of 1
CTE JOB NO: 40-2251 DRILL METHOD: 8" Hollow stem auger DRILLING DATE: 6/25/2007
LOGGED BY: R. Ellerbusch SAMPLE METHOD: 140 lb/30" autohammer ELEVATION: basin floor

L	OG(GEL) BY	/ :	R. Ellert	busch			SAMPLE METHOD: 140 lb/30" autohammer ELEVA	TION: basin floor
	Depth (Feet)	Bulk Sample	Driven Type	Blows / 6 inch	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-7 DESCRIPTION	Laboratory Tests
1	0-1		+			-	SM	pata.	Silty SAND - damp to damp, gray, fine, occasional gravel.	GS (19.3% pass #200)
-				3) (Siny Sand - damp to damp, gray, tille, occasional graves.	HA
]			3						GS (25.6% pass #200)
- 2	5	ŀ	\parallel	5						
-	$\frac{1}{1}$	-	H	5					at 36" - becomes dark gray and medium grain with traces of gravel.	GS (33.6% pass #200)
F	1			9		.				
-5	-			6			SW-SM		Well-graded SAND with Silt and Gravel - damp, dark gray- brown.	
F	-			8				4.4		
F	1			·.					Boring terminated at 6 ft. below surface.	
-7.	5					·				
F	-									
F	1									
- -10	H									`
<u> </u>	-									
F	1									
12	4									
-		<u>_</u>								B-7

CONSTRUCTION TESTING & ENGINEERING, INC. 14538 MERIDIAN PAREMAY, SUITE & 1 RIVERSIDE, CA 92518 | 1051.571.4051 | FAX 951.571.4188

PRC						Percolat	ion Por	•		of 1
CTE LOC				40-2251 R. Ellert					ING DATE: ATION:	6/25/2007 basin floor
Depth (Feet)	Bulk Sample	Driven Type	Blows / 6 inch	Dry Density (pcf)	Moisture (%)	U.S.C.S. Symbol	Graphic Log	BORING: B-8 DESCRIPTION	Labor	ratory Tests
-0- -2.5- 5- 7. 5 10-			4 5 6 5 6 6 5 8 7 14 12 16			SP-SM		Silty SAND - dry, light gray, very fine, traces of gravel. becomes damp increase in gravel Poorly-graded SAND with Silt - gray, damp, medium to coarse, occasional gravel Well-graded SAND with Silt and Gravel - damp, dark gray-brown. at 58" - 1" silt lens Boring terminated at 6 ft. below surface.		9% pass #200) HA 0% pass #200)
12.5	_									B-8


BORINGS BY EARTH SYSTEMS SOUTHWEST (2007b)

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on ASTM Designations D 2487 and D 2488 (Unified Soil Classification System). Information on each boring log is a compilation of subsurface conditions obtained from the field as well as from laboratory testing of selected samples. The indicated boundaries between strata on the boring logs are approximate only and may be transitional.

SOIL GRAIN SIZE

U.S. STANDARD SIEVE

SOIL GRAIN SIZE IN MILLIMETERS

RELATIVE DENSITY OF GRANULAR SOILS (GRAVELS, SANDS, AND NON-PLASTIC SILTS)

Very Loose	*N=0-4	RD=0-30	Easily push a 1/2-inch reinforcing rod by hand
Loose	N=5-10	RD=30-50	Push a 1/2-inch reinforcing rod by hand
Medium Dense	N=11-30	RD=50-70	Easily drive a 1/2-inch reinforcing rod with hammer
Dense	N=31-50	RD=70-90	Drive a 1/2-inch reinforcing rod 1 foot with difficulty by a hammer
Very Dense	N>50	RD=90-100	Drive a 1/2-inch reinforcing rod a few inches with hammer

*N=Blows per foot in the Standard Penetration Test at 60% theoretical energy. For the 3-inch diameter Modified California sampler, 140-pound weight, multiply the blow count by 0.63 (about 2/3) to estimate N. If automatic hammer is used, multiply a factor of 1.3 to 1.5 to estimate N. RD=Relative Density (%). C=Undrained shear strength (cohesion).

CONSISTENCY OF COHESIVE SOILS (CLAY OR CLAYEY SOILS)

Very Soft	*N=0-1	*C=0-250 psf	Squeezes between fingers
Soft	N=2-4	C=250-500 psf	Easily molded by finger pressure
Medium Stiff	N=5-8	C=500-1000 psf	Molded by strong finger pressure
Stiff	N=9-15	C=1000-2000 psf	Dented by strong finger pressure
Very Stiff	N=16-30	C=2000-4000 psf	Dented slightly by finger pressure
Hard	N>30	C>4000	Dented slightly by a pencil point or thumbnall

MOISTURE DENSITY

Moisture Condition:

An observational term; dry, damp, moist, wet, saturated.

Moisture Content:

The weight of water in a sample divided by the weight of dry soil in the soil sample

expressed as a percentage.

Dry Density:

The pounds of dry soil in a cubic foot.

MOISTURE CONDITION

Dry	Absence of moisture, dusty, dry to the touch
Damp	Slight indication of moisture
Moist	Color change with short period of air exposure (granular soil)
	Below optimum moisture content (cohesive soil)
Wet	High degree of saturation by visual and touch (granular soil)
	Above optimum moisture content (cohesive soil)
Saturated	Free surface water

PLASTICITY

DESCRIPTION

FIELD TEST

Nonplastic

A 1/8 in. (3-mm) thread cannot be rolled

at any moisture content.

Low

The thread can barely be rolled.

Medium

The thread is easy to roll and not much

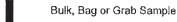
time is required to reach the plastic limit.

High

The thread can be rerolled several times after reaching the plastic limit.

GROUNDWATER LEVEL

Water Level (measured or after drilling)



Water Level (during drilling)

RELATIVE PROPORTIONS

Trace.....minor amount (<5%) with/some.....significant amount modifier/and...sufficient amount to influence material behavior (Typically >30%)

LOG KEY SYMBOLS

Standard Penetration Split Spoon Sampler (2" outside diameter)

Modified California Sampler (3" outside diameter)

No Recovery

Terms and Symbols used on Boring Logs

N	AJOR DIVISION	IS	GRAPHIC SYMBOL	LETTER SYMBOL	TYPICAL DESCRIPTIONS
		CLEAN GRAVELS		GW	Well-graded gravels, gravel-sand mixtures, little or no fines
	GRAVEL AND GRAVELLY SOILS	< 5% FINES		GP	Poorly-graded gravels, gravel-sand mixtures. Little or no fines
COARSE	More than 50% of	GRAVELS WITH FINES		GM	Silty gravels, gravel-sand-silt mixtures
GRAINED SOILS	coarse fraction retained on No. 4 sieve	> 12% FINES		GC	Clayey gravels, gravel-sand-clay mixtures
	SAND AND	CLEAN SAND		sw	Well-graded sands, gravelly sands, little or no fines
More than 50% of	SANDY SOILS	(Little or no fines) < 5%		SP	Poorly-graded sands, gravelly sands, little or no fines
material is <u>larger</u> than No. 200 sleve size	Name there 500/ of	SAND WITH FINES		SM	Silty sands, sand-silt mixtures
	More than 50% of coarse fraction passing No. 4 sieve	amount of fines) > 12%		sc	Clayey sands, sand-clay mixtures
				ML	Inorganic silts and very fine sands, rock flour, silty low clayey fine sands or clayey silts with slight plasticity
FINE-GRAINED SOILS	SILTS AND	LIQUID LIMIT LESS THAN 50		CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
				OL	Organic silts and organic silty clays of low plasticity
	CLAYS			мн	Inorganic silty, micaceous, or diatomaceous fine sand or silty soils
50% or more of material is <u>smaller</u> than No. 200 sieve size		LIQUID LIMIT GREATER THAN 50		СН	Inorganic clays of high plasticity, fat clays
SIEVE SIZE				ОН	Organic clays of medium to high plasticity, organic silts
HIG	HLY ORGANIC SOII	LS		PT	Peat, humus, swamp soils with high organic contents
VARIOUS SOIL	S AND MAN MADE	MATERIALS			Fill Materials
MAN	MADE MATERIAL	S			Asphalt and concrete
				Soil Classi	fication System
				Earth Southw	Systems est

79811B Country Club Drive, Bermuda Dunes, CA 92203 Phone (760) 345-1588, Fax (760) 345-7315

Boring No: B-1

Project Name: Travertine Project, Madison Street, La Quita, CA

File Number: 11112-02
Boring Location: See Figure 2

Drilling Date: July 31, 2007

Drilling Method: 8" Hollow Stem Auger Drill Type: Simco 2800 Auto Hammer

-			J. See I Igui	1				Logged By: Dirk Wiggins		
Depth (Ft.)	San Ty	MOD Calif. add	Penetration Resistance (Blows/6")	Symbol	NSCS	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	Page 1 Graphic Tren Blow Count Dry I	d
- 5			4,5,5 4,5,5		SP-SM			SAND WITH SILT: pale yellowish brown to white, medium dense, dry, fine to coarse grained trace fine to coarse gravels		
- 10		ć	5,7,7							
- 15								Total Depth 11.5 feet No Groundwater Encountered Cobbles and boulders encountered throughout		
- ₂₀ [

79811B Country Club Drive, Bernuda Dunes, CA 92203 Phone (760) 345-1588, Fax (760) 345-7315

Boring No: B-2

Project Name: Travertine Project, Madison Street, La Quita, CA

File Number: 11112-02
Boring Location: See Figure 2

Drilling Date: July 31, 2007

Drilling Method: 8" Hollow Stem Auger Drill Type: Sinco 2800 Auto Hammer

	DOLL	forming Location: See Figure 2						Logged By: Dirk Wiggins				
	Depth (Ft.)	Bample Type SPT WOD Calif	Penetration Resistance (Blows/6")		USCS	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	Graphic	ge of Trend Dry Density		
	0		1,2,2		SP-SM			SAND WITH SILT: pale yellowish brown to white, loose to medium dense, dry, fine to coarse grained				
1			4,5,4									
	5		4,5,5					trace fine to coarse gravels				
						114						
-	10		4,4,4				-					
-	15							Total Depth 11.5 feet No Groundwater Encountered Cobbles and boulders encountered throughout				
	.0											

79811B Country Club Drive, Bermuda Dunes, CA 92203 Phone (760) 345-1588, Fax (760) 345-7315

Boring No: B-3

Project Name: Travertine Project, Madison Street, La Quita, CA

File Number: 11112-02
Boring Location: See Figure 2

Drilling Date: July 31, 2007

Drilling Method: 8" Hollow Stem Auger Drill Type: Sinco 2800 Auto Hammer

	oring Location, See Figure 2						Logged by. Dirk Wiggins				
Depth (Ft.)	Bulk SPT add, MOD Calif.	Penetration Resistance (Blows/6")		nscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	Graphic	ge I of I Trend Dry Density		
0				SP-SM			SAND WITH SILT: pale yellowish brown to white, loose to medium dense, dry, fine to coarse grained, cobbles throughout, trace fine gravels				
		4,5,5									
-		3,5,5			And the second s						
— 10		3,6,7			And the second s						
— 15 _		5,7,10						To de societa			
20						en year year and a state of the	Total Depth 16.5 feet No Groundwater Encountered Cobbies and boulders encountered throughout	The control of the co			

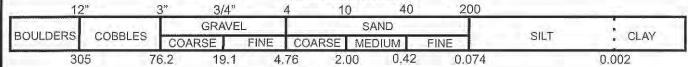
79811B Country Club Drive, Bermuda Dunes, CA 92203 Phone (760) 345-1588, Fax (760) 345-7315

Boring No: B-4
Project Name: Travertine Project, Madison Street, La Quita, CA

File Number: 11112-02 Drilling Date: July 31, 2007

Drilling Method: 8" Hollow Stem Auger Drill Type: Simco 2800 Auto Hammer

Boring Location: Se	ee Figure 2		Logged By: Dirk Wiggins	Logged By: Dirk Wiggins			
the Res	etration ovs/6")	USCS Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	Page Graphic T Blow Count E		
1,2, 2,2, -5 1 1.03	5 ST	SM		SILTY SAND: moderate yellowish brown, medium dense to loose, damp to dry, fine to coarse grained, trace fine gravels pale to moderate yellowish brown Total Depth 9.5 feet No Groundwater Encountered			


BORINGS BY EARTH SYSTEMS SOUTHWEST (2007c)

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on ASTM Designations D 2487 and D 2488 (Unified Soil Classification System). Information on each boring log is a compilation of subsurface conditions obtained from the field as well as from laboratory testing of selected samples. The indicated boundaries between strata on the boring logs are approximate only and may be transitional.

SOIL GRAIN SIZE

U.S. STANDARD SIEVE

SOIL GRAIN SIZE IN MILLIMETERS

RELATIVE DENSITY OF GRANULAR SOILS (GRAVELS, SANDS, AND NON-PLASTIC SILTS)

Very Loose	*N=0-4	RD=0-30	Easily push a 1/2-inch reinforcing rod by hand
Loose	N=5-10	RD=30-50	Push a 1/2-inch reinforcing rod by hand
Medium Dense	N=11-30	RD=50-70	Easily drive a 1/2-inch reinforcing rod with hammer
Dense	N=31-50	RD=70-90	Drive a 1/2-inch reinforcing rod 1 foot with difficulty by a hammer
Very Dense	N>50	RD=90-100	Drive a 1/2-inch reinforcing rod a few inches with hammer

*N=Blows per foot in the Standard Penetration Test at 60% theoretical energy. For the 3-inch diameter Modified California sampler, 140-pound weight, multiply the blow count by 0.63 (about 2/3) to estimate N. If automatic hammer is used, multiply a factor of 1.3 to 1.5 to estimate N. RD=Relative Density (%). C=Undrained shear strength (cohesion).

CONSISTENCY OF COHESIVE SOILS (CLAY OR CLAYEY SOILS)

Very Soft	*N=0-1	*C=0-250 psf	Squeezes between fingers
Soft	N=2-4	C=250-500 psf	Easily molded by finger pressure
Medium Stiff	N=5-8	C=500-1000 psf	Molded by strong finger pressure
Stiff	N=9-15	C=1000-2000 psf	Dented by strong finger pressure
Very Stiff	N=16-30	C=2000-4000 psf	Dented slightly by finger pressure
Hard	N>30	C>4000	Dented slightly by a pencil point or thumbnail

MOISTURE DENSITY

Moisture Condition: An observational term; dry, damp, moist, wet, saturated.

Moisture Content: The weight of water in a sample divided by the weight of dry soil in the soil sample

expressed as a percentage.

Dry Density: The pounds of dry soil in a cubic foot.

MOISTURE CONDITION

Dry	
Damp	Slight indication of moisture
Moist	Color change with short period of air exposure (granular soil)
	Below optimum moisture content (cohesive soil)
Wet	
	Above optimum moisture content (cohesive soil)
Saturated	Free surface water

PLASTICITY

	PLASTICITY
DESCRIPTION	FIELD TEST
Nonplastic	A 1/8 in. (3-mm) thread cannot be rolled at any moisture content.
Low	The thread can barely be rolled,
Medium	The thread is easy to roll and not much time is required to reach the plastic limit.
High	The thread can be rerolled several times after reaching the plastic limit.

GROUNDWATER LEVEL

Water Level (measured or after drilling)

Water Level (during drilling)

RELATIVE PROPORTIONS

Traceminor amount (<5%)
with/somesignificant amount
modifier/andsufficient amount to
influence material behavior
(Typically >30%)

LOG KEY SYMBOLS

Bulk, Bag or Grab Sample
Standard Penetration
Split Spoon Sampler
(2" outside diameter)

Modified California Sampler
(3" outside diameter)

No Recovery

Terms and Symbols used on Boring Logs

N	AJOR DIVISION	NS	GRAPHIC SYMBOL	LETTER SYMBOL	TYPICAL DESCRIPTIONS
		CLEAN GRAVELS		GW	Well-graded gravels, gravel-sand mixtures, little or no fines
	GRAVEL AND GRAVELLY	< 5% FINES		GP	Poorly-graded gravels, gravel-sand mixtures, Little or no fines
COARSE	SOILS More than 50% of	GRAVELS WITH FINES		GM	Silty gravels, gravel-sand-silt mixtures
GRAINED SOILS	coarse fraction retained on No. 4 sieve	> 12% FINES		GC	Clayey gravels, gravel-sand-clay mixtures
	SAND AND	CLEAN SAND		sw	Well-graded sands, gravelly sands little or no fines
More than 50% of	SANDY SOILS	(Little or no fines) < 5%		SP	Poorly-graded sands, gravelly sands, little or no fines
material is <u>larger</u> than No. 200 sieve size	More than 50% of	SAND WITH FINES (appreciable		SM	Silty sands, sand-silt mixtures
	coarse fraction passing No. 4 sieve	amount of fines) > 12%		sc	Clayey sands, sand-clay mixtures
				ML	Inorganic silts and very fine sands, rock flour, silty low clayey fine sands or clayey silts with slight plasticity
FINE-GRAINED SOILS	þ ()	LIQUID LIMIT LESS THAN 50		CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
	SILTS AND			OL	Organic silts and organic silty clays of low plasticity
	CLAYS			МН	Inorganic silty, micaceous, or diatomaceous fine sand or silty soils
50% or more of material is <u>smaller</u> than No. 200 sieve size		LIQUID LIMIT GREATER THAN 50		СН	Inorganic clays of high plasticity, fat clays
SICVE SIZE				ОН	Organic clays of medium to high plasticity, organic silts
HIGI	ILY ORGANIC SOIL	S		PT	Peat, humus, swamp soils with high organic contents
VARIOUS SOIL	S AND MAN MADE	MATERIALS			Fill Materials
MAN	MADE MATERIALS	5			Asphalt and concrete
				Soil Classi	fication System
				Earth	Systems est

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Phone (760) 345-1588, Fax (760) 345-7315

Phone (760) 345-1588, Fax (760) 345-7315 Drilling Date: August 17, 2007 Boring No: I-1
Project Name: Proposed Travertine Project, La Quinta, CA Drilling Method: 8" Hollow Stem Auger File Number: 11112-04 Drill Type: Simco 2800 w/ Auto Hammer Logged By: Dirk Wiggins Boring Location: See Figure 2 Sample Dry Density (pcf) Moisture Content (%) Page 1 of 1 **Description of Units** Depth (Ft.) Type Penetration Bulk SPT SPT MOD Calif. Symbol USCS Note: The stratification lines shown represent the Resistance Graphic Trend approximate boundary between soil and/or rock types (Blows/6") and the transition may be gradational. Blow Count Dry Density SM SILTY SAND: moderate yellowish brown, medium dense, dry, fine grained, few medium to coarse grained 6,6,7 - 5 6,7,8 pale yellowish brown, fine to medium grained 10 SP-SM SAND WITH SILT: pale yellowish brown, medium dense, dry, fine to medium grained, grab sample - 15 Total Depth 13 feet No Groundwater Encountered Cobbles/Boulders Encountered Throughout - 20 - 25

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Phone (760) 345-1588, Fax (760) 345-7315

Boring No: I-2
Project Name: Proposed Travertine Project, La Quinta, CA

11112-04 File Number: Boring Location: See Figure 2 Drilling Date: August 17, 2007

Drilling Method: 8" Hollow Stem Auger Drill Type: Simco 2800 w/ Auto Hammer

Don	Comple						Logged by. Dirk wiggins				
Depth (Ft.)	Sample Type Jie COM	Penetration Resistance (Blows/6")	Symbol	nscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	Page I of Graphic Trend Blow Count Dry Do			
0				SP-SM			SAND WITH SILT: pale yellowish brown to white, loose, dry, fine to coarse grained				
5		3,4,5					medium dense				
- 10 - -		6,7,8					pale to moderate yellowish brown				
— 15 —		6,8,9									
- 20 -							pale yellowish brown to white, few fine gravel, grab sample Total Depth 20 feet				
- 25							No Groundwater Encountered Cobbles/Boulders Encountered Throughout				

Boring No: I-3
Project Name: Proposed Travertine Project, La Quinta, CA

11112-04 File Number:

Boring Location: See Figure 2

Drilling Date: August 17, 2007

Drilling Method: 8" Hollow Stem Auger Drill Type: Simco 2800 w/ Auto Hammer

<u></u>	11100	15 20	Citto	ii. See riguii	· ~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Logged by. Dirk wiggins		
	Depth (Ft.)	Sam Ty	MOD Calif.	Penetration Resistance (Blows/6")	Symbol	USCS	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	Pag Graphic T Blow Count I	
				6,8,10		SP-SM			SAND WITH SILT: pale yellowish brown to white, medium dense, dry, fine to coarse grained, trace fine gravel		
	10			7,10,11					white minerals, cobbles Auger Refusal at 10 feet Total Depth 10 feet	•	
	15	MARIA (Administration of the second of the s					THE PARTY OF THE P		No Groundwater Encountered Cobbles/Boulders Encountered Throughout		
	20										
	25										
L 3	30 L		1								

Drilling Date: August 17, 2007 Boring No: I-4
Project Name: Proposed Travertine Project, La Quinta, CA Drilling Method: 8" Hollow Stem Auger 11112-04 Drill Type: Simco 2800 w/ Auto Hammer File Number: Logged By: Dirk Wiggins Boring Location: See Figure 2 Sample Moisture Content (%) Dry Density (pcf) Page 1 of 1 Depth (Ft.) **Description of Units** Type Penetration Bulk SPT SP MOD Calif. Symbol USCS Note: The stratification lines shown represent the Resistance Graphic Trend approximate boundary between soil and/or rock types (Blows/6") and the transition may be gradational. Blow Count Dry Density SP-SM SAND WITH SILT: pale yellowish brown to white, medium dense, dry, fine to coarse grained 10,11,14 8,12,14 5 50/6" cobbles Auger Refusal at 7 feet Total Depth 7 feet 10 No Groundwater Encountered Cobbles/Boulders Encountered Throughout 15 - 20 25

Boring No: I-5
Project Name: Proposed Travertine Project, La Quinta, CA

File Number: 11112-04
Boring Location: See Figure

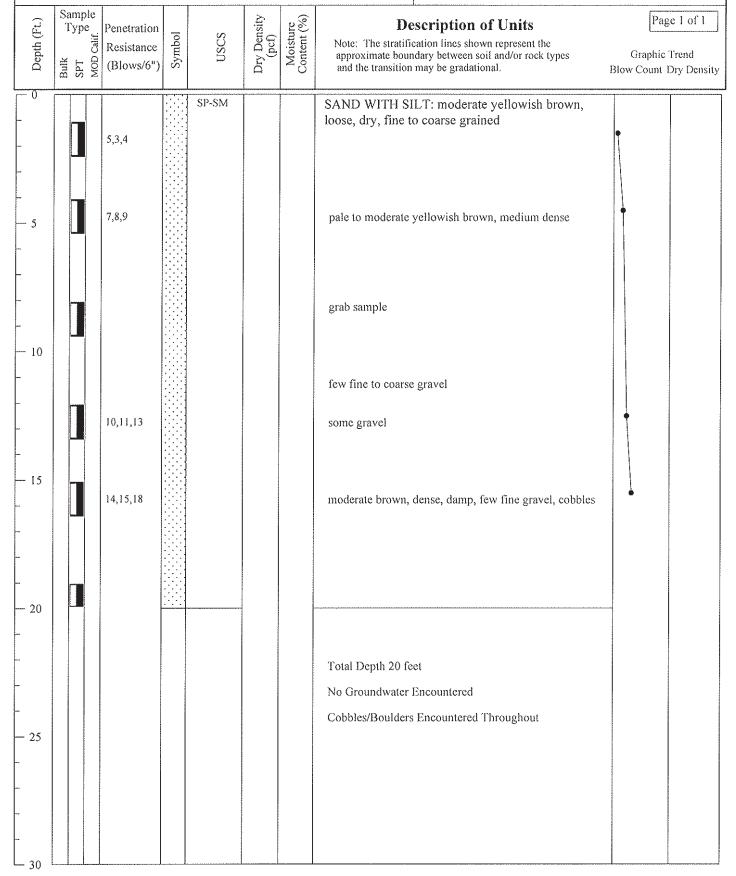
Drilling Date: August 17, 2007

Drilling Method: 8" Hollow Stem Auger Drill Type: Simco 2800 w/ Auto Hammer

Ft.)	Sample Type	Penetration			sity	ие (%)	Description of Units	Page 1 of
Deput (rt.)	Bulk SPT MOD Calif	Penetration Resistance (Blows/6")	Symbol	nscs	Dry Density (pcf)	Moisture Content (%)	Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	Graphic Trend Blow Count Dry Der
0		6,6,7 7,9,10		SP-SM			SAND WITH SILT: pale yellowish brown to white, loose, dry, fine to coarse grained, few fine gravel cobbles	
5		10,11,11					Total Depth 20 feet No Groundwater Encountered Cobbles/Boulders Encountered Throughout	

Boring No: I-6

Project Name: Proposed Travertine Project, La Quinta, CA


File Number: 11112-04

Drill Type: Simco 2800 w/ Auto Hammer Logged By: Dirk Wiggins

Drilling Date: August 17, 2007

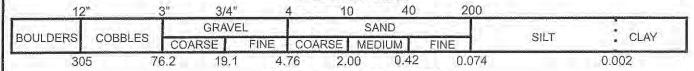
Drilling Method: 8" Hollow Stem Auger

Boring Location: See Figure 2

Boring No: I-7
Project Name: Proposed Travertine Project, La Quinta, CA Drilling Date: August 17, 2007

Drilling Method: 8" Hollow Stem Auger File Number: 11112-04 Drill Type: Simco 2800 w/ Auto Hammer

1	Sample Type SbL SbL WOD Calif.	Penetration Resistance (Blows/6")	Symbol	nscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	Page 1 of 1 Graphic Trend Blow Count Dry Densi
0		2,4,6		SP-SM			SAND WITH SILT: pale to moderate yellowish brown, loose, dry, fine to coarse grained, few fine to coarse gravel medium dense	
The state of the s		4,4,6			A de de de la laction de laction de laction de laction de la laction de la laction de l			
							cobbles	
9		8,12,13				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	medium dense to dense	
5							dense	
							Total Depth 15 feet No Groundwater Encountered Cobbles/Boulders Encountered Throughout	
0					111111111111111111111111111111111111111			
5								
	8							and the state of t


TEST PITS BY EARTH SYSTEMS SOUTHWEST (2007d)

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on ASTM Designations D 2487 and D 2488 (Unified Soil Classification System). Information on each boring log is a compilation of subsurface conditions obtained from the field as well as from laboratory testing of selected samples. The indicated boundaries between strata on the boring logs are approximate only and may be transitional.

SOIL GRAIN SIZE

U.S. STANDARD SIEVE

SOIL GRAIN SIZE IN MILLIMETERS

RELATIVE DENSITY OF GRANULAR SOILS (GRAVELS, SANDS, AND NON-PLASTIC SILTS)

Very Loose	*N=0-4	RD=0-30	Easily push a 1/2-inch reinforcing rod by hand
Loose	N=5~10	RD=30-50	Push a 1/2-inch reinforcing rod by hand
Medium Dense	N=11-30	RD=50-70	Easily drive a 1/2-inch reinforcing rod with hammer
Dense	N=31-50	RD=70-90	Drive a 1/2-inch reinforcing rod 1 foot with difficulty by a hammer
Very Dense	N>50	RD=90-100	Drive a 1/2-inch reinforcing rod a few inches with hammer

*N=Blows per foot in the Standard Penetration Test at 60% theoretical energy. For the 3-inch diameter Modified California sampler, 140-pound weight, multiply the blow count by 0.63 (about 2/3) to estimate N. If automatic hammer is used, multiply a factor of 1.3 to 1.5 to estimate N. RD=Relative Density (%). C=Undrained shear strength (cohesion).

CONSISTENCY OF COHESIVE SOILS (CLAY OR CLAYEY SOILS)

74 20 20	**** ****	*0-0 000	Contract a beautiful Baselia
Very Soft	*N=0-1	*C=0-250 psf	Squeezes between fingers
Soft	N=2-4	C=250-500 psf	Easily molded by finger pressure
Medium Stiff	N=5-8	C=500-1000 psf	Molded by strong finger pressure
Stiff	N=9-15	C=1000-2000 psf	Dented by strong finger pressure
Very Stiff	N=16-30	C=2000-4000 psf	Dented slightly by finger pressure
Hard	N>30	C>4000	Dented slightly by a pencil point or thum

MOISTURE DENSITY

An observational term; dry, damp, moist, wet, saturated. Moisture Condition:

The weight of water in a sample divided by the weight of dry soil in the soil sample Moisture Content:

expressed as a percentage.

The pounds of dry soil in a cubic foot. Dry Density:

MOISTURE CONDITION

Drv	Absence of moisture, dusty, dry to the touch
	Slight indication of moisture
Moist	Color change with short period of air exposure (granular soil) Below optimum moisture content (cohesive soil)
Wet	High degree of saturation by visual and touch (granular soil)
	Above optimum moisture content (cohesive soil)
Saturated	Free surface water

after reaching the plastic limit.

PLASTICITY

DESCRIPTION	FIELD TEST
Nonplastic	A 1/8 in. (3-mm) thread cannot be rolled at any moisture content.
Low	The thread can barely be rolled.
Medium	The thread is easy to roll and not much time is required to reach the plastic limit.
High	The thread can be rerolled several times

GROUNDWATER LEVEL

Water Level (measured or after drilling)

Water Level (during drilling)

RELATIVE PROPORTIONS

Traceminor amount (<5%)
with/somesignificant amount
modifier/andsufficient amount to
influence material behavior
(Typically >30%)

LOG KEY SYMBOLS

	Bulk, Bag or Grab Sample
and the same of th	Standard Penetration Split Spoon Sampler (2" outside diameter)
	Modified California Sample (3" outside diameter)
TAXABLE DE LA CALLESTICA DE LA CALLESTIC	Modified California Sam

No Recovery

Terms and Symbols used on Boring Logs

Earth Systems

IV.	AJOR DIVISION	IS	GRAPHIC SYMBOL	LETTER SYMBOL	TYPICAL DESCRIPTIONS
		CLEAN GRAVELS		GW	Well-graded gravels, gravel-sand mixtures, little or no fines
	GRAVEL AND GRAVELLY SOILS	< 5% FINES		GP	Poorly-graded gravels, gravel-sand mixtures. Little or no fines
COARSE	More than 50% of coarse fraction	GRAVELS WITH FINES		GM	Silty gravels, gravel-sand-silt mixtures
GRAINED SOILS	retained on No. 4	> 12% FINES		GC	Clayey gravels, gravel-sand-ciay mixtures
	SAND AND	CLEAN SAND		sw	Well-graded sands, gravelly sands, little or no fines
More than 50% of material is larger	SANDY SOILS	(Little or no fines) < 5%		SP	Poorly-graded sands, gravelly sands, little or no fines
than No. 200 sieve size	More than 50% of	SAND WITH FINES (appreciable		SM	Silty sands, sand-silt mixtures
	coarse fraction passing No. 4 sieve	amount of fines) > 12%		sc	Clayey sands, sand-clay mixtures
		'		ML	Inorganic silts and very fine sands, rock flour, silty low clayey fine sands or clayey silts with slight plasticity
FINE-GRAINED SOILS		LIQUID LIMIT LESS THAN 50		CL	inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
	SILTS AND			OL.	Organic silts and organic silty clays of low plasticity
	CLAYS			МН	Inorganic silty, micaceous, or diatomaceous fine sand or silty soils
50% or more of material is <u>smaller</u> than No. 200 sieve size		LIQUID LIMIT <u>GREATER</u> THAN 50		СН	Inorganic clays of high plasticity, fat clays
				ОН	Organic clays of medium to high plasticity, organic silts
HIGH	ILY ORGANIC SOIL	S		PT	Peat, humus, swamp soils with high organic contents
VARIOUS SOILS	S AND MAN MADE	MATERIALS			Fill Materials
MAN	MADE MATERIALS				Asphalt and concrete
			9	Soil Classi	fication System
			@	Earth Southwe	Systems est

Earth Systems
Southwest

Test Pit No: TP-1 Exploration Date: October 16, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Sample Dry Density (pcf) Content (%) Page 1 of 1 **Description of Units** Depth (Ft.) Type Moisture Symbol Bulk SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. 0 SW WELL GRADED SAND: light brown to white, dry, fine to coarse grained with abundant fine to coarse grained gravels, all sizes of cobbles, 114 0.8 small boulders Approximation By Weight: 113 0.53 40% Sands and Gravels 50% Cobbles (to 12") 10% Boulders 5 111 0.40 - 10 15 - 20 GPS: 569416, 3716840 Elevation: 61 feet Total Depth: 20 feet Groundwater not encountered Bedrock not encountered High caving probability due to large boulders Backfilled with native soil - 25

Test Pit No: TP-2 Exploration Date: October 16, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Moisture Content (%) Sample Page 1 of 1 Dry Density (pcf) **Description of Units** Depth (Ft.) Type Symbol Bulk SPT SPT MOD CALIF. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: dense, dry, sand matrix with predominant boulders, gravels and cobbles to 10 feet Approximation By Weight: 30% Sands and Gravels 30% Cobbles (to 12") 40% Boulders 5 - 10 10 to 18 feet: mostly sand and gravels, few cobbles and boulders - 15 18 to 20 feet: boulders predominant, largest boulders 2.5 feet in diameter, abundant cobbles and gravels, medium grained sands - 20 GPS: 569021, 3716850 Elevation: 117 feet Total Depth: 20 feet Groundwater not encountered Bedrock not encountered High caving probability Backfilled with native soil 25

Test Pit No: TP-3
Project Name: Travertine
File Number: 11112-04

Exploration Date: October 16, 2007

Depth (Ft.)	Bulk Spt Spt MOD Calif.	Symbol	uscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
5			SW	116	0,5	WELL GRADED SAND: light brown to white, dense, dry, fine to coarganined sand with some fine to coarse gravels, boulders from surface to depth, abundant cobbles Approximation By Weight: 20% Sands and Gravels 40% Cobbles 40% Boulders very large boulders (from landslide) encountered at 5 feet
10						
15						
20			ORIGINAL PROGRAMMENT			GPS: 568662, 3717050 Elevation: 179 feet Total Depth: 13 feet Groundwater not encountered Bedrock not encountered No stratification High caving potential Backfilled with native soil

Test Pit No: TP-4
Project Name: Travertine

File Number: 11112-04

Exploration Date: October 16, 2007

Excavation Method: Excavator

Depth (Ft.)	Bulk SPT MOD Calif.	Symbol	nscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
- 0			SW	116	0.7	WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand with fine to coarse gravels, abundant cobbles (to 8" diameter) Approximation By Weight: 70% Sands and Gravels 20% Cobbles 10% Boulders Few large boulders removed here
10						
20						GPS: 567996, 3717080 Elevation: 273 feet Total Depth: 15 feet (due to boulders) Groundwater not encountered Bedrock not encountered No stratification High caving potential Backfilled with native soil

Test Pit No: TP-5
Project Name: Travertine
File Number: 11112-04
Test Pit Location: See Figure 2

Exploration Date: October 15, 2007
Excavation Method: Excavator
Logged By: D. Wiggins

Depth (Ft.)	Sample Type WOD Calif.	Symbol	nscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
- 5			SW			WELL GRADED SAND: loose to medium dense, dry, mostly fine to coarse grained sand, few cobbles to 10 feet, fine to coarse grained gravels Approximation By Weight: 60% Sands and Gravels 10% Cobbles 30% Boulders
10						
20			-			GPS: 567740, 3717370 Elevation: 304 feet Total Depth: 20 feet
- 25						Groundwater not encountered Bedrock not encountered Some stratification Moderate caving observed in test pit Backfilled with native soil

Test Pit No: TP-6 Exploration Date: October 15, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Sample Content (%) Page 1 of 1 Dry Density **Description of Units** Moisture Depth (Ft. Type Symbol Bulk SPT MOD Calif. USCS (bct) Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SP-SM SAND TO SILTY SAND: light brown to white, medium dense, dry, mostly fine to coarse grained sand, occassional cobble SW WELL GRADED SAND: light brown, medium dense to dense, dry, mostly medium to coarse grained sand, abundant gravel and cobbles (to 8" diameter) to 9 feet over size cobbles and boulders dominate by weight from 9 to 25 feet 10 Approximation By Weight: 60% Boulders from 9 to 20 feet 30% Boulders from 20 to 25 feet 15 20 25 GPS: 567932, 3717684 Total Depth: 25 feet Groundwater not encountered Bedrock not encountered Stratification not evident Extreme risk of caving due to boulders and dry conditions below 9 feet Backfilled with native soil

Test Pit No: TP-7 Exploration Date: October 17, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Sample Content (%) Dry Density (pcf) Page 1 of 1 **Description of Units** Depth (Ft.) Type Moisture Symbol Bulk SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown to white, dry, fine to coarse grained sand with abundant gravels and cobbles to 12" diameter Approximation By Weight: 50% Sands and Gravels 40% Cobbles 10% Boulders 5 - 10 possible cobble layer - 15 - 20 GPS: 568522, 3717350 Elevation: 176 feet Total Depth: 15 feet Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil 25

Test Pit No: TP-8 Exploration Date: October 17, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Sample Moisture Content (%) Page 1 of 1 Dry Density **Description of Units** Depth (Ft.) Type Symbol Bulk SPT MOD Calif. USCS (bct) Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: dense, dry, fine to coarse grained sand, abundant gravels and cobbles from surface to bottom Approximation By Weight: 60% Sands and Gravels 30% Cobbles 10% Boulders - 10 - 15 20 boulders at bottom of excavation - 25 GPS: 568350, 3717330 Total Depth: 25 feet Groundwater not encountered Bedrock not encountered No stratification visible Moderate caving potential Backfilled with native soil

Telephone (760) 345-1588 Fax (760) 345-7315 Test Pit No: TP-9 Exploration Date: October 16, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Moisture Content (%) Sample Page I of 1 Dry Density **Description of Units** Depth (Ft.) Type Symbol USCS Bulk SPT MOD Calif (bct) Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown to white, medium dense to dense, dry, fine to coarse grained sand, abundant gravels and cobbles 119.0 0.9 Approximation By Weight: 104.5 1.5 50% Sands and Gravels 40% Cobbles - 5 10% Boulders 102 1.1 - 10 - 15 20 cobble layer (resistant) boulders at bottom of excavation GPS: 569440, 3717140 Total Depth: 23 feet - 25 Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil

Test Pit No: TP-10
Project Name: Travertine

File Number: 11112-04

Test Pit Location: See Figure 2

Exploration Date: October 16, 2007

Excavation Method: Excavator

Logged By: D. Wiggins

Test	Pit Locatio	n: See Fig	gure 2			Logged By: D. Wiggins
Depth (Ft.)	Bulk SPT add. MOD Calif.	Symbol	nscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
5			SW	102.4 116.3 110.5	0.7 0.35 0.35	WELL GRADED SAND: light brown to white, medium dense, dry, find to coarse grained sand, abundant gravels and cobbles, no large boulders Approximation By Weight: 48% Sands and Gravels 50% Cobbles 2% Boulders
15						
20						
25						GPS: 569483, 3717480 Total Depth: 25 feet Groundwater not encountered Bedrock not encountered Some stratification visible Moderate caving potential Backfilled with native soil

Telephone (760) 345-1588 Fax (760) 345-7315 Test Pit No: TP-11 Exploration Date: October 15, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Sample Content (%) Page I of 1 Dry Density **Description of Units** Depth (Ft.) Moisture Type Symbol Bulk SPT MOD Calif. USCS (bct) Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SP-SM SAND TO SILTY SAND: light brown, medium dense, dry, fine to coarse grained sand, trace cobbles SW WELL GRADED SAND: light brown, medium dense, dry, fine to coarse grained sand, stratified with cobbles, abundant gravels, trace oversize 5 and boulders Approximation By Weight: 95% Sands, Gravels, and Cobbles 5% Boulders Note: from surface to 25 feet, at least 15 flood episodes - each "strata" about 2 - 10 foot thick - 15 - 20 25 GPS: 569517, 3717842 Total Depth: 25 feet Groundwater not encountered Bedrock not encountered Moderate caving Backfilled with native soil

Test Pit No: TP-12
Project Name: Travertine
File Number: 11112-04

Exploration Date: October 16, 2007

Depth (Ft.)	Bulk Type SPT MOD Calif	Symbol	nscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	Page 1 of 1
0 5 10			SW	117	0.6	WELL GRADED SAND: light brown, dense, dry, sands a boulders near surface predominantly cobbles (to 12" diameter) from 2 feet Approximation By Weight: 20% Sands and Gravels 70 to 80% Cobbles and Boulders	near surface,
220						GPS: 569143, 3717100 Total Depth: 15 feet Groundwater not encountered Bedrock not encountered No stratification obvious High caving potential Backfilled with native soil	

- 30

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Telephone (760) 345-1588 Fax (760) 345-7315

Test Pit No: TP-13
Project Name: Travertine
File Number: 11112-04

Exploration Date: October 18, 2007
Execution Method: Executator

Test Pit Location: See Figure 2 Logged By: D. Wiggins Sample Content (%) Page 1 of 1 Dry Density (pcf) **Description of Units** Depth (Ft.) Moisture Type Symbol Bulk SPT SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. WELL GRADED SAND: light brown to white, dense, dry, fine to coarse SW grained sand, cobbles > 50%, abundant gravel $\sim 10'$ thick layer of cobbles (8-12") to 12' deep 102 0.8 Approximation By Weight: 40% Sands and Gravels 40% Cobbles - 5 20% Boulders - 10 - 15 boulders at bottom of excavation - 20 GPS: 5691230, 3717355 Total Depth: 20 feet Groundwater not encountered Bedrock not encountered Moderate caving potential - 25 Backfilled with native soil

Telephone (760) 345-1588 Fax (760) 345-7315 Test Pit No: TP-14 Exploration Date: October 19, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Sample Content (%) Dry Density (pcf) Page 1 of 1 **Description of Units** Depth (Ft.) Moisture Type Symbol USCS Bulk SPT MOD Calif. Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown, very dense, dry, fine to coarse grained sand on cobbles and boulders abundant gravels Approximation By Weight: 30% Sands and Gravels 20% Cobbles 60% Boulders - 10 Refusal on boulder GPS: 568800, 3717300 Total Depth: 10 feet Groundwater not encountered Bedrock not encountered High caving potential - 15 Backfilled with native soil 20 25

Proj File	st Pit No ect Name: ' Number: ' Pit Locatio	Fravertine 11112-04				Exploration Date: October 18, 2007 Excavation Method: Excavator Logged By: D. Wiggins
Depth (Ft.)	Bulk SPT add. MOD Calif.	Symbol	nscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
- 0 - - - 5			SW	110	1.0	WELL GRADED SAND: light brown, dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 12" diameter Approximation By Weight: 75% Sands and Gravels 20% Cobbles < 5% Boulders
- - 10 - - - 15						No boulders at bottom of excavation
- 13 - - - - 20						GPS: 568752, 3717410
- - - 25 -						Total Depth: 15 feet Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil
- - 30						

Test Pit No: TP-16 Project Name: Travertine

Exploration Date: October 17, 2007

Depth (Ft.)	Bulk SPT AND Calif.	Symbol	nscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
0			SM	103	1.5	SILTY SAND: light brown to white, medium dense, dry, fine to coarse grained sand with abundant gravel and cobbles to 10" diameter Approximation By Weight: 80% Sands and Gravels 20% Cobbles 1% Boulders
10						
20						dense
						GPS: 568550, 3717728 Total Depth: 26 feet Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil

Test Pit No: TP-17
Project Name: Travertine Exploration Date: October 18, 2007 Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2

Depth (Ft.)	Bulk SPT SPT MOD Calif.	Symbol	USCS	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
5			SW	106	0.75	WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant cobbles and gravel Approximation By Weight: 75% Sands and Gravels 20% Cobbles ~ 5% Boulders
10						
15						
20						GPS: 568726, 3717660 Total Depth: 20 feet
25						Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil

Test Pit No: TP-18
Project Name: Travertine

File Number: 11112-04

Exploration Date: October 18, 2007

Excavation Method: Excavator

	Pit Locatio Sample Type			>	9	Logged By: D. Wiggins Page 1 of 1
Depth (Ft.)	Bulk SPT add	Symbol	uscs	Dry Density (pcf)	Moisture Content (%)	Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
0			SW	112	0.7	WELL GRADED SAND: light brown, dense, dry, fine to coarse grained sand, abundant cobbles Approximation By Weight: 50% Sands and Gravels 40% Cobbles
10						10% Boulders
15						
20						GPS: 568880, 3717590 Total Depth: 20 feet
25				Account of the second of the s		Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil
30						

30

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Telephone (760) 345-1588 Fax (760) 345-7315

Test Pit No: TP-19 Exploration Date: October 19, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Sample Moisture Content (%) Dry Density (pcf) Page 1 of 1 Depth (Ft.) **Description of Units** Type Symbol Bulk SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. 0 SW WELL GRADED SAND: light brown to white, dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 8" diameter, scattered small boulders 105 0.5 Approximation By Weight: 80% Sands and Gravels ~ 15% Cobbles - 5 < 5% Boulders 10 few large boulders in bottom 15 20 GPS: 569268, 3717590 Total Depth: 15 feet Groundwater not encountered Bedrock not encountered Moderate caving potential - 25 Backfilled with native soil

79-811B Country Club Drive, Bermuda Dunes, CA 92203

Telephone (760) 345-1588 Fax (760) 345-7315 Test Pit No: TP-20 Exploration Date: October 19, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Moisture Content (%) Sample Dry Density (pcf) Page 1 of 1 **Description of Units** Depth (Ft.) Туре Symbol USCS Bulk SPT MOD Calif. Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained, abundant gravel and cobbles 110 0.3 Approximation By Weight: 75% Sands and Gravels 20% Cobbles < 5% Boulders - 10 - 15 20 GPS: 569097, 3717720 Total Depth: 20 feet Groundwater not encountered Bedrock not encountered Some thin stratification visible - 25 Moderate caving potential Backfilled with native soil

Test Pit No: TP-21
Project Name: Travertine
File Number: 11112-04

Exploration Date: October 15, 2007
Excavation Method: Excavator

Depth (Ft.)	Bulk SPT SPT MOD Calif.	Symbol	uscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	Page 1 of 1
- 0			SP-SM			SAND WITH SILT: light brown, medium dense, dry, fine grained, trace fine gravel	to coarse
- 5			SW			WELL GRADED SAND: light brown, medium dense, dry grained sand, some fine to coarse gravel and few cobbles to Approximation By Weight: 95% Sands, Gravels and Cobbles to 3" diameter Occasional cobbles > 6" to < 10"	
- 10						Trace small boulders trace larger cobbles and trace small boulders	
20						GPS: 568893, 3717822	
25		Trimoressis et sessionement				Total Depth: 15 feet Groundwater not encountered Bedrock not encountered Stratification evident ~ i' thick each throughout Moderate caving potential Backfilled with native soil	

Test Pit No: TP-22 Exploration Date: October 17, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Moisture Content (%) Sample Dry Density (pcf) Page 1 of 1 **Description of Units** Depth (Ft.) Type Symbol Bulk SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown to white, dense, dry, fine to coarse grained sand to 2', abundant gravel and cobbles to 6" diameter throughout 103 0.3 Approximation By Weight: 20% Sands and Gravels 30% Cobbles ~ 50% Boulders - 10 Refusal on boulders 15 20 GPS: 568420 E, 3717166 N Total Depth: 12 feet Groundwater not encountered Bedrock not encountered No stratification visible 25 High caving potential Backfilled with native soil 30

25

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Southwest Telephone (760) 345-1588 Fax (760) 345-7315 Test Pit No: TP-23 Exploration Date: October 17, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Sample Content (%) Page 1 of 1 Dry Density (pcf) **Description of Units** Depth (Ft.) Type Moisture Symbol Bulk SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. WELL GRADED SAND: light brown to white, medium dense, dry, fine SW to coarse grained, gravel below 2', abundant cobbles and gravel 106 0.9 Approximation By Weight: 75% Sands and Gravels 20% Cobbles 5 ~ 5% Boulders - 10 - 15 - 20

> GPS: 568200, 3717330 N Total Depth: 20 feet Groundwater not encountered Bedrock not encountered Some stratification visible Moderate caving potential Backfilled with native soil

Godinwest

Test Pit No: TP-24
Project Name: Travertine
File Number: 11112-04

Test Pit Location: See Figure 2

Exploration Date: October 15, 2007

Excavation Method: Excavator

Logged By: D. Wiggins

Test Pit I	ocatio	n: See Fi	gure 2			Logged By: D. Wiggins	
	SPT do	Symbol	nscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	Page I of
0 5 10			SW			WELL GRADED SAND: light brown, very loose to loose, d coarse grained, few gravel, occasional cobbles to 8" diameter bottom medium dense Approximation By Weight: 85% Sands, Gravels and Cobbles 15% Boulders dense	
20						GPS: 567893, 3717489 Total Depth: 20 feet Groundwater not encountered Bedrock not encountered Thinly bedded stratification evident top to bottom Moderate caving of hole Backfilled with native soil	
30		1884 - A 7988 F-4 198					

Test Pit No: TP-25 Exploration Date: October 15, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Moisture Content (%) Sample Dry Density (pcf) Page 1 of 1 **Description of Units** Depth (Ft.) Type Symbol Bulk SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown, loose, dry, fine to coarse grained sand with abundant gravel and cobbles to 8" diameter medium dense to very dense Approximation By Weight: ~ 50% Sands and Gravels 20% Cobbles 30% Boulders - 10 15 dense - 20 - 25 GPS: 568159, 3717603 Total Depth: 25 feet Groundwater not encountered Bedrock not encountered Thin stratification layers visible Moderate caving potential Backfilled with native soil

Test Pit No: TP-26
Project Name: Travertine
Eile Number: 11112.04

Exploration Date: October 18, 2007

Excavation Method: Excavator

	Pit Location Sample	T			(6)	Logged By: D. Wiggins
Depth (Ft.)	Bulk SPT SPT MOD Calif.	Symbol	NSCS	Dry Density (pcf)	Moisture Content (%)	Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
0 5 10 20			SW	100	0.9	WELL GRADED SAND: light brown, medium dense, dry, fine to coars grained sand below 2' with abundant gravel and cobbles, trace large boulders Approximation By Weight: ~70% Sands and Gravels 30% Cobbles 1% Boulders
25						GPS: 568271, 3717471 Total Depth: 23 feet Groundwater not encountered Bedrock not encountered Some thin stratification layers obvious Moderate caving potential Backfilled with native soil

Test Pit No: TP-27
Project Name: Travertine
File Number: 11112-04

Exploration Date: October 15, 2007

Excavation Method: Excavator

Depth (Ft.)	Sample Type SbT WOD Calif.	Symbol	USCS	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
~ 0			SP-SM			SAND WITH SILT: light brown to white, medium dense, dry, fine to coarse grained
- 5			SW			WELL GRADED SAND: light brown, medium dense, dry, fine to coars grained sand, some fine to coarse gravel and cobbles to 3" diameter Approximation By Weight: 98% Sands, Gravels and occasional Cobbles to 3" diameter 2% Boulders (trace)
- 10						~ 20% Boulders, abundant large cobbles 8-15' deep
15						trace larger cobbles and trace small boulders
20						GPS: 568184, 3717834 Total Depth: 15 feet Groundwater not encountered Bedrock not encountered Stratification not very evident Moderate caving of hole Backfilled with native soil
30						

Test Pit No: TP-28 Exploration Date: Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Moisture Content (%) Sample Dry Density (pcf) Page 1 of 1 Depth (Ft.) **Description of Units** Type Symbol SPT SPT MOD Calif. **USCS** Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.

0		
5	Test Pit Not Excavated	
10		
- - 15		
- 25 -		

30

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Telephone (760) 345-1588 Fax (760) 345-7315

Test Pit No: TP-29 Exploration Date: October 23, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Sample Dry Density (pcf) Content (%) Page 1 of 1 **Description of Units** Type Depth (Ft.) Moisture Symbol Bulk SPT MOD Calif. Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 12" Approximation By Weight: 80% Sands and Gravels ~ 19% Cobbles 5 < 1% Boulders - 10 cobbles at bottom - 15 - 20 GPS: 568573 E, 3718706 N Total Depth: 15 feet Groundwater not encountered Bedrock not encountered Moderate caving potential 25 Hole not backfilled

Test Pit No: TP-30 Exploration Date: October 23, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Sample Content (%) Page 1 of 1 Dry Density (pcf) Depth (Ft.) **Description of Units** Type Moisture Symbol USCS Bulk SPT MOD Calif Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. ROCK: ~ 80% boulders at surface to 10', abundant cobbles, dense, dry RX - 5 - 10 SW WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand to mostly gravel, cobbles and sand 15 light brown, damp, abundant gravel and cobbles to 10" diameter, few boulders - 20 - 90% cobbles, sand and gravel, no boulders 25 GPS: 568010, 3718496 N Total Depth: 25 feet Groundwater not encountered Bedrock not encountered High top caving potential Hole not backfilled

Test Pit No: TP-31 Exploration Date: October 24, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Sample Content (%) Page 1 of 1 Dry Density Depth (Ft.) **Description of Units** Type Moisture Symbol Bulk SPT MOD Calif. USCS (bct) Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. 0 SW WELL GRADED SAND: light brown, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 12" diameter, white minerals Approximation By Weight: 75% Sands and Gravel 15% Cobbles - 5 10% Boulders - 10 few boulders at bottom - 15 Refusal at 15' 20 GPS: 568011 E, 3718070 N' Total Depth: 15 feet Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil 25

30

Southwest

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Telephone (760) 345-1588 Fax (760) 345-7315

Test Pit No: TP-32 Exploration Date: October 24, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Moisture Content (%) Sample Page 1 of 1 Dry Density (pcf) **Description of Units** Depth (Ft.) Type Symbol Bulk SPT MOD Calif. **USCS** Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. WELL GRADED SAND: light brown to white, medium dense, dry, fine SW to coarse grained sand, abundant gravel and cobbles to 12" diameter, some boulders near surface Approximation By Weight: 80% Sands and Gravel ~ 15% Cobbles 111 0.5 ~ 5% Boulders - 10 15 no boulders at bottom 20 GPS: 567900, 3718060 Total Depth: 20 feet Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil 25

Test Pit No: TP-33

Project Name: Travertine

File Number: 11112-04

Exploration Date: October 24, 2007

Excavation Method: Excavator

	Sample			***	0	Description of Units Page 1 of 1
Depth (Ft.)	Bulk SPT Ads. MOD Calif.	Symbol	USCS	Dry Density (pcf)	Moisture Content (%)	Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
0		Y Y Y Y Y Y Y Y Y Y Y Y Y	RX			ROCK: mostly boulders by weight, dense, dry
5			SW			WELL GRADED SAND: light brown to white, medium dense, dry, fin to coarse grained sand, abundant gravel and cobbles to 8" diameter
10						Approximation By Weight: 80% Sands and Gravel ~ 15% Cobbles ~ 5% Boulders
15						no boulders at bottom
25						GPS: 568300, 3718577 N Total Depth: 20 feet Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil

79-811B Country Club Drive, Bermuda Dunes, CA 92203

Telephone (760) 345-1588 Fax (760) 345-7315 Test Pit No: TP-34 Exploration Date: October 24, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Sample Content (%) Page 1 of 1 Dry Density Depth (Ft.) Type **Description of Units** Moisture Symbol Bulk SPT MOD Calif USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. 0 SW WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 10" diameter Approximation By Weight: 80% Sands and Gravel ~ 15% Cobbles - 5 < 5% Boulders - 10 - 15 cobbles in bottom, broken irrigation line 20 GPS: 568506 E, 3718546 N Total Depth: 18 feet Groundwater not encountered Bedrock not encountered Moderate caving potential 25 Backfilled with native soil

Test Pit No: TP-35
Project Name: Travertine
File Number: 11112-04

Exploration Date: October 24, 2007
Excavation Method: Excavator

1	Number: 1 Pit Locatio		igure 2			Logged By: D. Wiggins	
Depth (Ft.)	Bulk SPT SPT MOD Calif	Symbol	USCS	Dry Density (pct)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.	<u> </u>
			SW	106	1.6	WELL GRADED SAND: light brown to white, dense, dry, fine to coal grained sand, abundant gravel and cobbles to 12" diameter Approximation By Weight: 85% Sands and Gravel 10% Cobbles < 5% Boulders very dense damp boulders at bottom, broken irrigation pipe	rrse
- 15 - 20 - 25 - 30						GPS: 568215 E, 3718062 Total Depth: 15 feet Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil	

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Telephone (760) 345-1588 Fax (760) 345-7315 Test Pit No: TP-36 Exploration Date: October 24, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Sample foisture ontent (%) y Density (pcf) Page 1 of 1 epth (Ft.) **Description of Units** Type Calif. Note: The stratification lines shown represent the approximate boundary between soil and/or rock types

Dep	Bulk SPT MOD (Sy	5	Dry	Mo	approximate boundary between soil and/or rock types and the transition may be gradational.
- 0			SW	105	1.3	WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 12" diameter
						Approximation By Weight:
						80% Sands and Gravel - 15% Cobbles
5						~ 5% Boulders
10						
10						
			3			
15						damp
						no boulders or cobbles at bottom
20						
						GPS: 568608 E, 3718014 N
						Total Depth: 18 feet
						Groundwater not encountered Bedrock not encountered
						Moderate caving potential
25						Backfilled with native soil

30

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Telephone (760) 345-1588 Fax (760) 345-7315

Test Pit No: TP-37
Project Name: Travertine
File Number: 11112-04
Excavation Method: Excavator

Test Pit Location: See Figure 2

Test Pit Location: See Figure 2 Logged By: D. Wiggins Sample Moisture Content (%) Dry Density (pcf) Page 1 of 1 Depth (Ft.) Type **Description of Units** Symbol Bulk SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SWWELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 12" diameter - 5 111 2.6 damp Approximation By Weight: 75% Sands and Gravels 20% Cobbles < 2% Boulders - 10 - 15 20 no boulders in bottom, broken irrigation pipe - 25 GPS: 568808 E, 3718016 N Total Depth: 25 feet Groundwater not encountered

Bedrock not encountered Stratification visible High caving potential Backfilled with native soil

30

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Telephone (760) 345-1588 Fax (760) 345-7315

Test Pit No: TP-38 Exploration Date: October 24, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Sample Content (%) Dry Density (pcf) Page 1 of 1 Depth (Ft.) **Description of Units** Type Moisture Symbol Bulk SPT SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. 0 SW WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 12" diameter Approximation By Weight: 75% Sands and Gravel 20% Cobbles - 5 5% Boulders - 10 15 some cobbles, no boulders at bottom 20 GPS: 568807 E, 3718329 N Total Depth: 20 feet Groundwater not encountered Bedrock not encountered Stratification visible 25 Moderate caving potential Backfilled with native soil

Test Pit No: TP-39
Project Name: Travertine
File Number: 11112-04
Test Pit Location: See Figure 2

Exploration Date: October 24, 2007
Excavation Method: Excavator
Logged By: D. Wiggins

Depth (Ft.)	Sample SPT SPT NOD Calif.	Symbol	USCS	Dry Density (pcf)	Moisture Content (%)	Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
5		//// //// //// //// //// ////	RX	112	1.0	ROCK: boulders predominate by weight, very dense, dry, some sands and gravel
10		<i>Y Y Y</i>	SW			WELL GRADED SAND: light brown to white, medium dense, dry, find to coarse grained sand, abundant gravel and cobbles to 12" diameter Approximation By Weight: 80% Sands and Gravel 15% Cobbles ~ 5% Boulders
20						no boulders at bottom GPS: 567905, 3718311 N Total Depth: 20 feet
25					The state of the s	Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil

Test Pit No: TP-40 Project Name: Travertine File Number: 11112-04

Exploration Date: October 24, 2007

Excavation Method: Excavator

Test	Pit Locatio	n: See F	igure 2			Logged By: D. Wiggins
Depth (Ft.)	Bulk SPT SPT MOD Calif.	Symbol	USCS	Dry Density (pcf)	Moisture Content (%)	Note: 'The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
· · · · · · · · · · · · · · · · · · ·			SW	114	1.5	WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 12" diameter Approximation By Weight: 80% Sands and Gravel 18% Cobbles 2% Boulders damp, cobbles, no boulders, broken irrigation pipe
20						GPS: 569005, 3718315 N Total Depth: 15 feet Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil
30						

Telephone (760) 345-1588 Fax (760) 345-7315 Test Pit No: TP-41 Exploration Date: October 25, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Sample Content (%) Dry Density Page 1 of 1 Depth (Ft.) Type **Description of Units** Moisture Bulk SPT SPT MOD Calif. Symbol USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 8" diameter 105 0.6 Approximation By Weight: 90% Sands and Gravel < 10% Cobbles - 5 < 1% Boulders - 10 - 15 damp no cobbles or boulders at bottom 20 GPS: 569407 E, 3717971 Total Depth: 18 feet Groundwater not encountered Bedrock not encountered Some stratification visible 25 Moderate caving potential Backfilled with native soil

Southwest

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Telephone (760) 345-1588 Fax (760) 345-7315

Test Pit No: TP-42 Exploration Date: October 25, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Moisture Content (%) Sample Page 1 of 1 Dry Density **Description of Units** Depth (Ft.) Type Symbol Bulk SPT SPT MOD Calif. USCS (bct) Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 8" diameter Approximation By Weight: 75% Sands and Gravel 20% Cobbles - 5 5% Boulders - 10 - 15 20 GPS: 568030, 3718828 Total Depth: 22 feet Groundwater not encountered 25 Bedrock not encountered Moderate caving potential Backfilled with native soil

Test Pit No: TP-43
Project Name: Travertine
File Number: 11112-04
Excavation
Test Pit Location: See Figure 2
Located Figure 2

Exploration Date: October 23, 2007
Excavation Method: Excavator

File	Number:	11112-04				Excavation Method: Excavator
Test	Pit Location	on: See Fi	igure 2			Logged By: D. Wiggins
Depth (Ft.)	Bulk SPT MOD Calif.	Symbol	USCS	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
0			SW	************************	Y 1.00 - 1.1	WELL GRADED SAND: light brown to white, medium dense, dry, fine
-						to coarse grained sand, abundant gravel and cobbles to 12" diameter Approximation By Weight: 50% Sands and Gravel ~ 40% Cobbles
- 5 - - -						~ 40% Cobbies ~ 10% Boulders
- 10 - -						cobbles at bottom
- 15 - - - - 20						
						GPS: As planned Total Depth: 15 feet Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil
30						

Test Pit No: TP-44
Project Name: Travertine

File Number: 11112-04

Exploration Date: October 19, 2007

Excavation Method: Excavator

	Number: 1 Pit Locatio		gure 2	y	1	Logged By: D. Wiggins
Depth (Ft.)	Bulk SPT SPT MOD Calif.	Symbol	USCS	Dry Density (pcf)	Moisture Content (%)	Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
5			SW	103	0.6	WELL GRADED SAND: light brown, medium dense, dry, fine to coars grained sand, abundant gravel, few cobbles to 6" diameter scattered throughout Approximation By Weight: 98% Sands and Gravel 2% Cobbles No Boulders
20						GPS: 567986 E, 3719298 Total Depth: 15 feet
25						Groundwater not encountered Bedrock at bottom Moderate caving potential Backfilled with native soil

Southwest

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Telephone (760) 345-1588 Fax (760) 345-7315

Test Pit No: TP-45 Exploration Date: October 19, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Moisture Content (%) Sample Dry Density (pcf) Page 1 of 1 **Description of Units** Depth (Ft.) Type Symbol Bulk SPT SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown, medium dense, dry, fine to coarse grained sand, abundant gravel Approximation By Weight: 70% Sands and Gravel 1.0 106 25% Cobbles < 5% Boulders 5 to 8 feet: cobbles, few boulders - 10 - 15 - 20 GPS: 567998, 3719216 Total Depth: 15 feet Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil 25 30

30

79-811B Country Club Drive, Bermuda Dunes, CA 92203 Telephone (760) 345-1588 Fax (760) 345-7315 Test Pit No: TP-46 Exploration Date: October 19, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Sample Content (%) Dry Density Page 1 of 1 Depth (Ft.) **Description of Units** Type Moisture Bulk SPT MOD Calif. Symbol USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SWWELL GRADED SAND: light brown, medium dense, dry, fine to coarse grained sand, abundant gravel, few cobbles 106 0.6 Approximation By Weight: 90% Sands and Gravel 10% Cobbles 5 No Boulders - 10 - 15 - 20 GPS: 568070, 3719220 Total Depth: 15 feet Groundwater not encountered Bedrock near outcrop/ridge Some stratification visible - 25 Moderate caving potential

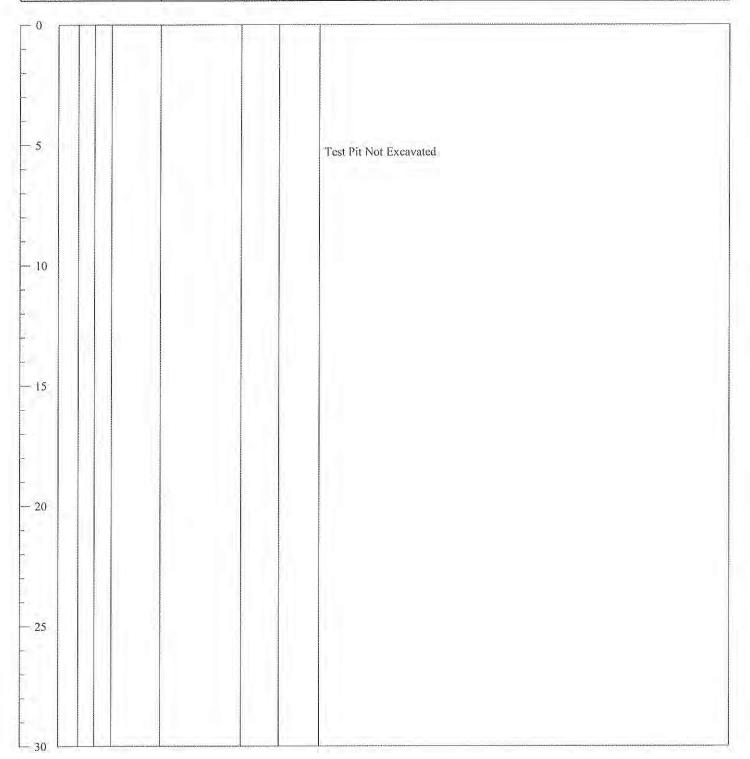
Hole not backfilled

Test Pit No: TP-47
Project Name: Travertine
File Number: 11112-04

Exploration Date: October 23, 2007

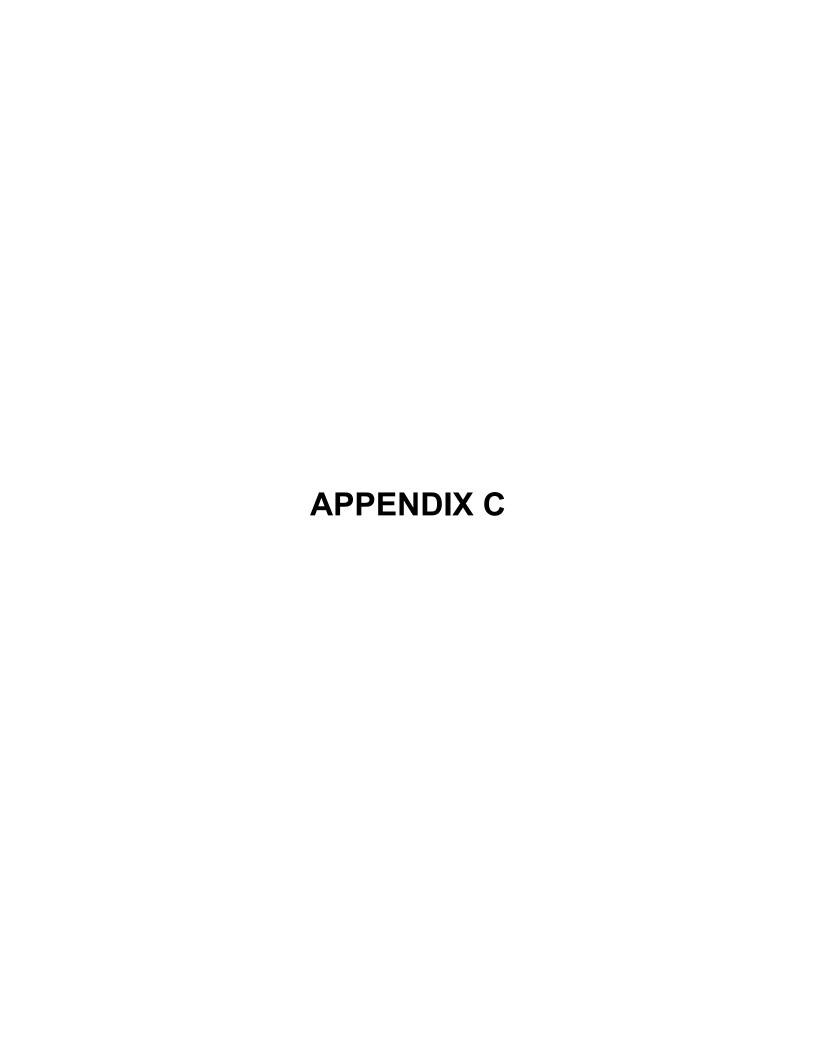
File	Number:	:: Travertine 11112-04 tion; See Fi	joure 2				Excavation Method: Excavator Logged By: D. Wiggins	
Depth (Ft.)	Sample Type	e	SSCS	Dry Density (pcf)	Moisture Content (%)	Note appro:	Description of Units The stratification lines shown represent the simulate boundary between soil and/or rock types and the transition may be gradational.	Page 1 of 1
- 0 - 5 - 10 - 15			SW					
- 20 - 25 - 30						GPS: 567982, 3719 Total Depth: 15 feet Groundwater not en Bedrock not encoun High caving potenti Backfilled with nati	t countered itered al	

Test Pit No: TP-48
Project Name: Travertine
File Number: 11112-04


Exploration Date: October 23, 2007

Excavation Method: Excavator

	Number: 1 Pit Locatio		gurc 2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Logged By: D. Wiggins
Depth (Ft.)	Bulk SPT SPT MOD Calif.	Symbol	nscs	Dry Density (pcf)	Moisture Content (%)	Description of Units Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.
5			SW			WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles Approximation By Weight: > 70% Sands and Gravel 30% Cobbles < 2% Boulders
10						
20						GPS: 568221, 3719025 Total Depth: 15 feet Groundwater not encountered
25						Bedrock not encountered Thinly statified Moderate caving potential Backfilled with native soil


Test Pit No: TP-49 Exploration Date: Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Moisture Content (%) Sample Dry Density (pcf) Page 1 of 1 Depth (Ft.) **Description of Units** Type Symbol Bulk SPT SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational.

Telephone (760) 345-1588 Fax (760) 345-7315 Test Pit No: TP-50 Exploration Date: October 23, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Test Pit Location: See Figure 2 Logged By: D. Wiggins Sample Moisture Content (%) Dry Density (pcf) Page 1 of 1 Depth (Ft.) Type **Description of Units** Symbol Bulk SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles to ~ 10", trace boulders below 3' Approximation By Weight: 80% Sands and Gravel 18% Cobbles 5 < 2% Boulders - 10 - 15 - 20 GPS: 568306 E, 3718879 N Total Depth: 18 feet Groundwater not encountered Bedrock not encountered Moderate caving potential - 25 Backfilled with native soil

Test Pit No: TP-51 Exploration Date: October 23, 2007 Project Name: Travertine Excavation Method: Excavator File Number: 11112-04 Logged By: D. Wiggins Test Pit Location: See Figure 2 Sample Page 1 of 1 Content (%) Dry Density Depth (Ft.) **Description of Units** Type Moisture Symbol Bulk SPT SPT MOD Calif. USCS Note: The stratification lines shown represent the approximate boundary between soil and/or rock types and the transition may be gradational. SW WELL GRADED SAND: light brown to white, medium dense, dry, fine to coarse grained sand, abundant gravel and cobbles to 12" diameter Approximation By Weight: 80% Sands and Gravel 20% Cobbles < 1% Boulders - 10 - 15 - 20 GPS: 568236, 3718773 Total Depth: 20 feet Groundwater not encountered Bedrock not encountered Moderate caving potential Backfilled with native soil - 25

BORING LOGS BY NMG

LABORATORY TEST RESULTS BY NMG

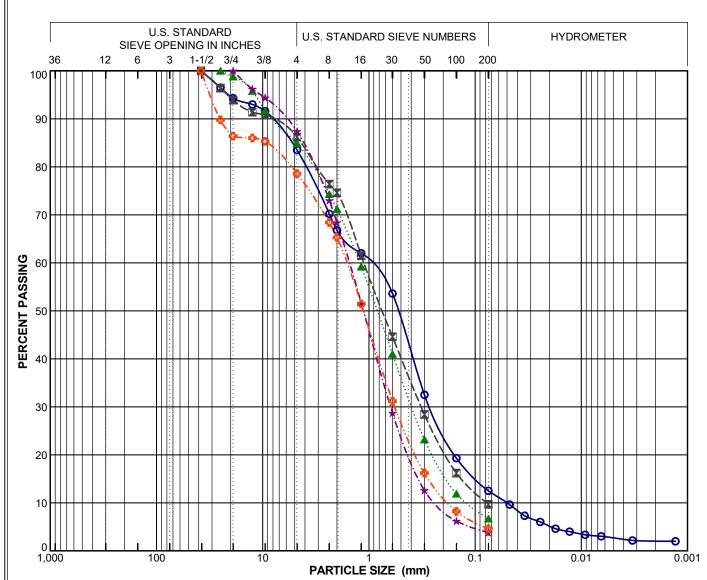
Hofmann / La Quinta - Travertine Project Number: 18186-01

APPENDIX SUMMARY OF SOIL LABORATORY DATA

La Quinta, CA

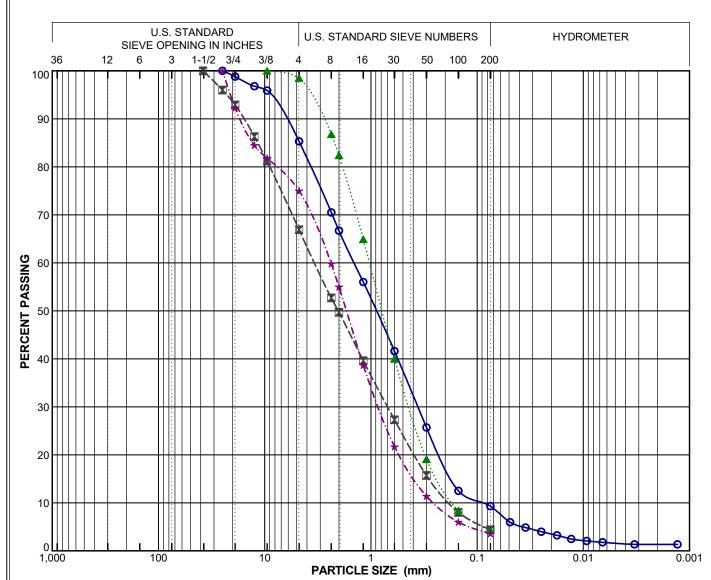
	Boring/Sample Information									Sie Hydro	eve/ ometer	Atter Lin	rberg nits			Direct	Shear		Comp	action				
			End		Blow	Field Wet	Field Dry	Field Moisture	Degree of	Fines Content	Clay Content			USCS	Ultii	mate	Pe	ak	Maximum Dry	Optimum Moisture	Expansion	P-Value	Soluble Sulfate	Remarks
Boring No.	Sample No.	Depth (feet)	Depth (feet)	Elevation (feet)		Density (pcf)	Density (pcf)	Content (%)	Sat. (%)		(% pass. 2µ)	LL (%)	PI (%)	Group Symbol	Cohesion (psf)	Friction Angle (9)	Cohesion (psf)	Friction Angle (9)	Density (pcf)	Content (%)	Index	r-value	Content (% by wt)	Remarks
H-1	D-1	5.0		40.0	30	120.7	119.1	1.3	8.4															
H-1	B-1	5.0		40.0																				
H-1	D-2	10.0		35.0	40			1.1																Disturbed
H-1	D-3	15.0		30.0	41	117.3	115.3	1.7	9.8															
H-1	D-4	20.0		25.0	45	117.9	116.4	1.3	7.8															
H-1	SPT-1	21.5		23.5	32			1.4		13	2			SM										
H-1	D-5	23.0		22.0	40			0.9																Disturbed
H-1	SPT-2	24.5		20.5	21			1.9																
H-1	D-6	26.0		19.0	30			2.5																Disturbed
H-1	SPT-3	27.5		17.5	15			1.1																
H-1	D-7	29.0		16.0	50	126.5	123.9	2.1	15.5															
H-1	SPT-4	30.5		14.5	32			1.8		10				SW-SM										
H-1	D-8	32.0		13.0	70			1.4																Disturbed
H-1	SPT-5	33.5		11.5	22			2.0																
H-1	D-9	35.0		10.0	57			1.8		7				SW-SM										Disturbed
H-1	SPT-6	36.5		8.5	32			1.6																
H-1	D-10	38.0		7.0	85			1.2																Disturbed
H-1	SB-1	38.1		6.9																				
H-2	D-1	5.0		45.0	24			0.5																Disturbed
H-2	D-2	10.0		40.0	43			0.5																Disturbed
H-2	B-1	10.0		40.0																				
H-2	D-3	15.0		35.0	40			0.7																Disturbed
H-2	D-4	17.0		33.0	50			0.6																Disturbed
H-2	SPT-1	18.5		31.5	24			0.6																
H-2	D-5	20.0		30.0	43			0.7		4				SW										Disturbed
H-2	SPT-2	21.5		28.5	31			0.7																
H-2	D-6	23.0		27.0	60			1.0																Disturbed
H-2	SPT-3	24.5		25.5	48			0.8																
H-2	D-7	26.0		24.0	82/9"			0.9																Disturbed
H-2	SPT-4	27.5		22.5	50/1"																			NR
H-2	D-8	29.0		21.0	89			0.5		5				SW										Disturbed
H-2	SPT-5	30.5		19.5	28			0.8																
H-2	D-9	32.0		18.0	70	118.4	117.5	0.8	4.7					SP/SW										CN
H-2	SPT-6	33.5		16.5	27			0.8																
H-2	D-10	35.0		15.0	58			1.0																Disturbed
	1		1	1	1	I .	1		1	1	1			1	1	1	1		1		1	1		

Hofmann / La Quinta - Travertine Project Number: 18186-01


APPENDIX SUMMARY OF SOIL LABORATORY DATA

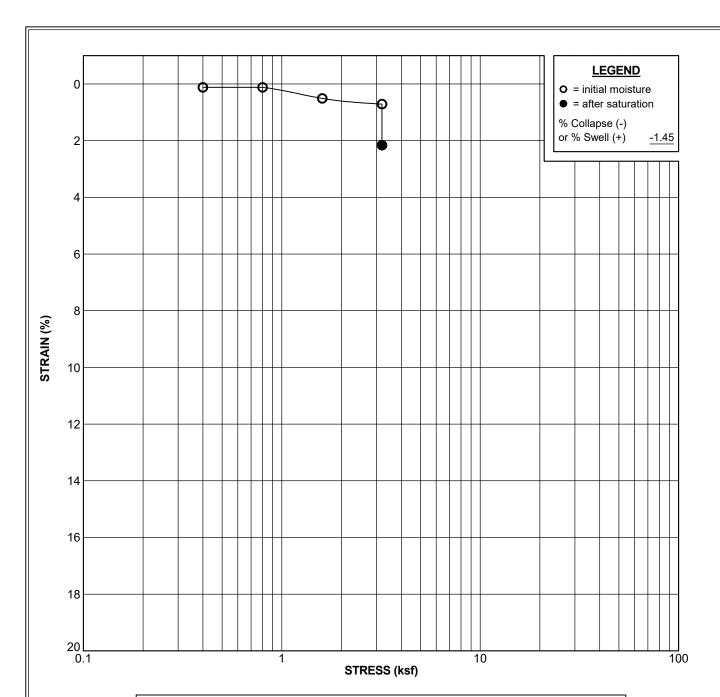
La Quinta, CA

	Boring/Sample Information										eve/ ometer	Atter	rberg nits			Direct	Shear		Comp	action				
			Fad		Blow	Field Wet	Field Dry	Field Moisture	Degree of	Fines Content	Clay			USCS	Ultir	mate	Pe	ak	Maximum Dry		Expansion	D Value	Soluble Sulfate	Remarks
Boring	Sample No.	Depth	End Depth	Elevation	Count	Density	Density	Content	Sat.	(% pass.	(% pass.	LL	PI	Group		Friction			Density	Content	Index	K-value	Content	Remarks
No.		(feet)	(feet)	(feet)	(N)	(pcf)	(pcf)	(%)	(%)	#200)	2μ)	(%)	(%)	Symbol	(psf)	Angle (9)	(psf)	Angle (9)	(pcf)	(%)			(% by wt)	
H-2	SPT-7	36.5		13.5	28			0.8																
H-2	D-11	38.0		12.0	55			1.0																Disturbed
P-1	D-1	5.0		40.0	42	122.0	120.5	1.2	8.2															
P-1	D-2	10.0		35.0	26	116.7	112.5	3.8	20.5															
P-1	D-3	15.0		30.0	36	120.4	112.3	7.3	39.1	9	1			SW-SM										
P-1	D-4	20.0		25.0	50/6"																			NR
P-1	D-5	21.5		23.5	64	122.6	118.3	3.7	23.3					SP/SW										CN
P-2	D-1	5.0		38.0	56			1.1																Disturbed
P-2	D-2	10.0		33.0	46																			NR
P-2	D-3	15.0		28.0	31			1.6																Disturbed
P-2	D-4	20.0		23.0	46	122.4	120.6	1.4	9.8															
P-2	D-5	22.5		20.5	77			1.9		4				SP										Disturbed
P-3	D-1	5.0		41.0	18			8.0																Disturbed
P-3	D-2	10.0		36.0	20			1.1																Disturbed
P-3	D-3	13.5		32.5	45			0.8																Disturbed
P-3	D-4	15.0		31.0	44			0.9																Disturbed
P-3	D-5	16.5		29.5	37			0.7		4				SW										Disturbed
P-3	D-6	18.5		27.5	31			0.7																Disturbed
P-4	D-1	5.0		50.0	29			0.8																Disturbed
P-4	D-2	10.0		45.0	28			0.8																Disturbed
P-4	D-3	15.0		40.0	48			1.0																Disturbed
P-4	D-4	20.0		35.0	39																			NR
P-4	D-5	22.0		33.0	46			0.7																Disturbed
P-4	D-6	23.5		31.5	44			0.7																Disturbed
P-5	D-1	5.0		55.0	27			0.7																Disturbed
P-5	B-1	5.0		55.0																				
P-5	D-2	10.0		50.0	50/6"			0.7																Disturbed
P-5	D-3	15.0		45.0	45																			NR
P-5	D-4	20.0		40.0	80			0.5																Disturbed
P-5	D-5	25.0		35.0	55	121.1	120.7	0.3	2.0															
P-5	D-6	27.0		33.0	51			0.7		4				SW										Disturbed
P-5	D-7	28.5		31.5	72			0.6																Disturbed



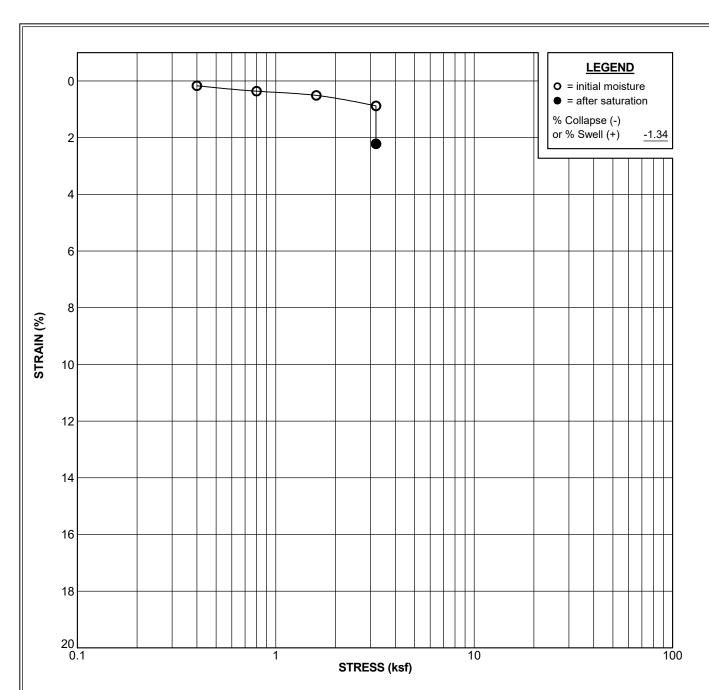
Symbol	Boring Number	Sample Number	Depth (feet)	Field Moisture (%)	LL	PI	Activity PI/-2µ	Cu	Cc	Passing No. 200 Sieve (%)	211 (%)	USCS
0	H-1	SPT-1	21.5	1						13	2	SM
×	H-1	SPT-4	30.5	2				14.4	1.2	10		SW-SM
A	H-1	D-9	35.0	2				10.5	1.1	7		SW-SM
*	H-2	D-5	20.0	1				6.8	1.1	4		SW
•	H-2	D-8	29.0	1				9.3	1.1	5		SW

PARTICLE SIZE DISTRIBUTION



Symbol	Boring Number	Sample Number	Depth (feet)	Field Moisture (%)	LL	PI	Activity PI/-2µ	Cu	Cc	Passing No. 200 Sieve (%)	Passing	USCS
0	P-1	D-3	15.0	7				16.5	1.0	9	1	SW-SM
×	P-2	D-5	22.5	2				18.8	0.8	4		SP
A	P-3	D-5	16.5	1				6.2	1.1	4		SW
*	P-5	D-6	27.0	1				9.5	1.2	4		SW

PARTICLE SIZE DISTRIBUTION



Boring No. H-2	Sample No. D-9	Depth: 32.0 ft		
Sample Description: (Qal) Olive brown SAND USCS: SP/SW				
Liquid Limit:	Plasticity Index:	Percent Passing No. 200 Sieve:		

Test Stage	Moisture Content (%)	Dry Density (pcf)	Degree of Saturation (%)	Void Ratio
Initial	1.3	111.3	6.8	0.514
Final	15.9	113.7	89.1	0.482

CONSOLIDATION TEST RESULTS

Boring No. P-1	Sample No. D-5	Depth: 21.5 ft		
Sample Description: (Qal)	USCS: SP/SW			
Liquid Limit:	Plasticity Index:	Percent Passing No. 200 Sieve:		

Test Stage	Moisture Content (%)	Dry Density (pcf)	Degree of Saturation (%)	Void Ratio
Initial	2.0	109.0	9.9	0.546
Final	15.8	111.4	83.3	0.512

CONSOLIDATION TEST RESULTS

LABORATORY TEST RESULTS BY OTHERS

LABORATORY TEST RESULTS BY SLADDEN (2001)

APPENDIX B

LABORATORY TESTING

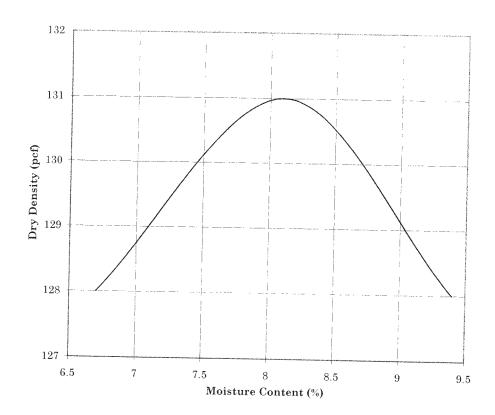
Representative bulk and relatively undisturbed soil samples were obtained in the field and returned to our laboratory for additional observations and testing. Laboratory testing was generally performed in two phases. The first phase consisted of testing in order to determine the compaction of the existing natural soil and the general engineering classifications of the soils underlying the site. This testing was performed in order to estimate the engineering characteristics of the soil and to serve as a basis for selecting samples for the second phase of testing. The second phase consisted of soil mechanics testing. This testing including consolidation, shear strength and expansion testing was performed in order to provide a means of developing specific design recommendations based on the mechanical properties of the soil.

CLASSIFICATION AND COMPACTION TESTING

Unit Weight and Moisture Content Determinations: Each undisturbed sample was weighed and measured in order to determine its unit weight. A small portion of each sample was then subjected to testing in order to determine its moisture content. This was used in order to determine the dry density of the soil in its natural condition. The results of this testing are shown on the Boring Logs.

Maximum Density-Optimum Moisture Determinations: Representative soil types were selected for maximum density determinations. This testing was performed in accordance with the ASTM Standard D1557-91, Test Method A. The results of this testing are presented graphically in this appendix. The maximum densities are compared to the field densities of the soil in order to determine the existing relative compaction to the soil. This is shown on the Boring Logs, and is useful in estimating the strength and compressibility of the soil.

Classification Testing: Soil samples were selected for classification testing. This testing consists of mechanical grain size analyses and Atterberg Limits determinations. These provide information for developing classifications for the soil in accordance with the Unified Classification System. This classification system categorizes the soil into groups having similar engineering characteristics. The results of this testing are very useful in detecting variations in the soils and in selecting samples for further testing.


SOIL MECHANIC'S TESTING

Direct Shear Testing: One bulk sample was selected for Direct Shear Testing. This testing measures the shear strength of the soil under various normal pressures and is used in developing parameters for foundation design and lateral design. Testing was performed using recompacted test specimens, which were saturated prior to testing. Testing was performed using a strain controlled test apparatus with normal pressures ranging from 800 to 2300 pounds per square foot.

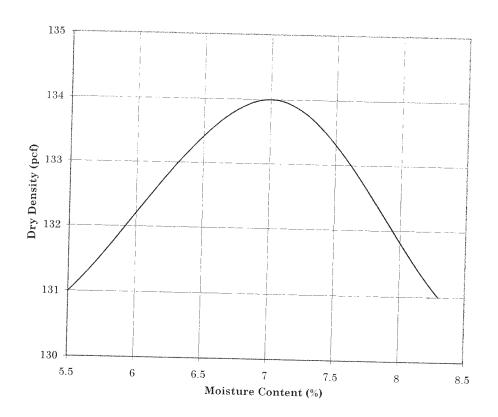
Expansion Testing: One bulk sample was selected for Expansion testing. Expansion testing was performed in accordance with the UBC Standard 18-2. This testing consists of remolding 4-inch diameter by 1-inch thick test specimens to a moisture content and dry density corresponding to approximately 50 percent saturation. The samples are subjected to a surcharge of 144 pounds per square foot and allowed to reach equilibrium. At that point the specimens are inundated with distilled water. The linear expansion is then measured until complete.

Consolidation Testing: Ten relatively undisturbed samples were selected for consolidation testing. For this testing one-inch thick test specimens are subjected to vertical loads varying from 575 psf to 11520 psf applied progressively. The consolidation at each load increment was recorded prior to placement of each subsequent load. The specimens were saturated at the 575 psf or 720 psf load increment.

Job No.: 544-1211

METHOD OF COMPACTION

ASTM D-1557-91, METHOD A OR C


BORING 1 @ 0 - 5'

 $\frac{\text{MAXIMUM UNIT WEIGHT}}{131}$

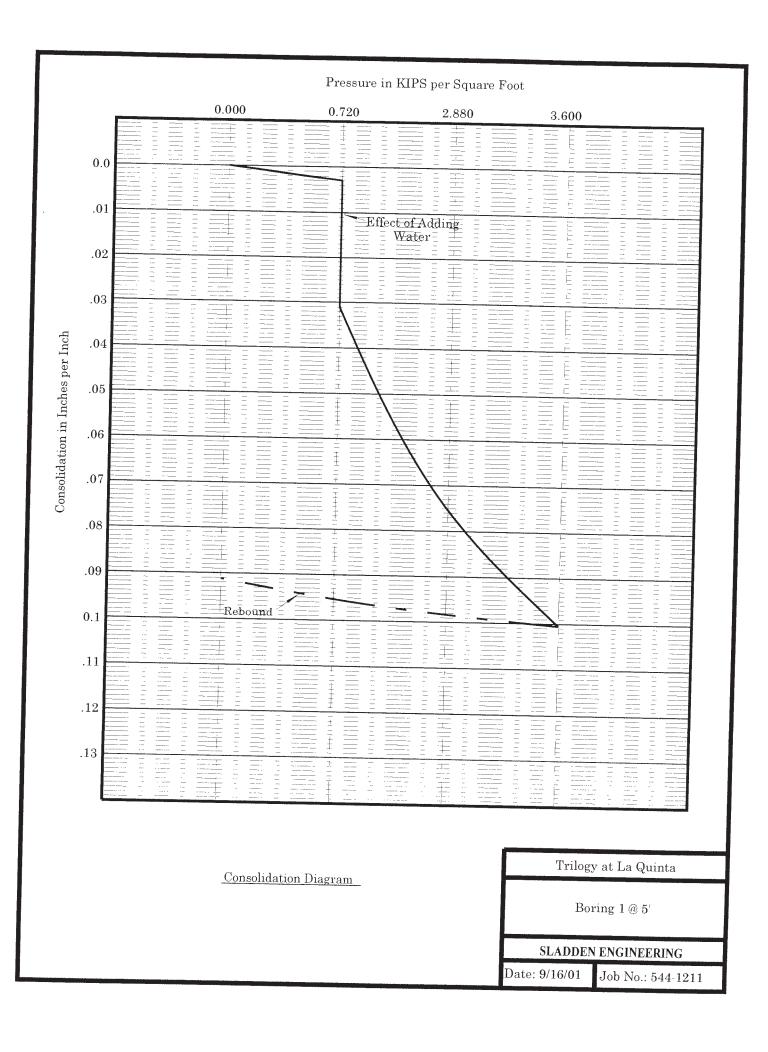
OPTIMUM MOISTURE CONTENT 8.1

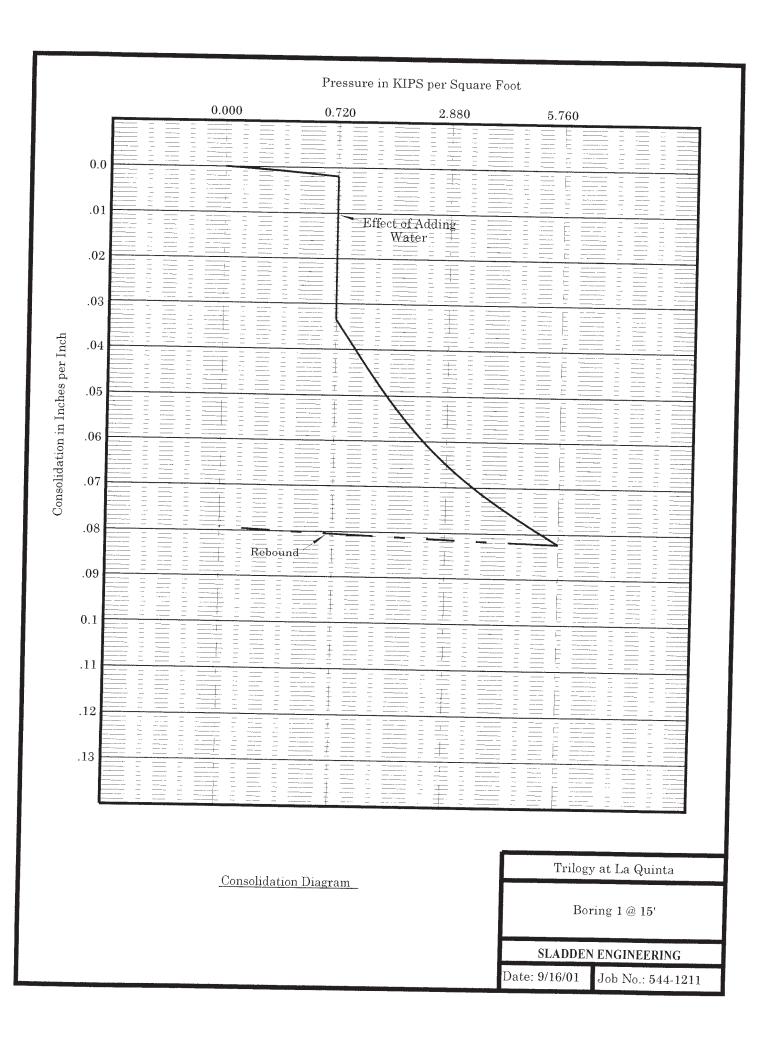
MAXIMUM DENSITY-OPTIMUM MOISTURE CURVE

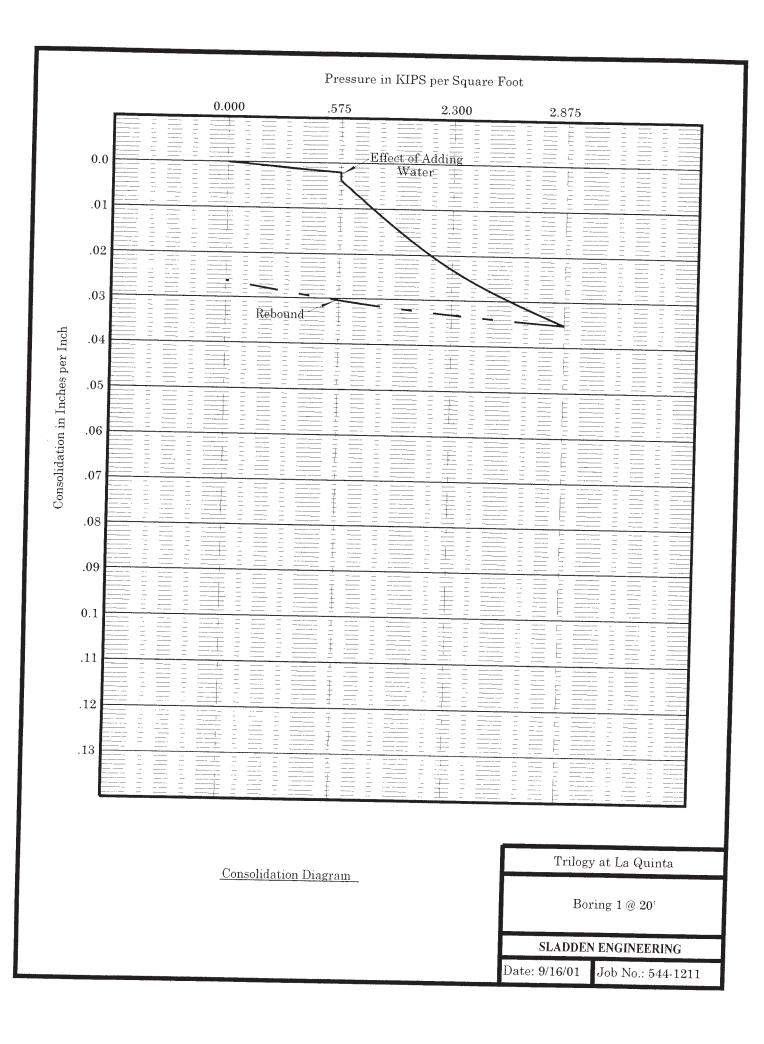
Job No.: 544-1211

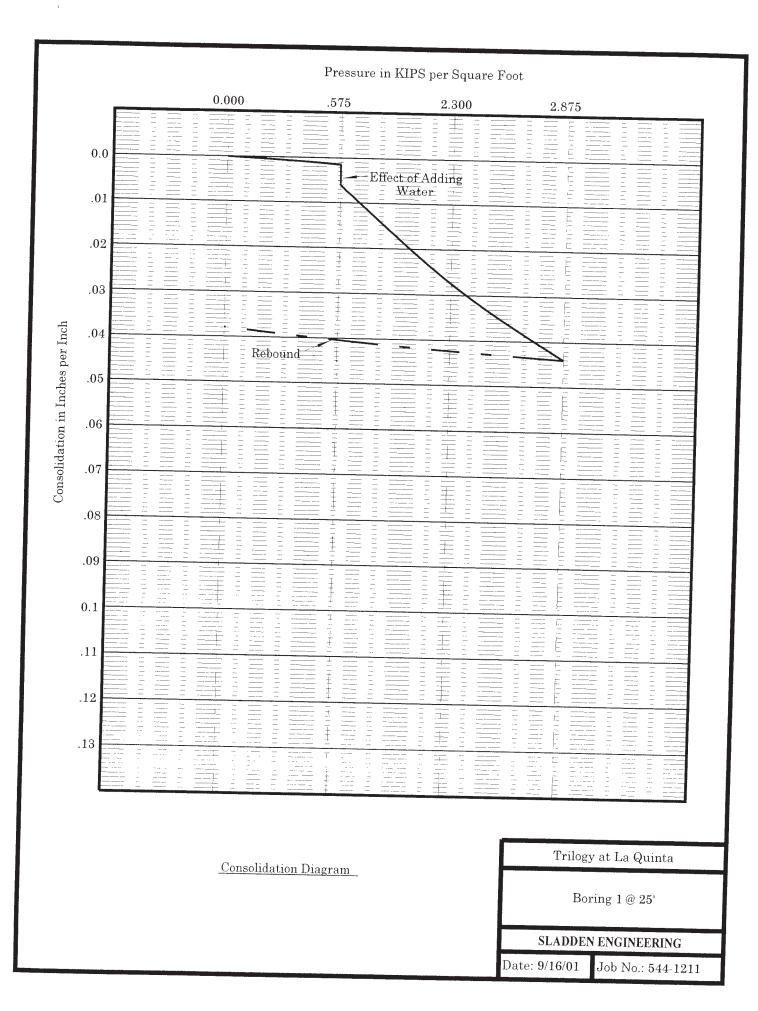
METHOD OF COMPACTION

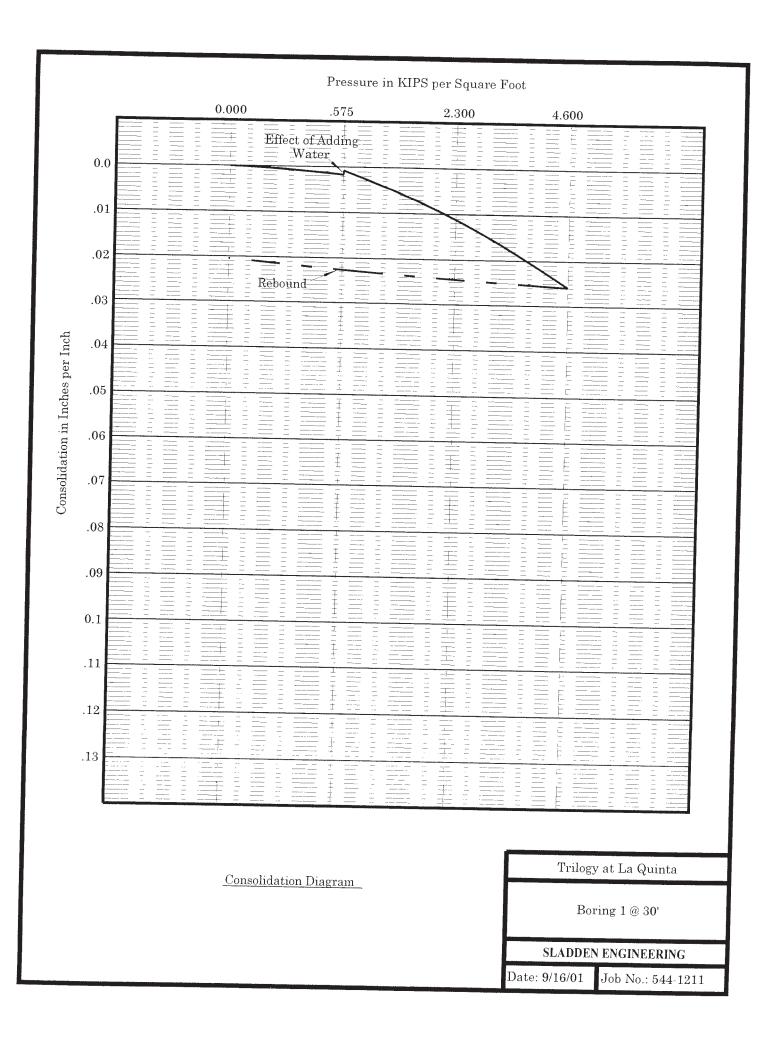
ASTM D-1557-91, METHOD A OR C

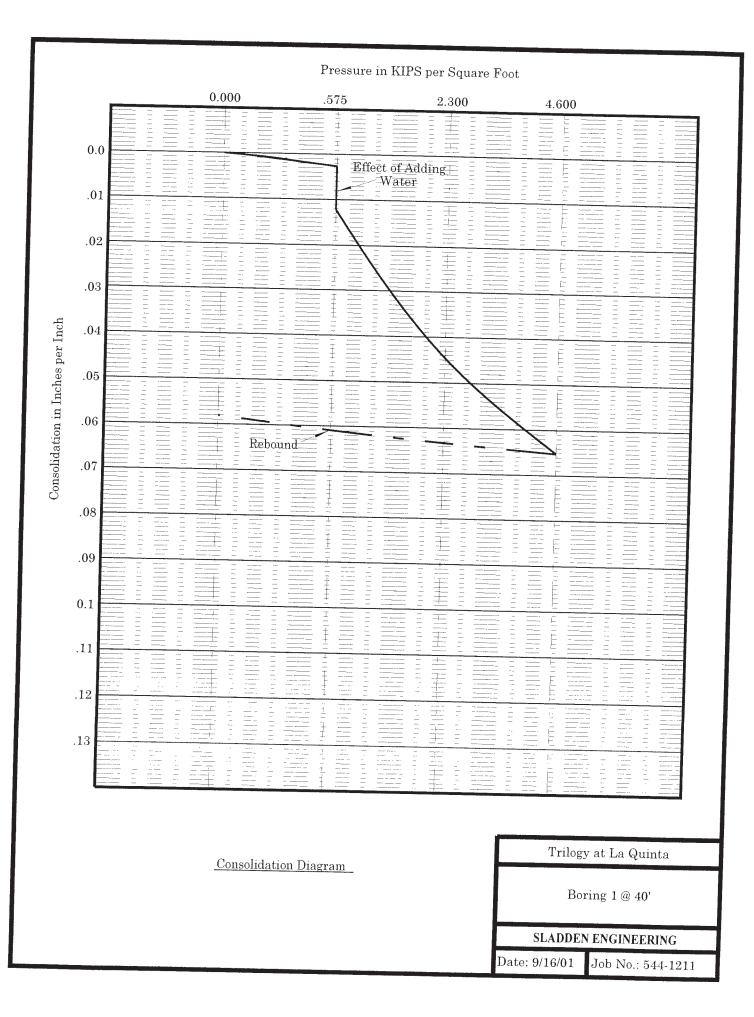

BORING 3 @ 0 - 5'

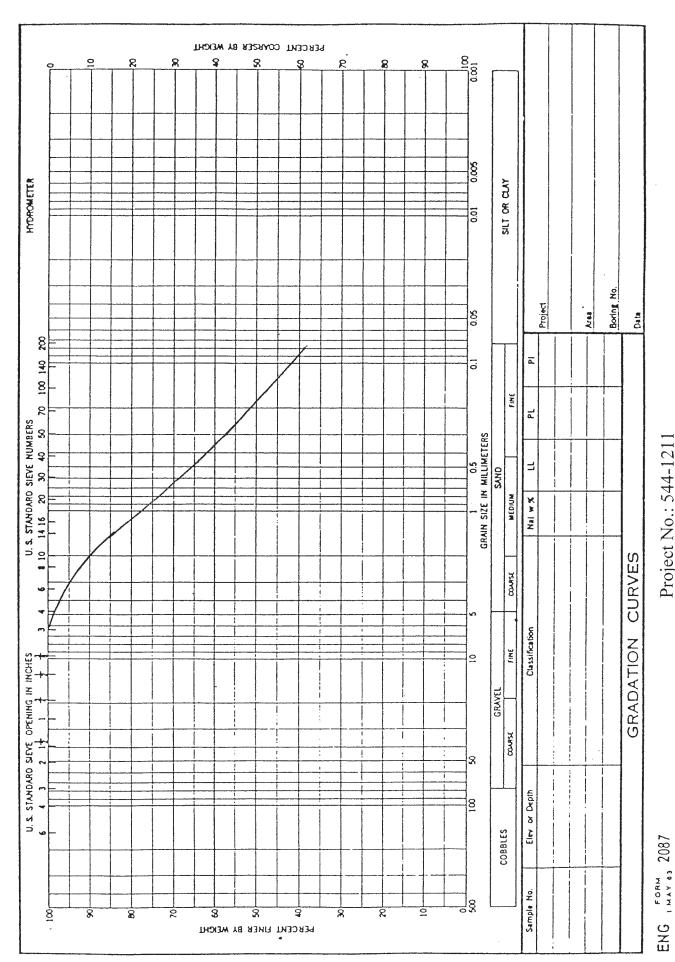

MAXIMUM UNIT WEIGHT

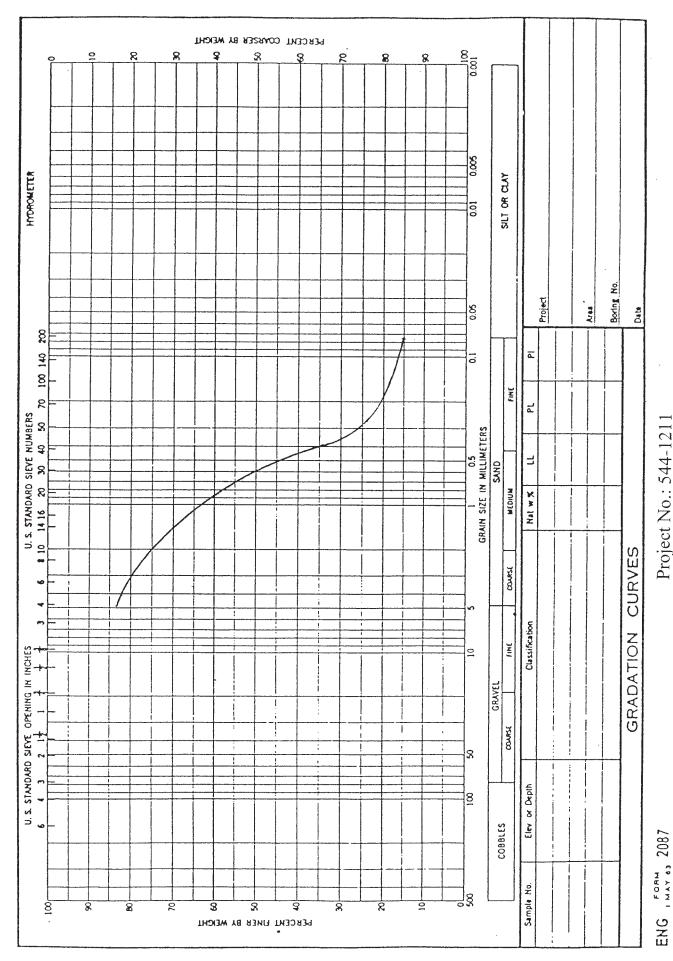

134

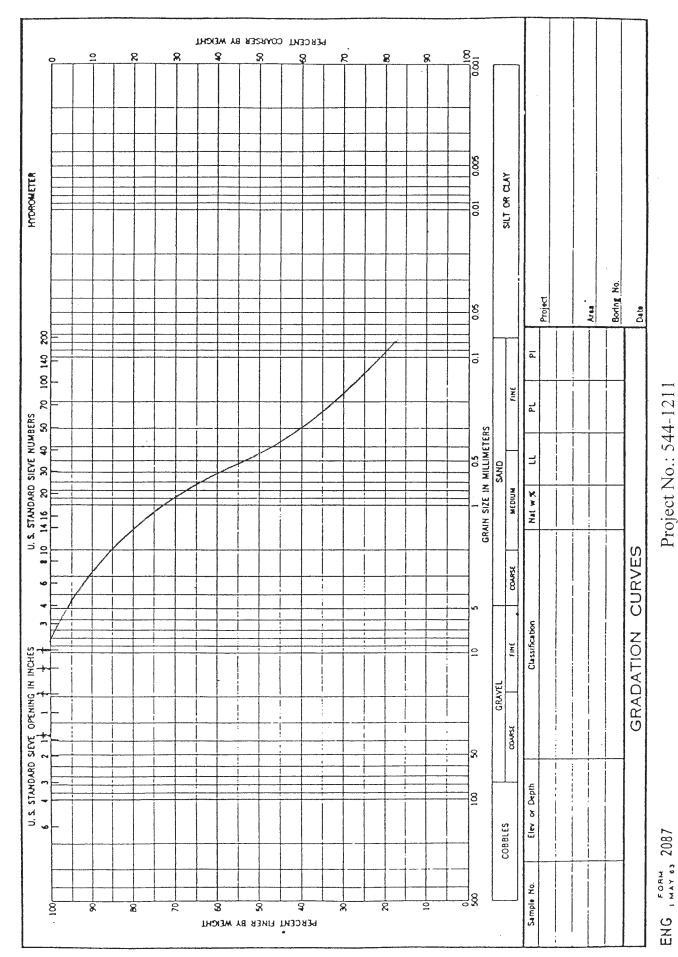

 $\frac{\text{OPTIMUM MOISTURE CONTENT}}{7.0}$

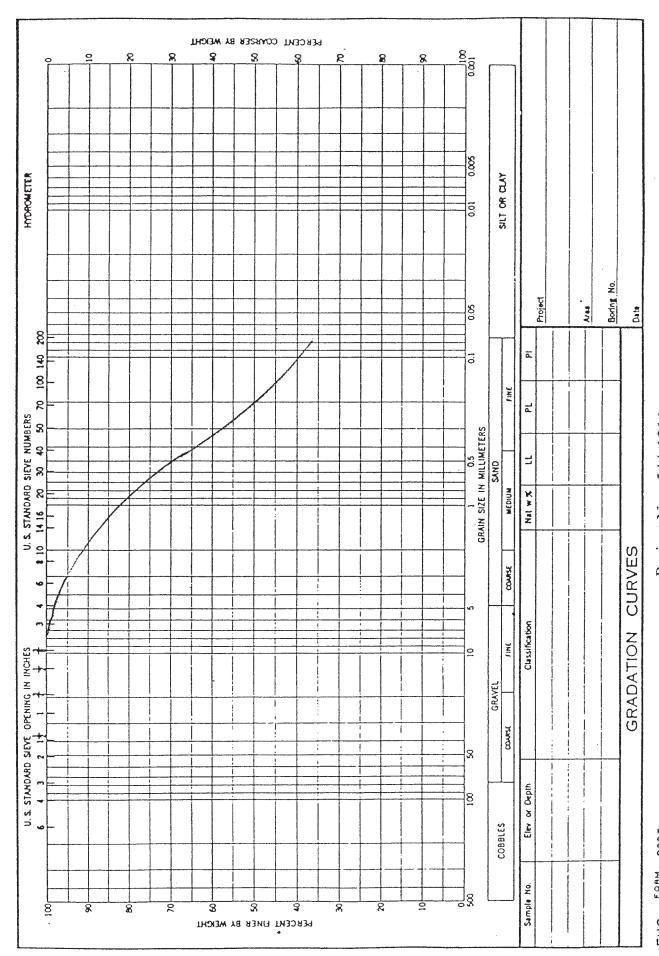

MAXIMUM DENSITY-OPTIMUM MOISTURE CURVE



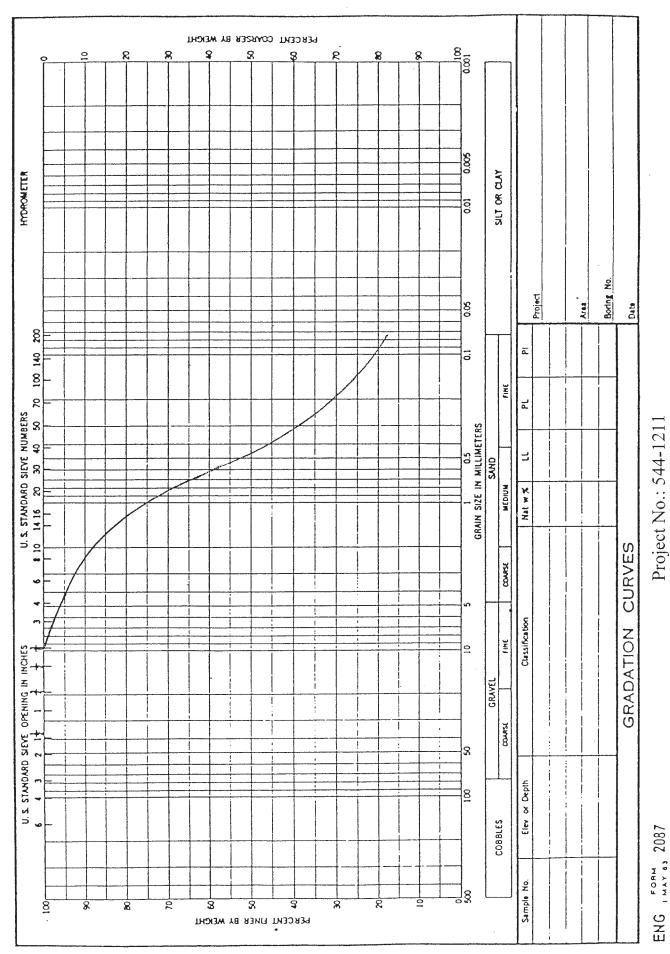




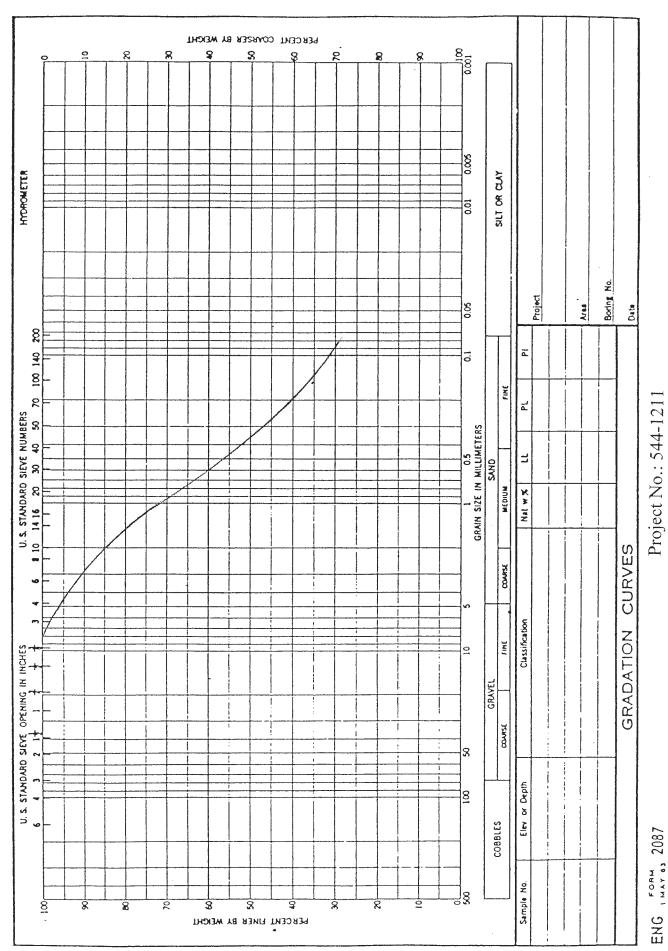



Project No.: 544-1211 Boring 1 @ 0 - 5'

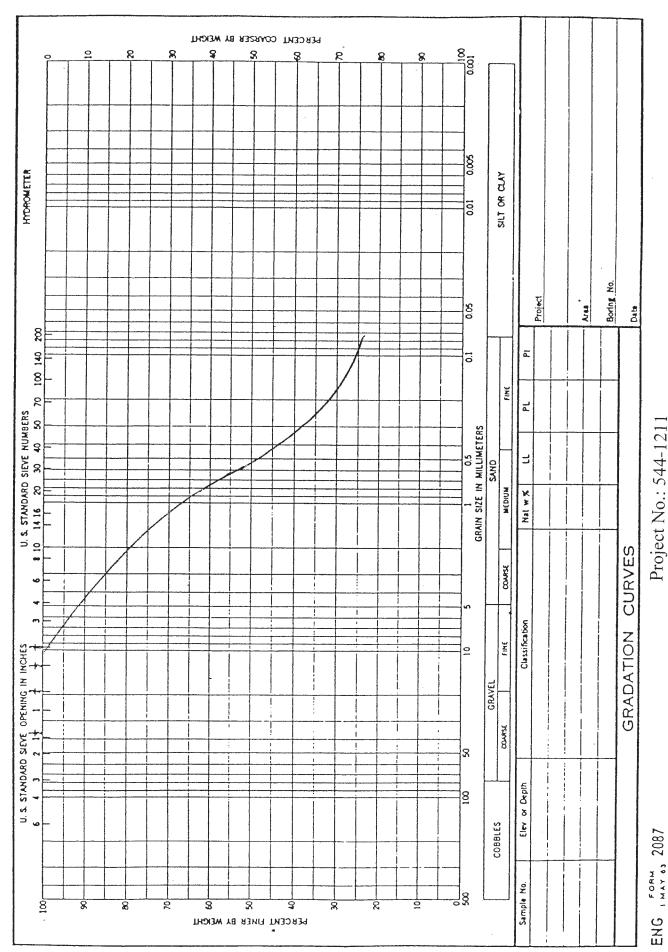
Project No.: 544-1211 Boring 3 @ 0 - 5'

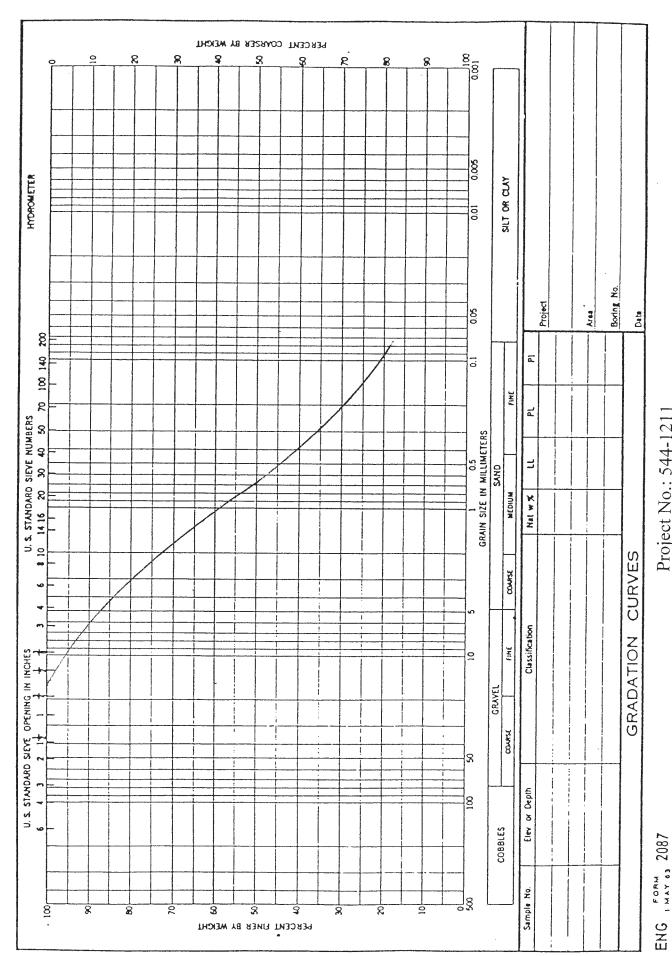


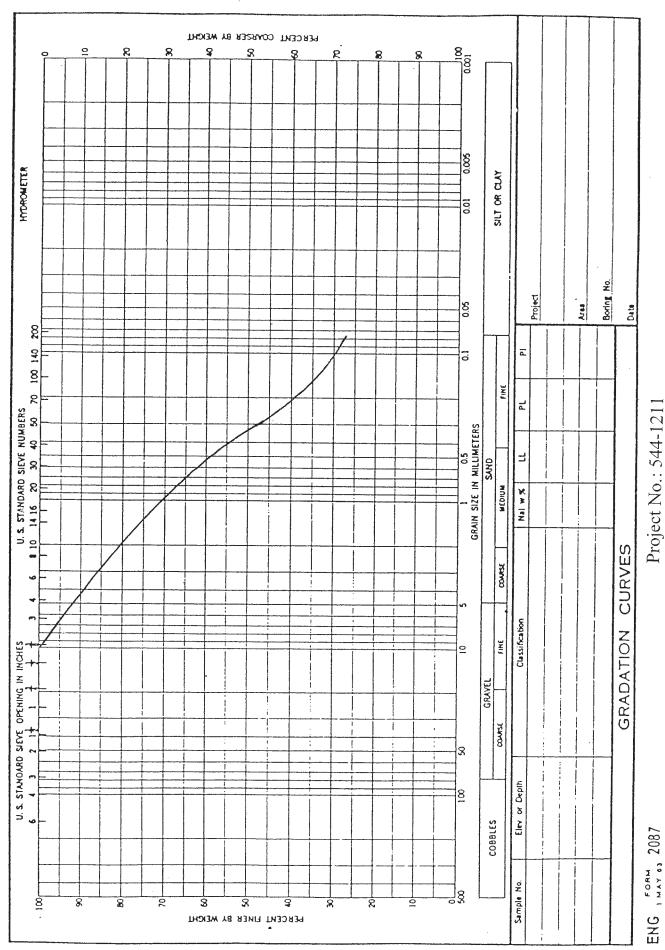
Project No.: 544-1211 Boring 2 @ 5'



Project No.: 544-1211 Boring 2 @ 10'


ENG , LAY 3, 2087


Project No.: 544-1211 Boring 2 @ 20'


Project No.: 544-1211 Boring 5 @ 5'

Project No.: 544-1211 Boring 5 @ 10'

Project No.: 544-1211 Boring 5 @ 15'

Project No.: 544-1211 Boring 5 @ 20'

ANAHEIM TEST LABORATORY

3008 S. ORANGE AVENUE SANTA ANA, CALIFORNIA 92707 PHONE (714) 549-7267 316 75 205

TO:

SLADDEN ENGINEERING: 6782 STANTON AVE. SUITE E BUENA PARK, CA. 90621

DATE: 8/28/01

P.O. No. Chain of Custody

Shipper No.

ATTN: BRETT/DAVE

Lab. No. B 8961 1-2

Specification:

Material: SOIL

PROJECT: #544-1211

ANALYTICAL REPORT

CORROSION SERIES SUMMARY OF DATA

	рН :	SOLUBLE SULFATES per CA. 417 ppm	SOLUBLE CHLORIDES per CA. 422 ppm	MIN. RESISTIVITY per CA. 643 ohm-cm
ülk H-1 0-5'	8.1	255	787	600 max
ulk H-3 0-5'	9.1	49	37	2,628

RESPECTFULLY SUBMITTED

POPPY BRIDGER Chief Chemis

FORM #2

INLAND FOUNDATION ENGINEERING, INC.

Consulting Geotechnical Engineers
1310 South Santa Fe Avenue
San Jacinto, California 92583-4638
(909) 654-1555
FAX (909) 654-055

September 17, 2001 Project No.: \$435-001

Your Project No.: 544-1211 Trilogy

Attention: Brett Anderson 6782 Slanton Avenue, Suite E Buena Park, California 90621

Re: Laboratory Testing – Permeability Study

Gentlemen:

Transmitted herewith are the results of laboratory testing performed on soil samples obtained by your representative and delivered to our laboratory on August 30, 2001 for testing. Our testing was performed in accordance with current ASTM test methods. The results of our testing are as follows:

BORING NO.	DEPTH (FT.)	AVERAGE PERMEABILITY (cm/sec.)
H-2 S-3	0.0-15	2.09 E-05
H-6 S-9	0.0-45	5.30 E-04
H-6 S-3	0.0-15	3.60 E-05
H-2 S-8	0.0-40	1.40 E-05

These test results relate only to those items tested. This report may be reproduced for the purpose of your investigation and report. The laboratory testing was performed in accordance with the appropriate methodology as-well-as contemporary principals and practice. We make no other warranty, either express or implied.

We hope this information is sufficient for your present needs. If you have any questions, please contact our office.

Respectfully,

INLAND FOUNDATION ENGINEERING, INC.

Donald O. Swenson, P.E.

DOS:jg

Distribution: Addressee (2)

LABORATORY TEST RESULTS URS CORPORATION (2002)

TABLE C-1 SUMMARY OF SOIL LABORATORY DATA

	Sample Inf	ormation			In Situ	In Situ		Sieve		Atter	berg L	imits	Lab Com	paction	
Boring Number	Sample Number	Depth, feet	Elevation, feet MSL	USCS Group Symbol	Water Content,	Dry Unit Weight, pcf	Gravel, %	Sand,	<#200, %	LL	PL	PI	Maximum Dry Unit Weight, pcf	Optimum Water Content, %	Other Tests
B-1	1	2.5-4	17.0	SP			14.3	80.8	4.9						
B-1	2	5-6.5	14.5	SP	1.5										SE=79
B-1	3	10-11.5	9.5	SP-SM	1.8				10.3						
B-2	SK-1	0-5	35.3	SP	0.4		9.8	85.9	4.3				122.0	3.0	
B-2	1	2-3.5	33.5	SP	0.4										
B-2	3	6.5-8	29.0	SP-SM	0.6				6.7						
B-2	5	15-16.5	20.5	SW-SM			12.4	80.9	6.7						
B-3	SK-1	0-5	19.3	sw	0.6		30.7	64.8	4.5						
B-3	1	2.5-4	17.0	SW-SM	0.5				8.7						
B-3	3	10-11.5	9.5	SW-SM	0.6										
B-4	SK-1	0-5	3.3	SW-SM	0.7		8.5	85.1	6.4						
B-4	1	2-3.5	1.5	SW-SM	0.5										
B-4	3	10-11.5	-6.5	SW-SM	0.8										
B-5	SK-1	0-10	13.3	sw	0.4		17.7	77.7	4.6						
B-5	1	2.5-4	11.0	sw	0.3										
B-5	3	7-8.5	6.5	SW-SM	0.5				6.3						
B-6	1	2.5-4	3.0	SW-SM	0.5		4.6	85.4	10.0						
B-6	2	5-6.5	0.5	SW-SM	0.5										SE=75
B-6	5	20-21.5	-14.5	SM					28.7						
B-7	SK-1	0-8	11.3	SP	0.4		10.6	85.9	3.5						
B-7	2	5-6.5	6.5	SP	1.2										
B-7	. 3	10-11.5	1.5	SP	0.8										
B-7	5	20-21.5	-8.5	SM					31.3						
B-8	1	2.5-4	63.0	SM	0.9										
B-8	3	10-11.5	55.5	SM	0.1										
B-8 B-8	4	15-16.5	50.5	SW-SM			19.9	72.1	7.9						
	7	26.5-28	39.0	SW-SM					9.8						
B-9	1	2.5-4	82.0	SP-SM	0.5				5.8						
B-9 B-9	3	6.5-8	78.0	SM	1.0				12.5						
	4	10-11.5	74.5	SM						1					SE=69
B-9	6	16.5-18	68.0	SM	0.9										
B-9 B-10	7	20-21.5	64.5	SP-SM					7.0						
B-10	SK-1	0-7	49.3	SW-SM	0.5		15.3	78.2	6.4						

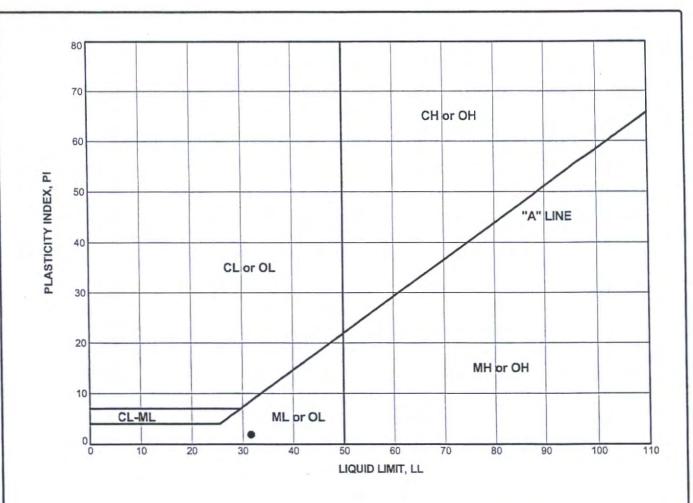
Dike No. 4 Recharge Facility Coachella, California

Sheet 1 of 2

TABLE C-1 SUMMARY OF SOIL LABORATORY DATA

	Sample Int	formation			In Situ	In Situ		Sieve		Atter	berg L	imits	Lab Com	paction	
Boring Number	Sample Number	Depth, feet	Elevation, feet MSL	USCS Group Symbol	Water Content, %	Dry Unit Weight, pcf	Gravel, %	Sand, %	<#200, %	LL	PL	PI	Maximum Dry Unit Weight, pcf	Optimum Water Content, %	Other Tests
B-10	1	2.5-4	47.0	SW-SM	0.4										
B-10	3	10-11.5	39.5	SW-SM	0.9										
B-10	7	21.5-23	28.0	SW-SM	0.7				9.3						
B-11	SK-1	0-10	7.3	SP	0.8		9.6	85.7	4.6						
B-11	1	2.5-4	5.0	SP	0.7										
B-11	3	6.5-8	1.0	SP	0.7										
B-11	6	20-21.5	-12.5	SP-SM	0.5										
B-11	8	26.5-28	-19.0	SP-SM					11.4						
B-12	SK-1	0-7	12.3	SW	0.5		11.8	84.4	3.8						
B-12	1	2.5-4	10.0	sw	0.5										
B-12	2	5-6.5	7.5	SW	0.4										
B-12	3	10-11.5	2.5	SW											SE=69
B-12	4	15-16.5	-2.5	SM					18.0						
B-12	5	20-21.5	-7.5	SM	1.0										
TP-1	SK-1	0-4	4.2	SP-SM	0.8		11.3	82.4	6.3						
TP-1	PB-3	12-13	-6.2	ML	2.8				71.1	32	30	2			
TP-1	SK-2	12-15	-7.3	SW-SM	0.9		9.4	80.1	10.5						
TP-2	SK-1	0-5	20.7	SW-SM	0.7		6.8	86.3	6.9				125.0	4.0	
TP-2	SK-2	10-15	10.7	SW	0.8		11.4	84.0	4.6						
TP-3	SK-1	0-5	44.7	SP	0.5		14.2	83.0	2.8				121.5	3.5	
TP-3	SK-2	10-14	35.2	SW-SM	1.2		12.4	80.3	7.3						
TP-4	SK-1	0-5	61.7	SP	0.4		11.1	85.8	3.1						
TP-5	SK-1	5-10	27.7	SP	0.7		17.4	78.5	4.1						
TP-6	SK-1	0-6	15.2	SP-SM	0.8		14.3	80.2	5.4				123.0	4.5	
TP-7	SK-1	0-5	7.7	SP	0.7		11.3	84.3	4.5						
TP-8	SK-1	0-10	11.2	SP	0.8		18.3	78.4	3.3						

NOTE: The laboratory tests were performed in general accordance with the following standards:

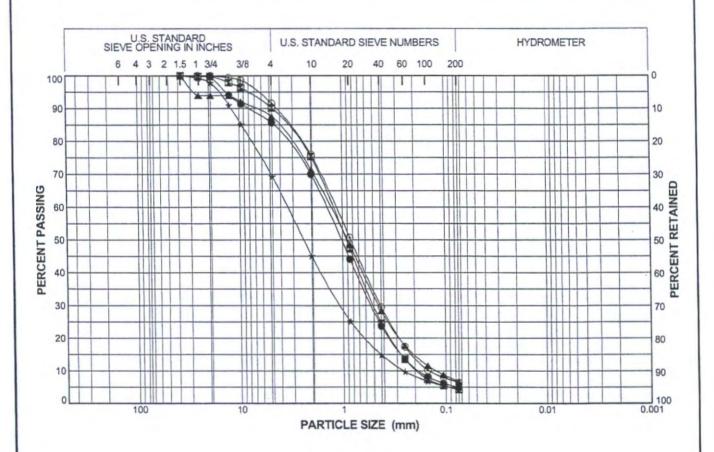

Water Content - ASTM Test Method D2216
Dry Unit Weight - ASTM Test Method D2937
Particle Size Distribution Analysis by Mechanical Sieving - ASTM Test Method D422
Atterberg Limits - ASTM Test Method D4318
Laboratory Compaction by Modified Effort - ASTM Test Method D1557
Sand Equivalent [SE] - ASTM Test Method D2419

Dike No. 4 Recharge Facility Coachella, California

URS

Sheet 2 of 2

Report SOIL_1_PORTRAIT_GVILL; DIKE4COA.GPJ; 01/10/2/

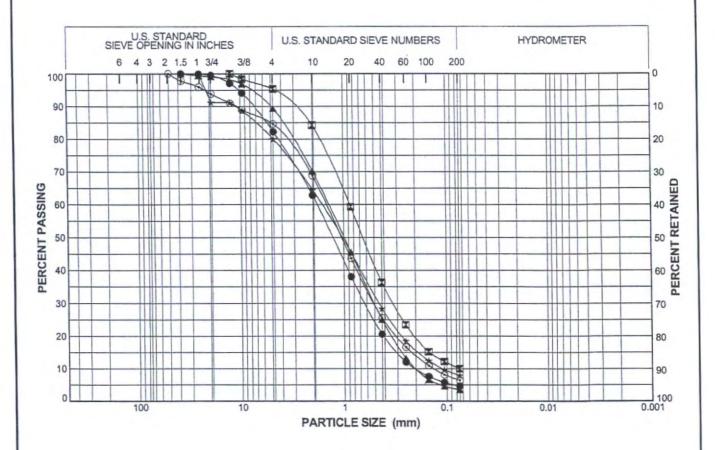

Boring Number	Sample Number	Depth (feet)	Test Symbol	Water Content (%)	LL	PL	Pl	Classification
TP-1	PB-3	12-13	•	3	32	30	2	Silt with Sand (ML)
	-			-				1

PLASTICITY CHART

Figure C-1

Report: ATTERBERG_PLOT_12 PTS; File: DIKE4COA.GPJ; 1/7/2003 TP-01

COPPLES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

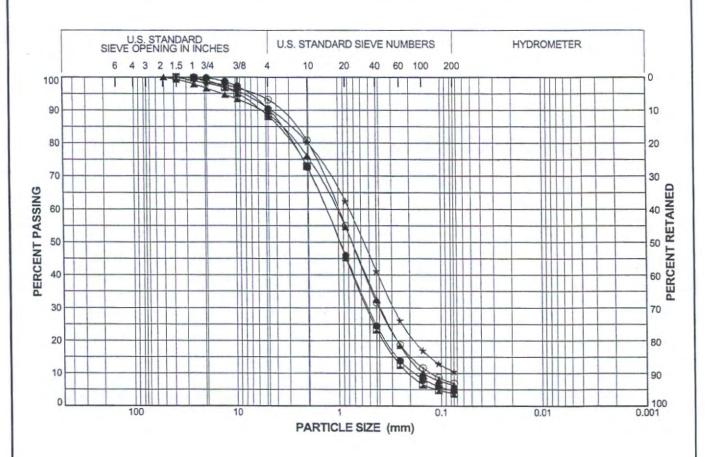

Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification	
B-1	1	2.5-4	•			Poorly Graded Sand (SP)	
B-2	SK-1	0-5	×			Poorly Graded Sand (SP)	
B-2	5	15-16.5	A			Well-Graded Sand with Silt (SW-SM)	
B-3	SK-1	0-5	*			Well-Graded Sand with Gravel (SW)	
B-4	SK-1	0-5	•			Well-Graded Sand with Silt (SW-SM)	

PARTICLE SIZE DISTRIBUTION CURVES

Figure C-2

Report: SIEVE 5 CURVES SNA; File: DIKE4COA.GPJ; 1772003 B-04

COBBLES	GRA	VEL		SAND		SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAT

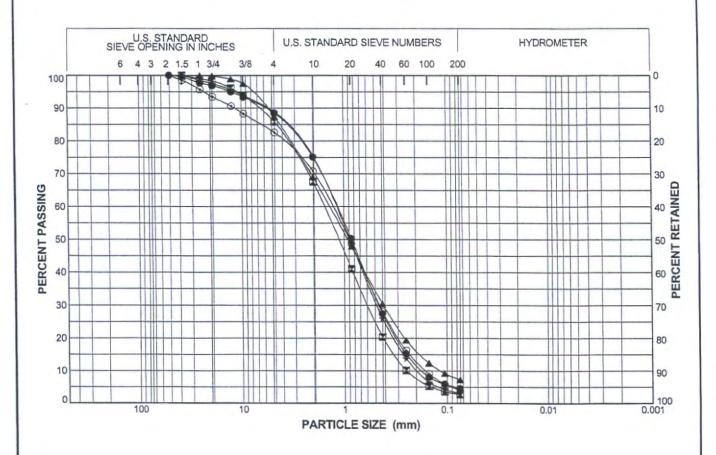

Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification	
B-5	SK-1	0-10	•			Well-Graded Sand with Gravel (SW)	
B-6	1	2.5-4	X			Well-Graded Sand with Silt (SW-SM)	
B-7	SK-1	0-8	A			Poorly Graded Sand (SP)	
B-8	4	15-16.5	*			Well-Graded Sand with Silt and Gravel (SW-SM)	
B-10	SK-1	0-7	0			Well-Graded Sand with Silt and Gravel (SW-SM)	

PARTICLE SIZE
DISTRIBUTION CURVES

Figure C-3

Report: SIEVE_5_CURVES_SNA; File: DIKE4COA.GPJ; 1/7/2003 B-10

COBBLES	GRA	VEL		SAND		SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

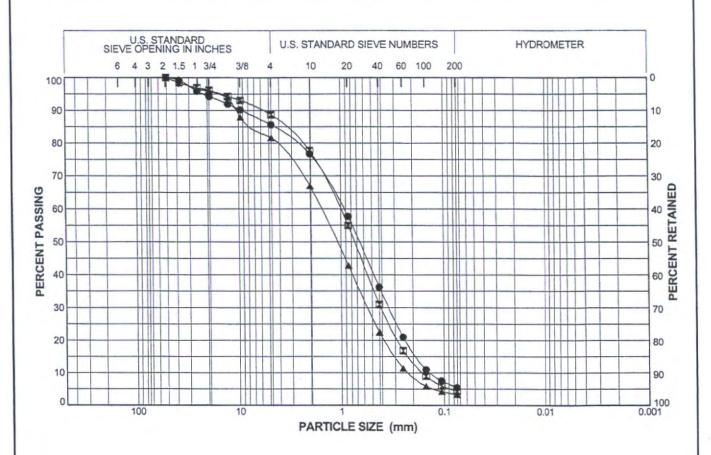

Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification
B-11	SK-1	0-10	•			Poorly Graded Sand (SP)
B-12	SK-1	0-7	x			Well-Graded Sand (SW)
TP-1	SK-1	0-4	•			Poorly Graded Sand with Silt (SP-SM)
TP-1	SK-2	12-15	*			Well-Graded Sand with Silt (SW-SM)
TP-2	SK-1	0-5	0			Well-Graded Sand with Silt (SW-SM)

PARTICLE SIZE
DISTRIBUTION CURVES

Figure C-4

Report: SIEVE_5_CURVES_SNA; File: DIKE4COA.GPJ; 1/7/2003 TP-02

COBBLES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

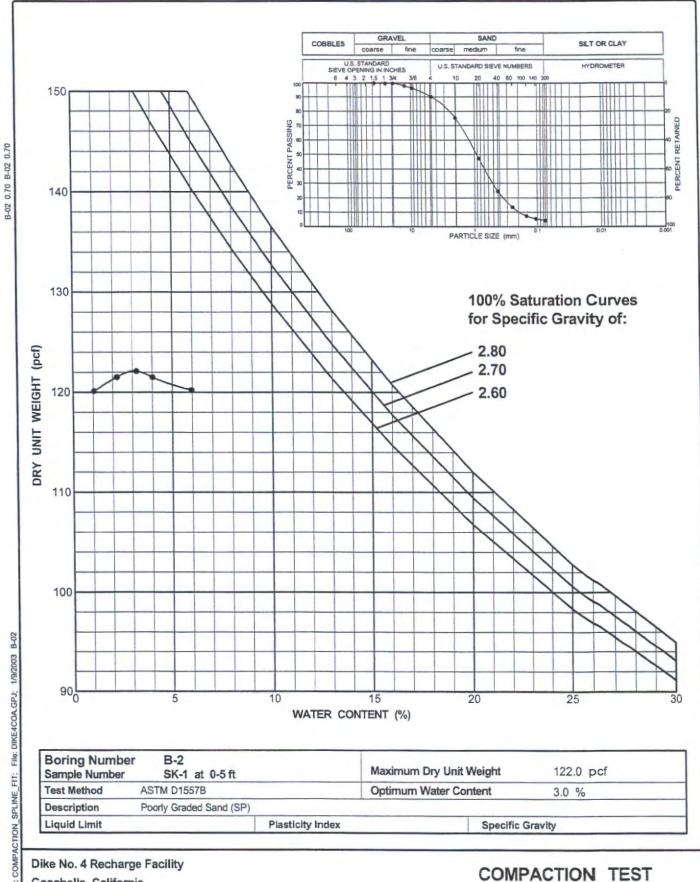

Boring Number	Sample Number	Depth (feet)	Symbol	LL	PI	Classification	
TP-2	SK-2	10-15	•			Well-Graded Sand (SW)	
TP-3	SK-1	0-5	x			Poorly Graded Sand (SP)	
TP-3	SK-2	10-14				Well-Graded Sand with Sitt (SW-SM)	
TP-4	SK-1	0-5	*			Poorly Graded Sand (SP)	
TP-5	SK-1	5-10	•			Poorly Graded Sand with Gravel (SP)	

PARTICLE SIZE DISTRIBUTION CURVES

Figure C-5

Report: SIEVE_5_CURVES_SNA; File: DIKE4COA.GPJ; 1/7/2003 TP-05

COBBLES	GRA	VEL		SAND		SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY



Boring Number	Sample Number	Depth (feet)	Symbol	ш	PI	Classification	
TP-6	SK-1	0-6	•			Poorly Graded Sand with Silt (SP-SM)	
TP-7	SK-1	0-5	×			Poorly Graded Sand (SP)	
TP-8	SK-1	0-10	A			Poorly Graded Sand with Gravel (SP)	

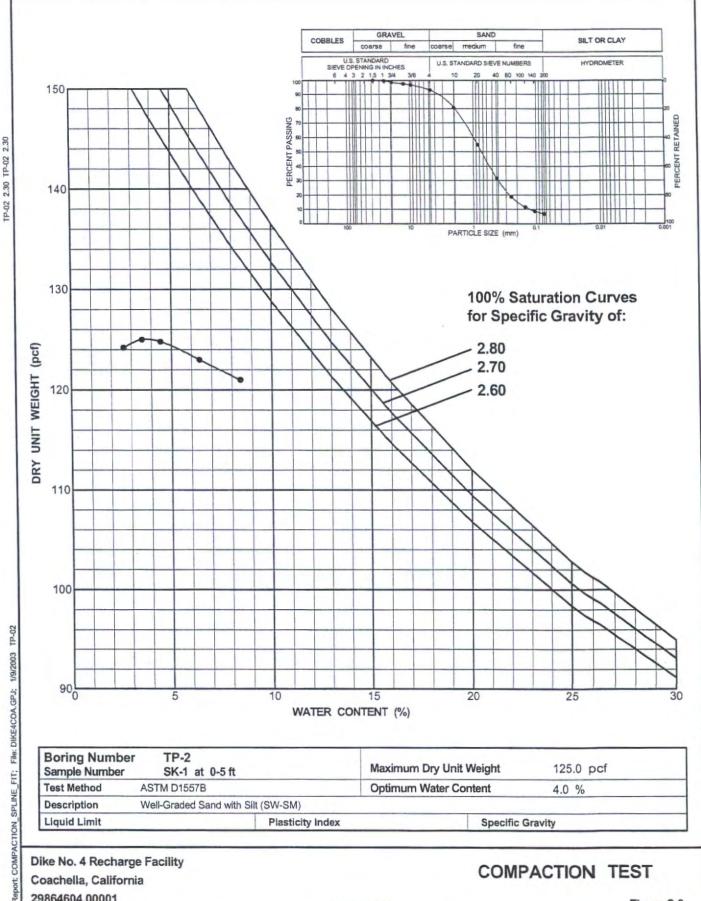
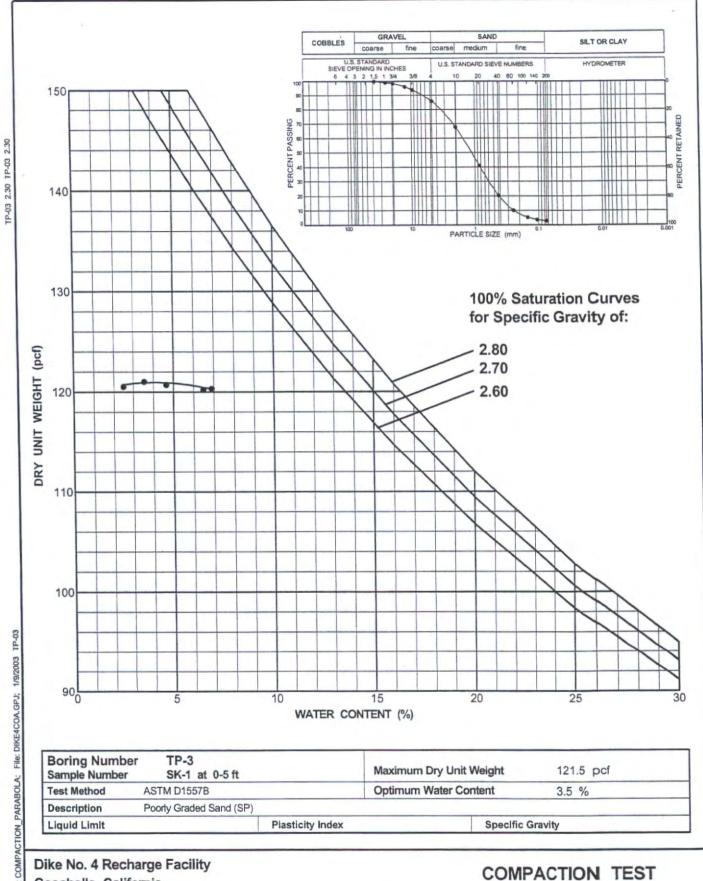
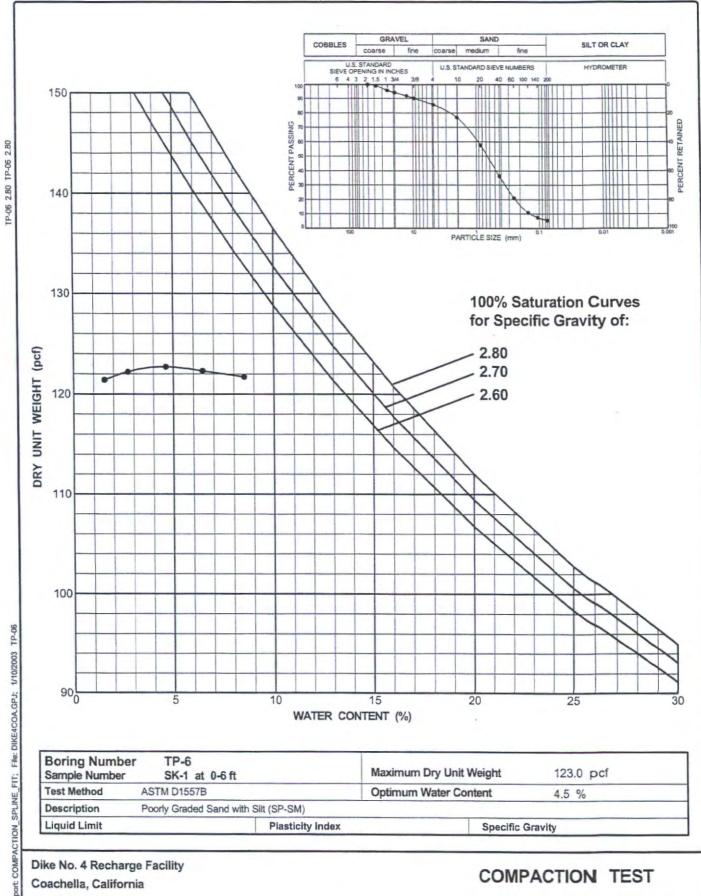

PARTICLE SIZE
DISTRIBUTION CURVES

Figure C-6

Report: SIEVE_5_CURVES_SNA; File: DIKE4COA.GPJ; 17/2003 TP-08



Coachella, California 29864604.00001



Coachella, California 29864604.00001

COMPACTION TEST

URS

29864604.00001

LABORATORY TEST RESULTS BY SLADDEN (2005a)

APPENDIX B

LABORATORY TESTING

Representative bulk and relatively undisturbed soil samples were obtained in the field and returned to our laboratory for additional observations and testing. Laboratory testing was generally performed in two phases. The first phase consisted of testing in order to determine the compaction of the existing natural soil and the general engineering classifications of the soils underlying the site. This testing was performed in order to estimate the engineering characteristics of the soil and to serve as a basis for selecting samples for the second phase of testing. The second phase consisted of soil mechanics testing. This testing including consolidation, shear strength and expansion testing was performed in order to provide a means of developing specific design recommendations based on the mechanical properties of the soil.

CLASSIFICATION AND COMPACTION TESTING

Unit Weight and Moisture Content Determinations: Each undisturbed sample was weighed and measured in order to determine its unit weight. A small portion of each sample was then subjected to testing in order to determine its moisture content. This was used in order to determine the dry density of the soil in its natural condition. The results of this testing are shown on the Boring Logs.

Maximum Density-Optimum Moisture Determinations: Representative soil types were selected for maximum density determinations. This testing was performed in accordance with the ASTM Standard D1557-91, Test Method A. The results of this testing are presented graphically in this appendix. The maximum densities are compared to the field densities of the soil in order to determine the existing relative compaction to the soil. This is shown on the Boring Log, and is useful in estimating the strength and compressibility of the soil.

Classification Testing: Soil samples were selected for classification testing. This testing consists of mechanical grain size analyses and Atterberg Limits determinations. These provide information for developing classifications for the soil in accordance with the Unified Classification System. This classification system categorizes the soil into groups having similar engineering characteristics. The results of this testing are very useful in detecting variations in the soils and in selecting samples for further testing.

SOIL MECHANIC'S TESTING

Direct Shear Testing: One bulk sample was selected for Direct Shear Testing. This testing measures the shear strength of the soil under various normal pressures and is used in developing parameters for foundation design and lateral design. Testing was performed using recompacted test specimens, which were saturated prior to testing. Testing was performed using a strain controlled test apparatus with normal pressures ranging from 800 to 2300 pounds per square foot.

Expansion Testing: One bulk sample was selected for Expansion testing. Expansion testing was performed in accordance with the UBC Standard 18-2. This testing consists of remolding 4-inch diameter by 1-inch thick test specimens to a moisture content and dry density corresponding to approximately 50 percent saturation. The samples are subjected to a surcharge of 144 pounds per square foot and allowed to reach equilibrium. At that point the specimens are inundated with distilled water. The linear expansion is then measured until complete.

Consolidation Testing: Four relatively undisturbed samples were selected for consolidation testing. For this testing one-inch thick test specimens are subjected to vertical loads varying from 575 psf to 11520 psf applied progressively. The consolidation at each load increment was recorded prior to placement of each subsequent load. The specimens were saturated at the 575 psf or 720 psf load increment.

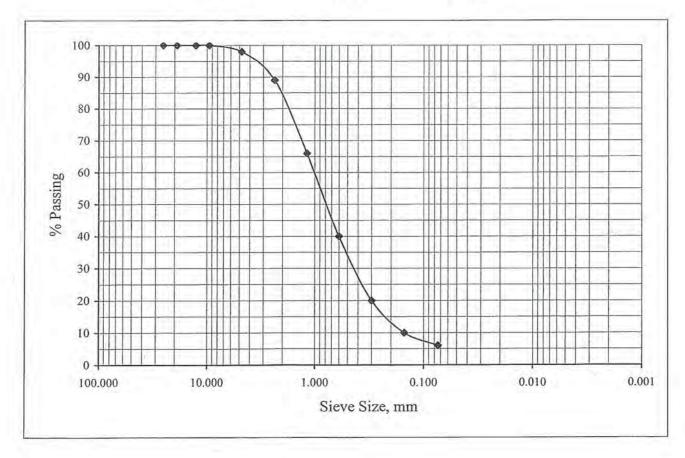
Gradation

ASTM C117 & C136

Project Number:

544-4769

December 22, 2004


Project Name:

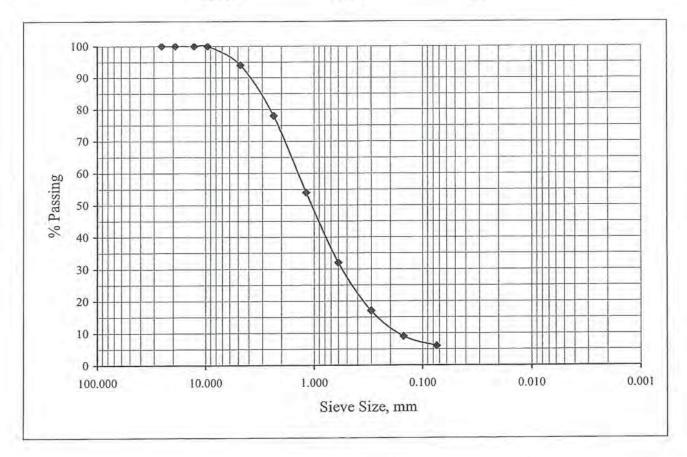
S.W.C. 38th & Jefferson, La Quinta

Sample ID:

Bulk 8 @ 0-5'

Sieve	Sieve	Percent
Size, in	Size, mm	Passing
1"	25.4	100.0
3/4"	19.1	100.0
1/2"	12.7	100.0
3/8"	9.53	100.0
#4	4.75	98.0
#8	2.36	89.0
#16	1.18	66.0
#30	0.60	40.0
#50	0.30	20.0
#100	0.15	10.0
#200	0.074	6.0

Gradation


ASTM C117 & C136

Project Number: 544-4769 December 22, 2004

Project Name: S.W.C. 38th & Jefferson, La Quinta

Sample ID: Boring 8 @ 5'

Sieve	Sieve	Percent
Size, in	Size, mm	Passing
1"	25.4	100.0
3/4"	19.1	100.0
1/2"	12.7	100.0
3/8"	9.53	100.0
#4	4.75	94.0
#8	2.36	78.0
#16	1.18	54.0
#30	0.60	32.0
#50	0.30	17.0
#100	0.15	9.0
#200	0.074	6.0

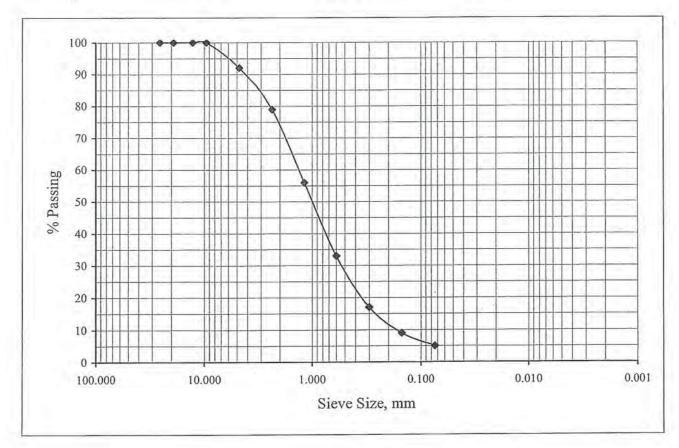
Gradation

ASTM C117 & C136

Project Number:

544-4769

December 22, 2004


Project Name:

S.W.C. 38th & Jefferson, La Quinta

Sample ID:

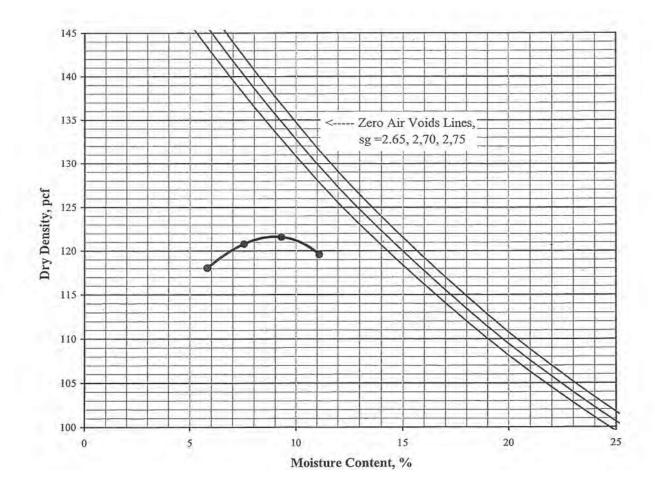
Boring 8 @ 10'

Sieve	Sieve	Percent
Size, in	Size, mm	Passing
1"	25.4	100.0
3/4"	19.1	100.0
1/2"	12.7	100.0
3/8"	9.53	100.0
#4	4.75	92.0
#8	2.36	79.0
#16	1.18	56.0
#30	0.60	33.0
#50	0.30	17.0
#100	0.15	9.0
#200	0.074	5.0

Maximum Density/Optimum Moisture

ASTM D698/D1557

Project Number: 544-4769 December 22, 2004


Project Name: S.W.C. 38th & Jefferson, La Quinta ASTM D-1557 A

Lab ID Number: Rammer Type: Manual

Sample Location: Bulk 8 @ 0-5'
Description: Sand with Gravel

Maximum Density: 122 pcf Optimum Moisture: 9.5%

Sieve Size	% Retained
3/4"	
3/8"	
#4	0.0

Expansion Index

ASTM D 4829/UBC 29-2

Job Number:	544-4769	Date:	12/22/2004
Job Name:	S.W.C. 38th & Jefferson, La Quin	Tech:	Jake
Lab ID:			
Sample ID:	Bulk 8 @ 0-5'		
Soil Description:	Sand with Gravel		

Wt of Soil + Ring:	595.0	
Weight of Ring:	179.0	
Wt of Wet Soil:	416.0	
Percent Moisture:	8%	

Wet Density, pcf:	126.0	
Dry Denstiy, pcf:	116.7	

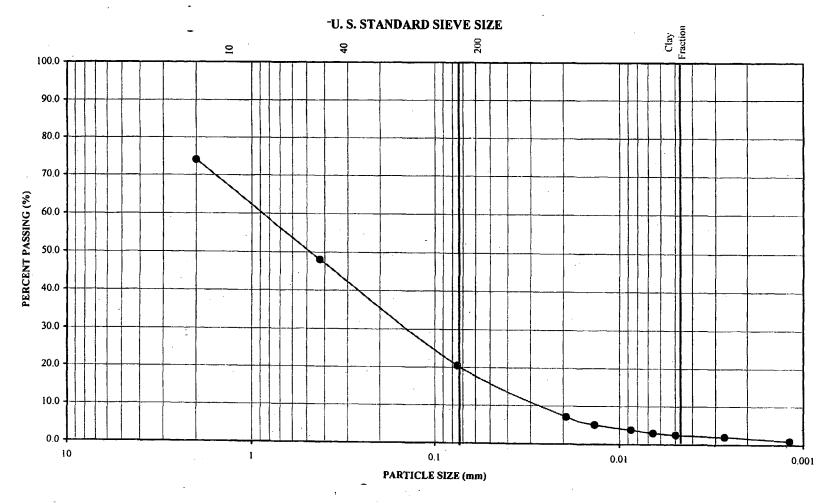
% Saturation:	48.7
---------------	------

Expansion	Rack#			
Date/Time	12/24/2004	10:30 AM		
Initial Reading	0.500			
Final Reading	0.5	00		

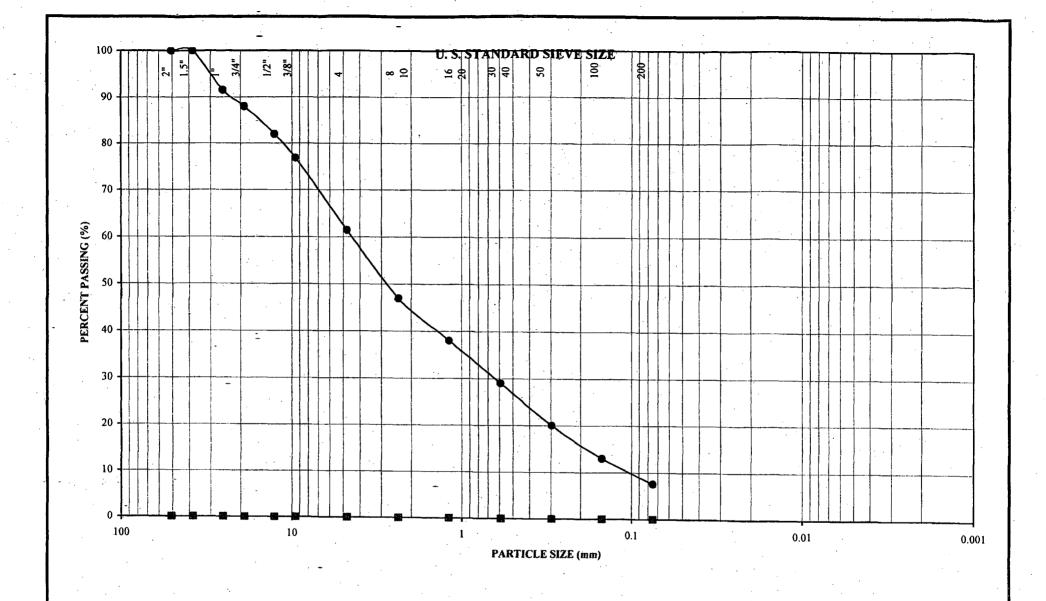

Expansion Index	0

(Final - Initial) x 1000

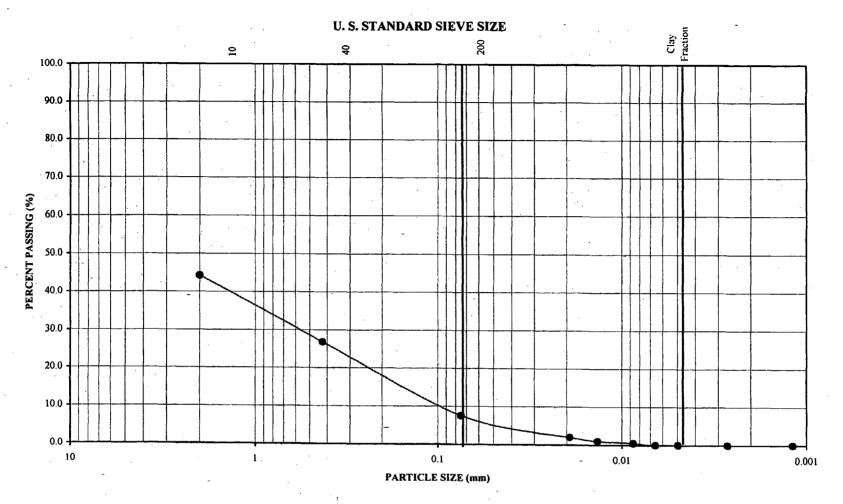
LABORATORY TEST RESULTS

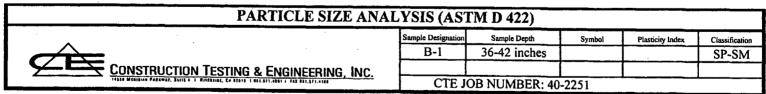

CONSTRUCTION TESTING & ENGINEERING, INC.

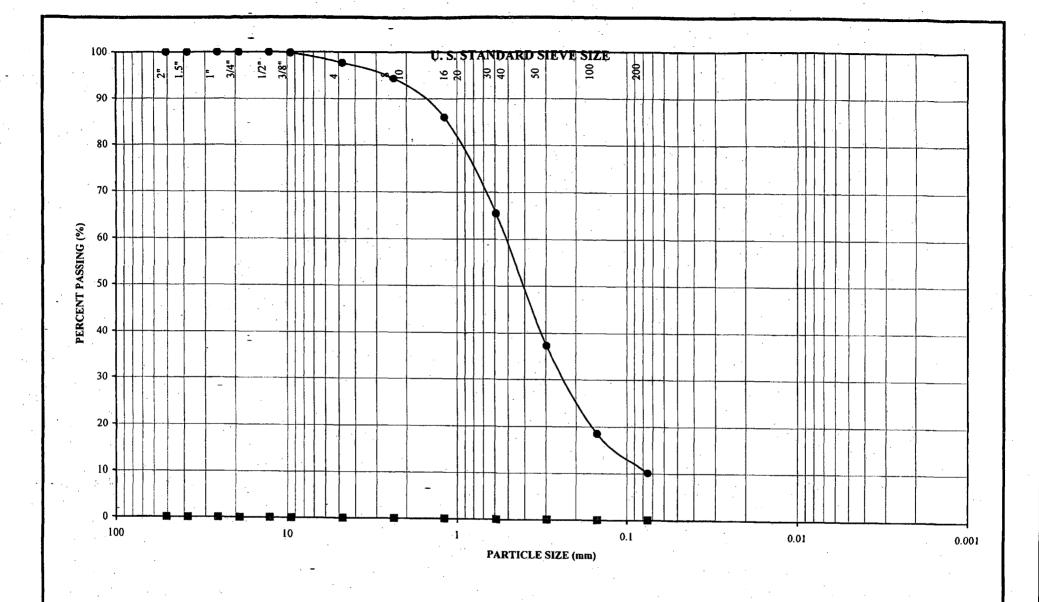
(2007)



Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-1	0-6 inches	•	NR	NR	SM
CTF IOB	NUMBER		0-2251		

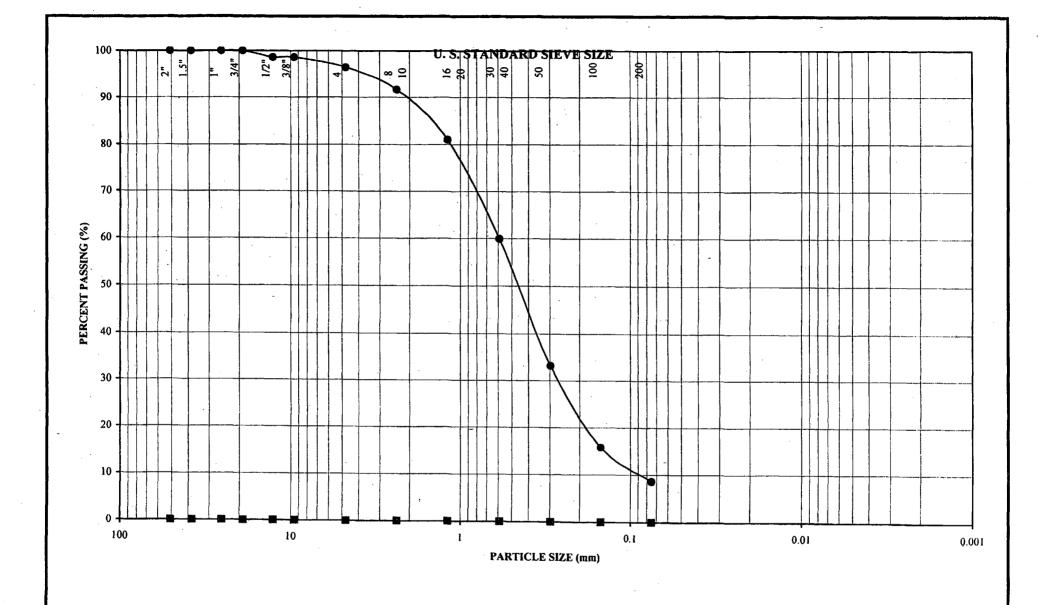

PARTICLE SIZE ANALYSIS (ASTM D 422)							
•	Sample Designation	Sample Depth	Symbol	Plasticity Index	Classification		
	B-1	0-6 inches			ŚM		
CONSTRUCTION TESTING & ENGINEERING, INC.	CTE JO	B NUMBER: 40)-2251				





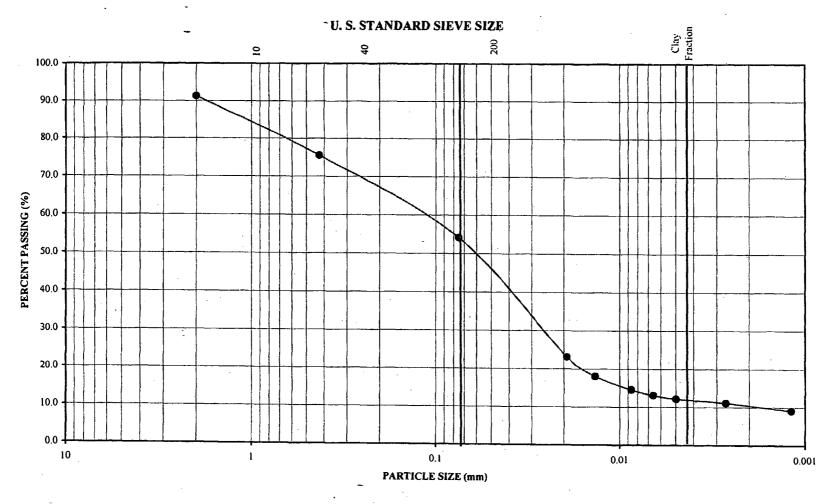
	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-1 3	36-42 inches	•	NR	NR	SP-SM

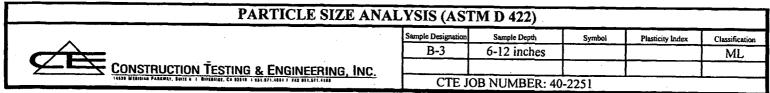
CTE JOB NUMBER:




Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Indox	Classification
B-2	0-12"	•	NR	NR	ŞP-SM

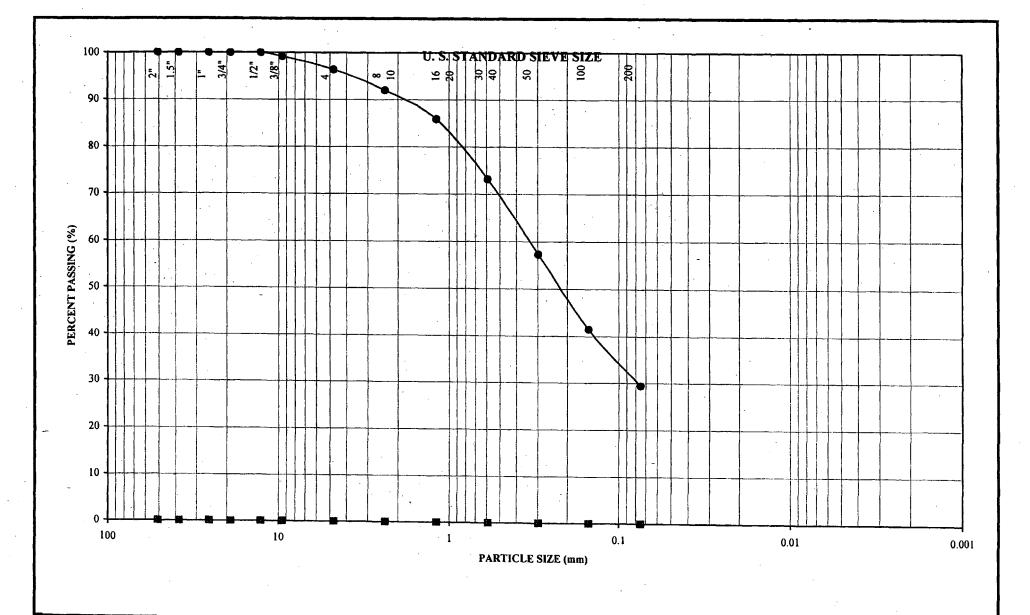
CTE JOB NUMBER:



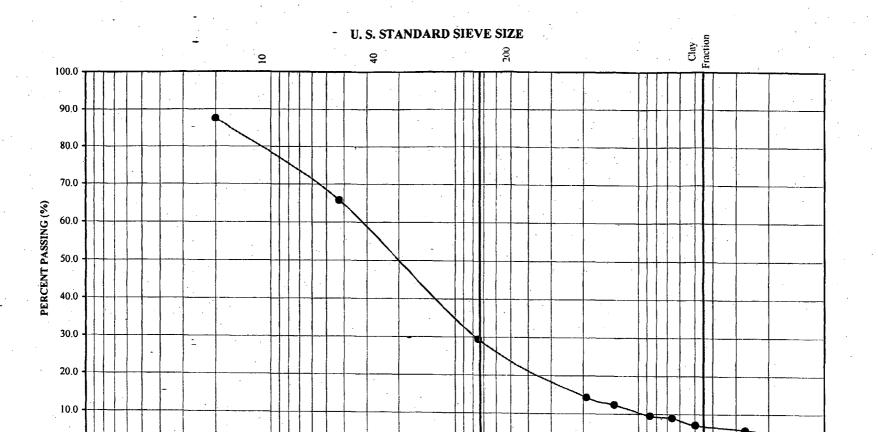



Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-2	24-33"	✓	NR	NR	SP-SM
CTE JOB	NUMBER:	4	0-2251		

PARTICLE SIZE ANALYSIS (ASTM D 422)							
	Sample Designation	Sample Depth	Symbol	Plasticity Index	Classification		
	B-2	33-66 inches			ML		
CONSTRUCTION TESTING & ENGINEERING, INC.							
14531 MERIGIAN PARCWAY, BUILE & 1 RIVERSIDE, CA 32018 1 831.515.4081 6 TAR 855,511.4188	CTE JO	OB NUMBER: 40	-2251		<u> </u>		



Sample Designation B-3	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification ML
СТЕ ЈОВ	NUMBER:	4	0-2251		

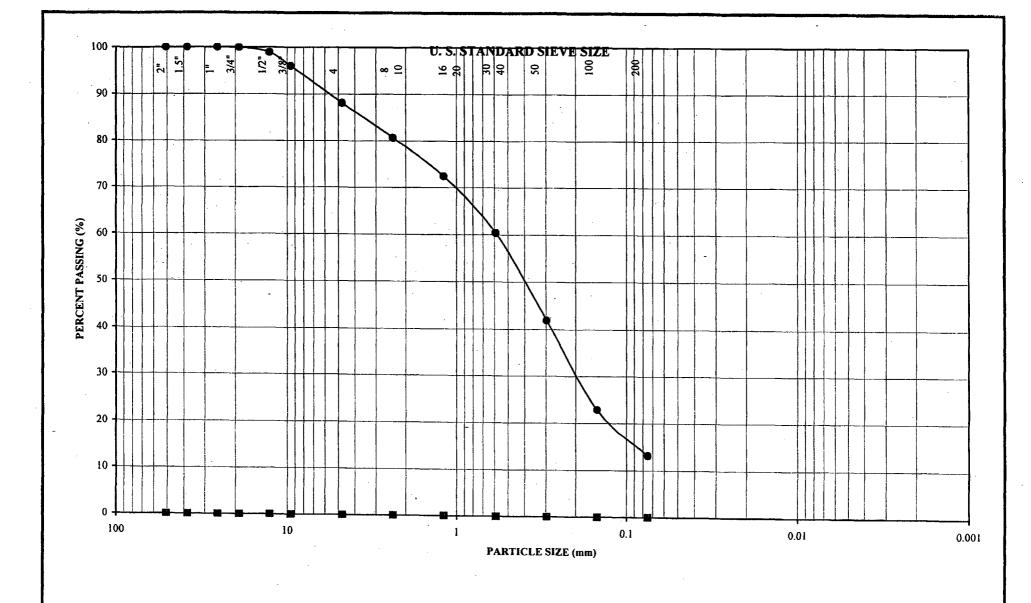


CONSTRUCTION TESTING & ENGINEERING, INC.

14538 MERIDIAN PARKWAY, SUITE A 1 RIVERSIDE, CA 92518 1 951.571.4081 1 FAX 951.571.4148

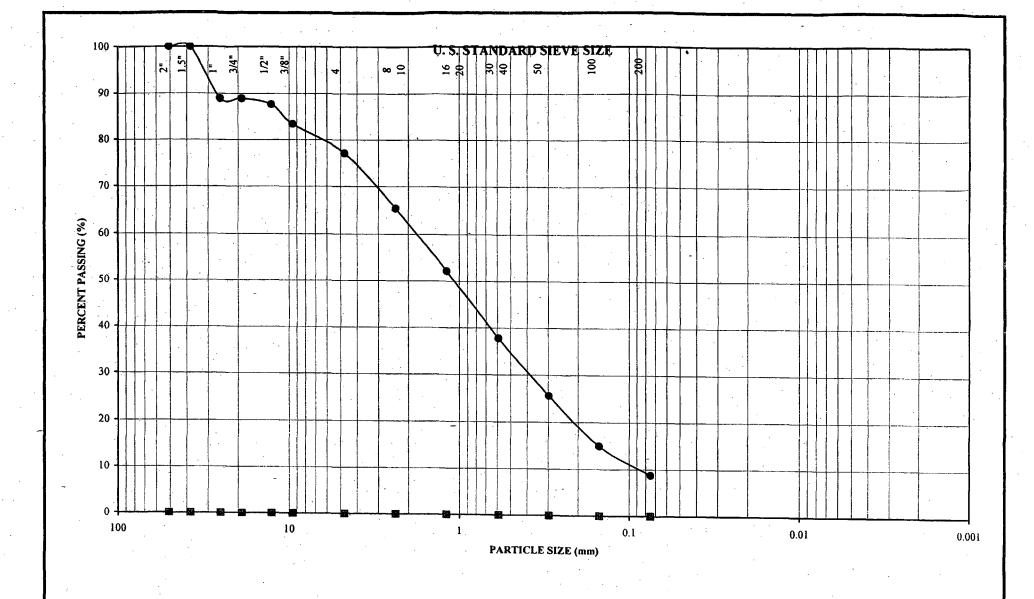
		Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-4 0-	12 inches	-	NR	NR	SM

CTE JOB NUMBER:

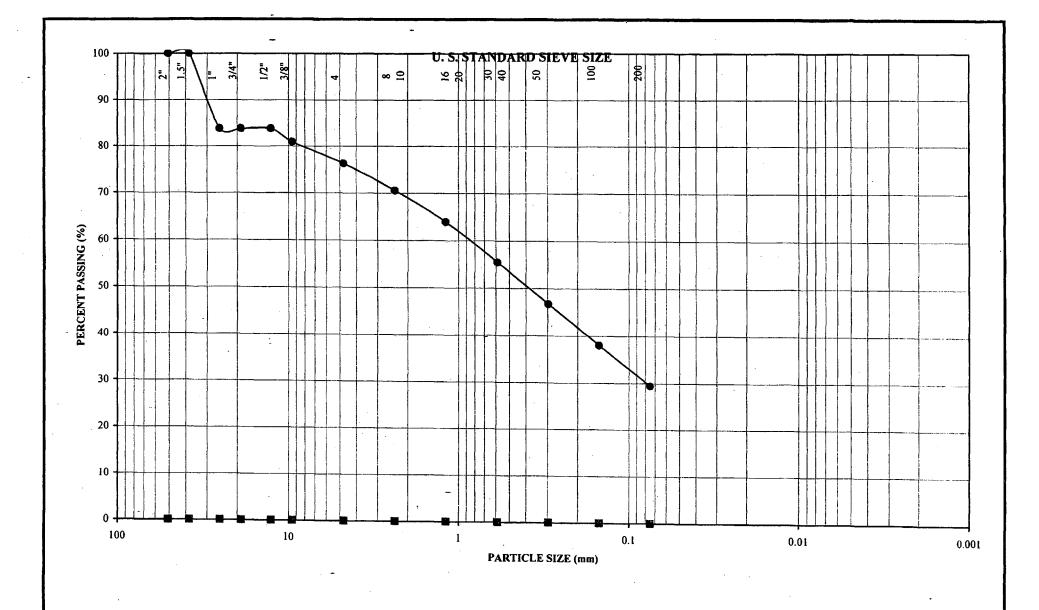

PARTICLE SIZE ANALYSIS (ASTM D 422)							
	Sample Designation	Sample Depth	Symbol	Plasticity Index	Classification		
CONSTRUCTION TESTING & ENGINEERING, INC.	B-4	0-12 inches	, , , , , ,		SM		
]				
14610 Mitsimin Padcovar, Spirit v.). Arréalist, Ca 52510. I Bel 871,4081 1. FAC 591,97(-4160	CTE JO	OB NUMBER: 4()-2251				

0.1

PARTICLE SIZE (mm)

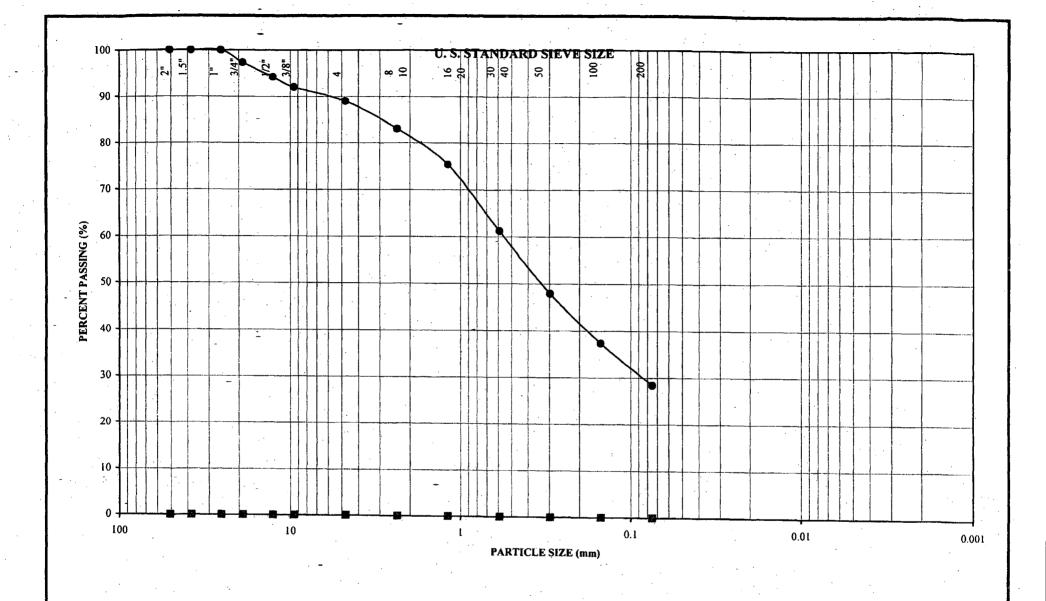

0.01

0.001

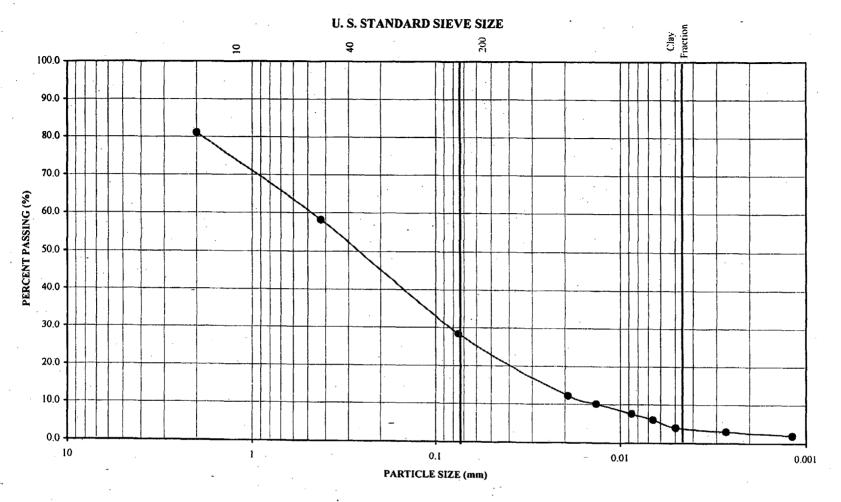

Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification	
B-4	B-4 24-31"	. •	NR	NR	SM	
CTE JOE	NUMBER:	4	0-2251			

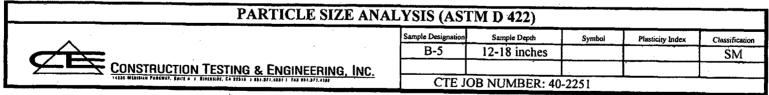
Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-4	48-60"	•	NR	NR	SW-SM
. 1					

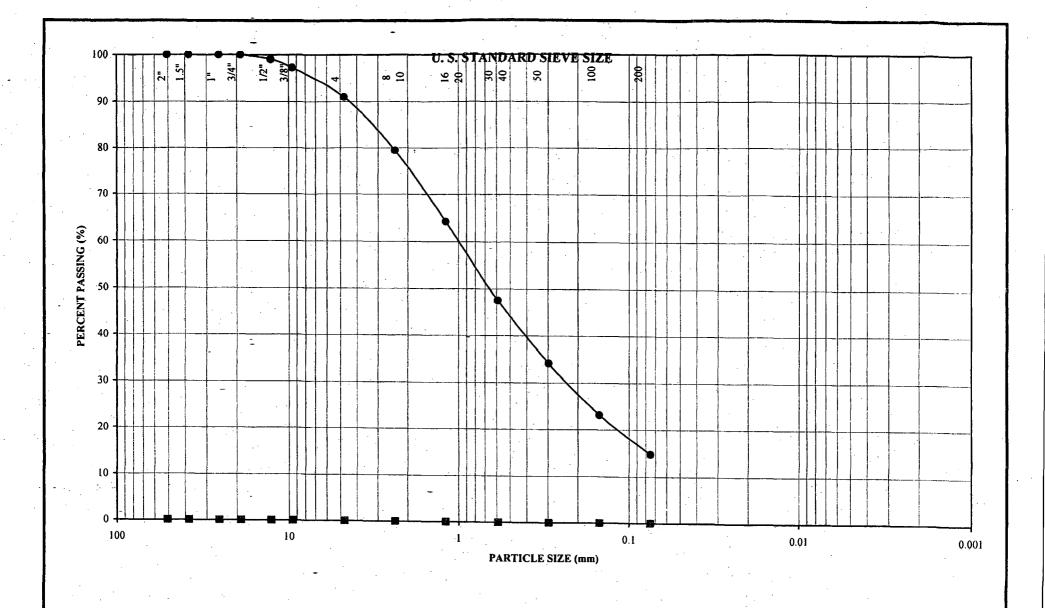
CTE JOB NUMBER:



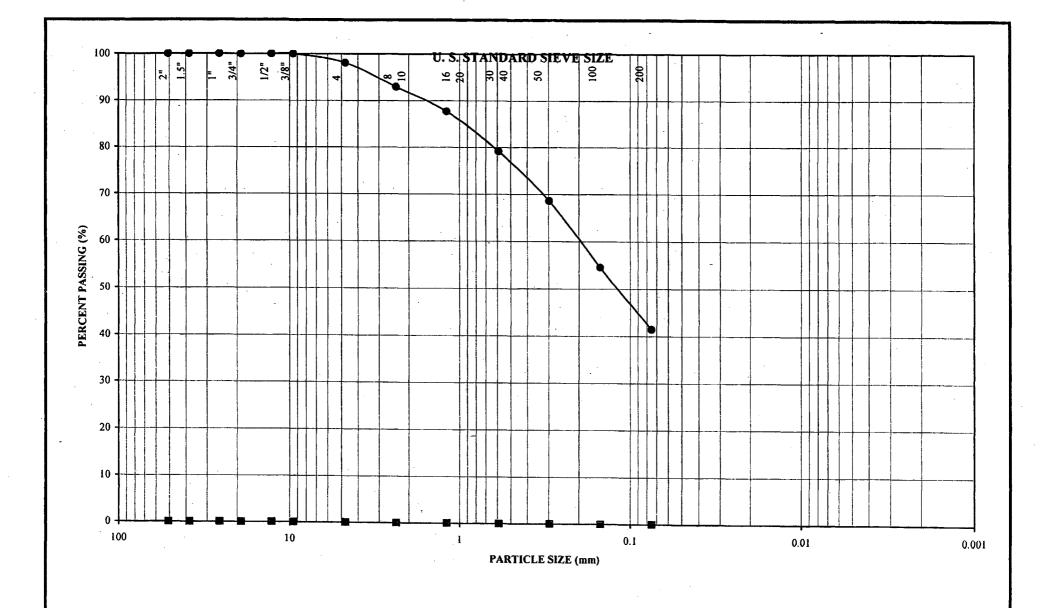
CONSTRUCTION TESTING & ENGINEERING, INC.
14535 MENDINA PAREWAY, SUITE A 1 RIVERSIDE, CA 92511 1 951-571-4981 1 FAX 951-371-498.

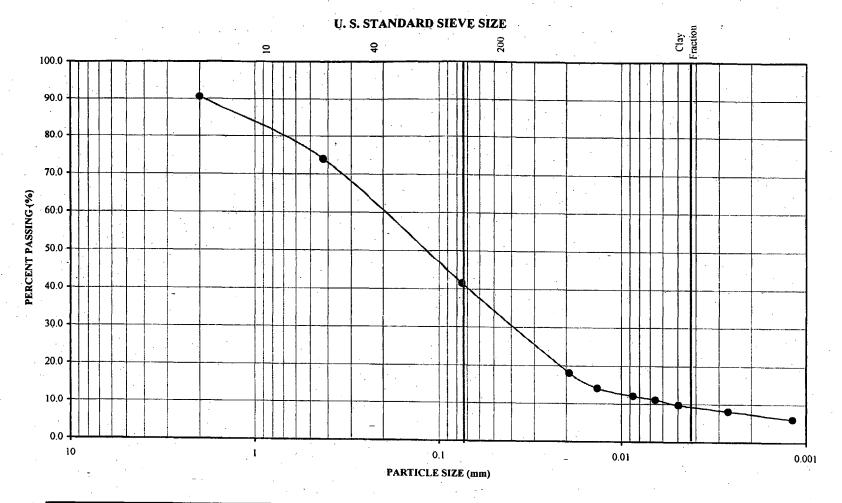

Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-5	0-12"	•	NR	NR	SM
					·
					<u> </u>

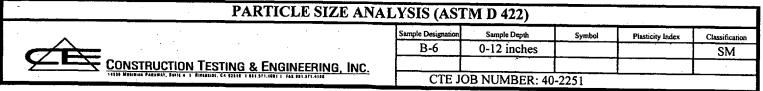

CTE JOB NUMBER:

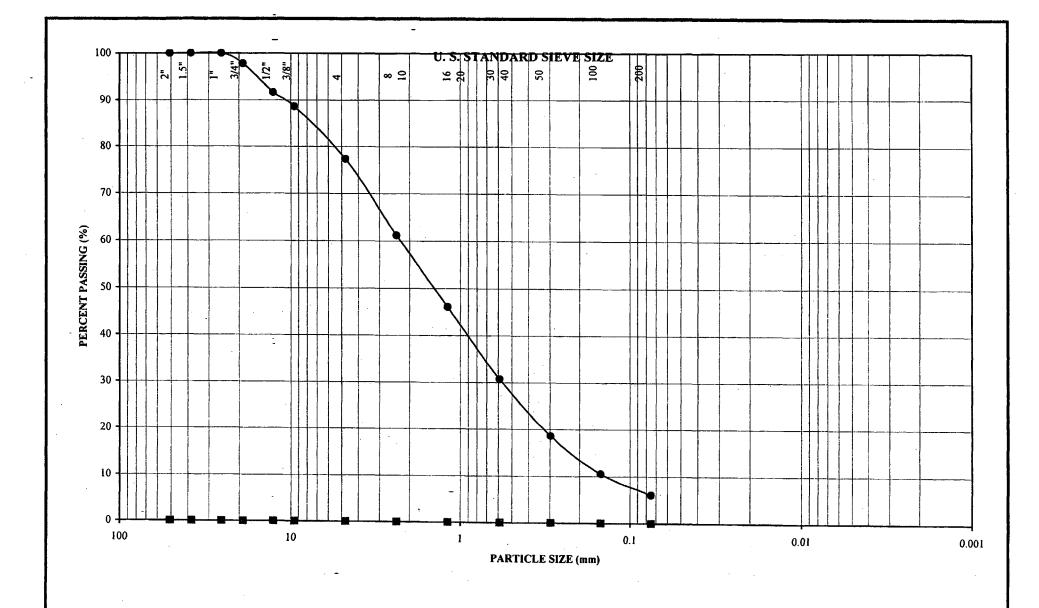


Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-5	12-18 inches	•	NŘ	NR	SM
CTE JOB NUMBER: 40-			0-2251		

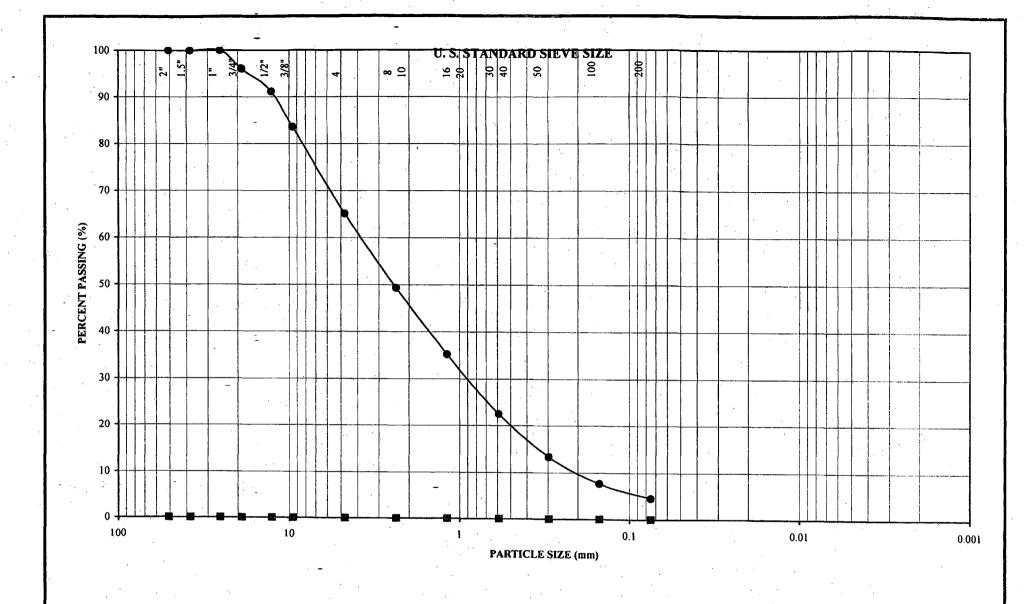


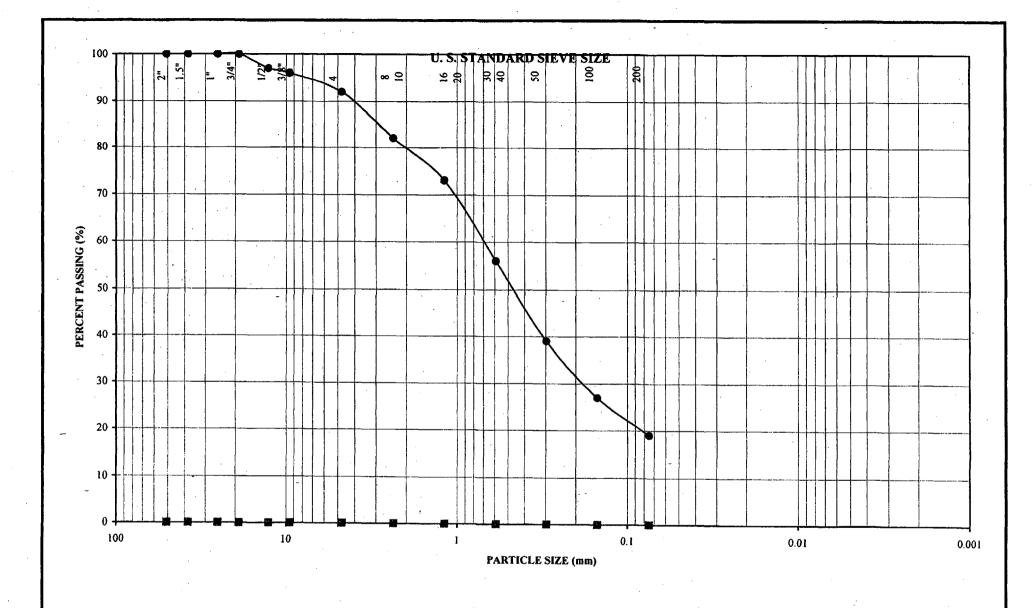



Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-5	30-36"		NR	NR	SM
			-		
CTE JOB NUMBER: 40-2251			0-2251		

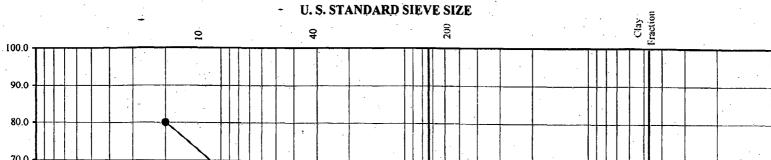


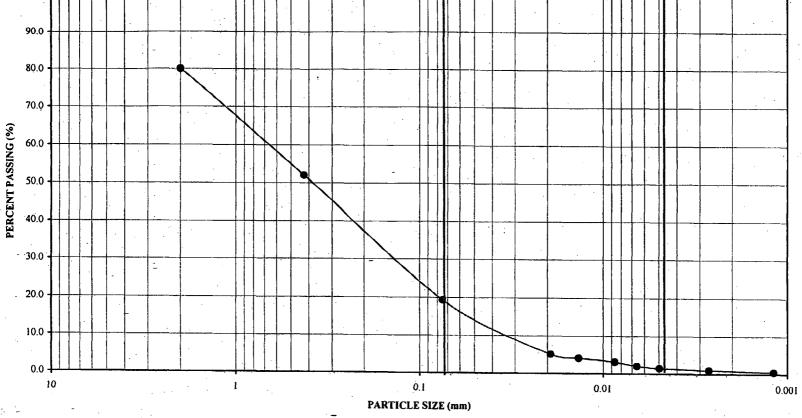
Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-6	0-12 inches	•	NR	NR	SM
CTE JOB NUMBER: 40-2251					



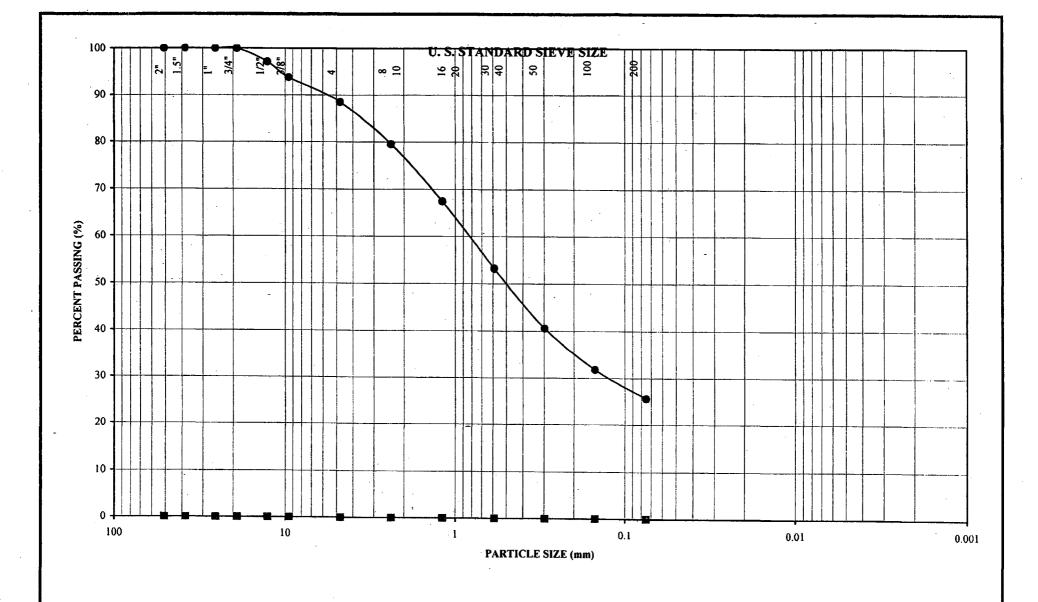

Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-6	33-50"	•	NR	NR	SP-SM
<u></u> _			l		

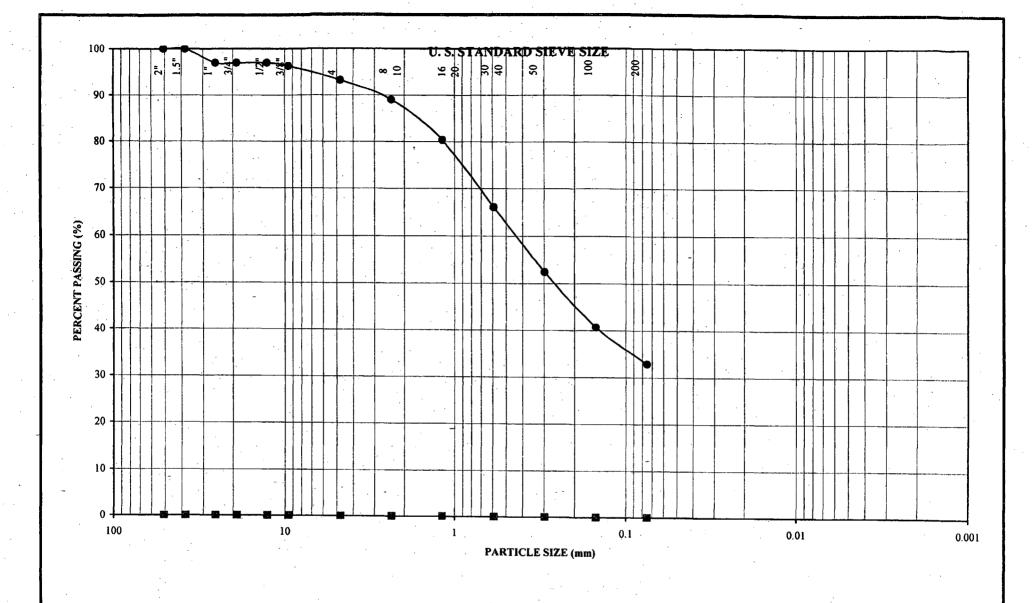
CTE JOB NUMBER:


Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-6	50-60"	•	NR	NR	SW-SM
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CTE JOB NUMBER: 40-2251					

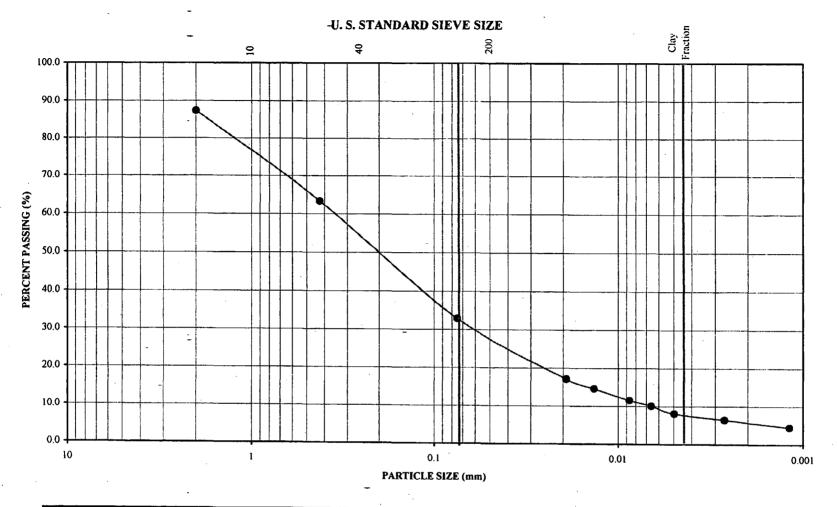


Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-7	0-12"	*•	NR	NR	SM


CTE JOB NUMBER:


PARTICLE SIZE ANALYSIS (ASTM D 422) Sample Designation Sample Depth Plasticity Index Classification B-7 0-12 inches SM CONSTRUCTION TESTING & ENGINEERING, INC.

CTE JOB NUMBER: 40-2251



Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-7	12-24"	- •	NR	NR	SM
CTE JOB NUMBER: 40-2251					

Sample Designation	Sample Depth (feet)	Symbol	Liquid Limit (%)	Plasticity Index	Classification
B-8	6-12 inches	•	NR	NR	SM
CTE JOB NUMBER: 40-		0-2251			

PARTICLE SIZE ANA	LYSIS (AST	CM D 422)			<u> </u>
	Sample Designation	Sample Depth	Symbol	Plasticity Index	Classification
CONSTRUCTION TESTING & ENGINEERING, INC.	B-8	6-12 inches		,	SM
			·		
	CTE JO	OB NUMBER: 40)-2251		<u> </u>

LABORATORY TEST RESULTS BY EARTH SYSTEMS SOUTHWEST (2007b)

Lab Number: 07-0507

Location:

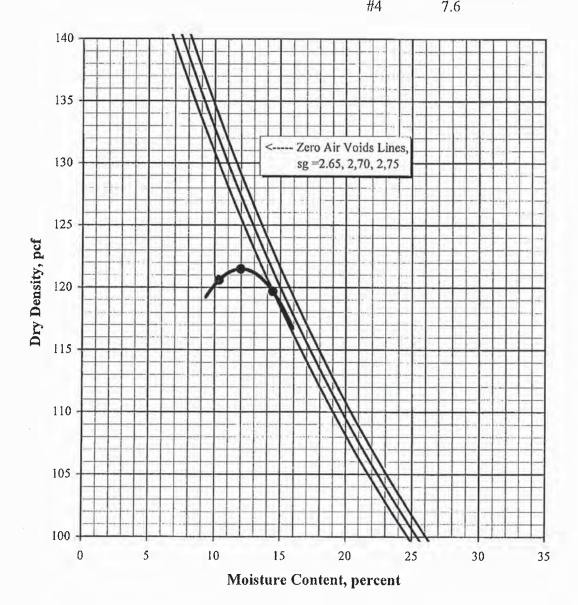
Maximum Density: **Optimum Moisture:**

MAXIMUM DENSITY / OPTIMUM MOISTURE

ASTM D 1557-02 (Modified)

Job Name: Travertine, La Quinta Sample ID:

Procedure Used: A Preparation Method: Moist Rammer Type: Mechanical


B1 @ 1-4 feet

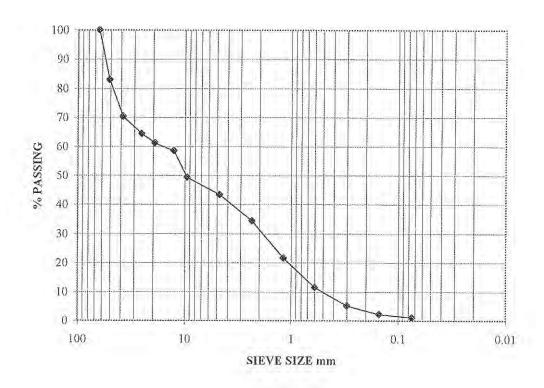
Description: Yellowish Gray Silty Fine to Coarse Sand w/Gravel (SM)

121.5 pcf

12%

Sieve Size	% Retained
3/4"	0.6
3/8"	3.3
11 A	76

LABORATORY TEST RESULTS BY EARTH SYSTEMS SOUTHWEST (2007c)

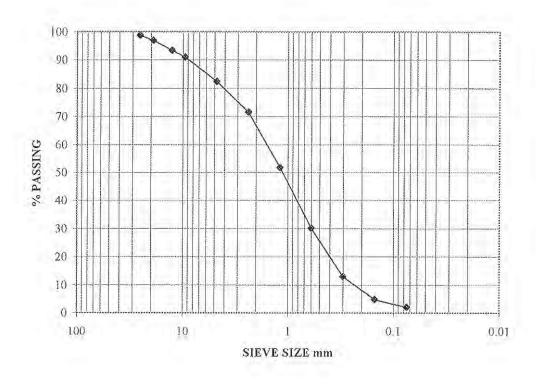

JOB NUMBER: 11112-04 9/24/2007

JOB NAME: Travertine Project, Between Ave 60 & 64, La Quinta

SAMPLE I.D.: Sandy Gravel (GW)

LOCATION: S2 @ 1 feet

SIEVE SIZE	% PASSING
2 1/2"	100
2"	83
1 1/2"	70
1 11	64
3/4"	61
1/2"	58
3/8"	49
#4	43
#8	34
#16	22
#30	12
#50	5
#100	2
#200	1.1

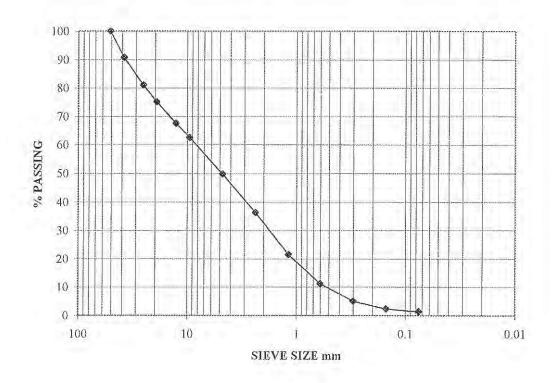

JOB NUMBER: 11112-04 9/24/2007

JOB NAME: Travertine Project, Between Ave 60 & 64, La Quinta

SAMPLE I.D.: Well Graded Sand w/Gravel (SW)

LOCATION: S3 @ 1 feet

SIEVE SIZE	% PASSING
1 1/2"	100.0
1"	98.7
3/4"	96.9
1/2"	93.3
3/8"	91.0
#4	82.3
#8	71.5
#16	51.7
#30	30,1
#50	13.0
#100	4.8
#200	2.1

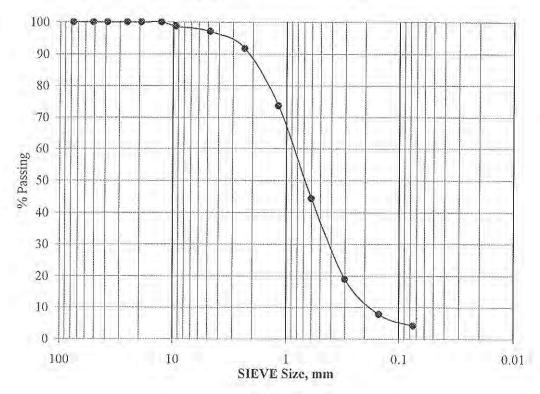

JOB NUMBER: 11112-04 9/24/2007

JOB NAME: Travertine Project, Between Ave 60 & 64, La Quinta

SAMPLE I.D.: Gravelly Sand (GW/SW)

LOCATION: S5 @ 1 feet

SIEVE SIZE	% PASSING	
2"	100	
1 1/2"	91	
1.00	81	
3/4"	75	
1/2"	68	
3/8"	62	
#4	50	
#8	36	
#16	21	
#30	11	
#50	5	
#100	2	
#200	1.3	

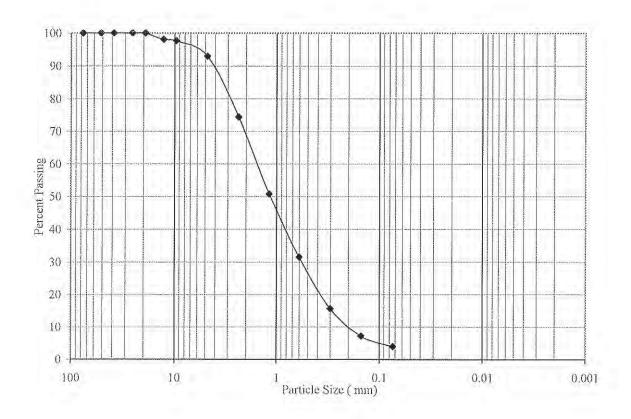


Job Name: Travertine Project, Between Ave 60 & 64, La Quinta

Sample ID: S6 @ 1 feet

Description: Poorly Graded Sand (SP)

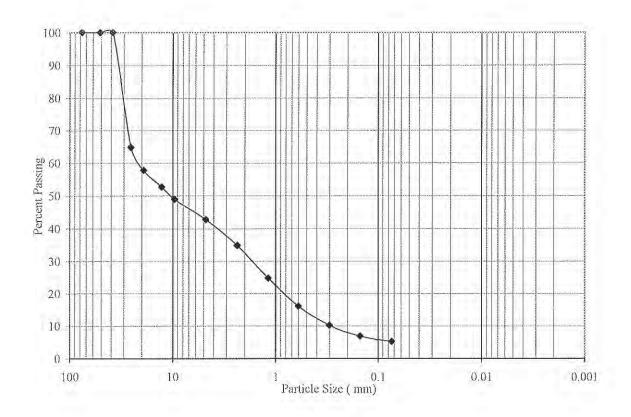
Sieve Size	% Passing
3"	100
2"	100
1-1/2"	100
1^n	100
3/4"	100
1/2"	100
3/8"	99
#4	97
#8	92
#16	74
#30	44
#50	19
#100	8
#200	4



Job Name: Travertine Project, La Quinta

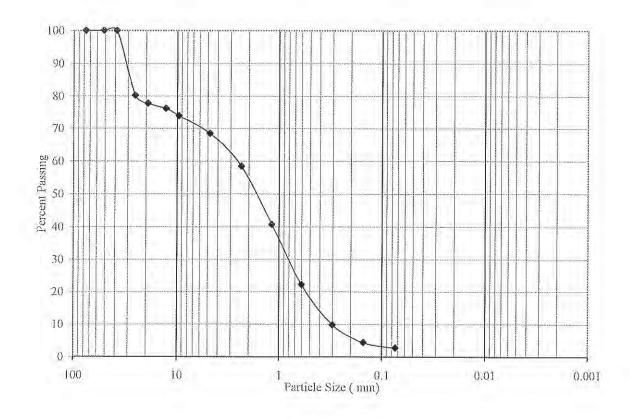
Sample ID: Test Pit #4 - 2-4 feet

Description: Well Graded Sand w/Gravel (SW)

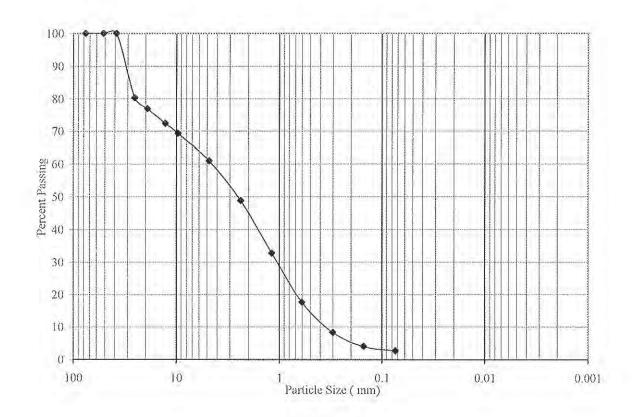

Sieve	Percent		
Size	Passing		
1-1/2"	100	_	
1"	100		
3/4"	100		
1/2"	98		
3/8"	98		
#4	93		
#8	74		
#16	51	% Gravel:	7
#30	31	% Sand:	89
#50	16	% Silt:	1
#100	7	% Clay (3 micron):	3
#200	4	(Clay content by short hydrometer	er method)

Job Name: Travertine Project, La Quinta

Sample ID: Test Pit #14 - 1-3 feet Description: Sandy Gravel (GW)

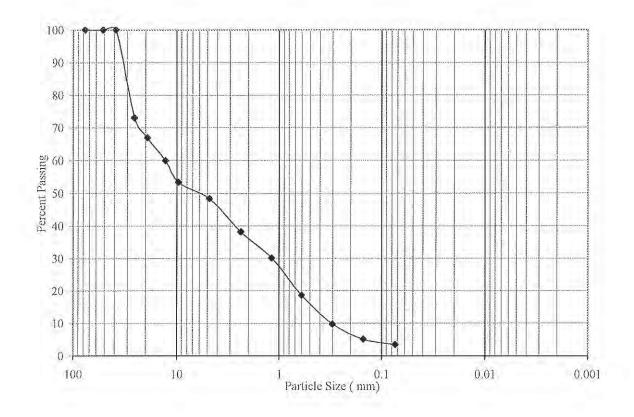

Sieve	Percent		
Size	Passing		
1-1/2"	100		
1**	65		
3/4"	58		
1/2"	53		
3/8"	49		
#4	43		
#8	35		
#16	25	% Gravel:	57
#30	16	% Sand:	38
#50	10	% Silt:	3
#100	7	% Clay (3 micron):	2
#200	5	(Clay content by short hydrometer	er method)

Job Name: Travertine Project, La Quinta Sample ID: **Test Pit #17 - 4-5 feet**


Description: Gravelly Sand (SW)

S	ieve	Percent		
S	Size	Passing		
1-	1/2"	100	_	
	1"	80		
3	/4"	78		
1	/2"	76		
3	/8"	74		
	#4	68		
	#8	58		
#	16	41	% Gravel:	32
#	¹ 30	22	% Sand:	66
#	50	10	% Silt:	0
#	100	4	% Clay (3 micron):	3
#	200	3	(Clay content by short hydrometer	er method)

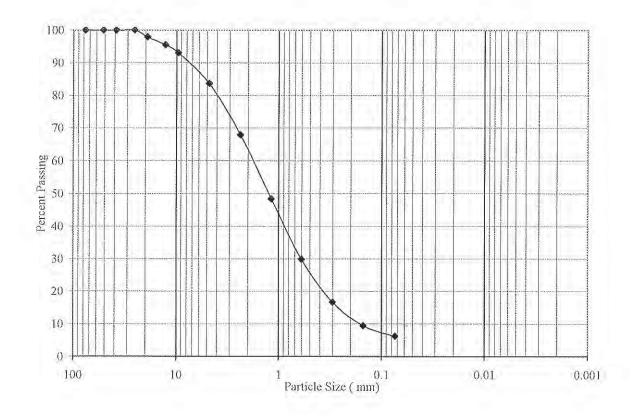
Job Name: Travertine Project, La Quinta Sample ID: Test Pit #19 - 2.5-4 feet Description: Gravelly Sand (SW)


Percent		
Passing		
100	ooden-	
80		
77		
72		
69		
61		
49		
33	% Gravel:	39
18	% Sand:	58
8	% Silt:	0
4	% Clay (3 micron):	3
3	(Clay content by short hydrometer	er method)
	Passing 100 80 77 72 69 61 49 33 18 8	Passing 100 80 77 72 69 61 49 33 % Gravel: 18 % Sand: 8 % Silt:

Job Name: Travertine Project, La Quinta

Sample ID: Test Pit #26 - 5-6 feet Description: Sandy Gravel (GW)

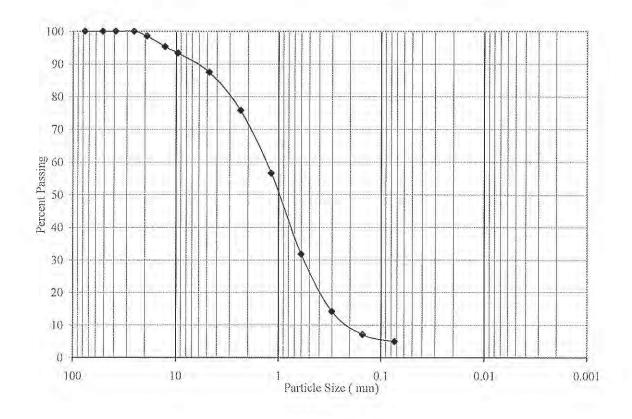
Sieve	Percent		
Size	Passing		
1-1/2"	100		
1 **	73		
3/4"	67		
1/2"	60		
3/8"	53		
#4	48		
#8	38		
#16	30	% Gravel:	52
#30	19	% Sand:	45
#50	10	% Silt:	1
#100	5	% Clay (3 micron):	2
#200	3	(Clay content by short hydrometer	er method)



Job Name: Travertine Project, La Quinta

Sample ID: Test Pit #29 - 4-6 feet

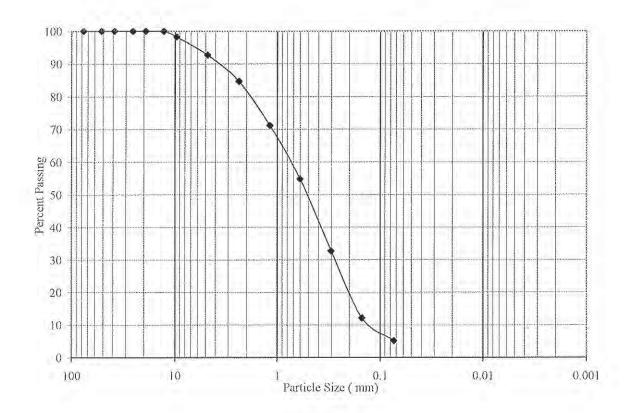
Description: Well Graded Sand w/Silt (SW-SM)


Sieve	Percent		
Size	Passing		
1-1/2"	100	_	
1"	100		
3/4"	98		
1/2"	95		
3/8"	93		
#4	84		
#8	68		
#16	48	% Gravel:	16
#30	30	% Sand:	77
#50	17	% Silt:	2
#100	9	% Clay (3 micron):	4
#200	6	(Clay content by short hydrometer	er method)

Job Name: Travertine Project, La Quinta Sample ID: **Test Pit #32 - 3-5 feet**

Description: Well Graded Sand w/Silt (SW-SM)

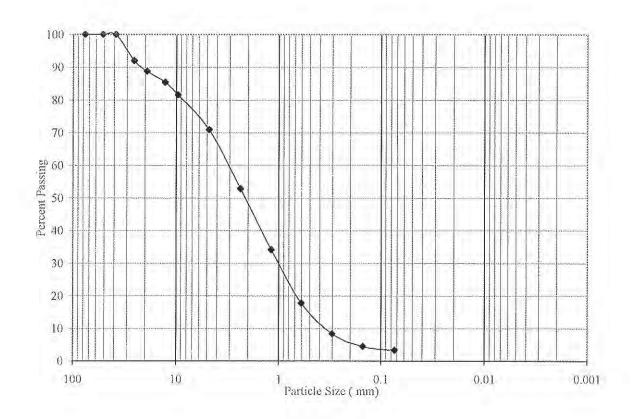
Sieve	Percent		
Size	Passing		
1-1/2*	100	90004	
1"	100		
3/4"	99		
1/2"	95		
3/8"	93		
#4	87		
#8	76		
#16	57	% Gravel:	13
#30	32	% Sand:	83
#50	14	% Silt:	1
#100	7	% Clay (3 micron):	4
#200	5	(Clay content by short hydrometer	er method)



Job Name: Travertine Project, La Quinta

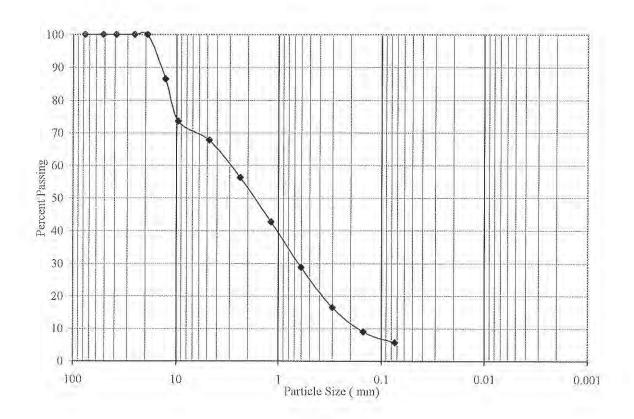
Sample ID: Test Pit #35 - 1-3 feet

Description: 0.0


Sieve	Percent		
Size	Passing		
1-1/2"	100		
1 11	100		
3/4"	100		
1/2"	100		
3/8"	98		
#4	93		
#8	85		
#16	71	% Gravel:	7
#30	55	% Sand:	87
#50	33	% Silt:	2
#100	12	% Clay (3 micron):	3
#200	5	(Clay content by short hydrometer	er method)

Job Name: Travertine Project, La Quinta

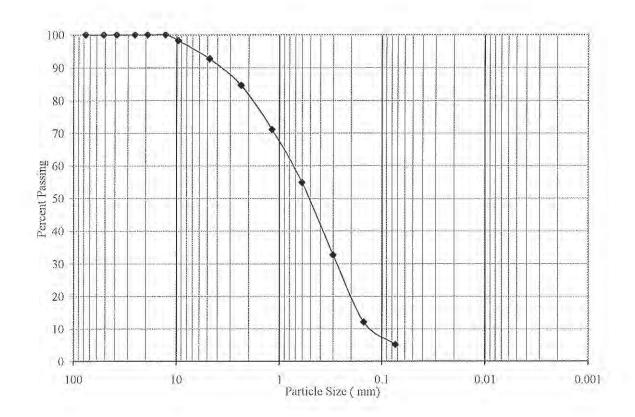
Sample ID: Test Pit #37 - 4-7 feet Description: Gravelly Sand (SW)


Sieve	Percent		
Size	Passing		
1-1/2"	100	_	
1"	92		
3/4"	89		
1/2"	85		
3/8"	82		
#4	71		
#8	53		
#16	34	% Gravel:	29
#30	18	% Sand:	68
#50	8	% Silt:	0
#100	5	% Clay (3 micron):	3
#200	3	(Clay content by short hydrometer	er method)

Job Name: Travertine Project, La Quinta Sample ID: **Test Pit #41 - 3-5 feet**

Description: Gravelly Sand w/Silt (SW-SM)

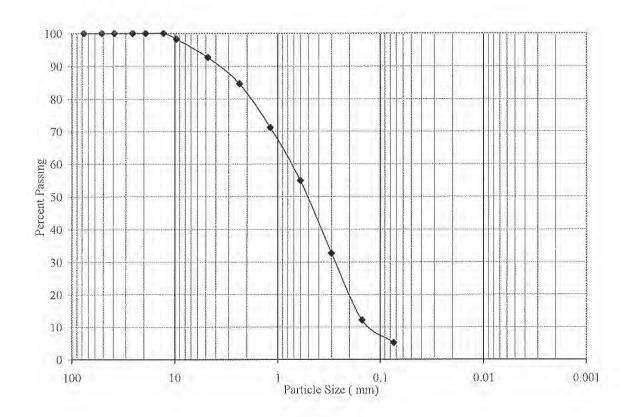
Sieve	Percent		
Size	Passing		
1-1/2"	100		
1	100		
3/4"	100		
1/2"	86		
3/8"	74		
#4	68		
#8	56		
#16	43	% Gravel:	32
#30	29	% Sand:	62
#50	17	% Silt:	2
#100	9	% Clay (3 micron):	4
#200	6	(Clay content by short hydrometer	er method)



Job Name: Travertine Project, La Quinta

Sample ID: Test Pit #45 - 2-4 feet

Description: 0.0


Sieve	Percent		
Size	Passing		
1-1/2"	100	_	
1"	100		
3/4"	100		
1/2"	100		
3/8"	98		
#4	93		
#8	85		
#16	71	% Gravel:	7
#30	55	% Sand:	87
#50	33	% Silt:	2
#100	12	% Clay (3 micron):	3
#200	5	(Clay content by short hydrometer	r method)

Job Name: Travertine Project, La Quinta Sample ID: Test Pit #47 - 10-12 feet

Description: 0.0

Sieve	Percent		
Size	Passing		
1-1/2"	100		
1"	100		
3/4"	100		
1/2"	100		
3/8"	98		
#4	93		
#8	85		
#16	71	% Gravel:	7
#30	55	% Sand:	87
#50	33	% Silt:	2
#100	12	% Clay (3 micron):	3
#200	5	(Clay content by short hydrometer	er method)

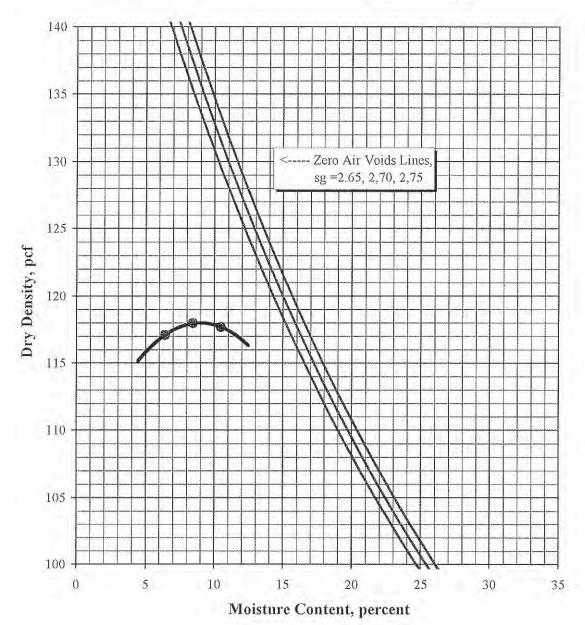
File No.: 11112-04 Lab No.: 07-0682

MAXIMUM DENSITY / OPTIMUM MOISTURE

ASTM D 1557-91 (Modified)

Job Name: Travertine Project, La Quinta

Sample ID: 1


Location: Test Pit #4 - 2-4 feet

Description: Well Graded Sand w/Gravel (SW)

Procedure Used: A Preparation Method: Moist Rammer Type: Mechanical

Lab Numbe 07-0682

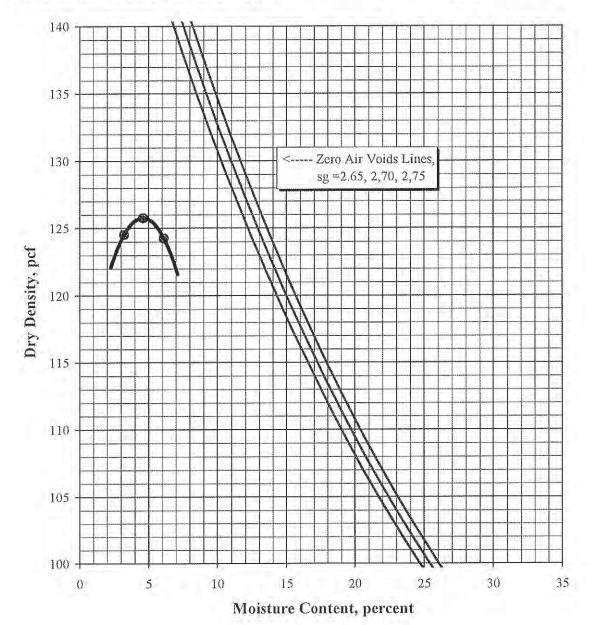
		Sieve Size	% Retained
Maximum Density:	118 pcf	3/4"	0.4
Optimum Moisture:	9%	3/8"	2.4
		#4	9.5

MAXIMUM DENSITY / OPTIMUM MOISTURE

ASTM D 1557-91 (Modified)

Job Name: Travertine Project, La Quinta

Sample ID:

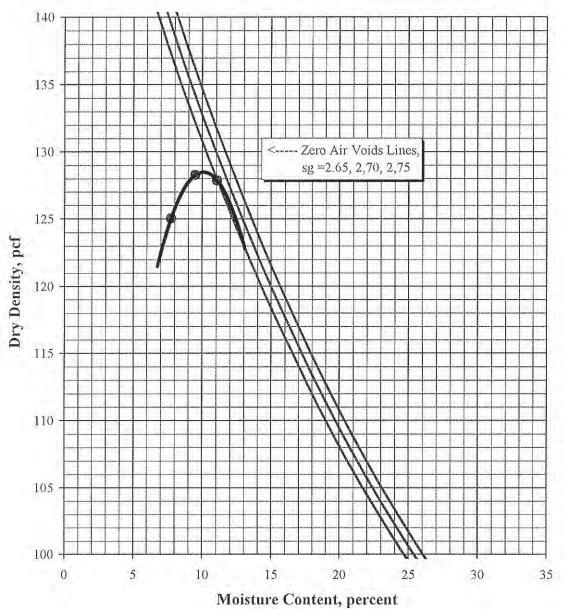

Location: Test Pit #14 - 1-3 feet

Description: Sandy Gravel (GW)

Procedure Used: C Preparation Method: Moist Rammer Type: Mechanical

Lab Numbe 07-0682

		Sieve Size	% Retained
Maximum Density:	126 pcf	3/4"	19.7
Optimum Moisture:	5%	3/8"	24.3
Corrected for Oversize (A	ASTM D4718)	#4	30.8


File No.: 11112-04 Lab No.: 07-0682

MAXIMUM DENSITY / OPTIMUM MOISTURE

ASTM D 1557-91 (Modified)

Job Name: Travertine Project, La Quinta Sample ID: 3 Location: Test Pit #17 - 4-5 feet Description: Gravelly Sand (SW) Procedure Used: C Preparation Method: Moist Rammer Type: Mechanical Lab Numbe 07-0682

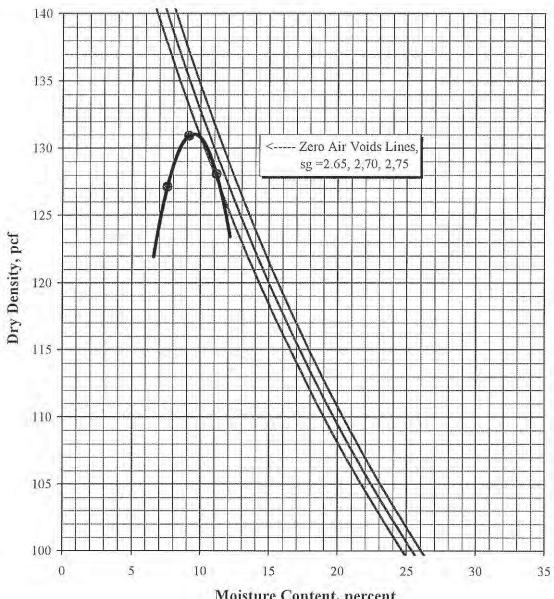
		Sieve Size	% Retained
Maximum Density:	128.5 pcf	3/4"	19.3
Optimum Moisture:	10%	3/8"	22.9
Corrected for Oversize (A	ASTM D4718)	#4	28.7

File No.: 11112-04 Lab No.: 07-0682

MAXIMUM DENSITY / OPTIMUM MOISTURE

ASTM D 1557-91 (Modified)

Job Name: Travertine Project, La Quinta


Sample ID:

Location: Test Pit #19 - 2.5-4 feet

Description: Gravelly Sand (SW)

Procedure Used: C Preparation Method: Moist Rammer Type: Mechanical Lab Numbe 07-0682

		Sieve Size	% Retained
Maximum Density:	131 pcf	3/4"	19.7
Optimum Moisture:	9.5%	3/8"	26.8
Corrected for Oversize (A	ASTM D4718)	#4	36.3

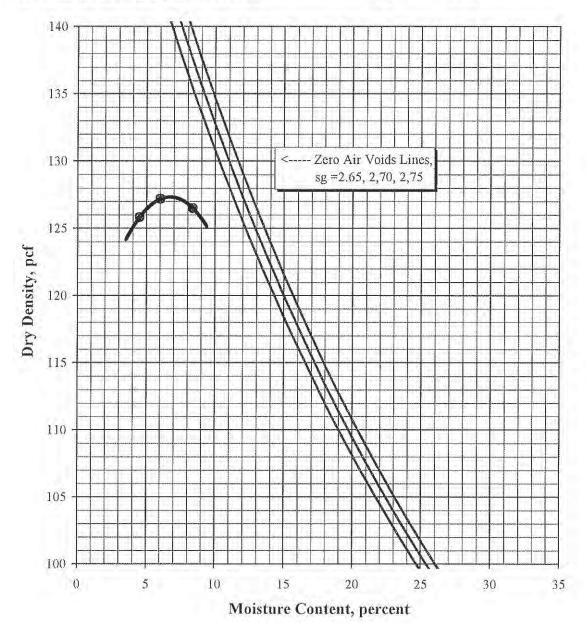
Moisture Content, percent

File No.: 11112-04 Lab No.: 07-0682

MAXIMUM DENSITY / OPTIMUM MOISTURE

ASTM D 1557-91 (Modified)

Job Name: Travertine Project, La Quinta


Sample ID:

Location: Test Pit #26 - 5-6 feet Description: Sandy Gravel (GW) Procedure Used: C

Preparation Method: Moist Rammer Type: Mechanical

Lab Number 07-0682

		Sieve Size	% Retained
Maximum Density:	127.5 pcf	3/4"	19.8
Optimum Moisture:	7%	3/8"	28.8
Corrected for Oversize (A	ASTM D4718)	#4	39.1

EARTH SYSTEMS SOUTHWEST

File No.: 11112-04 Lab No.: 07-0682

MAXIMUM DENSITY / OPTIMUM MOISTURE

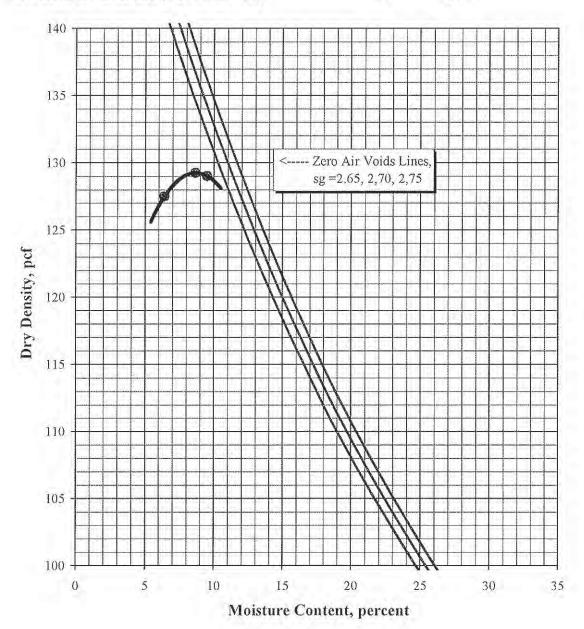
ASTM D 1557-91 (Modified)

Job Name: Travertine Project, La Quinta

Sample ID;

6

Procedure Used: C

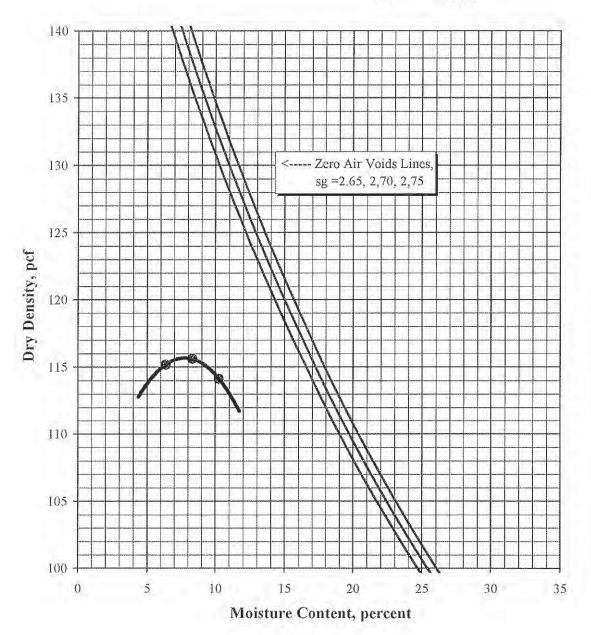

Preparation Method: Moist

Location: Test Pit #29 - 4-6 feet Rammer Type: Mechanical

Description: Well Graded Sand w/Silt (SW-SM)

Lab Numbe 07-0682

		Sieve Size	% Retained
Maximum Density:	129 pcf	3/4"	15.2
Optimum Moisture:	8.5%	3/8"	21.1
Corrected for Oversize (A	ASTM D4718)	#4	28.7


File No.: 11112-04 Lab No.: 07-0682

MAXIMUM DENSITY / OPTIMUM MOISTURE

ASTM D 1557-91 (Modified)

Job Name:Travertine Project, La QuintaProcedure Used: ASample ID:7Preparation Method: MoistLocation:Test Pit #32 - 3-5 feetRammer Type: MechanicalDescription:Well Graded Sand w/Silt (SW-SM)Lab Numbe07-0682

		Sieve Size	% Retained
Maximum Density:	115.5 pcf	3/4"	3.5
Optimum Moisture:	8%	3/8"	7.1
		#4	13.2

EARTH SYSTEMS SOUTHWEST

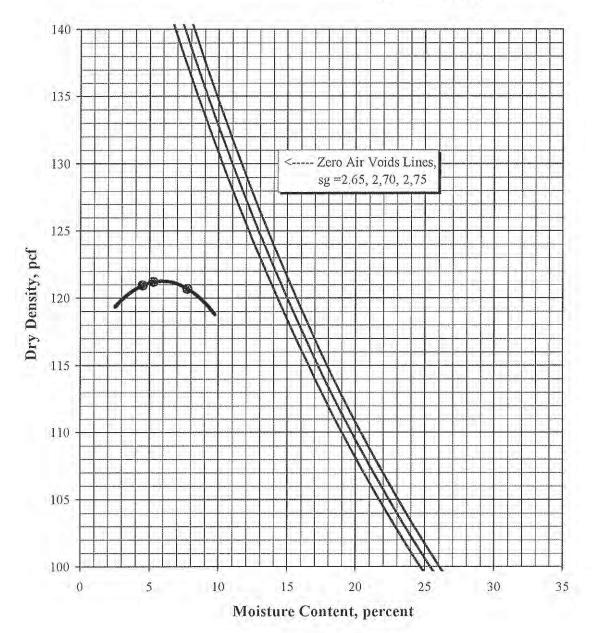
Procedure Used: B

File No.: 11112-04 Lab No.: 07-0682

MAXIMUM DENSITY / OPTIMUM MOISTURE

ASTM D 1557-91 (Modified)

Job Name: Travertine Project, La Quinta


Sample ID:

Location: Test Pit #37 - 4-7 feet Description: Gravelly Sand (SW)

Preparation Method: Moist Rammer Type: Mechanical

Lab Numbe 07-0682

		Sieve Size	% Retained
Maximum Density:	121.5 pcf	3/4"	5.9
Optimum Moisture:	6%	3/8"	10.7
Marie Demonstra		#4	19.8

EARTH SYSTEMS SOUTHWEST

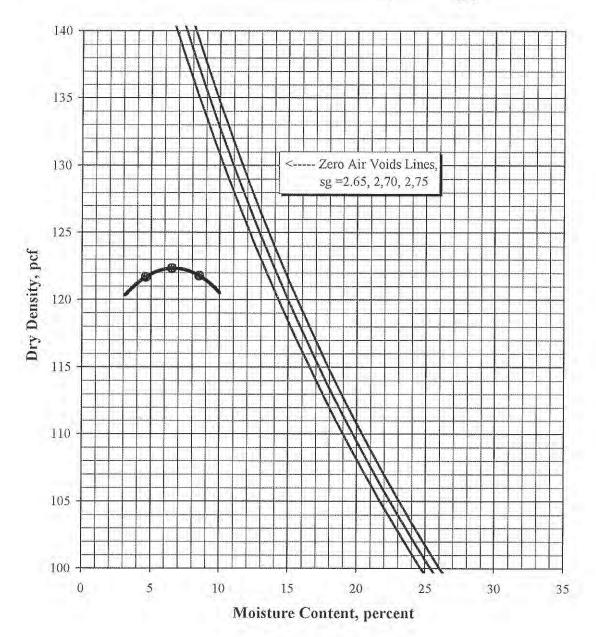
File No.: 11112-04 Lab No.: 07-0682

MAXIMUM DENSITY / OPTIMUM MOISTURE

ASTM D 1557-91 (Modified)

Job Name: Travertine Project, La Quinta

Sample ID:


Location: Test Pit #41 - 3-5 feet

Description: Gravelly Sand w/Silt (SW-SM)

Procedure Used: A
Preparation Method: Moist
Rammer Type: Mechanical

Lab Numbe 07-0682

		Sieve Size	% Retained
Maximum Density:	122.5 pcf	3/4"	0.3
Optimum Moisture:	6.5%	3/8"	2.1
		#4	5.8

EARTH SYSTEMS SOUTHWEST

MAXIMUM DENSITY / OPTIMUM MOISTURE

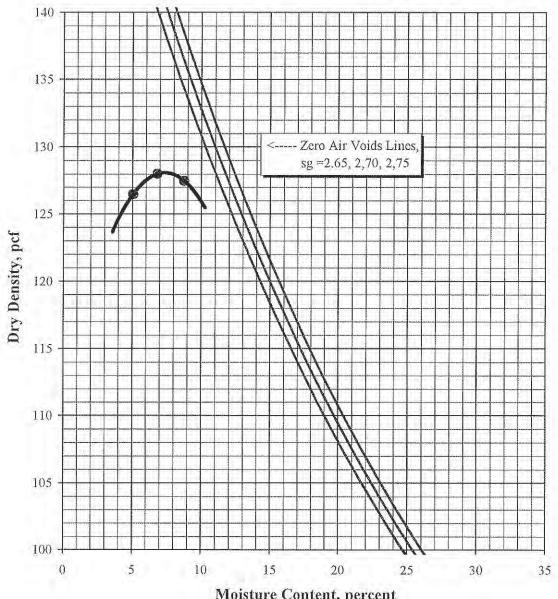
ASTM D 1557-91 (Modified)

Job Name: Travertine Project, La Quinta

Sample ID:

Location: Test Pit #45 - 2-4 feet

Description: Well Graded Sand w/Gravel (SW)


Procedure Used: C

Preparation Method: Moist

Rammer Type: Mechanical

Lab Numbe 07-0682

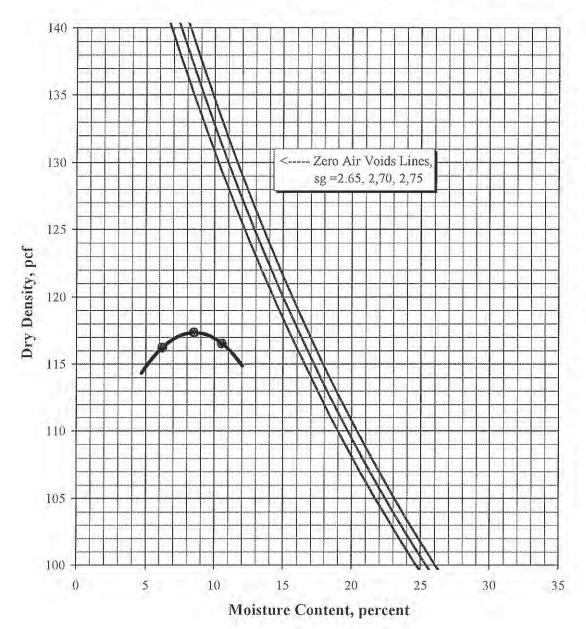
		Sieve Size	% Retained
Maximum Density:	128 pcf	3/4"	19.0
Optimum Moisture:	7.5%	3/8"	24.3
Corrected for Oversize (A	ASTM D4718)	#4	29.5

File No.: 11112-04 Lab No.: 07-0682

MAXIMUM DENSITY / OPTIMUM MOISTURE

ASTM D 1557-91 (Modified)

Job Name: Travertine Project, La Quinta


Sample ID: 11 Location: Test Pit #47 - 10-12 feet

Description: Well Graded Sand w/Gravel (SW)

Procedure Used: A Preparation Method: Moist Rammer Type: Mechanical

Lab Number 07-0682

		Sieve Size	% Retained
Maximum Density:	117.5 pcf	3/4"	7.6
Optimum Moisture:	8.5%	3/8"	11.0
		#4	14,5

SOIL CHEMICAL ANALYSES

Job Name: Travertine Project, La Quinta

Job No.: 11112-04

.lob No.: 11	112-04				
Sample ID:	#4	#14	#17		
Sample Depth, feet:	2-4	1-3	4-5	DF	RL
Sulfate, mg/Kg (ppm):				1	0.50
Chloride, mg/Kg (ppm):				1	0.20
pH, (pH Units):	8.40	7.40	8.10	1	0.41
Resistivity, (ohm-cm):	2,700	750	5,200	N/A	N/A
Conductivity, (µmhos-cm):				1	2.00

Note: Tests performed by Subcontract Laboratory:

Surabian AG Laboratory DF: Dilution Factor 105 Tesori Drive RL: Reporting Limit

eral Guidelines for Soil Corrosivity			
Chemical Agent	Amount in Soil	Degree of Corrosivity	
Soluble	0 -1000 mg/Kg (ppm) [01%]	Low	
Sulfates	1000 - 2000 mg/Kg (ppm) [0.1-0.2%]	Moderate	
	2000 - 20,000 mg/Kg (ppm) [0.2-2.0%]	Severe	
	> 20,000 mg/Kg (ppm) [>2.0%]	Very Severe	
Resistivity	1-1000 ohm-cm	Very Severe	
	1000-2000 ohm-cm	Severe	
	2000-10,000 ohm-cm	Moderate	
	10,000+ ohm-cm	Low	

SOIL CHEMICAL ANALYSES

Job Name: Travertine Project, La Quinta

Job No.: 11112-04

Sample ID:	#19	#26	#29		
Sample Depth, feet:	2.5-4	5-6	4-6	DF	RL
Sulfate, mg/Kg (ppm):				1	0.50
Chloride, mg/Kg (ppm):				11	0.20
pH, (pH Units):	8.05	7.70	8.60	Í	0.41
Resistivity, (ohm-cm):	3,650	980	5,300	N/A	N/A
Conductivity, (µmhos-cm):				Ī	2.00

Note: Tests performed by Subcontract Laboratory:

Surabian AG Laboratory DF: Dilution Factor 105 Tesori Drive RL: Reporting Limit

Chemical Agent	Amount in Soil	Degree of Corrosivity	
Soluble	0 -1000 mg/Kg (ppm) [01%]	Low	
Sulfates	1000 - 2000 mg/Kg (ppm) [0.1-0.2%]	Moderate	
	2000 - 20,000 mg/Kg (ppm) [0.2-2.0%]	Severe	
	> 20,000 mg/Kg (ppm) [>2.0%]	Very Severe	
Resistivity	1-1000 ohm-em	Very Severe	
	1000-2000 ohm-em	Severe	
	2000-10,000 ohm-cm	Moderate	
	10,000+ ohm-cm	Low	

SOIL CHEMICAL ANALYSES

Job Name: Travertine Project, La Quinta

Job No.: 11112-04

Job No.: 11	112-04				
Sample ID:	#32	#35	#37		
Sample Depth, feet:	3-5	1-3	4-7	DF	RL
Sulfate, mg/Kg (ppm):				1	0.50
Chloride, mg/Kg (ppm):				1	0.20
pH, (pH Units):	8.60	8.15	7.90	Ï	0.41
Resistivity, (ohm-cm):	2,350	790	1,440	N/A	N/A
Conductivity, (µmhos-cm):				1	2.00

Note: Tests performed by Subcontract Laboratory:

Surabian AG Laboratory DF: Dilution Factor 105 Tesori Drive RL: Reporting Limit

Chemical Agent	Amount in Soil	Degree of Corrosivity
Soluble	0 -1000 mg/Kg (ppm) [0-,1%]	Low
Sulfates	1000 - 2000 mg/Kg (ppm) [0.1-0.2%]	Moderate
~10013037	2000 - 20,000 mg/Kg (ppm) [0.2-2.0%]	Severe
	> 20,000 mg/Kg (ppm) [>2.0%]	Very Severe
Resistivity	1-1000 ohm-cm	Very Severe
	1000-2000 ohm-cm	Severe
	2000-10,000 ohm-cm	Moderate
	10,000+ ohm-em	Low

SOIL CHEMICAL ANALYSES

Job Name: Travertine Project, La Quinta

Job No.: 11112-04

	Sample ID:	#41	#45	#47		
San	nple Depth, feet:	3-5	2-4	10-12	DF	RL
Sulfate	e, mg/Kg (ppm):				1	0.50
Chloride	e, mg/Kg (ppm):				1	0.20
	pH, (pH Units):	7.70	7.95	8.00	1	0.41
Resist	ivity, (ohm-cm):	280	3,150	1,950	N/A	N/A
Conductivi	ty, (µmhos-cm):				1	2.00
	ivity, (ohm-cm):				1 N/A 1	٢

Note: Tests performed by Subcontract Laboratory:

Surabian AG Laboratory

DF: Dilution Factor

105 Tesori Drive

RL: Reporting Limit

Chemical Agent	Amount in Soil	Degree of Corrosivity	
Soluble	0 -1000 mg/Kg (ppm) [01%]	Low	
Sulfates	1000 - 2000 mg/Kg (ppm) [0.1-0.2%]	Moderate	
	2000 - 20,000 mg/Kg (ppm) [0.2-2.0%]	Severe	
	> 20,000 mg/Kg (ppm) [>2.0%]	Very Severe	
Resistivity	1-1000 ohm-cm	Very Severe	
	1000-2000 ohm-cm	Severe	
	2000-10,000 ohm-cm	Moderate	
	10,000+ ohm-cm	Low	

Latitude, Longitude: 33.60143, -116.26159

Date	1/7/2020, 3:56:01 PM
Design Code Reference Document	ASCE7-16
Risk Category	II
Site Class	D - Stiff Soil

Туре	Value	Description
S _S	1.5	MCE _R ground motion. (for 0.2 second period)
S ₁	0.584	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.5	Site-modified spectral acceleration value
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
S _{DS}	1	Numeric seismic design value at 0.2 second SA
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA

Туре	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
Fa	1	Site amplification factor at 0.2 second
F _v	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.522	MCE _G peak ground acceleration
F _{PGA}	1.1	Site amplification factor at PGA
PGA _M	0.575	Site modified peak ground acceleration
TL	8	Long-period transition period in seconds
SsRT	1.553	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.688	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	1.5	Factored deterministic acceleration value. (0.2 second)
S1RT	0.584	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.652	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.6	Factored deterministic acceleration value. (1.0 second)
PGAd	0.522	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.92	Mapped value of the risk coefficient at short periods
C _{R1}	0.897	Mapped value of the risk coefficient at a period of 1 s

https://seismicmaps.org

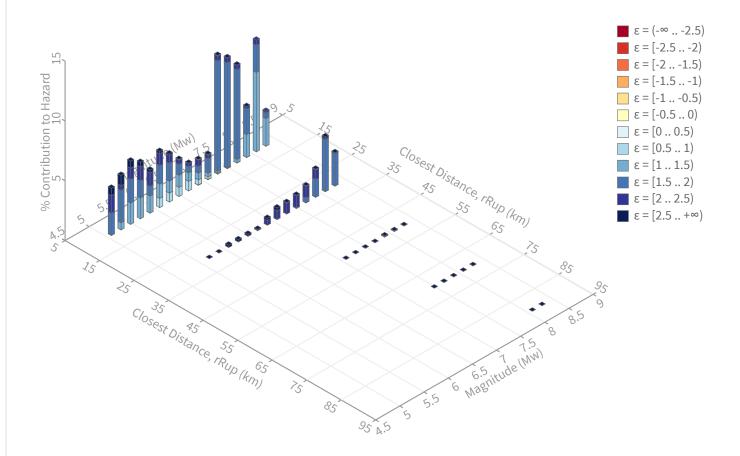
DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC /OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

https://seismicmaps.org

U.S. Geological Survey - Earthquake Hazards Program

Unified Hazard Tool


Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

^ Input	
Edition	Spectral Period
Dynamic: Conterminous U.S. 2014 (upda	Peak Ground Acceleration
Latitude	Time Horizon
Decimal degrees	Return period in years
33.60143	2475
Longitude	
Decimal degrees, negative values for western longitudes	
-116.26159	
Site Class	
259 m/s (Site class D)	

Deaggregation

Component

Total

Summary statistics for, Deaggregation: Total

Deaggregation targets

Return period: 2475 yrs

Exceedance rate: 0.0004040404 yr⁻¹ **PGA ground motion:** 0.75141644 g

Recovered targets

Return period: 3071.2487 yrs

Exceedance rate: 0.00032560046 yr⁻¹

Totals

Binned: 100 % Residual: 0 % Trace: 0.1 %

Mean (over all sources)

m: 7.01 r: 14.58 km ε₀: 1.73 σ

Mode (largest m-r bin)

m: 7.34r: 15.62 kmε₀: 1.81 σ

Contribution: 9.93 %

Mode (largest m-r-ε₀ bin)

m: 7.34 **r:** 15.83 km **ε₀:** 1.8 σ

Contribution: 9.21 %

Discretization

r: min = 0.0, max = 1000.0, Δ = 20.0 km **m:** min = 4.4, max = 9.4, Δ = 0.2 **ε:** min = -3.0, max = 3.0, Δ = 0.5 σ

Epsilon keys

ε0: [-∞ .. -2.5)

ε1: [-2.5 .. -2.0) ε2: [-2.0 .. -1.5) ε3: [-1.5 .. -1.0) ε4: [-1.0 .. -0.5) ε5: [-0.5 .. 0.0) ε6: [0.0 .. 0.5)

ε7: [0.5 .. 1.0) **ε8:** [1.0 .. 1.5) **ε9:** [1.5 .. 2.0)

ε10: [2.0 .. 2.5)

ε11: [2.5 .. +∞]

Deaggregation Contributors

Source Set 😝 Source	Туре	r	m	ε ₀	lon	lat	az	%
UC33brAvg_FM31	System							30.73
San Andreas (Coachella) rev [2]		15.84	7.68	1.66	116.143°W	33.704°N	43.80	22.64
San Jacinto (Anza) rev [5]		26.44	8.01	1.93	116.513°W	33.490°N	242.00	3.26
San Jacinto (Clark) rev [2]		23.82	7.78	1.97	116.366°W	33.406°N	203.99	3.10
UC33brAvg_FM32	System							30.54
San Andreas (Coachella) rev [2]		15.84	7.68	1.67	116.143°W	33.704°N	43.80	22.44
San Jacinto (Anza) rev [5]		26.44	7.99	1.94	116.513°W	33.490°N	242.00	3.31
San Jacinto (Clark) rev [2]		23.82	7.78	1.97	116.366°W	33.406°N	203.99	3.00
UC33brAvg_FM31 (opt)	Grid							19.3
PointSourceFinite: -116.262, 33.633		5.98	5.78	1.40	116.262°W	33.633°N	0.00	4.10
PointSourceFinite: -116.262, 33.633		5.98	5.78	1.40	116.262°W	33.633°N	0.00	4.0
PointSourceFinite: -116.262, 33.651		7.25	5.74	1.62	116.262°W	33.651°N	0.00	1.90
PointSourceFinite: -116.262, 33.651		7.25	5.74	1.62	116.262°W	33.651°N	0.00	1.88
PointSourceFinite: -116.262, 33.714		11.58	6.11	2.00	116.262°W	33.714°N	0.00	1.41
PointSourceFinite: -116.262, 33.705		11.16	5.99	2.01	116.262°W	33.705°N	0.00	1.40
PointSourceFinite: -116.262, 33.714		11.58	6.11	2.00	116.262°W	33.714°N	0.00	1.40
PointSourceFinite: -116.262, 33.705		11.16	5.99	2.01	116.262°W	33.705°N	0.00	1.39
UC33brAvg_FM32 (opt)	Grid							19.36
PointSourceFinite: -116.262, 33.633		5.98	5.78	1.40	116.262°W	33.633°N	0.00	4.09
PointSourceFinite: -116.262, 33.633		5.98	5.78	1.40	116.262°W	33.633°N	0.00	4.07
PointSourceFinite: -116.262, 33.651		7.25	5.73	1.62	116.262°W	33.651°N	0.00	1.90
PointSourceFinite: -116.262, 33.651		7.25	5.73	1.62	116.262°W	33.651°N	0.00	1.88
PointSourceFinite: -116.262, 33.714		11.58	6.11	2.00	116.262°W	33.714°N	0.00	1.41
PointSourceFinite: -116.262, 33.705		11.16	5.99	2.01	116.262°W	33.705°N	0.00	1.40
PointSourceFinite: -116.262, 33.714		11.58	6.11	2.00	116.262°W	33.714°N	0.00	1.39
PointSourceFinite: -116.262, 33.705		11.16	5.99	2.01	116.262°W	33.705°N	0.00	1.38

REPORT SEISMIC REFRACTION SURVEY

Jefferson Street and 62nd Avenue La Quinta, CA

GEO Vision Project No. 19201

Prepared for

NMG Geotechnical, Inc. 17991 Fitch Irvine, CA 92614 (949) 442-2442

Prepared by

GEO Vision Geophysical Services, Inc. 1124 Olympic Drive Corona, CA 92881 (951) 549-1234

May 31, 2019

Report 19201

TABLE OF CONTENTS

1	INTRODUCTION	. 2
2	EQUIPMENT AND FIELD PROCEDURES	. 3
3	METHODOLOGY	. 4
4	DATA REDUCTION AND MODELING	. 6
5	DISCUSSION OF RESULTS	. 7
6	REFERENCES	. 8
7	CERTIFICATION	. 9

LIST OF TABLES

Table 1 Seismic Line Geometry

LIST OF FIGURES

Figure 1 Site Map
Figure 2 Line 1: P-wave Seismic Tomography Model
Figure 3 Line 2: P-wave Seismic Tomography Model
Figure 4 Line 3: P-wave Seismic Tomography Model

APPENDICES

Appendix A Technical Note - Seismic Refraction Method

1 INTRODUCTION

A P-wave seismic refraction survey was conducted near Jefferson St and 62nd Avenue La Quinta, California, on May 10th, 2019. The survey was conducted along three P-wave seismic refraction lines, designated as Lines 1 through 3 (Figure 1). The purpose of this investigation was to determine rock rippability and subsurface velocity variability for planning future construction activities.

The locations of the lines were placed by **GEO***Vision* personnel to gather the highest quality data in the areas of greatest interest as directed by NMG Geotechnical Inc. The endpoints of each refraction line were surveyed by **GEO***Vision* personnel using a Spectra SP60 with Centerpoint RTX submeter differential corrections (Table 1) and plotted on a site map (Figure 1).

The rippability of alluvium is not presented in the Caterpillar Handbook of Ripping; therefore other sedimentary rocks will be used, such as sandstone and conglomerate, for comparison. Sandstone is considered rippable by a Caterpillar D8R Ripper to a P-wave velocity of 6,500 ft/s and marginally rippable to a velocity of 8,250 ft/s, providing the rock is sufficiently jointed and fractured. Sandstone is considered rippable by a Caterpillar D9R Ripper to a velocity of 7,250 ft/s and marginally rippable to a velocity of 9,500 ft/s providing the rock is sufficiently jointed and fractured. Conglomerate is considered rippable by a Caterpillar D8R Ripper to a P-wave velocity of 6,300 ft/s and marginally rippable to a velocity of 8,000 ft/s, providing the rock is sufficiently jointed and fractured. Conglomerate is considered rippable by a Caterpillar D9R Ripper to a velocity of 7,500 ft/s and marginally rippable to a velocity of 9,250 ft/s providing the rock is sufficiently jointed and fractured. It should be noted that blasting may be more cost-effective in marginally rippable rock due to time and equipment wear considerations. Published data are not available for the ripping characteristics of excavators, but we typically assume that excavators have about half the ripping ability of a D8R.

The following sections include a discussion of equipment and field procedures, methodology, data processing, and results of the geophysical survey.

Report 19201 2 May 31, 2019

2 EQUIPMENT AND FIELD PROCEDURES

Seismic refraction equipment used during this investigation consisted of two Geometrics Geode 24-channel signal enhancement seismographs, 10 Hz vertical geophones, seismic cables with 10-foot takeouts, a 240-lb accelerated weight drop (AWD), a 10-lb sledgehammer, and an aluminum strike plate.

Each line consisted of one spread of 48 geophones aligned in a linear array. The geophone spacing and total lengths per line are outlined in Table 1. Elevations along the refraction lines were surveyed using a combination of a Nikon AP-8 automatic level and a Spectra SP60 with Centerpoint RTX submeter, real-time corrections. All geophone locations were measured using a 300-foot tape measure.

A typical seismic refraction survey field layout is shown in Appendix A. Up to seventeen (17) shot point locations were occupied on each P-wave line: off-end shots (where possible), end shots, and multiple interior shot points located between every fourth geophone. Space, access, and topography limited or prohibited the placement of some off-end shots. A 240-lb accelerated weight drop was used as the energy source where there was appropriate vehicle access; the remaining shots were done using a 10-lb sledgehammer as the energy source.

A 3D Geophysics or Geometrics hammer switch attached to the sledgehammer or inserted within the strike plate and coupled to the Geode via a trigger extension was used to trigger the seismograph upon impact. The final seismic record at each shot point was the result of stacking 6 to 10 shots to increase the signal to noise ratio. All seismic records were stored on a laptop computer. Data files were named with the sequential line, spread, and shot number and a ".dat" extension (e.g., data file 1105.dat is the seismic record from line 1, spread 1, shot 5). Data acquisition parameters, file names, and leveling data were recorded on a field form, which is retained in project files.

Report 19201 3 May 31, 2019

3 METHODOLOGY

Detailed discussions of the seismic refraction method can be found in Telford et al. (1990), Dobrin and Savit (1988), and Redpath (1973).

When conducting a seismic survey, acoustic energy is input to the subsurface by an energy source such as a sledgehammer impacting a metallic plate, weight drop, vibratory source, or explosive charge. The acoustic waves propagate into the subsurface at a velocity dependent upon the elastic properties of the material through which they travel. When the waves reach an interface where the density or velocity changes significantly, a portion of the energy is reflected back to the surface and the remainder is transmitted into the lower layer. Where the velocity of the lower layer is higher than that of the upper layer, a portion of the energy is also critically refracted along with the interface. Critically refracted waves travel along with the interface at the velocity of the lower layer and continually refract energy back to the surface. Receivers (geophones) laid out in linear array on the surface, record the incoming refracted, and reflected waves. The seismic refraction method involves analysis of the travel times of the first energy to arrive at the geophones. These first-arrivals are from either the direct wave (at geophones close to the source) or critically refracted waves (at geophones further from the source).

Analysis of seismic refraction data depends upon the complexity of the subsurface velocity structure. If the subsurface target is planar in nature then the slope-intercept method (Telford et al. [1990]) can be used to model multiple horizontal or dipping planar layers. A minimum of one end shot is required to model horizontal layers, and reverse end shots are required to model dipping planar layers. If the subsurface target is undulating (i.e. bedrock valley) then layer-based analysis routines such as the generalized reciprocal method (Palmer [1980 and 1981], Lankston and Lankston [1986], and Lankston [1990]), reciprocal method (Hawkins, 1961) also referred to as the ABC method, Hales' method (Hales, 1958), delay time method (Wyrobek [1956] and Gardner [1967]), time-term inversion (Scheidegger and Willmore, 1957), plus-minus method (Hagedoorn, 1959), and wavefront method (Rockwell, 1967) are required to model subsurface velocity structure. These methods generally require a minimum of 5 shot points per spread (end shots, off-end shots, and a center shot). If subsurface velocity structure is complex and cannot be adequately modeled using layer-based modeling techniques (i.e., complex weathering profile in bedrock, numerous lateral velocity variations), then Monte Carlo or tomographic inversion techniques (Zhang and Toksoz [1998], Schuster and Quintus-Bosz [1993]) are required to model the seismic refraction data. These techniques require a high shot density; typically every 2 to 6 stations/geophones. Generally, these techniques cannot effectively take advantage of off-end shots to extend the depth of investigation, so longer profiles are required.

Errors in seismic refraction models can be caused by velocity inversions, hidden layers, or lateral velocity variations. At sites with steeply dipping or highly irregular bedrock surfaces, out of plane refractions (refractions from structures to the side of the line rather than from beneath the line) may severely complicate modeling. A velocity inversion is a geologic layer with a lower seismic velocity than an overlying layer. Critical refraction does not occur along with such a layer because velocity has to increase with depth for critical refraction to occur. This type of layer, therefore, cannot be recognized or modeled, and depths to underlying layers would be overestimated. A hidden layer is a layer with a velocity increase, but of sufficiently small thickness relative to the velocities of overlying and underlying layers, that refracted arrivals do

Report 19201 4 May 31, 2019

not arrive at the geophones before those from the deeper, higher velocity layer. Because the seismic refraction method generally only involves the interpretation of first arrivals, a hidden layer cannot be recognized or modeled, and depths to underlying layers would be underestimated. Saturated sediments, overlying high-velocity bedrock can be a hidden layer under many field conditions. However, saturated sediments generally have a much higher velocity than unsaturated sediments, typically in the 5,000 to 7,000 ft/s range, and can occasionally be interpreted as a second arrival when the layer does not give rise to a first arrival. A subsurface velocity structure that increases as a function of depth rather than as discrete layers will also cause depths to subsurface refractors to be underestimated, in a manner very similar to that of the hidden layer problem. Lateral velocity variations that are not adequately addressed in the seismic models will also lead to depth errors. Tomographic imaging techniques can often resolve the complex velocity structures associated with hidden layers, velocity gradients, and lateral velocity variations. However, in the event of an abrupt increase in velocity at a geologic horizon, the velocity model generated using tomographic inversion routines will smooth the horizon with velocity being underestimated at the interface and possibly overestimated at depth.

Report 19201 5 May 31, 2019

4 DATA REDUCTION AND MODELING

The first step in data processing consisted of picking the arrival time of the first energy received at each geophone (first-arrival) for each shot point. The first-arrivals on each seismic record are either a direct arrival from a compressional (P) wave traveling in the uppermost layer or a refracted arrival from a subsurface interface where there is a velocity increase. First-arrival times were selected using the automatic and manual picking routines in the software package SeisImagerTM (Oyo Corporation). These first-arrival times were saved in an ASCII file containing shot location, geophone locations, and associated first-arrival time. Errors in the first-arrival times were variable with error generally increasing with distance from the shot point.

Relative elevations for each geophone location were calculated from the leveling data using a spreadsheet and converted to approximate elevations using GPS data collected at the end of each line

Data quality was affected by factors such as topography, geologic conditions, and cultural noise, including nearby traffic noise.

Seismic refraction data were then modeled using the tomographic analysis technique available in the SeisImagerTM Plotrefa software package, developed by Oyo Corporation. Refraction tomography techniques are often able to resolve complex velocity structure (e.g., velocity gradients) that can be observed in bedrock weathering profiles. Layer-based modeling techniques such as GRM are not able to accurately model the velocity gradients that can be observed in weathered or transitional zones.

The tomographic analysis was conducted in several steps. First, an initial model was generated using a smooth starting model. The initial model was then converted to 25 layers with the top of the bottom layer at a depth related to the imaged depth of the model. Velocity ranges were also set to values outside of the starting model minimum and maximum. A minimum of 30 iterations of non-linear raypath inversion was then implemented to improve the fits of the travel time curves to near-surface sediments/rock. After each set of inversions were completed, the initial parameters were adjusted, and the model run again in an iterative process. These steps were repeated until acceptable fits and RMS error was achieved. The final tomographic velocity models for the seismic line were exported as ASCII files and imported into the Geosoft Oasis montaj® v9 mapping system where the velocity model was gridded, contoured, and annotated for presentation.

Report 19201 6 May 31, 2019

5 DISCUSSION OF RESULTS

The smooth starting, P-wave seismic tomography models for Lines 1 through 3 are presented as Figures 2 through 4, respectively. The color scheme used on the tomography images consists of blue-green, yellow-orange, and red-pink representing low, intermediate, and high velocities, respectively. The transition from blue to cyan occurs at a P-wave seismic velocity of 1,000 ft/s and the transition from green to yellow occurs at a velocity of 2,500 ft/s. The transition from orange to red occurs at 3,500 ft/s.

Tomographic inversion techniques will typically model a gradual increase in velocity with depth even if an abrupt velocity contact is present. Therefore, if velocity gradients are not present, tomographic inversion routines will overestimate and underestimate velocity above and below a layer contact, respectively. Velocity gradients can, however, be very common in geologic environments with weathering zones and sedimentary rock, such as the project site. In tomographic images, layer contacts are not clearly defined, and thus, ranges of velocities are used to interpret possible rock conditions and competency. Groundwater was not expected to be encountered on any of the seismic lines.

Line 1 was located in the northern portion of the site and aligned south to north (Figure 1). The P-wave seismic tomography color contour model for Line 1 is presented in Figure 2. The line is imaged with velocities of up to about 3,500 ft/s within 100 ft bgs. Likely, this material consists of alluvial material and soil with an increase in velocity with depth over the entire model. Higher velocities are imaged at shallower depths beneath the southern portion of the model. This zone may be the result of the presence of a coarser material on the southern portion of the profile or an edge effect of the model. Modeled data indicates that the material is rippable to a depth of at least 100 ft beneath the line using a Caterpillar D8R. Marginally rippable and non-rippable material using a Caterpillar D8R was not imaged in the tomography model beneath the seismic line.

Line 2 was located in the central portion of the site and aligned south to north (Figure 1). The P-wave seismic tomography color contour model for Line 2 is presented in Figure 3. The line is imaged with velocities of up to about 3,500 ft/s within 100 ft bgs. Likely, this material consists of alluvial material and soil with an increase in velocity with depth over the entire model. Modeled data indicates that the material is rippable to a depth of 100 ft beneath the line using a Caterpillar D8R. Marginally rippable and non-rippable material using a Caterpillar D8R was not imaged in the tomography model for the seismic line.

Line 3 was located in the southern portion of the site and aligned roughly southeast to northwest (Figure 1). The P-wave seismic tomography color contour model for Line 3 is presented in Figure 4. The line is imaged with velocities of up to about 3,700 ft/s within 60 ft bgs. Likely, this material consists of alluvial material with an increase in velocity with depth over the entire model. Modeled velocities beneath this profile are higher than Line 1 and 2. The increase in the velocities may be related to coarser or more compacted/cemented material. Modeled data indicates that the material is rippable to a depth of at least 70 ft beneath the line using a Caterpillar D8R. Marginally rippable and non-rippable material using a Caterpillar D8R was not imaged in the tomography model for the seismic line.

Report 19201 7 May 31, 2019

6 REFERENCES

- Dobrin, M.S., and Savit, J., 1988, Introduction to Geophysical Prospecting, McGraw-Hill Co., New York.
- Gardner, L.W., 1967, Refraction seismograph profile interpretation, in Musgrave, A.W., ed., Seismic Refraction Prospecting: Society of Exploration Geophysicists, p. 338-347.
- Hales, F. W., 1958, An accurate graphical method for interpreting seismic refraction lines: Geophysical Prospecting, v. 6, p 285-294.
- Hagedoorn, J.G., 1959, The plus-minus method of interpreting seismic refraction sections, Geophysical Prospecting, v. 7, p 158-182.
- Hawkins, L. V., 1961, The reciprocal method of routine shallow seismic refraction investigation: Geophysics, v. 26, p. 806-819.
- Lankston, R. W., 1990, High-resolution refraction seismic data acquisition and interpretation, <u>in</u> Ward, S. H., ed., Geotechnical and Environmental Geophysics, Volume I: Review and Tutorial: Society of Exploration Geophysicists, Tulsa, Oklahoma, p. 45-74.
- Lankston, R. W., and Lankston, M. M., 1986, Obtaining multilayer reciprocal times through phantoming, Geophysics, v. 51, p. 45-49.
- Palmer, D., 1980, The generalized reciprocal method of seismic refraction interpretation: Society of Exploration Geophysics, Tulsa, Oklahoma, 104 p.
- Palmer, D., 1981, An introduction to the field of seismic refraction interpretation: Geophysics, v. 46, p. 1508-1518.
- Redpath, B. B., 1973, Seismic refraction exploration for engineering site investigations: U. S. Army Engineer Waterway Experiment Station Explosive Excavation Research Laboratory, Livermore, California, Technical Report E-73-4, 51 p.
- Rockwell, D.W. 1967. A general wavefront method. In Seismic Refraction Prospecting, A.W. Musgrave, ed., pp 363-415. Tulsa: Society of Exploration Geophysicists.
- Scheidegger, A., and Willmore, P.L., 1957, The use of a least square method for the interpretation of data from seismic surveys, Geophysics, v. 22, p. 9-22.
- Schuster, G. T. and Quintus-Bosz, A., 1993, Wavepath eikonal traveltime inversion: Theory: Geophysics, v. 58, no. 9, p. 1314-1323.
- Telford, W. M., Geldart, L.P., Sheriff, R.E., 1990, Applied Geophysics, Second Edition, Cambridge University Press.
- Wyrobek, S.M., 1956, Application of delay and intercept times in the interpretation of multilayer time distance curves, Geophysical Prospecting, v. 4, p 112-130.
- Zhang, J. and Toksoz, M. N., 1998, Nonlinear refraction traveltime tomography, Geophysics, V. 63, p. 1726-1737.

Report 19201 8 May 31, 2019

7 CERTIFICATION

All geophysical data, analysis, interpretations, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by a **GEO***Vision* California Professional Geophysicist.

This geophysical investigation was conducted under the supervision of a California by

Prepared by:

Jonathan Jordan

Senior Staff Geophysicist

GEOVision Geophysical Services

5/31/2019

Reviewed and Approved by:

David Carpenter

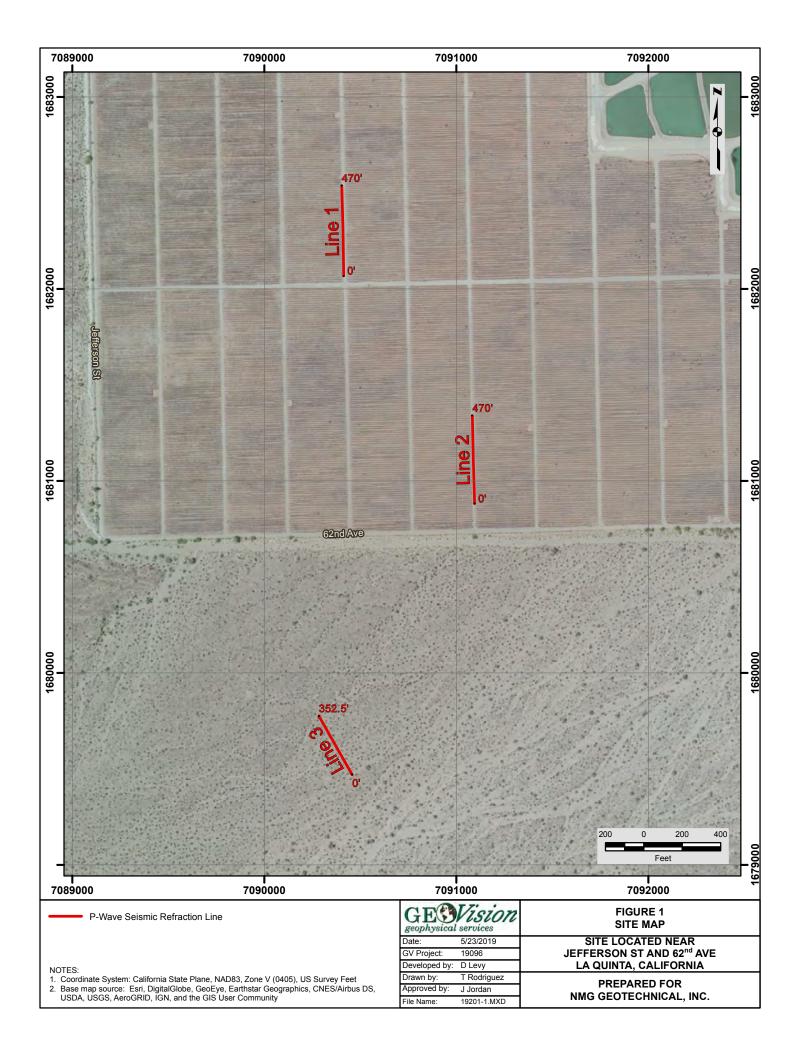
California Professinal Geophysicist, PGp

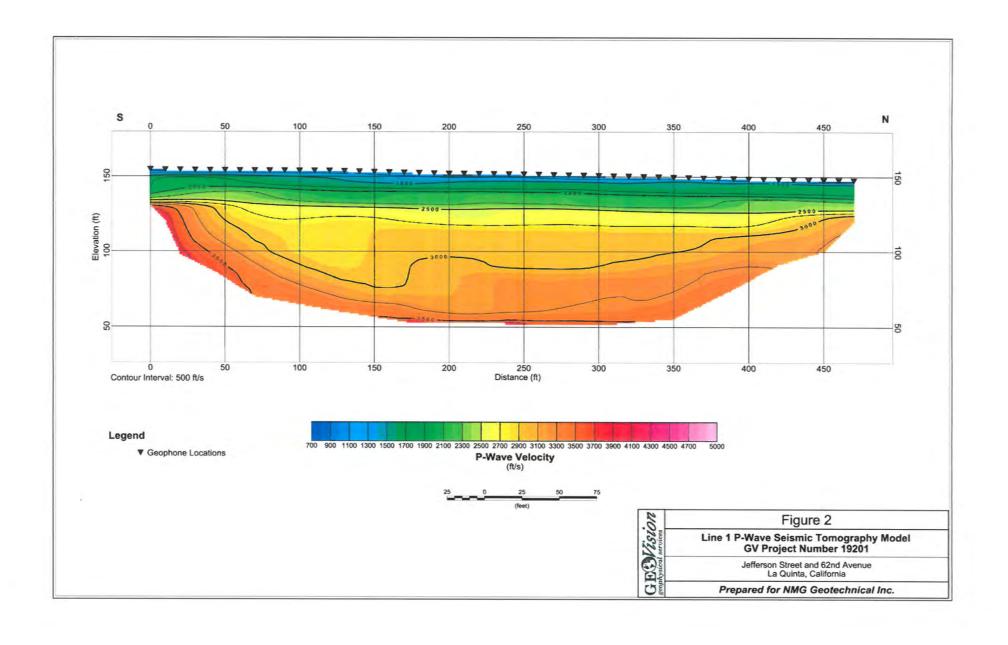
GEOVision Geophysical Services

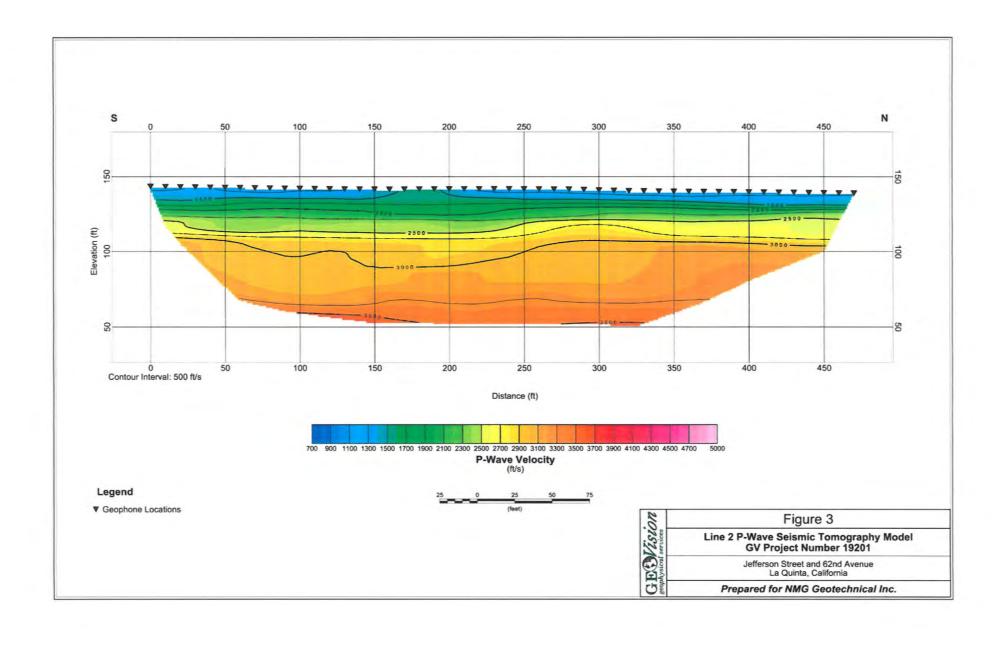
5/31/2019

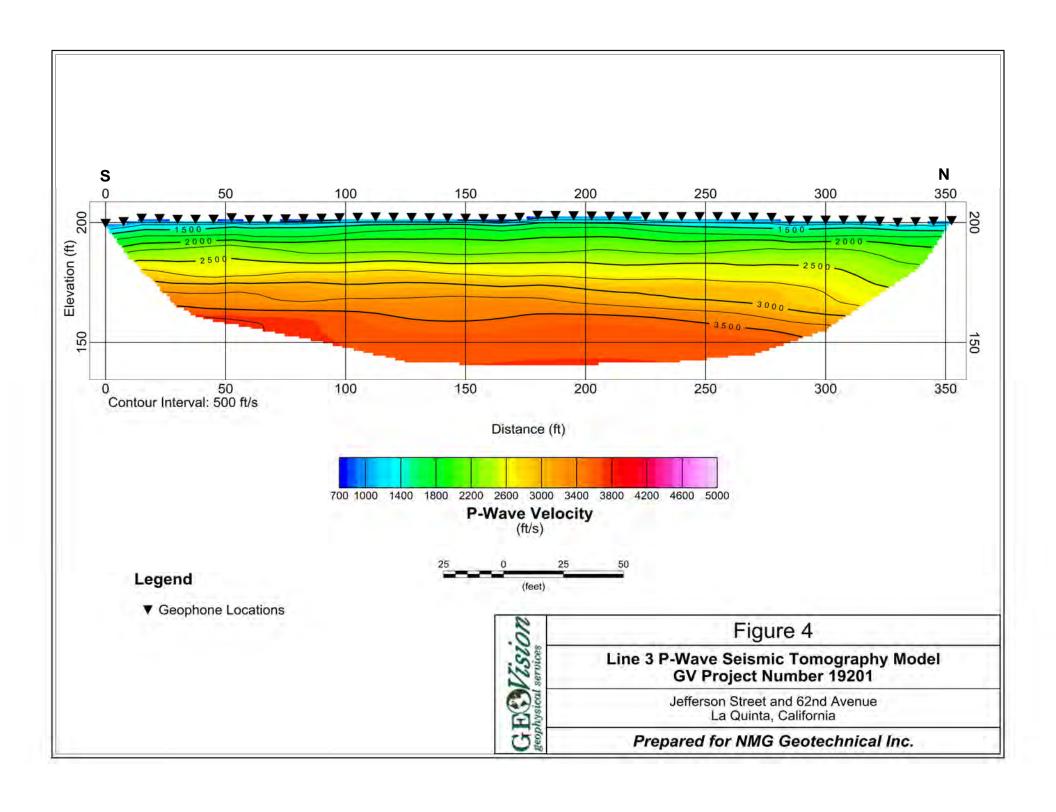
* This geophysical investigation was conducted under the supervision of a California Professional Geophysicist using industry standard methods and equipment. A high degree of professionalism was maintained during all aspects of the project from the field investigation and data acquisition, through data processing, interpretation, and reporting. All original field data files, field notes, and observations, and other pertinent information are maintained in the project files and are available for the client to review for a period of at least one year.

A professional geophysicist's certification of interpreted geophysical conditions comprises a declaration of his/her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, or ordinances.


Report 19201 9 May 31, 2019


Table 1 Seismic Line Geometry


Name	Spacing (ft)	Location (ft)	Northing (US Feet)	Easting (US Feet)
Line 1	10	0	1,682,068	7,090,413
		470	1,682,538	7,090,403
Line 2	10	0	1,680,881	7,091,095
		470	1,681,340	7,091,084
Line 3	7.5	0	1,679,470	7,090,458
		352.5	1,679,776	7,090,284


Notes:

- 1. Plane coordinates in CA State Plane, Zone VI (0406), NAD83 (Conus), US Survey Feet.
- 3. Coordinates taken with a Spectra SP60 with Centerpoint RTX submeter corrections.

Project Name: Hofmann/Travertine Project Number: 18186-01
Test Hole Number: P-1 Date Excavated: 8/9/2021

Depth (in): 279.6 Radius (in.): 4 Date Presoak: 8/10/2021
Tested By: AZ Date Tested: 8/10/2021

Time	Time Interval (mins.)	Total Elapsed Time (mins)	Initial Depth to Water (in.)	Final Depth to Water (in.)	Δ in Water Level (in.)	Percolation Rate (in./hr.)	
6:57	2	2	253.8	266.4	12.6	378.0	
6:59	2	2	233.6	200.4	12.0	378.0	
7:02	2	7	258.0	267.0	9.0	270.0	
7:04		,	250.0	207.0	<u> </u>	270.0	
7:05	2	10	267.0	272.8	5.8	174.0	
7:07	_						
7:10	5	18	254.4	273.6	19.2	230.4	
7:15							
7:18	5	26	253.2	272.4	19.2	230.4	
7:23							
7:25	5	33	254.4	271.6	17.2	206.4	
7:30							
7:34	5	42	252.6	271.2	18.6	223.2	
7:39 7:42							
7:42	5	50	253.2	270.0	16.8	201.6	
7:50							
7:55	5	58	252.6	271.2	18.6	223.2	
7:58							
8:03	5	66	252.6	270.6	18.0	216.0	
8:06	_	7.4	252.2	274.2	10.0	24.6.0	
8:11	5	74	253.2	271.2	18.0	216.0	
8:14	F	82	252.0	269.4	15.6	187.2	
8:19	5	δŹ	253.8	209.4	15.6	187.2	
8:22	5	90	252.6	269.4	16.8	201.6	
8:27		90	232.0	203.4	10.0	201.0	
8:30	5	98	252.0	268.8	16.8	201.6	
8:35	,		232.0	200.0	10.0	201.0	
8:39	5	107	252.6	268.4	15.8	189.6	
8:44]						

Initial Height of Water (Ho) = 27

Final Height of Water (Hf) = 11.2

Change in Height Over Time (ΔH) = 15.8

Average Head Over Time (Havg) = 19.1

 I_t = $\Delta H(60r)/\Delta t(r+2Havg)$

 I_t = 18.0 in./hr.

Project Name: Hofmann/Travertine

Test Hole Number: P-2

Depth (in): 279.6 Tested By: AZ

Radius (in.): 4

Project Number: 18186-01 Date Excavated: 8/9/2021

Date Presoak: 8/10/2021

Date Tested: 8/10/2021

Time	Time Interval (mins.)	Total Elapsed Time (mins)	Initial Depth to Water (in.)	Final Depth to Water (in.)	Δ in Water Level (in.)	Percolation Rate (in./hr.)
10:13	5	5	229.2	268.4	39.2	470.4
10:18	,	3	223.2	200.4	33.2	470.4
10:22	5	14	229.8	268.2	38.4	460.8
10:27	J		223.0			
10:30	5	22	231.6	268.8	37.2	446.4
10:35						
10:38	5	30	232.2	268.2	36.0	432.0
10:43						
10:46	5	38	230.4	266.8	36.4	436.8
10:51						
10:55	5	47	231.0	267.0	36.0	432.0
11:00						
11:03	5	55	230.4	266.4	36.0	432.0
11:08						
11:12	5	64	243.6	267.0	23.4	280.8
11:17						
11:21 11:26	5	73	232.8	269.4	36.6	439.2
11:26						
11:34	5	81	238.8	265.8	27.0	324.0
11:34						
11:41	5	88	237.0	268.8	31.8	381.6
11:45	5					
11:50		97	232.8	267.6	34.8	417.6
11:53	_					
11:58	5	105	230.4	267.0	36.6	439.2

Initial Height of Water (Ho) = 49.2

Final Height of Water (Hf) = 12.6

Change in Height Over Time (ΔH) = 36.6

Average Head Over Time (Havg) = 30.9

 $I_t = \Delta H(60r)/\Delta t(r+2Havg)$

 $I_t = 26.7$

in./hr.

Project Name: Hofmann/Travertine Project Number: 18186-01

Test Hole Number: P-3 Date Excavated: 8/10/2021

Depth (in): 236.4 Radius (in.): 4 Date Presoak: 8/12/2021 Tested By: AZ Date Tested: 8/12/2021

Time	Time Interval (mins.)	Total Elapsed Time (mins)	Initial Depth to Water (in.)	Final Depth to Water (in.)	Δ in Water Level (in.)	Percolation Rate (in./hr.)
11:28	5	5	187.2	222.0	34.8	417.6
11:33	3	3	107.2	222.0	54.6	417.0
11:35	5	12	189.0	224.0	35.0	420.0
11:40			105.0	22 1.0	33.0	120.0
11:42	5	19	187.2	224.2	37.0	444.0
11:47	<u> </u>		107.2	224.2	37.0	444.0
11:50	5	27	187.2	224.3	37.1	445.2
11:55	<u> </u>	27	107.2	224.5	37.1	443.2
11:57	5	34	186.0	224.4	38.4	460.8
12:02	,		100.0	224.4	J0.4	400.0
12:04	5	41	187.2	224.0	36.8	441.6
12:09			107.2	22 1.0	30.0	111.0
12:12	5	49	187.2	225.5	38.3	459.6
12:17			107.2	223.3		155.0
12:19	5	56	187.2	224.0	36.8	441.6
12:24			207.2	220		
12:27	5	64	187.2	224.3	37.1	445.2
12:32			207.2	229		. 13.2
12:34	5	71	187.2	224.0	36.8	441.6
12:39		, <u>.</u>	107.2	22 1.0		111.0
12:42	5	79	187.2	224.2	37.0	444.0
12:47		, ,	107.2	22 1.2	37.0	111.0
12:50	5	87	187.2	223.7	36.5	438.0
12:55		<i>.</i>	107.2	223.7	30.3	156.6

Initial Height of Water (Ho) = 49.2

Final Height of Water (Hf) = 12.7

Change in Height Over Time (ΔH) = 36.5

Average Head Over Time (Havg) = 30.95

 I_t = $\Delta H(60r)/\Delta t(r+2Havg)$

 I_t = 26.6 in./hr.

Project Name: Hofmann/Travertine Project Number: 18186-01

Test Hole Number: P-4

Depth (in): 295.2

Radius (in.): 4

Date Excavated: 8/10/2021

Date Presoak: 8/12/2021

Date Tested: 8/12/2021

Time	Time Interval (mins.)	Total Elapsed Time (mins)	Initial Depth to Water (in.)	Final Depth to Water (in.)	Δ in Water Level (in.)	Percolation Rate (in./hr.)
6:21						
6:24	3	3	264.0	287.6	23.6	472.0
6:27	2	0	260.4	207.4	27.0	F 40.0
6:30	3	9	260.4	287.4	27.0	540.0
6:33	3	15	259.8	288.0	28.2	564.0
6:36	3	13	255.8	200.0	20.2	304.0
6:39	3	21	260.4	287.4	27.0	540.0
6:42			2001.	20711		3 .5.0
6:45	3	27	262.2	288.0	25.8	516.0
6:48						
7:00	3	42	265.2	288.0	22.8	456.0
7:03						
7:06 7:09	3	48	262.2	287.4	25.2	504.0
7:14	2	F.C.	262.4	207.0	22.0	472.0
7:17	3	56	263.4	287.0	23.6	472.0
7:20	3	62	261.0	286.8	25.8	516.0
7:23	3	62	201.0	200.0	23.0	310.0
7:26	3	68	262.8	287.5	24.7	494.0
7:29			202.0	207.0		.56
7:33	3	75	264.0	287.4	23.4	468.0
7:36						
7:39	3	81	263.4	288.0	24.6	492.0
7:42						
7:45	3	87	264.0	287.8	23.8	476.0
7:48						
7:51	3	93	263.4	288.6	25.2	504.0
7:54						
7:57	3	99	264.6	288.6	24.0	480.0
8:00						
8:04 8:07	3	106	266.4	288.5	22.1	442.0
8:10						
8:13	3	112	270.0	288.0	18.0	360.0
8:16						
8:19	3	118	262.2	286.8	24.6	492.0
8:22		424	264.6	206.2	24.5	402.2
8:25	3	124	261.6	286.2	24.6	492.0
8:28	3	130	260.4	286.4	26.0	520.0
8:31	Initial Height of			200.4	20.0	320.0

Initial Height of Water (Ho) = 34.8

Final Height of Water (Hf) = 8.8

Change in Height Over Time (ΔH) = 26 Average Head Over Time (Havg) = 21.8 $I_t = \Delta H(60r)/\Delta t(r+2Havg)$

 $I_t = 43.7$

in./hr.

Project Name: Hofmann/Travertine

Test Hole Number: P-5

Depth (in): 355.8

Radius (in.): 4

Project Number: 18186-01 Date Excavated: 8/10/2021

Date Presoak: 8/12/2021

Tested By: AZ Date Tested: 8/12/2021

Time	Time Interval (mins.)	Total Elapsed Time (mins)	Initial Depth to Water (in.)	Final Depth to Water (in.)	Δ in Water Level (in.)	Percolation Rate (in./hr.)	
9:16	3	3	331.2	349.8	18.6	372.0	
9:19	3	5	331.2	349.6	16.6	372.0	
9:22	3	9	327.6	348.5	20.9	418.0	
9:25	3		327.0	540.5	20.5	410.0	
9:28	3	15	326.4	348.6	22.2	444.0	
9:31	J			3 10.0			
9:33	3	20	327.6	348.6	21.0	420.0	
9:36				0.0.0			
9:39	3	26	331.2	349.8	18.6	372.0	
9:42							
9:45	3	32	328.8	349.8	21.0	420.0	
9:48							
9:52	3	39	333.6	348.0	14.4	288.0	
9:55							
9:58	3	45	326.4	348.8	22.4	448.0	
10:01 10:04							
10:04	3	51	324.0	334.8	10.8	216.0	
10:10							
10:15	5	59	318.0	338.6	20.6	247.2	
10:18	_						
10:23	5	67	318.0	337.6	19.6	235.2	
10:27	_	7.0	240.0	225.4	40.4	222.0	
10:32	5	76	318.0	336.4	18.4	220.8	
10:35	_		212.2	227.2			
10:40	5	84	318.0	337.0	19.0	228.0	
10:43	5	0.5	242.2	222.1	20.1	241.0	
10:48		92	318.0	338.4	20.4	244.8	
10:50		Г	Г 00	210.0	220.0	24.0	264.6
10:55	5	99	318.0	339.8	21.8	261.6	
10:58	5	107	318.0	340.8	22.8	273.6	
11:03	J	107	37.0	340.0	22.0	2/3.0	

Initial Height of Water (Ho) = 37.8

Final Height of Water (Hf) = 15


Change in Height Over Time (ΔH) = 22.8

Average Head Over Time (Havg) = 26.4

 $I_t = \Delta H(60r)/\Delta t(r+2Havg)$

 $I_t = 19.3$

in./hr.

APPENDIX G

GENERAL EARTHWORK AND GRADING SPECIFICATIONS

1.0 General

- Intent: These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s).
- 1.2 <u>Geotechnical Consultant</u>: Prior to commencement of work, the owner shall employ a geotechnical consultant. The geotechnical consultant shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading.

Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing.

During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required. Subsurface areas to be geotechnically observed, mapped, elevations recorded, and/or tested include natural ground after it has been cleared for receiving fill but before fill is placed, bottoms of all "remedial removal" areas, all key bottoms, and benches made on sloping ground to receive fill.

The Geotechnical Consultant shall observe the moisture-conditioning and processing of the subgrade and fill materials and perform relative compaction testing of fill to determine the attained level of compaction. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis.

1.3 The Earthwork Contractor: The Earthwork Contractor (Contractor) shall be qualified, experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture-conditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing the grading in accordance with the plans and specifications.

The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of "spreads" of work and the estimated quantities of daily earthwork contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate observations and tests can be planned and accomplished. The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations.

The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of the Geotechnical Consultant, unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, insufficient buttress key size, adverse weather, etc., are resulting in a quality of work less than required in these specifications, the Geotechnical Consultant shall reject the work and may recommend to the owner that construction be stopped until the conditions are rectified.

2.0 Preparation of Areas to be Filled

2.1 <u>Clearing and Grubbing</u>: Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies, and the Geotechnical Consultant.

The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials (by volume). No fill lift shall contain more than 5 percent of organic matter. Nesting of the organic materials shall not be allowed.

If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area.

As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed.

- 2.2 <u>Processing</u>: Existing ground that has been declared satisfactory for support of fill by the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be overexcavated as specified in the following section. Scarification shall continue until soils are broken down and free of large clay lumps or clods and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction.
- 2.3 Overexcavation: In addition to removals and overexcavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic-rich, highly fractured or otherwise unsuitable ground shall be overexcavated to competent ground as evaluated by the Geotechnical Consultant during grading.
- 2.4 <u>Benching</u>: Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), the ground shall be stepped or benched. Please see the Standard Details for a graphic illustration. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also be benched or otherwise overexcavated to provide a flat subgrade for the fill.
- 2.5 <u>Evaluation/Acceptance of Fill Areas</u>: All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys, and benches.

3.0 Fill Material

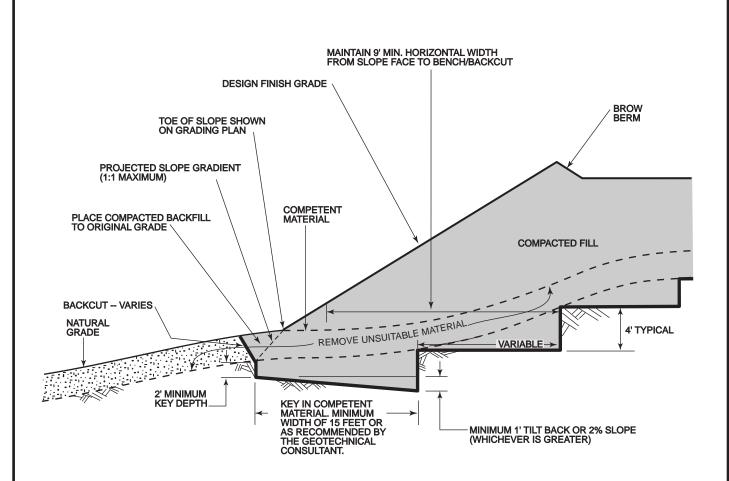
- 3.1 <u>General</u>: Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material.
- 3.2 Oversize: Oversize material defined as rock, or other irreducible material with a maximum dimension greater than 12 inches, shall not be buried or placed in fill unless location, materials, and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction.
- 3.3 <u>Import</u>: If importing of fill material is required for grading, proposed import material shall meet the requirements of Section 3.1. The potential import source shall be given to the Geotechnical Consultant at least 48 hours (2 working days) before importing begins so that its suitability can be determined and appropriate tests performed.

4.0 Fill Placement and Compaction

- 4.1 <u>Fill Layers</u>: Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near-horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout.
- 4.2 <u>Fill Moisture Conditioning</u>: Fill soils shall be watered, dried back, blended, and/or mixed, as necessary to attain a relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557-91).
- 4.3 <u>Compaction of Fill</u>: After each layer has been moisture-conditioned, mixed, and evenly spread, it shall be uniformly compacted to not less than 90 percent of maximum dry density (ASTM Test Method D1557-91). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity.

- 4.4 <u>Compaction of Fill Slopes</u>: In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of maximum density per ASTM Test Method D1557-91.
- 4.5 <u>Compaction Testing</u>: Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches).
- 4.6 <u>Frequency of Compaction Testing</u>: Tests shall be taken at intervals not exceeding 2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. In addition, as a guideline, at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met.
- 4.7 <u>Compaction Test Locations</u>: The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that the Geotechnical Consultant can determine the test locations with sufficient accuracy. At a minimum, two grade stakes within a horizontal distance of 100 feet and vertically less than 5 feet apart from potential test locations shall be provided.

5.0 Subdrain Installation

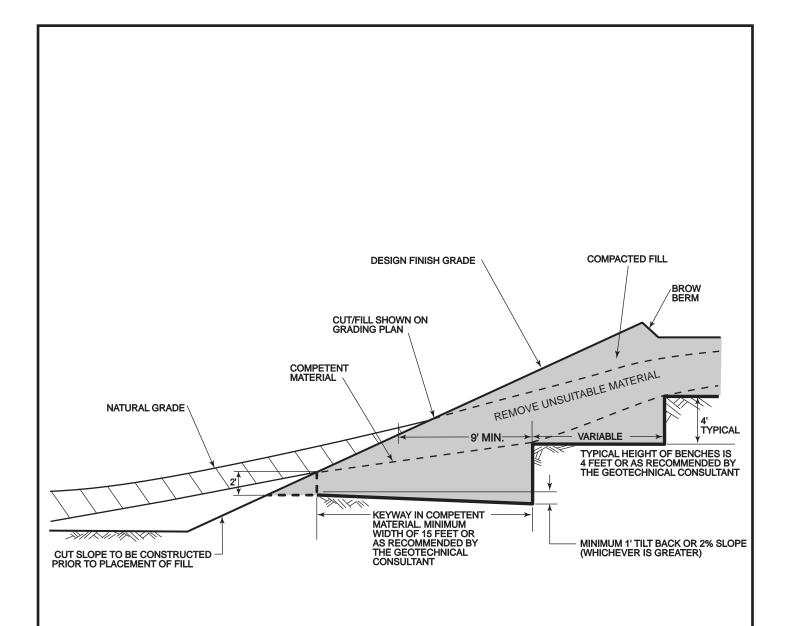

Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location, grade, or material depending on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys.

6.0 Excavation

Excavations, as well as over-excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during grading. Where fill-over-cut slopes are to be graded, the cut portion of the slope shall be made, evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by the Geotechnical Consultant.

7.0 Trench Backfills

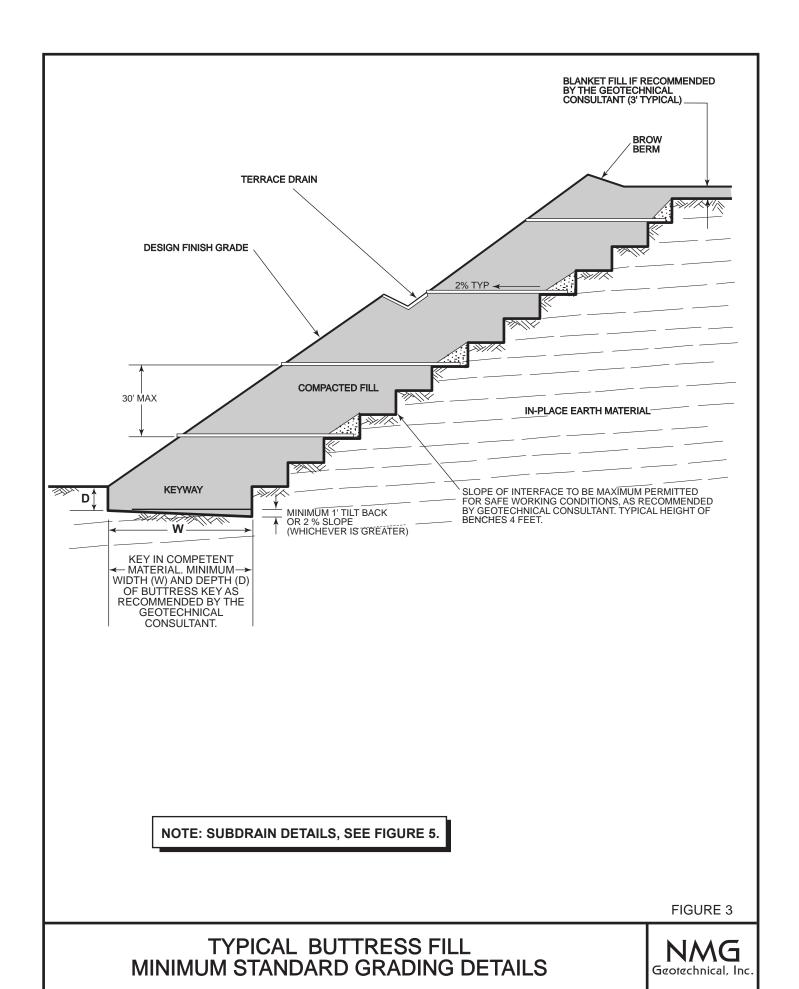
- 7.1 Contractor shall follow all OHSA and Cal/OSHA requirements for safety of trench excavations.
- 7.2 Bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material shall have a Sand Equivalent greater than 30 (SE>30). The bedding shall be placed to 1 foot over the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum 90 percent of maximum from 1 foot above the top of the conduit to the surface, except in traveled ways (see Section 7.6 below).
- 7.3 Jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant.
- 7.4 Geotechnical Consultant shall test the trench backfill for relative compaction. At least one test should be made for every 300 feet of trench and 2 feet of fill.
- 7.5 Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method.
- 7.6 Trench backfill in the upper foot measured from finish grade within existing or future traveled way, shoulder, and other paved areas (or areas to receive pavement) should be placed to a minimum 95 percent relative compaction.



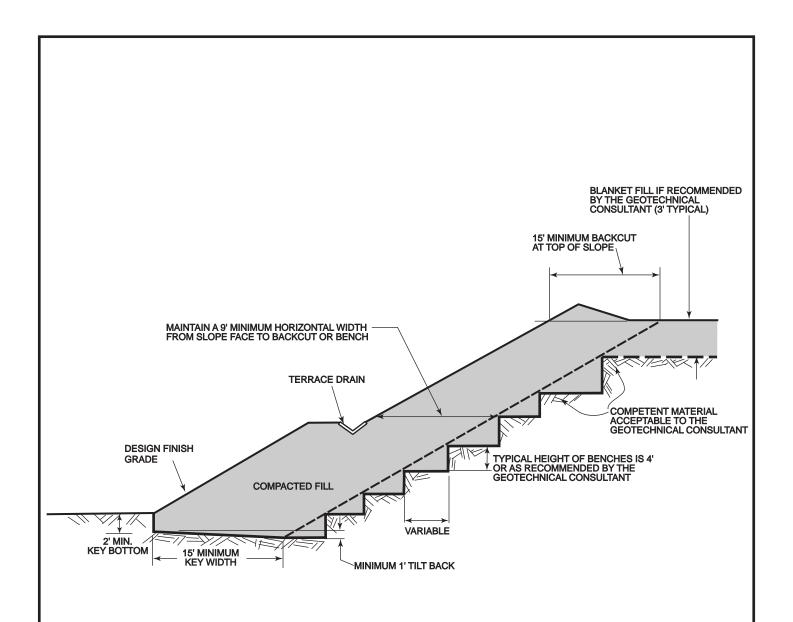
NOTE: BENCHING SHALL BE REQUIRED WHEN NATURAL SLOPES ARE EQUAL TO OR STEEPER THAN 5:1 OR WHEN RECOMMENDED BY THE SOIL ENGINEER. WHERE THE NATURAL SLOPE APPROACHES OR EXCEEDS THE DESIGN SLOPE RATIO, SPECIAL RECOMMENDATIONS WILL BE PROVIDED BY THE GEOTECHNICAL ENGINEER.

FIGURE 1

TYPICAL FILL KEY ABOVE NATURAL SLOPE MINIMUM STANDARD GRADING DETAILS

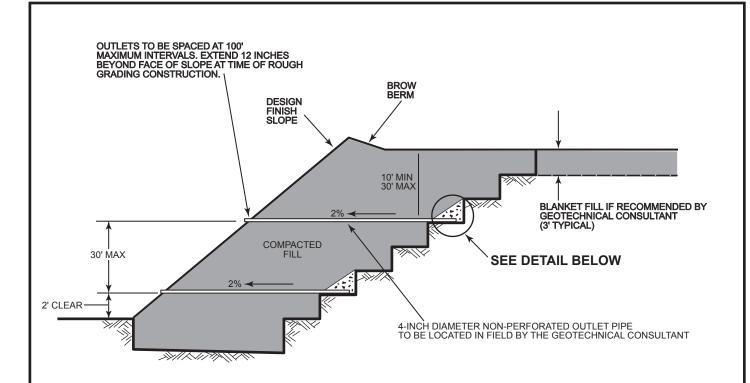


NOTE: THE FILL PORTION OF THE SLOPE SHALL BE COMPACTED AS STATED IN THE PROJECT SPECIFICATIONS.


FIGURE 2

TYPICAL FILL ABOVE CUT SLOPE MINIMUM STANDARD GRADING DETAILS

1/04 TYP BUTTRESS FILL.ai


NOTE:

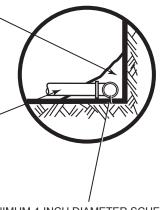
SEE FIGURE 5 FOR TYPICAL SUBDRAIN DETAILS FOR STABILIZATION FILLS

FIGURE 4

TYPICAL STABILIZATION FILL MINIMUM STANDARD GRADING DETAILS

FILTER MATERIAL - MINIMUM OF THREE CUBIC FEET PER FOOT OF PIPE. SEE FILTER MATERIAL SPECIFICATION.

ALTERNATE: IN LIEU OF FILTER MATERIAL, THREE CUBIC FEET OF GRAVEL PER FOOT OF SUBDRAIN (WITHOUT PIPE) MAY BE ENCASED IN FILTER FABRIC. SEE GRAVEL SPECIFICATION, AND FIGURE 6 FOR FILTER FABRIC SPECIFICATION

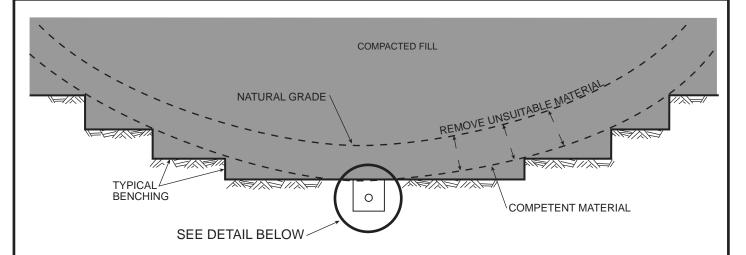

> "GRAVEL" TO CONSIST OF 1/2" TO 1" CRUSHED ROCK PER STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION.

> > OUTLET PIPE TO BE CONNECTED TO SUBDRAIN PIPE WITH TEE OR ELBOW

FILTER FABRIC SHALL BE LAPPED A MINIMUM OF 12 INCHES ON ALL JOINTS.

"FILTER MATERIAL" TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUIVALENT.				
SIEVE SIZE	PERCENTAGE			
	PASSING			
1"	100			
3/4"	90-100			
3/8"	40-100			
NO. 4	25-40			
NO. 8	18-33			
NO. 30	5-15			
NO. 50	0-7			
NO. 200	0-3			

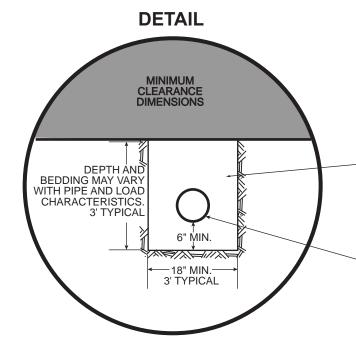
NOTE: TRENCH FOR OUTLET PIPES TO BE BACKFILLED WITH ON-SITE SOIL. **DETAIL**



MINIMUM 4-INCH DIAMETER SCHEDULE 40
ASTM D1527 OR D1785 OR SDR 35 ASTM D2751
OR D 3034. FOR FILL DEPTH OF 90 FEET OR
GREATER, USE ONLY SCHEDULE 40 OR
EQUIVALENT. THERE SHALL BE A MINIMUM OF
8 UNIFORMLY SPACED PERFORATIONS PER
FOOT OF PIPE INSTALLED WITH
PERFORATIONS ON BOTTOM OF PIPE.
PROVIDE CAP AT UPSTREAM END OF PIPE.
SLOPE AT 2 PERCENT TO OUTLET PIPE.

FIGURE 5

TYPICAL STABILIZATION AND BUTTRESS FILL SUBDRAINS MINIMUM STANDARD GRADING DETAILS

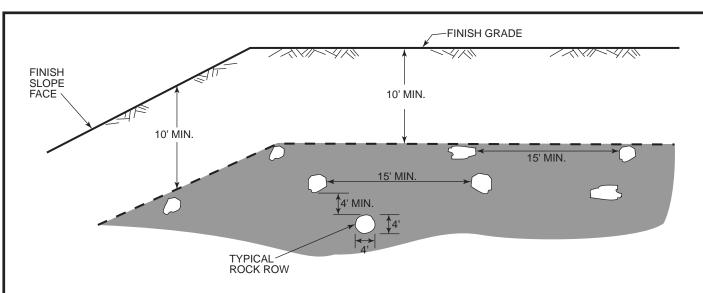


FILTER FABRICS SHALL BE PERMEABLE NON-WOVEN POLYESTER, NYLON, OR POLYPROPYLENE MATERIAL CONFORMING TO THE FOLLOWING:

NOTES: DOWNSTREAM 20' OF PIPE AT OUTLET SHALL BE NON-PERFORATED AND BACKFILLED WITH FINE-GRAINED MATERIAL

PIPE SHALL BE A MINIMUM OF 4-INCH DIAMETER. FOR RUNS OF 500 FEET OR MORE, USE 6-INCH DIAMETER PIPE, OR AS RECOMMENDED BY THE GEOTECHNICAL CONSULTANT

FILTER MATERIAL - MINIMUM OF NINE CUBIC FEET PER FOOT OF PIPE. SEE FIGURE 5 FOR FILTER MATERIAL SPECIFICATIONS.


ALTERNATE: IN LIEU OF FILTER MATERIAL, NINE CUBIC FEET OF GRAVEL PER FOOT OF SUBDRAIN (WITHOUT PIPE) MAY BE ENCASED IN FILTER FABRIC. SEE FIGURE 5 TO GRAVEL SPECIFICATION. SEE ABOVE FOR FILTER FABRIC SPECIFICATION. FILTER FABRIC SHALL BE LAPPED MINIMUM OF 12 INCHES ON ALL JOINTS.

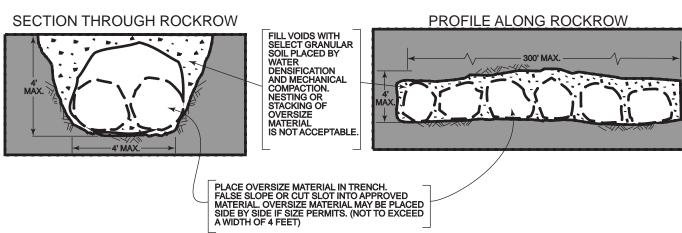
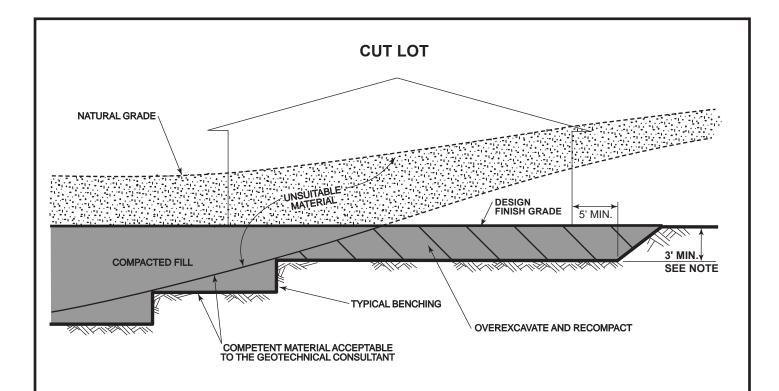

MINIMUM 4 INCH DIAMETER SCHEDULE 40 ASTM D 1527, OR D 1785, OR SDR 35 ASTM 2751 OR D 3034. FOR FILL DEPTH OF 90 FEET OR GREATER, USE ONLY SCHEDULE 40 OR APPROVED EQUIVALENT. THERE SHALL BE A MINIMUM OF 8 UNIFORMLY SPACED PERFORATIONS PER FOOT OF PIPE INSTALLED WITH PERFORATIONS ON BOTTOM OF PIPE.

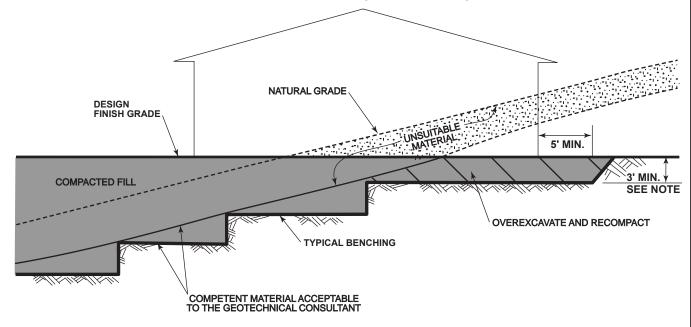
FIGURE 6

TYPICAL CANYON SUBDRAIN MINIMUM STANDARD GRADING DETAILS

NMG Geotechnical, Inc.


NOTES:

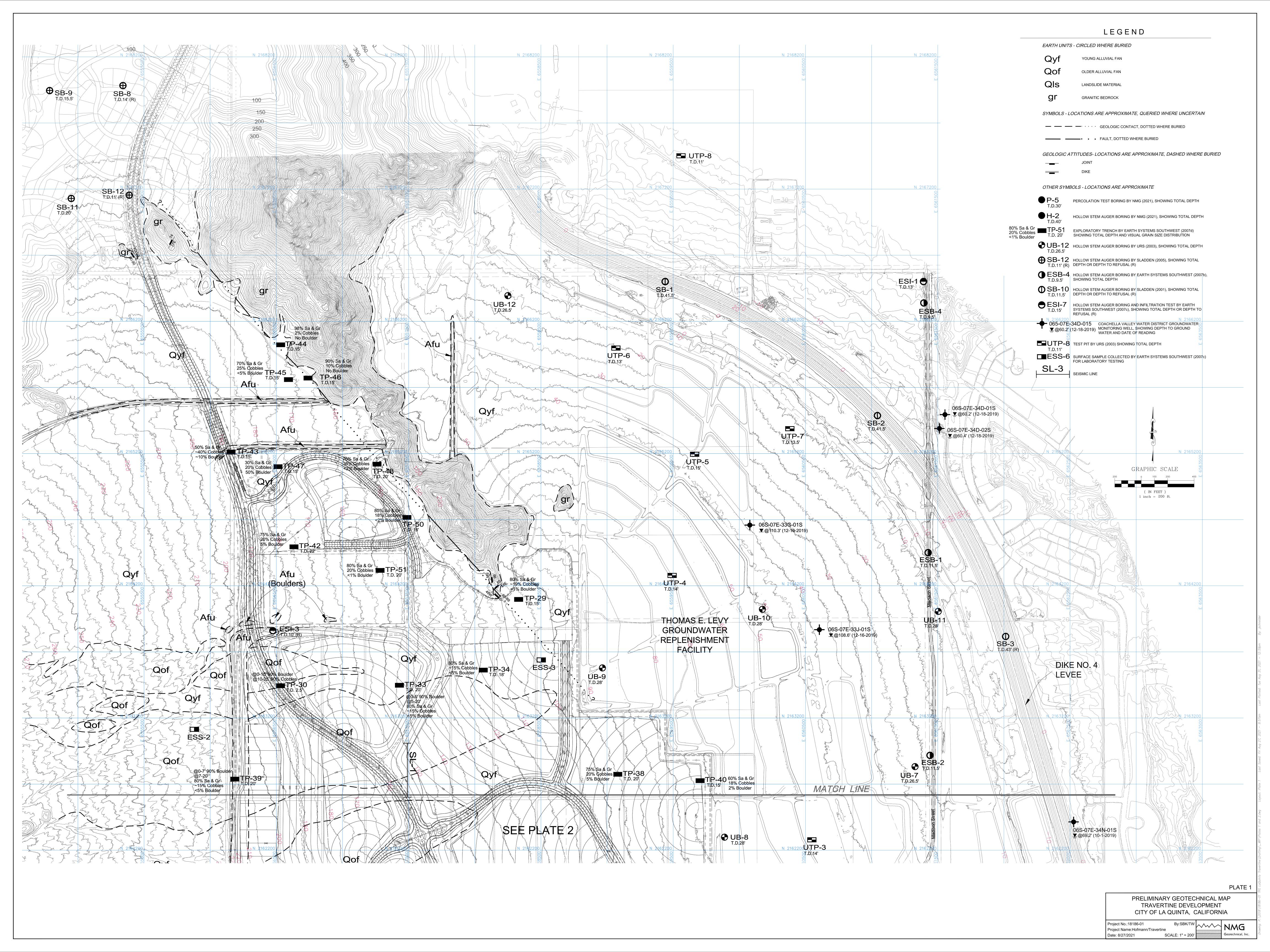
- A) OVERSIZED ROCK IS DEFINED AS LARGER THAN 12" IN SIZE (IN GREATEST DIMENSION).
- B) SPACE BETWEEN ROCKROWS SHOULD BE ONE EQUIPMENT WIDTH OR A MINIMUM OF 15 FEET.
- C) THE WIDTH AND HEIGHT OF THE ROCKROW SHALL BE LIMITED TO FOUR FEET AND THE LENGTH LIMITED TO 300 FEET UNLESS APPROVED OTHERWISE BY THE GEOTECHNICAL CONSULTANT. OVERSIZE SHOULD BE PLACED WITH FLATEST SIDE ON THE BOTTOM.
- D) OVERSIZE MATERIAL EXCEEDING FOUR FEET MAY BE PLACED ON AN INDIVIDUAL BASIS IF APPROVED BY THE GEOTECHNICAL CONSULTANT.
- E) FILLING OF VOIDS WILL REQUIRE SELECT GRANULAR SOIL (SE > 20, OR LESS THAN 20 PERCENT FINES) AS APPROVED BY THE GEOTECHNICAL CONSULTANT. VOIDS IN THE ROCKROW TO BE FILLED BY WATER DENSIFYING GRANULAR SOIL INTO PLACE ALONG WITH MECHANICAL COMPACTION EFFORT.
- F) IF APPROVED BY THE GEOTECHNICAL CONSULTANT, ROCKROWS MAY BE PLACED DIRECTLY ON COMPETENT MATERIALS OR BEDROCK, PROVIDED ADEQUATE SPACE IS AVAILABLE FOR COMPACTION.
- G) THE FIRST LIFT OF MATERIAL ABOVE THE ROCKROW SHALL CONSIST OF GRANULAR MATERIAL AND SHALL BE PROOF-ROLLED WITH A D-8 OR LARGER DOZER OR EQUIVALENT.
- H) ROCKROWS NEAR SLOPES SHOULD BE ORIENTED PARALLEL TO SLOPE FACE.
- I) NESTING OR STACKING OF ROCKS IS NOT ACCEPTABLE.

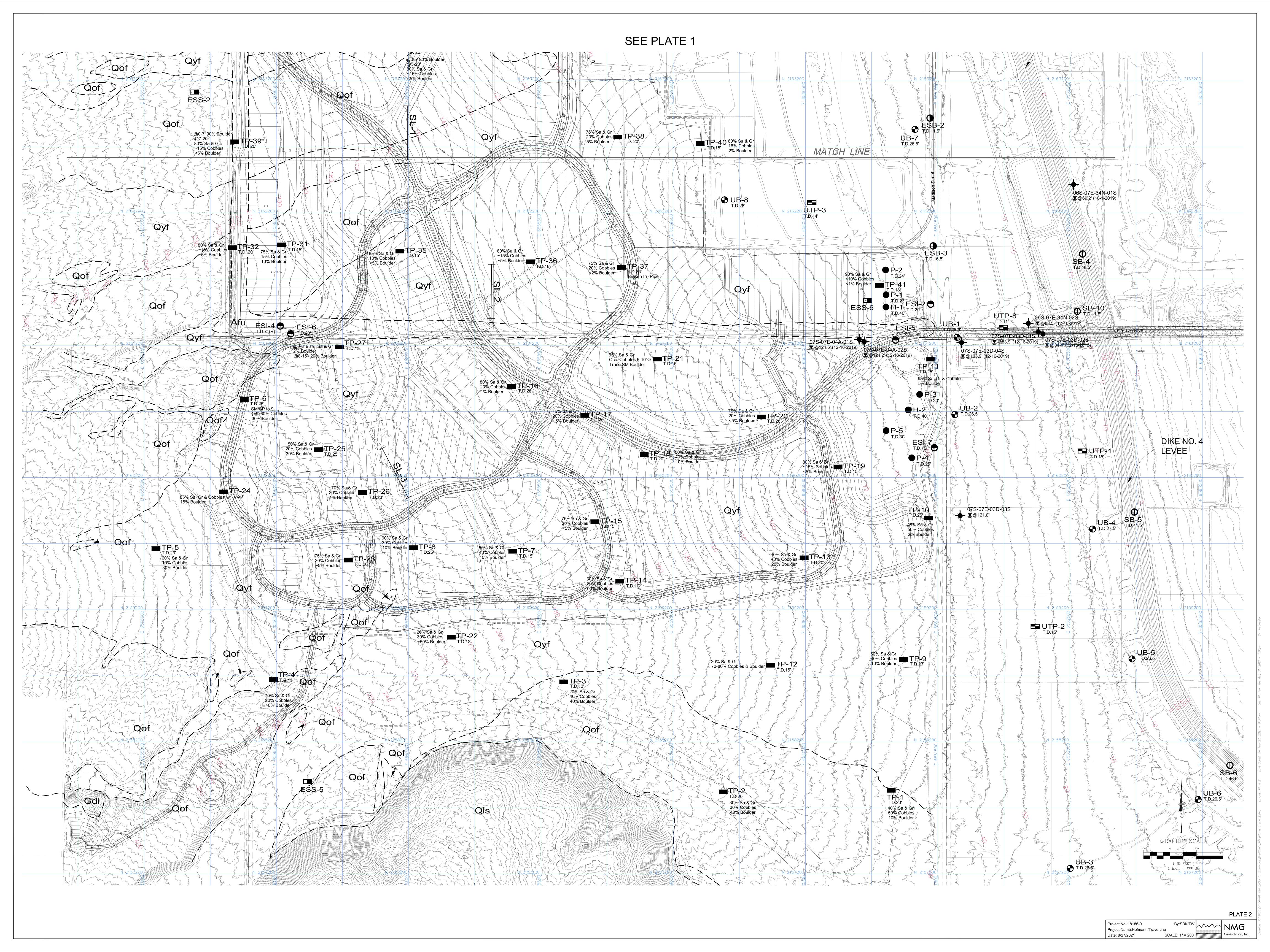

FIGURE 7

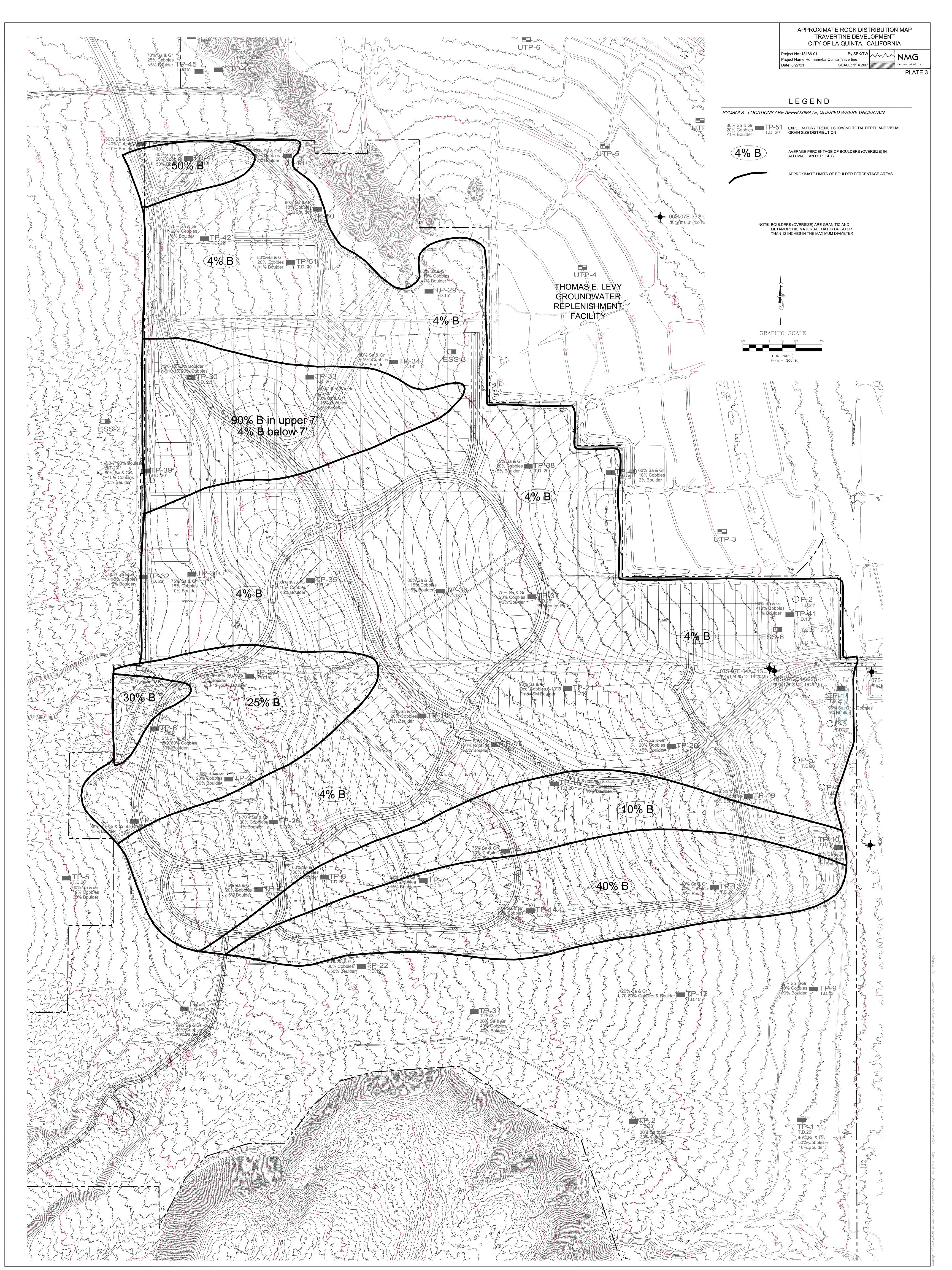
NMG Geotechnical, Inc.

TYPICAL OVERSIZE ROCK PLACEMENT METHOD MINIMUM STANDARD GRADING DETAIL FOR STRUCTURAL FILL

CUT FILL LOT (TRANSITION)




NOTE: DEEPER THAN THE 3-FOOT OVEREXCAVATION MAY BE RECOMMENDED BY THE GEOTECHNICAL CONSULTANT IN STEEP TRANSITIONS.


FIGURE 8

TYPICAL OVEREXCAVATION OF DAYLIGHT LINE MINIMUM STANDARD GRADING DETAILS

NMG Geotechnical, Inc.

Appendix F

Structural BMP and/or Retention Facility Sizing Calculation and Design Details Including Travertine Hydrology Study Dated Sept 2021

Travertine Project Preliminary Hydrology Study Tentative Tract Map 37387

Submitted to:

City of La Quinta 78-495 Calle Tampico La Quinta, CA 92253

Prepared by.

Proactive Engineering Consultants, Inc. 27042 Towne Centre Drive, Suite 110 Foothill Ranch, CA 92610

Prepared: September 2021

City PN:

Prepared by: Mark Anderson, PE

Table of Contents

1	INTRODUCTION	3
	1.1 Description of Study Area and responsibility	3
2	PROJECT SITE LOCATION MAP	2
3	PURPOSE AND SCOPE	3
4	HYDROLOGY METHODOLOGY	3
5	HYDROLOGIC ANALYSIS	4
	5.1 Project Conditions	
6	DISCUSSION OF RESULTS	8
APP	ENDIX A -SOILS TYPE MAP	
APP	PENDIX B -NOAA ATLAS PRECIPITATION FREQUENCY	
APP	ENDIX C –HYDROLOGY STUDY (AES RATIONAL METHOD)	III
	C.1 – 100-YR EXISTING HYDROLOGY	
	C.2 – 100-YR PROPOSED HYDROLOGY	
	C.3 – 10-YR EXISTING HYDROLOGY	
	C.4 – 10-YR PROPOSED HYDROLOGY	vii
APP	PENDIX D —HYDROLOGY STUDY (AES UNIT HYDROGRAPH)	VIII
	D.1 –100-YR EXISTING HYDROLOGY	ix
	D.2 – 100-YR pROPOSED HYDROLOGY	x
APP	PENDIX E- HYDRAULIC ANALYSIS FOR PEAKFLOW Q100	XI
NOR	RMAL DEPTH	XI
	E.1 – DRAINAGE FACILITIES BASED ON NORMAL DEPTH METHOD	xii
APP	PENDIX F – SPILLWAY CALCULATIONS	XIII
APP	ENDIX G - LIST OF MAPS	xıv
E	XISTING HYDROLOGY MAP	XV
PI	ROPOSED HYDROLOGY MAP_	XVI

1 INTRODUCTION

1.1 DESCRIPTION OF STUDY AREA AND RESPONSIBILITY

The Travertine Project is an 855.4-acre site with 524.0-acre being disturbed for development. The project is located west of Madison Street, and north of Avenue 62 in the City of La Quinta. The project is a residential and park development. Several improvements are planned for the development including road improvements, drainage systems, two infiltration basins and water/sewer systems to serve the proposed community. The project is generally bounded by mountain ranges to the west, Coachella Valley Water District (CVWD) spreading basins (Groundwater Recharge Facility) and Madison Street to the east, and 62nd Street and undeveloped area to the south.

Currently, the site is undeveloped and includes an abandoned vineyard. Drainages sheet flow from the west San Jacinto and Santa Rosa mountan ranges. There are several dikes that have been constructed to protect the vineyard areas from the mountain slope drainages. The project site is located upstream behind CVWD Dike #4 (See figure 1). The drainages are contained behind the dike where storm water runoff is retained and infiltrated.

Responsibility for analysis and design of regional flood control structures lies with Riverside County Flood Control and Water Conservation District (RCFC & WCD). The Coachella Valley Water District (CVWD) manages regional facilities, which collect runoff from areas outside the City, including the mountains. Regional facilities include Coachella Valley Stormwater Channel, La Quinta Evacuation Channel, Bear Creek System and Lake Cahuilla. Maintenance of local facilities, which collect runoff from local streets and properties to regional channels and basins, is the responsibility of the City of La Quinta.

2 PROJECT SITE LOCATION MAP

Figure 1: Project Location Map

3 PURPOSE AND SCOPE

The purpose of this study is to develop a preliminary drainage plan for the Travertine Project, Tentative Tract Map 37387, that would provide the project with drainage and flood protection from a 100-yr storm event without adversely impacting the adjacent properties and improvements. This study assumes discharge of the project's "mitigated-developed" on-site 100-year storm flow to the area behind Dike #4, matching existing or reducing peak flows.

The scope of the study includes the following:

- Establish baseline drainage conditions and watershed areas.
- Determine the pre and post 100- and 10-year/1-hour precipitation peak flow rates in accordance with the County of Riverside Hydrology Manual methodology.
- Determination preliminary size and location of the proposed drainage facilities required to flood-protect the proposed development from the 100-yr storm event

4 HYDROLOGY METHODOLOGY

Hydrologic calculations were performed in accordance to the methods described in the Riverside County Flood Control District (RCFCD) Hydrology Manual. The AES software utilizing the rational method was used to compute the peak flowrate for the 100-year storm event for the existing and proposed conditions.

The rainfall values used for the study area 10-year and 100-year storm events were obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 (appendix B). A slope of intensity duration curve from the RCFCD Hydrology Manual of **0.58** was used in the study.

The entire study consists of hydrologic soils **group A** obtained from the Web Soil Survey.

Due to the presence of detention basins, the Unit Hydrograph Method was used to establish a comparison of the baseline and project conditions total storm runoff volumes. The AES software, Flood routing computer model was used to evaluate frequency (100-year) storm event for durations of 1, 3, 6, and 24-hour.

The Unit Hydrograph (UH) Method establishes a peak flowrate and volume for the given drainage area. This method evaluates the watersheds response to a given rainfall pattern and event. The development of this method was established using the following assumptions and guidelines per the Riverside County Hydrology Manual:

- <u>Lag Time</u> Lag time is defined as the elapsed time in hours from the beginning of unit effective rainfall to the instant that the summation hydrograph for the concentration point of an area reaches 50-percent of the peak discharge. Lag time was calculated using the empirical formula identified in the Hydrology Manual (Sheet 1 of Plate E-1.1). Several parameters that area encompassed in this equation include drainage area, length of longest watercourse, slope of the most remote traveled distance, and overall conveyance Manning's value. Lag was used in the derivation of the "UI" cards for HEC-1 (Appendix A).
- <u>Unit Time Period</u> For the calculation process of the UH, a calculation time step is defined based on the lag time. Generally, a time step is chosen to be 25- to 40-percent of lag time than the calculated lag time for a given area.

- <u>S-Graph</u> An S-Graph represents the basic time-runoff relationship for a watershed type. For Riverside County, four different S-Graphs can be used, or a combination of the four. Given the topographic region of this project, the Valley S-Graph was used (Plate E-4.1).
- <u>Rainfall Patterns</u>— Using a 3 and 6-hour duration storm event, the point precipitation for the 100-year/3-& 6-hr storm event is 2.28" and 2.89". These are identified from NOAA Atlas 14 (Appendix B).
- <u>Loss Rate Calculations</u> For the UH method, several losses need to be calculated based on land uses, soil types, and percent imperviousness. The soil type for this project is 100-percent Hydrologic Soil Type "A" (Plate C-1.17).
 - Pervious Area Loss Rate (F) Calculated based on percent impervious
 - Low Loss Rate (Y bar) Calculated base on rate of rainfall

5 HYDROLOGIC ANALYSIS

The preliminary drainage plan for the Travertine Project proposes a system of underground storm drains and catch basins to intercept and convey the runoffs generated by the project site. Two detention/water quality basins are proposed to treat the water and detain the stom flows. The storm drain systems and the basins are both designed for the 100-year storm event.

The tables below contain a hydrologic summary of the peak flow rate for the 100-year storm event obtained by running the rational method on AES. Refer to Appendix **C** for more detailed calculation results

Tabel 5-1: 100-year Peak Flowrate for Post Development			
Drainage Area	Area Proposed (acres)	Fow Rate (Q ₁₀₀) (cfs)	
A	220.4	532.1	
В	293.8	472.1	
Total	514.2	1,004	

Table 5-2: 100-year Peak Flowrate for Pre-Development			
Drainage Area	Area Existing (acres)	Fow Rate (Q ₁₀₀) (cfs)	
A	110.5	131.1	
В	151.3	180.9	
С	252.4	294.5	
Total	514.2	607	

Tables 5-3 compares the post development flow (unmitigated) with that of the pre-development flow. The detention basins are designed to outlet flows at or below the existing peak flow rate.

Table 5-3: 100-year Peak Flowrate Summary		
Existing Flow Rate (cfs)	Poposed Flow Rate (cfs)	Flow Rate (To be Mitigated) (cfs)
607	1,004	397

The tables below contain the basin routing summary of the volumes for the 100-year 1, 3, 6 and 24-hr durations modeled by the Unit Hydrograph Method. The basins in turn are designed to infilitrate the delta between the existing and proposed storm event that produces the most volume, in this case the 24 hour storm duration. Refer to Appendix $\bf D$ for more detailed calculation results

,	Tabel 5-4: 100-year Storm Flow Volume for Post-development				
Drainage Area	Area Proposed (acres)	1-hr Volume (ac-ft)	3-hr Volume (ac-ft)	6-hr Volume (ac-ft)	24-hr Volume (ac-ft)
A	220.4	22.2	26.0	29.9	40.4
В	293.8	29.6	34.2	39.1	52.0
Total	514.2	51.8	60.2	69.0	92.4

Table 5-5: 100-year Storm Flow Volume for <u>Pre-development</u>					
Drainage Area	Area Existing (acres)	1-hr Volume (ac-ft)	3-hr Volume (ac-ft)	6-hr Volume (ac-ft)	24-hr Volume (ac-ft)
A	110.5	11.9	13.6	12.9	12.8
В	151.3	16.3	18.7	17.7	17.6
С	252.4	27.2	31.2	29.6	29.4
Total	514.2	55.4	63.5	60.2	59.8

Table 5-6: 100-year 24-hr Storm Flow Volume Summary			
Existing Volume (ac-ft)	Poposed Volume (ac-ft)	Volume Difference (ac-ft)	
59.8	92.4	32.6	

5.1 PROJECT CONDITIONS

The proposed conditions for this project include rerouting stormwater runoff into two detention basins, a north basin (Basin "A") and a south basin (Basin "B"). Watershed Subarea "A", to the north, is 220.4 acres of residential and roadway land use. Watershed Subarea "B", to the south, is 293.8 acres of residential, recreational and roadway land use. These two basins will discharge mitigated flows to the area behind dike #4 where it will continue to be retained and infiltrated. The two basins are connected with a culvert to maintain the identical water surface elevation in both basins.

Proposed Basins

The basins proposed are to provide water quality treatment and flood control attenuation. These basins are designed to retain the largest volume delta between the existing and proposed 100 year storm, in this case the 24 hour event, as seen in Tables 5-4 through 5-6. Additionally, the basins are to outlet at a mitigated rate at or below the existing 100 year peak flow, summarized in Table 5-3.

The unit hydrograph data was used to model the basin routing of the peak flows through the proposed detention basins. The two basins were modeled together with a total basin volume of 50.7 ac-ft. The basins were designed to infiltrate delta in peak volumes which translated to a volume of 32.2 acre-feet. This volume in turn sets the top of the outlet risers at an elevation of 2.7' above basin bottom. The basin is a total of 6' deep. The max depth of ponding for the 100 year event was set at 4' to allow for 1' of flow over the emergency spillway plus 1' of freeboard (spillway calculations can be found in Appendix F). Flows will oulet through 6-42" risers, 3 per basin, and then continue through a 66" RCP in Avenue 62, ouletting behind Dike #4. The outlet flows never exceed the existing rational method peak flow of 607 cfs. The results are summarized in the following tables and figure.

Table 5-7: Basin Routing Input Parameters			
Depth (ft)	Outflow thru Risers (cfs)	Storage (ac-ft)	
1.00	0	12.22	
2.00	0	24.74	
2.70	0	33.66	
3.00	33.61	37.53	
4.00	303.14	50.66	

Table 5-8: Basin Routing Results			
Storm Duration (hrs)	Peak Depth (ft)	Peak Flow (cfs)	
1	3.37	133.6	
3	3.70	222.1	
6	3.94	286.9	
24	3.36	130.7	

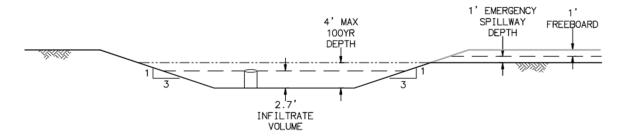


Figure 2: Basin Cross Section

Proposed Storm drain

The hydraulic calculations in support of the proposed drainage improvements as well as capacities were done using the normal-depth method. The AES rational method calculations for each area tributary to the basins were developed to identify peak flows onsite for the 100-year storm event. These calculations were used to size the facilities. A more detailed hydraulic analysis will be done during final storm drain improvement plans.

Table 5-9 and 5-10 summarizes the Main Storm Drain line sizes within the project site. Refer to Appendix E for Calculations using normal-depth method.

Т	Table 5-9: Main Storm Drain Subarea A			
	Q ₁₀₀ (cfs)	Diameter (In)		
Line-A				
Node 30-40	532	78" RCP		
Node 21-30	387	72" RCP		
Node 16-21	272	60" RCP		
Node 9-16	187	54" RCP		
Line-2A				
Node 21-25	123	48" RCP		
Line-3A				
Node 34-30	112	48" RCP		

Table 5-10: Main Storm Drain Subarea B			
	Q ₁₀₀ (cfs)	Diameter (In)	
Line-B			
Node 195-180	472	78" RCP	
Node 180-140	360	66" RCP	
Node 140-160	184	54" RCP	
Node 160-158	140	48" RCP	
Node 158-150	78	36" RCP	
Node 150-142	33	24" RCP	
Line-2B			
Node 140-130	199	54" RCP	
Node 130-110	171	48" RCP	
Node 110-106	66	36" RCP	
Node 106-102	26	24" RCP	
Line-3B			
Node 160-165	39	30" RCP	
Node 165-163	28	24" RCP	
Line-4B			
Node 180-186	110	48" RCP	
Node 186-184	85	36" RCP	
Node 186-184	30	24" RCP	

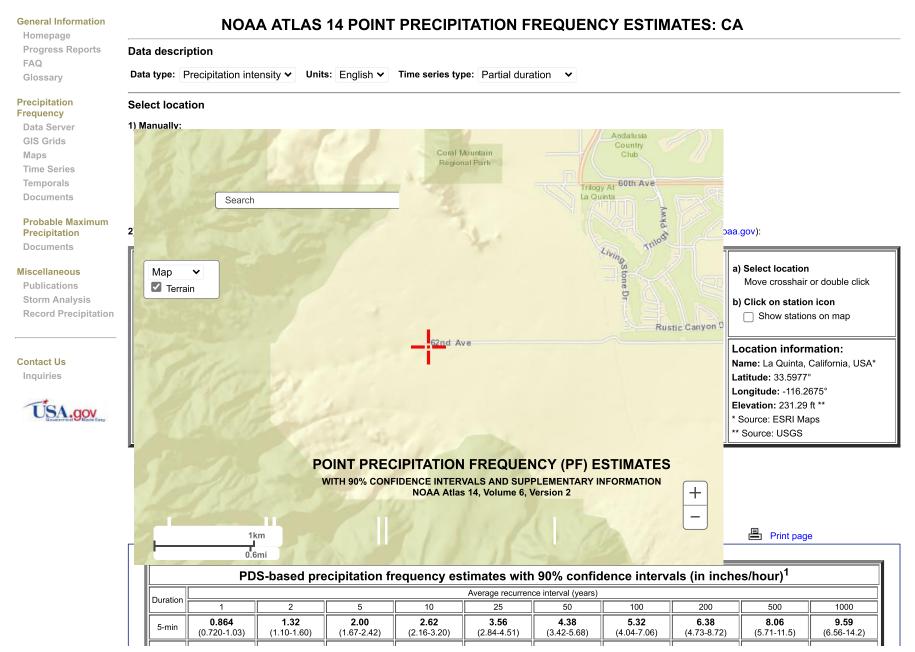
Table 5-11: Main Storm Drain From Basins to Dike #4		
Q ₁₀₀ (cfs) Diameter (In)		
Outlet Pipe		
Basins A & B to Dike #4	287	66" RCP

6 DISCUSSION OF RESULTS

Comparing the existing peak flowrate with that of the proposed, the unmitigated flowrate increase is **397** cfs. The increase in flow rate is due to the proposed development which can be attributed to the difference in land-use designation (from undeveloped to developed condition). This flowrate will be mitigated through Basin "A" and "B" with an anticipated mitigated flow rate of **287** cfs.

The storm flow volume difference between the Pre and Post Development is **32.6** ac-ft. This volume will be retained and infiltrated in the proposed basins "A" and "B".

APPENDIX A -SOILS TYPE MAP


APPENDIX B -NOAA ATLAS PRECIPITATION FREQUENCY

10/8/2020 PF Map: Contiguous US

Home Site Map News Organization Search News Organization Search

10-min	0.612 (0.516-0.744)	0.948 (0.792-1.15)	1.43 (1.19-1.74)	<mark>1.87</mark> (1.55-2.29)	2.55 (2.03-3.23)	3.14 (2.45-4.06)	(2.90-5.05)	4.58 (3.38-6.26)	5.78 (4.10-8.24)	6.88 (4.70-10.2)
15-min	0.496 (0.416-0.600)	0.764 (0.636-0.924)	1.16 (0.960-1.40)	1.51 (1.25-1.85)	2.06 (1.64-2.60)	2.53 (1.98-3.28)	3.07 (2.34-4.08)	3.69 (2.73-5.04)	4.66 (3.30-6.65)	5.54 (3.79-8.19)
30-min	0.358 (0.298-0.432)	0.550 (0.458-0.664)	0.832 (0.694-1.01)	1.09 (0.898-1.33)	1.48 (1.18-1.88)	1.83 (1.42-2.36)	2.21 (1.68-2.94)	2.66 (1.97-3.64)	3.36 (2.38-4.79)	3.99 (2.73-5.90)
60-min	0.251 (0.210-0.304)	0.387 (0.323-0.468)	0.586 (0.488-0.711)	0.766 (0.632-0.937)	1.04 (0.832-1.32)	1.28 (1.00-1.66)	(1.19-2.07)	1.87 (1.38-2.56)	2.36 (1.68-3.37)	2.81 (1.92-4.15)
2-hr	0.174 (0.146-0.210)	0.254 (0.212-0.308)	0.375 (0.312-0.454)	0.486 (0.400-0.594)	0.658 (0.524-0.832)	0.808 (0.631-1.05)	0.980 (0.746-1.30)	1.18 (0.872-1.61)	1.49 (1.05-2.12)	1.76 (1.21-2.60)
3-hr	0.139 (0.116-0.167)	0.199 (0.166-0.241)	0.291 (0.242-0.353)	0.375 (0.310-0.459)	0.507 (0.405-0.643)	0.624 (0.487-0.808)	0.758 (0.576-1.00)	0.912 (0.674-1.25)	1.15 (0.817-1.64)	1.37 (0.935-2.02)
6-hr	0.090 (0.075-0.109)	0.129 (0.108-0.156)	0.187 (0.155-0.226)	0.240 (0.198-0.294)	0.324 (0.259-0.411)	0.398 (0.311-0.516)	0.483 (0.368-0.641)	0.582 (0.430-0.795)	0.735 (0.521-1.05)	0.873 (0.597-1.29)
12-hr	0.054 (0.045-0.065)	0.079 (0.066-0.095)	0.115 (0.096-0.140)	0.149 (0.123-0.182)	0.201 (0.160-0.254)	0.246 (0.192-0.318)	0.297 (0.226-0.394)	0.356 (0.263-0.486)	0.446 (0.316-0.636)	0.526 (0.359-0.777)
24-hr	0.033 (0.030-0.039)	0.050 (0.045-0.058)	0.075 (0.066-0.087)	0.097 (0.085-0.114)	0.131 (0.111-0.158)	0.160 (0.133-0.196)	0.192 (0.156-0.241)	0.228 (0.180-0.295)	0.283 (0.215-0.381)	0.331 (0.243-0.459)
2-day	0.019 (0.017-0.022)	0.029 (0.026-0.034)	0.044 (0.039-0.051)	0.057 (0.050-0.067)	0.077 (0.065-0.092)	0.093 (0.077-0.115)	0.111 (0.090-0.140)	0.132 (0.104-0.170)	0.163 (0.123-0.219)	0.189 (0.139-0.262)
3-day	0.014 (0.012-0.016)	0.021 (0.019-0.024)	0.032 (0.028-0.037)	0.041 (0.036-0.048)	0.055 (0.047-0.066)	0.067 (0.056-0.082)	0.080 (0.065-0.101)	0.095 (0.075-0.122)	0.117 (0.088-0.157)	0.135 (0.099-0.188)
4-day	0.011 (0.010-0.013)	0.017 (0.015-0.019)	0.025 (0.022-0.029)	0.033 (0.029-0.038)	0.044 (0.037-0.053)	0.053 (0.044-0.065)	0.064 (0.052-0.080)	0.075 (0.059-0.097)	0.092 (0.070-0.124)	0.107 (0.079-0.149)
7-day	0.007 (0.006-0.008)	0.010 (0.009-0.012)	0.015 (0.013-0.018)	0.020 (0.017-0.023)	0.026 (0.022-0.032)	0.032 (0.027-0.039)	0.038 (0.031-0.048)	0.045 (0.036-0.058)	0.055 (0.042-0.074)	0.064 (0.047-0.089)
10-day	0.005	0.007	0.011	0.014	0.019	0.023	0.028	0.032	0.040	0.046
	(0.004-0.006)	(0.007-0.009)	(0.010-0.013)	(0.012-0.017)	(0.016-0.023)	(0.019-0.028)	(0.022-0.035)	(0.026-0.042)	(0.030-0.053)	(0.034-0.064)
20-day	(0.004-0.006) 0.003 (0.002-0.003)	(0.007-0.009) 0.004 (0.004-0.005)	(0.010-0.013) 0.006 (0.005-0.007)	(0.012-0.017) 0.008 (0.007-0.009)	(0.016-0.023) 0.010 (0.009-0.013)	(0.019-0.028) 0.013 (0.011-0.016)	(0.022-0.035) 0.015 (0.012-0.019)	0.018 (0.014-0.023)	(0.030-0.053) 0.022 (0.016-0.029)	(0.034-0.064) 0.025 (0.018-0.035)
20-day 30-day	0.003	0.004	0.006	0.008	0.010	0.013	0.015	0.018	0.022	0.025
	0.003 (0.002-0.003) 0.002	0.004 (0.004-0.005) 0.003	0.006 (0.005-0.007) 0.004	0.008 (0.007-0.009) 0.006	0.010 (0.009-0.013) 0.008	0.013 (0.011-0.016) 0.009	0.015 (0.012-0.019) 0.011	0.018 (0.014-0.023) 0.013	0.022 (0.016-0.029) 0.016	0.025 (0.018-0.035) 0.018

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Estimates from the table in CSV format: Precipitation frequency estimates >

Submi

Main Link Categories: Home | OWP

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
Office of Water Prediction (OWP)
1325 East West Highway
Silver Spring, MD 20910
Page Author: HDSC webmaster
Page last modified: April 21, 2017

Map Disclaimer Disclaimer Credits Glossary Privacy Policy About Us Career Opportunities

NOAA Atlas 14, Volume 6, Version 2 Location name: La Quinta, California, USA* Latitude: 33.5977°, Longitude: -116.2675° Elevation: 231.29 ft**

* source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

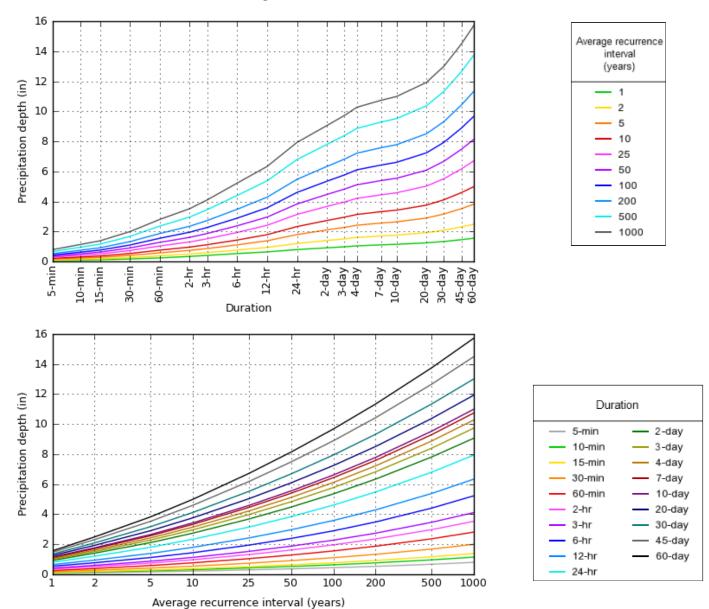
NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹								es) ¹			
Duration	Average recurrence interval (years)										
	1	2	5	10	25	50	100	200	500	1000	
5-min	0.072 (0.060-0.086)	0.110 (0.092-0.133)	0.167 (0.139-0.202)	0.218 (0.180-0.267)	0.297 (0.237-0.376)	0.365 (0.285-0.473)	0.443 (0.337-0.588)	0.532 (0.394-0.727)	0.672 (0.476-0.959)	0.799 (0.547-1.18)	
10-min	0.102 (0.086-0.124)	0.158 (0.132-0.191)	0.239 (0.199-0.290)	0.312 (0.258-0.382)	0.425 (0.339-0.538)	0.523 (0.409-0.677)	0.635 (0.483-0.842)	0.763 (0.564-1.04)	0.964 (0.683-1.37)	1.15 (0.783-1.69)	
15-min	0.124 (0.104-0.150)	0.191 (0.159-0.231)	0.289 (0.240-0.350)	0.378 (0.312-0.462)	0.514 (0.410-0.651)	0.633 (0.494-0.819)	0.768 (0.584-1.02)	0.923 (0.683-1.26)	1.17 (0.826-1.66)	1.39 (0.947-2.05)	
30-min	0.179 (0.149-0.216)	0.275 (0.229-0.332)	0.416 (0.347-0.505)	0.544 (0.449-0.666)	0.741 (0.591-0.939)	0.913 (0.712-1.18)	1.11 (0.842-1.47)	1.33 (0.984-1.82)	1.68 (1.19-2.40)	2.00 (1.37-2.95)	
60-min	0.251 (0.210-0.304)	0.387 (0.323-0.468)	0.586 (0.488-0.711)	0.766 (0.632-0.937)	1.04 (0.832-1.32)	1.28 (1.00-1.66)	1.56 (1.19-2.07)	1.87 (1.38-2.56)	2.36 (1.68-3.37)	2.81 (1.92-4.15)	
2-hr	0.348 (0.291-0.420)	0.509 (0.425-0.615)	0.750 (0.624-0.909)	0.971 (0.801-1.19)	1.32 (1.05-1.67)	1.62 (1.26-2.09)	1.96 (1.49-2.60)	2.36 (1.74-3.22)	2.97 (2.11-4.24)	3.53 (2.41-5.21)	
3-hr	0.416 (0.348-0.503)	0.598 (0.500-0.724)	0.873 (0.727-1.06)	1.13 (0.931-1.38)	1.52 (1.22-1.93)	1.87 (1.46-2.43)	2.28 (1.73-3.02)	2.74 (2.03-3.74)	3.46 (2.45-4.93)	4.11 (2.81-6.07)	
6-hr	0.541 (0.452-0.654)	0.771 (0.644-0.933)	1.12 (0.931-1.36)	1.44 (1.19-1.76)	1.94 (1.55-2.46)	2.39 (1.86-3.09)	2.89 (2.20-3.84)	3.48 (2.58-4.76)	4.40 (3.12-6.28)	5.23 (3.57-7.72)	
12-hr	0.649 (0.543-0.784)	0.947 (0.791-1.15)	1.39 (1.16-1.69)	1.80 (1.48-2.20)	2.42 (1.93-3.07)	2.97 (2.32-3.84)	3.58 (2.73-4.75)	4.29 (3.17-5.86)	5.38 (3.81-7.67)	6.33 (4.33-9.36)	
24-hr	0.803 (0.710-0.926)	1.21 (1.07-1.40)	1.80 (1.59-2.09)	2.34 (2.04-2.73)	3.14 (2.66-3.79)	3.83 (3.18-4.71)	4.61 (3.74-5.79)	5.48 (4.33-7.08)	6.80 (5.16-9.14)	7.93 (5.83-11.0)	
2-day	0.922 (0.816-1.06)	1.41 (1.25-1.63)	2.11 (1.86-2.45)	2.74 (2.40-3.20)	3.68 (3.12-4.43)	4.47 (3.71-5.50)	5.35 (4.34-6.73)	6.34 (5.00-8.19)	7.80 (5.92-10.5)	9.06 (6.65-12.6)	
3-day	0.990 (0.875-1.14)	1.52 (1.34-1.75)	2.28 (2.01-2.64)	2.96 (2.59-3.46)	3.97 (3.37-4.79)	4.83 (4.01-5.93)	5.77 (4.68-7.26)	6.82 (5.39-8.81)	8.39 (6.37-11.3)	9.73 (7.14-13.5)	
4-day	1.05 (0.929-1.21)	1.61 (1.42-1.86)	2.42 (2.13-2.81)	3.14 (2.75-3.67)	4.21 (3.57-5.07)	5.12 (4.25-6.29)	6.11 (4.96-7.68)	7.22 (5.70-9.32)	8.87 (6.73-11.9)	10.3 (7.54-14.3)	
7-day	1.12 (0.990-1.29)	1.71 (1.51-1.98)	2.57 (2.26-2.97)	3.33 (2.91-3.88)	4.45 (3.77-5.36)	5.39 (4.48-6.63)	6.43 (5.22-8.09)	7.58 (5.99-9.80)	9.29 (7.05-12.5)	10.7 (7.88-14.9)	
10-day	1.16 (1.02-1.33)	1.77 (1.56-2.04)	2.65 (2.33-3.07)	3.43 (3.00-4.00)	4.58 (3.88-5.52)	5.55 (4.61-6.82)	6.61 (5.36-8.31)	7.78 (6.14-10.1)	9.52 (7.22-12.8)	11.0 (8.06-15.3)	
20-day	1.25 (1.11-1.44)	1.93 (1.71-2.23)	2.90 (2.56-3.36)	3.76 (3.29-4.39)	5.03 (4.26-6.06)	6.09 (5.05-7.48)	7.24 (5.87-9.10)	8.51 (6.72-11.0)	10.4 (7.87-13.9)	11.9 (8.75-16.6)	
30-day	1.34 (1.19-1.55)	2.09 (1.85-2.42)	3.17 (2.79-3.67)	4.12 (3.60-4.80)	5.52 (4.67-6.64)	6.68 (5.55-8.21)	7.94 (6.44-9.98)	9.32 (7.36-12.0)	11.3 (8.60-15.2)	13.0 (9.54-18.1)	
45-day	1.46 (1.30-1.69)	2.31 (2.04-2.67)	3.53 (3.11-4.08)	4.59 (4.02-5.36)	6.17 (5.23-7.43)	7.48 (6.21-9.19)	8.88 (7.21-11.2)	10.4 (8.23-13.5)	12.6 (9.60-17.0)	14.5 (10.6-20.1)	
60-day	1.56 (1.38-1.80)	2.49 (2.20-2.88)	3.82 (3.37-4.43)	4.99 (4.36-5.82)	6.71 (5.68-8.08)	8.13 (6.75-9.99)	9.67 (7.84-12.2)	11.3 (8.95-14.6)	13.7 (10.4-18.5)	15.7 (11.5-21.8)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

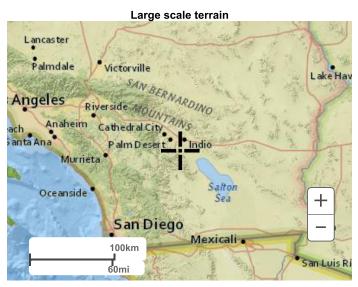
Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 33.5977°, Longitude: -116.2675°

NOAA Atlas 14, Volume 6, Version 2


Created (GMT): Thu Oct 15 17:43:26 2020

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

APPENDIX C - HYDROLOGY STUDY (AES RATIONAL METHOD)

Fravertine Hydrology Study – September 202	Travertine	Hvdrology	Study -	September	2021
--	------------	-----------	---------	-----------	------

įν

C.1 – 100-YR EXISTING HYDROLOGY

```
******************
         RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
      RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
                  (RCFC&WCD) 1978 HYDROLOGY MANUAL
       (c) Copyright 1982-2015 Advanced Engineering Software (aes)
                  (Rational Tabling Version 22.0)
                Release Date: 07/01/2015 License ID 1673
                      Analysis prepared by:
                      Proactive Engineering Consultants
                         27042 Towne Centre Drive
                         Foothill Ranch, CA. 92610
* Travertine Project
* Existing 100-yr Storm Event
* Subarea A
 FILE NAME: TRA-X00A.DAT
 TIME/DATE OF STUDY: 11:14 10/16/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.870
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.766
 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.810
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.560
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4981200
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4983611
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.4984
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
```

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 708.00
UPSTREAM ELEVATION(FEET) = 191.60

```
DOWNSTREAM ELEVATION(FEET) = 168.70

ELEVATION DIFFERENCE(FEET) = 22.90

TC = 0.533*[( 708.00**3)/( 22.90)]**.2 =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.155
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4742
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 13.91
TOTAL AREA(ACRES) = 9.30 TOTAL RUNOFF(CFS) = 13.91
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>
______
 ELEVATION DATA: UPSTREAM(FEET) = 168.70 DOWNSTREAM(FEET) = 97.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 2414.00 CHANNEL SLOPE = 0.0293
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH (FEET) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.659
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4357
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                               73.28
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 6.73
 AVERAGE FLOW DEPTH(FEET) = 0.86 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 20.58
 SUBAREA AREA(ACRES) = 101.20
                               SUBAREA RUNOFF(CFS) = 117.23
                                  PEAK FLOW RATE(CFS) = 131.14
 TOTAL AREA(ACRES) =
                     110.5
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.19 FLOW VELOCITY(FEET/SEC.) =
                                            8.08
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 3122.00 FEET.
_____
 END OF STUDY SUMMARY:
 TOTAL AREA (ACRES) = 110.5
PEAK FLOW RATE (CFS) = 131.14
                         110.5 \text{ TC (MIN.)} =
                                            20.58
_____
______
```

END OF RATIONAL METHOD ANALYSIS

```
******************
         RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
      RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
                  (RCFC&WCD) 1978 HYDROLOGY MANUAL
       (c) Copyright 1982-2015 Advanced Engineering Software (aes)
                  (Rational Tabling Version 22.0)
               Release Date: 07/01/2015 License ID 1673
                      Analysis prepared by:
                     Proactive Engineering Consultants
                         27042 Towne Centre Drive
                        Foothill Ranch, CA. 92610
* Travertine Project
* Existing 100-yr Storm Event
* Subarea B
 FILE NAME: TRA-X00B.DAT
 TIME/DATE OF STUDY: 11:11 10/16/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.870
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.766
 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.810
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.560
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4981200
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4983611
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.4984
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*************************
```

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 867.00
UPSTREAM ELEVATION(FEET) = 221.30

```
DOWNSTREAM ELEVATION(FEET) = 178.20
ELEVATION DIFFERENCE(FEET) = 43.10
TC = 0.533*[( 867.00**3)/( 43.10)]**.2 = 14.532
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.163
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4747
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 14.86
TOTAL AREA(ACRES) = 9.90 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 178.20 DOWNSTREAM(FEET) = 125.10
 CHANNEL LENGTH THRU SUBAREA (FEET) = 1460.00 CHANNEL SLOPE = 0.0364
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH (FEET) =
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.839
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4504
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                            63.79
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 6.92
 AVERAGE FLOW DEPTH(FEET) = 0.75 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 18.05
 SUBAREA AREA (ACRES) = 76.10
TOTAL AREA (ACRES) = 86.0
                              SUBAREA RUNOFF(CFS) = 97.30
                                PEAK FLOW RATE(CFS) = 112.16
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.03 FLOW VELOCITY(FEET/SEC.) = 8.27
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 2327.00 FEET.
******************
 FLOW PROCESS FROM NODE 30.00 TO NODE 40.00 IS CODE = 51
_____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 125.10 DOWNSTREAM(FEET) = 33.60
 CHANNEL LENGTH THRU SUBAREA (FEET) = 2789.00 CHANNEL SLOPE = 0.0328 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH (FEET) = 3.50
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.494
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4213
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                            146.61
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 8.68
 AVERAGE FLOW DEPTH(FEET) = 1.23 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 23.41
 SUBAREA AREA(ACRES) = 65.40 SUBAREA RUNOFF(CFS) = 68.72
 TOTAL AREA(ACRES) =
                    151.4
                                PEAK FLOW RATE(CFS) = 180.88
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.38 FLOW VELOCITY(FEET/SEC.) = 9.24
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 40.00 = 5116.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 151.4
PEAK FLOW RATE(CFS) = 180.88
                        151.4 \text{ TC}(MIN.) =
______
_____
```

END OF RATIONAL METHOD ANALYSIS

```
********************
          RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
       RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
                   (RCFC&WCD) 1978 HYDROLOGY MANUAL
       (c) Copyright 1982-2015 Advanced Engineering Software (aes)
                   (Rational Tabling Version 22.0)
                Release Date: 07/01/2015 License ID 1673
                       Analysis prepared by:
                       Proactive Engineering Consultants
                          27042 Towne Centre Drive
                          Foothill Ranch, CA. 92610
* Travertine Project
* Existing 100-yr Storm Event
* Subarea C
 ******************
 FILE NAME: TRA-X00C.DAT
 TIME/DATE OF STUDY: 10:57 10/16/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 _____
 USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.870
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.766
 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.810
 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.560
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4981200
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4983611
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.560
 SLOPE OF INTENSITY DURATION CURVE = 0.4984
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)
0.67 2.00 0.0313 0.167 0.0150
    30.0
           20.0
                   0.018/0.018/0.020
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
```

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 825.00

```
UPSTREAM ELEVATION (FEET) = 275.00
 DOWNSTREAM ELEVATION (FEET) = 233.70

ELEVATION DIFFERENCE (FEET) = 41.30

TC = 0.533*[( 825.00**3)/( 41.30)]**.2 = 14.226
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.196
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4771
 SOIL CLASSIFICATION
SUBAREA RUNOFF(CFS) = 14.94
9.80 TOTAL RUNOFF(CFS) =
 SOIL CLASSIFICATION IS "A"
********************
 FLOW PROCESS FROM NODE 200.00 TO NODE 300.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>
______
 ELEVATION DATA: UPSTREAM(FEET) = 233.70 DOWNSTREAM(FEET) = 136.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2183.00 CHANNEL SLOPE = 0.0448
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.796
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4470
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 8.30
 AVERAGE FLOW DEPTH(FEET) = 0.86 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 18.61
 SUBAREA AREA(ACRES) = 118.70 SUBAREA RUNOFF(CFS) = 148.35
TOTAL AREA(ACRES) = 128.5 PEAK FLOW RATE(CFS) = 16
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.20 FLOW VELOCITY(FEET/SEC.) = 9.98
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 300.00 = 3008.00 FEET.
********************
 FLOW PROCESS FROM NODE 300.00 TO NODE 400.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 136.00 DOWNSTREAM(FEET) = 40.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2784.00 CHANNEL SLOPE = 0.0345 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 3.50
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.504
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4222
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 10.07
 AVERAGE FLOW DEPTH(FEET) = 1.55 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 23.21
 SUBAREA AREA(ACRES) = 124.10 SUBAREA RUNOFF(CFS) = 131.22
TOTAL AREA(ACRES) = 252.6 PEAK FLOW RATE(CFS) = 26
 TOTAL AREA(ACRES) = 252.6
                                PEAK FLOW RATE (CFS) = 294.51
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.77 FLOW VELOCITY(FEET/SEC.) = 10.84
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 400.00 = 5792.00 FEET.
______
 END OF STUDY SUMMARY:
                         252.6 TC(MIN.) =
 TOTAL AREA (ACRES)
 PEAK FLOW RATE (CFS) = 294.51
______
_____
```

END OF RATIONAL METHOD ANALYSIS

ν

C.2 – 100-YR PROPOSED HYDROLOGY

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

(c) Copyright 1982-2015 Advanced Engineering Software (aes) (Rational Tabling Version 22.0)

Release Date: 07/01/2015 License ID 1673

Analysis prepared by:

Proactive Engineering Consultants 27042 Towne Centre Drive Foothill Ranch, Ca. 92610

```
* Travertine Project
* Proposed 100-yr Storm Event
* Subarea A
 FILE NAME: TRAV-00A.DAT
 TIME/DATE OF STUDY: 09:03 10/13/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
 USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.870
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.766
 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.810
 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.560
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4981200
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4983611
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.560
 SLOPE OF INTENSITY DURATION CURVE = 0.4984
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO.
   (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
   0.67
    20.0
           10.0 0.020/0.020/0.020
                                        2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.40 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
******************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
```

```
UPSTREAM ELEVATION (FEET) = 218.50
 DOWNSTREAM ELEVATION (FEET) = 206.50

ELEVATION DIFFERENCE (FEET) = 12.00

TC = 0.303*[( 788.00**3)/( 12.00)]**.2 =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.794
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8615
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                      5.20
 TOTAL AREA (ACRES) =
                     1.59 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.794
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8615
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 0.64 SUBAREA RUNOFF(CFS) = 2.09
TOTAL AREA(ACRES) = 2.2 TOTAL RUNOFF(CFS) = 7.29
 TC(MIN.) = 10.08
********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 196.50 DOWNSTREAM(FEET) = 182.00
 FLOW LENGTH(FEET) = 690.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 8.36
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.29
 PIPE TRAVEL TIME (MIN.) = 1.37
LONGEST FLOWPATH FROM NODE
                           7 	 Tc(MIN.) = 11.46
1.00 TO NODE 3.00
                                           3.00 = 1478.00 \text{ FEET.}
******************
 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.560
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5011
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.42 SUBAREA RUNOFF(CFS) = 4.32
TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) = 11.0
 TC(MIN.) = 11.46
*****************
 FLOW PROCESS FROM NODE 3.00 TO NODE
                                    4.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 182.00 DOWNSTREAM(FEET) = 122.00
 FLOW LENGTH(FEET) = 1103.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.41
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 11.61
 PIPE TRAVEL TIME (MIN.) = 1.37 Tc (MIN.) = 12.83
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00
                          1.00 TO NODE 4.00 = 2581.00 FEET.
```

```
*****************
 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.83
RAINFALL INTENSITY(INCH/HR) = 3.36
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 4.65
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*************************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS CONDOMINIUM
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 615.00
 UPSTREAM ELEVATION (FEET) = 208.00
 DOWNSTREAM ELEVATION (FEET) = 170.00
 ELEVATION DIFFERENCE (FEET) = 38.00
TC = 0.359*[( 615.00**3)/( 38.00)]**.2 =
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.211
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7733
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                   16.02
                  4.92 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
*******************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 160.00 DOWNSTREAM(FEET) = 148.70
 FLOW LENGTH (FEET) = 240.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.68
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 16.02
 PIPE TRAVEL TIME (MIN.) = 0.29 Tc (MIN.) =
                                   8.47
 LONGEST FLOWPATH FROM NODE
                        5.00 TO NODE
                                     7.00 =
                                             855.00 FEET.
****************
 FLOW PROCESS FROM NODE
                    7.00 \text{ TO NODE} 7.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.138
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7720
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 6.53 SUBAREA RUNOFF(CFS) = 20.86
TOTAL AREA(ACRES) = 11.5 TOTAL RUNOFF(CFS) = 36.8
 TC(MIN.) =
           8.47
*******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 148.70 DOWNSTREAM(FEET) = 122.00
 FLOW LENGTH (FEET) = 375.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 19.37
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 36.88
 PIPE TRAVEL TIME (MIN.) = 0.32 Tc (MIN.) = 8.79
 LONGEST FLOWPATH FROM NODE
                       5.00 TO NODE
                                       8.00 = 1230.00 FEET.
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.062
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8630
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 4.07
 TOTAL AREA (ACRES) = 12.6 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 8.79
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 4.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 126.80 DOWNSTREAM(FEET) = 122.00
 FLOW LENGTH (FEET) = 50.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 22.35
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 40.95
 PIPE TRAVEL TIME (MIN.) = 0.04 Tc (MIN.) = 8.83
                         5.00 TO NODE
                                              1280.00 FEET.
 LONGEST FLOWPATH FROM NODE
                                       4.00 =
******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.053
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .8074
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.59 SUBAREA RUNOFF(CFS) = 11.75
TOTAL AREA(ACRES) = 16.2 TOTAL RUNOFF(CFS) = 52.7
 TC(MIN.) = 8.83
********************
 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.83
RAINFALL INTENSITY(INCH/HR) = 4.05
 TOTAL STREAM AREA(ACRES) = 16.20
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                               52.70
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC
                         INTENSITY
                                    AREA
         (CFS) (MIN.)
11.61 12.83
                  (MIN.) (INCH/HOUR)
                                    (ACRE)
 NUMBER
    1
                           3.365
                                       4.65
```

```
52.70 8.83
                           4.053
                                      16.20
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                        INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
60.69 8.83 4.053
55.36 12.83 3.365
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 60.69 Tc(MIN.) = TOTAL AREA(ACRES) = 20.9
                                      8.83
                        1.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                       4.00 = 2581.00 FEET.
*************
 FLOW PROCESS FROM NODE 4.00 TO NODE 9.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 122.00 DOWNSTREAM(FEET) = 118.00
 FLOW LENGTH (FEET) = 143.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 15.43
 ESTIMATED PIPE DIAMETER (INCH) = 30.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 60.69
 PIPE TRAVEL TIME (MIN.) = 0.15 Tc (MIN.) = 8.99
 LONGEST FLOWPATH FROM NODE
                        1.00 TO NODE
                                        9.00 =
                                                2724.00 FEET.
*************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 8.99
 RAINFALL INTENSITY (INCH/HR) = 4.02
 TOTAL STREAM AREA(ACRES) = 20.85
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 60.69
*************************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION (FEET) = 215.00
                         163.00
 DOWNSTREAM ELEVATION (FEET) =
 ELEVATION DIFFERENCE(FEET) = 52.00
TC = 0.533*[( 725.00**3)/( 52.00)]**.2 = 12.572
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.399
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4909
 SOIL CLASSIFICATION IS "A"
```

```
SUBAREA RUNOFF(CFS) = 15.47
TOTAL AREA(ACRES) = 9.27 TOTAL RUNOFF(CFS) =
****************
 FLOW PROCESS FROM NODE 11.00 TO NODE
                                   12.00 IS CODE = 51
    ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 163.00 DOWNSTREAM(FEET) = 140.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 990.00 CHANNEL SLOPE = 0.0232
 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.194
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4769
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 9.87
 AVERAGE FLOW DEPTH (FEET) = 1.49 TRAVEL TIME (MIN.) = 1.67
 Tc(MIN.) = 14.24
 SUBAREA AREA(ACRES) = 8.47
TOTAL AREA(ACRES) = 17.7
                         SUBAREA RUNOFF (CFS) = 12.90
                              PEAK FLOW RATE(CFS) = 28.37
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.64 FLOW VELOCITY(FEET/SEC.) = 10.51
 LONGEST FLOWPATH FROM NODE
                        10.00 TO NODE
                                      12.00 =
*****************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 9.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 130.00 DOWNSTREAM(FEET) = 118.00
 FLOW LENGTH (FEET) = 55.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 28.21
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 28.37
 PIPE TRAVEL TIME (MIN.) = 0.03 Tc (MIN.) = 14.28
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 9.00 = 1770.00 FEET.
*******************
 FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 14.28
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 17.74
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 28.37
 ** CONFLUENCE DATA **
                                     AREA
 STREAM RUNOFF
                   Tc
                         INTENSITY
                                   (ACRE)
         (CFS)
 NUMBER
                  (MIN.) (INCH/HOUR)
          60.69
                 8.99 4.019
                                     20.85
    1
                          3.191
         28.37 14.28
                                     17.74
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
```

```
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS)
 NUMBER
                (MIN.)
                      (INCH/HOUR)
                      4.019
          78.55
    1
                 8.99
         76.56 14.28
                         3.191
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 78.55 Tc(MIN.) = TOTAL AREA(ACRES) = 38.6
                                      8.99
                                      9.00 =
 LONGEST FLOWPATH FROM NODE
                         1.00 TO NODE
                                             2724.00 FEET.
*****************
                     9.00 TO NODE
                                 13.00 \text{ IS CODE} = 31
 FLOW PROCESS FROM NODE
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 118.00 DOWNSTREAM(FEET) = 106.00
 FLOW LENGTH (FEET) = 245.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 20.36
 ESTIMATED PIPE DIAMETER (INCH) = 30.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 78.55
                                    9.19
 PIPE TRAVEL TIME (MIN.) = 0.20 Tc (MIN.) =
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                     13.00 =
                                             2969.00 FEET.
******************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.975
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8625
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 5.82 SUBAREA RUNOFF(CFS) = 19.95
TOTAL AREA(ACRES) = 44.4 TOTAL RUNOFF(CFS) = 98.50
 TC(MIN.) =
           9.19
*************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.975
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5254
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 4.53 SUBAREA RUNOFF(CFS) = 9.46
TOTAL AREA(ACRES) = 48.9 TOTAL RUNOFF(CFS) = 107.5
                                           107.96
 TC(MIN.) = 9.19
*****************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 106.00 DOWNSTREAM(FEET) = 96.00
 FLOW LENGTH (FEET) = 628.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 30.4 INCHES
```

```
PIPE-FLOW VELOCITY (FEET/SEC.) = 14.49
 ESTIMATED PIPE DIAMETER (INCH) = 42.00 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 107.96
 PIPE TRAVEL TIME (MIN.) = 0.72 Tc (MIN.) =
                                   9.91
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                   14.00 =
********************
 FLOW PROCESS FROM NODE
                   14.00 TO NODE
                              14.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.828
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .7086
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 29.14 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 78.1 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 9.91
*****************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 96.00 DOWNSTREAM(FEET) = 88.00
 FLOW LENGTH (FEET) = 225.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 31.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 22.55
 ESTIMATED PIPE DIAMETER (INCH) = 45.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 186.99
 PIPE TRAVEL TIME (MIN.) = 0.17 Tc(MIN.) = 10.07
                      1.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                   15.00 = 3822.00 FEET.
FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.796
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7654
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 9.84 SUBAREA RUNOFF(CFS) = 28.59
TOTAL AREA(ACRES) = 87.9 TOTAL RUNOFF(CFS) = 215.
 TC(MIN.) = 10.07
*******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
______
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.796
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8615
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.88 SUBAREA RUNOFF(CFS) = 6.15
TOTAL AREA(ACRES) = 89.8 TOTAL RUNOFF(CFS) = 221.73
 TC(MIN.) = 10.07
*************************
 FLOW PROCESS FROM NODE 15.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 88.00 DOWNSTREAM(FEET) = 70.00
 FLOW LENGTH (FEET) = 2370.00 MANNING'S N = 0.013
```

```
DEPTH OF FLOW IN 63.0 INCH PIPE IS 45.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 13.13
 ESTIMATED PIPE DIAMETER (INCH) = 63.00
                             NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 221.73
 PIPE TRAVEL TIME (MIN.) = 3.01
                        Tc(MIN.) = 13.08
 LONGEST FLOWPATH FROM NODE
                      1.00 TO NODE
                                  20.00 =
                                           6192.00 FEET.
*****************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.333
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6932
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 22.07
                      SUBAREA RUNOFF (CFS) = 50.99
                 111.9 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
 TC(MIN.) = 13.08
******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 70.00 DOWNSTREAM(FEET) = 65.00
 FLOW LENGTH (FEET) = 521.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 63.0 INCH PIPE IS 49.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 14.90
                             NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 63.00
 PIPE-FLOW(CFS) = 272.71
 PIPE TRAVEL TIME (MIN.) = 0.58 Tc (MIN.) = 13.67
 LONGEST FLOWPATH FROM NODE
                      1.00 TO NODE
                                  21.00 = 6713.00 FEET.
*******************
 FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
*************************
FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
     ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS MOBILE HOME PARK
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 1009.00
 UPSTREAM ELEVATION (FEET) = 140.00
 DOWNSTREAM ELEVATION (FEET) = 102.60
 ELEVATION DIFFERENCE (FEET) = 37.40
TC = 0.336*[( 1009.00**3)/( 37.40)]**.2 = 10.327
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.749
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .8032
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 6.84
TOTAL AREA(ACRES) = 2.27 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 92.60 DOWNSTREAM(FEET) = 92.00
 FLOW LENGTH (FEET) = 65.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) =
                         6.01
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               6.84
 PIPE TRAVEL TIME (MIN.) = 0.18 Tc (MIN.) = 10.51
 LONGEST FLOWPATH FROM NODE 22.00 TO NODE
                                    24.00 =
                                           1074.00 FEET.
***************
 FLOW PROCESS FROM NODE 24.00 TO NODE 24.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.717
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .8027
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 1.88
                   2.9 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 10.51
************************
 FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                           92.00 DOWNSTREAM (FEET) = 71.50
 FLOW LENGTH (FEET) = 660.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 10.12
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.72
 PIPE TRAVEL TIME (MIN.) = 1.09 Tc (MIN.) = 11.59
 LONGEST FLOWPATH FROM NODE
                      22.00 TO NODE
                                    25.00 =
                                             1734.00 FEET.
************************
 FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.539
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8600
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.25 SUBAREA RUNOFF(CFS) = 3.80
TOTAL AREA(ACRES) = 4.2 TOTAL RUNOFF(CFS) = 12.5
                    4.2 TOTAL RUNOFF (CFS) =
 TC(MIN.) =
          11.59
FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.539
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8600
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.29 SUBAREA RUNOFF(CFS) = 10.01
TOTAL AREA(ACRES) = 7.4 TOTAL RUNOFF(CFS) = 22.5
 TC(MIN.) = 11.59
*****************
 FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 71.50 DOWNSTREAM(FEET) = 71.00
 FLOW LENGTH (FEET) = 50.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 8.32
 ESTIMATED PIPE DIAMETER (INCH) = 27.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 22.53
 PIPE TRAVEL TIME (MIN.) = 0.10 Tc (MIN.) = 11.69
 LONGEST FLOWPATH FROM NODE
                       22.00 TO NODE
                                      26.00 =
                                             1784.00 FEET.
*****************
 FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 11.69
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA (ACRES) = 7.44
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 139.50
 DOWNSTREAM ELEVATION (FEET) = 100.00
 ELEVATION DIFFERENCE (FEET) = 39.50
TC = 0.393*[( 545.00**3)/( 39.50)]**.2 =
                                     8.250
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.193
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .7185
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                    30.04
 TOTAL AREA (ACRES) =
                   9.97 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>
______
 ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = 85.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 772.00 CHANNEL SLOPE = 0.0194
 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.763
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .7067
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 6.43
 AVERAGE FLOW DEPTH(FEET) = 0.33 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 10.25
                            SUBAREA RUNOFF(CFS) =
 SUBAREA AREA(ACRES) = 10.47
                                              27.85
 TOTAL AREA (ACRES) =
                    20.4
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 7.11
 LONGEST FLOWPATH FROM NODE 27.00 TO NODE 29.00 = 1317.00 FEET.
```

```
*****************
FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 81
    ______
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.763
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5134
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 2.76 SUBAREA RUNOFF (CFS) = 5.33
                  23.2 TOTAL RUNOFF (CFS) =
 TOTAL AREA (ACRES) =
                                       63.22
 TC(MIN.) = 10.25
*******************
 FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 81
______
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.763
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .7067
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 15.14 SUBAREA RUNOFF(CFS) = 40.27
 TOTAL AREA(ACRES) =
                  38.3 TOTAL RUNOFF (CFS) = 103.49
 TC(MIN.) = 10.25
***********************
FLOW PROCESS FROM NODE 29.00 TO NODE 26.00 IS CODE = 31
    _____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 75.00 DOWNSTREAM(FEET) = 71.00
 FLOW LENGTH (FEET) = 50.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 26.12
 ESTIMATED PIPE DIAMETER (INCH) = 30.00
                             NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 103.49
 PIPE TRAVEL TIME (MIN.) = 0.03 Tc (MIN.) = 10.28
 LONGEST FLOWPATH FROM NODE
                     27.00 TO NODE
                                  26.00 = 1367.00 FEET.
*******************
 FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.28
 RAINFALL INTENSITY (INCH/HR) = 3.76
 TOTAL STREAM AREA (ACRES) = 38.34
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
        22.53 11.69 3.524
   1
                                  7.44
        103.49 10.28
                        3.758
                                 38.34
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
```

```
CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                          INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
 NUMBER
         123.30 10.28 3.758
   1
         119.59 11.69
                            3.524
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 123.30 Tc(MIN.) = 10.28
TOTAL AREA(ACRES) = 45.8
 LONGEST FLOWPATH FROM NODE
                          22.00 TO NODE
                                         26.00 =
                                                   1784.00 FEET.
******************
 FLOW PROCESS FROM NODE 26.00 TO NODE 21.00 IS CODE = 31
    ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 71.00 DOWNSTREAM(FEET) = 65.00
 FLOW LENGTH (FEET) = 892.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 10.79
 ESTIMATED PIPE DIAMETER (INCH) = 51.00
                                    NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 123.30
 PIPE TRAVEL TIME (MIN.) = 1.38 Tc (MIN.) = 11.66
 LONGEST FLOWPATH FROM NODE
                          22.00 TO NODE
                                         21.00 = 2676.00 FEET.
*******************
 FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

1 123.30 11.66 3.529 45.78

LONGEST FLOWPATH FROM NODE 22.00 TO NODE 21.00 = 2676.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                      AREA
          (CFS)
                                     (ACRE)
 NUMBER
                   (MIN.)
                          (INCH/HOUR)
 1 272.71 13.67 3.261 111.87
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 21.00 = 6713.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 356.00 11.66 3.529

2 386.64 13.67 3.261
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 386.64 Tc (MIN.) = 13.67
 TOTAL AREA (ACRES) =
                     157.6
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO

FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 12

```
>>>>CLEAR MEMORY BANK # 1 <<<<
______
***************
 FLOW PROCESS FROM NODE 21.00 TO NODE
                                  30.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 65.00 DOWNSTREAM(FEET) = 36.00
 FLOW LENGTH (FEET) = 1108.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 46.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 23.78
 ESTIMATED PIPE DIAMETER (INCH) = 60.00
                                NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 386.64
 PIPE TRAVEL TIME (MIN.) = 0.78 Tc (MIN.) = 14.44
 LONGEST FLOWPATH FROM NODE
                       1.00 TO NODE
                                     30.00 =
                                              7821.00 FEET.
******************
                   30.00 \text{ TO NODE} 30.00 \text{ IS CODE} = 1
 FLOW PROCESS FROM NODE
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 14.44
 RAINFALL INTENSITY (INCH/HR) = 3.17
 TOTAL STREAM AREA(ACRES) = 157.65
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              386.64
****************
 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 435.00
 UPSTREAM ELEVATION(FEET) = 120.50
 DOWNSTREAM ELEVATION(FEET) = 88.00
ELEVATION DIFFERENCE(FEET) = 32.50
 TC = 0.393*[(435.00**3)/(32.50)]**.2 = 7.493
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.399
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .7237
 SOIL CLASSIFICATION IS "A"
 SOIL CLASSIFICATED

SUBAREA RUNOFF (CFS) = 15.28

TOTAL RUNOFF (CFS) = 4.80 TOTAL RUNOFF (CFS) =
*******************
 FLOW PROCESS FROM NODE 32.00 TO NODE
                                  33.00 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 88.00 DOWNSTREAM(FEET) = 82.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 503.00 CHANNEL SLOPE = 0.0119
 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR =
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.967
 SINGLE-FAMILY (1/4) ACRE LOT) RUNOFF COEFFICIENT = .7125
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 31.62
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.85
```

```
AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 1.73
 Tc(MIN.) = 9.22
 SUBAREA AREA (ACRES) = 11.52 SUBAREA RUNOFF (CFS) = 32.57
 TOTAL AREA (ACRES) =
                     16.3
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 FLOW VELOCITY(FEET/SEC.) = 5.73
 LONGEST FLOWPATH FROM NODE 31.00 TO NODE 33.00 =
                                               938.00 FEET.
***************
 FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>
______
 ELEVATION DATA: UPSTREAM(FEET) = 82.00 DOWNSTREAM(FEET) = 75.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 579.00 CHANNEL SLOPE = 0.0112
 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.669
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7039
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 6.16
 AVERAGE FLOW DEPTH(FEET) = 0.48 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 10.79
 SUBAREA AREA (ACRES) = 10.52 SUBAREA RUNOFF (CFS) = 27.17
TOTAL AREA (ACRES) = 26.8 PEAK FLOW RATE (CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.54 FLOW VELOCITY(FEET/SEC.) = 6.63
 LONGEST FLOWPATH FROM NODE 31.00 TO NODE 34.00 = 1517.00 FEET.
FLOW PROCESS FROM NODE 34.00 TO NODE 34.00 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.669
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7039
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 10.38 SUBAREA RUNOFF(CFS) = 26.81
TOTAL AREA(ACRES) = 37.2 TOTAL RUNOFF(CFS) = 101.
                                            101.83
 TC(MIN.) = 10.79
*******************
 FLOW PROCESS FROM NODE 34.00 TO NODE 34.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.669
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7039
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 3.03 SUBAREA RUNOFF (CFS) = 7.83

TOTAL AREA (ACRES) = 40.2 TOTAL RUNOFF (CFS) = 109.65
 TC(MIN.) = 10.79
*************************
 FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 75.50 DOWNSTREAM(FEET) = 52.00
 FLOW LENGTH (FEET) = 410.00 MANNING'S N = 0.013
```

```
DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 23.47
 ESTIMATED PIPE DIAMETER (INCH) = 33.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 109.65
                          Tc(MIN.) = 11.08
 PIPE TRAVEL TIME (MIN.) = 0.29
                       31.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                     35.00 = 1927.00 FEET.
********************
 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.621
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8605
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 0.81 SUBAREA RUNOFF(CFS) = 2.52
TOTAL AREA(ACRES) = 41.1 TOTAL RUNOFF(CFS) = 112.3
 TC(MIN.) = 11.08
******************
 FLOW PROCESS FROM NODE 35.00 TO NODE 30.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 52.00 DOWNSTREAM(FEET) = 36.00
 FLOW LENGTH (FEET) = 964.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 30.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 14.83
                               NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 42.00
 PIPE-FLOW(CFS) = 112.18
 PIPE TRAVEL TIME (MIN.) = 1.08 Tc (MIN.) = 12.16
 LONGEST FLOWPATH FROM NODE
                                     30.00 = 2891.00 FEET.
                       31.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.456
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6973
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 14.86 SUBAREA RUNOFF (CFS) = 35.81
TOTAL AREA (ACRES) = 55.9 TOTAL RUNOFF (CFS) = 147.5
 TC(MIN.) = 12.16
*************************
 FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 12.16
 RAINFALL INTENSITY (INCH/HR) = 3.46
 TOTAL STREAM AREA(ACRES) = 55.92
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                             147.99
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITE
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
3 172 157.6
   1
        386.64 14.44 3.172
147.99 12.16 3.456
                                   157.65
```

```
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
 NUMBER
  1
        473.54 12.16 3.456
522.47 14.44 3.172
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 522.47 Tc(MIN.) = 14.44 TOTAL AREA(ACRES) = 213.6
                       1.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                   30.00 = 7821.00 FEET.
******************
FLOW PROCESS FROM NODE 30.00 TO NODE 40.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
ELEVATION DATA: UPSTREAM(FEET) = 36.00 DOWNSTREAM(FEET) = 26.00
 FLOW LENGTH (FEET) = 942.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 78.0 INCH PIPE IS 63.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 18.09
ESTIMATED PIPE DIAMETER(INCH) = 78.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 522.47
 PIPE TRAVEL TIME (MIN.) = 0.87 Tc (MIN.) = 15.31
 LONGEST FLOWPATH FROM NODE
                      1.00 TO NODE
                                   40.00 =
*******************
FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 81
______
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.081
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4689
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 6.69 SUBAREA RUNOFF(CFS) = 9.67
TOTAL AREA(ACRES) = 220.3 TOTAL RUNOFF(CFS) = 532.14
 TC(MIN.) = 15.31
______
 END OF STUDY SUMMARY:
                     220.3 TC(MIN.) =
                                    15.31
 TOTAL AREA (ACRES)
 PEAK FLOW RATE (CFS) = 532.14
______
_____
```

END OF RATIONAL METHOD ANALYSIS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

(c) Copyright 1982-2015 Advanced Engineering Software (aes) (Rational Tabling Version 22.0)

Release Date: 07/01/2015 License ID 1673

Analysis prepared by: Proactive Engineering Consultants 27042 Towne Centre Drive Foothill Ranch, Ca. 92610

```
* Travertine Project
* Proposed 100-yr Storm Event
* Subarea B
 FILE NAME: TRAV-00B.DAT
 TIME/DATE OF STUDY: 09:34 10/13/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
 USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.870
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.766
 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.810
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.560
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4981200
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4983611
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00 1-HOUR INTENSITY (INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.4984
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
   20.0 10.0 0.020/0.020/0.020 0.67 2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.40 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*******************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 750.00
 UPSTREAM ELEVATION (FEET) =
                          245.00
```

```
DOWNSTREAM ELEVATION (FEET) =
 ELEVATION DIFFERENCE (FEET) = 7.50
TC = 0.393*[( 750.00**3)/( 7.50)]**.2 =
                                   13.931
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.230
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6897
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                   11.81
                  5.30 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
***************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 237.50 DOWNSTREAM(FEET) = 231.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 630.00 CHANNEL SLOPE = 0.0103
 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.934
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6789
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                        15.68
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.54
 AVERAGE FLOW DEPTH(FEET) = 0.22 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 16.89
 SUBAREA AREA(ACRES) =
                   3.88
                           SUBAREA RUNOFF (CFS) = 7.73
                             PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                    9.2
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 FLOW VELOCITY(FEET/SEC.) = 3.86
                      100.00 TO NODE 102.00 = 1380.00 FEET.
 LONGEST FLOWPATH FROM NODE
FLOW PROCESS FROM NODE 102.00 TO NODE 105.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 221.00 DOWNSTREAM(FEET) = 162.00
 FLOW LENGTH (FEET) = 720.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 17.76
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 19.53
 PIPE TRAVEL TIME (MIN.) = 0.68 Tc (MIN.) = 17.57
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                    105.00 =
                                             2100.00 FEET.
***************
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 17.57
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 9.18
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                              19.53
************************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 21
_____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
```

```
ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS: UNDEVELOPED WITH GOOD COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 232.00
 DOWNSTREAM ELEVATION (FEET) = 208.00
ELEVATION DIFFERENCE (FEET) = 24.00
 ELEVATION DIFFERENCE (FEET) = 24.00
TC = 0.937*[( 547.00**3)/( 24.00)]**.2 = 21.811
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.583
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4292
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 4.09
 TOTAL AREA (ACRES) =
                      3.69 TOTAL RUNOFF(CFS) =
                                                 4.09
*******************
 FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 62
_____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION (FEET) = 208.00 DOWNSTREAM ELEVATION (FEET) = 172.00
 STREET LENGTH (FEET) = 672.00 CURB HEIGHT (INCHES) = 8.0
 STREET HALFWIDTH (FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH (FEET) = 0.30
   HALFSTREET FLOOD WIDTH (FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.71
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.42
 STREET FLOW TRAVEL TIME (MIN.) = 2.38 Tc (MIN.) = 24.19
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.453
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6588
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.22 SUBAREA RUNOFF(CFS) = 5.20 TOTAL AREA(ACRES) = 6.9 PEAK FLOW RATE(CFS) =
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 8.53
 FLOW VELOCITY (FEET/SEC.) = 5.07 DEPTH*VELOCITY (FT*FT/SEC.) = 1.67
 LONGEST FLOWPATH FROM NODE
                          103.00 TO NODE 105.00 = 1219.00 FEET.
*****************
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 24.19
 RAINFALL INTENSITY (INCH/HR) = 2.45
 TOTAL STREAM AREA (ACRES) = 6.91
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 9.30
```

** CONFLUENCE DATA **

```
RUNOFF TC INTENSITY AREA (CFS) (MIN.) (INCH/HOUR) (ACRE) 19.53 17.57 2.877 9.1 9.30 24.19 2.453 6.9
 NUMBER
                                    9.18
   1
                                       6.91
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS)
                (MIN.) (INCH/HOUR)
 NUMBER
         26.29 17.57 2.877
   1
         25.95 24.19
                         2.453
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 26.29 Tc(MIN.) = 17.57 TOTAL AREA(ACRES) = 16.1
                                              2100.00 FEET.
 LONGEST FLOWPATH FROM NODE
                       100.00 TO NODE
                                      105.00 =
***************
 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 31
   ._____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 162.00 DOWNSTREAM(FEET) = 159.00
 FLOW LENGTH (FEET) = 55.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 16.36
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
                                 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 26.29
 PIPE TRAVEL TIME (MIN.) = 0.06
                          Tc(MIN.) = 17.63
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 2155.00 FEET.
*******************
 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.873
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7436
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 14.93 SUBAREA RUNOFF(CFS) = 31.89
TOTAL AREA(ACRES) = 31.0 TOTAL RUNOFF(CFS) - 50
 TC(MIN.) = 17.63
********************
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 159.00 DOWNSTREAM(FEET) = 134.30
 FLOW LENGTH (FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 16.34
 ESTIMATED PIPE DIAMETER (INCH) = 30.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 58.18
 PIPE TRAVEL TIME (MIN.) = 0.78 Tc (MIN.) = 18.40
```

```
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 107.00 = 2915.00 FEET.
*************************
 FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.812
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7871
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.79 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 34.8 TOTAL RUNOFF(CFS) =
                   34.8 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 18.40
*******************
 FLOW PROCESS FROM NODE 107.00 TO NODE 110.00 IS CODE = 31
    ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 134.30 DOWNSTREAM(FEET) = 130.00
 FLOW LENGTH (FEET) = 213.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 13.97
 ESTIMATED PIPE DIAMETER (INCH) = 33.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 66.56
 PIPE TRAVEL TIME (MIN.) = 0.25
                         Tc(MIN.) = 18.65
 LONGEST FLOWPATH FROM NODE
                     100.00 TO NODE 110.00 = 3128.00 FEET.
*******************
 FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <
______
*******************
 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 378.00
 UPSTREAM ELEVATION (FEET) = 280.00
 DOWNSTREAM ELEVATION(FEET) = 278.00

ELEVATION DIFFERENCE(FEET) = 2.00

TC = 0.709*[( 378.00**3)/( 2.00)]**.2 =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.588
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4296
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                   3.13
                  2.82 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
***************
 FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 271.00 DOWNSTREAM(FEET) = 268.00
 FLOW LENGTH (FEET) = 80.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) =
                        8 19
```

```
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.13
 PIPE TRAVEL TIME (MIN.) = 0.16 Tc (MIN.) = 21.90
 LONGEST FLOWPATH FROM NODE
                      111.00 TO NODE
                                    113.00 =
****************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.578
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4288
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.54 SUBAREA RUNOFF(CFS) = 1.70
TOTAL AREA(ACRES) = 4.4 TOTAL RUNOFF(CFS) = 4.8
 TOTAL AREA (ACRES) =
 TC(MIN.) = 21.90
*****************
 FLOW PROCESS FROM NODE 113.00 TO NODE 115.00 IS CODE = 31
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 268.00 DOWNSTREAM(FEET) = 231.70
 FLOW LENGTH(FEET) = 710.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 10.36
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.84
 PIPE TRAVEL TIME (MIN.) = 1.14
                          Tc(MIN.) = 23.04
 LONGEST FLOWPATH FROM NODE
                      111.00 TO NODE
                                    115.00 = 1168.00 FEET.
FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 23.04
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 4.36
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                              4.84
*******************
 FLOW PROCESS FROM NODE 116.00 TO NODE 113.00 IS CODE = 21
______
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS CONDOMINIUM
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 618.00
 UPSTREAM ELEVATION (FEET) = 280.00
 DOWNSTREAM ELEVATION (FEET) = 278.00
 DOWNSTREAM ELEVATION (122)

ELEVATION DIFFERENCE (FEET) = 2.00

2.00)]**.2 =
                                   14.782
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.136
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7505
 SOIL CLASSIFICATION IS "A"
                    2.59
 SUBAREA RUNOFF (CFS) =
 TOTAL AREA (ACRES) = 1.10 TOTAL RUNOFF (CFS) = 2.59
***************
```

```
FLOW PROCESS FROM NODE 113.00 TO NODE 115.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 278.00 DOWNSTREAM ELEVATION(FEET) = 243.00
 STREET LENGTH (FEET) = 685.00 CURB HEIGHT (INCHES) = 8.0
 STREET HALFWIDTH (FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH (FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.62
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.40
 STREET FLOW TRAVEL TIME(MIN.) = 2.47 Tc(MIN.) = 17.25 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.903
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6777
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 4.04 SUBAREA RUNOFF(CFS) = 7.95
 TOTAL AREA(ACRES) =
                       5.1
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH (FEET) = 0.34 HALFSTREET FLOOD WIDTH (FEET) = 9.22
 FLOW VELOCITY (FEET/SEC.) = 5.07 DEPTH*VELOCITY (FT*FT/SEC.) = 1.74
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 115.00 = 1303.00 FEET.
******************
 FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 17.25
                            2.90
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 5.14
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                   10.54
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                   Tc
                           INTENSITY
                                         AREA
 NUMBER
          (CFS)
                    (MIN.) (INCH/HOUR)
                                        (ACRE)
           4.84 23.04 2.513
10.54 17.25 2.903
    1
                                            5.14
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
```

7

```
RUNOFF TC INTENSITY (CFS) (MIN.) (INCH/HOUR) 14.16 17.25 2.903 13.96 23.04 2.513
 NUMBER
  1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 14.16 Tc(MIN.) = 17.25 TOTAL AREA(ACRES) = 9.5
                     9.5
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 115.00 = 1303.00 FEET.
*******************
 FLOW PROCESS FROM NODE 115.00 TO NODE 117.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 231.70 DOWNSTREAM(FEET) = 224.30
 FLOW LENGTH (FEET) = 136.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.08
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 14.16
 PIPE TRAVEL TIME (MIN.) = 0.16 Tc (MIN.) = 17.41
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE
                                     117.00 =
                                              1439.00 FEET.
*******************
 FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.890
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6772
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 6.39 SUBAREA RUNOFF(CFS) = 12.51
TOTAL AREA(ACRES) = 15.9 TOTAL RUNOFF(CFS) = 26.
 TC(MIN.) =
          17.41
*****************
 FLOW PROCESS FROM NODE 117.00 TO NODE 118.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 224.30 DOWNSTREAM(FEET) = 214.40
 FLOW LENGTH (FEET) = 188.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 16.18
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 26.67
 PIPE TRAVEL TIME (MIN.) = 0.19
                           Tc(MIN.) =
                                    17.61
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE
                                     118.00 = 1627.00 FEET.
*****************
 FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.874
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6766
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 11.75
                        SUBAREA RUNOFF (CFS) = 22.85
 TOTAL AREA(ACRES) = 27.6 TOTAL RUNOFF(CFS) = 49.52
 TC(MIN.) = 17.61
```

```
************************
 FLOW PROCESS FROM NODE 118.00 TO NODE 119.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 214.40 DOWNSTREAM(FEET) = 204.00
 FLOW LENGTH (FEET) = 198.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 18.33
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 49.52
 PIPE TRAVEL TIME (MIN.) = 0.18 Tc (MIN.) = 17.79
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE
                                    119.00 =
                                            1825.00 FEET.
******************
 FLOW PROCESS FROM NODE 119.00 TO NODE 119.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.860
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4521
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 0.59
TOTAL AREA(ACRES) = 28.1 TOTAL RUNOFF(CFS) = 50.3
 TC(MIN.) = 17.79
*****************
 FLOW PROCESS FROM NODE 119.00 TO NODE 120.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 204.00 DOWNSTREAM(FEET) = 195.50
 FLOW LENGTH (FEET) = 162.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 18.33
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 50.11
 PIPE TRAVEL TIME (MIN.) = 0.15
                          Tc(MIN.) =
                                   17.93
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE
                                   120.00 = 1987.00 FEET.
*****************
 FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.848
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6756
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 4.32
                       SUBAREA RUNOFF (CFS) = 8.31
 TOTAL AREA (ACRES) =
                   32.4 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 17.93
*******************
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 195.50 DOWNSTREAM(FEET) = 177.00
 FLOW LENGTH (FEET) = 331.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 20.02
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                              NUMBER OF PIPES = 1
```

```
PIPE-FLOW(CFS) = 58.42
 PIPE TRAVEL TIME (MIN.) = 0.28 Tc (MIN.) = 18.21
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE
                                   121.00 =
                                            2318.00 FEET.
******************
 FLOW PROCESS FROM NODE 121.00 TO NODE 121.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.826
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6747
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.76 SUBAREA RUNOFF(CFS) = 7.17
 TOTAL AREA (ACRES) = 36.2 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 18.21
*****************
 FLOW PROCESS FROM NODE 121.00 TO NODE 121.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.826
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4494
 SOIL CLASSIFICATION IS "A"
                   7.29 SUBAREA RUNOFF(CFS) = 9.26
43.5 TOTAL RUNOFF(CFS) = 74.8
 SUBAREA AREA(ACRES) = 7.29
 TOTAL AREA (ACRES) =
 TC(MIN.) = 18.21
*****************
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 177.00 DOWNSTREAM(FEET) = 139.00
 FLOW LENGTH (FEET) = 470.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 24.33
 ESTIMATED PIPE DIAMETER (INCH) = 27.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 74.85
 PIPE TRAVEL TIME (MIN.) = 0.32
                          Tc(MIN.) = 18.53
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 122.00 = 2788.00 FEET.
*******************
 FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.802
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6737
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 11.78 SUBAREA RUNOFF(CFS) = 22.24
TOTAL AREA(ACRES) = 55.2 TOTAL RUNOFF(CFS) = 97.09
 TC(MIN.) = 18.53
************************
 FLOW PROCESS FROM NODE 122.00 TO NODE 110.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 139.00 DOWNSTREAM(FEET) = 130.00
 FLOW LENGTH (FEET) = 409.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 26.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 16.03
```

```
ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 97.09
 PIPE TRAVEL TIME (MIN.) = 0.43 Tc (MIN.) = 18.96
                     116.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                  110.00 =
                                          3197.00 FEET.
*****************
FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.770
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7407
 SOIL CLASSIFICATION IS "A"
                  3.78 SUBAREA RUNOFF(CFS) = 59.0 TOTAL RUNOFF(CFS) =
 SUBAREA AREA(ACRES) = 3.78
                                        7.76
 TOTAL AREA (ACRES) =
 TC(MIN.) = 18.96
*****************
 FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 11
 ______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                               AREA
      (CFS) (MIN.) (INCH/HOUR) (ACRE)
104.84 18.96 2.770 59.03
 NUMBER
  1
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 110.00 = 3197.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                     (INCH/HOUR)
 NUMBER
        (CFS)
               (MIN.)
                               (ACRE)
                     2.792 34.81
        66.56 18.65
  1
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 3128.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**************
 ** PEAK FLOW RATE TABLE **
                     INTENSITY
 STREAM RUNOFF TC
 NUMBER
                    (INCH/HOUR)
       (CFS)
               (MIN.)
   1
       169.74
               18.65
                        2.792
       170.88
               18.96
                         2.770
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
                                 18.96
 PEAK FLOW RATE(CFS) = 170.88 Tc(MIN.) =
 TOTAL AREA (ACRES) =
                  93.8
*******************
 FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<
______
*************************
FLOW PROCESS FROM NODE 110.00 TO NODE 130.00 IS CODE = 31
______
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 130.00 DOWNSTREAM(FEET) = 120.00
 FLOW LENGTH (FEET) = 990.00 MANNING'S N = 0.013
```

```
DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 13.68
 ESTIMATED PIPE DIAMETER (INCH) = 54.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 170.88
 PIPE TRAVEL TIME (MIN.) = 1.21
                           Tc(MIN.) =
                                    20.16
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE
                                     130.00 =
                                              4187.00 FEET.
*****************
 FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 20.16
 RAINFALL INTENSITY (INCH/HR) =
                         2.69
 TOTAL STREAM AREA (ACRES) = 93.84
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
************************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS: UNDEVELOPED WITH GOOD COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 564.00
 UPSTREAM ELEVATION(FEET) = 210.00
 DOWNSTREAM ELEVATION(FEET) = 195.00
 ELEVATION DIFFERENCE (FEET) = 15.00
TC = 0.937*[( 564.00**3)/( 15.00)]**.2 = 24.405
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.442
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4167
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                     2.67
 TOTAL AREA (ACRES) =
                   2.62
                        TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.442
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4167
 SOIL CLASSIFICATION IS "A"
                     2.27 SUBAREA RUNOFF(CFS) = 2.31
4.9 TOTAL RUNOFF(CFS) = 4.1
 SUBAREA AREA(ACRES) = 2.27
 TOTAL AREA (ACRES) =
 TC(MIN.) = 24.40
***************
 FLOW PROCESS FROM NODE 132.00 TO NODE
                                 133.00 \text{ TS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 195.00 DOWNSTREAM(FEET) = 168.50
 CHANNEL LENGTH THRU SUBAREA(FEET) = 830.00 CHANNEL SLOPE = 0.0319
 CHANNEL BASE (FEET) = 8.00 "Z" FACTOR =
                                    1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.318
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4050
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) =
```

```
AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 2.70
 Tc(MIN.) = 27.10
 SUBAREA AREA (ACRES) = 3.94 SUBAREA RUNOFF (CFS) = 3.70
 TOTAL AREA (ACRES) =
                     8.8
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) = 5.64
 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 133.00 =
***************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 158.50 DOWNSTREAM(FEET) = 130.00
 FLOW LENGTH (FEET) = 321.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.87
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.68
 PIPE TRAVEL TIME (MIN.) = 0.36 Tc (MIN.) = 27.46
 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 134.00 = 1715.00 FEET.
***************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.303
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6518
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 8.72 SUBAREA RUNOFF(CFS) = 13.09
 TOTAL AREA(ACRES) = 17.5 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 27.46
*************************
 FLOW PROCESS FROM NODE 134.00 TO NODE 130.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 130.00 DOWNSTREAM(FEET) = 120.00
 FLOW LENGTH (FEET) = 264.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.62
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.76
 PIPE TRAVEL TIME (MIN.) = 0.32
                           Tc(MIN.) = 27.78
 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 130.00 = 1979.00 FEET.
************************
 FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.290
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4022
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.48 SUBAREA RUNOFF(CFS) = 3.20
TOTAL AREA(ACRES) = 21.0 TOTAL RUNOFF(CFS) = 24.
 TC(MIN.) = 27.78
*************
```

```
FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.290
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7756
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.51 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 24.5 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 27.78
*****************
 FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 27.78
RAINFALL INTENSITY(INCH/HR) = 2.29
TOTAL STREAM AREA(ACRES) = 24.54
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
         170.88 20.16 2.686
31.20 27.78 2.290
   1
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *******************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                        INTENSITY
                        (INCH/HOUR)
 NUMBER
                  (MIN.)
          (CFS)
         176.84 27.78 2.686
2.686
   1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 193.52 Tc(MIN.) = TOTAL AREA(ACRES) = 118.4
                                      20.16
 LONGEST FLOWPATH FROM NODE
                         116.00 TO NODE
                                       130.00 =
                                                 4187.00 FEET.
*******************
 FLOW PROCESS FROM NODE 130.00 TO NODE 135.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 120.00 DOWNSTREAM(FEET) = 112.00
 FLOW LENGTH (FEET) = 635.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 15.31
 ESTIMATED PIPE DIAMETER (INCH) = 54.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 193.52
 PIPE TRAVEL TIME (MIN.) = 0.69
                           Tc(MIN.) = 20.85
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 135.00 = 4822.00 FEET.
```

```
************************
 FLOW PROCESS FROM NODE 135.00 TO NODE 135.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.642
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7836
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.72
TOTAL AREA(ACRES) = 121.1
                       SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) =
 TC(MIN.) = 20.85
*******************
 FLOW PROCESS FROM NODE 135.00 TO NODE 140.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 112.00 DOWNSTREAM(FEET) = 110.00
 FLOW LENGTH (FEET) = 210.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 43.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.84
 ESTIMATED PIPE DIAMETER (INCH) = 57.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 199.15
                         Tc(MIN.) = 21.11
 PIPE TRAVEL TIME (MIN.) = 0.25
 LONGEST FLOWPATH FROM NODE
                      116.00 TO NODE
                                   140.00 =
*****************************
 FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 406.00
 UPSTREAM ELEVATION (FEET) = 280.00
 DOWNSTREAM ELEVATION (FEET) = 275.50
 ELEVATION DIFFERENCE (FEET) =
 TC = 0.393*[(406.00**3)/(4.50)]**.2 = 10.676
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.688
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .7045
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                   3.40
 TOTAL AREA (ACRES) =
                  1.31 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.688
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .7045
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.02 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) =
                                        2.65
                   2.3 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 10.68
***************
```

```
FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 265.50 DOWNSTREAM(FEET) = 254.40
 FLOW LENGTH (FEET) = 202.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 11.32
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.05
 PIPE TRAVEL TIME (MIN.) = 0.30 Tc (MIN.) = 10.97
 LONGEST FLOWPATH FROM NODE
                      141.00 TO NODE
                                    143.00 =
                                              608.00 FEET.
******************
 FLOW PROCESS FROM NODE 143.00 TO NODE 143.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.638
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7030
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 2.37 SUBAREA RUNOFF (CFS) = 6.06
 TOTAL AREA(ACRES) =
                   4.7 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 10.97
*****************
 FLOW PROCESS FROM NODE 143.00 TO NODE 143.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.638
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .7030
 SOIL CLASSIFICATION IS "A"
                  2.53 SUBAREA RUNOFF(CFS) = 6.47
7.2 TOTAL RUNOFF(CFS) = 18.5
 SUBAREA AREA(ACRES) = 2.53
 TOTAL AREA (ACRES) =
                                           18.58
 TC(MIN.) = 10.97
******************
 FLOW PROCESS FROM NODE 143.00 TO NODE 145.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 254.40 DOWNSTREAM(FEET) = 227.50
 FLOW LENGTH (FEET) = 416.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 16.01
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 18.58
 PIPE TRAVEL TIME (MIN.) = 0.43
                          Tc(MIN.) = 11.41
 LONGEST FLOWPATH FROM NODE 141.00 TO NODE 145.00 =
***************
 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.568
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .7008
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 5.09 SUBAREA RUNOFF(CFS) = 12.73
TOTAL AREA(ACRES) = 12.3 TOTAL RUNOFF(CFS) = 31.31
 TC(MIN.) = 11.41
```

```
*****************
 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.41 RAINFALL INTENSITY(INCH/HR) = 3.57
 TOTAL STREAM AREA(ACRES) = 12.32
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 146.00 TO NODE 147.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS: UNDEVELOPED WITH GOOD COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 552.00
 UPSTREAM ELEVATION (FEET) = 280.00
 DOWNSTREAM ELEVATION (FEET) = 260.00
 ELEVATION DIFFERENCE (FEET) = 20.00
TC = 0.937*[( 552.00**3)/( 20.00)]**.2 =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.530
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4245
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                    1.62
                   1.51 TOTAL RUNOFF(CFS) = 1.62
 TOTAL AREA (ACRES) =
*******************
 FLOW PROCESS FROM NODE 147.00 TO NODE 148.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 260.00 DOWNSTREAM(FEET) = 243.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 632.00 CHANNEL SLOPE = 0.0269
 CHANNEL BASE (FEET) = 8.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) =
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.358
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4088
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.07
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 26.18
 SUBAREA AREA(ACRES) = 0.80
                            SUBAREA RUNOFF (CFS) = 0.77
 TOTAL AREA (ACRES) =
                    2.3
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 3.34
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 148.00 =
                                              1184.00 FEET.
******************
 FLOW PROCESS FROM NODE 148.00 TO NODE 145.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 243.00 DOWNSTREAM(FEET) = 238.50
 CHANNEL LENGTH THRU SUBAREA(FEET) = 375.00 CHANNEL SLOPE = 0.0120 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 2.000
```

```
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.236
 SINGLE-FAMILY (1/2 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .5982
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.11
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.96
 Tc(MIN.) = 29.14
 SUBAREA AREA(ACRES) = 2.08 SUBAREA RUNOFF(CFS) = 2.78
TOTAL AREA(ACRES) = 4 4 PEAK FLOW PATE (CFS) =
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA (ACRES) =
                       4.4
                                                        5.18
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 2.46
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 145.00 =
                                                   1559.00 FEET.
*****************
 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 29.14
 RAINFALL INTENSITY(INCH/HR) = 2.24
TOTAL STREAM AREA(ACRES) = 4.39
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                  5.18
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                   Tc INTENSITY
                                       AREA
         (CFS)
31.31
                   (MIN.) (INCH/HOUR)
 NUMBER
                                      (ACRE)
           31.31 11.41 3.568
5.18 29.14 2.236
                                      12.32
    1
                                         4.39
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
******************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF To
                          INTENSITY
         (CFS)
 NUMBER
                  (MIN.) (INCH/HOUR)
                         3.568
    1
           33.34
                  11.41
           24.80
                  29.14
                            2.236
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 33.34 Tc(MIN.) = 11.41 TOTAL AREA(ACRES) = 16.7
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 145.00 = 1559.00 FEET.
***************
 FLOW PROCESS FROM NODE 145.00 TO NODE 150.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 227.50 DOWNSTREAM(FEET) = 209.70
 FLOW LENGTH (FEET) = 275.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 18.33
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                   NUMBER OF PIPES = 1
```

```
PIPE-FLOW(CFS) = 33.34
 PIPE TRAVEL TIME (MIN.) = 0.25 Tc (MIN.) = 11.66
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE
                                       150.00 =
                                                 1834.00 FEET.
*******************
 FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 11.66
 RAINFALL INTENSITY (INCH/HR) = 3.53
 TOTAL STREAM AREA(ACRES) = 16.71
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 33.34
*****************
FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 281.00
 DOWNSTREAM ELEVATION(FEET) = 267.70

ELEVATION DIFFERENCE(FEET) = 13.30

TC = 0.393*[( 734.00**3)/( 13.30)]**.2 = 12.263
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.442
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6968
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 6.21
 TOTAL AREA (ACRES) =
                    2.59 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 152.00 TO NODE 153.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION (FEET) = 267.70 DOWNSTREAM ELEVATION (FEET) = 243.00
 STREET LENGTH (FEET) = 347.00 CURB HEIGHT (INCHES) = 8.0
 STREET HALFWIDTH (FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL (DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL (DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.81
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH (FEET) = 0.30
   HALFSTREET FLOOD WIDTH (FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 5.50
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.66
 STREET FLOW TRAVEL TIME (MIN.) = 1.05 Tc (MIN.) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.303
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6922
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) =
                    1.40
                             SUBAREA RUNOFF (CFS) = 3.20
```

```
TOTAL AREA (ACRES) =
                   4.0
                           PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) =
 FLOW VELOCITY(FEET/SEC.) = 5.64 DEPTH*VELOCITY(FT*FT/SEC.) = 1.80
 LONGEST FLOWPATH FROM NODE 151.00 TO NODE
                                   153.00 = 1081.00 FEET.
*****************
 FLOW PROCESS FROM NODE 153.00 TO NODE 154.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 233.00 DOWNSTREAM(FEET) = 212.00
 FLOW LENGTH (FEET) = 525.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 11.34
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.41
PIPE TRAVEL TIME(MIN.) = 0.77 Tc(MIN.) =
                                  14.09
 LONGEST FLOWPATH FROM NODE 151.00 TO NODE
                                   154.00 = 1606.00 FEET.
*******************
 FLOW PROCESS FROM NODE 154.00 TO NODE 154.00 IS CODE = 81
  ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.212
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6891
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.63 SUBAREA RUNOFF(CFS) = 5.82
TOTAL AREA(ACRES) = 6.6 TOTAL RUNOFF(CFS) = 15.3
                   6.6 TOTAL RUNOFF(CFS) = 15.23
 TC(MIN.) = 14.09
*******************
 FLOW PROCESS FROM NODE 154.00 TO NODE 150.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 212.00 DOWNSTREAM(FEET) = 209.70
 FLOW LENGTH (FEET) = 46.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 13.86
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 15.23
 PIPE TRAVEL TIME (MIN.) = 0.06 Tc (MIN.) = 14.14
 LONGEST FLOWPATH FROM NODE
                      151.00 TO NODE
                                   150.00 =
                                            1652.00 FEET.
*****************
 FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.206
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7944
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.91 SUBAREA RUNOFF(CFS) = 4.86
TOTAL AREA(ACRES) = 8.5 TOTAL RUNOFF(CFS) = 20.3
                                          20.10
 TC(MIN.) =
         14.14
*****************
 FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 1
______
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 14.14
 RAINFALL INTENSITY (INCH/HR) = 3.21
 TOTAL STREAM AREA(ACRES) = 8.53
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
       RUNOFF
                  Tc
                        INTENSITY
 STREAM
                (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
         (CFS)
                                   16.71
    1
          33.34 11.66
20.10 14.14
                11.66 3.530
                          3.206
                                      8.53
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                       INTENSITY
         (CFS)
 NUMBER
                (MIN.) (INCH/HOUR)
         49.90 11.66 3.530
   1
         50.37 14.14
                         3.206
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 49.90 Tc(MIN.) = 11.66 TOTAL AREA(ACRES) = 25.2
 LONGEST FLOWPATH FROM NODE
                                            1834.00 FEET.
                       146.00 TO NODE
                                     150.00 =
*******************
 FLOW PROCESS FROM NODE 150.00 TO NODE 155.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 209.70 DOWNSTREAM(FEET) = 198.00
 FLOW LENGTH (FEET) = 178.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 20.31
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                                NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 49.90
 PIPE TRAVEL TIME (MIN.) = 0.15
                          Tc(MIN.) = 11.80
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 155.00 = 2012.00 FEET.
*****************
 FLOW PROCESS FROM NODE 155.00 TO NODE 155.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.508
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4979
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.31 SUBAREA RUNOFF(CFS) = 2.29
TOTAL AREA(ACRES) = 26.5 TOTAL RUNOFF(CFS) = 52.3
 TC(MIN.) = 11.80
*************
```

FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 31

```
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 198.00 DOWNSTREAM(FEET) = 174.50
 FLOW LENGTH (FEET) = 364.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 20.26
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                52.19
 PIPE TRAVEL TIME (MIN.) = 0.30 Tc (MIN.) =
                                  12.10
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE
                                  156.00 =
******************
 FLOW PROCESS FROM NODE 156.00 TO NODE 156.00 IS CODE = 81
______
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.464
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6975
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 9.24 SUBAREA RUNOFF(CFS) = 22.33
 TOTAL AREA (ACRES) =
                   35.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 12.10
***********************
 FLOW PROCESS FROM NODE 156.00 TO NODE 157.00 IS CODE = 31
    _____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 174.50 DOWNSTREAM(FEET) = 152.20
 FLOW LENGTH (FEET) = 342.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 22.09
 ESTIMATED PIPE DIAMETER (INCH) = 27.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 74.52
                         Tc(MIN.) = 12.36
 PIPE TRAVEL TIME (MIN.) = 0.26
 LONGEST FLOWPATH FROM NODE
                     146.00 TO NODE 157.00 = 2718.00 FEET.
*******************
 FLOW PROCESS FROM NODE 157.00 TO NODE 157.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.428
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4927
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 2.20 SUBAREA RUNOFF (CFS) = 3.72
 TOTAL AREA (ACRES) =
                   38.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 12.36
************************
 FLOW PROCESS FROM NODE 157.00 TO NODE 158.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 152.20 DOWNSTREAM(FEET) = 140.70
 FLOW LENGTH (FEET) = 179.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 22.78
 ESTIMATED PIPE DIAMETER (INCH) = 30.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 78.24
                          Tc(MIN.) = 12.49
 PIPE TRAVEL TIME (MIN.) = 0.13
```

```
LONGEST FLOWPATH FROM NODE 146.00 TO NODE 158.00 = 2897.00 FEET.
*************************
 FLOW PROCESS FROM NODE 158.00 TO NODE 158.00 IS CODE = 81
______
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.410
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6958
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 12.64
TOTAL AREA(ACRES) = 50.6
                      SUBAREA RUNOFF (CFS) = 29.99
                  50.6 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 12.49
*****************
 FLOW PROCESS FROM NODE 158.00 TO NODE 158.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.410
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6958
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 13.21
                      SUBAREA RUNOFF (CFS) = 31.34
 TOTAL AREA (ACRES) = 63.8 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 12.49
*****************
 FLOW PROCESS FROM NODE 158.00 TO NODE 160.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 140.70 DOWNSTREAM(FEET) = 122.00
 FLOW LENGTH (FEET) = 289.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 26.23
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 139.57
 PIPE TRAVEL TIME (MIN.) = 0.18
                         Tc(MIN.) = 12.68
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 160.00 =
                                          3186.00 FEET.
*******************
 FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 12.68
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 63.84
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                            139.57
***************
 FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 1005.00
 UPSTREAM ELEVATION (FEET) = 244.00
 ELEVATION DIFFERENCE (FEET) = 208.30
```

```
TC = 0.393*[(1005.00**3)/(35.70)]**.2 = 12.154
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.457
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6973
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF (CFS) =
 TOTAL AREA (ACRES) =
                     3.47 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 162.00 TO NODE 163.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 208.30 DOWNSTREAM ELEVATION(FEET) = 172.00
 STREET LENGTH(FEET) = 920.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH (FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.37
   HALFSTREET FLOOD WIDTH (FEET) = 10.51
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.75
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.75
 STREET FLOW TRAVEL TIME (MIN.) = 3.23 Tc (MIN.) = 15.38
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.074
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6842
 SOIL CLASSIFICATION IS "A"
                     3.72 SUBAREA RUNOFF (CFS) = 7.82
7.2 PEAK FLOW DECEMBER 7.82
 SUBAREA AREA (ACRES) = 3.72
                              PEAK FLOW RATE(CFS) = 16.19
 TOTAL AREA (ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 11.91
 FLOW VELOCITY (FEET/SEC.) = 5.03 DEPTH*VELOCITY (FT*FT/SEC.) = 1.99 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 163.00 = 1925.00 FE
                                        163.00 = 1925.00 FEET.
*****************
 FLOW PROCESS FROM NODE 163.00 TO NODE 165.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 161.00 DOWNSTREAM(FEET) = 132.50
 FLOW LENGTH (FEET) = 819.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 12.13
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 16.19
 PIPE TRAVEL TIME (MIN.) = 1.13 Tc (MIN.) = 16.51
 LONGEST FLOWPATH FROM NODE
                         161.00 TO NODE
                                        165.00 =
                                                   2744.00 FEET.
******************
 FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.968
```

```
SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6802
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 5.90 SUBAREA RUNOFF(CFS) = 11.91
TOTAL AREA(ACRES) = 13.1 TOTAL RUNOFF(CFS) = 28.
 TC(MIN.) = 16.51
*****************
 FLOW PROCESS FROM NODE 165.00 TO NODE 166.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 132.50 DOWNSTREAM(FEET) = 130.90
 FLOW LENGTH (FEET) = 118.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 9.82
 ESTIMATED PIPE DIAMETER (INCH) = 27.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 28.10
 PIPE TRAVEL TIME (MIN.) = 0.20
                           Tc(MIN.) = 16.71
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 166.00 =
************************
 FLOW PROCESS FROM NODE 166.00 TO NODE 166.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.950
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6795
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 1.84 SUBAREA RUNOFF (CFS) = 3.69
TOTAL AREA (ACRES) = 14.9 TOTAL RUNOFF (CFS) = 31.
 TC(MIN.) = 16.71
******************
 FLOW PROCESS FROM NODE 166.00 TO NODE 167.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 130.90 DOWNSTREAM(FEET) = 127.00
 FLOW LENGTH (FEET) = 260.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.45
 ESTIMATED PIPE DIAMETER (INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 31.79
 PIPE TRAVEL TIME (MIN.) = 0.41 Tc (MIN.) = 17.12
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE
                                     167.00 =
                                               3122.00 FEET.
*******************
 FLOW PROCESS FROM NODE 167.00 TO NODE 167.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.914
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6782
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.09 SUBAREA RUNOFF(CFS) = 4.13
TOTAL AREA(ACRES) = 17.0 TOTAL RUNOFF(CFS) = 35.
 TC(MIN.) =
          17.12
****************
 FLOW PROCESS FROM NODE 167.00 TO NODE 168.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
```

```
______
 ELEVATION DATA: UPSTREAM(FEET) = 127.00 DOWNSTREAM(FEET) = 124.00
 FLOW LENGTH (FEET) = 170.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 11.41
 ESTIMATED PIPE DIAMETER (INCH) = 27.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 35.92
 PIPE TRAVEL TIME (MIN.) = 0.25
                          Tc(MIN.) = 17.37
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 168.00 =
*******************
 FLOW PROCESS FROM NODE 168.00 TO NODE 168.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.893
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6774
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.78 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 18.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 17.37
*****************
 FLOW PROCESS FROM NODE 168.00 TO NODE 160.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 124.00 DOWNSTREAM(FEET) = 122.00
 FLOW LENGTH (FEET) = 50.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 15.87
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 39.40
 PIPE TRAVEL TIME (MIN.) = 0.05 Tc (MIN.) = 17.43
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE
                                     160.00 =
                                              3342.00 FEET.
*****************
 FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.889
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6772
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 7.55 SUBAREA RUNOFF(CFS) = 14.77 TOTAL AREA(ACRES) = 26.4 TOTAL RUNOFF(CFS) = 54.
                   26.4 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
          17.43
*****************
 FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.889
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7886
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.72 SUBAREA RUNOFF(CFS) = 6.20
TOTAL AREA(ACRES) = 29.1 TOTAL RUNOFF(CFS) = 60.3
 TC(MIN.) = 17.43
*****************
 FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
```

```
>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 17.43
 RAINFALL INTENSITY(INCH/HR) = 2.89
TOTAL STREAM AREA(ACRES) = 29.07
                       2.89
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                             60.37
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                 Tc
                       INTENSITY
               (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
         (CFS)
   1
        139.57
               12.68 3.385
                                   63.84
         60.37
                17.43
                          2.889
                                    29.07
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF
                 Tс
                       INTENSITY
         (CFS)
                 (MIN.) (INCH/HOUR)
 NUMBER
        183.48 12.68
                       3.385
   1
        179.47 17.43
                        2.889
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 183.48
TOTAL AREA(ACRES) = 92.9
                         Tc(MIN.) =
                                   12.68
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE
                                    160.00 =
*******************
 FLOW PROCESS FROM NODE 160.00 TO NODE 140.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 122.00 DOWNSTREAM(FEET) = 110.00
 FLOW LENGTH (FEET) = 431.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 20.23
 ESTIMATED PIPE DIAMETER (INCH) = 45.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 183.48
 PIPE TRAVEL TIME (MIN.) = 0.36 Tc (MIN.) = 13.03
 LONGEST FLOWPATH FROM NODE
                      161.00 TO NODE
                                    140.00 =
                                             3773.00 FEET.
*****************
 FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.339
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7967
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.61 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 95.5 TOTAL RUNOFF(CFS) =
                                          190.43
 TC(MIN.) = 13.03
*****************
 FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 11
______
```

```
>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
_____
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
       RUNOFF TC INTENSITY
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 190.43 13.03 3.339 95.52
LONGEST FLOWPATH FROM NODE 161.00 TO NODE 140.00 = 3773.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                               AREA
 NUMBER
         (CFS)
               (MIN.) (INCH/HOUR) (ACRE)
        199.15 21.11
   1
                      2.626 121.10
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 140.00 =
                                           5032.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF
                Тc
                      INTENSITY
 NUMBER
               (MIN.) (INCH/HOUR)
        (CFS)
   1
        313.38
              13.03 3.339
        348.89
                21.11
                         2.626
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 348.89 Tc (MIN.) = 21.11
 TOTAL AREA (ACRES) =
                  216.6
*****************
 FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
*****************
 FLOW PROCESS FROM NODE 140.00 TO NODE 170.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 110.00 DOWNSTREAM(FEET) = 107.00
 FLOW LENGTH (FEET) = 1097.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 87.0 INCH PIPE IS 69.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 9.87
 ESTIMATED PIPE DIAMETER (INCH) = 87.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 348.89
 PIPE TRAVEL TIME (MIN.) = 1.85
                         Tc(MIN.) = 22.96
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 170.00 =
                                           6129.00 FEET.
*****************
 FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.518
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7809
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.62 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 220.2 TOTAL RUNOFF(CFS) =
                                        356.01
 TC(MIN.) = 22.96
****************
```

```
FLOW PROCESS FROM NODE 170.00 TO NODE 175.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 107.00 DOWNSTREAM(FEET) = 78.00
 FLOW LENGTH (FEET) = 926.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 42.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 25.05
ESTIMATED PIPE DIAMETER(INCH) = 57.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 356.01
 PIPE TRAVEL TIME (MIN.) = 0.62
                           Tc(MIN.) =
                                      23.57
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE
                                      175.00 =
                                                7055.00 FEET.
******************
 FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 81
     ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.485
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7801
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.31 SUBAREA RUNOFF(CFS) = 6.42
TOTAL AREA(ACRES) = 223.5 TOTAL RUNOFF(CFS) = 362.4
 TC(MIN.) = 23.57
*****************
 FLOW PROCESS FROM NODE 175.00 TO NODE 180.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 78.00 DOWNSTREAM(FEET) = 75.00
 FLOW LENGTH (FEET) = 75.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 41.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 27.42
ESTIMATED PIPE DIAMETER(INCH) = 54.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 362.43
 PIPE TRAVEL TIME (MIN.) = 0.05
                            Tc(MIN.) = 23.62
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 180.00 =
                                                7130.00 FEET.
*****************
 FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<
______
*****************
 FLOW PROCESS FROM NODE 181.00 TO NODE 182.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 175.00
 DOWNSTREAM ELEVATION(FEET) = 138.30

ELEVATION DIFFERENCE(FEET) = 36.70

TC = 0.393*[( 979.00**3)/( 36.70)]**.2 = 11.898
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.494
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6985
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 8.05
TOTAL AREA(ACRES) = 3.30 TOTAL RUNOFF(CFS) = 8.05
```

```
*****************
 FLOW PROCESS FROM NODE 182.00 TO NODE 183.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>> (STREET TABLE SECTION # 1 USED) <<<<
_____
 UPSTREAM ELEVATION (FEET) = 138.30 DOWNSTREAM ELEVATION (FEET) = 95.50
 STREET LENGTH(FEET) = 1112.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH (FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.09
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH (FEET) = 0.37
   HALFSTREET FLOOD WIDTH (FEET) = 10.51
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.67
   PRODUCT OF DEPTH&VELOCITY (FT*FT/SEC.) = 1.72
 STREET FLOW TRAVEL TIME (MIN.) = 3.97 Tc (MIN.) = 15.86
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.027
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6824
 SUBAREA AREA(ACRES) = 3.90 SUBAREA RUNOFF(CFS) = 8.06
TOTAL AREA(ACRES) = 7.2 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 11.91
 FLOW VELOCITY (FEET/SEC.) = 5.01 DEPTH*VELOCITY (FT*FT/SEC.) = 1.99 LONGEST FLOWPATH FROM NODE 181.00 TO NODE 183.00 = 2091.00 FE
                                       183.00 = 2091.00 FEET.
*****************
 FLOW PROCESS FROM NODE 183.00 TO NODE 184.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 85.50 DOWNSTREAM(FEET) = 85.20
 FLOW LENGTH (FEET) = 45.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 6.48
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 16.11
 PIPE TRAVEL TIME (MIN.) = 0.12
                             Tc(MIN.) = 15.98
 LONGEST FLOWPATH FROM NODE 181.00 TO NODE
                                        184.00 = 2136.00 FEET.
*****************
 FLOW PROCESS FROM NODE 184.00 TO NODE 184.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.016
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6820
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 4.56 SUBAREA RUNOFF(CFS) = 9.38
 TOTAL AREA(ACRES) = 11.8 TOTAL RUNOFF(CFS) = 25.49
 TC(MIN.) = 15.98
```

```
FLOW PROCESS FROM NODE 184.00 TO NODE 185.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 85.20 DOWNSTREAM(FEET) = 80.00
 FLOW LENGTH (FEET) = 280.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 10.73
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                            NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 25.49
 PIPE TRAVEL TIME (MIN.) = 0.43 Tc (MIN.) = 16.41
 LONGEST FLOWPATH FROM NODE 181.00 TO NODE
                                 185.00 =
                                          2416.00 FEET.
******************
FLOW PROCESS FROM NODE 185.00 TO NODE 185.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.976
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7903
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 1.71 SUBAREA RUNOFF (CFS) = 4.02
 TOTAL AREA(ACRES) = 13.5 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 16.41
*****************
 FLOW PROCESS FROM NODE 185.00 TO NODE 186.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 80.00 DOWNSTREAM(FEET) = 78.40
 FLOW LENGTH (FEET) = 275.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) =
                        7.08
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 29.51
 PIPE TRAVEL TIME (MIN.) = 0.65
                        Tc(MIN.) =
                                 17.06
 LONGEST FLOWPATH FROM NODE 181.00 TO NODE
                                 186.00 = 2691.00 FEET.
****************
 FLOW PROCESS FROM NODE 186.00 TO NODE 186.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 17.06
 RAINFALL INTENSITY(INCH/HR) = 2.92
TOTAL STREAM AREA(ACRES) = 13.47
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
***************
 FLOW PROCESS FROM NODE 187.00 TO NODE 188.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
_______
     ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 574.00
 UPSTREAM ELEVATION (FEET) = 168.00
 DOWNSTREAM ELEVATION (FEET) =
                      123.00
```

```
ELEVATION DIFFERENCE (FEET) = 45.00
TC = 0.393*[( 574.00**3)/( 45.00)]**.2 = 8.292
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.183
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .7183
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                      14.72
 TOTAL AREA (ACRES) =
                     4.90 TOTAL RUNOFF(CFS) =
*************
 FLOW PROCESS FROM NODE 188.00 TO NODE 189.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 123.00 DOWNSTREAM(FEET) = 115.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 533.00 CHANNEL SLOPE = 0.0150 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.779
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .7072
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.74
 AVERAGE FLOW DEPTH(FEET) = 0.25 TRAVEL TIME(MIN.) = 1.88
 Tc(MIN.) = 10.17
 SUBAREA AREA (ACRES) = 7.06 SUBAREA RUNOFF (CFS) = TOTAL AREA (ACRES) = 12.0 PEAK FLOW RATE (CFS) =
                                SUBAREA RUNOFF(CFS) = 18.87
PEAK FLOW RATE(CFS) = 33.59
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.30 FLOW VELOCITY(FEET/SEC.) = 5.39
 LONGEST FLOWPATH FROM NODE 187.00 TO NODE 189.00 = 1107.00 FEET.
*******************
 FLOW PROCESS FROM NODE 189.00 TO NODE 190.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 115.00 DOWNSTREAM(FEET) = 105.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 667.00 CHANNEL SLOPE = 0.0150
 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.468
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6977
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                             41.97
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 5.83
 AVERAGE FLOW DEPTH(FEET) = 0.35 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 12.08
 SUBAREA AREA(ACRES) = 6.92 SUBAREA RUNOFF(CFS) = 16.74
 TOTAL AREA(ACRES) =
                     18.9
                                PEAK FLOW RATE(CFS) =
                                                        50.33
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 6.27
 LONGEST FLOWPATH FROM NODE 187.00 TO NODE 190.00 = 1774.00 FEET.
******************
 FLOW PROCESS FROM NODE 190.00 TO NODE 190.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.468
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6977
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 14.24 SUBAREA RUNOFF (CFS) = 34.46
```

```
TOTAL AREA(ACRES) = 33.1 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 12.08
****************
 FLOW PROCESS FROM NODE 190.00 TO NODE 186.00 IS CODE = 31
    _____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 95.00 DOWNSTREAM(FEET) = 78.40
 FLOW LENGTH (FEET) = 70.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 37.88
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
                84.79
 PIPE TRAVEL TIME (MIN.) = 0.03 Tc (MIN.) = 12.11
 LONGEST FLOWPATH FROM NODE 187.00 TO NODE 186.00 = 1844.00 FEET.
*****************
 FLOW PROCESS FROM NODE 186.00 TO NODE 186.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 12.11
 RAINFALL INTENSITY (INCH/HR) = 3.46
 TOTAL STREAM AREA(ACRES) = 33.12
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                             84.79
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
         29.51 17.06 2.919
84.79 12.11 3.464
   1
                                  13.47
                                   33.12
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                      INTENSITY
                (MIN.) (INCH/HOUR)
         (CFS)
 NUMBER
        105.73 12.11
                      3.464
  1
        100.97 17.06
                        2.919
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 105.73 Tc(MIN.) = TOTAL AREA(ACRES) = 46.6
                                  12.11
 LONGEST FLOWPATH FROM NODE 181.00 TO NODE 186.00 =
*************************
 FLOW PROCESS FROM NODE 186.00 TO NODE 191.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 78.40 DOWNSTREAM(FEET) = 75.40
 FLOW LENGTH (FEET) = 522.00 MANNING'S N = 0.013
```

```
DEPTH OF FLOW IN 48.0 INCH PIPE IS 39.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 9.63
 ESTIMATED PIPE DIAMETER (INCH) = 48.00
                                 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 105.73
                           Tc(MIN.) = 13.01
 PIPE TRAVEL TIME (MIN.) = 0.90
 LONGEST FLOWPATH FROM NODE 181.00 TO NODE 191.00 = 3213.00 FEET.
*****************
 FLOW PROCESS FROM NODE 191.00 TO NODE 191.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.342
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7968
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.51 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 48.1 TOTAL RUNOFF(CFS) =
                                              4.02
 TC(MIN.) = 13.01
******************
 FLOW PROCESS FROM NODE 191.00 TO NODE 180.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 75.40 DOWNSTREAM(FEET) = 75.00
 FLOW LENGTH (FEET) = 60.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 37.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 10.36
                                 NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 48.00
 PIPE-FLOW(CFS) = 109.75
 PIPE TRAVEL TIME (MIN.) = 0.10 Tc (MIN.) = 13.11
                        181.00 TO NODE
                                       180.00 = 3273.00 FEET.
 LONGEST FLOWPATH FROM NODE
***************
 FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA

NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

1 109.75 13.11 3.330 48.10

LONGEST FLOWPATH FROM NODE 181.00 TO NODE 180.00 = 3273.00 FEET.
 ** MEMORY BANK # 3 CONFLUENCE DATA **
STREAM RUNOFF TC INTENSITY
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

1 362.43 23.62 2.483 223.55

LONGEST FLOWPATH FROM NODE 116.00 TO NODE 180.00 = 7130.00 FEET.
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ******************
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                         INTENSITY
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
    1
                 13.11
        310.85
                            3.330
        444.26
                  23.62
```

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

```
PEAK FLOW RATE(CFS) =
                 444.26 Tc (MIN.) = 23.62
                271.6
 TOTAL AREA(ACRES) =
****************
FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 IS CODE = 12
>>>>CLEAR MEMORY BANK # 3 <<<<<
______
***************
FLOW PROCESS FROM NODE 180.00 TO NODE 195.00 IS CODE = 31
   ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 75.00 DOWNSTREAM(FEET) = 35.00
 FLOW LENGTH (FEET) = 930.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 45.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 29.52
 ESTIMATED PIPE DIAMETER (INCH) = 57.00
                           NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              444.26
 PIPE TRAVEL TIME (MIN.) = 0.53 Tc (MIN.) = 24.14
 LONGEST FLOWPATH FROM NODE
                    116.00 TO NODE
                                195.00 =
*******************
 FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = 81
______
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.456
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4179
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 19.95 SUBAREA RUNOFF(CFS) = 20.47
 TOTAL AREA (ACRES) =
                291.6 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 24.14
******************
 FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.456
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7312
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 4.13 SUBAREA RUNOFF(CFS) = 7.42
TOTAL AREA(ACRES) = 295.7 TOTAL RUNOFF(CFS) = 472.3
                                     472.14
 TC(MIN.) = 24.14
_____
 END OF STUDY SUMMARY:
 TOTAL AREA (ACRES) =
                   295.7 \text{ TC}(MIN.) =
 PEAK FLOW RATE (CFS) = 472.14
______
______
 END OF RATIONAL METHOD ANALYSIS
```

DIVE OF RULLIONAL HEIMOD ANALESTO

r	3 _	10	_VR	FX	IST	ING	Н٧	/DR	OI.	0	G٧	/
L.		$\mathbf{L}\mathbf{U}$	- 1 17		131	1147	п	Un	LJL	J.		

```
******************
         RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
      RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
                  (RCFC&WCD) 1978 HYDROLOGY MANUAL
       (c) Copyright 1982-2015 Advanced Engineering Software (aes)
                  (Rational Tabling Version 22.0)
                Release Date: 07/01/2015 License ID 1673
                      Analysis prepared by:
                      Proactive Engineering Consultants
                         27042 Towne Centre Drive
                         Foothill Ranch, CA. 92610
* Travertine Project
* Existing 100-yr Storm Event
* Subarea A
 FILE NAME: TRA-X00A.DAT
 TIME/DATE OF STUDY: 11:14 10/16/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.870
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.766
 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.810
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.560
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4981200
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4983611
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.4984
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
```

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 708.00
UPSTREAM ELEVATION(FEET) = 191.60

```
DOWNSTREAM ELEVATION(FEET) = 168.70

ELEVATION DIFFERENCE(FEET) = 22.90

TC = 0.533*[( 708.00**3)/( 22.90)]**.2 =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.155
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4742
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 13.91
TOTAL AREA(ACRES) = 9.30 TOTAL RUNOFF(CFS) = 13.91
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>
______
 ELEVATION DATA: UPSTREAM(FEET) = 168.70 DOWNSTREAM(FEET) = 97.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 2414.00 CHANNEL SLOPE = 0.0293
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH (FEET) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.659
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4357
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                               73.28
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 6.73
 AVERAGE FLOW DEPTH(FEET) = 0.86 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 20.58
 SUBAREA AREA(ACRES) = 101.20
                               SUBAREA RUNOFF(CFS) = 117.23
                                  PEAK FLOW RATE(CFS) = 131.14
 TOTAL AREA(ACRES) =
                     110.5
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.19 FLOW VELOCITY(FEET/SEC.) =
                                            8.08
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 3122.00 FEET.
_____
 END OF STUDY SUMMARY:
 TOTAL AREA (ACRES) = 110.5
PEAK FLOW RATE (CFS) = 131.14
                         110.5 \text{ TC (MIN.)} =
                                            20.58
_____
______
```

```
******************
         RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
      RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
                  (RCFC&WCD) 1978 HYDROLOGY MANUAL
       (c) Copyright 1982-2015 Advanced Engineering Software (aes)
                  (Rational Tabling Version 22.0)
               Release Date: 07/01/2015 License ID 1673
                      Analysis prepared by:
                     Proactive Engineering Consultants
                         27042 Towne Centre Drive
                        Foothill Ranch, CA. 92610
* Travertine Project
* Existing 100-yr Storm Event
* Subarea B
 FILE NAME: TRA-X00B.DAT
 TIME/DATE OF STUDY: 11:11 10/16/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.870
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.766
 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.810
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.560
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4981200
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4983611
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.4984
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
************************
```

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 867.00
UPSTREAM ELEVATION(FEET) = 221.30

```
DOWNSTREAM ELEVATION(FEET) = 178.20

ELEVATION DIFFERENCE(FEET) = 43.10

TC = 0.533*[( 867.00**3)/( 43.10)]**.2 = 14.532
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.163
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4747
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 14.86
TOTAL AREA(ACRES) = 9.90 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 178.20 DOWNSTREAM(FEET) = 125.10
 CHANNEL LENGTH THRU SUBAREA (FEET) = 1460.00 CHANNEL SLOPE = 0.0364
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH (FEET) =
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.839
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4504
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                            63.79
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 6.92
 AVERAGE FLOW DEPTH(FEET) = 0.75 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 18.05
 SUBAREA AREA (ACRES) = 76.10
TOTAL AREA (ACRES) = 86.0
                              SUBAREA RUNOFF(CFS) = 97.30
                                PEAK FLOW RATE(CFS) = 112.16
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.03 FLOW VELOCITY(FEET/SEC.) = 8.27
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 2327.00 FEET.
******************
 FLOW PROCESS FROM NODE 30.00 TO NODE 40.00 IS CODE = 51
_____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 125.10 DOWNSTREAM(FEET) = 33.60
 CHANNEL LENGTH THRU SUBAREA (FEET) = 2789.00 CHANNEL SLOPE = 0.0328 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH (FEET) = 3.50
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.494
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4213
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                            146.61
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 8.68
 AVERAGE FLOW DEPTH(FEET) = 1.23 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 23.41
 SUBAREA AREA(ACRES) = 65.40 SUBAREA RUNOFF(CFS) = 68.72
 TOTAL AREA(ACRES) =
                    151.4
                                PEAK FLOW RATE(CFS) = 180.88
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.38 FLOW VELOCITY(FEET/SEC.) = 9.24
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 40.00 = 5116.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 151.4
PEAK FLOW RATE(CFS) = 180.88
                         151.4 \text{ TC}(MIN.) =
______
_____
```

```
********************
          RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
       RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
                   (RCFC&WCD) 1978 HYDROLOGY MANUAL
       (c) Copyright 1982-2015 Advanced Engineering Software (aes)
                   (Rational Tabling Version 22.0)
                Release Date: 07/01/2015 License ID 1673
                       Analysis prepared by:
                       Proactive Engineering Consultants
                          27042 Towne Centre Drive
                          Foothill Ranch, CA. 92610
* Travertine Project
* Existing 100-yr Storm Event
* Subarea C
 ******************
 FILE NAME: TRA-X00C.DAT
 TIME/DATE OF STUDY: 10:57 10/16/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 _____
 USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.870
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.766
 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.810
 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.560
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4981200
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4983611
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.560
 SLOPE OF INTENSITY DURATION CURVE = 0.4984
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)
0.67 2.00 0.0313 0.167 0.0150
    30.0
           20.0
                   0.018/0.018/0.020
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
```

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 825.00

```
UPSTREAM ELEVATION (FEET) = 275.00
 DOWNSTREAM ELEVATION (FEET) = 233.70

ELEVATION DIFFERENCE (FEET) = 41.30

TC = 0.533*[( 825.00**3)/( 41.30)]**.2 = 14.226
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.196
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4771
 SOIL CLASSIFICATION
SUBAREA RUNOFF(CFS) = 14.94
9.80 TOTAL RUNOFF(CFS) =
 SOIL CLASSIFICATION IS "A"
********************
 FLOW PROCESS FROM NODE 200.00 TO NODE 300.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>
______
 ELEVATION DATA: UPSTREAM(FEET) = 233.70 DOWNSTREAM(FEET) = 136.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2183.00 CHANNEL SLOPE = 0.0448
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.796
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4470
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 8.30
 AVERAGE FLOW DEPTH(FEET) = 0.86 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 18.61
 SUBAREA AREA(ACRES) = 118.70 SUBAREA RUNOFF(CFS) = 148.35
TOTAL AREA(ACRES) = 128.5 PEAK FLOW RATE(CFS) = 16
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.20 FLOW VELOCITY(FEET/SEC.) = 9.98
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 300.00 = 3008.00 FEET.
********************
 FLOW PROCESS FROM NODE 300.00 TO NODE 400.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 136.00 DOWNSTREAM(FEET) = 40.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2784.00 CHANNEL SLOPE = 0.0345 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 3.50
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.504
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4222
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 10.07
 AVERAGE FLOW DEPTH(FEET) = 1.55 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 23.21
 SUBAREA AREA(ACRES) = 124.10 SUBAREA RUNOFF(CFS) = 131.22
TOTAL AREA(ACRES) = 252.6 PEAK FLOW RATE(CFS) = 26
 TOTAL AREA(ACRES) = 252.6
                                PEAK FLOW RATE (CFS) = 294.51
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.77 FLOW VELOCITY(FEET/SEC.) = 10.84
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 400.00 = 5792.00 FEET.
______
 END OF STUDY SUMMARY:
                         252.6 TC(MIN.) =
 TOTAL AREA (ACRES)
 PEAK FLOW RATE (CFS) = 294.51
______
_____
```

\mathbf{c}	1 _	10	_VP	DD	$\cap D$	OSED	HYD	PΩI	NGV
L	4-	,	- 1 R	PR	UP	いうけい	- -	RLJI	1 717 1

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

Analysis prepared by:

Proactive Engineering Consultants 27042 Towne Centre Drive Foothill Ranch, Ca. 92610

```
* Travertine Project
* Proposed 10-yr Storm Event
* Subarea A
 FILE NAME: TRA-P10A.DAT
 TIME/DATE OF STUDY: 11:34 10/13/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
 USER SPECIFIED STORM EVENT (YEAR) = 10.00
 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.870
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.766
 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.810
 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.560
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4981200
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4983611
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 0.774
 SLOPE OF INTENSITY DURATION CURVE = 0.4981
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO.
   (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
   0.67
    20.0
           10.0 0.020/0.020/0.020
                                        2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.40 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
******************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
```

```
UPSTREAM ELEVATION (FEET) = 218.50
 DOWNSTREAM ELEVATION(FEET) = 206.50

ELEVATION DIFFERENCE(FEET) = 12.00

TC = 0.303*[( 788.00**3)/( 12.00)]**.2 = 10.085
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.881
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8459
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                     2.53
                     1.59 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
*******************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.881
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8459
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 0.64 SUBAREA RUNOFF(CFS) = 1.02
TOTAL AREA(ACRES) = 2.2 TOTAL RUNOFF(CFS) = 3.55
 TC(MIN.) = 10.08
********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 196.50 DOWNSTREAM(FEET) = 182.00
 FLOW LENGTH(FEET) = 690.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.90
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.55
 PIPE TRAVEL TIME (MIN.) = 1.67
LONGEST FLOWPATH FROM NODE
                           7 	 Tc(MIN.) = 11.75
1.00 TO NODE 3.0
                                          3.00 = 1478.00 \text{ FEET.}
******************
 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.743
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3428
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.42 SUBAREA RUNOFF(CFS) = 1.45
TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) = 4.9
 TC(MIN.) = 11.75
******************
 FLOW PROCESS FROM NODE 3.00 TO NODE
                                    4.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 182.00 DOWNSTREAM(FEET) = 122.00
 FLOW LENGTH(FEET) = 1103.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 10.68
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.99
 PIPE TRAVEL TIME (MIN.) = 1.72
                         72 Tc (MIN.) = 13.47
1.00 TO NODE 4.00 = 2581.00 FEET.
 LONGEST FLOWPATH FROM NODE
```

```
*****************
 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.47
RAINFALL INTENSITY(INCH/HR) = 1.63
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 4.65
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               4.99
*************************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS CONDOMINIUM
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 615.00
 UPSTREAM ELEVATION (FEET) = 208.00
 DOWNSTREAM ELEVATION (FEET) = 170.00
 ELEVATION DIFFERENCE (FEET) = 38.00
TC = 0.359*[( 615.00**3)/( 38.00)]**.2 =
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.088
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7186
 SOIL CLASSIFICATION IS "A"
                   7.38
 SUBAREA RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
                  4.92 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 160.00 DOWNSTREAM(FEET) = 148.70
 FLOW LENGTH (FEET) = 240.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.30
 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.38
                                   8.53
 PIPE TRAVEL TIME (MIN.) = 0.35 Tc (MIN.) =
 LONGEST FLOWPATH FROM NODE
                       5.00 TO NODE
                                     7.00 =
                                             855.00 FEET.
******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.044
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7170
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 6.53 SUBAREA RUNOFF(CFS) = 9.57
TOTAL AREA(ACRES) = 11.5 TOTAL RUNOFF(CFS) = 16.69
 TOTAL AREA (ACRES) =
                   11.5 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
           8.53
****************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
```

```
______
 ELEVATION DATA: UPSTREAM(FEET) = 148.70 DOWNSTREAM(FEET) = 122.00
 FLOW LENGTH (FEET) = 375.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 16.29
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 16.95
 PIPE TRAVEL TIME (MIN.) = 0.38 Tc (MIN.) = 8.92
 LONGEST FLOWPATH FROM NODE 5.00 TO NODE 8.00 = 1230.00 FEET.
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
   ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.000
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8472
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 1.97
TOTAL AREA(ACRES) = 12.6 TOTAL RUNOFF(CFS) = 18.92
 TC(MIN.) = 8.92
******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 4.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 126.80 DOWNSTREAM(FEET) = 122.00
 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 18.74
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 18.92
 PIPE TRAVEL TIME (MIN.) = 0.04
                         Tc(MIN.) = 8.96
                        5.00 TO NODE
                                     4.00 = 1280.00 FEET.
 LONGEST FLOWPATH FROM NODE
******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.995
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7680
 SOIL CLASSIFICATION IS "A"
                = 3.59 SUBAREA RUNOFF(CFS) = 5.50
16.2 TOTAL RUNOFF(CFS) = 24.4
 SUBAREA AREA (ACRES) = 3.59
 TOTAL AREA (ACRES) =
 TC(MIN.) = 8.96
*******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 8.96
 RAINFALL INTENSITY (INCH/HR) =
                        1.99
 TOTAL STREAM AREA (ACRES) = 16.20
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
                TC INTENSITY AREA
 STREAM
        RUNOFF
```

```
(CFS)
                (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
          4.99 13.47 1.628
24.42 8.96 1.995
   1
         24.42
                8.96
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF
                 Тc
                       INTENSITY
                (MIN.) (INCH/HOUR)
        (CFS)
27.74
 NUMBER
  1
                8.96
                       1.995
         24.92 13.47
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 27.74 Tc(MIN.) = 8.96
TOTAL AREA(ACRES) = 20.9
 LONGEST FLOWPATH FROM NODE
                       1.00 TO NODE
                                    4.00 =
                                           2581.00 FEET.
************************
 FLOW PROCESS FROM NODE 4.00 TO NODE 9.00 IS CODE = 31
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 122.00 DOWNSTREAM(FEET) = 118.00
 FLOW LENGTH (FEET) = 143.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 12.89
                              NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
 PIPE-FLOW(CFS) = 27.74
 PIPE TRAVEL TIME (MIN.) = 0.18 Tc (MIN.) =
                                    9.15
                      1.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                     9.00 = 2724.00 \text{ FEET.}
******************
 FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE =
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 9.15
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 20.85
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                             27.74
******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 725.00
 UPSTREAM ELEVATION (FEET) = 215.00
 DOWNSTREAM ELEVATION (FEET) = 163.00
 ELEVATION DIFFERENCE(FEET) = 52.00
TC = 0.533*[( 725.00**3)/( 52.00)]**.2 = 12.572
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.685
```

```
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3357
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 5.24
 TOTAL AREA (ACRES) =
                     9.27 TOTAL RUNOFF(CFS) =
*************************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>
______
 ELEVATION DATA: UPSTREAM(FEET) = 163.00 DOWNSTREAM(FEET) = 140.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 990.00 CHANNEL SLOPE = 0.0232
 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) =
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.555
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3190
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 7.51
AVERAGE FLOW DEPTH (FEET) = 0.99 TRAVEL TIME (MIN.) = 2.20
 Tc(MIN.) = 14.77
 SUBAREA AREA(ACRES) = 8.47 SUBAREA RUNOFF(CFS) = 4.20 TOTAL AREA(ACRES) = 17.7 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.09 FLOW VELOCITY(FEET/SEC.) = 7.98
 LONGEST FLOWPATH FROM NODE
                          10.00 TO NODE
                                         12.00 =
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 9.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 130.00 DOWNSTREAM(FEET) = 118.00
 FLOW LENGTH (FEET) = 55.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 21.06
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.45
PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 14.81
                         10.00 TO NODE
                                          9.00 = 1770.00 FEET.
 LONGEST FLOWPATH FROM NODE
*******************
 FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 14.81
 RAINFALL INTENSITY (INCH/HR) = 1.55
 TOTAL STREAM AREA(ACRES) = 17.74
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                  9.45
 ** CONFLUENCE DATA **
                    Tc
 STREAM RUNOFF
                           INTENSITY
                                       AREA
          RUNOFF TC (CFS) (MIN.) (INCH/HOUR) 27.74 9.15 1.975 14.81 1.553
 NUMBER
                                       (ACRE)
    1
                                       20.85
                                        17.74
```

```
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
       RUNOFF
 STREAM
                 Tc
                       INTENSITY
         (CFS)
                (MIN.) (INCH/HOUR)
 NUMBER
                      1.975
   1
         33.57
                9.15
    2
          31.26 14.81
                         1.553
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 33.57 Tc(MIN.) = TOTAL AREA(ACRES) = 38.6
                                    9.15
 TOTAL AREA(ACRES) =
                        1.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                     9.00 = 2724.00 \text{ FEET.}
*******************
                    9.00 TO NODE 13.00 IS CODE = 31
 FLOW PROCESS FROM NODE
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 118.00 DOWNSTREAM(FEET) =
 FLOW LENGTH (FEET) = 245.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 16.20
                               NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
 PIPE-FLOW(CFS) = 33.57
 PIPE TRAVEL TIME (MIN.) = 0.25 Tc (MIN.) =
                                   9.40
 LONGEST FLOWPATH FROM NODE
                       1.00 TO NODE
                                    13.00 =
                                            2969.00 FEET.
*******************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.948
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8467
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 5.82 SUBAREA RUNOFF(CFS) = 9.60
TOTAL AREA(ACRES) = 44.4 TOTAL RUNOFF(CFS) = 43.3
                                          43.17
 TC(MIN.) =
           9.40
*************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.948
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3667
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 4.53 SUBAREA RUNOFF(CFS) = 3.24
                    48.9 TOTAL RUNOFF (CFS) =
 TOTAL AREA (ACRES) =
 TC(MIN.) =
           9.40
*******************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 106.00 DOWNSTREAM(FEET) = 96.00
```

```
FLOW LENGTH (FEET) = 628.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.66
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                             NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 46.40
 PIPE TRAVEL TIME (MIN.) = 0.90 Tc (MIN.) = 10.30
 LONGEST FLOWPATH FROM NODE
                      1.00 TO NODE
                                   14.00 = 3597.00 FEET.
*************
 FLOW PROCESS FROM NODE
                  14.00 TO NODE
                              14.00 \text{ IS CODE} = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.861
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6284
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 29.14 SUBAREA RUNOFF(CFS) = 34.09
 TOTAL AREA(ACRES) = 78.1 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 10.30
******************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 96.00 DOWNSTREAM(FEET) = 88.00
 FLOW LENGTH (FEET) = 225.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 18.29
                             NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 33.00
 PIPE-FLOW(CFS) = 80.49
 PIPE TRAVEL TIME (MIN.) = 0.21 Tc (MIN.) = 10.50
                       1.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                   15.00 =
*******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.843
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7092
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 9.84 SUBAREA RUNOFF(CFS) = 12.86
 TOTAL AREA (ACRES) =
                  87.9 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 10.50
*****************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.843
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8455
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.88 SUBAREA RUNOFF(CFS) = 2.93
TOTAL AREA(ACRES) = 89.8 TOTAL RUNOFF(CFS) = 96.2
 TC(MIN.) = 10.50
****************
 FLOW PROCESS FROM NODE 15.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 88.00 DOWNSTREAM(FEET) = 70.00
 FLOW LENGTH (FEET) = 2370.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.57
ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 96.28
 PIPE TRAVEL TIME (MIN.) = 3.74 Tc (MIN.) = 14.24
 LONGEST FLOWPATH FROM NODE
                        1.00 TO NODE
                                      20.00 =
                                               6192.00 FEET.
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.584
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6114
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 22.07 SUBAREA RUNOFF(CFS) = 21.37
                  111.9 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 14.24
************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                            70.00 DOWNSTREAM(FEET) = 65.00
 FLOW LENGTH (FEET) = 521.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 34.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.27
ESTIMATED PIPE DIAMETER(INCH) = 48.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 117.65
 PIPE TRAVEL TIME (MIN.) = 0.71 Tc (MIN.) = 14.95
 LONGEST FLOWPATH FROM NODE
                         1.00 TO NODE
                                      21.00 =
                                              6713.00 FEET.
******************
 FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
******************
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS MOBILE HOME PARK
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 1009.00
 UPSTREAM ELEVATION(FEET) = 140.00

DOWNSTREAM ELEVATION(FEET) = 102.60

ELEVATION DIFFERENCE(FEET) = 37.40

TC = 0.336*[(1009.00**3)/(37.40)]**.2 = 10.327
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.859
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7641
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 3.22
TOTAL AREA(ACRES) = 2.27 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 31
 _____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 92.60 DOWNSTREAM(FEET) = 92.00
 FLOW LENGTH (FEET) = 65.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.98
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.22
PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 10.54
                      22.00 TO NODE
                                    24.00 =
 LONGEST FLOWPATH FROM NODE
******************
 FLOW PROCESS FROM NODE 24.00 TO NODE 24.00 IS CODE = 81
    ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.839
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7636
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 0.88

TOTAL AREA(ACRES) = 2.9 TOTAL RUNOFF(CFS) = 4.11
 TOTAL AREA (ACRES) =
 TC(MIN.) = 10.54
************************
 FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 92.00 DOWNSTREAM(FEET) = 71.50
 FLOW LENGTH (FEET) = 660.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 8.27
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                              NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 4.11
 PIPE TRAVEL TIME (MIN.) = 1.33 Tc (MIN.) = 11.87
 LONGEST FLOWPATH FROM NODE
                       22.00 TO NODE
                                    25.00 = 1734.00 FEET.
*******************
 FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.734
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8442
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.25 SUBAREA RUNOFF(CFS) = 1.83
 TOTAL AREA (ACRES) =
                    4.2 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 11.87
*******************
 FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.734
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8442
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.29 SUBAREA RUNOFF(CFS) = 4.82
TOTAL AREA(ACRES) = 7.4 TOTAL RUNOFF(CFS) = 10.
                                          10.75
 TC(MIN.) = 11.87
****************
```

```
FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 71.50 DOWNSTREAM(FEET) = 71.00
 FLOW LENGTH (FEET) = 50.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 6.94
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.75
 PIPE TRAVEL TIME (MIN.) = 0.12 Tc (MIN.) = 11.99
                        22.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                                1784.00 FEET.
                                       26.00 =
******************
 FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE =
    ._____
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.99
 RAINFALL INTENSITY (INCH/HR) = 1.73
 TOTAL STREAM AREA(ACRES) = 7.44
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                10.75
*****************
 FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION(FEET) = 139.50
 ELEVATION DIFFERENCE (FEET) = 39.50
TC = 0.393*[/ [7.7]
 TC = 0.393*[(545.00**3)/(39.50)]**.2 =
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.079
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6404
 SOIL CLASSIFICATION 10 ...
SUBAREA RUNOFF(CFS) = 13.27

TOTAL RUNOFF(CFS) = 9.97 TOTAL RUNOFF(CFS) =
                                            13.27
*******************
 FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = 85.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 772.00 CHANNEL SLOPE = 0.0194 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.801
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6249
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.67
 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 11.00
 SUBAREA AREA (ACRES) = 10.47 SUBAREA RUNOFF (CFS) = 11.78
 TOTAL AREA(ACRES) = 20.4
                              PEAK FLOW RATE (CFS) = 25.05
```

```
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) = 5.24
                                   29.00 =
 LONGEST FLOWPATH FROM NODE 27.00 TO NODE
                                           1317.00 FEET.
******************
 FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.801
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3497
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.76 SUBAREA RUNOFF(CFS) = 1.74
 TOTAL AREA (ACRES) = 23.2 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 11.00
******************
 FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.801
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6249
 SOIL CLASSIFICATION IS "A"
               = 15.14 SUBAREA RUNOFF(CFS) = 17.04
38.3 TOTAL RUNOFF(CFS) = 43.8
 SUBAREA AREA(ACRES) = 15.14
 TOTAL AREA (ACRES) =
 TC(MIN.) = 11.00
*****************
 FLOW PROCESS FROM NODE 29.00 TO NODE
                              26.00 \text{ IS CODE} = 31
 ------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 75.00 DOWNSTREAM(FEET) = 71.00
 FLOW LENGTH (FEET) = 50.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 21.50
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 43.83
 PIPE TRAVEL TIME (MIN.) = 0.04
                        Tc(MIN.) = 11.04
 LONGEST FLOWPATH FROM NODE 27.00 TO NODE 26.00 = 1367.00 FEET.
*******************
 FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.04
RAINFALL INTENSITY(INCH/HR) = 1.80
 TOTAL STREAM AREA(ACRES) = 38.34
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 43.83
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                 Tc
                       INTENSITY
                                  AREA
 NUMBER
         (CFS)
                (MIN.) (INCH/HOUR)
                                (ACRE)
         10.75
                                  7.44
                11.99 1.725
    1
         43.83 11.04
                        1.798
                                  38.34
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
```

```
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                         INTENSITY
 STREAM RUNOFF Tc
 NUMBER
          (CFS)
                  (MIN.)
                         (INCH/HOUR)
                 11.04
          53.73
                 11.04 1.798
11.99 1.725
    1
          52.81
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 53.73 Tc(MIN.) = TOTAL AREA(ACRES) = 45.8
                                        11.04
 LONGEST FLOWPATH FROM NODE
                          22.00 TO NODE
                                         26.00 =
                                                 1784.00 FEET.
*****************
 FLOW PROCESS FROM NODE
                    26.00 TO NODE
                                    21.00 \text{ IS CODE} = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 71.00 DOWNSTREAM(FEET) = 65.00
 FLOW LENGTH (FEET) = 892.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 26.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 8.87
 ESTIMATED PIPE DIAMETER (INCH) = 39.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 53.73
 PIPE TRAVEL TIME (MIN.) = 1.68
                            Tc(MIN.) = 12.72
 LONGEST FLOWPATH FROM NODE 22.00 TO NODE 21.00 = 2676.00 FEET.
*******************
 FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
_____
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)  1 \quad 53.73 \quad 12.72 \qquad 1.675 \qquad 45.78  LONGEST FLOWPATH FROM NODE  22.00 \text{ TO NODE } \qquad 21.00 = \qquad 2676.00 \text{ FEET.} 
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                     AREA
         (CFS) (MIN.) (INCH/HOUR) (ACRE)
117.65 14.95 1.546 111.87
OWPATH FROM NODE 1.00 TO NODE 2
 NUMBER
   1
 LONGEST FLOWPATH FROM NODE
                                        21.00 = 6713.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *******************
 ** PEAK FLOW RATE TABLE **
                  (MIN.) (INCH/HOUR)
12.72
 STREAM RUNOFF Tc
 NUMBER
         (CFS)
         153.87
   1
                  14.95
        167.24
                             1.546
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 167.24 Tc (MIN.) = 14.95
TOTAL AREA (ACRES) = 157.6
 TOTAL AREA (ACRES) =
                      157.6
```

```
******************
 FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 21.00 TO NODE 30.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 65.00 DOWNSTREAM(FEET) = 36.00
 FLOW LENGTH (FEET) = 1108.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 19.47
 ESTIMATED PIPE DIAMETER (INCH) = 45.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 167.24
 PIPE TRAVEL TIME (MIN.) = 0.95 Tc (MIN.) = 15.89
                        1.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                      30.00 =
                                             7821.00 FEET.
******************
 FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.89
RAINFALL INTENSITY(INCH/HR) = 1.50
TOTAL STREAM AREA(ACRES) = 157.65
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION (FEET) = 120.50
 DOWNSTREAM ELEVATION(FEET) = 88.00

ELEVATION DIFFERENCE(FEET) = 32.50

TC = 0.393*[( 435.00**3)/( 32.50)]**.2 =
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.181
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6457
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF (CFS) =
                    6.76
 TOTAL AREA (ACRES) =
                   4.80 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>
______
 ELEVATION DATA: UPSTREAM(FEET) = 88.00 DOWNSTREAM(FEET) = 82.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 503.00 CHANNEL SLOPE = 0.0119
 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.904
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6309
```

```
SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                             13.69
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.58
 AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 9.84
 SUBAREA AREA(ACRES) = 11.52 SUBAREA RUNOFF(CFS) = 13.84
TOTAL AREA(ACRES) = 16.3 PEAK FLOW RATE(CFS) =
                                                        20.60
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.24 FLOW VELOCITY(FEET/SEC.) = 4.17
 LONGEST FLOWPATH FROM NODE 31.00 TO NODE
                                         33.00 =
*******************
                      33.00 TO NODE 34.00 IS CODE = 51
 FLOW PROCESS FROM NODE
   ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>
______
 ELEVATION DATA: UPSTREAM(FEET) = 82.00 DOWNSTREAM(FEET) = 75.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 579.00 CHANNEL SLOPE = 0.0112 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.724
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6202
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.44
 AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 2.17
 Tc(MIN.) = 12.01
 SUBAREA AREA(ACRES) = 10.52 SUBAREA RUNOFF(CFS) = 11.25
TOTAL AREA(ACRES) = 26.8 PEAK FLOW RATE(CFS) =
                               PEAK FLOW RATE (CFS) = 31.85
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH (FEET) = 0.32 FLOW VELOCITY (FEET/SEC.) = 4.77
                                                 1517.00 FEET.
 LONGEST FLOWPATH FROM NODE 31.00 TO NODE
                                         34.00 =
******************
 FLOW PROCESS FROM NODE
                       34.00 TO NODE 34.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.724
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6202
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 10.38 SUBAREA RUNOFF(CFS) = 11.10
TOTAL AREA(ACRES) = 37.2 TOTAL RUNOFF(CFS) = 42.9
 TC(MIN.) = 12.01
******************
 FLOW PROCESS FROM NODE 34.00 TO NODE 34.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.724
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6202
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.03 SUBAREA RUNOFF(CFS) = 3.24
TOTAL AREA(ACRES) = 40.2 TOTAL RUNOFF(CFS) = 46.3
 TC(MIN.) =
           12.01
****************
 FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
```

```
______
 ELEVATION DATA: UPSTREAM(FEET) = 75.50 DOWNSTREAM(FEET) = 52.00
 FLOW LENGTH (FEET) = 410.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 18.95
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 46.19
 PIPE TRAVEL TIME (MIN.) = 0.36 Tc (MIN.) = 12.37
 LONGEST FLOWPATH FROM NODE 31.00 TO NODE 35.00 = 1927.00 FEET.
*******************
 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.699
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8437
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 0.81 SUBAREA RUNOFF(CFS) = 1.16
TOTAL AREA(ACRES) = 41.1 TOTAL RUNOFF(CFS) = 47.35
 TC(MIN.) = 12.37
******************
 FLOW PROCESS FROM NODE 35.00 TO NODE 30.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 52.00 DOWNSTREAM(FEET) = 36.00
 FLOW LENGTH (FEET) = 964.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 11.90
 ESTIMATED PIPE DIAMETER (INCH) = 30.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 47.35
 PIPE TRAVEL TIME (MIN.) = 1.35 Tc (MIN.) = 13.72
 LONGEST FLOWPATH FROM NODE 31.00 TO NODE
                                      30.00 =
                                                2891.00 FEET.
************************
 FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.613
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6133
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 14.86 SUBAREA RUNOFF(CFS) = 14.70 TOTAL AREA(ACRES) = 55.9 TOTAL RUNOFF(CFS) = 62.0
 TC(MIN.) =
          13.72
*************************
 FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.72
RAINFALL INTENSITY(INCH/HR) = 1.61
 TOTAL STREAM AREA(ACRES) = 55.92
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                 (MIN.) (INCH/HOUR)
                                     (ACRE)
```

```
167.24 15.89 1.499 157.65
         62.05
               13.72
                         1.613
                                   55.92
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                       INTENSITY
                     (INCH/HOUR)
 NUMBER
         (CFS)
                (MIN.)
                      1.613
        206.42 13.72
  1
        224.91 15.89
                        1.499
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 224.91 Tc (MIN.) = 15.89
TOTAL AREA (ACRES) = 213.6
 LONGEST FLOWPATH FROM NODE
                       1.00 TO NODE
                                   30.00 = 7821.00 \text{ FEET}.
*******************
 FLOW PROCESS FROM NODE 30.00 TO NODE 40.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 36.00 DOWNSTREAM(FEET) = 26.00
 FLOW LENGTH (FEET) = 942.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 46.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 14.67
 ESTIMATED PIPE DIAMETER (INCH) = 57.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 224.91
 PIPE TRAVEL TIME (MIN.) = 1.07
LONGEST FLOWPATH FROM NODE
                       7 Tc(MIN.) = 16.96
1.00 TO NODE 40.00
                                    40.00 = 8763.00 FEET.
******************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.452
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3049
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 6.69 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 220.3 TOTAL RUNOFF(CFS) =
                                          2.96
                                          227.87
 TC(MIN.) = 16.96
______
 END OF STUDY SUMMARY:
                     220.3 \text{ TC (MIN.)} = 16.96
 TOTAL AREA (ACRES)
                =
 PEAK FLOW RATE (CFS) = 227.87
______
______
```

```
******************************
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

Analysis prepared by:

Proactive Engineering Consultants 27042 Towne Centre Drive Foothill Ranch, Ca. 92610

```
* Travertine Project
* Proposed 10-yr Storm Event
* Subarea B
 FILE NAME: TRA-P10B.DAT
 TIME/DATE OF STUDY: 11:36 10/13/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
 USER SPECIFIED STORM EVENT (YEAR) = 10.00
 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.870
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.766
 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.810
 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.560
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4981200
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4983611
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 0.774
 SLOPE OF INTENSITY DURATION CURVE = 0.4981
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO.
    (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
   0.67
    20.0
           10.0 0.020/0.020/0.020
                                         2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.40 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
******************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
```

```
UPSTREAM ELEVATION (FEET) = 245.00
 DOWNSTREAM ELEVATION(FEET) = 237.50

ELEVATION DIFFERENCE(FEET) = 7.50

TC = 0.393*[( 750.00**3)/( 7.50)]**.2 = 13.931
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.601
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6125
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                    5.20
                   5.30 TOTAL RUNOFF (CFS) =
 TOTAL AREA (ACRES) =
*******************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>
______
 ELEVATION DATA: UPSTREAM(FEET) = 237.50 DOWNSTREAM(FEET) = 231.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 630.00 CHANNEL SLOPE = 0.0103
 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) =
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.407
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .5993
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.55
 AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 18.06
 SUBAREA AREA(ACRES) = 3.88
                            SUBAREA RUNOFF (CFS) = 3.27
 TOTAL AREA(ACRES) =
                    9.2
                              PEAK FLOW RATE(CFS) =
                                                     8.47
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.15 FLOW VELOCITY(FEET/SEC.) = 2.79
                                              1380.00 FEET.
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 =
*******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 105.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 221.00 DOWNSTREAM(FEET) = 162.00
 FLOW LENGTH (FEET) = 720.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 14.35
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.47
 PIPE TRAVEL TIME (MIN.) = 0.84 Tc (MIN.) = 18.89
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                      105.00 =
                                               2100.00 FEET.
******************
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.89
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA (ACRES) = 9.18
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                8.47
*****************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 21
______
```

3.61

PEAK FLOW RATE (CFS) AT CONFLUENCE =

```
** CONFLUENCE DATA ...
STREAM RUNOFF TC INTENSITY
(CFS) (MIN.) (INCH/HOUR)
1.376
        (CFS) (MIN.) (INCH/HOUR,
8.47 18.89 1.376
                                  (ACRE)
                                    9.18
          3.61 24.32
                          1.213
                                      6.91
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*****************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
        (CFS) (MIN.) (INCH/HOU
11.27 18.89 1.376
11.08 24.32 1.213
 NUMBER
                 (MIN.) (INCH/HOUR)
  1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 11.27 Tc(MIN.) = 18.89
 TOTAL AREA (ACRES) =
                    16.1
 LONGEST FLOWPATH FROM NODE
                       100.00 TO NODE
                                      105.00 =
                                               2100.00 FEET.
*************************
 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 162.00 DOWNSTREAM(FEET) = 159.00
 FLOW LENGTH (FEET) = 55.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 13.33
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 11.27
 PIPE TRAVEL TIME (MIN.) = 0.07
                          Tc(MIN.) = 18.96
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 2155.00 FEET.
*****************
 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.373
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .6878
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 14.93 SUBAREA RUNOFF(CFS) = 14.10
TOTAL AREA(ACRES) = 31.0 TOTAL RUNOFF(CFS) = 25.38
 TC(MIN.) = 18.96
******************
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 159.00 DOWNSTREAM(FEET) = 134.30
 FLOW LENGTH (FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 13.12
```

```
ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 25.38
 PIPE TRAVEL TIME (MIN.) = 0.97 Tc (MIN.) = 19.93
                     100.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                  107.00 =
*****************
FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.340
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7472
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.79 SUBAREA RUNOFF(CFS) = 3.79 TOTAL AREA(ACRES) = 34.8 TOTAL RUNOFF(CFS) = 29.3
 TC(MIN.) = 19.93
*****************
 FLOW PROCESS FROM NODE 107.00 TO NODE 110.00 IS CODE = 31
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 134.30 DOWNSTREAM(FEET) = 130.00
 FLOW LENGTH (FEET) = 213.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 11.33
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 29.17
 PIPE TRAVEL TIME (MIN.) = 0.31
                        Tc(MIN.) = 20.24
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 =
                                         3128.00 FEET.
*******************
 FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
_____
*******************
FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
     ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION (FEET) = 280.00
 DOWNSTREAM ELEVATION (FEET) = 278.00
 ELEVATION DIFFERENCE (FEET) = 2.00
TC = 0.709*[( 378.00**3)/( 2.00)]**.2 = 21.736
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.283
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2805
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 1.01
TOTAL AREA(ACRES) = 2.82 TOTAL RUNOFF(CFS) =
*************************
 FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 271.00 DOWNSTREAM(FEET) = 268.00
 FLOW LENGTH (FEET) = 80.00 MANNING'S N = 0.013
```

```
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.89
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 1.01
 PIPE TRAVEL TIME (MIN.) = 0.23
                           Tc(MIN.) = 21.96
 LONGEST FLOWPATH FROM NODE 111.00 TO NODE 113.00 =
                                              458.00 FEET.
*************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.276
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2795
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.54 SUBAREA RUNOFF(CFS) = 0.55
TOTAL AREA(ACRES) = 4.4 TOTAL RUNOFF(CFS) = 1.55
 TC(MIN.) = 21.96
*******************
 FLOW PROCESS FROM NODE 113.00 TO NODE 115.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 268.00 DOWNSTREAM(FEET) = 231.70
 FLOW LENGTH (FEET) = 710.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 7.47
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.56
 PIPE TRAVEL TIME (MIN.) = 1.58 Tc (MIN.) = 23.55
 LONGEST FLOWPATH FROM NODE 111.00 TO NODE
                                     115.00 =
                                             1168.00 FEET.
*****************
 FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 23.55
 RAINFALL INTENSITY (INCH/HR) = 1.23
 TOTAL STREAM AREA(ACRES) = 4.36
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                1.56
*******************
 FLOW PROCESS FROM NODE 116.00 TO NODE 113.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS CONDOMINIUM
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 618.00
 UPSTREAM ELEVATION (FEET) = 280.00
 DOWNSTREAM ELEVATION (FEET) =
                        278.00
 ELEVATION DIFFERENCE (FEET) = 2.00
TC = 0.359*[( 618.00**3)/( 2.00)]**.2 = 14.782
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.555
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .6966
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                     1.19
```

```
TOTAL AREA (ACRES) =
                    1.10 TOTAL RUNOFF(CFS) =
*************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 115.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION (FEET) = 278.00 DOWNSTREAM ELEVATION (FEET) = 243.00
 STREET LENGTH (FEET) = 685.00 CURB HEIGHT (INCHES) = 8.0
 STREET HALFWIDTH (FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.24
   HALFSTREET FLOOD WIDTH (FEET) = 3.97
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.22
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.00
 STREET FLOW TRAVEL TIME (MIN.) = 2.71 Tc (MIN.) = 17.49
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.430
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6009
                     4.04 SUBAREA RUNOFF(CFS) = 3.47
5.1 PEAK FLOW PARE (CFS)
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 4.04
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH (FEET) = 0.28 HALFSTREET FLOOD WIDTH (FEET) =
                                            5.84
 FLOW VELOCITY (FEET/SEC.) = 4.39 DEPTH*VELOCITY (FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 115.00 = 1303.00 FEET.
*******************
 FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1
 -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 17.49
 RAINFALL INTENSITY (INCH/HR) =
                           1.43
 TOTAL STREAM AREA (ACRES) = 5.14
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 4.66
 ** CONFLUENCE DATA **
                   TC INTENSITY
 STREAM RUNOFF
                                      AREA
                 (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
          (CFS)
                        1.233
    1
          1.56 23.55
                                      4.36
           4.66 17.49
                            1.430
                                         5.14
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS)
                 (MIN.) (INCH/HOUR)
 NUMBER
                       1.430
          5.82 17.49
   1
          5.58 23.55
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 5.82
TOTAL AREA (ACRES) = 9.5
                                    17.49
                          Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 115.00 =
                                            1303.00 FEET.
*******************
 FLOW PROCESS FROM NODE 115.00 TO NODE 117.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 231.70 DOWNSTREAM(FEET) = 224.30
 FLOW LENGTH (FEET) = 136.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 11.16
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 5.82
 PIPE TRAVEL TIME (MIN.) = 0.20
                          Tc(MIN.) = 17.69
 LONGEST FLOWPATH FROM NODE
                      116.00 TO NODE 117.00 = 1439.00 FEET.
*******************
 FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.421
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6003
 SOIL CLASSIFICATION IS "A"
                  6.39 SUBAREA RUNOFF(CFS) = 5.45
 SUBAREA AREA(ACRES) =
                   15.9 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
                                           11.28
 TC(MIN.) = 17.69
*************************
 FLOW PROCESS FROM NODE 117.00 TO NODE 118.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 224.30 DOWNSTREAM(FEET) = 214.40
 FLOW LENGTH (FEET) = 188.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.16
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 11.28
 PIPE TRAVEL TIME (MIN.) = 0.24 Tc (MIN.) = 17.93
                      116.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                    118.00 =
*************************
 FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.412
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .5997
 SOIL CLASSIFICATION IS "A"
```

CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
SUBAREA AREA(ACRES) = 11.75 SUBAREA RUNOFF(CFS) = 9.95
TOTAL AREA(ACRES) = 27.6 TOTAL RUNOFF(CFS) = 21.3
 TC(MIN.) = 17.93
*******************
 FLOW PROCESS FROM NODE 118.00 TO NODE 119.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 214.40 DOWNSTREAM(FEET) = 204.00
 FLOW LENGTH (FEET) = 198.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.04
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 21.23
 PIPE TRAVEL TIME (MIN.) = 0.22
                          Tc(MIN.) = 18.15
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 119.00 = 1825.00 FEET.
******************
 FLOW PROCESS FROM NODE 119.00 TO NODE 119.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.404
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2981
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 0.19
TOTAL AREA(ACRES) = 28.1 TOTAL RUNOFF(CFS) = 21.4
 TC(MIN.) = 18.15
*****************
 FLOW PROCESS FROM NODE 119.00 TO NODE 120.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 204.00 DOWNSTREAM(FEET) = 195.50
 FLOW LENGTH (FEET) = 162.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.04
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.42
 PIPE TRAVEL TIME (MIN.) = 0.18 Tc (MIN.) = 18.33
 LONGEST FLOWPATH FROM NODE
                      116.00 TO NODE
                                    120.00 =
*************************
 FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.397
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .5986
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 4.32 SUBAREA RUNOFF(CFS) = 3.61
                    32.4 TOTAL RUNOFF (CFS) =
 TOTAL AREA (ACRES) =
 TC(MIN.) =
         18.33
***************
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 195.50 DOWNSTREAM(FEET) = 177.00
```

```
FLOW LENGTH (FEET) = 331.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 16.35
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 25.03
 PIPE TRAVEL TIME (MIN.) = 0.34
                          Tc(MIN.) = 18.67
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 121.00 = 2318.00 FEET.
*************
 FLOW PROCESS FROM NODE 121.00 TO NODE 121.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.384
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .5977
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.76 SUBAREA RUNOFF(CFS) = 3.11
 TOTAL AREA (ACRES) = 36.2 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 18.67
*******************
 FLOW PROCESS FROM NODE 121.00 TO NODE 121.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.384
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2954
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 7.29 SUBAREA RUNOFF(CFS) = 2.98
 TOTAL AREA (ACRES) =
                 43.5 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 18.67
*******************
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 177.00 DOWNSTREAM(FEET) = 139.00
 FLOW LENGTH (FEET) = 470.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 19.80
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 31.12
 PIPE TRAVEL TIME (MIN.) = 0.40 Tc (MIN.) = 19.06
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE
                                    122.00 =
                                            2788.00 FEET.
****************
 FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.370
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .5966
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 11.78 SUBAREA RUNOFF(CFS) = 9.63
TOTAL AREA(ACRES) = 55.2 TOTAL RUNOFF(CFS) = 40.7
 TC(MIN.) = 19.06
***************
 FLOW PROCESS FROM NODE 122.00 TO NODE 110.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 139.00 DOWNSTREAM(FEET) = 130.00
 FLOW LENGTH (FEET) = 409.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.76
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 40.75
 PIPE TRAVEL TIME(MIN.) = 0.53
                         Tc(MIN.) = 19.60
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 110.00 = 3197.00 FEET.
***************
 FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.351
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .6867
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.78 SUBAREA RUNOFF(CFS) = 3.51
 TOTAL AREA (ACRES) =
                   59.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 19.60
************************
 FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 44.25 19.60 1.351 59.03
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 110.00 = 3197.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                 AREA
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 29.17 20.24 1.329 34.81
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 3128.00 FEET.
 NUMBER
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
72.50 19.60 1.351
72.72 20.24 1.329
 NUMBER
   1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 72.50 Tc(MIN.) = 19.60
 TOTAL AREA (ACRES) =
                    93.8
*******************
 FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<
______
*****************
 FLOW PROCESS FROM NODE 110.00 TO NODE 130.00 IS CODE = 31
______
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 130.00 DOWNSTREAM(FEET) = 120.00
 FLOW LENGTH (FEET) = 990.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.03
 ESTIMATED PIPE DIAMETER (INCH) = 39.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 72.50
 PIPE TRAVEL TIME (MIN.) = 1.50 Tc (MIN.) = 21.09
 LONGEST FLOWPATH FROM NODE
                      116.00 TO NODE
                                    130.00 =
                                             4187.00 FEET.
FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 21.09
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 93.84
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 21
  >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS: UNDEVELOPED WITH GOOD COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 210.00
 DOWNSTREAM ELEVATION(FEET) = 195.00
 ELEVATION DIFFERENCE (FEET) = 15.00
TC = 0.937*[( 564.00**3)/( 15.00)]**.2 =
                                  24,405
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.211
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2695
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF (CFS) =
                    0.86
 TOTAL AREA (ACRES) =
                  2.62 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.211
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2695
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.27
                       SUBAREA RUNOFF (CFS) = 0.74
 TOTAL AREA (ACRES) =
                    4.9 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 24.40
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 195.00 DOWNSTREAM(FEET) = 168.50
 CHANNEL LENGTH THRU SUBAREA(FEET) = 830.00 CHANNEL SLOPE = 0.0319
 CHANNEL BASE (FEET) = 8.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) =
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.119
```

```
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2548
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.30
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 28.60
 SUBAREA AREA (ACRES) = 3.94 SUBAREA RUNOFF (CFS) = 1.12
                             PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                    8.8
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 3.56
 LONGEST FLOWPATH FROM NODE 131.00 TO NODE 133.00 =
*******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 158.50 DOWNSTREAM(FEET) = 130.00
 FLOW LENGTH (FEET) = 321.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 10.66
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 2.72
 PIPE TRAVEL TIME (MIN.) = 0.50
                          Tc(MIN.) = 29.10
 LONGEST FLOWPATH FROM NODE
                       131.00 TO NODE 134.00 = 1715.00 FEET.
*******************
 FLOW PROCESS FROM NODE 134.00 TO NODE 134.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.109
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .5766
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 8.72 SUBAREA RUNOFF(CFS) = 5.58
TOTAL AREA(ACRES) = 17.5 TOTAL RUNOFF(CFS) = 8.3
 TC(MIN.) = 29.10
*************************
 FLOW PROCESS FROM NODE 134.00 TO NODE 130.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 130.00 DOWNSTREAM(FEET) = 120.00
 FLOW LENGTH (FEET) = 264.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.76
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.30
 PIPE TRAVEL TIME (MIN.) = 0.41 Tc(MIN.) = 29.51
                       131.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                     130.00 =
*************************
 FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.102
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2520
 SOIL CLASSIFICATION IS "A"
```

```
SUBAREA AREA(ACRES) = 3.48 SUBAREA RUNOFF(CFS) = 0.97
TOTAL AREA(ACRES) = 21.0 TOTAL RUNOFF(CFS) = 9.2
 TC(MIN.) = 29.51
*******************
 FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.102
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7380
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 3.51 SUBAREA RUNOFF (CFS) = 2.85
 TOTAL AREA (ACRES) = 24.5 TOTAL RUNOFF (CFS) =
                                             12.12
 TC(MIN.) = 29.51
*****************
 FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 29.51
RAINFALL INTENSITY(INCH/HR) = 1.10
 TOTAL STREAM AREA(ACRES) = 24.54
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 72.50 21.09 1.302
                                    AREA
                                   (ACRE)
                         (INCH/HOUR)
                                   93.84
         12.12 29.51
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*****************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
        (CFS)
                 (MIN.) (INCH/HOUR)
 NUMBER
         (CFS) (MIN.)
81.16 21.09
73.45 29.51
                       1.302
    1
                 21.09
                          1.102
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 81.16 Tc(MIN.) = TOTAL AREA(ACRES) = 118.4
                                     21.09
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 130.00 = 4187.00 FEET.
******************
 FLOW PROCESS FROM NODE 130.00 TO NODE 135.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 120.00 DOWNSTREAM(FEET) = 112.00
 FLOW LENGTH (FEET) = 635.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 12.32
```

```
ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 81.16
 PIPE TRAVEL TIME (MIN.) = 0.86 Tc (MIN.) = 21.95
 LONGEST FLOWPATH FROM NODE
                     116.00 TO NODE
                                  135.00 =
******************
 FLOW PROCESS FROM NODE 135.00 TO NODE 135.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.277
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7449
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.72 SUBAREA RUNOFF(CFS) = 2.59
TOTAL AREA(ACRES) = 121.1 TOTAL RUNOFF(CFS) = 83.
                                         83.74
 TC(MIN.) = 21.95
*****************
 FLOW PROCESS FROM NODE 135.00 TO NODE 140.00 IS CODE = 31
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 112.00 DOWNSTREAM(FEET) = 110.00
 FLOW LENGTH (FEET) = 210.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 30.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 11.21
 ESTIMATED PIPE DIAMETER (INCH) = 42.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 83.74
 PIPE TRAVEL TIME (MIN.) = 0.31
                         Tc(MIN.) = 22.26
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 140.00 =
                                          5032.00 FEET.
********************
 FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
_____
******************
FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
     ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 280.00
 DOWNSTREAM ELEVATION (FEET) =
                      275.50
 ELEVATION DIFFERENCE(FEET) = 4.50
TC = 0.393*[( 406.00**3)/( 4.50)]**.2 = 10.676
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.828
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6265
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF (CFS) = 1.50
 TOTAL AREA(ACRES) =
                 1.31 TOTAL RUNOFF(CFS) =
*************************
 FLOW PROCESS FROM NODE 142.00 TO NODE 142.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.828
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6265
 SOIL CLASSIFICATION IS "A"
```

```
SUBAREA AREA(ACRES) = 1.02 SUBAREA RUNOFF(CFS) = 1.17
TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) = 2.6
 TC(MIN.) = 10.68
*******************
 FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 265.50 DOWNSTREAM(FEET) = 254.40
 FLOW LENGTH (FEET) = 202.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) =
                         8.97
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.67
 PIPE TRAVEL TIME (MIN.) = 0.38
                         Tc(MIN.) = 11.05
 LONGEST FLOWPATH FROM NODE 141.00 TO NODE 143.00 =
                                            608.00 FEET.
*************
 FLOW PROCESS FROM NODE 143.00 TO NODE 143.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.797
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6246
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.37 SUBAREA RUNOFF(CFS) = 2.66
 TOTAL AREA (ACRES) =
                   4.7 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 11.05
******************
 FLOW PROCESS FROM NODE 143.00 TO NODE 143.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.797
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6246
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.53 SUBAREA RUNOFF(CFS) = 2.84
TOTAL AREA(ACRES) = 7.2 TOTAL RUNOFF(CFS) = 8.17
 TC(MIN.) = 11.05
****************
 FLOW PROCESS FROM NODE 143.00 TO NODE 145.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 254.40 DOWNSTREAM(FEET) = 227.50
 FLOW LENGTH (FEET) = 416.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 13.03
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                              NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 8.17
                         Tc(MIN.) = 11.58
 PIPE TRAVEL TIME (MIN.) = 0.53
 LONGEST FLOWPATH FROM NODE 141.00 TO NODE
                                   145.00 =
*****************
 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
```

```
10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.755
 SINGLE-FAMILY (1/4) ACRE LOT) RUNOFF COEFFICIENT = .6221
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 5.09 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 12.3 TOTAL RUNOFF(CFS) =
                                                   13.73
 TC(MIN.) = 11.58
*****************
 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 11.58
 RAINFALL INTENSITY(INCH/HR) = 1.76
TOTAL STREAM AREA(ACRES) = 12.32
                             1.76
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 146.00 TO NODE 147.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS: UNDEVELOPED WITH GOOD COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 552.00
 UPSTREAM ELEVATION (FEET) = 280.00
 DOWNSTREAM ELEVATION(FEET) = 260.00
 ELEVATION DIFFERENCE (FEET) = 20.00
TC = 0.937*[( 552.00**3)/( 20.00)]**.2 = 22.745
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.254
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2762
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                      0.52
                      1.51
 TOTAL AREA (ACRES) =
                            TOTAL RUNOFF(CFS) =
**************
 FLOW PROCESS FROM NODE 147.00 TO NODE 148.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>
______
 ELEVATION DATA: UPSTREAM(FEET) = 260.00 DOWNSTREAM(FEET) = 243.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 632.00 CHANNEL SLOPE = 0.0269
 CHANNEL BASE (FEET) = 8.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) =
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.127
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2561
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 1.94
AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 5.44
 Tc(MIN.) = 28.19
 SUBAREA AREA(ACRES) = 0.80
TOTAL AREA(ACRES) = 2.3
                              SUBAREA RUNOFF(CFS) = 0.23
PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 2.18
 LONGEST FLOWPATH FROM NODE
                          146.00 TO NODE
                                          148.00 =
                                                    1184.00 FEET.
*****************
 FLOW PROCESS FROM NODE 148.00 TO NODE 145.00 IS CODE = 51
```

```
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 243.00 DOWNSTREAM(FEET) = 238.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 375.00 CHANNEL SLOPE = 0.0120
 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.044
 SINGLE-FAMILY (1/2 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .5054
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                               1.30
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 1.33
 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 4.69
                       2.08 SUBAREA RUNOFF (CFS) = 4.4 PEAK FLOW DECK
 Tc(MIN.) = 32.88
 SUBAREA AREA(ACRES) = 2.08
TOTAL AREA(ACRES) = 4.4
 TOTAL AREA (ACRES) =
                                PEAK FLOW RATE(CFS) =
                                                         1.85
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.58
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 145.00 =
                                                  1559.00 FEET.
*****************
 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 32.88
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 4.39
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.85
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                    Tc
                           INTENSITY
                                        AREA
                  (MIN.) (INCH/HOUR)
          (CFS) (MIN.) (INCH/HOUR,
13.73 11.58 1.755 12.32
 NUMBER
   1
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ******************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                          INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
14.38 11.58 1.755
10.02 32.88 1.044
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 14.38 Tc (MIN.) = 11.58
 TOTAL AREA(ACRES) =
                       16.7
 LONGEST FLOWPATH FROM NODE
                          146.00 TO NODE
                                          145.00 =
                                                    1559.00 FEET.
************************
 FLOW PROCESS FROM NODE 145.00 TO NODE 150.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
```

```
______
 ELEVATION DATA: UPSTREAM(FEET) = 227.50 DOWNSTREAM(FEET) = 209.70
 FLOW LENGTH (FEET) = 275.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 15.10
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 14.38
 PIPE TRAVEL TIME (MIN.) = 0.30 Tc (MIN.) = 11.89
 LONGEST FLOWPATH FROM NODE
                        146.00 TO NODE
                                       150.00 =
                                               1834.00 FEET.
*****************
 FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 11.89
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 16.71
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 281.00
 DOWNSTREAM ELEVATION (FEET) = 267.70
 ELEVATION DIFFERENCE (FEET) = 13.30
TC = 0.393*[( 734.00**3)/( 13.30)]**.2 =
                                      12,263
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.706
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6191
 SOIL CLASSIFICATION IS "A"
                     2.74
 SUBAREA RUNOFF (CFS) =
 TOTAL AREA (ACRES) =
                   2.59 TOTAL RUNOFF(CFS) =
                                             2 74
*****************
 FLOW PROCESS FROM NODE 152.00 TO NODE 153.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION (FEET) = 267.70 DOWNSTREAM ELEVATION (FEET) = 243.00
 STREET LENGTH (FEET) = 347.00 CURB HEIGHT (INCHES) = 8.0
 STREET HALFWIDTH (FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH (FEET) = 0.24
   HALFSTREET FLOOD WIDTH (FEET) =
                              3.97
```

```
AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.95
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.18
 STREET FLOW TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) = 13.43
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.631
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6144
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.40
                           SUBAREA RUNOFF (CFS) = 1.40
                    4.0
 TOTAL AREA (ACRES) =
                            PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 4.72
 FLOW VELOCITY (FEET/SEC.) = 5.02 DEPTH*VELOCITY (FT*FT/SEC.) = 1.27
 LONGEST FLOWPATH FROM NODE
                       151.00 TO NODE 153.00 =
                                              1081.00 FEET.
******************
 FLOW PROCESS FROM NODE 153.00 TO NODE 154.00 IS CODE = 31
    ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 233.00 DOWNSTREAM(FEET) = 212.00
 FLOW LENGTH (FEET) = 525.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 9.08
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 4.14
 PIPE TRAVEL TIME (MIN.) = 0.96
                            Tc(MIN.) = 14.39
 LONGEST FLOWPATH FROM NODE 151.00 TO NODE 154.00 = 1606.00 FEET.
****************
 FLOW PROCESS FROM NODE 154.00 TO NODE 154.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.575
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6108
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.63 SUBAREA RUNOFF(CFS) = 2.53
 TOTAL AREA (ACRES) = 6.6 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 14.39
*****************
 FLOW PROCESS FROM NODE 154.00 TO NODE 150.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 212.00 DOWNSTREAM(FEET) = 209.70
 FLOW LENGTH (FEET) = 46.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.24
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.67
 PIPE TRAVEL TIME (MIN.) = 0.07 Tc (MIN.) = 14.46
 LONGEST FLOWPATH FROM NODE 151.00 TO NODE 150.00 =
                                              1652.00 FEET.
******************
 FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.572
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7553
```

```
SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.91 SUBAREA RUNOFF(CFS) = 2.27
TOTAL AREA(ACRES) = 8.5 TOTAL RUNOFF(CFS) = 8.9
 TC(MIN.) = 14.46
****************
 FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 14.46
RAINFALL INTENSITY (INCH/HR) = 1.57
 RAINFALL INTENSITY (INCH/HR) =
                          1.57
 TOTAL STREAM AREA(ACRES) = 8.53
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 14.38 11.89 1.733
2 8.94 14.46 1.572
                                    (ACRE)
                         (INCH/HOUR)
                                    16.71
          8.94 14.46
                           1.572
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*******************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
        (CFS) (MIN.)
21.72 11.89
21.98 14.46
 NUMBER
                 (MIN.) (INCH/HOUR)
                         1.733
    1
                          1.572
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 21.72 Tc(MIN.) = TOTAL AREA(ACRES) = 25.2
                                      11.89
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 150.00 = 1834.00 FEET.
******************
 FLOW PROCESS FROM NODE 150.00 TO NODE 155.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 209.70 DOWNSTREAM(FEET) = 198.00
 FLOW LENGTH (FEET) = 178.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 16.60
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.72
 PIPE TRAVEL TIME (MIN.) = 0.18 Tc (MIN.) = 12.07
 LONGEST FLOWPATH FROM NODE
                        146.00 TO NODE
                                       155.00 =
                                                 2012.00 FEET.
******************
 FLOW PROCESS FROM NODE 155.00 TO NODE 155.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.720
```

```
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3400
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.31 SUBAREA RUNOFF(CFS) = 0.77
TOTAL AREA(ACRES) = 26.5 TOTAL RUNOFF(CFS) = 22.
 TOTAL AREA (ACRES) =
 TC(MIN.) = 12.07
*****************
 FLOW PROCESS FROM NODE
                   >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 198.00 DOWNSTREAM(FEET) = 174.50
 FLOW LENGTH (FEET) = 364.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 16.57
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 22.49
 PIPE TRAVEL TIME (MIN.) = 0.37
                          Tc(MIN.) = 12.43
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 156.00 =
************************
 FLOW PROCESS FROM NODE 156.00 TO NODE 156.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.695
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6184
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 9.24 SUBAREA RUNOFF(CFS) = 9.68
TOTAL AREA(ACRES) = 35.8 TOTAL RUNOFF(CFS) = 32.3
 TC(MIN.) = 12.43
******************
 FLOW PROCESS FROM NODE 156.00 TO NODE 157.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 174.50 DOWNSTREAM(FEET) = 152.20
 FLOW LENGTH (FEET) = 342.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 18.28
 ESTIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 32.17
 PIPE TRAVEL TIME (MIN.) = 0.31 Tc (MIN.) = 12.74
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE
                                     157.00 =
                                              2718.00 FEET.
*******************
 FLOW PROCESS FROM NODE 157.00 TO NODE 157.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.674
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3342
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 1.23
TOTAL AREA(ACRES) = 38.0 TOTAL RUNOFF(CFS) = 33.0
 TOTAL AREA (ACRES) =
                    38.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
****************
 FLOW PROCESS FROM NODE 157.00 TO NODE 158.00 IS CODE = 31
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
```

```
______
 ELEVATION DATA: UPSTREAM(FEET) = 152.20 DOWNSTREAM(FEET) = 140.70
 FLOW LENGTH (FEET) = 179.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 18.28
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 33.40
 PIPE TRAVEL TIME (MIN.) = 0.16
                          Tc(MIN.) = 12.91
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 158.00 =
*******************
 FLOW PROCESS FROM NODE 158.00 TO NODE 158.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.663
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6165
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 12.64 SUBAREA RUNOFF(CFS) = 12.96

TOTAL AREA(ACRES) = 50.6 TOTAL RUNOFF(CFS) = 46.36
 TC(MIN.) = 12.91
******************
 FLOW PROCESS FROM NODE 158.00 TO NODE 158.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.663
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6165
 SOIL CLASSIFICATION IS "A"
                    3.21 SUBAREA RUNOFF(CFS) = 13.54
63.8 TOTAL RUNOFF(CFS) = 59.
 SUBAREA AREA(ACRES) = 13.21
 TOTAL AREA (ACRES) =
 TC(MIN.) = 12.91
*******************
 FLOW PROCESS FROM NODE 158.00 TO NODE 160.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 140.70 DOWNSTREAM(FEET) = 122.00
 FLOW LENGTH (FEET) = 289.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 21.36
 ESTIMATED PIPE DIAMETER (INCH) = 27.00
                                NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 59.91
 PIPE TRAVEL TIME (MIN.) = 0.23
                           Tc(MIN.) = 13.13
 LONGEST FLOWPATH FROM NODE
                       146.00 TO NODE
                                     160.00 =
                                              3186.00 FEET.
FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 13.13
 RAINFALL INTENSITY (INCH/HR) =
                         1.65
 TOTAL STREAM AREA(ACRES) = 63.84
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                              59.91
*****************
 FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
```

```
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 1005.00
 UPSTREAM ELEVATION (FEET) = 244.00
 DOWNSTREAM ELEVATION (FEET) = 208.30
 ELEVATION DIFFERENCE (FEET) = 35.70
TC = 0.393*[(1005.00**3)/(35.70)]**.2 = 12.154
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.714
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6196
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF (CFS) = 3.68
 TOTAL AREA(ACRES) =
                      3.47 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 162.00 TO NODE 163.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>> (STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 208.30 DOWNSTREAM ELEVATION(FEET) = 172.00
 STREET LENGTH (FEET) = 920.00 CURB HEIGHT (INCHES) = 8.0
 STREET HALFWIDTH (FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   5.37
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH (FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.03
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.19
 STREET FLOW TRAVEL TIME(MIN.) = 3.81 Tc(MIN.) =
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.496
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6055
 SOIL CLASSIFICATION IS "A"
                              SUBAREA RUNOFF (CFS) = 3.37
 SUBAREA AREA(ACRES) = 3.72
                        7.2
                                PEAK FLOW RATE(CFS) =
 TOTAL AREA (ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.03
 FLOW VELOCITY (FEET/SEC.) = 4.23 DEPTH*VELOCITY (FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 163.00 = 1925.00 FEET.
*************************
 FLOW PROCESS FROM NODE 163.00 TO NODE 165.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 161.00 DOWNSTREAM(FEET) = 132.50
 FLOW LENGTH (FEET) = 819.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 9.99
ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                     7.06
```

```
PIPE TRAVEL TIME (MIN.) = 1.37 Tc (MIN.) = 17.33
 LONGEST FLOWPATH FROM NODE
                     161.00 TO NODE
                                           2744.00 FEET.
                                   165.00 =
****************
FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.436
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6014
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 5.90 SUBAREA RUNOFF(CFS) = 5.10
 TOTAL AREA(ACRES) = 13.1 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 17.33
*******************
 FLOW PROCESS FROM NODE 165.00 TO NODE 166.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 132.50 DOWNSTREAM(FEET) = 130.90
 FLOW LENGTH (FEET) = 118.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 8.03
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 12.15
 PIPE TRAVEL TIME (MIN.) = 0.24
                         Tc(MIN.) = 17.57
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 166.00 =
****************
 FLOW PROCESS FROM NODE 166.00 TO NODE 166.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.426
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6007
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.84 SUBAREA RUNOFF(CFS) = 1.58
TOTAL AREA(ACRES) = 14.9 TOTAL RUNOFF(CFS) = 13.
 TC(MIN.) = 17.57
********************
 FLOW PROCESS FROM NODE 166.00 TO NODE 167.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 130.90 DOWNSTREAM(FEET) = 127.00
 FLOW LENGTH (FEET) = 260.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.57
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 13.73
 PIPE TRAVEL TIME (MIN.) = 0.51 Tc (MIN.) = 18.08
                     161.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                   167.00 =
*************************
 FLOW PROCESS FROM NODE 167.00 TO NODE 167.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.406
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .5993
 SOIL CLASSIFICATION IS "A"
```

```
SUBAREA AREA(ACRES) = 2.09 SUBAREA RUNOFF(CFS) = 1.76
TOTAL AREA(ACRES) = 17.0 TOTAL RUNOFF(CFS) = 15.4
 TC(MIN.) = 18.08
*******************
 FLOW PROCESS FROM NODE 167.00 TO NODE 168.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 127.00 DOWNSTREAM(FEET) = 124.00
 FLOW LENGTH (FEET) = 170.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.37
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 15.49
 PIPE TRAVEL TIME (MIN.) = 0.30
                          Tc(MIN.) = 18.38
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 168.00 = 3292.00 FEET.
******************
 FLOW PROCESS FROM NODE 168.00 TO NODE 168.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.395
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .5984
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.78 SUBAREA RUNOFF(CFS) = 1.49
 TOTAL AREA(ACRES) = 18.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 18.38
*****************
 FLOW PROCESS FROM NODE 168.00 TO NODE 160.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 124.00 DOWNSTREAM(FEET) = 122.00
 FLOW LENGTH (FEET) = 50.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.95
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 16.98
 PIPE TRAVEL TIME (MIN.) = 0.06 Tc (MIN.) = 18.44
 LONGEST FLOWPATH FROM NODE
                      161.00 TO NODE
                                   160.00 =
*************************
 FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.392
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .5983
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 7.55 SUBAREA RUNOFF(CFS) = 6.29
                   26.4 TOTAL RUNOFF (CFS) =
 TOTAL AREA (ACRES) =
 TC(MIN.) = 18.44
**************
 FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.392
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7491
```

```
SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.72 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 29.1 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 18.44
****************
 FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.44
 RAINFALL INTENSITY (INCH/HR) =
                          1.39
 TOTAL STREAM AREA(ACRES) = 29.07
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 59.91 13.13 1.649

2 26.10 18.44 1.392
                                   (ACRE)
                         (INCH/HOUR)
                                     63.84
         26.10 18.44
                           1.392
                                      29.07
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
********************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
        (CFS) (MIN.)
78.49 13.13
76.69 18.44
 NUMBER
                 (MIN.) (INCH/HOUR)
                        1.649
    1
                          1.392
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 78.49 Tc(MIN.) = TOTAL AREA(ACRES) = 92.9
                                     13.13
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 160.00 = 3342.00 FEET.
******************
 FLOW PROCESS FROM NODE 160.00 TO NODE 140.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 122.00 DOWNSTREAM(FEET) = 110.00
 FLOW LENGTH (FEET) = 431.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 16.42
 ESTIMATED PIPE DIAMETER (INCH) = 33.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 78.49
 PIPE TRAVEL TIME (MIN.) = 0.44 Tc (MIN.) = 13.57
 LONGEST FLOWPATH FROM NODE
                        161.00 TO NODE
                                      140.00 =
                                                3773.00 FEET.
******************
 FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.622
```

```
MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7569
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.61 SUBAREA RUNOFF(CFS) = 3.20
TOTAL AREA(ACRES) = 95.5 TOTAL RUNOFF(CFS) = 81.
 TOTAL AREA (ACRES) =
 TC(MIN.) = 13.57
*****************
 FLOW PROCESS FROM NODE
                   140.00 TO NODE 140.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC
                        INTENSITY
                                    AREA
       (CFS) (MIN.) (INCH/HOUR) (ACRE)
81.70 13.57 1.622 95.52
 NUMBER
  1
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 140.00 = 3773.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        83.74
        22.26
        1.268
        121.10

         83.74 22.26
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 140.00 = 5032.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*****************
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF
                 Tc
                        INTENSITY
                       (INCH/HOUR)
 NUMBER
         (CFS)
                 (MIN.)
        132.74
                 13.57
    1
                           1.622
        147.59
                 22.26
                            1.268
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 147.59 Tc (MIN.) = 22.26
 TOTAL AREA (ACRES) =
                   216.6
*******************
 FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
*****************
 FLOW PROCESS FROM NODE 140.00 TO NODE 170.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 110.00 DOWNSTREAM(FEET) = 107.00
 FLOW LENGTH (FEET) = 1097.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 63.0 INCH PIPE IS 50.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 7.96
                                NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 63.00
 PIPE-FLOW(CFS) = 147.59
 PIPE TRAVEL TIME (MIN.) = 2.30 Tc (MIN.) = 24.56
 LONGEST FLOWPATH FROM NODE
                       116.00 TO NODE
                                      170.00 =
                                               6129.00 FEET.
*****************
 FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
```

```
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.207
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7422
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.62 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 220.2 TOTAL RUNOFF(CFS) =
                                         3 24
 TC(MIN.) = 24.56
*************
 FLOW PROCESS FROM NODE 170.00 TO NODE 175.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 107.00 DOWNSTREAM(FEET) = 78.00
 FLOW LENGTH (FEET) = 926.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 30.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 20.32
 ESTIMATED PIPE DIAMETER (INCH) = 42.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 150.83
 PIPE TRAVEL TIME (MIN.) = 0.76 Tc (MIN.) =
                                  25.32
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE
                                  175.00 =
*******************
 FLOW PROCESS FROM NODE 175.00 TO NODE 175.00 IS CODE = 81
  >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.189
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7415
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 3.31 SUBAREA RUNOFF(CFS) = 2.92
TOTAL AREA(ACRES) = 223.5 TOTAL RUNOFF(CFS) = 153.75
 TOTAL AREA(ACRES) =
 TC(MIN.) = 25.32
*******************
 FLOW PROCESS FROM NODE 175.00 TO NODE 180.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 78.00 DOWNSTREAM(FEET) = 75.00
 FLOW LENGTH (FEET) = 75.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 30.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 22.09
 ESTIMATED PIPE DIAMETER (INCH) = 39.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 153.75
 PIPE TRAVEL TIME (MIN.) = 0.06 Tc (MIN.) = 25.38
 LONGEST FLOWPATH FROM NODE
                     116.00 TO NODE
                                  180.00 =
                                           7130.00 FEET.
******************
 FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<
______
******************
 FLOW PROCESS FROM NODE 181.00 TO NODE 182.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
     ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 979.00
```

```
UPSTREAM ELEVATION (FEET) = 175.00
 DOWNSTREAM ELEVATION(FEET) = 138.30

ELEVATION DIFFERENCE(FEET) = 36.70

TC = 0.393*[( 979.00**3)/( 36.70)]**.2 = 11.898
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.732
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6207
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                      3.55
                     3.30 TOTAL RUNOFF(CFS) = 3.55
 TOTAL AREA (ACRES) =
*******************
 FLOW PROCESS FROM NODE 182.00 TO NODE 183.00 IS CODE = 62
     ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STREET TABLE SECTION # 1 USED) <<<<
______
 UPSTREAM ELEVATION (FEET) = 138.30 DOWNSTREAM ELEVATION (FEET) = 95.50
 STREET LENGTH (FEET) = 1112.00 CURB HEIGHT (INCHES) = 8.0
 STREET HALFWIDTH (FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH (FEET) = 0.30
   HALFSTREET FLOOD WIDTH (FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 3.96
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17
 STREET FLOW TRAVEL TIME(MIN.) = 4.68 Tc(MIN.) = 16.58
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.468
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6036
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 3.90
                             SUBAREA RUNOFF (CFS) = 3.46
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH (FEET) = 0.32 HALFSTREET FLOOD WIDTH (FEET) = 8.03
 FLOW VELOCITY (FEET/SEC.) = 4.20 DEPTH*VELOCITY (FT*FT/SEC.) = 1.34
 LONGEST FLOWPATH FROM NODE 181.00 TO NODE 183.00 =
                                                  2091.00 FEET.
****************
 FLOW PROCESS FROM NODE 183.00 TO NODE 184.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 85.50 DOWNSTREAM(FEET) = 85.20
 FLOW LENGTH (FEET) = 45.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.30
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                    NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 7.00
 PIPE TRAVEL TIME (MIN.) = 0.14
                              Tc(MIN.) = 16.72
 LONGEST FLOWPATH FROM NODE 181.00 TO NODE
                                         184.00 = 2136.00 FEET.
*****************
 FLOW PROCESS FROM NODE 184.00 TO NODE 184.00 IS CODE = 81
______
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.462
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6032
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) =
                 4.56
                      SUBAREA RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
                  11.8 TOTAL RUNOFF(CFS) =
                                         11.03
 TC(MIN.) = 16.72
****************
 FLOW PROCESS FROM NODE 184.00 TO NODE 185.00 IS CODE = 31
   ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 85.20 DOWNSTREAM(FEET) = 80.00
 FLOW LENGTH (FEET) = 280.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.75
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 11.03
 PIPE TRAVEL TIME (MIN.) = 0.53 Tc (MIN.) = 17.25
 LONGEST FLOWPATH FROM NODE
                     181.00 TO NODE
                                  185.00 =
************************
 FLOW PROCESS FROM NODE 185.00 TO NODE 185.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.439
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7508
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 1.85
 TOTAL AREA (ACRES) =
                  13.5 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 17.25
******************
 FLOW PROCESS FROM NODE 185.00 TO NODE 186.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 80.00 DOWNSTREAM(FEET) = 78.40
 FLOW LENGTH (FEET) = 275.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.90
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                              NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 12.87
 PIPE TRAVEL TIME (MIN.) = 0.78
                         Tc(MIN.) = 18.03
 LONGEST FLOWPATH FROM NODE 181.00 TO NODE 186.00 = 2691.00 FEET.
*****************
 FLOW PROCESS FROM NODE 186.00 TO NODE 186.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 18.03
                      1.41
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 13.47
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
FLOW PROCESS FROM NODE 187.00 TO NODE 188.00 IS CODE = 21
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 574.00
 UPSTREAM ELEVATION (FEET) = 168.00
 DOWNSTREAM ELEVATION (FEET) = 123.00

ELEVATION DIFFERENCE (FEET) = 45.00

TC = 0.393*[( 574.00**3)/( 45.00)]**.2 = 8.292
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.073
 SINGLE-FAMILY (1/4 ACRE LOT) RUNOFF COEFFICIENT = .6402
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =
                         6.50
                       4.90 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
*****************
 FLOW PROCESS FROM NODE 188.00 TO NODE
                                        189.00 \text{ IS CODE} = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 123.00 DOWNSTREAM(FEET) = 115.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 533.00 CHANNEL SLOPE = 0.0150 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.813
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6256
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.46
 AVERAGE FLOW DEPTH(FEET) = 0.15 TRAVEL TIME(MIN.) = 2.57
 Tc(MIN.) = 10.86
                       7.06 SUBAREA RUNOFF (CFS) = 8.01
12.0 PEAK FLOW RATE (CFS) =
 SUBAREA AREA (ACRES) =
                       12.0
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                           14.51
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) = 3.83
 LONGEST FLOWPATH FROM NODE 187.00 TO NODE 189.00 =
                                                     1107.00 FEET.
******************
 FLOW PROCESS FROM NODE 189.00 TO NODE
                                       190.00 \text{ IS CODE} = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 115.00 DOWNSTREAM(FEET) = 105.00 CHANNEL SLOPE = 0.0150
 CHANNEL BASE (FEET) = 20.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) =
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.627
 SINGLE-FAMILY (1/4 \text{ ACRE LOT}) RUNOFF COEFFICIENT = .6141
 SOIL CLASSIFICATION IS "A"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                17.97
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.21
 AVERAGE FLOW DEPTH(FEET) = 0.21 TRAVEL TIME(MIN.) = 2.64
 Tc(MIN.) = 13.50
                             SUBAREA RUNOFF (CFS) = 6.91
PEAK FLOW RATE (CFS) =
 SUBAREA AREA(ACRES) =
                       6.92
 TOTAL AREA (ACRES) =
                       18.9
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) = 4.52
 LONGEST FLOWPATH FROM NODE 187.00 TO NODE 190.00 = 1774.00 FEET.
```

```
************************
 FLOW PROCESS FROM NODE 190.00 TO NODE 190.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.627
 SINGLE-FAMILY (1/4) ACRE LOT) RUNOFF COEFFICIENT = .6141
 SOIL CLASSIFICATION IS "A"
                         SUBAREA RUNOFF(CFS) = 14.22
TOTAL RUNOFF(CFS) = 35.
 SUBAREA AREA(ACRES) = 14.24
 TOTAL AREA (ACRES) =
                    33.1
 TC(MIN.) = 13.50
*******************
 FLOW PROCESS FROM NODE 190.00 TO NODE 186.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 95.00 DOWNSTREAM(FEET) = 78.40
 FLOW LENGTH (FEET) = 70.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 30.66
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 35.65
 PIPE TRAVEL TIME (MIN.) = 0.04
                           Tc(MIN.) = 13.54
                        187.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                       186.00 =
                                                1844.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 186.00 TO NODE 186.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.54
RAINFALL INTENSITY(INCH/HR) = 1.62
 TOTAL STREAM AREA(ACRES) = 33.12
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                                    (ACRE)
                         (INCH/HOUR)
         12.87 18.03 1.408
                                     13.47
   1
          35.65 13.54
                           1.624
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
******************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                        INTENSITY
         (CFS) (MIN.)
45.31 13.54
43.78 18.03
 NUMBER
                 (MIN.) (INCH/HOUR)
                       1.624
    1
                          1.408
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 45.31 Tc (MIN.) = TOTAL AREA (ACRES) = 46.6
                                      13.54
 LONGEST FLOWPATH FROM NODE 181.00 TO NODE 186.00 = 2691.00 FEET.
```

```
******************
 FLOW PROCESS FROM NODE 186.00 TO NODE 191.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 78.40 DOWNSTREAM(FEET) = 75.40
 FLOW LENGTH (FEET) = 522.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 7.91
 ESTIMATED PIPE DIAMETER (INCH) = 36.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 45.31
 PIPE TRAVEL TIME (MIN.) = 1.10 Tc (MIN.) = LONGEST FLOWPATH FROM NODE 181.00 TO NODE
                           Tc(MIN.) = 14.64
                                      191.00 =
                                               3213.00 FEET.
*****************
 FLOW PROCESS FROM NODE 191.00 TO NODE 191.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.562
 MOBILE HOME PARK DEVELOPMENT RUNOFF COEFFICIENT = .7550
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 1.51 SUBAREA RUNOFF(CFS) = 1.78 TOTAL AREA(ACRES) = 48.1 TOTAL RUNOFF(CFS) = 47.0
 TOTAL AREA (ACRES) =
 TC(MIN.) = 14.64
*****************
 FLOW PROCESS FROM NODE 191.00 TO NODE 180.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 75.40 DOWNSTREAM(FEET) = 75.00
 FLOW LENGTH (FEET) = 60.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 8.48
 ESTIMATED PIPE DIAMETER (INCH) = 36.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 47.09
 PIPE TRAVEL TIME (MIN.) = 0.12
                            Tc(MIN.) = 14.75
 LONGEST FLOWPATH FROM NODE 181.00 TO NODE
                                      180.00 = 3273.00 FEET.
*****************
 FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 47.09 14.75 1.556 48.10
LONGEST FLOWPATH FROM NODE 181.00 TO NODE 180.00 = 3273.00 FEET.
 ** MEMORY BANK # 3 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                   AREA
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 153.75 25.38 1.188 223.55
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 180.00 =
                                              7130.00 FEET.
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
```

```
************************
 ** PEAK FLOW RATE TABLE **
      RUNOFF Tc
                     INTENSITY
 STREAM
       (CFS)
136.49 14.75
25.38
               (MIN.) (INCH/HOUR)
 NUMBER
                     1.556
   1
       189.70
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
                       Tc(MIN.) = 25.38
 PEAK FLOW RATE (CFS) = 189.70
                 271.6
 TOTAL AREA (ACRES) =
*******************
 FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 IS CODE = 12
  ______
 >>>>CLEAR MEMORY BANK # 3 <<<<
______
 FLOW PROCESS FROM NODE 180.00 TO NODE 195.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 75.00 DOWNSTREAM(FEET) = 35.00
 FLOW LENGTH (FEET) = 930.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 32.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 24.02
 ESTIMATED PIPE DIAMETER (INCH) = 42.00
                            NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 189.70
 PIPE TRAVEL TIME (MIN.) = 0.65 TC (MIN.) = 26.02
LONGEST FLOWPATH FROM NODE 116.00 TO NODE 195.00 = 8060.00 FEET.
FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.173
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2635
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 19.95 SUBAREA RUNOFF(CFS) = 6.17
TOTAL AREA(ACRES) = 291.6 TOTAL RUNOFF(CFS) = 195.
                                      195.86
 TC(MIN.) = 26.02
*******************
 FLOW PROCESS FROM NODE 195.00 TO NODE 195.00 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.173
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .6772
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 4.13 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 295.7 TOTAL RUNOFF(CFS) =
                                      199.14
 TC(MIN.) = 26.02
______
 END OF STUDY SUMMARY:
                    295.7 TC(MIN.) =
 TOTAL AREA (ACRES)
 PEAK FLOW RATE (CFS) = 199.14
______
______
 END OF RATIONAL METHOD ANALYSIS
```

END OF RATIONAL METHOD ANALYSIS

APPENDIX D -HYDROLOGY STUDY (AES UNIT HYDROGRAPH)

D.1 –100-YR EXISTING HYDROLOGY

- Loss Rate Calculations
- AES Unit Hydrograph Calcs

Synthetic Unit Hydrograph Method Loss Rate Parameter Development Existing Condition (AMC II) Travertine Development

Subarea	Land Use	Cover Type	Cover Quality	Area A (acres)	AMC II Runoff Index RI	Pervious Area Infiltration Rate Fp (in/hr)	Impervious Fraction A _i	Adjusted Infiltration Rate F (in/hr)	FxA	A _i x A
Α	Barren	Α		110.50	78	0.269	0.0	0.269	29.725	0.000
					Average Adjusted Infiltration Rate, F (in/hr) = 0.269					
Watershed A Total Area (acres) =				110.50	Low Loss Fraction =					0.900
					Lag = Rational Method (Tc/60 min) x 0.8 =					0.274
В	Barren	Α		151.40	78	0.269	0.0	0.269	40.727	0.000
					Average Adjusted Infiltration Rate, F (in/hr) = 0.269					
Watershed B Total Area (acres) =			151.40	Low Loss Fraction =					0.900	
				Lag = Rational Method (Tc/60 min) x 0.8 =					0.295	
С	Barren	А		252.60	78	0.269	0.0	0.269	67.949	0.000
				Average Adjusted Infiltration Rate, F (in/hr) = 0.269						
Watershed C Total Area (acres) =				252.60	Low Loss Fraction =					0.900
					Lag = Rational Method (Tc/60 min) x 0.8 =					0.283

Rainfall Data (NOAA Atlas 14)						
	100-Year					
Duration	Precipitation (inches)					
1-Hour	1.56					
3-Hour	2.28					
6-Hour	2.89					
24-Hour	4.61					

FLOOD ROUTING ANALYSIS

ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

(c) Copyright 1989-2015 Advanced Engineering Software (aes) (Synthetic Unit Hydrograph Version 22.0) Release Date: 07/01/2015 License ID 1673

Analysis prepared by:

(UNIT-HYDROGRAPH ADDED TO STREAM #1)

WATERSHED AREA = 110.500 ACRES
BASEFLOW = 0.000 CFS/SQUARE-MILE
*USER ENTERED "LAG" TIME = 0.274 HOURS
CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.
THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)
MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.
VALLEY S-GRAPH SELECTED
UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269
LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900
USER-ENTERED RAINFALL = 1.56 INCHES
RCFC&WCD 1-Hour Storm (5-Minute period) SELECTED
(SLOPE OF INTENSITY-DURATION CURVE = 0.58)
*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 30.414

UNIT HYDROGRAPH DETERMINATION

INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 2.915 38.954 2 13.432 140.542 3 32.620 256.420 4 53.232 275.455

5	65.478	163.656
6	72.710	96.637
7	77.641	65.904
8	81.381	49.979
9	84.310	39.136
10	86.703	31.981
11	88.610	25.479
12	90.300	22.587
13	91.715	18.915
14	92.911	15.974
15	94.004	14.613
16	94.924	12.293
17	95.805	11.773
18	96.471	8.898
19	97.061	7.892
20	97.652	7.892
21	98.088	5.832
22	98.308	2.935
23	98.526	2.918
24	98.744	2.916
25	98.963	2.916
26	99.181	2.920
27	99.399	2.916
28	99.618	2.916
29	99.836	2.916
30	100.000	2.195

UNIT	UNIT	UNIT	EFFECTIVE			
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL			
(NUMBER)	(INCHES)	(INCHES)	(INCHES)			
1	0.0566	0.0224	0.0342			
2	0.0604	0.0224	0.0380			
3	0.0651	0.0224	0.0426			
4	0.0732	0.0224	0.0508			
5	0.0782	0.0224	0.0557			
6	0.0913	0.0224	0.0689			
7	0.1110	0.0224	0.0886			
8	0.1242	0.0224	0.1018			
9	0.2040	0.0224	0.1816			
10	0.5310	0.0224	0.5086			
11	0.1012	0.0224	0.0787			
12	0.0638	0.0224	0.0414			

TOTAL STORM RAINFALL(INCHES) = 1.56 TOTAL SOIL-LOSS(INCHES) = 0.27

TOTAL EFFECTIVE RAINFALL(INCHES) = 1.29

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 2.4770
TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 11.8818

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

TIME(HRS) V	OLUME(AF)	Q(CFS)	0.	75.0	150.0	225.0	300.0
0.083	0.0092	1.33	Q				
0.167	0.0524	6.28	Q			•	•
0.250	0.1610	15.77	V Q			•	•
0.333	0.3479	27.13	.V Q			•	•
0.417	0.5980	36.31	. V Q			•	•
0.500	0.9066	44.82	. V Q			•	•
0.583	1.2808	54.33	. V	Q.		•	•
0.667	1.7359	66.08	. V	Q.		•	•
0.750	2.3086	83.15		V.Q		•	•
0.833	3.1389	120.56		V	Q.	•	•
0.917	4.3804	180.27			v .	Q.	•
1.000	5.9696	230.75			V	Q	•
1.083	7.4940	221.34			•	V Q.	•
1.167	8.5424	152.23			Q	٧.	•
1.250	9.2356	100.65		. Q		٠٧.	•
1.333	9.7138	69.43		Q.		. V	•
1.417	10.0729	52.15		Q.		. V	•
1.500	10.3566	41.18	. Q			. \	<i>'</i>
1.583	10.5884	33.67	. Q			•	V .
1.667	10.7797	27.78	. Q			•	٧.
1.750	10.9448	23.96	. Q			•	٧.
1.833	11.0846	20.30	. Q			•	V .
1.917	11.2045	17.41	. Q			•	V .
2.000	11.3099	15.31	. Q			•	٧.
2.083	11.4005	13.16	.Q			•	٧.
2.167	11.4813	11.73	.Q			•	٧.
2.250	11.5472	9.56	.Q			•	٧.
2.333	11.6046	8.34	.Q			•	٧.
2.417	11.6560	7.47	Q			•	٧.
2.500	11.6961	5.82	Q			•	٧.
2.583	11.7242	4.08	Q		•	•	٧.
2.667	11.7494	3.65	Q		•	•	٧.
2.750	11.7727	3.39	Q		•	•	٧.
2.833	11.7951	3.24	Q		•	•	٧.
2.917	11.8162	3.07	Q		•	•	٧.
3.000	11.8359	2.85	Q		•	•	٧.
3.083	11.8537	2.59	Q		•	•	٧.
3.167	11.8691	2.23	Q		•	•	٧.
3.250	11.8792	1.47	Q		•	•	٧.
3.333	11.8812	0.29	Q		•	•	٧.
3.417	11.8818	0.09	Q		•		٧.

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
=======================================	=======
0%	205.0
10%	90.0
20%	55.0

30%	3	0.0
40%	3	0.0
50%	3	5.0
60%	3	0.0
70%	5	5.0
80%	1	0.0
90%	5	0.0

FLOW PROCESS FROM NODE 10.00 TO NODE 30.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<

(UNIT-HYDROGRAPH ADDED TO STREAM #2)

WATERSHED AREA = 110.500 ACRES

BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.274 HOURS

CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900

USER-ENTERED RAINFALL = 2.28 INCHES

RCFC&WCD 3-Hour Storm (5-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 30.414

UNIT HYDROGRAPH DETERMINATION

INTERVAL	"S" GRAPH	UNIT HYDROGRAPH	
NUMBER	MEAN VALUES	ORDINATES(CFS)	
1	2.915	38.954	
2	13.432	140.542	
3	32.620	256.420	
4	53.232	275.455	
5	65.478	163.656	
6	72.710	96.637	
7	77.641	65.904	
8	81.381	49.979	
9	84.310	39.136	
10	86.703	31.981	
11	88.610	25.479	
12	90.300	22.587	
13	91.715	18.915	
14	92.911	15.974	
15	94.004	14.613	
16	94.924	12.293	
17	95.805	11.773	
18	96.471	8.898	
19	97.061	7.892	
20	97.652	7.892	
21	98.088	5.832	

22	98.308	2.935
23	98.526	2.918
24	98.744	2.916
25	98.963	2.916
26	99.181	2.920
27	99.399	2.916
28	99.618	2.916
29	99.836	2.916
30	100.000	2.195

UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0296	0.0224	0.0072
2	0.0296	0.0224	0.0072
3	0.0251	0.0224	0.0027
4	0.0342	0.0224	0.0118
5	0.0342	0.0224	0.0118
6	0.0410	0.0224	0.0186
7	0.0342	0.0224	0.0118
8	0.0410	0.0224	0.0186
9	0.0410	0.0224	0.0186
10	0.0342	0.0224	0.0118
11	0.0365	0.0224	0.0141
12	0.0410	0.0224	0.0186
13	0.0502	0.0224	0.0277
14	0.0502	0.0224	0.0277
15	0.0502	0.0224	0.0277
16	0.0456	0.0224	0.0232
17	0.0593	0.0224	0.0369
18	0.0616	0.0224	0.0391
19	0.0547	0.0224	0.0323
20	0.0616	0.0224	0.0391
21	0.0752	0.0224	0.0528
22	0.0707	0.0224	0.0483
23	0.0661	0.0224	0.0437
24	0.0684	0.0224	0.0460
25	0.0707	0.0224	0.0483
26	0.0958	0.0224	0.0733
27	0.1140	0.0224	0.0916
28	0.0798	0.0224	0.0574
29	0.1550	0.0224	0.1326
30	0.1664	0.0224	0.1440
31	0.1870	0.0224	0.1645
32	0.1345	0.0224	0.1121
33	0.0456	0.0224	0.0232
34	0.0410	0.0224	0.0186
35	0.0410	0.0224	0.0186
36	0.0137	0.0123	0.0014

TOTAL STORM RAINFALL(INCHES) = 2.28 TOTAL SOIL-LOSS(INCHES) = 0.80

TOTAL EFFECTIVE RAINFALL(INCHES) = 1.48

TOTAL COTAL LOSS MOLUME (ASDE FEET) 7 2204

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 7.3381 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 13.6499

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

(No	te: Time ind	dicated i	s at E	ND of Ea	ch Unit Inte	ervals)	
TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	50.0	100.0	150.0	200.0
0.083	0.0019	0.28	Q				
0.167	0.0109	1.30	Q			•	•
0.250	0.0313	2.97	Q		•	•	•
0.333	0.0635	4.68	Q			•	•
0.417	0.1046	5.97	VQ		•	•	•
0.500	0.1599	8.02	VQ		•	•	•
0.583	0.2353	10.95	V Q			•	•
0.667	0.3278	13.43	V Q		•	•	
0.750	0.4337	15.38	.V Q		•	•	•
0.833	0.5487	16.71	.V Q			•	•
0.917	0.6708	17.72	.v Q			•	•
1.000	0.7930	17.75	. VQ			•	•
1.083	0.9191	18.31	. VQ			•	•
1.167	1.0630	20.89	. VQ		•	•	•
1.250	1.2333	24.72	. VQ		•	•	•
1.333	1.4259	27.98	. V	'Q .		•	•
1.417	1.6324	29.98	. V	'Q .		•	•
1.500	1.8537	32.14		VQ .	•	•	•
1.583	2.0974	35.39	•	VQ .	•	•	•
1.667	2.3666	39.08	•	VQ .	•	•	•
1.750	2.6547	41.83	•	VQ .	•	•	•
1.833	2.9669	45.33	•	VQ.	•	•	•
1.917	3.3117	50.07	•	VQ	•	•	•
2.000	3.6809	53.60		Q	•	•	•
2.083	4.0584	54.82		QV	•	•	•
2.167	4.4495	56.78	•	.Q \		•	•
2.250	4.8803	62.56	•	. Q		•	•
2.333	5.3741	71.70	•	•	QV .	•	•
2.417	5.9420	82.46	•	•	QV .	•	•
2.500	6.5935	94.60	•	•	QV.	•	•
2.583	7.3711	112.91	•	•	.VQ		•
2.667	8.3061	135.76	•	•	. \	/ Q .	•
2.750	9.3064	145.24	•	•	•	V Q.	•
2.833	10.2285	133.88	•	•		Q V.	•
2.917	10.9551	105.51	•	•	.Q	. V	•
3.000	11.4871	77.25 58.95	•	.Q	Q.	. v	•
3.083 3.167	11.8931 12.2070	45.58	•		•	. v	٠,
3.250	12.4464	34.76	•	Q.	•	•	v .
3.333	12.6365	27.61	•	Q . Q .	•	•	v . V .
3.417	12.7928	22.69	. Q		•	•	v .
3.500	12.9238	19.03	. Q	•	•	•	v .
3.583	13.0356	16.24	. Q				٧.
3.667	13.1309	13.83	. Q		·		٧.
3.750	13.2138	12.04	. Q				٧.
3.833	13.2856	10.42	. Q		•	•	٧.
3.917	13.3466	8.86	. Q		•		٧.
4.000	13.3985	7.55	.Q		•	•	٧.
4.083	13.4428	6.43	.Q		•	•	٧.
4.167	13.4800	5.39	.Q			•	٧.
4.250	13.5103	4.40	Q			•	٧.
4.333	13.5342	3.47	Q			•	٧.
			-				

4.417	13.5545	2.95	Q			٧.
4.500	13.5731	2.70	Q		•	٧.
4.583	13.5900	2.45	Q		•	٧.
4.667	13.6049	2.17	Q		•	٧.
4.750	13.6181	1.92	Q		•	٧.
4.833	13.6298	1.70	Q		•	٧.
4.917	13.6388	1.30	Q		•	٧.
5.000	13.6448	0.87	Q		•	٧.
5.083	13.6477	0.43	Q		•	٧.
5.167	13.6489	0.16	Q		•	٧.
5.250	13.6495	0.10	Q		•	٧.
5.333	13.6498	0.04	Q		•	٧.
5.417	13.6499	0.00	Q	•	•	V

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of	Estimated	Duration
Peak Flow	Rate	(minutes)
=========	=======	=======
0%		325.0
10%		175.0
20%		115.0
30%		85.0
40%		55.0
50%		40.0
60%		30.0
70%		25.0
80%		15.0
90%		15.0

FLOW PROCESS FROM NODE 10.00 TO NODE 30.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<

(UNIT-HYDROGRAPH ADDED TO STREAM #3)

WATERSHED AREA = 110.500 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.274 HOURS

CAUTION: LAG TIME IS LESS THAN $0.50\ \text{HOURS.}$

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900

USER-ENTERED RAINFALL = 2.89 INCHES

RCFC&WCD 6-Hour Storm (5-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 30.414

UNIT HYDROGRAPH DETERMINATION

MEAN VALUES	ORDINATES(CFS)	
2.915	38.954	
13.432	140.542	
32.620	256.420	
53.232	275.455	
65.478	163.656	
72.710	96.637	
77.641	65.904	
81.381	49.979	
84.310	39.136	
86.703	31.981	
88.610	25.479	
90.300	22.587	
91.715	18.915	
92.911	15.974	
94.004	14.613	
94.924	12.293	
95.805	11.773	
96.471	8.898	
97.061	7.892	
97.652	7.892	
98.088	5.832	
98.308	2.935	
98.526	2.918	
98.744	2.916	
98.963	2.916	
99.181	2.920	
99.399	2.916	
99.618	2.916	
99.836	2.916	
100.000	2.195	
	2.915 13.432 32.620 53.232 65.478 72.710 77.641 81.381 84.310 86.703 88.610 90.300 91.715 92.911 94.004 94.924 95.805 96.471 97.661 97.652 98.088 98.308 98.526 98.744 98.963 99.181 99.399 99.618 99.836	2.915 38.954 13.432 140.542 32.620 256.420 53.232 275.455 65.478 163.656 72.710 96.637 77.641 65.904 81.381 49.979 84.310 39.136 86.703 31.981 88.610 25.479 90.300 22.587 91.715 18.915 92.911 15.974 94.004 14.613 94.924 12.293 95.805 11.773 96.471 8.898 97.061 7.892 98.088 5.832 98.088 5.832 98.308 2.935 98.526 2.918 98.744 2.916 99.181 2.920 99.399 2.916 99.618 2.916 99.836 2.916

UNIT	UNIT	UNIT	EFFECTIV
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0145	0.0130	0.0014
2	0.0173	0.0156	0.0017
3	0.0173	0.0156	0.0017
4	0.0173	0.0156	0.0017
5	0.0173	0.0156	0.0017
6	0.0202	0.0182	0.0020
7	0.0202	0.0182	0.0020
8	0.0202	0.0182	0.0020
9	0.0202	0.0182	0.0020
10	0.0202	0.0182	0.0020
11	0.0202	0.0182	0.0020
12	0.0231	0.0208	0.0023
13	0.0231	0.0208	0.0023
14	0.0231	0.0208	0.0023
15	0.0231	0.0208	0.0023
16	0.0231	0.0208	0.0023
17	0.0231	0.0208	0.0023
18	0.0231	0.0208	0.0023
19	0.0231	0.0208	0.0023
20	0.0231	0.0208	0.0023
21	0.0231	0.0208	0.0023
22	0.0231	0.0208	0.0023
23	0.0231	0.0208	0.0023
24	0.0260	0.0224	0.0036
25	0.0231	0.0208	0.0023
26	0.0260	0.0224	0.0036
27	0.0260	0.0224	0.0036
28	0.0260	0.0224	0.0036
29	0.0260	0.0224	0.0036
30	0.0260	0.0224	0.0036
31	0.0260	0.0224	0.0036
32	0.0260	0.0224	0.0036
33	0.0289	0.0224	0.0065
34	0.0289	0.0224	0.0065
35	0.0289	0.0224	0.0065
36	0.0289	0.0224	0.0065
37	0.0289	0.0224	0.0065
38	0.0318	0.0224	0.0094
39	0.0318	0.0224	0.0094
40	0.0318	0.0224	0.0094
41	0.0347	0.0224	0.0123
42	0.0376	0.0224	0.0152
43	0.0405	0.0224	0.0180
44	0.0405	0.0224	0.0180
45	0.0434	0.0224	0.0209
46	0.0434	0.0224	0.0209
47	0.0462	0.0224	0.0238
48	0.0462	0.0224	0.0238
49	0.0491	0.0224	0.0267
50	0.0520	0.0224	0.0296
51	0.0549	0.0224	0.0325
52	0.0578	0.0224	0.0354
53	0.0607	0.0224	0.0383
54	0.0607	0.0224	0.0383
55	0.0636	0.0224	0.0412
56	0.0665	0.0224	0.0441
57	0.0694	0.0224	0.0469
58	0.0694	0.0224	0.0469

59	0.0723	0.0224	0.0498
60	0.0751	0.0224	0.0527
61	0.0896	0.0224	0.0672
62	0.1040	0.0224	0.0816
63	0.1127	0.0224	0.0903
64	0.1214	0.0224	0.0990
65	0.1358	0.0224	0.1134
66	0.1618	0.0224	0.1394
67	0.0549	0.0224	0.0325
68	0.0260	0.0224	0.0036
69	0.0173	0.0156	0.0017
70	0.0145	0.0130	0.0014
71	0.0087	0.0078	0.0009
72	0.0058	0.0052	0.0006

TOTAL STORM RAINFALL(INCHES) = 2.89
TOTAL SOIL-LOSS(INCHES) = 1.48
TOTAL EFFECTIVE RAINFALL(INCHES) = 1.41

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 13.6571
TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 12.9483

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

(N	ote: Time ind	dicated i	s at E	ND of Each	Unit Inte	ervals)	
TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	50.0	100.0	150.0	200.0
0.083	0.0004	0.06	Q				
0.167	0.0023	0.27	Q				
0.250	0.0069	0.68	Q				
0.333	0.0149	1.15	Q				
0.417	0.0250	1.47	Q				
0.500	0.0365	1.67	Q				
0.583	0.0491	1.83	Q				
0.667	0.0629	2.00	Q	•			
0.750	0.0777	2.15	Q				
0.833	0.0932	2.25	Q				
0.917	0.1092	2.33	Q		•		
1.000	0.1257	2.40	Q		•		
1.083	0.1428	2.49	Q				
1.167	0.1607	2.60	Q		•		
1.250	0.1794	2.71	Q				
1.333	0.1987	2.79	Q				
1.417	0.2183	2.85	Q				
1.500	0.2382	2.89	Q				
1.583	0.2583	2.92	Q				
1.667	0.2786	2.95	Q	•			
1.750	0.2990	2.97	Q				
1.833	0.3196	2.99	Q				
1.917	0.3403	3.00	Q۷				
2.000	0.3614	3.07	Q۷				
2.083	0.3835	3.21	Q۷				
2.167	0.4071	3.42	Q۷				
2.250	0.4321	3.63	Q۷				
2.333	0.4584	3.83	Q۷		_	_	
2.417	0.4867	4.10	Q۷				
2.500	0.5162	4.28	Q۷				
2.583	0.5464	4.39	Q۷				
2.667	0.5771	4.46	Q۷				
2.750	0.6090	4.63	Q۷				
2.833	0.6439	5.08	.Q				
2.917	0.6843	5.86	.QV				
3.000	0.7303	6.68	.QV	•			
3.083	0.7798	7.18	.Qv		•		
3.167	0.8321	7.60	.QV		•		
3.250	0.8886	8.21	.QV		•		
3.333	0.9514	9.12	.QV		•		
3.417	1.0213	10.15	. QV		•		
3.500	1.0988	11.25	. QV		•		
3.583	1.1875	12.87	. QV		•		
3.667	1.2913	15.08	. Q		•		
3.750	1.4112	17.41	. Q\		•	•	
3.833	1.5457	19.53	. Q\			•	
3.917	1.6935	21.46		įν .		•	
4.000	1.8546	23.39		įν .		•	
4.083	2.0287	25.27	•	QV .		•	
4.167	2.2167	27.30		QV .		•	
4.250	2.4204	29.57		QV.		•	
4.333	2.6432	32.35		QV.		•	
					-	-	•

4.417	2.8872	35.43	•	QV .	•		•
4.500	3.1529	38.58		Q V.	•		
4.583	3.4390	41.54		QV			•
4.667	3.7437	44.25		Q.V			
4.750	4.0673	46.98		Q. V			
4.833	4.4115	49.98		Q. V	_		
4.917	4.7759	52.91		Q V	-		
5.000	5.1591	55.64			, .	·	
5.083	5.5643	58.84	•	. Q		•	•
5.167	6.0054	64.04	•	. Q	V .	•	•
5.250	6.5027	72.22	•		V . V	•	•
			•	. Q	=	•	•
5.333	7.0736	82.89	•	•	Q .V	•	•
5.417	7.7228	94.27	•	•	Q.V	•	•
5.500	8.4563	106.50	•	•	.Q	٧	•
5.583	9.2588	116.52	•	•	. Q	٧.	•
5.667	10.0543	115.50	•	•	. Q	٠٧.	•
5.750	10.7200	96.65	•	•	Q.	. V	•
5.833	11.1855	67.60	•	. Q	•	•	V .
5.917	11.5093	47.01	•	Q.	•	•	٧ .
6.000	11.7524	35.30	•	Q.	•		V .
6.083	11.9457	28.07	. (Q .	•		V .
6.167	12.1033	22.88	. Q		•		V .
6.250	12.2339	18.97	. Q		•		V .
6.333	12.3432	15.88	. Q	•			٧.
6.417	12.4368	13.58	. Q	•			٧.
6.500	12.5168	11.62	. Q	•			٧.
6.583	12.5855	9.99	.Q		•		٧.
6.667	12.6452	8.66	.Q		_		٧.
6.750	12.6964	7.44	.Q		-		٧.
6.833	12.7403	6.38	.Q		•	·	٧.
6.917	12.7768	5.29	. Q	•	•	•	٧.
7.000	12.8075	4.46		•	•	•	٧.
7.083	12.8335	3.77	Q	•	•	•	v. V.
			Q	•	•	•	
7.167	12.8542	3.01	Q	•	•	•	٧.
7.250	12.8706	2.39	Q	•	•	•	٧.
7.333	12.8854	2.14	Q	•	•	•	٧.
7.417	12.8990	1.98	Q	•	•	•	٧.
7.500	12.9114	1.81	Q	•	•	•	٧.
7.583	12.9224	1.59	Q	•	•	•	٧.
7.667	12.9317	1.34	Q	•	•	•	٧.
7.750	12.9391	1.07	Q	•	•	•	٧.
7.833	12.9444	0.77	Q	•			٧.
7.917	12.9473	0.42	Q	•	•	•	٧.
8.000	12.9480	0.10	Q	•			٧.
8.083	12.9481	0.02	Q	•			٧.
8.167	12.9482	0.01	Q	•			٧.
8.250	12.9483	0.01	Q	•			٧.

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE:

(Note: 100% of Peak Flow Rate estimate assumed to have

an instantaneous time duration)

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
=======================================	=======
0%	495.0
10%	175.0
20%	130.0
30%	100.0
40%	75.0
50%	50.0
60%	35.0
70%	30.0
80%	25.0
90%	15.0

FLOW PROCESS FROM NODE 10.00 TO NODE 30.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<

(UNIT-HYDROGRAPH ADDED TO STREAM #4)

WATERSHED AREA = 110.500 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.274 HOURS CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900

MINIMUM SOIL-LOSS RATE(INCH/HOUR) = 0.134

USER-ENTERED RAINFALL = 4.61 INCHES

RCFC&WCD 24-Hour Storm (15-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 91.241

UNIT HYDROGRAPH DETERMINATION

"S" GRAPH UNIT HYDROGRAPH MEAN VALUES NUMBER ORDINATES(CFS) ______ 16.322 72.707 1 2 63.807 211.522 81.111 77.082 3 4 88.537 33.082 5 92.877 19.329 95.733 6 12.725 7 97.600 8.318 8 98.526 4.124 9 99.181 2.916 10 99.672 2.190 99.918 11 1.095 100.000 12 0.365

UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0092	0.0083	0.0009
2	0.0138	0.0124	0.0014
3	0.0138	0.0124	0.0014
4	0.0184	0.0166	0.0018
5	0.0138	0.0124	0.0014
6	0.0138	0.0124	0.0014
7	0.0138	0.0124	0.0014
8	0.0184	0.0166	0.0018
9	0.0184	0.0166	0.0018
10	0.0184	0.0166	0.0018
11	0.0231	0.0207	0.0023
12	0.0231	0.0207	0.0023
13 14	0.0231	0.0207	0.0023 0.0023
15	0.0231 0.0231	0.0207 0.0207	0.0023
16	0.0277	0.0249	0.0028
17	0.0277	0.0249	0.0028
18	0.0277	0.0290	0.0032
19	0.0323	0.0290	0.0032
20	0.0369	0.0332	0.0037
21	0.0277	0.0249	0.0028
22	0.0323	0.0290	0.0032
23	0.0369	0.0332	0.0037
24	0.0369	0.0332	0.0037
25	0.0415	0.0373	0.0041
26	0.0415	0.0373	0.0041
27	0.0461	0.0415	0.0046
28	0.0461	0.0415	0.0046
29	0.0461	0.0415	0.0046
30	0.0507	0.0456	0.0051
31	0.0553	0.0498	0.0055
32	0.0599	0.0539	0.0060
33	0.0692	0.0622	0.0069
34	0.0692	0.0622	0.0069
35	0.0738	0.0664	0.0074
36	0.0784	0.0705	0.0078
37	0.0876	0.0745	0.0131
38 39	0.0922 a agas	0.0735 0.0724	0.0187 0.0244
40	0.0968 0.1014	0.0724 0.0714	0.0301
41	0.0692	0.0622	0.0069
42	0.0692	0.0622	0.0069
43	0.0032	0.0683	0.0239
44	0.0922	0.0673	0.0249
45	0.0876	0.0663	0.0213
46	0.0876	0.0653	0.0223
47	0.0784	0.0644	0.0140
48	0.0830	0.0634	0.0196
49	0.1153	0.0625	0.0528
50	0.1199	0.0615	0.0583
51	0.1291	0.0606	0.0685
52	0.1337	0.0597	0.0740
53	0.1567	0.0588	0.0980
54	0.1567	0.0579	0.0988
55	0.1060	0.0570	0.0490
56	0.1060	0.0561	0.0499
57	0.1245	0.0553	0.0692
58	0.1199	0.0544	0.0654
59	0.1199	0.0536	0.0662

60	0.1153	0.0528	0.0625
61	0.1106	0.0520	0.0587
62	0.1060	0.0512	0.0548
63	0.0876	0.0504	0.0372
64	0.0876	0.0496	0.0380
65	0.0184	0.0166	0.0018
66	0.0184	0.0166	0.0018
67	0.0138	0.0124	0.0014
68	0.0138	0.0124	0.0014
69	0.0231	0.0207	0.0023
70	0.0231	0.0207	0.0023
71	0.0231	0.0207	0.0023
72	0.0184	0.0166	0.0018
73	0.0184	0.0166	0.0018
74	0.0184	0.0166	0.0018
75	0.0138	0.0124	0.0014
76	0.0092	0.0083	0.0009
77	0.0138	0.0124	0.0014
78	0.0184	0.0166	0.0018
79	0.0138	0.0124	0.0014
80	0.0092	0.0083	0.0009
81	0.0138	0.0124	0.0014
82	0.0138	0.0124	0.0014
83	0.0138	0.0124	0.0014
84	0.0092	0.0083	0.0009
85	0.0138	0.0124	0.0014
86	0.0092	0.0083	0.0009
87	0.0138	0.0124	0.0014
88	0.0092	0.0083	0.0009
89	0.0138	0.0124	0.0014
90	0.0092	0.0083	0.0009
91	0.0092	0.0083	0.0009
92	0.0092	0.0083	0.0009
93	0.0092	0.0083	0.0009
94	0.0092	0.0083	0.0009
95	0.0092	0.0083	0.0009
96	0.0092	0.0083	0.0009

TOTAL STORM RAINFALL(INCHES) = 4.61
TOTAL SOIL-LOSS(INCHES) = 3.21
TOTAL EFFECTIVE RAINFALL(INCHES) = 1.40

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 29.6044 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 12.8394

24-HOUR STORM RUNOFF HYDROGRAPH

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at FND of Each Unit Intervals)

(Not	te: Time in	dicated i	s at E	END of Each	Unit Inte	rvals)	
TIME(HRS) \	/OLUME(AF)	Q(CFS)	0.	10.0	20.0	30.0	40.0
0.083	0.0005	0.07	Q				
0.167	0.0009	0.07	Q		•	•	
0.250	0.0014	0.07	Q		•	•	
0.333	0.0034	0.30	Q				•
0.417	0.0055	0.30	Q				
0.500	0.0075	0.30	Q		-		
0.583	0.0107	0.46	Q				
0.667	0.0139	0.46	Q				
0.750	0.0171	0.46	Q				•
0.833	0.0210	0.56	Q		•	•	
0.917	0.0248	0.56	Q		•	•	
1.000	0.0287	0.56	Q		•	•	
1.083	0.0333	0.66	Q		•	•	
1.167	0.0378	0.66	Q				•
1.250	0.0424	0.66	Q		•	•	
1.333	0.0466	0.62	Q		•	•	
1.417	0.0509	0.62	Q		•	•	
1.500	0.0552	0.62	Q		•	•	
1.583	0.0594	0.61	Q		•	•	
1.667	0.0636	0.61	Q		•	•	
1.750	0.0678	0.61	Q		•	•	
1.833	0.0723	0.65	Q		•	•	
1.917	0.0768	0.65	Q		•	•	
2.000	0.0812	0.65	Q		•	•	
2.083	0.0864	0.75	Q		•	•	
2.167	0.0915	0.75	Q		•	•	
2.250	0.0966	0.75	Q		•	•	
2.333	0.1020	0.78	Q		•	•	
2.417	0.1074	0.78	Q		•	•	
2.500	0.1128	0.78	Q				•
2.583	0.1186	0.83	Q		•	•	
2.667	0.1243	0.83	Q				•
2.750	0.1300	0.83	Q				•
2.833	0.1365	0.94	Q		•	•	
2.917	0.1430	0.94	Q		•	•	
3.000	0.1494	0.94	Q		•	•	
3.083	0.1562	0.98	Q	•	•	•	
3.167	0.1629	0.98	Q	•	•	•	
3.250	0.1697	0.98	Q	•	•	•	•
3.333	0.1766	1.00	Q	•	•	•	•
3.417	0.1834	1.00	Q	•	•	•	•
3.500	0.1903	1.00	Q	•	•	•	•
3.583	0.1973	1.01	VQ	•	•	•	•
3.667	0.2042	1.01	VQ	•	•	•	•
3.750	0.2112	1.01	VQ	•	•	•	•
3.833	0.2184	1.05	VQ	•	•	•	•
3.917	0.2256	1.05	VQ	•	•	•	•
4.000	0.2329	1.05	VQ	•	•	•	•
4.083	0.2408	1.15	VQ	•	•	•	•
4.167	0.2487	1.15	VQ	•	•	•	•
4.250	0.2567	1.15	VQ	•	•	•	•
4.333	0.2651	1.22	VQ	•	•	•	•
4.417	0.2735	1.22	VQ	•	•	•	•

TIME(HRS)	VOLUME(AF)	Q(CFS) 0		10.0	20.0	30.0	40.0
4.500	0.2819		VQ	•	•	•	•
4.583	0.2912		VQ	•	•	•	•
4.667	0.3004		VQ	•	•	•	•
4.750	0.3096		VQ	•	•	•	•
4.833	0.3193		VQ	•	•	•	•
4.917	0.3291	1.42	Q	•	•	•	•
5.000	0.3389	1.42	Q	•	•	•	•
5.083	0.3490	1.47	.Q	•	•	•	•
5.167	0.3591		.Q	•	•	•	•
5.250	0.3692		.Q	•	•	•	•
5.333	0.3786		.Q	•	•	•	•
5.417	0.3879		.Q	•	•	•	•
5.500	0.3972		.Q	•	•	•	•
5.583 5.667	0.4071 0.4171	1.44 1.44	.Q	•	•	•	•
5.750	0.4171	1.44	.Q	•	•	•	•
5.833	0.4270		.Q .Q	•	•	•	•
5.917	0.4484		. Q	•	•	•	•
6.000	0.4591		. Q . Q	•	•	•	•
6.083	0.4703		. Q	•	•	•	•
6.167	0.4816		.Q	•	•	•	•
6.250	0.4928	1.63	. Q	•	•	•	•
6.333	0.5048	1.75	.Q				
6.417	0.5169		.Q				
6.500	0.5289		.Q				
6.583	0.5415	1.83	.Q				
6.667	0.5540	1.83	. Q				
6.750	0.5666	1.83	.Q				
6.833	0.5800	1.95	.Q				
6.917	0.5934	1.95	.Q				
7.000	0.6068		.Q				
7.083	0.6205	1.99	.Q				
7.167	0.6343	1.99	.Q				
7.250	0.6480	1.99	.QV				
7.333	0.6622	2.05	. Q				
7.417	0.6763	2.05	. Q				
7.500	0.6904	2.05	. Q		•	•	•
7.583	0.7055	2.20	. Q		•	•	
7.667	0.7207	2.20	. Q	•			•
7.750	0.7358	2.20	. Q	•	•	•	•
7.833	0.7521	2.37	. Q	•	•	•	•
7.917	0.7685	2.37	. Q	•	•	•	•
8.000	0.7848	2.37	. Q	•	•	•	•
8.083	0.8027	2.59	. Q	•	•	•	•
8.167	0.8205	2.59	. Q	•	•	•	•
8.250	0.8384		. Q	•	•	•	•
8.333	0.8580	2.85	. Q	•	•	•	•
8.417	0.8776	2.85	. Q	•	•	•	•
8.500	0.8973	2.85	. Q	•	•	•	•
8.583	0.9179	2.99	. Q	•	•	•	•
8.667	0.9384 0.9590	2.99	. Q	•	•	•	•
8.750		2.99	. Q	•	•	•	•
8.833	0.9808	3.17	. Q	•	•	•	•
8.917 9.000	1.0027 1.0245	3.17 3.17	. Q	•	•	•	•
9.000	1.0245	3.17	. Q	•	•	•	•
9.063	1.0756	3.71	. Q . Q	•	•	•	•
9.167	1.1012	3.71	. Q . Q	•	•	•	•
9.333	1.1377	5.30	. v Q	•	•	•	•
9.417	1.1742	5.30	. v Q	•	•	•	•
2.71	±•±/ ¬£	5.50		•	•	•	•

TIME(HRS)	VOLUME(AF)	Q(CFS) 0.	10.0	20.0	30.0	40.0
9.500	1.2108	5.30 .	VQ.	•		
9.583	1.2614	7.35 .	V Q .	•	•	•
9.667	1.3121	7.35 .	VQ.	•	•	•
9.750	1.3627	7.35 .	VQ.	•	•	•
9.833	1.4288	9.59 .	V Q.	•	•	•
9.917	1.4949	9.59 .	V Q.	•	•	•
10.000	1.5610	9.59 .	V Q.	•	•	•
10.083	1.6288	9.85 .	V Q.	•	•	•
10.167 10.250	1.6966	9.85 .	V Q.	•	•	•
10.230	1.7644 1.8041	9.85 . 5.76 .	V Q.	•	•	•
10.333	1.8437	5.76 .	Q .	•	•	•
10.500	1.8834	5.76 .	Q. Q.	•	•	•
10.583	1.9221	5.63 .	Q.	•	•	•
10.667	1.9609	5.63 .	QV .	•	•	•
10.750	1.9996	5.63 .	QV .		_	
10.833	2.0601	8.78 .	VQ.	_	_	
10.917	2.1205	8.78 .	νψ. VQ.	•	•	
11.000	2.1810	8.78 .	νų. VQ.		•	
11.083	2.2481	9.75 .	νQ.	•	•	
11.167	2.3152	9.75 .	ν Q.			
11.250	2.3824	9.75 .	v Q.			
11.333	2.4478	9.50 .	v Q.	•	•	
11.417	2.5131	9.50 .	v Q.	•	•	
11.500	2.5785	9.50 .	VQ.			
11.583	2.6409	9.05 .	VQ.			
11.667	2.7032	9.05 .	VQ.			
11.750	2.7655	9.05 .	VQ.	•	•	
11.833	2.8196	7.84 .	QV .	•	•	
11.917	2.8736	7.84 .	QV .	•	•	
12.000	2.9276	7.84 .	Q V.	•	•	
12.083	3.0024	10.87 .	VQ	•	•	
12.167	3.0773	10.87 .	VQ	•	•	•
12.250	3.1521	10.87 .	VQ		•	•
12.333	3.2793	18.46 .	V	Q.	•	•
12.417	3.4064	18.46 .	V	Q.	•	•
12.500	3.5336	18.46 .	V	Q.	•	•
12.583	3.6918	22.97 .	٠٧.	. Q	•	•
12.667	3.8500	22.97 .	٠٧.	. Q	•	•
12.750	4.0082	22.97 .	. V	. Q		•
12.833	4.1947	27.07 .	. V	•	Q.	•
12.917	4.3811	27.07 .	. V		Q.	•
13.000	4.5675	27.07 .	. v		Q.	•
13.083	4.7852	31.61 .	. V		.Q	•
13.167	5.0029	31.61 . 31.61 .	•	V . V .	.Q	•
13.250 13.333	5.2206 5.4826	38.04 .	•	v . V .	.Q	
13.333	5.4826 5.7446	38.04 .	•	v . V .	•	Q.
13.417	6.0066	38.04 .	•	v . V .	•	Q. Q.
13.583	6.2626	37.18 .	•	v . V.	•	Q.
13.667	6.5187	37.18 .	•	٧.	•	Q.
13.750	6.7747	37.18 .	•	V	•	Q.
13.833	6.9674	27.98 .	•	٠٧	Q .	٠.
13.917	7.1601	27.98 .	•	. v	Q.	•
14.000	7.3528	27.98 .	•	. v	Q.	•
14.083	7.5352	26.49 .	•	. v	Q.	•
14.167	7.7177	26.49 .	•		Q.	
14.250	7.9002	26.49 .	•		Q.	
14.333	8.1014	29.22 .	•		ν Q.	
14.417	8.3027	29.22 .	•		v Q.	
14.500	8.5039	29.22 .	•	•	v Q.	

TWE(HK2)	VOLUME(AF)	Q(CFS)	0. 	10.0	20.0	30.0	40.0
14.583	8.7061	29.35		•	•	v Q.	•
14.667	8.9082	29.35			•	V Q.	•
14.750	9.1104	29.35				VQ.	
14.833	9.3111	29.15				Q.	•
14.917	9.5119	29.15				Q.	
15.000	9.7126	29.15				Q۷	
15.083	9.9060	28.08		•	•	QV	•
15.167	10.0993	28.08		•	•	Q V	•
			•	•	•		•
15.250	10.2927	28.08	•	•	•	Q V	•
15.333	10.4770	26.77	•	•	•	Q . V	•
15.417	10.6614	26.77	•	•	•	Q . V	
15.500	10.8458	26.77	•	•	•	Q . V	
15.583	11.0130	24.28	•	•	•	-	v .
15.667	11.1802	24.28			•	Q .	ν.
15.750	11.3474	24.28				Q.	٧.
15.833	11.4856	20.07			Q		٧.
15.917	11.6238	20.07			Q		٧.
16.000	11.7620	20.07			Q	•	٧ .
16.083	11.8721	15.99	•	•	Q.	·	٧.
16.167	11.9823	15.99	•	•	Q.	•	v .
			•	•		•	
16.250	12.0924	15.99	•		Q.	•	٧.
16.333	12.1454	7.69	•	Q.	•	•	٧.
16.417	12.1984	7.69	•	Q.	•	•	٧.
16.500	12.2513	7.69	•	Q.	•	•	٧.
16.583	12.2822	4.48	. Q	•	•	•	٧.
16.667	12.3131	4.48	. Q		•		٧.
16.750	12.3439	4.48	. Q				٧.
16.833	12.3641	2.92	. Q		•		٧.
16.917	12.3842	2.92	. Q				٧.
17.000	12.4043	2.92	. Q				٧.
17.083	12.4187	2.09	. Q	•	•	•	v .
			_	•	•	•	v . V .
17.167	12.4331	2.09	. Q	•	•	•	
17.250	12.4474	2.09	. Q	•	•	•	٧.
17.333	12.4593	1.72	.Q	•	•	•	٧.
17.417	12.4711	1.72	.Q	•	•	•	V .
17.500	12.4829	1.72	.Q	•	•	•	٧.
17.583	12.4927	1.42	.Q		•		٧.
17.667	12.5024	1.42	.Q				٧.
17.750	12.5122	1.42	.Q				٧.
17.833	12.5205	1.22	. Q				٧.
17.917	12.5289	1.22		-		-	٧.
18.000	12.5373	1.22		•	-	•	٧.
18.083	12.5442		.Q	•	•	•	٧.
				•	•	•	
18.167	12.5512		.Q	•	•	•	٧.
18.250	12.5581	1.01		•	•	•	٧.
18.333	12.5643	0.90		•	•	•	٧.
18.417	12.5705	0.90		•	•	•	٧.
18.500	12.5767	0.90			•	•	٧.
18.583	12.5823	0.82	Q				٧.
18.667	12.5879	0.82	Q		•		٧.
18.750	12.5936	0.82				•	٧.
18.833	12.5981	0.67			-	•	٧.
18.917	12.6027	0.67		•	•	•	٧.
				•	•	•	v. V.
19.000	12.6073	0.67		•	•	•	
19.083	12.6112	0.56		•	•	•	٧.
19.167	12.6151	0.56		•	•	•	٧.
19.250	12.6189	0.56			•		٧.
19.333	12.6234	0.64		•		•	٧.
19.417	12.6278	0.64			•		٧.
		0.64					٧.
19.500	12.6322	0.04	- Y	•	•		٧.

			40.0			40.0
TIME(HRS)	VOLUME(AF)	Q(CFS) 0.	10.0	20.0	30.0	40.0
19.667	12.6420	0.72 Q		•	•	٧.
19.750	12.6470	0.72 Q				٧.
19.833	12.6512	0.62 Q			•	٧.
19.917	12.6555	0.62 Q		•	•	٧.
20.000	12.6598	0.62 Q	•	•	•	٧.
20.083	12.6635	0.53 Q	•	•	•	٧.
20.167	12.6671	0.53 Q			•	٧.
20.250	12.6708	0.53 Q	•	•	•	٧.
20.333	12.6749	0.59 Q	•	•	•	٧.
20.417	12.6789	0.59 Q	•	•	•	٧.
20.500	12.6830	0.59 Q	•	•	•	٧.
20.583	12.6871	0.61 Q	•	•	•	٧.
20.667	12.6913	0.61 Q	•	•	•	٧.
20.750	12.6955	0.61 Q	•	•	•	٧.
20.833	12.6995	0.58 Q	•	•	•	٧.
20.917	12.7034	0.58 Q	•	•	•	٧.
21.000	12.7074	0.58 Q	•	•	•	٧.
21.083	12.7110	0.51 Q	•	•	•	٧.
21.167	12.7145	0.51 Q	•	•	•	٧.
21.250	12.7180 12.7218	0.51 Q	•	•	•	V. V.
21.333 21.417	12.7218	0.54 Q 0.54 Q	•	•	•	v. V.
21.417	12.7255	0.54 Q 0.54 Q	•	•	•	v. V.
21.583	12.7293	0.50 Q	•	•	•	v. V.
21.667	12.7362	0.50 Q 0.50 Q	•	•	•	٧.
21.750	12.7396	0.50 Q	•	•		٧.
21.833	12.7434	0.54 Q				٧.
21.917	12.7471	0.54 Q				٧.
22.000	12.7508	0.54 Q				٧.
22.083	12.7542	0.50 Q		_		٧.
22.167	12.7576	0.50 Q				٧.
22.250	12.7610	0.50 Q				٧.
22.333	12.7647	0.53 Q				٧.
22.417	12.7684	0.53 Q				٧.
22.500	12.7720	0.53 Q		•	•	٧.
22.583	12.7752	0.46 Q				٧.
22.667	12.7784	0.46 Q				٧.
22.750	12.7816	0.46 Q	•	•	•	٧.
22.833	12.7846	0.44 Q	•	•	•	٧.
22.917	12.7876	0.44 Q			•	٧.
23.000	12.7906	0.44 Q	•	•	•	٧.
23.083	12.7935	0.43 Q		•	•	٧.
23.166	12.7964	0.43 Q	•	•	•	٧.
23.250	12.7994	0.43 Q		•	•	٧.
23.333	12.8023	0.42 Q			•	٧.
23.416	12.8051	0.42 Q	•	•	•	٧.
23.500	12.8080	0.42 Q	•	•	•	٧.
23.583	12.8109	0.42 Q	•	٠	•	٧.
23.666	12.8138	0.42 Q	•	•	•	٧.
23.750	12.8166	0.42 Q	•	•	•	٧.
23.833	12.8195	0.41 Q	•	•	•	٧.
23.916	12.8223	0.41 Q	•	•	•	٧.
24.000	12.8252	0.41 Q	•	•	•	٧.
24.083	12.8276	0.35 Q	•	•	•	٧.
24.166	12.8300	0.35 Q	•	•	•	٧.
24.250	12.8323	0.35 Q	•	•	•	٧.
24.333	12.8334	0.15 Q	•	•	•	٧.
24.416	12.8344	0.15 Q	•	•	•	٧.
24.500	12.8354	0.15 Q	•	•	•	٧.
24.583	12.8360	0.08 Q	•	•	•	٧.
24.666	12.8365	0.08 Q	•	•	•	٧.

24.750	12.8370	0.08	Q		•	٧.
24.833	12.8374	0.05	Q			٧.
24.916	12.8377	0.05	Q			٧.
25.000	12.8380	0.05	Q			٧.
25.083	12.8382	0.03	Q			٧.
25.166	12.8384	0.03	Q			٧.
25.250	12.8386	0.03	Q			٧.
25.333	12.8387	0.02	Q			٧.
25.416	12.8389	0.02	Q			٧.
25.500	12.8390	0.02	Q			٧.
25.583	12.8390	0.01	Q			٧.
25.666	12.8391	0.01	Q			٧.
25.750	12.8392	0.01	Q	•		٧.

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have

an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)	
=======================================	=======	
0%	1545.0	
10%	450.0	
20%	375.0	
30%	240.0	
40%	240.0	
50%	210.0	
60%	195.0	
70%	150.0	
80%	45.0	
90%	30.0	

END OF FLOODSCx ROUTING ANALYSIS

FLOOD ROUTING ANALYSIS

ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

Analysis prepared by:

(UNIT-HYDROGRAPH ADDED TO STREAM #1)

WATERSHED AREA = 151.300 ACRES
BASEFLOW = 0.000 CFS/SQUARE-MILE
*USER ENTERED "LAG" TIME = 0.295 HOURS
CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.
THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)
MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.
VALLEY S-GRAPH SELECTED
UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269
LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900
USER-ENTERED RAINFALL = 1.56 INCHES
RCFC&WCD 1-Hour Storm (5-Minute period) SELECTED
(SLOPE OF INTENSITY-DURATION CURVE = 0.58)
*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 28.249

UNIT HYDROGRAPH DETERMINATION

INTERVAL	"S" GRAPH	UNIT HYDROGRAPH	
	MEAN VALUES		
1	2.644	48.388	
2	11.822	167.923	
3	28.750	309.760	
4	48.757	366.082	
5	62.350	248.722	
6	70.275	145.008	
7	75.577	97.012	
8	79.510	71.973	
9	82.607	56.668	
10	85.156	46.635	
11	87.226	37.872	
12	88.933	31.238	
13	90.467	28.064	
14	91.769	23.830	
15	92.874	20.224	
16	93.901	18.791	
17	94.768	15.856	
18	95.599	15.202	
19	96.283	12.532	
20	96.832	10.037	
21	97.381	10.037	
22	97.905	9.602	
23	98.177	4.964	
24	98.379	3.707	
25	98.582	3.709	
26	98.785	3.712	
27	98.988	3.709	
28	99.190	3.709	
29	99.393	3.709	
30	99.596	3.709	
31	99.798	3.709	
32	100.000	3.689	

********	********	*******	******
UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0566	0.0224	0.0342
-			
2	0.0604	0.0224	0.0380
3	0.0651	0.0224	0.0426
4	0.0732	0.0224	0.0508
5	0.0782	0.0224	0.0557
6	0.0913	0.0224	0.0689
7	0.1110	0.0224	0.0886
8	0.1242	0.0224	0.1018
9	0.2040	0.0224	0.1816
10	0.5310	0.0224	0.5086
11	0.1012	0.0224	0.0787
12	0.0638	0.0224	0.0414

TOTAL STORM RAINFALL(INCHES) = 1.56 TOTAL SOIL-LOSS(INCHES) = 0.27

TOTAL EFFECTIVE RAINFALL(INCHES) = 1.29

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 3.3916
TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 16.2690

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	100.0	200.0	300.0	400.0
0.083	0.0114	1.65	Q				
0.167	0.0636	7.58	Q				
0.250	0.1946	19.03	VQ				
0.333	0.4281	33.90	.V Q				
0.417	0.7508	46.85	.V Q				
0.500	1.1534	58.46	. V Q				
0.583	1.6435	71.16	. V	Q.			
0.667	2.2393	86.52	. V	Q.			
0.750	2.9871	108.58		V Q			
0.833	4.0617	156.03		٧.	Q.		
0.917	5.6409	229.30			V . Q		
1.000	7.6759	295.48			V .	Q.	
1.083	9.7441	300.30			. V	Q	
1.167	11.2756	222.38			. Q	V .	
1.250	12.2961	148.16			Q.	V	
1.333	13.0001	102.23		Q		٠٧.	
1.417	13.5214	75.69		Q.		. \	
1.500	13.9333	59.81	. Q		•		٧.
1.583	14.2715	49.11	. Q		•		٧.
1.667	14.5514	40.63	. Q		•		٧.
1.750	14.7878	34.32	. Q		•		٧.
1.833	14.9949	30.07	. Q		•		٧.
1.917	15.1728	25.83	. Q				٧.
2.000	15.3267	22.36	. Q		•		٧.
2.083	15.4637	19.89	.Q				٧.
2.167	15.5823	17.21	.Q		•		٧.
2.250	15.6890	15.50	.Q		•		٧.
2.333	15.7791	13.09	.Q		•		٧.
2.417	15.8551	11.04	.Q				٧.
2.500	15.9245	10.07	.Q		•		٧.
2.583	15.9849	8.77	Q		•		٧.
2.667	16.0273	6.15	Q		•		٧.
2.750	16.0617	5.00	Q		•		٧.
2.833	16.0932	4.57	Q		•	•	٧.
2.917	16.1233	4.36	Q		•		٧.
3.000	16.1520	4.17	Q				٧.
3.083	16.1793	3.97	Q				٧.
3.167	16.2049	3.71	Q		•		٧.
3.250	16.2282	3.38	Q		•	•	٧.
3.333	16.2488	3.00	Q		•	•	٧.
3.417	16.2648	2.32	Q		•	•	٧.
3.500	16.2679	0.44	Q		•		٧.
3.583	16.2689	0.15	Q		•		٧.

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE:

(Note: 100% of Peak Flow Rate estimate assumed to have

an instantaneous time duration) $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) ^{2}$

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
=======================================	=======
0%	215.0
10%	95.0
20%	55.0
30%	40.0
40%	30.0
50%	25.0
60%	20.0
70%	20.0
80%	10.0
90%	10.0

FLOW PROCESS FROM NODE 10.00 TO NODE 40.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<

(UNIT-HYDROGRAPH ADDED TO STREAM #2)

WATERSHED AREA = 151.300 ACRES

BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.295 HOURS

CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900

USER-ENTERED RAINFALL = 2.28 INCHES

RCFC&WCD 3-Hour Storm (5-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 28.249

UNIT HYDROGRAPH DETERMINATION

INTERVAL	"S" GRAPH	UNIT HYDROGRAPH	
NUMBER	MEAN VALUES		
1	2.644	48.388	
2	11.822	167.923	
3	28.750	309.760	
4	48.757	366.082	
5	62.350	248.722	
6	70.275	145.008	
7	75.577	97.012	
8	79.510	71.973	
9	82.607	56.668	
10	85.156	46.635	
11	87.226	37.872	
12	88.933	31.238	
13	90.467	28.064	
14	91.769	23.830	
15	92.874	20.224	
16	93.901	18.791	
17	94.768	15.856	
18	95.599	15.202	
19	96.283	12.532	
20	96.832	10.037	
21	97.381	10.037	
22	97.905	9.602	
23	98.177	4.964	
24	98.379	3.707	
25	98.582	3.709	
26	98.785	3.712	
27	98.988	3.709	
28	99.190	3.709	
29	99.393	3.709	
30	99.596	3.709	
31	99.798	3.709	
32	100.000	3.689	

******	******	*******	********
UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0296	0.0224	0.0072
2	0.0296	0.0224	0.0072
3	0.0251	0.0224	0.0027
4	0.0342	0.0224	0.0118
5	0.0342	0.0224	0.0118
6	0.0410	0.0224	0.0186
7	0.0342	0.0224	0.0118
8	0.0410	0.0224	0.0186
9	0.0410	0.0224	0.0186
10	0.0342	0.0224	0.0118
11	0.0365	0.0224	0.0141
12	0.0410	0.0224	0.0186
13	0.0502	0.0224	0.0277
14	0.0502	0.0224	0.0277
15	0.0502	0.0224	0.0277
16	0.0456	0.0224	0.0232
17	0.0593	0.0224	0.0369
18	0.0616	0.0224	0.0391
19	0.0547	0.0224	0.0323
20	0.0616	0.0224	0.0391
21	0.0752	0.0224	0.0528
22	0.0707	0.0224	0.0483
23	0.0661	0.0224	0.0437
24	0.0684	0.0224	0.0460
25	0.0707	0.0224	0.0483
26	0.0958	0.0224	0.0733
27	0.1140	0.0224	0.0916
28	0.0798	0.0224	0.0574
29	0.1550	0.0224	0.1326
30	0.1664	0.0224	0.1440
31	0.1870	0.0224	0.1645
32	0.1345	0.0224	0.1121
33	0.0456	0.0224	0.0232
34	0.0410	0.0224	0.0186
35	0.0410	0.0224	0.0186
36	0.0137	0.0123	0.0014

TOTAL STORM RAINFALL(INCHES) = 2.28

TOTAL SOIL-LOSS(INCHES) = 0.80

TOTAL EFFECTIVE RAINFALL(INCHES) = 1.48

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 10.0475 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 18.6898

.....

3-HOUR STORM RUNOFF HYDROGRAPH

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

(No	te: Time in	dicated i	s at E	ND of Each	Unit Inte	rvals)	
TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	50.0	100.0	150.0	200.0
0.083	0.0024	0.35	Q				
0.167	0.0132	1.56	Q				
0.250	0.0378	3.58	Q				
0.333	0.0784	5.90	VQ				
0.417	0.1323	7.81	VQ				
0.500	0.2035	10.35	νQ				
0.583	0.3005	14.07	νQ				
0.667	0.4210	17.50	v Q				
0.750	0.5609	20.32	.۷ ر) .		·	
0.833	0.7138	22.20	.v ç				
0.917	0.8766	23.63	.v ç				
1.000	1.0420	24.02	. v ç				
1.083	1.2121	24.70	. v ç				
1.167	1.4030	27.71	. v				
1.250	1.6269	32.51	. v	Q.			
1.333	1.8820	37.04	. \				
1.417	2.1582	40.11	. \				
1.500	2.4550	43.09		VQ.			
1.583	2.7794	47.11		V Q.			
1.667	3.1371	51.95		V Q			
1.750	3.5237	56.12		V .Q		•	
1.833	3.9414	60.66		V . Q			
1.917	4.4003	66.64		V. Q			
2.000	4.8943	71.73		V Q			
2.083	5.4043	74.06		.v Q			
2.167	5.9325	76.69		. V	Q.		
2.250	6.5093	83.75		. V	Q.		
2.333	7.1632	94.94	•		VQ.	•	•
2.417	7.9156	109.25	•	•	V .Q	•	•
2.500	8.7829	125.94	•	•	V .	Q.	•
2.583	9.8070	148.69	•	•	V	Q.	•
2.667	11.0331	178.03	•	•	. V	•	Q.
2.750	12.3655	193.47	•	•	•	V .	Q.
2.833	13.6281	183.32	•	•	•	٧.	Q.
2.917	14.6618	150.10	•	•		QV	•
3.000	15.4331	111.99	•	•	. Q	. V	
3.083	16.0181	84.94	•		Q.	. \	
3.167	16.4739	66.19	•	. Q	•	•	٧.
3.250	16.8267	51.23	•	Q	•	•	V .
3.333	17.1058	40.51	•	Q.	•	•	V . V .
3.417	17.3354	33.34	•	Q .	•	•	v . V .
3.500 3.583	17.5289 17.6943	28.09 24.02		Q.	•	•	v . V .
3.667	17.8376	20.81	. (•	•	v . V .
3.750	17.8376	17.92	. Q	•	•	•	v . V .
3.833	18.0692	15.71	. Q	•	•	•	v . V .
3.917	18.1644	13.71	. Q	•	•	•	v . V .
4.000	18.2468	11.96	. Q			•	٧.
4.083	18.3174	10.24	. Q			•	٧.
4.167	18.3783	8.85	. Q	•	•		٧.
4.250	18.4304	7.57	. Q	-			٧.
4.333	18.4745	6.39	.Q		•		٧.
4.417	18.5096	5.11	.Q	•			٧.
			-				

4.500	18.5382	4.14	Q	•		٧.
4.583	18.5638	3.72	Q	•	•	٧.
4.667	18.5874	3.43	Q	•	•	٧.
4.750	18.6090	3.14	Q	•	•	٧.
4.833	18.6285	2.83	Q	•	•	٧.
4.917	18.6457	2.49	Q	•	•	٧.
5.000	18.6614	2.28	Q	•	•	٧.
5.083	18.6737	1.79	Q	•	•	٧.
5.167	18.6823	1.25	Q		•	٧.
5.250	18.6867	0.64	Q		•	٧.
5.333	18.6883	0.23	Q		•	٧.
5.417	18.6893	0.14	Q	•	•	٧.
5.500	18.6898	0.07	Q	•	•	٧.
5.583	18.6898	0.01	Q	•	•	V

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Peak Flow		Duration (minutes)
==========		=======
0%		335.0
10%		180.0
20%		120.0
30%		85.0
40%		55.0
50%		40.0
60%		30.0
70%		25.0
80%		15.0
90%		15.0

FLOW PROCESS FROM NODE 10.00 TO NODE 40.00 IS CODE = 1

------>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<

(UNIT-HYDROGRAPH ADDED TO STREAM #3)

WATERSHED AREA = 151.300 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.295 HOURS

CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900

USER-ENTERED RAINFALL = 2.89 INCHES

RCFC&WCD 6-Hour Storm (5-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG-TIME = 28.249

INTERVAL	"S" GRAPH	UNIT HYDROGRAPH	
NUMBER		ORDINATES(CFS)	
	2 644		
1	2.644	48.388	
2	11.822	167.923	
3	28.750	309.760	
4	48.757	366.082	
5	62.350	248.722	
6	70.275	145.008	
7	75.577	97.012	
8	79.510	71.973	
9	82.607	56.668	
10	85.156	46.635	
11	87.226	37.872	
12	88.933	31.238	
13	90.467	28.064	
14	91.769	23.830	
15	92.874	20.224	
16	93.901	18.791	
17	94.768	15.856	
18	95.599	15.202	
19	96.283	12.532	
20	96.832	10.037	
21	97.381	10.037	
22	97.905	9.602	
23	98.177	4.964	
24	98.379	3.707	
25	98.582	3.709	
26	98.785	3.712	
27	98.988	3.709	
28	99.190	3.709	
29	99.393	3.709	
30	99.596	3.709	
31	99.798	3.709	
32	100.000	3.689	

UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0145	0.0130	0.0014
2	0.0173	0.0156	0.0017
3	0.0173	0.0156	0.0017
4	0.0173	0.0156	0.0017
5	0.0173	0.0156	0.0017
6	0.0202	0.0182	0.0020
7	0.0202	0.0182	0.0020
8	0.0202	0.0182	0.0020
9	0.0202	0.0182	0.0020
10	0.0202	0.0182	0.0020
11	0.0202	0.0182	0.0020
12	0.0231	0.0208	0.0023
13	0.0231	0.0208	0.0023
14	0.0231	0.0208	0.0023
15	0.0231	0.0208	0.0023
16	0.0231	0.0208	0.0023
17	0.0231	0.0208	0.0023
18	0.0231	0.0208	0.0023
19	0.0231	0.0208	0.0023
20	0.0231	0.0208	0.0023
21	0.0231	0.0208	0.0023
22	0.0231	0.0208	0.0023
23	0.0231	0.0208	0.0023
24	0.0260	0.0224	0.0036
25	0.0231	0.0208	0.0023
26	0.0260	0.0224	0.0036
27	0.0260	0.0224	0.0036
28	0.0260	0.0224	0.0036
29	0.0260	0.0224	0.0036
30	0.0260	0.0224	0.0036
31	0.0260	0.0224	0.0036
32	0.0260	0.0224	0.0036
33	0.0289	0.0224	0.0065
34	0.0289	0.0224	0.0065
35	0.0289	0.0224	0.0065
36	0.0289	0.0224	0.0065
37	0.0289	0.0224	0.0065
38	0.0318	0.0224	0.0094
39	0.0318	0.0224	0.0094
40	0.0318	0.0224	0.0094
41	0.0347	0.0224	0.0123
42	0.0376	0.0224	0.0152
43	0.0405	0.0224	0.0180
44	0.0405	0.0224	0.0180
45	0.0434	0.0224	0.0209
46	0.0434	0.0224	0.0209
47	0.0462	0.0224	0.0238
48	0.0462	0.0224	0.0238
49	0.0491	0.0224	0.0267
50	0.0520	0.0224	0.0296
51	0.0549	0.0224	0.0325
52	0.0578	0.0224	0.0354
53	0.0607	0.0224	0.0383
54	0.0607	0.0224	0.0383
55	0.0636	0.0224	0.0412
56	0.0665	0.0224	0.0441
57	0.0694	0.0224	0.0469
58	0.0694	0.0224	0.0469

59	0.0723	0.0224	0.0498
60	0.0751	0.0224	0.0527
61	0.0896	0.0224	0.0672
62	0.1040	0.0224	0.0816
63	0.1127	0.0224	0.0903
64	0.1214	0.0224	0.0990
65	0.1358	0.0224	0.1134
66	0.1618	0.0224	0.1394
67	0.0549	0.0224	0.0325
68	0.0260	0.0224	0.0036
69	0.0173	0.0156	0.0017
70	0.0145	0.0130	0.0014
71	0.0087	0.0078	0.0009
72	0.0058	0.0052	0.0006

TOTAL STORM RAINFALL(INCHES) = 2.89
TOTAL SOIL-LOSS(INCHES) = 1.48
TOTAL EFFECTIVE RAINFALL(INCHES) = 1.41

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 18.6997 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 17.7292

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

TIME(HRS)	VOLUME(AF)	Q(CFS)	 0.	 50	.0	100.0	150.0	200.0
0.083	0.0005	 0.07	 Q		·			
0.167	0.0027	0.33	Q					
0.250	0.0084	0.82	Q		•	•	•	•
0.333	0.0183	1.44	Q		•	•	•	•
0.417	0.0315	1.91	Q		•	•	•	•
0.500	0.0466	2.20	Q		•	•	•	•
0.583	0.0634	2.43	Q		•	•	•	•
0.667	0.0816	2.65	Q		•	•	•	•
0.750	0.1014	2.86	Q		•	•	•	•
0.833	0.1221	3.02	Q		•	•	•	•
0.033	0.1437	3.13	Q		•	•	•	•
1.000	0.1659	3.23	Q		•	•	•	•
1.083	0.1889	3.35	Q		•	•	•	•
1.167	0.1889	3.49	Q		•	•	•	•
1.250	0.2130	3.65	Q		•	•	•	•
	0.2561	3.76			•	•	•	•
1.333 1.417		3.84	Q		•	•	•	•
1.500	0.2905 0.3175	3.91	Q		•	•	•	•
1.583	0.3173	3.96	Q		•	•	•	•
		4.00	Q		•	•	•	•
1.667	0.3722 0.4000	4.00	Q		•	•	•	•
1.750			Q		•	•	•	•
1.833 1.917	0.4280	4.07	Q OV		•	•	•	•
	0.4562	4.09	QV		•	•	•	•
2.000	0.4849	4.17	QV		•	•	•	•
2.083	0.5148	4.34	QV		•	•	•	•
2.167	0.5465	4.60	QV		•	•	•	•
2.250	0.5802	4.90	QV		•	•	•	•
2.333	0.6157	5.16	.Q		•	•	•	•
2.417	0.6537	5.51	.Q		•	•	•	•
2.500	0.6934	5.78	.Q		•	•	•	•
2.583	0.7343	5.94	.Q		•	•	•	•
2.667	0.7760	6.05	.Q		•	•	•	•
2.750	0.8193	6.28	.Q		•	•	•	•
2.833	0.8663	6.83	.Q		•	•	•	•
2.917	0.9199	7.78	.QV		•	•	•	•
3.000	0.9810	8.88	.QV		•	•	•	•
3.083	1.0474	9.64	.QV		•	•	•	•
3.167	1.1178	10.23	. Q		•	•	•	•
3.250	1.1938	11.02	. Q		•	•	•	•
3.333	1.2774	12.15	. Q		•	•	•	•
3.417	1.3707	13.54	. Q\		•	•	•	•
3.500	1.4742	15.03	. (•	•	•	•
3.583	1.5920	17.10	. (•	•	•	•
3.667	1.7292	19.92	. (2	•	•	•	•
3.750	1.8878	23.04	•	Q	•	•	•	•
3.833	2.0666	25.96	•	VQ	•	•	•	•
3.917	2.2637	28.62	•	Q		•	•	•
4.000	2.4788	31.24	•	VQ	•	•	•	•
4.083	2.7115	33.78	•	Q	•	•	•	•
4.167	2.9630	36.52	•	VQ		•	•	•
4.250	3.2354	39.56	•	Q		•	•	•
4.333	3.5329	43.19	•	VQ		•	•	•

4.417	3.8587	47.30		VQ.			
4.500	4.2136	51.54	•	VQ. VQ	•		•
4.583	4.5965	55.59	•	VQ	•		•
4.667	5.0053	59.36	•	.Q	•		•
4.750	5.4396	63.06	•				•
4.833	5.9014	67.05	•	. '	Q .		•
4.833	6.3908	71.06	•	•	Q .		•
5.000	6.9062	74.85	•	•	Q . QV .		•
5.083	7.4513	79.14	•	•	•		•
			•	•	QV .		•
5.167 5.250	8.0423 8.7045	85.82 96.15	•	•	QV .		•
			•	•	Q.	,	•
5.333	9.4617	109.94	•	•	.(-	•
5.417	10.3239	125.19	•	•	٠	V Q V O	•
5.500	11.2992	141.62	•	•	٠		
5.583	12.3674	155.09	•	•	•		.Q .
5.667	13.4402	155.77	•	•	•		VQ .
5.750	14.3733	135.48	•	•		Q	. V .
5.833	15.0563	99.18	•	•	Q.		• •
5.917	15.5342	69.38	•		Q.		. v .
6.000	15.8904	51.73	•	Q	•		. v .
6.083	16.1728	41.01		Q.	•		. v .
6.167	16.4042	33.59	. (ι.	•		. V . . V .
6.250	16.5969 16.7590	27.99	. Q	•	•		. v . . v .
6.333		23.53	. Q	•	•		
6.417	16.8973	20.08	. Q	•	•		. V . . V .
6.500	17.0174	17.44	. Q	•	•		. v.
6.583 6.667	17.1214 17.2118	15.10 13.12	. Q	•	•		. v.
6.750	17.2118	11.51	. Q . Q	•	•		. v.
6.833	17.3599	10.01	. Q . Q	•	•		. v. . v.
6.917	17.4199	8.71	. Q .Q	•	•		. v. . v.
7.000	17.4798	7.38	-	•	•		. v. . v.
7.083	17.5136	6.22	.Q	•	•		. v. . v.
7.167	17.5505	5.36	.Q	•	•		. v. . v.
7.167	17.5813	4.48	.Q	•	•		. v. . v.
7.333	17.6055	3.50	Q O	•	•		. v. . v.
7.333	17.6261	2.99	Q O	•	•		. v. . v.
7.500	17.6451	2.76	Q O	•	•		. v. . v.
7.583	17.6431	2.56	Q O	•	•		. v. . v.
7.667	17.6789		Q O	•	•		. v. . v.
7.750	17.6933	2.35 2.10	Q O	•	•		. v. . v.
7.833	17.7056	1.79	Q O	•	•		. v. . v.
			Q O	•	•		
7.917	17.7156	1.45	Q	•	•		. V.
8.000 8.083	17.7231 17.7277	1.09	Q O	•	•		. V. . V.
		0.67	Q O	•	•		
8.167	17.7287	0.15	Q O	•	•		. V.
8.250 8.333	17.7290 17.7291	0.03	Q O	•	•		. V. . V.
		0.02	Q O	•	•		
8.417	17.7291	0.01	Q O	•	•		. V.
8.500	17.7292	0.01	Q	•	•		. V.

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have

an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
=======================================	=======
0%	510.0
10%	180.0
20%	135.0
30%	100.0
40%	75.0
50%	50.0

60%	40.0
70%	30.0
80%	25.0
90%	15.0

FLOW PROCESS FROM NODE 10.00 TO NODE 40.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<<<<

(UNIT-HYDROGRAPH ADDED TO STREAM #4)

WATERSHED AREA = 151.300 ACRES

BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 0.295 HOURS

CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900

MINIMUM SOIL-LOSS RATE(INCH/HOUR) = 0.134

USER-ENTERED RAINFALL = 4.61 INCHES

RCFC&WCD 24-Hour Storm (15-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 84.746

UNIT HYDROGRAPH DETERMINATION

ONIT HIDROGRAM DETERMINATION

INTERVAL NUMBER	"S" GRAPH MEAN VALUES	UNIT HYDROGRAPH ORDINATES(CFS)	
1	14.405	87.863	
2	60.461	280.904	
3	79.231	114.487	
4	87.105	48.022	
5	91.703	28.047	
6	94.756	18.618	
7	96.832	12.663	
8	98.154	8.062	
9	98.785	3.849	
10	99.362	3.520	
11	99.745	2.335	
12	99.936	1.168	
13	100.000	0.389	

UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0092	0.0083	0.0009
2	0.0138	0.0124	0.0014
3	0.0138	0.0124	0.0014
4	0.0184	0.0166	0.0018
5	0.0138	0.0124	0.0014
6	0.0138	0.0124	0.0014
7	0.0138	0.0124	0.0014
8	0.0184	0.0166	0.0018
9	0.0184	0.0166	0.0018
10	0.0184	0.0166	0.0018
11	0.0231	0.0207	0.0023
12	0.0231	0.0207	0.0023
13	0.0231	0.0207	0.0023
14	0.0231	0.0207	0.0023
15	0.0231	0.0207	0.0023
16	0.0277	0.0249	0.0028
17	0.0277	0.0249	0.0028
18	0.0323	0.0290	0.0032
19	0.0323	0.0290	0.0032
20	0.0369	0.0332	0.0037
21	0.0277	0.0249	0.0028
22	0.0323	0.0290	0.0032
23	0.0369	0.0332	0.0037
24	0.0369	0.0332	0.0037
25	0.0415	0.0373	0.0041
26	0.0415	0.0373	0.0041
27	0.0461	0.0415	0.0046
28	0.0461	0.0415	0.0046
29	0.0461	0.0415	0.0046
30	0.0507	0.0456	0.0051
31	0.0553	0.0498	0.0055
32	0.0599	0.0539	0.0060
33	0.0692	0.0622	0.0069
34	0.0692	0.0622	0.0069
35	0.0738	0.0664	0.0074
36	0.0784	0.0705	0.0078
37	0.0876	0.0745	0.0131
38	0.0922	0.0735	0.0187
39	0.0968	0.0724	0.0244
40	0.1014	0.0714	0.0301
41	0.0692	0.0622	0.0069
42	0.0692	0.0622	0.0069
43	0.0922	0.0683	0.0239
44	0.0922	0.0673	0.0249
45	0.0876	0.0663	0.0213
46	0.0876	0.0653	0.0223
47	0.0784	0.0644	0.0140
48	0.0830	0.0634	0.0196
49	0.1153	0.0625	0.0528
50	0.1199	0.0615	0.0583
51	0.1291	0.0606	0.0685
52	0.1337	0.0597	0.0740
53	0.1567	0.0588	0.0980
54	0.1567	0.0579	0.0988
55	0.1060	0.0570	0.0490
56	0.1060	0.0561	0.0499
56 57	0.1245	0.0553	0.0692

59	0.1199	0.0536	0.0662
60	0.1153	0.0528	0.0625
61	0.1106	0.0520	0.0587
62	0.1060	0.0512	0.0548
63	0.0876	0.0504	0.0372
64	0.0876	0.0496	0.0380
65	0.0184	0.0166	0.0018
66	0.0184	0.0166	0.0018
67	0.0138	0.0124	0.0014
68	0.0138	0.0124	0.0014
69	0.0231	0.0207	0.0023
70	0.0231	0.0207	0.0023
71	0.0231	0.0207	0.0023
72	0.0184	0.0166	0.0018
73	0.0184	0.0166	0.0018
74	0.0184	0.0166	0.0018
75	0.0138	0.0124	0.0014
76	0.0092	0.0083	0.0009
77	0.0138	0.0124	0.0014
78	0.0184	0.0166	0.0018
79	0.0138	0.0124	0.0014
80	0.0092	0.0083	0.0009
81	0.0138	0.0124	0.0014
82	0.0138	0.0124	0.0014
83	0.0138	0.0124	0.0014
84	0.0092	0.0083	0.0009
85	0.0138	0.0124	0.0014
86	0.0092	0.0083	0.0009
87	0.0138	0.0124	0.0014
88	0.0092	0.0083	0.0009
89	0.0138	0.0124	0.0014
90	0.0092	0.0083	0.0009
91	0.0092	0.0083	0.0009
92	0.0092	0.0083	0.0009
93	0.0092	0.0083	0.0009
94	0.0092	0.0083	0.0009
95	0.0092	0.0083	0.0009
96	0.0092	0.0083	0.0009

TOTAL STORM RAINFALL(INCHES) = 4.61
TOTAL SOIL-LOSS(INCHES) = 3.21
TOTAL EFFECTIVE RAINFALL(INCHES) = 1.40

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 40.5352 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 17.5801 _____

2 4 - H O U R S T O R M R U N O F F H Y D R O G R A P H

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals) ______ TIME(HRS) VOLUME(AF) Q(CFS) 0. 15.0 30.0 45.0 60.0 -----0.083 0.0006 0.08 Q 0.167 0.0011 0.08 Q 0.250 0.0017 0.08 Q . 0.62 Q 0.750 0.0223 0.62 Q 1.000 0.0378 0.75 Q 1.083 0.0439 0.89 Q 1.167 0.0501 0.89 Q 1.250 0.0562 0.89 Q 1.333 0.0620 0.84 Q 1.417 0.0678 0.84 Q 1.500 0.0736 0.84 Q 1.583 0.0794 0.83 Q 1.667 0.0851 0.83 Q 1.750 0.0908 0.83 Q 0.88 Q 1.833 0.0969 1.917 0.1029 0.88 Q . 2.000 0.1090 0.88 Q 2.083 0.1159 1.01 Q 2.167 0.1229 1.01 Q 2.250 0.1298 1.01 Q 2.333 0.1372 1.07 Q 0.1445 1.07 Q
 2.417
 0.1445

 2.500
 0.1519

 2.583
 0.1596

 2.667
 0.1674
 1.07 Q 1.13 Q 1.13 Q 2.750 0.1752 1.13 Q 2.833 0.1840 1.27 Q 2.917 0.1927 1.27 Q 3.000 0.2015 1.27 Q 3.083 0.2107 1.33 Q 3.167 0.2199 1.33 Q 3.250 0.2290 1.33 Q 3.333 0.2384 1.36 Q 0.2478 1.36 Q 3.417 3.500 0.2572 1.36 Q 3.583 0.2667 1.38 Q 0.2762 3.667 1.38 Q 3.750 0.2856 1.38 Q 1.43 Q 3.833 0.2955 3.917 0.3053 1.43 0 1.43 Q 4.000 0.3152 4.083 0.3259 1.57 VQ 1.57 VQ 4.167 0.3367 1.57 VQ 4.250 0.3475 4.333 0.3590 1.66 VQ

4.417								
4.590	4.417	0.3704	1.66	VQ				
4.583	4.500	0.3819	1.66					
4.667					_	_	_	
4.750				-	•	•	·	·
4.813					•	•	•	•
4.917				-	•	•	•	•
5.000 0.4592 1.93 Q 5.083 0.4730 2.01 .Q 5.167 0.4868 2.01 .Q 5.159 0.5006 2.01 .Q 5.133 0.5134 1.86 .Q 5.417 0.5262 1.86 .Q 5.590 0.5330 1.86 .Q 5.590 0.5330 1.86 .Q 5.590 0.5330 1.86 .Q 5.590 0.5330 1.86 .Q 5.591 0.5525 1.96 .Q 5.667 0.5660 1.96 .Q 5.750 0.5795 1.96 .Q 5.833 0.5941 2.12 .Q 5.917 0.6006 2.12 .Q 6.000 0.6232 2.12 .Q 6.000 0.6232 2.12 .Q 6.083 0.6385 2.22 .Q 6.250 0.6691 2.22 .Q 6.250 0.6691 2.22 .Q 6.333 0.6885 2.38 .Q 6.417 0.7018 2.38 .Q 6.590 0.7182 2.38 .Q 6.590 0.7182 2.38 .Q 6.590 0.7554 2.49 .Q 6.5750 0.7595 2.49 .Q 6.5750 0.8060 2.65 .Q 7.000 0.8242 2.65 .Q 7.000 0.8242 2.65 .Q 7.167 0.8617 2.72 .Q 7.167 0.8617 2.72 .Q 7.157 0.8090 2.80 .QV 7.333 0.8997 2.80 .QV 7.333 0.8997 2.80 .QV 7.333 0.9999 2.99 .QV 7.350 0.9999 2.99 .QV 7.750 0.9322 1.387 .Q 8.833 1.1658 3.22 .Q 8.833 1.2471 4.06 .Q 8.833 1.3327 4.31 .QV 9.803 1.1392 3.87 .Q 8.833 1.3327 4.31 .QV 9.803 1.4264 4.99 .Q 9.900 1.3920 4.31 .QV 9.900 1.3920 4.31 .QV 9.900 1.3920 4.31 .QV 9.900 1.3920 4.31 .QV 9.903 1.4264 4.99 .Q 9.950 1.6413 7.07 .VQ 9.133 1.5590 7.07 .VQ					•	•	•	•
5. 883					•	•	•	•
5. 167 0. 4868 2. 01 .0 5. 259 0. 5006 2. 01 .0 5. 333 0. 5134 1. 86 .0 5. 580 0. 5390 1. 86 .0 5. 583 0. 5525 1. 96 .0 5. 750 0. 5795 1. 96 .0 5. 750 0. 5795 1. 96 .0 5. 833 0. 5941 2. 12 .0 6. 900 0. 6232 2. 12 .0 6. 900 0. 6232 2. 12 .0 6. 167 0. 6538 2. 22 .0 6. 167 0. 6538 2. 22 .0 6. 167 0. 6538 2. 22 .0 6. 167 0. 6538 2. 22 .0 6. 167 0. 6538 2. 22 .0 6. 250 0. 6691 2. 22 .0 6. 533 0. 7552 2. 38 .0 6. 583 0. 7353 2. 49 .0 6. 6750 0. 7695 2. 49 .0 6. 917 0. 8060 2. 65	5.000	0.4592	1.93	Q		•	•	•
5. 250	5.083	0.4730	2.01	.Q		•	•	
5. 3133	5.167	0.4868	2.01	.Q		•	•	
5. 3133	5.250	0.5006	2.01	.Q		•	•	
5.417 0.5262 1.86 .Q	5.333	0.5134	1.86					
5.500 0.5390 1.86 .Q	5.417	0.5262				•		
5.583 0.5525 1.96 .Q			1.86			_	_	
5.667 0.5660 1.96 .Q								
5. 750 0.5795 1.96 .Q 5. 833 0.5941 2.12 .Q 6.000 0.6232 2.12 .Q 6.083 0.6385 2.22 .Q 6.167 0.6538 2.22 .Q 6.250 0.6691 2.22 .Q 6.333 0.6855 2.38 .Q 6.417 0.7018 2.38 .Q 6.580 0.7182 2.38 .Q 6.580 0.7353 2.49 .Q 6.587 0.7695 2.49 .Q 6.750 0.7695 2.49 .Q 6.833 0.7878 2.65 .Q 6.917 0.8060 2.65 .Q 7.083 0.8430 2.72 .Q 7.083 0.8430 2.72 .Q 7.167 0.8617 2.72 .Q 7.250 0.8864 2.72 .QV 7.500 0.9382 2.80 .QV 7.560 0.9382 2.80 .QV 7.750					•	•	•	•
5. 8133 0.5941 2.12 .Q					•	•	•	•
5.917					•	•	•	•
6.000					•	•	•	•
6.083					•	•	•	•
6.167					•	•	•	•
6.250					•	•	•	•
6.333		0.6538	2.22	.Q		•	•	
6.417	6.250	0.6691	2.22	.Q		•		
6.500	6.333	0.6855	2.38	.Q			•	
6.500	6.417	0.7018	2.38	.0				
6.583	6.500	0.7182	2.38					
6.667						_	_	
6.750					·			
6.833					•	•	•	•
6.917					•	•	•	•
7.000					•	•	•	•
7.083					•	•	•	•
7.167					•	•	•	•
7.250					•	•	•	•
7.333		0.8617			•	•	•	•
7.417	7.250	0.8804	2.72	.QV	•	•	•	•
7.500 0.9382 2.80 .QV	7.333	0.8997	2.80	.QV		•	•	
7.583	7.417	0.9189	2.80	.QV			•	
7.667 0.9793 2.99 .QV	7.500	0.9382	2.80	.QV		•	•	
7.667	7.583	0.9588	2.99	.QV				
7.750 0.9999 2.99 .QV	7.667	0.9793	2.99			•	•	
7.833 1.0221 3.22 . Q				-		_	_	
7.917 1.0443 3.22 . Q .					·			
8.000 1.0665 3.22 . Q					•	•	•	•
8.083 1.0907 3.52					•	•	•	•
8.167 1.1149 3.52 . Q					•	•	•	•
8.250 1.1392 3.52 . Q					•	•	•	•
8.333 1.1658 3.87 . Q .					•	•	•	•
8.417 1.1925 3.87 . Q					•	•	•	•
8.500 1.2191 3.87 . Q					•	•	•	•
8.583 1.2471 4.06 . Q					•	•	•	•
8.667 1.2751 4.06 . Q			3.87		•	•	•	•
8.750 1.3031 4.06 . Q	8.583	1.2471	4.06			•	•	
8.833 1.3327 4.31 .QV .	8.667	1.2751	4.06	. Q		•	•	
8.833 1.3327 4.31 .QV .	8.750	1.3031	4.06	. Q		•	•	
8.917 1.3624 4.31 . QV	8.833	1.3327				•	•	
9.000 1.3920 4.31 . QV						ē		
9.083 1.4264 4.99 . Q						_	_	
9.167 1.4608 4.99 . Q					•	•	•	•
9.250 1.4952 4.99 . Q					•	•	•	•
9.333 1.5439 7.07 . VQ .					•	•	•	•
9.417 1.5926 7.07 . VQ .					•	•	•	•
9.500 1.6413 7.07 . VQ					•	•	•	•
9.583 1.7089 9.81 . V Q					•	•	•	•
					•	•	•	•
9.667 1.7765 9.81 . V Q					•	•	•	•
	9.667	1.7765	9.81	. V Q	•	•	•	•

9.750	1.8441	9.81 .	νQ.			•
9.833	1.9325	12.83 .	ν Q.			•
9.917	2.0208	12.83 .	νą.		_	
10.000	2.1092	12.83 .	v Q.			
10.083	2.2021	43.40	νų.	•	•	•
	2.2949	13.48 .		•	•	•
10.167			VQ.	•	•	•
10.250	2.3877	13.48 .	VQ.	•	•	•
10.333	2.4439	8.17 .	Q.	•	•	•
10.417	2.5001	8.17 .	Q.	•	•	•
10.500	2.5564	8.17 .	Q.	•	•	•
10.583	2.6088	7.62 .	Q.	•		•
10.667	2.6613	7.62 .	QV .	•		•
10.750	2.7138	7.62 .	QV .			
10.833	2.7947	11.75 .	VQ .			•
10.917	2.8756	11.75 .	vQ .		_	
11.000	2.9565	11.75 .	VQ .			
11.083	3.0478	13.25 .	νę.	•	•	•
11.167	3.1390	42.05	VQ.	•	•	•
				•	•	•
11.250	3.2303	13.25 .	VQ .	•	•	•
11.333	3.3197	12.98 .	VQ .	•	•	•
11.417	3.4091	12.98 .	VQ .	•	•	•
11.500	3.4985	12.98 .	VQ .	•	•	•
11.583	3.5842	12.45 .	Q.	•	•	•
11.667	3.6699	12.45 .	Q.	•		•
11.750	3.7556	12.45 .	Q.	•		•
11.833	3.8298	10.77 .	QV .			
11.917	3.9040	10.77 .	QV .			•
12.000	3.9782	10.77 .	Qν.		_	
12.083	4.0777	14.44 .	Q.	·	•	•
12.167	4.1771	14.44 .	Q.	•	•	•
12.250	4.2766			•	•	•
		14.44 .	Q.	•	•	•
12.333	4.4457	24.55 .	V	Q.	•	•
12.417	4.6148	24.55 .	V	Q.	•	•
12.500	4.7839	24.55 .	V	Q .	•	•
12.583	4.9963	30.84 .	٠٧.	Q	•	•
12.667	5.2087	30.84 .	٠٧.	Q	•	•
12.750	5.4211	30.84 .	. V	Q		•
12.833	5.6720	36.43 .	. V	. Q	•	•
12.917	5.9229	36.43 .		V . Q		•
13.000	6.1738	36.43 .		V . Q		•
13.083	6.4663	42.47 .		٧ .	Q.	•
13.167	6.7588	42.47 .		٧.	Q.	•
13.250	7.0513	42.47 .		٧ .	Q.	_
13.333	7.4039	51.19 .	•	v .	. Q	1
13.417	7.7564	51.19 .	•	v .		
13.500	8.1090	51.19 .	•	v .	. Q	
			•			•
13.583	8.4595	50.89 .	•	٧.	. Q	•
13.667	8.8100	50.89 .	•	V	. Q	•
13.750	9.1605	50.89 .	•	V	. Q	•
13.833	9.4284	38.90 .	•	.V Q	•	•
13.917	9.6963	38.90 .	•	. V Q	•	•
14.000	9.9641	38.90 .	•	. V Q	•	•
14.083	10.2138	36.25 .		. VQ	•	•
14.167	10.4635	36.25 .		. VQ		•
14.250	10.7131	36.25 .		. Q		•
14.333	10.9873	39.81 .	•	. v Q		•
14.417	11.2615	39.81 .		. VQ		•
14.500	11.5356	39.81 .		. Q		•
14.583	11.8124	40.18 .		. Q		
14.667	12.0891	40.18 .	•	. Q'		
14.750	12.3659	40.18 .	•		v .	•
			•		v . v .	•
14.833	12.6413	39.99 .	•			•
14.917	12.9167	39.99 .	•	. Q		•
15.000	13.1921	39.99 .	•	. Q	V	•

15.083	13.4579	38.60						Q	V	•	
15.167	13.7237	38.60						Q	V		
15.250	13.9895	38.60						Q	V	_	
15.333	14.2428	36.78						5 _	. V		
15.417	14.4961	36.78	•		•				. v	•	
			•		•			5		•	
15.500	14.7494	36.78	•		•			S	. V	•	
15.583	14.9809	33.62	•				. Q		. V	•	
15.667	15.2124	33.62					. Q		. V	•	
15.750	15.4439	33.62					. Q		. V		
15.833	15.6367	27.98				Ç			. V		
15.917	15.8294	27.98	•		•				. v	•	
			•		•		<u>)</u> .			•	
16.000	16.0221	27.98	•		•	(<u>.</u>		. V	•	
16.083	16.1777	22.60	•		•	Q	•		. V	•	
16.167	16.3334	22.60	•			Q	•		. \	<i>'</i> .	
16.250	16.4890	22.60				Q			. \	<i>!</i> .	
16.333	16.5680	11.47		Q					. \	<i>/</i> .	
16.417	16.6470	11.47		Q	_		_		. \	/ .	
16.500	16.7260	11.47		Q	•		•		•	٧.	
				Q	•		•		•		
16.583	16.7722	6.71	. Q		•		•		•	٧.	
16.667	16.8184	6.71	. Q		•		•		•	V .	
16.750	16.8646	6.71	. Q		•		•			V .	
16.833	16.8953	4.46	. Q							V .	
16.917	16.9260	4.46	. Q							V .	
17.000	16.9568	4.46	. Q							V .	
17.083	16.9789	3.21	. Q							V .	
17.167	17.0010	3.21	. Q		•		•		•	v .	
17.250		3.21			•		•		•		
	17.0231		. Q		•		•		•	٧.	
17.333	17.0411	2.61	.Q		•		•		•	V .	
17.417	17.0590	2.61	.Q		•		•		•	V .	
17.500	17.0770	2.61	.Q							V .	
17.583	17.0918	2.15	.Q							V .	
17.667	17.1067	2.15	.Q							V .	
17.750	17.1215	2.15	.Q							v .	
					•		•		•		
17.833	17.1338	1.78	.Q		•		•		•	٧.	
17.917	17.1461	1.78	.Q		•		•		•	٧.	
18.000	17.1584	1.78	.Q		•		•		•	٧.	
18.083	17.1687	1.49	Q						•	٧.	
18.167	17.1789	1.49	Q							٧.	
18.250	17.1892	1.49	Q							٧.	
18.333	17.1982	1.31	Q		_		_			٧.	
18.417	17.2072	1.31	Q		•		•		•	٧.	
18.500	17.2072		_		•		•		•	v. V.	
		1.31	Q		•		•		•		
18.583	17.2242	1.16	Q		•		•		•	٧.	
18.667	17.2322	1.16	Q		•		•		•	٧.	
18.750	17.2402	1.16	Q							٧.	
18.833	17.2467	0.94	Q							٧.	
18.917	17.2532	0.94	Q							٧.	
19.000	17.2597	0.94	Q							٧.	
19.083	17.2650	0.78	Q							٧.	
19.167	17.2704	0.78	Q		•		•		•	٧.	
			-		•		•		•		
19.250	17.2758	0.78	Q		•		•		•	٧.	
19.333	17.2818	0.87	Q		•		•		•	٧.	
19.417	17.2878	0.87	Q		•		•			٧.	
19.500	17.2938	0.87	Q				•			٧.	
19.583	17.3006	0.98	Q							٧.	
19.667	17.3073	0.98	Q							٧.	
19.750	17.3140	0.98	Q				_			٧.	
19.833	17.3140	0.86	-		-		•		•	v. V.	
			Q O		•		•		•		
19.917	17.3259	0.86	Q		•		•		•	٧.	
20.000	17.3318	0.86	Q		•		•		•	٧.	
20.083	17.3369	0.74	Q				•			٧.	
20.167	17.3420	0.74	Q				•			٧.	
20.250	17.3471	0.74	Q							٧.	
20.333	17.3526	0.80	Q							٧.	
			~								

20.417	17.3582	0.80	Q				٧.
20.500	17.3637	0.80	Q	•	•	•	٧.
20.583	17.3694	0.83	Q				٧.
20 667	17 2751		-				17
20.667	17.3751	0.83	Q	•	•	•	٧.
20.750	17.3808	0.83	Q				٧.
20 022	17 2062		-				17
20.833	17.3863	0.80	Q	•	•	•	٧.
20.917	17.3918	0.80	Q				٧.
			-				
21.000	17.3973	0.80	Q	•	•	•	٧.
21.083	17.4022	0.71	Q				٧.
			-				
21.167	17.4070	0.71	Q	•	•	•	٧.
21.250	17.4119	0.71	Q				٧.
21 222	17 /170		-				17
21.333	17.4170	0.75	Q	•	•	•	٧.
21.417	17.4222	0.75	Q				٧.
21 500	17 4272		-				
21.500	17.4273	0.75	Q	•	•	•	٧.
21.583	17.4321	0.69	Q				٧.
21.667	17.4368		-				٧.
21.007	17.4300	0.69	Q	•	•	•	٧.
21.750	17.4415	0.69	Q				٧.
21.833	17 1166		-				
21.033	17.4466	0.74	Q	•	•	•	٧.
21.917	17.4517	0.74	Q				٧.
22.000	17 4560		-				
	17.4568	0.74	Q	•	•	•	٧.
22.083	17.4615	0.68	Q				٧.
22.167	17.4662		-				٧.
	17.4002	0.68	Q	•	•	•	
22.250	17.4709	0.68	Q				٧.
22.333	17.4759		-				
22.333	17.4/59	0.73	Q	•	•	•	٧.
22.417	17.4809	0.73	Q				٧.
22 500	17.4860		-				٧.
22.500	17.4000	0.73	Q	•	•	•	
22.583	17.4904	0.64	Q				٧.
22.667	17.4947	0.64	-				٧.
		0.04	Q	•	•	•	
22.750	17.4991	0.64	Q		•		٧.
22.833	17.5033	0.60	Q				٧.
			Q	•	•	•	
22.917	17.5074	0.60	Q				٧.
23.000	17.5115	0.60	Q				٧.
			-	•	•	•	
23.083	17.5156	0.58	Q		•		٧.
23.166	17.5196	0.58	Q				٧.
			-	•	•	•	
23.250	17.5236	0.58	Q		•		٧.
23.333	17.5276	0.58	Q				٧.
			-	•	•	•	
23.416	17.5316	0.58	Q		•		٧.
23.500	17.5355	0.58	Q				٧.
			-	•	•	•	
23.583	17.5395	0.57	Q		•		٧.
23.666	17.5434	0.57	Q				٧.
			-	•	•	•	
23.750	17.5473	0.57	Q		•		٧.
23.833	17.5513	0.57	Q				٧.
			-	•	•	•	
23.916	17.5552	0.57	Q	•	•	•	٧.
24.000	17.5591	0.57	Q				٧.
			•	•	•	•	
24.083	17.5624	0.48	Q	•	•	•	٧.
24.166	17.5658	0.48	Q	_	_	_	٧.
				-	-	-	
24.250	17.5691	0.48	Q	•	•	•	٧.
24.333	17.5706	0.22	Q				٧.
24.416	17.5722	0.22	Q	•	•	•	٧.
24.500	17.5737	0.22	Q				٧.
24.583	17.5746	0.12	Q	•	•	•	٧.
24.666	17.5754	0.12	Q				٧.
24.750	17.5762	0.12	Q	•	•	•	٧.
24.833	17.5767	0.07	Q				٧.
24.916	17.5772	0.07	Q	•	•	•	٧.
25.000	17.5777	0.07	Q				٧.
25.083							٧.
	17.5780	0.05	Q	•	•	•	
25.166	17.5783	0.05	Q				٧.
25.250	17.5787	0.05					٧.
			Q	•	•	•	
25.333	17.5789	0.03	Q			•	٧.
25.416	17.5791	0.03	Q				٧.
				•	•	•	
25.500	17.5793	0.03	Q				٧.
25.583	17.5794	0.02	Q				٧.
				•	•	•	
25.666	17.5795	0.02	Q	•	•		٧.

25.750	17.5796	0.02	Q	•		٧.
25.833	17.5797	0.01	Q		•	٧.
25.916	17.5798	0.01	Q			٧.
26.000	17.5798	0.01	Q			٧.
26.083	17.5799	0.01	Q			٧.
26.166	17.5799	0.01	Q			٧.
26.250	17.5800	0.01	Q			٧.

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of	Estimated	Duration	
Peak Flow	Rate	(minutes)	
=========	=======	=======	
0%		1575.0	
10%		450.0	
20%		375.0	
30%		240.0	
40%		240.0	
50%		210.0	
60%		195.0	
70%		165.0	
80%		45.0	
90%		30.0	

END OF FLOODSCx ROUTING ANALYSIS

FLOOD ROUTING ANALYSIS

ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

(c) Copyright 1989-2015 Advanced Engineering Software (aes) (Synthetic Unit Hydrograph Version 22.0) Release Date: 07/01/2015 License ID 1673

Analysis prepared by:

(UNIT-HYDROGRAPH ADDED TO STREAM #1)

WATERSHED AREA = 252.600 ACRES
BASEFLOW = 0.000 CFS/SQUARE-MILE
*USER ENTERED "LAG" TIME = 0.283 HOURS
CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.
THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)
MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.
VALLEY S-GRAPH SELECTED
UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269
LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900
USER-ENTERED RAINFALL = 1.56 INCHES
RCFC&WCD 1-Hour Storm (5-Minute period) SELECTED
(SLOPE OF INTENSITY-DURATION CURVE = 0.58)
*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 29.446

UNIT HYDROGRAPH DETERMINATION

INTERVAL	"S" GRAPH	UNIT HYDROGRAPH	
NUMBER	MEAN VALUES	ORDINATES(CFS)	
1	2.792	85.306	
2	12.696	302.535	
3	30.896	555.990	
4	51.304	623.453	
5	64.121	391.548	
6	71.690	231.212	
7	76.748	154.526	
8	80.584	117.160	
9	83.576	91.415	
10	86.031	74.999	
11	88.014	60.594	
12	89.721	52.123	
13	91.167	44.168	
14	92.425	38.452	
15	93.517	33.356	
16	94.483	29.504	
17	95.349	26.457	
18	96.133	23.936	
19	96.714	17.758	
20	97.286	17.466	
21	97.846	17.126	
22	98.158	9.540	
23	98.370	6.460	
24	98.581	6.460	
25	98.793	6.451	
26	99.004	6.460	
27	99.215	6.451	
28	99.426	6.451	
29	99.638	6.451	
30	99.849	6.451	
31	100.000	4.621	

************	*******	*******	*******
UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0566	0.0224	0.0342
2	0.0604	0.0224	0.0380
3	0.0651	0.0224	0.0426
4	0.0732	0.0224	0.0508
5	0.0782	0.0224	0.0557
6	0.0913	0.0224	0.0689
7	0.1110	0.0224	0.0886
8	0.1242	0.0224	0.1018
9	0.2040	0.0224	0.1816
10	0.5310	0.0224	0.5086
11	0.1012	0.0224	0.0787
12	0.0638	0.0224	0.0414

TOTAL STORM RAINFALL(INCHES) = 1.56 TOTAL SOIL-LOSS(INCHES) = 0.27

TOTAL EFFECTIVE RAINFALL(INCHES) = 1.29

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 5.6624
TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 27.1615

1 - H O U R S T O R M R U N O F F H Y D R O G R A P H

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

TIME(HRS)	VOLUME(AF)	O(CFS)	0.	150.0	300.0	450.0	600.0
0.083	0.0201	2.92	Q				
0.167	0.1136	13.58	Q				
0.250	0.3487	34.14	v Q				
0.333	0.7597	59.67	.v Q				
0.417	1.3170	80.92	.v Q				
0.500	2.0082	100.36	. v	Q .			
0.583	2.8473	121.84	. V	Q.			
0.667	3.8677	148.17	. v				
0.750	5.1503	186.23		v . Q			
0.833	7.0023	268.90		V	Q.		
0.917	9.7503	399.01			٧ .	Q.	
1.000	13.2819	512.79			٧.	. (Q .
1.083	16.7583	504.77				V . Q	•
1.167	19.2247	358.13				Q V.	
1.250	20.8639	238.01			Q.	V	
1.333	21.9898	163.48		Q		. V	
1.417	22.8327	122.39		Q.		. V	
1.500	23.4972	96.49		Q.		. \	<i>'</i> .
1.583	24.0417	79.07	. Q				v .
1.667	24.4925	65.46	. Q				٧.
1.750	24.8782	56.01	. Q		•		٧.
1.833	25.2078	47.85	. Q				V .
1.917	25.4932	41.44	. Q				V .
2.000	25.7406	35.93	. Q				V .
2.083	25.9571	31.42	. Q		•		V .
2.167	26.1474	27.64	.Q				٧.
2.250	26.3133	24.09	.Q				٧.
2.333	26.4486	19.65	.Q				٧.
2.417	26.5712	17.80	.Q			•	٧.
2.500	26.6790	15.66	.Q		•	•	٧.
2.583	26.7557	11.14	Q			•	٧.
2.667	26.8159	8.73	Q			•	٧.
2.750	26.8704	7.92	Q			•	٧.
2.833	26.9220	7.50	Q			•	٧.
2.917	26.9714	7.16	Q	•		•	٧.
3.000	27.0180	6.78	Q	•		•	٧.
3.083	27.0614	6.29	Q		•		٧.
3.167	27.1006	5.70	Q		•		٧.
3.250	27.1343	4.90	Q		•		٧.
3.333	27.1558	3.13	Q		•		٧.
3.417	27.1602	0.63	Q	•	•	•	٧.
3.500	27.1615	0.19	Q		•		٧.

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
=======================================	=======
0%	210.0
10%	90.0
20%	55.0

30%	40.0
40%	30.0
50%	25.0
60%	20.0
70%	15.0
80%	10.0
90%	10.0

FLOW PROCESS FROM NODE 100.00 TO NODE 400.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)

(UNIT-HYDROGRAPH ADDED TO STREAM #2)

WATERSHED AREA = 252.600 ACRES

BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.283 HOURS

CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900

USER-ENTERED RAINFALL = 2.28 INCHES

RCFC&WCD 3-Hour Storm (5-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 29.446

UNIT HYDROGRAPH DETERMINATION

"S" GRAPH	UNTT HYDROGRAPH	
2.792	85.306	
12.696	302.535	
30.896	555.990	
51.304	623.453	
64.121	391.548	
71.690	231.212	
76.748	154.526	
80.584	117.160	
83.576	91.415	
86.031	74.999	
88.014	60.594	
89.721	52.123	
91.167	44.168	
92.425	38.452	
93.517	33.356	
· -		
100.000	4.621	
	2.792 12.696 30.896 51.304 64.121 71.690 76.748 80.584 83.576 86.031 88.014 89.721 91.167 92.425	2.792 85.306 12.696 302.535 30.896 555.990 51.304 623.453 64.121 391.548 71.690 231.212 76.748 154.526 80.584 117.160 83.576 91.415 86.031 74.999 88.014 60.594 89.721 52.123 91.167 44.168 92.425 38.452 93.517 33.356 94.483 29.504 95.349 26.457 96.133 23.936 96.714 17.758 97.286 17.466 97.846 17.126 98.158 9.540 98.370 6.460 98.793 6.451 99.004 6.460 99.215 6.451 99.638 6.451 99.849 6.451

UNIT	UNIT	UNIT	EFFECTIVE		
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL		
(NUMBER)	(INCHES)	(INCHES)	(INCHES)		
1	0.0296	0.0224	0.0072		
2	0.0296	0.0224	0.0072		
3	0.0251	0.0224	0.0027		
4	0.0342	0.0224	0.0118		
5	0.0342	0.0224	0.0118		
6	0.0410	0.0224	0.0186		
7	0.0342	0.0224	0.0118		
8	0.0410	0.0224	0.0186		
9	0.0410	0.0224	0.0186		
10	0.0342	0.0224	0.0118		
11	0.0365	0.0224	0.0141		
12	0.0410	0.0224	0.0186		
13	0.0502	0.0224	0.0277		
14	0.0502	0.0224	0.0277		
15	0.0502	0.0224	0.0277		
16	0.0456	0.0224	0.0232		
17	0.0593	0.0224	0.0369		
18	0.0616	0.0224	0.0391		
19	0.0547	0.0224	0.0323		
20	0.0616	0.0224	0.0391		
21	0.0752	0.0224	0.0528		
22	0.0707	0.0224	0.0483		
23	0.0661	0.0224	0.0437		
24	0.0684	0.0224	0.0460		
25	0.0707	0.0224	0.0483		
26	0.0958	0.0224	0.0733		
27	0.1140	0.0224	0.0916		
28	0.0798	0.0224	0.0574		
29	0.1550	0.0224	0.1326		
30	0.1664	0.0224	0.1440		
31	0.1870	0.0224	0.1645		
32	0.1345	0.0224	0.1121		
33	0.0456	0.0224	0.0232		
34	0.0410	0.0224	0.0186		
35	0.0410	0.0224	0.0186		
36	0.0137	0.0123	0.0014		

TOTAL STORM RAINFALL(INCHES) = 2.28

TOTAL SOIL-LOSS(INCHES) = 0.80

TOTAL EFFECTIVE RAINFALL(INCHES) = 1.48

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 16.7746
TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 31.2032

.....

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

(No	ote: Time ind	dicated i	s at EN	ID of Each	n Unit Inte	rvals)	
TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	100.0	200.0	300.0	400.0
0.083	0.0042	0.62	Q		_		
0.167	0.0235	2.80	Q				
0.250	0.0678	6.43	Q				
0.333	0.1390	10.33	VQ				
0.417	0.2311	13.38	VQ	•	•	•	•
0.500	0.3542	17.86	VQ	•	•	•	•
0.583	0.5220	24.37	V Q	•	•	•	•
0.667	0.7289	30.05	v Q	•	•	•	•
0.750	0.9675	34.64	.v Q				
0.833	1.2271	37.69	.v Q	•	•	•	•
0.917	1.5030	40.07	.v Q	•	•		
1.000	1.7811	40.37	. v Q	•	•	•	•
1.083	2.0675	41.58	. v Q	•	•	•	•
1.167	2.3918	47.10	. VQ	•	•	•	•
1.250	2.7742	55.52	. v ç	•) .	•	•	•
1.333	3.2084	63.04	. v		•	•	•
1.417	3.6757	67.85	. v		•	•	•
1.500	4.1772	72.81		Q.	•	•	•
1.583	4.7275	79.91		VQ .	•		•
1.667	5.3350	88.20		νę.	•	•	•
1.750	5.9880	94.82	•	νQ.	•	•	•
1.833	6.6945	102.59	•	v Q	•	•	•
1.917	7.4732	113.06	•	v.Q	•	•	•
2.000	8.3089	121.34	•	v.ę V Q	•	•	•
2.083	9.1671	124.62	•	.VQ	•	•	•
2.167	10.0559	129.05	•	. vç . Q	•	•	•
2.250	11.0309	141.57	•		Q .	•	•
2.333	12.1434	161.53	•	. `	vQ .	•	•
2.417	13.4235	185.87	•	•	VQ .	•	•
2.500	14.8947	213.61	•	•	vų. V.Q	•	•
2.583	16.6422	253.74	•	•	_		•
2.667	18.7406	304.68	•	•	. v	Q. 'Q	•
2.750	21.0005	328.13	•	•	. v		•
2.833	23.1106	306.39	•	•	•	V . Q VQ	•
2.917	24.8006	245.39	•	•	. Q		•
3.000	26.0479	181.10	•	•	Q .	v	•
3.083	26.9970	137.82	•	. Q	٠.		
3.167	27.7333	106.91	•	Q Q	•	•	v .
3.250	28.2983	82.03	•	Q.	•	•	v .
3.333	28.7463	65.05	•	Q.	•	•	v .
3.417	29.1148	53.51	. (•	•	٧ .
3.500	29.4248	45.01	. Q	•	•	•	v .
3.583	29.6893	38.41	. Q	•	•	•	٧.
3.667	29.9164	32.98	. Q	•	•	•	v .
3.750	30.1127	28.49	. Q	•	•	•	v . V .
3.833	30.2846	24.97	. Q	•		•	v . V .
3.917	30.4330	21.54	. Q	•	•	•	٧.
4.000	30.5596	18.37	. ų .Q	•	•	•	٧.
4.083	30.6683	15.79	.Q	•	•	•	٧.
4.167	30.7605	13.40	.Q	•		•	٧.
4.250	30.8382	11.28	.Q	•	•	•	٧.
4.333	30.9005	9.04	Q Q				٧.
				•	-	-	

4	.417	30.9504	7.25	Q	•		٧.
4	.500	30.9946	6.42	Q			٧.
4	.583	31.0353	5.90	Q			٧.
4	.667	31.0721	5.34	Q			٧.
4	.750	31.1049	4.77	Q			٧.
4	.833	31.1340	4.23	Q			٧.
4	.917	31.1597	3.73	Q			٧.
5	.000	31.1793	2.85	Q			٧.
5	.083	31.1923	1.88	Q			٧.
5	.167	31.1986	0.92	Q			٧.
5	.250	31.2011	0.36	Q			٧.
5	.333	31.2025	0.22	Q			٧.
5	.417	31.2032	0.09	Q			٧.
5	.500	31.2032	0.01	Q	•		V

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of	Estimated	Duration
Peak Flow	Rate	(minutes)
		=======
0%		330.0
10%		180.0
20%		115.0
30%		85.0
40%		55.0
50%		40.0
60%		30.0
70%		25.0
80%		15.0
90%		15.0

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<<<<<

(UNIT-HYDROGRAPH ADDED TO STREAM #3)

WATERSHED AREA = 252.600 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.283 HOURS

CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900

USER-ENTERED RAINFALL = 2.89 INCHES

RCFC&WCD 6-Hour Storm (5-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 29.446

UNIT HYDROGRAPH DETERMINATION

INTERVAL	"S" GRAPH	UNIT HYDROGRAPH	
NUMBER	MEAN VALUES	ORDINATES(CFS)	
1	2.792	85.306	
2	12.696	302.535	
3	30.896	555.990	
4	51.304	623.453	
5	64.121	391.548	
6	71.690	231.212	
7	76.748	154.526	
8	80.584	117.160	
9	83.576	91.415	
10	86.031	74.999	
11	88.014	60.594	
12	89.721	52.123	
13	91.167	44.168	
14	92.425	38.452	
15	93.517	33.356	
16	94.483	29.504	
17	95.349	26.457	
18	96.133	23.936	
19	96.714	17.758	
20	97.286	17.466	
21	97.846	17.126	
22	98.158	9.540	
23	98.370	6.460	
24	98.581	6.460	
25	98.793	6.451	
26	99.004	6.460	
27	99.215	6.451	
28	99.426	6.451	
29	99.638	6.451	
30	99.849	6.451	
31	100.000	4.621	

UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0145	0.0130	0.0014
2	0.0173	0.0156	0.0017
3	0.0173	0.0156	0.0017
4	0.0173	0.0156	0.0017
5	0.0173	0.0156	0.0017
6	0.0202	0.0182	0.0020
7	0.0202	0.0182	0.0020
8	0.0202	0.0182	0.0020
9	0.0202	0.0182	0.0020
10	0.0202	0.0182	0.0020
11	0.0202	0.0182	0.0020
12	0.0231	0.0208	0.0023
13	0.0231	0.0208	0.0023
14	0.0231	0.0208	0.0023
15	0.0231	0.0208	0.0023
16	0.0231	0.0208	0.0023
17	0.0231	0.0208	0.0023
18	0.0231	0.0208	0.0023
19	0.0231	0.0208	0.0023
20	0.0231	0.0208	0.0023
21	0.0231	0.0208	0.0023
22	0.0231	0.0208	0.0023
23 24	0.0231	0.0208	0.0023
25	0.0260 0.0231	0.0224 0.0208	0.0036 0.0023
26	0.0260	0.0224	0.0036
27	0.0260	0.0224	0.0036
28	0.0260	0.0224	0.0036
29	0.0260	0.0224	0.0036
30	0.0260	0.0224	0.0036
31	0.0260	0.0224	0.0036
32	0.0260	0.0224	0.0036
33	0.0289	0.0224	0.0065
34	0.0289	0.0224	0.0065
35	0.0289	0.0224	0.0065
36	0.0289	0.0224	0.0065
37	0.0289	0.0224	0.0065
38	0.0318	0.0224	0.0094
39	0.0318	0.0224	0.0094
40	0.0318	0.0224	0.0094
41	0.0347	0.0224	0.0123
42	0.0376	0.0224	0.0152
43	0.0405	0.0224	0.0180
44	0.0405	0.0224	0.0180
45	0.0434	0.0224	0.0209
46	0.0434	0.0224	0.0209
47	0.0462	0.0224	0.0238
48	0.0462	0.0224	0.0238
49	0.0491	0.0224	0.0267
50	0.0520	0.0224	0.0296
51	0.0549	0.0224	0.0325
52	0.0578	0.0224	0.0354
53	0.0607	0.0224	0.0383
54	0.0607	0.0224	0.0383
55	0.0636	0.0224	0.0412
56	0.0665	0.0224	0.0441
57	0.0694	0.0224	0.0469
58	0.0694	0.0224	0.0469

59	0.0723	0.0224	0.0498
60	0.0751	0.0224	0.0527
61	0.0896	0.0224	0.0672
62	0.1040	0.0224	0.0816
63	0.1127	0.0224	0.0903
64	0.1214	0.0224	0.0990
65	0.1358	0.0224	0.1134
66	0.1618	0.0224	0.1394
67	0.0549	0.0224	0.0325
68	0.0260	0.0224	0.0036
69	0.0173	0.0156	0.0017
70	0.0145	0.0130	0.0014
71	0.0087	0.0078	0.0009
72	0.0058	0.0052	0.0006

TOTAL STORM RAINFALL(INCHES) = 2.89
TOTAL SOIL-LOSS(INCHES) = 1.48
TOTAL EFFECTIVE RAINFALL(INCHES) = 1.41

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 31.2198 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 29.5994

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

				END OT			
TIME(HRS)	VOLUME(AF)	Q(CFS)	0. 	75.	0 150.0 	225.0	300.0
0.083	0.0008	0.12	Q				
0.167	0.0049	0.59	Q		•		•
0.250	0.0150	1.48	Q		•		•
0.333	0.0325	2.54	Q		•		•
0.417	0.0551	3.28	Q		•		•
0.500	0.0810	3.76	Q		•		•
0.583	0.1095	4.13	Q		•		•
0.667	0.1405	4.51	Q		•		•
0.750	0.1739	4.85	Q		•	•	•
0.833	0.2091	5.10	Q		•	•	•
0.917	0.2454	5.28	Q	•	•		•
1.000	0.2829	5.44	Q	•	•		•
1.083	0.3217	5.64	Q		•	•	•
1.167	0.3623	5.90	Q	•	•		•
1.250	0.4047	6.16	Q	•	•		•
1.333	0.4484	6.34	Q	•	•		•
1.417	0.4929	6.47	Q	•	•		•
1.500	0.5382	6.57	Q		•	•	•
1.583	0.5839	6.65	Q		•	•	•
1.667	0.6302	6.71	Q		•	•	•
1.750	0.6768	6.77	Q		•	•	•
1.833	0.7237	6.82	Q		•	•	•
1.917	0.7709	6.85	QV		•	•	•
2.000	0.8190	6.99	QV		•	•	•
2.083	0.8693	7.29	QV		•	•	•
2.167	0.9227	7.75	.Q		•	•	•
2.250	0.9795	8.25	.Q		•	•	•
2.333	1.0393	8.69	.Q		•	•	•
2.417	1.1034	9.30	.Q		•	•	•
2.500	1.1703	9.72	.Q	•	•	•	•
2.583	1.2391	9.99	.Q	•	•	•	•
2.667	1.3090	10.16	.Q	•	•	•	•
2.750	1.3816	10.54	.Q	•	•	•	•
2.833	1.4609	11.52	.Q		•	•	•
2.917	1.5519	13.21	.Q\		•	•	•
3.000	1.6558	15.08	. (•	•	•
3.083	1.7679	16.28	. (•	•	•
3.167	1.8866	17.24	. (•	•	•
3.250	2.0148	18.61	. (•	•	•
3.333	2.1567	20.60	. (•	•	•
3.417	2.3147	22.95	•	Q .	•	•	•
3.500	2.4899	25.44	•	Q .	•	•	•
3.583	2.6899	29.04	•	Q .	•	•	•
3.667	2.9237	33.95	•	VQ .	•	•	•
3.750	3.1938	39.21	•	VQ .	•	•	•
3.833	3.4973	44.08	•	VQ .	•	•	•
3.917	3.8314	48.51	•	VQ .	•	•	•
4.000	4.1957	52.90	•	VQ.	•	•	•
4.083	4.5895	57.17	•	VQ .	•	•	•
4.167	5.0150	61.79	•	VQ.	•	•	•
4.250	5.4759	66.92	•	VQ .	•	•	•
4.333	5.9797	73.16	•	VQ.	•	•	•

4.417	6.5316	80.12	•	V Q	•	•	•
4.500	7.1325	87.26	•	V.Q	•	•	•
4.583	7.7801	94.03	•	V Q	•	•	•
4.667	8.4707	100.27	•	.V Q	•		•
4.750	9.2040	106.48	•	. V Q			•
4.833	9.9840	113.26	•	. V Q			•
4.917	10.8101	119.95		. VQ			
5.000	11.6794	126.22		. VQ			
5.083	12.5987	133.48		. Q			
5.167	13.5976	145.05	•		VQ.		•
5.250	14.7208	163.09			V.Q		•
5.333	16.0079	186.89			.v Q		
5.417	17.4726	212.68			. v	Q.	
5.500	19.1283	240.41		·	. V	. Q	
5.583	20.9406	263.14					ς.
5.667	22.7480	262.44		-		V Q	
5.750	24.2869	223.44		•		Q. V	
5.833	25.3844	159.36	•	•	.Q	. V	•
5.917	26.1498	111.14	•	. Q	• •		
6.000	26.7219	83.07	•	. ų .Q	•	•	v . V .
6.083	27.1766	66.02	•	Q.	•	•	v . V .
6.167	27.1766	53.91	•	-	•	•	
6.250	27.8565	44.81		Q .	•	•	V . V .
			. Q		•	•	
6.333	28.1155	37.61	. Q	•	•	•	٧.
6.417	28.3368	32.13	. Q	•	•	•	٧.
6.500	28.5271	27.63	. Q	•	•	•	٧.
6.583	28.6917	23.90	. Q	•	•	•	٧.
6.667	28.8343	20.71	. Q	•	•	•	٧.
6.750	28.9582	17.99	. Q	•	•	•	٧.
6.833	29.0652	15.54	. Q	•	•	•	٧.
6.917	29.1563	13.23	.Q	•	•	•	٧.
7.000	29.2321	11.00	.Q	•	•	•	٧.
7.083	29.2969	9.41	.Q	•	•	•	٧.
7.167	29.3512	7.88	.Q	•	•	•	٧.
7.250	29.3935	6.15	Q	•	•		٧.
7.333	29.4290	5.16	Q	•			٧.
7.417	29.4615	4.71	Q	•			٧.
7.500	29.4915	4.36	Q	•			٧.
7.583	29.5189	3.97	Q	•			٧.
7.667	29.5430	3.50	Q	•			٧.
7.750	29.5633	2.95	Q	•			٧.
7.833	29.5795	2.35	Q	•			٧.
7.917	29.5911	1.69	Q			•	٧.
8.000	29.5974	0.91	Q				٧.
8.083	29.5988	0.20	Q	•			٧.
8.167	29.5991	0.05	Q				٧.
8.250	29.5993	0.03	Q	•		•	٧.
8.333	29.5994	0.02	Q	•			٧.
8.417	29.5994	0.01	Ó				٧.
			٠	•	-	•	

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
=======================================	=======
0%	505.0
10%	180.0
20%	135.0
30%	100.0
40%	75.0
50%	50.0
60%	40.0

70%	30.0
80%	25.0
90%	15.0

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<

(UNIT-HYDROGRAPH ADDED TO STREAM #4)

WATERSHED AREA = 252.600 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.283 HOURS

CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.269

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900

MINIMUM SOIL-LOSS RATE(INCH/HOUR) = 0.134

USER-ENTERED RAINFALL = 4.61 INCHES

RCFC&WCD 24-Hour Storm (15-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 88.339

UNIT HYDROGRAPH DETERMINATION

INTERVAL NUMBER	"S" GRAPH MEAN VALUES	UNIT HYDROGRAPH ORDINATES(CFS)	
1	15.461	157.442	
2	62.372	477.687	
3	80.303	182.587	
4	87.922	77.589	
5	92.370	45.289	
6	95.321	30.058	
7	97.282	19.962	
8	98.370	11.079	
9	99.004	6.457	
10	99.602	6.086	
11	99.900	3.043	
12	100.000	1.014	

UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0092	0.0083	0.0009
2	0.0138	0.0124	0.0014
3	0.0138	0.0124	0.0014
4	0.0184	0.0166	0.0018
5	0.0138	0.0124	0.0014
6	0.0138	0.0124	0.0014
7	0.0138	0.0124	0.0014
8	0.0184	0.0166	0.0018
9	0.0184	0.0166	0.0018
10	0.0184	0.0166	0.0018
11	0.0231	0.0207	0.0023
12	0.0231	0.0207	0.0023
13	0.0231	0.0207	0.0023
14	0.0231	0.0207	0.0023
15	0.0231	0.0207	0.0023
16	0.0277	0.0249	0.0028
17	0.0277	0.0249	0.0028
18	0.0323	0.0290	0.0032
19	0.0323	0.0290	0.0032
20	0.0369	0.0332	0.0037
21	0.0277	0.0249	0.0028
22	0.0323	0.0290	0.0032
23 24	0.0369	0.0332	0.0037
25	0.0369	0.0332	0.0037 0.0041
26	0.0415 0.0415	0.0373 0.0373	0.0041
27	0.0461	0.0415	0.0041
28	0.0461	0.0415	0.0046
29	0.0461	0.0415	0.0046
30	0.0507	0.0456	0.0051
31	0.0553	0.0498	0.0055
32	0.0599	0.0539	0.0060
33	0.0692	0.0622	0.0069
34	0.0692	0.0622	0.0069
35	0.0738	0.0664	0.0074
36	0.0784	0.0705	0.0078
37	0.0876	0.0745	0.0131
38	0.0922	0.0735	0.0187
39	0.0968	0.0724	0.0244
40	0.1014	0.0714	0.0301
41	0.0692	0.0622	0.0069
42	0.0692	0.0622	0.0069
43	0.0922	0.0683	0.0239
44	0.0922	0.0673	0.0249
45	0.0876	0.0663	0.0213
46	0.0876	0.0653	0.0223
47	0.0784	0.0644	0.0140
48	0.0830	0.0634	0.0196
49	0.1153	0.0625	0.0528
50	0.1199	0.0615	0.0583
51	0.1291	0.0606	0.0685
52	0.1337	0.0597	0.0740
53	0.1567	0.0588	0.0980
54	0.1567	0.0579	0.0988
55	0.1060	0.0570	0.0490
56	0.1060	0.0561	0.0499
57	0.1245	0.0553	0.0692
58	0.1199	0.0544	0.0654

59	0.1199	0.0536	0.0662
60	0.1153	0.0528	0.0625
61	0.1106	0.0520	0.0587
62	0.1060	0.0512	0.0548
63	0.0876	0.0504	0.0372
64	0.0876	0.0496	0.0380
65	0.0184	0.0166	0.0018
66	0.0184	0.0166	0.0018
67	0.0138	0.0124	0.0014
68	0.0138	0.0124	0.0014
69	0.0231	0.0207	0.0023
70	0.0231	0.0207	0.0023
71	0.0231	0.0207	0.0023
72	0.0184	0.0166	0.0018
73	0.0184	0.0166	0.0018
74	0.0184	0.0166	0.0018
75	0.0138	0.0124	0.0014
76	0.0092	0.0083	0.0009
77	0.0138	0.0124	0.0014
78	0.0184	0.0166	0.0018
79	0.0138	0.0124	0.0014
80	0.0092	0.0083	0.0009
81	0.0138	0.0124	0.0014
82	0.0138	0.0124	0.0014
83	0.0138	0.0124	0.0014
84	0.0092	0.0083	0.0009
85	0.0138	0.0124	0.0014
86	0.0092	0.0083	0.0009
87	0.0138	0.0124	0.0014
88	0.0092	0.0083	0.0009
89	0.0138	0.0124	0.0014
90	0.0092	0.0083	0.0009
91	0.0092	0.0083	0.0009
92	0.0092	0.0083	0.0009
93	0.0092	0.0083	0.0009
94	0.0092	0.0083	0.0009
95	0.0092	0.0083	0.0009
96	0.0092	0.0083	0.0009

TOTAL STORM RAINFALL(INCHES) = 4.61
TOTAL SOIL-LOSS(INCHES) = 3.21
TOTAL EFFECTIVE RAINFALL(INCHES) = 1.40

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 67.6748
TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 29.3505

24-HOUR STORM RUNOFF HYDROGRAPH

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

(No	ote: Time ind	licated i	s at	END of Each	Unit Inte	rvals)	
TTME(HRS)	VOLUME(AF)	Q(CFS)	 а	22.5	45.0	67 . 5	90.0
	·	٠					
0.083	0.0010	0.15	Q	•			
0.167	0.0020	0.15	Q	•			
0.250	0.0030	0.15	Q	•			
0.333	0.0075	0.66	Q			•	
0.417	0.0121	0.66	Q	•	•		
0.500	0.0166	0.66	Q			•	
0.583	0.0238	1.05	Q			•	
0.667	0.0310	1.05	Q			•	
0.750	0.0382	1.05	Q	•			
0.833	0.0470	1.28	Q	•			
0.917	0.0558	1.28	Q	•		•	•
1.000	0.0646	1.28	Q	•	•		
1.083	0.0749	1.50	Q	•	•	•	•
1.167	0.0852	1.50	Q	•	•		
1.250	0.0956	1.50	Q	•	•	•	•
1.333	0.1053	1.41	Q	•	•	•	•
1.417	0.1150	1.41	Q	•	•	•	•
1.500	0.1248	1.41	Q	•	•	•	•
1.583	0.1344	1.40	Q	•	•	•	•
1.667	0.1440	1.40	Q	•	•	•	•
1.750	0.1536	1.40	Q	•	•	•	•
1.833	0.1638	1.47	Q	•	•	•	•
1.917	0.1739	1.47	Q	•	•	•	•
2.000	0.1841	1.47	Q	•	•	•	•
2.083	0.1957	1.70	Q	•	•	•	•
2.167	0.2074	1.70	Q	•	•	•	•
2.250	0.2191	1.70	Q	•	•	•	•
2.333	0.2314	1.79	Q	•	•	•	•
2.417	0.2437	1.79	Q	•	•	•	•
2.500	0.2560	1.79	Q	•	•	•	•
2.583	0.2691	1.90	Q	•	•	•	•
2.667	0.2822	1.90	Q	•	•	•	•
2.750	0.2952	1.90	Q	•	•	•	•
2.833	0.3099	2.14	Q	•	•	•	•
2.917	0.3246	2.14	Q	•	•	•	•
3.000	0.3394	2.14	Q	•	•	•	•
3.083	0.3548	2.24	Q	•	•	•	•
3.167	0.3702	2.24	Q	•	•	•	•
3.250	0.3856	2.24 2.28	Q	•	•	•	•
3.333 3.417	0.4013 0.4169		VQ	•	•	•	•
		2.28 2.28		•	•	•	•
3.500 3.583	0.4326 0.4485	2.30	VQ	•	•	•	•
3.667	0.4644	2.30	VQ	•	•	•	•
3.750	0.4803	2.30	VQ	•	•	•	•
3.833	0.4967	2.39	VQ	•	•	•	•
3.833	0.4967	2.39	VQ VQ	•	•	•	•
4.000	0.5132	2.39	VQ	•	•	•	•
4.083	0.5478	2.63	VQ	•	•	•	•
4.063	0.5659	2.63	VQ	•	•	•	•
4.167	0.5839	2.63	VQ	•	•	•	•
4.230	0.6031	2.79	VQ	•	•	•	•
4.333	0.6223	2.79	VQ	•	•	•	•
→・ 4⊥/	0.0223	2.13	٧Ų	•	•	•	•

4.500	0.6416	2.79	VQ	•			
4.583	0.6625	3.05	VQ				
4.667	0.6835	3.05	VQ				
			-	•	•	•	•
4.750	0.7045	3.05	VQ	•	•	•	•
4.833	0.7268	3.23	VQ	•	•		
4.917	0.7490	3.23	Q				
5.000	0.7712	3.23		·	•	•	•
			Q	•	•	•	•
5.083	0.7943	3.35	.Q	•	•	•	•
5.167	0.8174	3.35	.Q				
5.250	0.8405	3.35	.ç				
				•	•	•	•
5.333	0.8619	3.10	.Q	•	•	•	•
5.417	0.8833	3.10	.Q	•	•		
5.500	0.9046	3.10	.Q				
5.583	0.9272			·	•	•	•
		3.28	.Q	•	•	•	•
5.667	0.9498	3.28	.Q	•	•	•	•
5.750	0.9724	3.28	.Q	•	•		
5.833	0.9968	3.55	.Q				
				·	•	•	•
5.917	1.0213	3.55	.Q	•	•	•	•
6.000	1.0457	3.55	.Q	•	•	•	•
6.083	1.0713	3.72	.Q	•	•		
6.167	1.0969	3.72	.Q				
				•	•	•	•
6.250	1.1225	3.72	.Q	•	•	•	•
6.333	1.1499	3.98	.Q	•	•		
6.417	1.1774	3.98	.Q				
6.500	1.2048	3.98	.Q				
				•	•	•	•
6.583	1.2335	4.16	.Q	•	•	•	•
6.667	1.2621	4.16	.Q	•	•		
6.750	1.2908	4.16	.Q				
				•	•	•	•
6.833	1.3214	4.44	.Q	•	•	•	•
6.917	1.3519	4.44	.Q	•	•	•	
7.000	1.3825	4.44	.Q	•			
7.083	1.4138	4.55	.vQ				
			-	•	•	•	•
7.167	1.4452	4.55	.VQ	•	•	•	•
7.250	1.4765	4.55	. Q	•	•		
7.333	1.5088	4.68	. Q	_			
7.417	1.5410	4.68		•	•	•	•
			. Q	•	•	•	•
7.500	1.5732	4.68	. Q	•	•		
7.583	1.6077	5.01	. Q	•	•		
7.667	1.6422	5.01	. Q				
				•	•	•	•
7.750	1.6766	5.01	. Q	•	•	•	•
7.833	1.7139	5.40	. Q	•	•	•	
7.917	1.7511	5.40	. Q	•			
8.000	1.7883	5.40	. Q				
				•	•	•	•
8.083	1.8290	5.90	. Q	•	•	•	•
8.167	1.8696	5.90	. Q	•	•	•	
8.250	1.9103	5.90	. Q				
8.333	1.9550	6.49	. Q				
				•	•	•	•
8.417	1.9997	6.49	. Q	•	•	•	•
8.500	2.0445	6.49	. Q	•	•		
8.583	2.0914	6.81	. VQ	_	_	_	_
	2.1383			·	•	•	•
8.667		6.81	. VQ	•	•	•	•
8.750	2.1851	6.81	. VQ	•	•		•
8.833	2.2349	7.22	. Q	•	•		
8.917	2.2846	7.22	. Q			_	_
				•	•	•	•
9.000	2.3343	7.22	. Q	•	•	•	•
9.083	2.3923	8.42	. Q	•	•	•	•
9.167	2.4504	8.42	. Q			•	
9.250	2.5084	8.42	. Q		•		
				•	•	•	•
9.333	2.5909	11.98	. V Q	•	•	•	•
9.417	2.6734	11.98	. V Q				
9.500	2.7560	11.98	. v Q	•			
				,	•	-	•
9.583	2.8705	16.63	. V Q	•	•	•	•
9.667	2.9850	16.63	. V Q	•		•	•
9.750	3.0995	16.63	. V Q				
			·				

9.833	3.2490	21.71 .	V Q.	•	•	•	
9.917	3.3986	21.71 .	v Q.	•	•		
10.000	3.5481	21.71 .	V Q.	•	•		
10.083	3.7032	22.51 .	V Q	•	•		
10.167	3.8582	22.51 .	V Q	•	•	•	
10.250	4.0133	22.51 .	V Q	•	•	•	
10.333	4.1054	13.37 .	Q .	•	•	•	
10.417	4.1974	13.37 .	Q .	•	•	•	
10.500	4.2894	13.37 .	Q .	•	•	•	
10.583	4.3776	12.79 .	Q .	•	•	•	
10.667	4.4657	12.79 .	QV .	•	•	•	
10.750	4.5538	12.79 .	QV .	•	•	•	
10.833	4.6907	19.87 .	VQ.	•	•	•	
10.917	4.8275	19.87 .	VQ.	•	•	•	
11.000	4.9644	19.87 .	VQ.	•	•	•	
11.083	5.1174	22.22 .	V Q.	•	•	•	
11.167	5.2704	22.22 .	V Q.	•	•	•	
11.250	5.4234	22.22 .	V Q.	•	•	•	
11.333	5.5728	21.69 .	V Q.	•	•	•	
11.417	5.7222	21.69 .	V Q.	•	•	•	
11.500	5.8716	21.69 .	VQ.	•	•	•	
11.583	6.0144	20.73 .	VQ.	•	•	•	
11.667	6.1572	20.73 .	VQ.	•	•	•	
11.750	6.3000	20.73 .	VQ.	•	•	•	
11.833	6.4237	17.96 .	QV .	•	•	•	
11.917	6.5474	17.96 .	QV .	•	•	•	
12.000	6.6711	17.96 .	Q V.	•	•	•	
12.083	6.8400	24.53 .	VQ	•	•	•	
12.167	7.0090	24.53 .	VQ	•	•	•	
12.250	7.1779	24.53 .	VQ	•	•	•	
12.333	7.4649	41.67 .	V	Q.	•	•	
12.417	7.7519	41.67 .	V	Q.	•	•	
12.500	8.0389	41.67 .	V	Q.	•	•	
12.583	8.3974	52.06 .	٠٧.	. Q	•	•	
12.667	8.7559	52.06 .	٠٧.	. Q	•	•	
12.750	9.1144	52.06 .	. V	. Q	•	•	
12.833	9.5375	61.43 .	. V	•	Q.	•	
12.917	9.9606	61.43 .	. V	•	Q.	•	
13.000	10.3837	61.43 .	. V	•	Q.	•	
13.083	10.8773	71.67 .	. V	•	.Q	•	
13.167	11.3709	71.67 .	. v		.Q	•	
13.250	11.8645	71.67 .	. \		.Q	•	
13.333	12.4591	86.33 .	. \		•	Q.	
13.417	13.0536	86.33 .	•	V .	•	Q.	
13.500	13.6481	86.33 .	•	٧.	•	Q.	
13.583	14.2336	85.00 .	•	٧.	•	Q.	
13.667	14.8190	85.00 .	•	V	•	Q.	
13.750	15.4044	85.00 .	•	V	•	Q.	
13.833	15.8477	64.37 .	•	٠٧	Q.	•	
13.917	16.2911 16.7344	64.37 .	•	. V	Q.	•	
14.000 14.083		64.37 . 60.54 .	•	. V	Q.	•	
14.063	17.1513 17.5683	60.54 .	•		Q . Q .	•	
		60.54 .	•	. v		•	
14.250 14.333	17.9852 18.4444	66.68 .	•	. v	-	•	
14.333	18.9037	66.68 .	•	. v	_	•	
14.417	19.3629	66.68 .	•		v Q.	•	
14.583	19.8252	67.12 .	•	•	v Q. v Q.	•	
14.667	20.2875	67.12 .	•	•	v Q. V Q.	•	
14.750	20.7497	67.12 .	•	•	VQ.	•	
14.833	21.2091	66.70 .	•	•	VQ.	•	
14.917	21.6685	66.70 .	•	•	Q.	•	
15.000	22.1279	66.70 .	•	•	QV	•	
15.083	22.5707	64.30 .	•	•	Q V	•	
	,,,,		•	•		•	

15.167	23.0135	64.30	•	•		•	Q V	•
15.250	23.4563	64.30		•			Q V	•
15.333	23.8786	61.30					Q.	ν.
15.417	24.3008	61.30					Q.	٧.
15.500	24.7230	61.30					Q.	٧.
15.583	25.1072	55.80	_	_			Q.	٧.
15.667	25.4915	55.80	•				Q .	v .
15.750	25.8758	55.80	•	•		•		v .
			•	•		•	Q.	
15.833	26.1940	46.21	•	•		Q	•	ν.
15.917	26.5123	46.21	•	•		Q	•	٧.
16.000	26.8306	46.21		•		Q	•	٧.
16.083	27.0857	37.04	•	•	Q		•	٧.
16.167	27.3408	37.04	•		Q			٧.
16.250	27.5959	37.04			Q			٧.
16.333	27.7216	18.26		Q.				٧.
16.417	27.8474	18.26		Q.		•		٧.
16.500	27.9731	18.26		Q.		•	•	٧.
				ų.		•	•	
16.583	28.0466	10.66	. Q	•		•	•	٧.
16.667	28.1200	10.66	. Q	•		•	•	٧.
16.750	28.1934	10.66	. Q	•		•	•	٧.
16.833	28.2417	7.01	. Q	•			•	٧.
16.917	28.2900	7.01	. Q	•			•	٧.
17.000	28.3383	7.01	. Q				•	٧.
17.083	28.3729	5.02	. Q					٧.
17.167	28.4075	5.02	. Q	_			_	٧.
17.250	28.4421	5.02	. Q			·	•	٧.
17.333	28.4703	4.10		•		•	•	v . V .
			.Q	•		•	•	
17.417	28.4985	4.10	.Q	•		•	•	٧.
17.500	28.5268	4.10	.Q	•		•	•	٧.
17.583	28.5501	3.38	.Q	•		•	•	٧.
17.667	28.5734	3.38	.Q	•			•	٧.
17.750	28.5967	3.38	.Q				•	٧.
17.833	28.6163	2.85	.Q					٧.
17.917	28.6359	2.85	.Q					٧.
18.000	28.6556	2.85	.Q					٧.
18.083	28.6719	2.38	. Q	•		•	•	٧.
			-	•		•	•	
18.167	28.6883	2.38	.Q	•		•	•	٧.
18.250	28.7047	2.38	.Q	•		•	•	٧.
18.333	28.7190	2.08	Q	•		•	•	٧.
18.417	28.7333	2.08	Q	•			•	٧.
18.500	28.7476	2.08	Q	•			•	٧.
18.583	28.7606	1.88	Q				•	٧.
18.667	28.7735	1.88	Q					٧.
18.750	28.7864	1.88	Q				•	٧.
18.833	28.7970	1.53	Q					٧.
18.917	28.8076	1.53	Q	•		•	•	٧.
	28.8181			•		•	•	
19.000		1.53	Q	•		•	•	٧.
19.083	28.8270	1.29	Q	•		•	•	٧.
19.167	28.8360	1.29	Q	•		•	•	٧.
19.250	28.8449	1.29	Q	•		•	•	٧.
19.333	28.8549	1.46	Q	•			•	٧.
19.417	28.8650	1.46	Q				•	٧.
19.500	28.8751	1.46	Q					٧.
19.583	28.8863	1.64	Q					٧.
19.667	28.8976	1.64	Q	•		•	•	٧.
19.750				•		•	•	v. V.
	28.9089	1.64	Q	•		•	•	
19.833	28.9187	1.43	Q	•		•	•	٧.
19.917	28.9285	1.43	Q	•		•	•	٧.
20.000	28.9383	1.43	Q	•		•	•	٧.
20.083	28.9468	1.22	Q	•			•	٧.
20.167	28.9552	1.22	Q	•			•	٧.
20.250	28.9636	1.22	Q					٧.
20.333	28.9729	1.34	Q					٧.
20.417	28.9821	1.34	Q				-	٧.
,,	_3	,,	•	•		٠	•	••

20.500	28.9914	1.34	Q				٧.
20.583	29.0009	1.39	Q				٧.
				•	•	•	
20.667	29.0105	1.39	Q	•	•	•	٧.
20.750	29.0200	1.39	Q	•	•	•	٧.
20.833	29.0291	1.32	Q				٧.
20.917	29.0383	1.32	Q				٧.
			-	•	•	•	
21.000	29.0474	1.32	Q	•	•	•	٧.
21.083	29.0555	1.18	Q		•		٧.
21.167	29.0636	1.18	Q				٧.
21.250			-	•	•	•	
	29.0717	1.18	Q	•	•	•	٧.
21.333	29.0803	1.24	Q	•	•	•	٧.
21.417	29.0888	1.24	Q				٧.
21.500	29.0974	1.24	Q				٧.
			-	•	•	•	
21.583	29.1053	1.15	Q	•	•	•	٧.
21.667	29.1132	1.15	Q	•	•	•	٧.
21.750	29.1211	1.15	Q		•		٧.
21.833	29.1296	1.23	Q				٧.
			-	•	•	•	
21.917	29.1381	1.23	Q	•	•	•	٧.
22.000	29.1465	1.23	Q	•			٧.
22.083	29.1544	1.14	Q	_	_	_	٧.
22.167	29.1622	1.14	-	•	·	•	٧.
			Q	•	•	•	
22.250	29.1700	1.14	Q	•	•	•	٧.
22.333	29.1784	1.22	Q		•	•	٧.
22.417	29.1868	1.22	Q	_	_	_	٧.
				•	·	•	
22.500	29.1952	1.22	Q	•	•	•	٧.
22.583	29.2025	1.06	Q	•	•	•	٧.
22.667	29.2098	1.06	Q				٧.
22.750	29.2171	1.06	Q				٧.
			-	•	•	•	
22.833	29.2240	1.00	Q	•	•	•	٧.
22.917	29.2309	1.00	Q		•		٧.
23.000	29.2378	1.00	Q		•		٧.
23.083	29.2445	0.97	Q				٧.
			-	•	•	•	
23.166	29.2512	0.97	Q	•	•	•	٧.
23.250	29.2579	0.97	Q	•	•	•	٧.
23.333	29.2645	0.96	Q	_			٧.
23.416	29.2711			•	•	·	٧.
		0.96	Q	•	•	•	
23.500	29.2777	0.96	Q	•	•	•	٧.
23.583	29.2843	0.95	Q		•		٧.
23.666	29.2908	0.95	Q	_	_	_	٧.
23.750	29.2974	0.95	-	•	•	·	٧.
			Q	•	•	•	
23.833	29.3039	0.95	Q	•	•	•	٧.
23.916	29.3105	0.95	Q		•		٧.
24.000	29.3170	0.95	Q				٧.
			-	•	•	•	
24.083	29.3225	0.80	Q	•	•	•	٧.
24.166	29.3280	0.80	Q	•	•	•	٧.
24.250	29.3335	0.80	Q		•		٧.
24.333	29.3359	0.36	Q				٧.
24.416				•	•	•	
	29.3384	0.36	Q	•	•	•	٧.
24.500	29.3408	0.36	Q	•	•	•	٧.
24.583	29.3421	0.19	Q		•		٧.
24.666	29.3434	0.19	Q				٧.
				•	•	•	
24.750	29.3447	0.19	Q	•	•	•	٧.
24.833	29.3455	0.11	Q	•	•	•	٧.
24.916	29.3463	0.11	Q				٧.
25.000	29.3470	0.11	Q				٧.
			-	•	•	•	
25.083	29.3475	0.07	Q	•	•	•	٧.
25.166	29.3480	0.07	Q	•	•		٧.
25.250	29.3485	0.07	Q		•	•	٧.
25.333	29.3488	0.04		-	-	-	v.
			Q	•	•	•	
25.416	29.3491	0.04	Q	•	•	•	٧.
25.500	29.3494	0.04	Q		•	•	٧.
25.583	29.3496	0.03	Q		•	•	٧.
25.666	29.3498	0.03		-	-	-	v.
			Q	•	•	•	
25.750	29.3500	0.03	Q	•	•	•	٧.

25.833	29.3501	0.02	Q				٧.	
25.916	29.3502	0.02	Q	•	•	•	٧.	
26.000	29.3503	0.02	Q			•	٧.	
26.083	29.3503	0.01	Q			•	٧.	
26.166	29.3504	0.01	Q			•	٧.	
26.250	29.3505	0.01	Q	•		•	٧.	

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

	Percentile of Peak Flow	Duratio (minute	
	==========	 (minute	•
	0%	1575.0	
	10%	450.0	
	20%	375.0	
	30%	240.0	
	40%	240.0	
	50%	210.0	
	60%	195.0	
	70%	165.0	
	80%	45.0	
	90%	30.0	
_		 	

END OF FLOODSCx ROUTING ANALYSIS

D.2 – 100-YR PROPOSED HYDROLOGY

- Loss Rate Calculations
- AES Unit Hydrograph Calcs

Synthetic Unit Hydrograph Method Loss Rate Parameter Development Project Condition (AMC II) Travertine Development

Subarea	Land Use	Cover Type	Cover Quality	Area A (acres)	AMC II Runoff Index RI	Pervious Area Infiltration Rate Fp (in/hr)	Impervious Fraction A i	Adjusted Infiltration Rate F (in/hr)	F×A	A _i x A
А	Undeveloped	А		36.42	78	0.268	0.00	0.268	9.761	0.000
А	Single Family (1/4)	А		141.90	32	0.739	0.50	0.406	57.675	70.950
А	Mobile Home	А		6.49	32	0.739	0.75	0.240	1.559	4.868
А	Condminium	А		21.29	32	0.739	0.65	0.307	6.529	13.839
А	Commercial	А		16.44	32	0.739	0.90	0.140	2.308	14.796
						Average Adj	usted Infiltration	Rate, F (in/hr) =	0.350	
		Watershed A Tot	al Area (acres) =	222.54				Low Lo	ss Fraction =	0.525
							Lag = Ration	al Method (Tc/60	min) x 0.8 =	0.204
В	Undeveloped	А		53.88	78	0.268	0.00	0.268	14.440	0.000
В	Single Family (1/2)	А		2.08	32	0.739	0.40	0.473	0.984	0.832
В	Single Family (1/4)	А		188.42	32	0.739	0.50	0.406	76.583	94.210
В	Mobile Home	А	_	27.38	32	0.739	0.75	0.240	6.576	20.535
В	Condminium	А		23.94	32	0.739	0.65	0.307	7.342	15.561
В	Commercial	А		0.00	32	0.739	0.90	0.140	0.000	0.000
						Average Adj	usted Infiltration	Rate, F (in/hr) =	0.358	
		Watershed B Tot	al Area (acres) =	295.70				Low Lo	ss Fraction =	0.545
					Lag = Rational Method (Tc/60 min) x 0.8 =					0.322

Rainfall Data (NOAA Atlas 14)				
	100-Year			
Duration	Precipitation (inches)			
1-Hour	1.56			
3-Hour	2.28			
6-Hour	2.89			
24-Hour	4.61			

FLOOD ROUTING ANALYSIS

ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

(c) Copyright 1989-2015 Advanced Engineering Software (aes) (Synthetic Unit Hydrograph Version 22.0) Release Date: 07/01/2015 License ID 1673

Analysis prepared by:

******************** DESCRIPTION OF STUDY ***************** * TRAVERTINE DEVELOPMENT * BASIN ROUTING - 100 YEAR STORM 1 HOUR A + B * 09-23-2021 6 - 42IN RISERS ************************* FILE NAME: TR-BAS1.DAT TIME/DATE OF STUDY: 08:28 09/23/2021 *********************** FLOW PROCESS FROM NODE 1.00 TO NODE 10.00 IS CODE = 1 ______ >>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)< ______ (UNIT-HYDROGRAPH ADDED TO STREAM #1) WATERSHED AREA = 220.300 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 0.204 HOURS CAUTION: LAG TIME IS LESS THAN 0.50 HOURS. THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. VALLEY S-GRAPH SELECTED UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.350 LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.525 USER-ENTERED RAINFALL = 1.56 INCHES RCFC&WCD 1-Hour Storm (5-Minute period) SELECTED (SLOPE OF INTENSITY-DURATION CURVE = 0.58) *USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000 UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG-TIME = 40.850 _____ UNIT HYDROGRAPH DETERMINATION INTERVAL "S" GRAPH UNIT HYDROGRAPH
MEAN VALUES ORDINATES(CFS) NUMBER ______

117.320

1

4.403

_			
2	22.644	485.967	
3	50.373	738.765	
4	67.046	444.231	
5	75.561	226.848	
6	80.978	144.325	
7	84.890	104.231	
8	87.828	78.282	
9	90.157	62.038	
10	92.038	50.111	
11	93.582	41.133	
12	94.876	34.477	
13	96.012	30.282	
14	96.844	22.165	
15	97.637	21.120	
16	98.159	13.916	
17	98.452	7.809	
18	98.746	7.814	
19	99.039	7.809	
20	99.332	7.809	
21	99.625	7.809	
22	99.918	7.809	
23	100.000	2.188	

UNIT	UNIT	UNIT	EFFECTIVE			
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL			
(NUMBER)	(INCHES)	(INCHES)	(INCHES)			
1	0.0566	0.0292	0.0274			
2	0.0604	0.0292	0.0313			
3	0.0651	0.0292	0.0359			
4	0.0732	0.0292	0.0441			
5	0.0782	0.0292	0.0490			
6	0.0913	0.0292	0.0621			
7	0.1110	0.0292	0.0819			
8	0.1242	0.0292	0.0950			
9	0.2040	0.0292	0.1749			
10	0.5310	0.0292	0.5018			
11	0.1012	0.0292	0.0720			
12	0.0638	0.0292	0.0347			

TOTAL STORM RAINFALL(INCHES) = 1.56 TOTAL SOIL-LOSS(INCHES) = 0.35

TOTAL EFFECTIVE RAINFALL(INCHES) = 1.21

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 6.4254
TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 22.2021

1-HOUR STORM RUNOFF HYDROGRAPH

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

(Note: Time indicated is at END OF Each Offic intervals)									
TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	150.0	300.0	450.0	600.0		
0.083	0.0222	3.22	Q						
0.167	0.1392	16.99	VQ		•		•		
0.250	0.4123	39.66	V Q		•		•		
0.333	0.8110	57.89	.V Q		•		•		
0.417	1.3192	73.79	. V (Q .	•		•		
0.500	1.9435	90.65	. V	Q.	•		•		
0.583	2.7085	111.08	. \	/ Q .	•	•			
0.667	3.6670	139.17		V Q.	•	•			
0.750	4.9075	180.13		V.Q	•	•			
0.833	6.8517	282.30		. V	Q.		•		
0.917	10.0523	464.73			٧.	Q			
1.000	13.7570	537.92			•	v .	Q.		
1.083	16.2940	368.37				Q V.	•		
1.167	17.8360	223.89		. Q		. V	•		
1.250	18.8271	143.91		Q.		. v	•		
1.333	19.5272	101.66		Q.			٧.		
1.417	20.0560	76.78		Q .			V .		
1.500	20.4742	60.73	. (Q .			V .		
1.583	20.8120	49.04	. Q				٧.		
1.667	21.0888	40.20	. Q				٧.		
1.750	21.3193	33.46	. Q				٧.		
1.833	21.5126	28.08	.Q				٧.		
1.917	21.6638	21.95	.Q				٧.		
2.000	21.7920	18.62	.Q				٧.		
2.083	21.8837	13.31	Q				٧.		
2.167	21.9482	9.36	Q				٧.		
2.250	22.0054	8.30	Q		•		٧.		
2.333	22.0580	7.63	Q				٧.		
2.417	22.1064	7.04	Q				٧.		
2.500	22.1500	6.32	Q				٧.		
2.583	22.1853	5.13	Q		•		٧.		
2.667	22.1986	1.93	Q		•		٧.		
2.750	22.2016	0.43	Q		•		٧.		
2.833	22.2021	0.08	Q		•		V		

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE:

(Note: 100% of Peak Flow Rate estimate assumed to have

an instantaneous time duration)

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
=======================================	=======
0%	170.0
10%	75.0
20%	45.0
30%	30.0
40%	25.0
50%	20.0
60%	15.0
70%	10.0
80%	10.0
90%	5.0

(UNIT-HYDROGRAPH ADDED TO STREAM #2)

WATERSHED AREA = 295.700 ACRES
BASEFLOW = 0.000 CFS/SQUARE-MILE
*USER ENTERED "LAG" TIME = 0.322 HOURS
CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.
THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)
MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.
VALLEY S-GRAPH SELECTED
UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.358
LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.545
USER-ENTERED RAINFALL = 1.56 INCHES
RCFC&WCD 1-Hour Storm (5-Minute period) SELECTED
(SLOPE OF INTENSITY-DURATION CURVE = 0.58)
*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 25.880

UNIT HYDROGRAPH DETERMINATION

INTERVAL NUMBER	"S" GRAPH MEAN VALUES		
1	2.366	84.607	
2	10.202	280.224	
3	24.613	515.375	
4	43.211	665.070	
5	58.251	537.840	
6	67.091	316.147	
7	72.914	208.215	
8	77.143	151.237	
9	80.487	119.614	
10	83.170	95.934	
11	85.423	80.569	
12	87.296	66.975	
13	88.853	55.683	
14	90.286	51.265	
15	91.500	43.381	
16	92.561	37.949	
17	93.519	34.276	
18	94.379	30.764	
19	95.141	27.218	
20	95.884	26.586	
21	96.438	19.810	
22	96.940	17.969	
23	97.443	17.964	
24	97.921	17.111	
25	98.166	8.744	
26	98.351	6.634	
27	98.537	6.650	

29 98.909 6.6 30 99.094 6.6 31 99.280 6.6 32 99.466 6.6	6.639
30 99.094 6.6 31 99.280 6.6 32 99.466 6.6	
31 99.280 6.6 32 99.466 6.6	6.645
32 99.466 6.6	6.644
	6.644
22 00 652 6 6	6.644
33 93.032 0.0	6.644
34 99.838 6.6	6.644
35 100.000 5.8	5.808

UNIT	UNIT	UNIT	EFFECTIVE					
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL					
(NUMBER)	(INCHES)	(INCHES)	(INCHES)					
1	0.0566	0.0298	0.0268					
2	0.0604	0.0298	0.0306					
3	0.0651	0.0298	0.0352					
4	0.0732	0.0298	0.0434					
5	0.0782	0.0298	0.0483					
6	0.0913	0.0298	0.0615					
7	0.1110	0.0298	0.0812					
8	0.1242	0.0298	0.0944					
9	0.2040	0.0298	0.1742					
10	0.5310	0.0298	0.5012					
11	0.1012	0.0298	0.0713					
12	0.0638	0.0298	0.0340					

TOTAL STORM RAINFALL(INCHES) = 1.56 TOTAL SOIL-LOSS(INCHES) = 0.36

TOTAL EFFECTIVE RAINFALL(INCHES) = 1.20

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 8.8217
TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 29.6040

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

600.0	450.0	300.0	150.0	0.	Q(CFS)	VOLUME(AF)	IME(HRS)
				Q	2.26	0.0156	0.083
		•		Q	10.09	0.0851	0.167
				VQ	25.34	0.2596	0.250
				V Q	47.11	0.5840	0.333
				.V Q	69.14	1.0602	0.417
			Q.	. V	89.45	1.6763	0.500
			Q.	. V	112.05	2.4480	0.583
			Q.	. V	139.45	3.4083	0.667
			V .Q		178.77	4.6396	0.750
		Q.	V .		262.77	6.4492	0.833
	Q.	•	. V		388.03	9.1216	0.917
	. Q	٧.			506.36	12.6089	1.000
Q.		. V			545.64	16.3668	1.083
	V Q.				442.42	19.4138	1.167
	V .	Q.	•		297.06	21.4596	1.250
	V		. Q		205.36	22.8740	1.333
	. V		Q		150.46	23.9102	1.417
	. V		Q.		118.55	24.7267	1.500
٧.	. v		Q.		96.40	25.3906	1.583
٧.			Q.	. (80.99	25.9484	1.667
٧.	•			. Q	68.26	26.4185	1.750
٧.	•			. Q	58.33	26.8201	1.833
٧.	•			. Q	51.95	27.1779	1.917
٧.	•			. Q	45.09	27.4885	2.000
٧.	•			. Q	39.70	27.7619	2.083
٧.	•			. Q	35.36	28.0054	2.167
٧.	•			. Q	31.42	28.2218	2.250
٧.	•			.Q	27.88	28.4138	2.333
٧.	•			.Q	25.29	28.5880	2.417
٧.	•			.Q	20.73	28.7307	2.500
٧.	•			.Q	18.41	28.8575	2.583
٧.	•			.Q	16.94	28.9742	2.667
٧.	•			Q	14.79	29.0760	2.750
٧.	•			Q	10.17	29.1460	2.833
٧.	•			Q	8.46	29.2043	2.917
٧.				Q	7.86	29.2584	3.000
٧.	•	•	•	Q	7.57	29.3106	3.083
٧.	•	•	•	Q	7.34	29.3611	3.167
٧.	•			Q	7.04	29.4096	3.250
٧.	•	•	•	Q	6.71	29.4558	3.333
٧.	•			Q	6.29	29.4991	3.417
٧.	•	•		Q	5.74	29.5386	3.500
٧.			•	Q	5.04	29.5734	3.583
٧.	•	•		Q	3.61	29.5982	3.667
٧.			•	Q	0.64	29.6026	3.750
				Q	0.20	29.6040	3.833

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE:

(Note: 100% of Peak Flow Rate estimate assumed to have

an instantaneous time duration)

Peak Flow Rate	(minutes)
=======================================	=======
0%	230.0
10%	90.0
20%	60.0
30%	40.0
40%	30.0
50%	25.0
60%	20.0
70%	20.0
80%	15.0
90%	10.0

FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 7

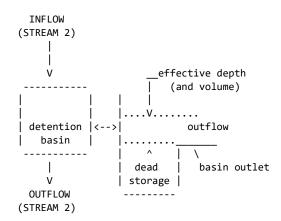
>>>>STREAM NUMBER 1 ADDED TO STREAM NUMBER 2<<<<<

FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 11

>>>>VIEW STREAM NUMBER 2 HYDROGRAPH<

STREAM HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS) (Note: Time indicated is at END of Each Unit Intervals)

TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	275.0	550.0	825.0	1100.0
0.083	0.0377	5.48	Q				
0.167	0.2242	27.08	Q	•		•	•
0.250	0.6719	65.00	V Q	•		•	•
0.333	1.3950	104.99	.V Q	•		•	•
0.417	2.3794	142.93	٠٧.	Q.		•	•
0.500	3.6198	180.10	. V	Q.		•	•
0.583	5.1565	223.13	. V	Q.		•	•
0.667	7.0753	278.62		V Q		•	•
0.750	9.5471	358.90		٧.	Q.	•	•
0.833	13.3010	545.06		V	Q.	•	•
0.917	19.1740	852.76		•	٧.	.Q	•
1.000	26.3659	1044.27			V	•	Q.
1.083	32.6608	914.01		•		V . Q	•
1.167	37.2498	666.32				Q V.	•
1.250	40.2867	440.96			Q.	٠٧.	•
1.333	42.4012	307.02		.Q		. V	•
1.417	43.9662	227.24		Q.		. V	•
1.500	45.2009	179.29		Q.		. \	
1.583	46.2026	145.44		Q.		•	v .
1.667	47.0372	121.18	. (Q.		•	٧.
1.750	47.7377	101.72	. Q	•		•	٧.
1.833	48.3328	86.40	. Q	•		•	V .
1.917	48.8417	73.90	. Q	•		•	V .
2.000	49.2805	63.71	. Q	•		•	V .
2.083	49.6456	53.01	.Q	•		•	V .
2.167	49.9536	44.72	.Q	•		•	V .
2.250	50.2271	39.72	.Q	•		•	٧.
2.333	50.4718	35.52	.Q	•		•	٧.
2.417	50.6944	32.33	.Q	•		•	٧.
2.500	50.8807	27.05	Q	•		•	٧.
2.583	51.0429	23.54	Q	•		•	٧.
2.667	51.1728	18.87	Q	•		•	٧.


2.750	51.2776	15.22	Q	•		٧.
2.833	51.3482	10.24	Q	•		٧.
2.917	51.4065	8.46	Q	•		٧.
3.000	51.4606	7.86	Q	•		٧.
3.083	51.5127	7.57	Q	•		٧.
3.167	51.5632	7.34	Q	•		٧.
3.250	51.6117	7.04	Q	•		٧.
3.333	51.6579	6.71	Q	•		٧.
3.417	51.7012	6.29	Q	•		٧.
3.500	51.7407	5.74	Q	•		٧.
3.583	51.7755	5.04	Q	•		٧.
3.667	51.8003	3.61	Q	•		٧.
3.750	51.8047	0.64	Q	•		٧.
3.833	51.8061	0.20	Q	•		٧.
3.917	51.8061	0.00	Q	•		٧.

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
=======================================	=======
0%	230.0
10%	85.0
20%	55.0
30%	35.0
40%	30.0
50%	25.0
60%	20.0
70%	15.0
80%	15.0
90%	5.0

>>>>FLOW-THROUGH DETENTION BASIN ROUTING MODEL APPLIED TO STREAM #2<

ROUTE RUNOFF HYDROGRAPH FROM STREAM NUMBER 2
THROUGH A FLOW-THROUGH DETENTION BASIN
SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS:
DEAD STORAGE(AF) = 0.000
SPECIFIED DEAD STORAGE(AF) FILLED = 0.000

BASIN DEPTH VERSUS OUTFLOW AND STORAGE INFORMATION:

INTERVAL	DEPTH	OUTFLOW	STORAGE
NUMBER	(FT)	(CFS)	(AF)
1	0.00	0.00	0.000
2	1.00	0.01	12.220
3	2.00	0.02	24.740
4	2.70	0.03	33.660
5	3.00	33.61	37.530
6	4.00	303.14	50.660

MODIFIED-PULS BASIN ROUTING MODEL RESULTS(5-MINUTE COMPUTATION INTERVALS):

(Note: Computed EFFECTIVE DEPTH and VOLUME are estimated at the clock time;

MEAN OUTFLOW is the average value during the unit interval.)

CLOCK					MEAN	
TIME	DEAD-STORAGE	INFLOW	LOSS	EFFECTIVE	OUTFLOW	EFFECTIVE
(HRS)	FILLED(AF)	(CFS)	(CFS)	DEPTH(FT)	(CFS)	VOLUME(AF)
0.083	0.000	5.48	0.00	0.00	0.0	0.038
0.167	0.000	27.08	0.00	0.02	0.0	0.224
0.250	0.000	65.00	0.00	0.05	0.0	0.672
0.333	0.000	104.99	0.00	0.11	0.0	1.395
0.417	0.000	142.93	0.00	0.19	0.0	2.379
0.500	0.000	180.10	0.00	0.30	0.0	3.620
0.583	0.000	223.13	0.00	0.42	0.0	5.156
0.667	0.000	278.62	0.00	0.58	0.0	7.075
0.750	0.000	358.90	0.00	0.78	0.0	9.547
0.833	0.000	545.06	0.00	1.09	0.0	13.301
0.917	0.000	852.76	0.00	1.56	0.0	19.174
1.000	0.000	1044.27	0.00	2.13	0.0	26.365
1.083	0.000	914.01	0.00	2.62	0.0	32.660
1.167	0.000	666.32	0.00	2.97	15.1	37.145
1.250	0.000	440.96	0.00	3.17	55.2	39.801
1.333	0.000	307.02	0.00	3.28	95.2	41.260
1.417	0.000	227.24	0.00	3.34	117.9	42.013
1.500	0.000	179.29	0.00	3.37		42.358
1.583	0.000	145.44	0.00	3.37	133.6	42.440
1.667	0.000	121.18	0.00	3.37	133.5	42.355
1.750	0.000	101.72	0.00	3.35	130.6	42.156
1.833	0.000	86.40	0.00	3.33	125.8	41.885
1.917	0.000	73.90	0.00	3.31	119.8	
2.000	0.000	63.71	0.00	3.28	113.0	
2.083	0.000	53.01	0.00	3.25	105.8	40.865
2.167	0.000	44.72	0.00	3.23	98.3	40.497
2.250	0.000	39.72	0.00	3.20	90.9	40.144
2.333	0.000	35.52	0.00	3.17	83.9	39.811
2.417	0.000	32.33	0.00	3.15	77.3	39.502
2.500	0.000	27.05	0.00	3.13	71.0	39.199
2.583	0.000	23.54	0.00	3.11	64.9	38.914
2.667	0.000	18.87	0.00	3.08	59.2	38.636
2.750	0.000	15.22	0.00	3.06	53.6	38.372
2.833	0.000	10.24	0.00	3.04	48.2	38.111
2.917	0.000	8.46	0.00	3.03	43.1	37.872
3.000	0.000	7.86	0.00	3.01	38.5	37.661
3.083	0.000	7.57	0.00	3.00	34.7	
3.167	0.000	7.34	0.00	2.98	32.4	37.302
3.250	0.000	7.04	0.00	2.97	30.9	37.137

3.333	0.000	6.71	0.00	2.96	29.5	36.980
3.417	0.000	6.29	0.00	2.95	28.2	36.830
3.500	0.000	5.74	0.00	2.93	26.9	36.684
3.583	0.000	5.04	0.00	2.92	25.7	36.542
3.667	0.000	3.61	0.00	2.91	24.4	36.399
3.750	0.000	0.64	0.00	2.90	23.1	36.244
3.833	0.000	0.20	0.00	2.89	21.8	36.095
3.917	0.000	0.00	0.00	2.88	20.5	35.953
4.000	0.000	0.00	0.00	2.87	19.4	35.820
4.083	0.000	0.00	0.00	2.86	18.2	35.695
4.167	0.000	0.00	0.00	2.85	17.2	35.576
4.250	0.000	0.00	0.00	2.84	16.2	35.465
4.333	0.000	0.00	0.00	2.83	15.2	35.360
4.417	0.000	0.00	0.00	2.82	14.4	35.261
4.500	0.000	0.00	0.00	2.82	13.5	35.168
4.583	0.000	0.00	0.00	2.81	12.7	35.080
4.667	0.000	0.00	0.00	2.80	12.0	34.998
4.750	0.000	0.00	0.00	2.80	11.3	34.920
4.833	0.000	0.00	0.00	2.79	10.6	34.846
4.917	0.000	0.00	0.00	2.79	10.0	34.777
5.000	0.000	0.00	0.00	2.78	9.4	34.712
5.083	0.000	0.00	0.00	2.78	8.9	34.651
5.167	0.000	0.00	0.00	2.77	8.4	34.593
5.250	0.000	0.00	0.00	2.77	7.9	34.539
5.333	0.000	0.00	0.00	2.76	7.4	34.488
5.417		0.00			7.4	34.440
	0.000		0.00	2.76		
5.500	0.000	0.00	0.00	2.76	6.6	34.394
5.583	0.000	0.00	0.00	2.75	6.2	34.351
5.667	0.000	0.00	0.00	2.75	5.9	34.311
5.750	0.000	0.00	0.00	2.75	5.5	34.273
5.833	0.000	0.00	0.00	2.74	5.2	34.237
5.917	0.000	0.00	0.00	2.74	4.9	34.203
6.000	0.000	0.00	0.00	2.74	4.6	34.172
6.083	0.000	0.00	0.00	2.74	4.3	34.142
6.167	0.000	0.00	0.00	2.74	4.1	34.114
6.250	0.000	0.00	0.00	2.73	3.9	34.087
6.333	0.000	0.00	0.00	2.73	3.6	34.062
6.417	0.000	0.00	0.00	2.73	3.4	34.039
6.500	0.000	0.00	0.00	2.73	3.2	34.016
6.583	0.000	0.00	0.00	2.73	3.0	33.995
6.667	0.000	0.00	0.00	2.72	2.9	33.976
6.750	0.000	0.00	0.00	2.72	2.7	33.957
6.833	0.000	0.00	0.00	2.72	2.5	33.940
6.917	0.000	0.00	0.00	2.72	2.4	33.923
7.000	0.000	0.00	0.00	2.72	2.3	33.908
7.083	0.000	0.00	0.00	2.72	2.1	33.893
7.167	0.000	0.00	0.00	2.72	2.0	33.879
7.250	0.000	0.00	0.00	2.72	1.9	33.866
7.333	0.000	0.00	0.00	2.72	1.8	33.854
7.417	0.000	0.00	0.00	2.71	1.7	33.843
7.500	0.000	0.00	0.00	2.71	1.6	33.832
7.583	0.000	0.00	0.00	2.71	1.5	33.822
7.667	0.000	0.00	0.00	2.71	1.4	33.812
7.750	0.000	0.00	0.00	2.71	1.3	33.803
7.833	0.000	0.00	0.00	2.71	1.2	33.795
7.917	0.000	0.00	0.00	2.71	1.2	33.787
8.000	0.000	0.00	0.00	2.71	1.1	33.779
8.083	0.000	0.00	0.00	2.71	1.0	33.772
					1.0	
8.167	0.000	0.00	0.00	2.71		33.765
8.250	0.000	0.00	0.00	2.71	0.9	33.759
8.333	0.000	0.00	0.00	2.71	0.9	33.753
8.417	0.000	0.00	0.00	2.71	0.8	33.747
8.500	0.000	0.00	0.00	2.71	0.8	33.742
8.583	0.000	0.00	0.00	2.71	0.7	33.737

8.667	0.000	0.00	0.00	2.71	0.7	33.732
8.750	0.000	0.00	0.00	2.71	0.6	33.728
8.833	0.000	0.00	0.00	2.70	0.6	33.724
8.917	0.000	0.00	0.00	2.70	0.6	33.720
9.000	0.000	0.00	0.00	2.70	0.5	33.716
9.083	0.000	0.00	0.00	2.70	0.5	33.713
9.167	0.000	0.00	0.00	2.70	0.5	33.709
9.250	0.000	0.00	0.00	2.70	0.4	33.706
9.333	0.000	0.00	0.00	2.70	0.4	33.703
9.417	0.000	0.00	0.00	2.70	0.4	33.701
9.500	0.000	0.00	0.00	2.70	0.4	33.698
9.583	0.000	0.00	0.00	2.70	0.4	33.696
9.667	0.000	0.00	0.00	2.70	0.3	33.693
9.750	0.000	0.00	0.00	2.70	0.3	33.691
9.833	0.000	0.00	0.00	2.70	0.3	33.689
9.917	0.000	0.00	0.00	2.70	0.3	33.687
10.000	0.000	0.00	0.00	2.70	0.3	33.685
10.083	0.000	0.00	0.00	2.70	0.2	33.684
10.167	0.000	0.00	0.00	2.70	0.2	33.682
10.250	0.000	0.00	0.00	2.70	0.2	33.681
10.333	0.000	0.00	0.00	2.70	0.2	33.679
10.333	0.000	0.00	0.00	2.70	0.2	33.678
10.500	0.000	0.00	0.00	2.70	0.2	33.677
10.583	0.000	0.00	0.00	2.70	0.2	33.675
10.667	0.000	0.00	0.00	2.70	0.2	33.674
10.750	0.000	0.00	0.00	2.70	0.2	33.673
10.730	0.000	0.00	0.00	2.70	0.1	33.672
10.833	0.000	0.00	0.00	2.70	0.1	33.671
			0.00	2.70	0.1	
11.000 11.083	0.000	0.00	0.00	2.70	0.1	33.670
11.167	0.000 0.000	0.00 0.00	0.00	2.70	0.1	33.670
11.250	0.000		0.00	2.70	0.1	33.669
11.333		0.00	0.00	2.70	0.1	33.668
	0.000	0.00		2.70	0.1	33.667
11.417	0.000	0.00	0.00			33.667
11.500 11.583	0.000	0.00	0.00	2.70 2.70	0.1 0.1	33.666
	0.000	0.00 0.00	0.00 0.00		0.1	33.666
11.667	0.000	0.00	0.00	2.70 2.70	0.1	33.665
11.750 11.833	0.000		0.00	2.70		33.665
11.033	0.000	0.00	0.00	2.70	0.1 0.1	33.664
	0.000	0.00		2.70		33.664
12.000	0.000 0.000	0.00 0.00	0.00 0.00		0.1 0.1	33.663
12.083 12.167	0.000	0.00	0.00	2.70 2.70	0.1	33.663 33.662
12.107	0.000	0.00	0.00	2.70	0.1	33.662
12.333	0.000	0.00	0.00	2.70	0.0	33.662
12.417	0.000	0.00	0.00	2.70	0.0	33.661
12.500	0.000	0.00	0.00	2.70	0.0	33.661
12.583	0.000	0.00	0.00	2.70	0.0	33.661
12.667	0.000	0.00	0.00	2.70	0.0	33.661
12.750	0.000	0.00	0.00	2.70	0.0	33.660
12.833	0.000	0.00	0.00	2.70	0.0	33.660
12.917	0.000	0.00	0.00	2.70	0.0	33.660
13.000	0.000	0.00	0.00	2.70	0.0	33.660
13.083	0.000	0.00	0.00	2.70	0.0	33.659
13.167	0.000	0.00	0.00	2.70	0.0	33.659
13.250	0.000	0.00	0.00	2.70	0.0	33.659
13.333	0.000	0.00	0.00	2.70	0.0	33.659
13.417	0.000	0.00	0.00	2.70	0.0	33.658
13.500	0.000	0.00	0.00	2.70	0.0	33.658
13.583	0.000	0.00	0.00	2.70	0.0	33.658
13.667	0.000	0.00	0.00	2.70	0.0	33.658
13.750	0.000	0.00	0.00	2.70	0.0	33.658
13.730	0.000	0.00	0.00	2.70	0.0	33.657
13.917	0.000	0.00	0.00	2.70	0.0	33.657
	0.000	3.00	2.00	,0	0.0	23.037

14.000	0.000	0.00	0.00	2.70	0.0	33.657
14.083	0.000	0.00	0.00	2.70	0.0	33.657
14.167	0.000	0.00	0.00	2.70	0.0	33.656
14.250	0.000	0.00	0.00	2.70	0.0	33.656
14.333	0.000	0.00	0.00	2.70	0.0	33.656
14.417	0.000	0.00	0.00	2.70	0.0	33.656
14.500	0.000	0.00	0.00	2.70	0.0	33.655
14.583	0.000	0.00	0.00	2.70	0.0	33.655
14.667	0.000	0.00	0.00	2.70	0.0	33.655
14.750	0.000	0.00	0.00	2.70	0.0	
						33.655
14.833	0.000	0.00	0.00	2.70	0.0	33.655
14.917	0.000	0.00	0.00	2.70	0.0	33.654
15.000	0.000	0.00	0.00	2.70	0.0	33.654
15.083	0.000	0.00	0.00	2.70	0.0	33.654
15.167	0.000	0.00	0.00	2.70	0.0	33.654
15.250	0.000	0.00	0.00	2.70	0.0	33.653
15.333	0.000	0.00	0.00	2.70	0.0	33.653
15.417		0.00	0.00	2.70	0.0	
	0.000					33.653
15.500	0.000	0.00	0.00	2.70	0.0	33.653
15.583	0.000	0.00	0.00	2.70	0.0	33.652
15.667	0.000	0.00	0.00	2.70	0.0	33.652
15.750	0.000	0.00	0.00	2.70	0.0	33.652
15.833	0.000	0.00	0.00	2.70	0.0	33.652
15.917	0.000	0.00	0.00	2.70	0.0	33.652
16.000	0.000	0.00	0.00	2.70	0.0	33.651
16.083	0.000	0.00	0.00	2.70	0.0	33.651
	0.000	0.00	0.00	2.70	0.0	
16.167						33.651
16.250	0.000	0.00	0.00	2.70	0.0	33.651
16.333	0.000	0.00	0.00	2.70	0.0	33.650
16.417	0.000	0.00	0.00	2.70	0.0	33.650
16.500	0.000	0.00	0.00	2.70	0.0	33.650
16.583	0.000	0.00	0.00	2.70	0.0	33.650
16.667	0.000	0.00	0.00	2.70	0.0	33.649
16.750	0.000	0.00	0.00	2.70	0.0	33.649
16.833	0.000	0.00	0.00	2.70	0.0	33.649
16.917	0.000	0.00	0.00	2.70	0.0	33.649
17.000	0.000	0.00	0.00	2.70	0.0	33.649
17.083		0.00	0.00	2.70		33.648
	0.000				0.0	
17.167	0.000	0.00	0.00	2.70	0.0	33.648
17.250	0.000	0.00	0.00	2.70	0.0	33.648
17.333	0.000	0.00	0.00	2.70	0.0	33.648
17.417	0.000	0.00	0.00	2.70	0.0	33.647
17.500	0.000	0.00	0.00	2.70	0.0	33.647
17.583	0.000	0.00	0.00	2.70	0.0	33.647
17.667	0.000	0.00	0.00	2.70	0.0	33.647
17.750	0.000	0.00	0.00	2.70	0.0	33.647
17.833	0.000	0.00	0.00	2.70	0.0	33.646
	0.000					
17.917		0.00	0.00	2.70	0.0	33.646
18.000	0.000	0.00	0.00	2.70	0.0	33.646
18.083	0.000	0.00	0.00	2.70	0.0	33.646
18.167	0.000	0.00	0.00	2.70	0.0	33.645
18.250	0.000	0.00	0.00	2.70	0.0	33.645
18.333	0.000	0.00	0.00	2.70	0.0	33.645
18.417	0.000	0.00	0.00	2.70	0.0	33.645
18.500	0.000	0.00	0.00	2.70	0.0	33.644
18.583	0.000	0.00	0.00	2.70	0.0	33.644
18.667	0.000	0.00	0.00	2.70	0.0	33.644
18.750	0.000	0.00	0.00	2.70	0.0	33.644
18.833	0.000	0.00	0.00	2.70	0.0	33.644
18.917	0.000	0.00	0.00	2.70	0.0	33.643
19.000	0.000	0.00	0.00	2.70	0.0	33.643
19.083	0.000	0.00	0.00	2.70	0.0	33.643
19.167	0.000	0.00	0.00	2.70	0.0	33.643
19.250	0.000	0.00	0.00	2.70	0.0	33.642

19.333	0.000	0.00	0.00	2.70	0.0	33.642
19.417	0.000	0.00	0.00	2.70	0.0	33.642
19.500	0.000	0.00	0.00	2.70	0.0	33.642
19.583	0.000	0.00	0.00	2.70	0.0	33.641
19.667	0.000	0.00	0.00	2.70	0.0	33.641
19.750	0.000	0.00	0.00	2.70	0.0	33.641
19.833	0.000	0.00	0.00	2.70	0.0	33.641
19.917	0.000	0.00	0.00	2.70	0.0	33.641
20.000	0.000	0.00	0.00	2.70	0.0	33.640
20.083	0.000	0.00	0.00	2.70	0.0	33.640
20.167	0.000	0.00	0.00	2.70	0.0	33.640
20.250	0.000	0.00	0.00	2.70	0.0	33.640
20.333	0.000	0.00	0.00	2.70	0.0	33.639
20.417	0.000	0.00	0.00	2.70	0.0	33.639
20.500	0.000	0.00	0.00	2.70	0.0	33.639
20.583	0.000	0.00	0.00	2.70	0.0	33.639
20.667	0.000	0.00	0.00	2.70	0.0	33.639
20.750	0.000	0.00	0.00	2.70	0.0	33.638
20.833	0.000	0.00	0.00	2.70	0.0	33.638
20.917	0.000	0.00	0.00	2.70	0.0	33.638
21.000	0.000	0.00	0.00	2.70	0.0	33.638
21.083	0.000	0.00	0.00	2.70	0.0	33.637
21.167	0.000	0.00	0.00	2.70	0.0	33.637
21.250	0.000	0.00	0.00	2.70	0.0	33.637
21.333	0.000	0.00	0.00	2.70	0.0	33.637
21.417	0.000	0.00	0.00	2.70	0.0	33.636
21.500	0.000	0.00	0.00	2.70	0.0	33.636
21.583	0.000	0.00	0.00	2.70	0.0	33.636
21.667	0.000	0.00	0.00	2.70	0.0	33.636
21.750	0.000	0.00	0.00	2.70	0.0	33.636
21.833	0.000	0.00	0.00	2.70	0.0	33.635
21.917	0.000	0.00	0.00	2.70	0.0	33.635
22.000	0.000	0.00	0.00	2.70	0.0	33.635
22.083	0.000	0.00	0.00	2.70	0.0	33.635
22.167	0.000	0.00	0.00	2.70	0.0	33.634
22.250	0.000	0.00	0.00	2.70	0.0	33.634
22.333	0.000	0.00	0.00	2.70	0.0	33.634
22.417	0.000	0.00	0.00	2.70	0.0	33.634
22.500	0.000	0.00	0.00	2.70	0.0	33.633
22.583	0.000	0.00	0.00	2.70	0.0	33.633
22.667	0.000	0.00	0.00	2.70	0.0	33.633
22.750	0.000	0.00	0.00	2.70	0.0	33.633
22.833	0.000	0.00	0.00	2.70	0.0	33.633
22.917	0.000	0.00	0.00	2.70	0.0	33.632
23.000	0.000	0.00	0.00	2.70	0.0	33.632
23.083	0.000	0.00	0.00	2.70	0.0	33.632
23.167	0.000	0.00	0.00	2.70	0.0	33.632
23.250	0.000	0.00	0.00	2.70	0.0	33.631
23.333	0.000	0.00	0.00	2.70	0.0	33.631
23.417	0.000	0.00	0.00	2.70	0.0	33.631
23.500	0.000	0.00	0.00	2.70	0.0	33.631
23.583	0.000	0.00	0.00	2.70	0.0	33.630
23.667	0.000	0.00	0.00	2.70	0.0	33.630
23.750	0.000	0.00	0.00	2.70	0.0	33.630
23.833	0.000	0.00	0.00	2.70	0.0	33.630
23.917	0.000	0.00	0.00	2.70	0.0	33.630

.....

PROCESS SUMMARY OF STORAGE:

INFLOW VOLUME = 51.806 AF

BASIN STORAGE = 31.489 AF (WITH 0.000 AF INITIALLY FILLED)

OUTFLOW VOLUME = 20.309 AF LOSS VOLUME = 0.000 AF

FLOOD ROUTING ANALYSIS

ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

Analysis prepared by:

(UNIT-HYDROGRAPH ADDED TO STREAM #1)

WATERSHED AREA = 220.300 ACRES
BASEFLOW = 0.000 CFS/SQUARE-MILE
*USER ENTERED "LAG" TIME = 0.204 HOURS
CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.
THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)
MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.
VALLEY S-GRAPH SELECTED
UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.350
LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.525
USER-ENTERED RAINFALL = 2.28 INCHES
RCFC&WCD 3-Hour Storm (5-Minute period) SELECTED
*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 40.850

UNIT HYDROGRAPH DETERMINATION

INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) 1 4.403 117.320 2 22.644 485.967 3 50.373 738.765

4	67.046	444.231	
5	75.561	226.848	
6	80.978	144.325	
7	84.890	104.231	
8	87.828	78.282	
9	90.157	62.038	
10	92.038	50.111	
11	93.582	41.133	
12	94.876	34.477	
13	96.012	30.282	
14	96.844	22.165	
15	97.637	21.120	
16	98.159	13.916	
17	98.452	7.809	
18	98.746	7.814	
19	99.039	7.809	
20	99.332	7.809	
21	99.625	7.809	
22	99.918	7.809	
23	100.000	2.188	

******	******	*******	********
UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0296	0.0156	0.0141
2	0.0296	0.0156	0.0141
3	0.0251	0.0132	0.0119
4	0.0342	0.0132	0.0162
5	0.0342	0.0180	0.0162
6	0.0410	0.0215	0.0195
7	0.0342	0.0180	0.0162
8	0.0410	0.0215	0.0195
9	0.0410	0.0215	0.0195
10	0.0342	0.0180	0.0162
11	0.0365	0.0192	0.0173
12	0.0410	0.0215	0.0195
13	0.0502	0.0263	0.0238
14	0.0502	0.0263	0.0238
15	0.0502	0.0263	0.0238
16	0.0456	0.0239	0.0217
17	0.0593	0.0292	0.0301
18	0.0616	0.0292	0.0324
19	0.0547	0.0287	0.0260
20	0.0616	0.0292	0.0324
21	0.0752	0.0292	0.0461
22	0.0707	0.0292	0.0415
23	0.0661	0.0292	0.0370
24	0.0684	0.0292	0.0392
25	0.0707	0.0292	0.0415
26	0.0958	0.0292	0.0666
27	0.1140	0.0292	0.0848
28	0.0798	0.0292	0.0506
29	0.1550	0.0292	0.1259
30	0.1664	0.0292	0.1373
31	0.1870	0.0292	0.1578
32	0.1345	0.0292	0.1054
33	0.0456	0.0239	0.0217
34	0.0410	0.0215	0.0195
35	0.0410	0.0215	0.0195
36	0.0137	0.0072	0.0065

TOTAL STORM RAINFALL(INCHES) = 2.28

TOTAL SOIL-LOSS(INCHES) = 0.86

TOTAL EFFECTIVE RAINFALL(INCHES) = 1.42

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 15.8768 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 25.9668

3-HOUR STORM $\begin{smallmatrix} R & U & N & O & F & F \end{smallmatrix} \qquad H & Y & D & R & O & G & R & A & P & H \\ \end{smallmatrix}$

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS) (Note: Time indicated is at END of Each Unit Intervals)

TIME(HRS) VOLUME(AF) Q(CFS) 0. 75.0 150.0 225.0 300.0 0.883	(Note: Time indicated is at END of Each Unit Intervals)							
0.167	TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	75.0	150.0	225.0	300.0
0.167	0.083	0.0114	1.65	0				
0.259 0.1983 18.64 V Q								
0.333						•		
0.417 0.5591 28.05 V Q .				-		•		
0.500 0.7843 32.70 .V Q <td< td=""><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></td<>						•		
0.583 1.0378 36.80 .V Q						•		
0.667 1.3117 39.77 . V Q						•		
0.750 1.5987 41.67 . V Q						•		
0.833 1.9015 43.97 . V Q	0.750	1.5987				•		
1.000	0.833	1.9015	43.97			•		
1.000	0.917	2.2078	44.48	. V Q		•		
1.083	1.000	2.5116	44.11			•		
1.167	1.083	2.8281	45.97			•		
1.333 3.9428 57.08 . VQ	1.167	3.1733	50.12			•		
1.333 3.9428 57.08 . VQ	1.250	3.5497	54.65	. V	Q.	•		
1.417 4.3456 58.48 . VQ	1.333	3.9428	57.08			•		
1.583 5.2475 68.68 . VQ.	1.417	4.3456	58.48			•		
1.667 5.7426 71.89 . VQ. .	1.500	4.7745	62.28		VQ .	•		
1.750 6.2589 74.98 . Q. .	1.583	5.2475	68.68		VQ.	•		
1.750 6.2589 74.98 . Q. .	1.667	5.7426	71.89		VQ.	•		
1.917 7.4980 95.00	1.750	6.2589	74.98			•		
1.917 7.4980 95.00	1.833	6.8437	84.91			•		
2.000 8.1679 97.27 . Q	1.917	7.4980	95.00			•		
2.083 8.8388 97.41 . QV	2.000	8.1679	97.27			•		
2.167 9.5472 102.87 . QV	2.083	8.8388	97.41			•		
2.250 10.3754 120.25 . VQ . . . 2.333 11.3779 145.56 . VQ. . . 2.417 12.5049 163.64 . V.Q . . 2.500 13.8202 190.98 . . V Q . . 2.583 15.5268 247.80 . . V Q . . 2.667 17.5350 291.58 . . V Q . . 2.667 17.5350 291.58 . . V Q . . Q . V Q . 2.750 19.5527 292.97 QV QV .	2.167	9.5472	102.87			٧.		
2.417 12.5049 163.64 . V.Q . . 2.500 13.8202 190.98 . .V Q . . 2.583 15.5268 247.80 . .V Q . . 2.667 17.5350 291.58 . .V Q . . . V Q . 2.750 19.5527 292.97 . . .V Q . . .QV . . .V . . .QV . . .V . . .QV . .V . .	2.250	10.3754	120.25					
2.417 12.5049 163.64 . V.Q . . 2.500 13.8202 190.98 . .V Q . . 2.583 15.5268 247.80 . .V Q . . 2.667 17.5350 291.58 . .V Q . . . V Q . 2.750 19.5527 292.97 . . .V Q . . .QV . . .V . . .QV . . .V . . .QV . .V . .	2.333	11.3779	145.56					
2.583 15.5268 247.80 Q . 2.667 17.5350 291.58 . . . V . Q 2.750 19.5527 292.97 Q .	2.417	12.5049	163.64					
2.667 17.5350 291.58 . . V Q 2.750 19.5527 292.97 . . V Q 2.833 21.1756 235.65 . . .QV . 2.917 22.3027 163.66 . .Q . V . 3.000 23.1397 121.53 . Q . .V . 3.083 23.7918 94.67 .Q . .V . 3.167 24.2747 70.13 Q . .V . 3.250 24.6290 51.43 Q . .V . 3.333 24.9020 39.65 Q . .V . 3.417 25.1218 31.91 Q . .V . 3.583 25.2985 25.66 Q . .V . 3.583 25.4426 20.93 Q . .V . 3.583 25.5587 16.86 Q . .V . <t< td=""><td>2.500</td><td>13.8202</td><td>190.98</td><td></td><td></td><td>٠٧.</td><td>Q.</td><td></td></t<>	2.500	13.8202	190.98			٠٧.	Q.	
2.750 19.5527 292.97 .	2.583	15.5268	247.80			. V	. Q	
2.833 21.1756 235.65 .	2.667	17.5350	291.58			•	V .	Q.
2.917 22.3027 163.66 .	2.750	19.5527	292.97			•	V	Q.
3.000 23.1397 121.53 . Q . V . 3.083 23.7918 94.67 . Q . V . 3.167 24.2747 70.13 . Q . V . 3.250 24.6290 51.43 . Q . V . 3.333 24.9020 39.65 . Q . V . 3.417 25.1218 31.91 . Q . V . 3.500 25.2985 25.66 . Q . V . 3.583 25.4426 20.93 . Q . V . 3.667 25.5587 16.86 . Q . V . 3.750 25.6504 13.31 . Q . V . 3.833 25.7225 10.47 . Q . V . 3.917 25.7785 8.13 . Q . V . 4.000 25.8243 6.66 Q . V . 4.083 25.8635 5.69 Q . V . 4.250 25.9249 3.97 Q	2.833	21.1756	235.65			•	.QV	
3.083 23.7918 94.67 . Q . V 3.167 24.2747 70.13 Q . V 3.250 24.6290 51.43 Q . V 3.333 24.9020 39.65 Q . V 3.417 25.1218 31.91 Q . V 3.500 25.2985 25.66 Q . V 3.583 25.4426 20.93 Q . V 3.667 25.5587 16.86 Q . V 3.750 25.6504 13.31 Q . V 3.833 25.7225 10.47 Q . V 4.000 25.8243 6.66 Q . V 4.083 25.8635 5.69 Q . V 4.167 25.8976 4.95 Q . V 4.250 25.9249 3.97 Q . V	2.917	22.3027	163.66		•	.Q	. V	
3.167 24.2747 70.13 Q. . . V. 3.250 24.6290 51.43 Q. . . V. 3.333 24.9020 39.65 Q. . V. 3.417 25.1218 31.91 Q. . V. 3.500 25.2985 25.66 Q. . V. 3.583 25.4426 20.93 Q. . V. 3.667 25.5587 16.86 Q. . V. 3.750 25.6504 13.31 Q. . V. 3.833 25.7225 10.47 Q. . V. 3.917 25.7785 8.13 Q. . V. 4.000 25.8243 6.66 Q. . V. 4.083 25.8635 5.69 Q. . V. 4.250 25.9249 3.97 Q. . V.	3.000	23.1397	121.53		•	Q.	•	v .
3.250 24.6290 51.43 Q . . V 3.333 24.9020 39.65 Q . . V 3.417 25.1218 31.91 Q . . V 3.500 25.2985 25.66 Q . V 3.583 25.4426 20.93 Q . V 3.667 25.5587 16.86 Q . V 3.750 25.6504 13.31 Q . V 3.833 25.7225 10.47 Q . V 3.917 25.7785 8.13 Q . V 4.000 25.8243 6.66 Q . V 4.083 25.8635 5.69 Q . V 4.250 25.9249 3.97 Q . V	3.083	23.7918	94.67		. Q	•		٧ .
3.333 24.9020 39.65 . Q	3.167	24.2747	70.13		Q.	•		٧.
3.417 25.1218 31.91 Q . . V 3.500 25.2985 25.66 Q . . V 3.583 25.4426 20.93 Q . . V 3.667 25.5587 16.86 Q . . V 3.750 25.6504 13.31 Q . . V 3.833 25.7225 10.47 Q . . V 3.917 25.7785 8.13 Q . . V 4.000 25.8243 6.66 Q . . V 4.083 25.8635 5.69 Q . . V 4.167 25.8976 4.95 Q . . V 4.250 25.9249 3.97 Q . . V	3.250	24.6290	51.43	. (Q.	•		V .
3.500 25.2985 25.66 . Q	3.333	24.9020	39.65	. Q	•	•		٧.
3.583 25.4426 20.93 . Q	3.417				•	•	•	
3.667 25.5587 16.86 . Q					•	•	•	
3.750 25.6504 13.31 .Q . . . V. 3.833 25.7225 10.47 .Q . . V. 3.917 25.7785 8.13 .Q . . V. 4.000 25.8243 6.66 Q . . V. 4.083 25.8635 5.69 Q . . V. 4.167 25.8976 4.95 Q . . V. 4.250 25.9249 3.97 Q . . V.					•	•	•	
3.833 25.7225 10.47 .Q . . . V. 3.917 25.7785 8.13 .Q . . V. 4.000 25.8243 6.66 Q . . V. 4.083 25.8635 5.69 Q . . V. 4.167 25.8976 4.95 Q . . V. 4.250 25.9249 3.97 Q . . V.					•	•	•	
3.917 25.7785 8.13 .Q . . .V. 4.000 25.8243 6.66 Q . . .V. 4.083 25.8635 5.69 Q . . .V. 4.167 25.8976 4.95 Q . . . V. 4.250 25.9249 3.97 Q . . . V.					•	•	•	
4.000 25.8243 6.66 Q . . . V. 4.083 25.8635 5.69 Q . . V. 4.167 25.8976 4.95 Q . . V. 4.250 25.9249 3.97 Q . . V.					•	•	•	
4.083 25.8635 5.69 Q . . . V. 4.167 25.8976 4.95 Q . . . V. 4.250 25.9249 3.97 Q . . . V.					•	•	•	
4.167 25.8976 4.95 Q V. 4.250 25.9249 3.97 Q V.					•	•	•	
4.250 25.9249 3.97 Q V.					•	•	•	
					•	•	•	
4.333 25.9447 2.88 Q V.					•	•	•	
	4.333	25.9447	2.88	Q	•	•	•	٧.

4.417	25.9564	1.69	Q	•	•	•	٧.	
4.500	25.9616	0.75	Q	•	•	•	٧.	
4.583	25.9643	0.40	Q	•	•	•	٧.	
4.667	25.9660	0.25	Q	•	•	•	٧.	
4.750	25.9667	0.09	Q	•	•	•	٧.	
4.833	25.9668	0.01	Q	•	•	•	٧.	

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
=======================================	=======
0%	290.0
10%	180.0
20%	105.0
30%	75.0
40%	50.0
50%	35.0
60%	25.0
70%	20.0
80%	20.0
90%	10.0

FLOW PROCESS FROM NODE 2.00 TO NODE 10.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<<<<

(UNIT-HYDROGRAPH ADDED TO STREAM #2)

WATERSHED AREA = 295.700 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.322 HOURS

CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.358

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.545

USER-ENTERED RAINFALL = 2.28 INCHES

RCFC&WCD 3-Hour Storm (5-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 25.880

UNIT INCREASE AND DETERMINATION

UNIT HYDROGRAPH DETERMINATION

INTERVAL NUMBER	"S" GRAPH MEAN VALUES	UNIT HYDROGRAPH ORDINATES(CFS)	
1	2.366	84.607	
2	10.202	280.224	
3	24.613	515.375	
4	43.211	665.070	

5	58.251	537.840
6	67.091	316.147
7	72.914	208.215
8	77.143	151.237
9	80.487	119.614
10	83.170	95.934
11	85.423	80.569
12	87.296	66.975
13	88.853	55.683
14	90.286	51.265
15	91.500	43.381
16	92.561	37.949
17	93.519	34.276
18	94.379	30.764
19	95.141	27.218
20	95.884	26.586
21	96.438	19.810
22	96.940	17.969
23	97.443	17.964
24	97.921	17.111
25	98.166	8.744
26	98.351	6.634
27	98.537	6.650
28	98.723	6.639
29	98.909	6.645
30	99.094	6.644
31	99.280	6.644
32	99.466	6.644
33	99.652	6.644
34	99.838	6.644
35	100.000	5.808

*******	******	*******	*******
UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0296	0.0162	0.0135
2	0.0296	0.0162	0.0135
3	0.0251	0.0137	0.0114
4	0.0342	0.0186	0.0156
5	0.0342	0.0186	0.0156
6	0.0410	0.0224	0.0187
7	0.0342	0.0186	0.0156
8	0.0410	0.0224	0.0187
9	0.0410	0.0224	0.0187
10	0.0342	0.0186	0.0156
11	0.0365	0.0199	0.0166
12	0.0410	0.0224	0.0187
13	0.0502	0.0273	0.0228
14	0.0502	0.0273	0.0228
15	0.0502	0.0273	0.0228
16	0.0456	0.0249	0.0207
17	0.0593	0.0298	0.0294
18	0.0616	0.0298	0.0317
19	0.0547	0.0298	0.0249
20	0.0616	0.0298	0.0317
21	0.0752	0.0298	0.0454
22	0.0707	0.0298	0.0408
23	0.0661	0.0298	0.0363
24	0.0684	0.0298	0.0386
25	0.0707	0.0298	0.0408
26	0.0958	0.0298	0.0659
27	0.1140	0.0298	0.0842
28	0.0798	0.0298	0.0500
29	0.1550	0.0298	0.1252
30	0.1664	0.0298	0.1366
31	0.1870	0.0298	0.1571
32	0.1345	0.0298	0.1047
33	0.0456	0.0249	0.0207
34	0.0410	0.0224	0.0187
35	0.0410	0.0224	0.0187
36	0.0137	0.0075	0.0062

TOTAL STORM RAINFALL(INCHES) = 2.28 TOTAL SOIL-LOSS(INCHES) = 0.89 TOTAL EFFECTIVE RAINFALL(INCHES) = 1.39

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 21.9584 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 34.2069

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

(No	te: Time in	dicated i	s at E	ND of Ea	ch Unit Inte	ervals)	
TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	100.0	200.0	300.0	400.0
0.083	0.0079	1.14	Q				
0.167	0.0417	4.92	Q	_		_	
0.250	0.1223	11.70	VQ	_		_	
0.333	0.2630	20.43	V Q	_		_	
0.417	0.4543	27.78	νQ	•		_	
0.500	0.6821	33.07	νQ	•	•	•	•
0.583	0.9447	38.13	.v Q	•	•	•	•
0.667	1.2390	42.74	.v Q	_		_	
0.750	1.5597	46.57	.v Q	_		_	
0.833	1.8997	49.36	. v Q				
0.917	2.2538	51.42		į.			
1.000	2.6176	52.82	. V (
1.083	2.9895	54.01	. V (-		
1.167	3.3799	56.69	. V (
1.250	3.7995	60.93		Q.			
1.333	4.2490	65.27		Q.			
1.417	4.7235	68.90		√Q .			
1.500	5.2244	72.72		VQ .			
1.583	5.7583	77.53		VQ .			
1.667	6.3324	83.35		VQ .			
1.750	6.9487	89.49		Q.			
1.833	7.6123	96.35		VQ.			
1.917	8.3397	105.61		VQ			
2.000	9.1318	115.02		VQ			
2.083	9.9600	120.26		.VQ			
2.167	10.8195	124.79		. Q			
2.250	11.7590	136.42			Q .		
2.333	12.8275	155.15			VQ .		
2.417	14.0734	180.90			νQ.		
2.500	15.5409	213.07			v .q		
2.583	17.2867	253.49			v	Q.	
2.667	19.3850	304.67			. V	Q	
2.750	21.7227	339.44			•	v . Q	
2.833	24.0094	332.02			•	v. Q	
2.917	25.9650	283.96			•	QV	
3.000	27.4697	218.48			.Q	. V	
3.083	28.6188	166.86			Q.	. V	
3.167	29.5294	132.22		. (Q.	٠ ، ١	
3.250	30.2513	104.81		Q	•	•	v .
3.333	30.8237	83.11		Q.		•	V .
3.417	31.2875	67.35		Q.	•	•	v .
3.500	31.6764	56.48	. (Q .	•	•	V .
3.583	32.0088	48.25	. Q		•	•	V .
3.667	32.2971	41.87	. Q	•		•	٧.
3.750	32.5491	36.59	. Q	•		•	٧.
3.833	32.7694	31.99	. Q	•		•	٧.
3.917	32.9630	28.10	. Q	•		•	٧.
4.000	33.1359	25.11	. Q	•		•	٧.
4.083	33.2886	22.18	. Q	•		•	٧.
4.167	33.4222	19.40	.Q	•		•	٧.
4.250	33.5375	16.74	.Q	•		•	٧.
4.333	33.6386	14.68	.Q	•		•	٧.

4.417	33.7266	12.77	.Q		٧.
4.500	33.8014	10.86	.Q	•	٧.
4.583	33.8618	8.78	Q	•	٧.
4.667	33.9113	7.18	Q	•	٧.
4.750	33.9560	6.49	Q	•	٧.
4.833	33.9976	6.04	Q	•	٧.
4.917	34.0360	5.58	Q	•	٧.
5.000	34.0718	5.19	Q	•	٧.
5.083	34.1043	4.73	Q	•	٧.
5.167	34.1332	4.20	Q	•	٧.
5.250	34.1594	3.80	Q	•	٧.
5.333	34.1798	2.96	Q	•	٧.
5.417	34.1938	2.04	Q	•	٧.
5.500	34.2009	1.04	Q	•	٧.
5.583	34.2038	0.41	Q	•	٧.
5.667	34.2057	0.27	Q	•	٧.
5.750	34.2067	0.15	Q	•	٧.
5.833	34.2069	0.04	Q	•	٧.

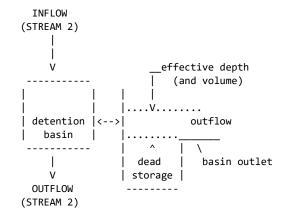
TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Duration
(minutes)
=======
350.0
195.0
120.0
85.0
55.0
40.0
35.0
25.0
20.0
10.0

STREAM HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS) (Note: Time indicated is at END of Each Unit Intervals)

<pre>TIME(HRS) VOLUME(AF)</pre>	Q(CFS) 0.	175.0	350.0	525.0	700.0
0.083 0.0192	2.79 Q	•		•	
0.167 0.1116	13.41 Q	•		•	
0.250 0.3205	30.34 VQ				
0.333 0.6290	44.78 V Q			•	
0.417 1.0135	55.83 V Q	•	•	•	
0.500 1.4664	65.77 V Q			•	
0.583 1.9824	74.93 .V (•	
0.667 2.5507	82.51 .V C			•	
	•	-			

0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500 1.583 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417	3.1584 3.8011 4.4616 5.1291 5.8176 6.5532 7.3492 8.1919 9.0691 9.9988 11.0058 12.0750 13.2077 14.4560 15.8377 17.2997 18.7988 20.3667 22.1344 24.2054 26.5783	88.24 93.33 95.90 96.93 99.97 106.81 115.58 122.35 127.37 135.00 146.22 155.24 164.47 181.26 200.62 212.28 217.67 227.66 256.67 300.71 344.54	. V Q . V Q . V Q . V Q . V Q . VQ . VQ		· · · · · · · · · · · · · · · · · · ·	
2.500	29.3611 32.8135	404.05			/. Q .V Q	· · · · · · · · · · · · · · · · · · ·
2.667	36.9199	596.26		•	. V	. Q .
2.750	41.2754	632.41	•	•	. v	. Q .
2.833	45.1850	567.67	•	•		/ Q .
2.917 3.000	48.2677 50.6094	447.62 340.01	•		. Q Q.	. V . . V .
3.083	52.4106	261.53	•	. Q	· .	. v .
3.167	53.8042	202.35		. Q		. v .
3.250	54.8802	156.24	. Q		•	. v .
3.333	55.7257	122.76	. Q	•	•	. V .
3.417	56.4092	99.25	. Q	•	•	. V .
3.500	56.9749	82.14	. Q	•	•	. v .
3.583	57.4514	69.18	. Q	•	•	. V.
3.667 3.750	57.8558 58.1995	58.72 49.90	. Q . Q	•	•	. V . . V .
3.833	58.4919	42.46	. Q		•	. v.
3.917	58.7414	36.23	. Q		•	. V.
4.000	58.9602	31.77	.Q	•	•	. v.
4.083	59.1521	27.86	.Q	•	•	. V.
4.167	59.3198	24.35	.Q	•	•	. V.
4.250	59.4624	20.71	.Q	•	•	. V.
4.333	59.5833	17.56	.Q	•	•	. V.
4.417 4.500	59.6829 59.7629	14.46 11.61	Q Q	•	•	. V. . V.
4.583	59.8261	9.18	Q	•	•	. v. . v.
4.667	59.8773	7.43	Q	•	•	. V.
4.750	59.9227	6.59	Q			. V.
4.833	59.9643	6.05	Q	•	•	. V.
4.917	60.0027	5.58	Q	•	•	. V.
5.000	60.0385	5.19	Q	•	•	. V.
5.083	60.0711	4.73	Q	•	•	. V.
5.167 5.250	60.1000 60.1262	4.20 3.80	Q Q	•	•	. V. . V.
5.333	60.1465	2.96	Q	•		. v. . v.
5.417	60.1606	2.04	Q	•	•	. V.
5.500	60.1677	1.04	Q	•	•	. V.
5.583	60.1705	0.41	Q	•	•	. V.
5.667	60.1724	0.27	Q	•	•	. V.
5.750	60.1734	0.15	Q	•	•	. V.
5.833	60.1737	0.04	Q	•	•	. V.
5.917	60.1737	0.00	Q	•	•	. V.



TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
=======================================	=======
0%	350.0
10%	190.0
20%	115.0
30%	80.0
40%	55.0
50%	40.0
60%	30.0
70%	25.0
80%	15.0
90%	10.0

FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 3.1

______ >>>>FLOW-THROUGH DETENTION BASIN ROUTING MODEL APPLIED TO STREAM #2<<<<

ROUTE RUNOFF HYDROGRAPH FROM STREAM NUMBER 2 THROUGH A FLOW-THROUGH DETENTION BASIN SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: DEAD STORAGE(AF) = 0.000 SPECIFIED DEAD STORAGE(AF) FILLED = 0.000 SPECIFIED EFFECTIVE VOLUME(AF) FILLED ABOVE OUTLET = 0.000 DETENTION BASIN CONSTANT LOSS RATE(CFS) = 0.00

BASIN DEPTH VERSUS OUTFLOW AND STORAGE INFORMATION:

DEPTH (FT)	OUTFLOW (CFS)	STORAGE (AF)
0.00	0.00	0.000
1.00	0.01	12.220
2.00	0.02	24.740
2.70	0.03	33.660
3.00	33.61	37.530
4.00	303.14	50.660
	(FT) 0.00 1.00 2.00 2.70 3.00	(FT) (CFS) 0.00 0.00 1.00 0.01 2.00 0.02 2.70 0.03 3.00 33.61

MODIFIED-PULS BASIN ROUTING MODEL RESULTS(5-MINUTE COMPUTATION INTERVALS):
(Note: Computed EFFECTIVE DEPTH and VOLUME are estimated at the clock time;
MEAN OUTFLOW is the average value during the unit interval.)

CLOCK					MEAN	
TIME	DEAD-STORAGE	INFLOW	LOSS	EFFECTIVE		EFFECTIVE
(HRS)	FILLED(AF)	(CFS)	(CFS)	DEPTH(FT)	(CFS)	VOLUME(AF)
0.002	0.000	2.70		0.00		0.010
0.083	0.000 0.000	2.79 13.41	0.00 0.00	0.00 0.01	0.0 0.0	0.019 0.112
0.167 0.250	0.000	30.34	0.00	0.01	0.0	0.321
0.333	0.000	44.78	0.00	0.05	0.0	0.629
0.417	0.000	55.83	0.00	0.08	0.0	1.013
0.500	0.000	65.77	0.00	0.12	0.0	1.466
0.583	0.000	74.93	0.00	0.16	0.0	1.982
0.667	0.000	82.51	0.00	0.21	0.0	2.551
0.750	0.000	88.24	0.00	0.26	0.0	3.158
0.833	0.000	93.33	0.00	0.31	0.0	3.801
0.917	0.000	95.90	0.00	0.37	0.0	4.461
1.000	0.000	96.93	0.00	0.42	0.0	5.129
1.083	0.000	99.97	0.00 0.00	0.48 0.54	0.0 0.0	5.817
1.167 1.250	0.000 0.000	106.81 115.58	0.00	0.60	0.0	6.553 7.349
1.333	0.000	122.35	0.00	0.67	0.0	8.192
1.417	0.000	127.37	0.00	0.74	0.0	9.069
1.500	0.000	135.00	0.00	0.82	0.0	9.998
1.583	0.000	146.22	0.00	0.90	0.0	11.005
1.667	0.000	155.24	0.00	0.99	0.0	12.074
1.750	0.000	164.47	0.00	1.08	0.0	13.207
1.833	0.000	181.26	0.00	1.18	0.0	14.455
1.917	0.000	200.62	0.00	1.29	0.0	15.837
2.000	0.000	212.28	0.00	1.41	0.0	17.299
2.083	0.000	217.67	0.00	1.53	0.0	18.798
2.167	0.000	227.66	0.00	1.65	0.0	20.366
2.250	0.000	256.67	0.00	1.79	0.0	22.133
2.333 2.417	0.000 0.000	300.71 344.54	0.00 0.00	1.96 2.14	0.0 0.0	24.204
2.500	0.000	404.05	0.00	2.14	0.0	26.577 29.359
2.583	0.000	501.29	0.00	2.63	0.0	32.812
2.667	0.000	596.26	0.00	2.95	13.8	36.823
2.750	0.000	632.41	0.00	3.24	63.5	40.741
2.833	0.000	567.67	0.00	3.47	130.4	43.753
2.917	0.000	447.62	0.00	3.61	180.2	45.594
3.000	0.000	340.01	0.00	3.68	208.4	46.500
3.083	0.000	261.53	0.00	3.70	220.6	46.782
3.167	0.000	202.35	0.00	3.69	222.1	46.645
3.250	0.000	156.24	0.00	3.66	216.5	46.231
3.333	0.000	122.76	0.00	3.62	206.3	45.655
3.417 3.500	0.000 0.000	99.25 82.14	0.00 0.00	3.57	193.7 180.1	45.005
3.583	0.000	69.18	0.00	3.52 3.47	166.3	44.330 43.661
3.667	0.000	58.72	0.00	3.42	152.8	43.013
3.750	0.000	49.90	0.00	3.37	139.8	42.394
3.833	0.000	42.46	0.00	3.33	127.4	41.808
3.917	0.000	36.23	0.00	3.28	115.8	41.260
4.000	0.000	31.77	0.00	3.25	105.0	40.756
4.083	0.000	27.86	0.00	3.21	95.1	40.293
4.167	0.000	24.35	0.00	3.18	86.0	39.869
4.250	0.000	20.71	0.00	3.15	77.6	39.477
4.333	0.000	17.56	0.00	3.12	69.9	39.116
4.417	0.000	14.46	0.00	3.10	62.8	38.784
4.500	0.000	11.61	0.00	3.07	56.2	38.477
4.583	0.000	9.18	0.00	3.05	50.1	38.195

4.667	0.000	7.43	0.00	3.03	44.6	37.938
4.750	0.000	6.59	0.00	3.01	39.7	37.711
4.833	0.000	6.05	0.00	3.00	35.4	37.509
4.917	0.000	5.58	0.00	2.98	32.6	37.323
5.000	0.000	5.19	0.00	2.97	31.0	37.145
5.083	0.000	4.73	0.00	2.96	29.5	36.974
5.167	0.000	4.20	0.00	2.94	28.1	36.809
5.250	0.000	3.80	0.00	2.93	26.7	36.652
5.333	0.000	2.96	0.00	2.92	25.3	36.498
5.417	0.000	2.04	0.00	2.91	24.0	36.347
5.500	0.000	1.04	0.00	2.90	22.7	36.197
5.583	0.000	0.41	0.00	2.89	21.4	36.053
5.667	0.000	0.27	0.00	2.87	20.2	35.915
5.750	0.000	0.15	0.00	2.86	19.0	35.785
5.833	0.000	0.04	0.00	2.86	17.9	35.662
5.917						
	0.000	0.00	0.00	2.85	16.9	35.546
6.000	0.000	0.00	0.00	2.84	15.9	35.436
6.083	0.000	0.00	0.00	2.83	15.0	35.333
6.167	0.000	0.00	0.00	2.82	14.1	35.236
6.250	0.000	0.00	0.00	2.82	13.3	35.144
6.333	0.000	0.00	0.00	2.81	12.5	35.058
6.417	0.000	0.00	0.00	2.80	11.8	34.976
6.500	0.000	0.00	0.00	2.80	11.1	34.900
6.583	0.000	0.00	0.00	2.79	10.5	34.828
6.667	0.000	0.00	0.00	2.79	9.9	34.760
6.750	0.000	0.00	0.00	2.78	9.3	34.696
6.833	0.000	0.00	0.00	2.78	8.8	34.635
6.917	0.000	0.00	0.00	2.77	8.2	34.578
7.000	0.000	0.00	0.00	2.77	7.8	34.525
7.083	0.000	0.00	0.00	2.76	7.3	34.475
7.167	0.000	0.00	0.00	2.76	6.9	34.427
7.250	0.000	0.00	0.00	2.76	6.5	34.382
7.333	0.000	0.00	0.00	2.75	6.1	34.340
7.417	0.000	0.00	0.00	2.75	5.8	34.300
7.500	0.000	0.00	0.00	2.75	5.4	34.263
7.583	0.000	0.00	0.00	2.74	5.1	34.228
7.667	0.000	0.00	0.00	2.74	4.8	34.195
7.750	0.000	0.00	0.00	2.74	4.5	34.163
7.833	0.000	0.00	0.00	2.74	4.3	34.134
7.917	0.000	0.00	0.00	2.73	4.0	34.106
8.000	0.000	0.00	0.00	2.73	3.8	34.080
8.083	0.000	0.00	0.00	2.73	3.6	34.056
8.167	0.000	0.00	0.00	2.73	3.4	34.032
8.250	0.000	0.00	0.00	2.73	3.2	34.011
8.333	0.000	0.00	0.00	2.73	3.0	33.990
8.417	0.000	0.00	0.00	2.72	2.8	33.971
8.500	0.000	0.00	0.00	2.72	2.6	33.952
8.583	0.000	0.00	0.00	2.72	2.5	33.935
8.667	0.000	0.00	0.00	2.72	2.4	33.919
8.750	0.000	0.00	0.00	2.72	2.2	33.904
8.833	0.000	0.00	0.00	2.72	2.1	33.889
8.917	0.000	0.00	0.00	2.72	2.0	33.876
9.000	0.000	0.00	0.00	2.72	1.9	33.863
				2.72		
9.083	0.000	0.00	0.00		1.7	33.851
9.167	0.000	0.00	0.00	2.71	1.6	33.840
9.250	0.000	0.00	0.00	2.71	1.5	33.829
9.333	0.000	0.00	0.00	2.71	1.5	33.819
9.417	0.000	0.00	0.00	2.71	1.4	33.810
9.500	0.000	0.00	0.00	2.71	1.3	33.801
9.583	0.000	0.00	0.00	2.71	1.2	33.792
9.667	0.000	0.00	0.00	2.71	1.1	33.784
9.750	0.000	0.00	0.00	2.71	1.1	33.777
9.833	0.000	0.00	0.00	2.71	1.0	33.770
9.917	0.000	0.00	0.00	2.71	1.0	33.763
		• •		-		

10.000	0.000	0.00	0.00	2.71	0.9	33.757
10.083	0.000	0.00	0.00	2.71	0.9	33.751
10.167	0.000	0.00	0.00	2.71	0.8	33.746
10.250	0.000	0.00	0.00	2.71	0.8	33.741
10.333	0.000	0.00	0.00	2.71	0.7	33.736
10.417	0.000	0.00	0.00	2.71	0.7	33.731
10.500	0.000	0.00	0.00	2.71	0.6	33.727
10.583	0.000	0.00	0.00	2.70	0.6	33.723
10.667	0.000	0.00	0.00	2.70	0.6	33.719
10.750		0.00	0.00	2.70	0.5	
	0.000					33.715
10.833	0.000	0.00	0.00	2.70	0.5	33.712
10.917	0.000	0.00	0.00	2.70	0.5	33.709
11.000	0.000	0.00	0.00	2.70	0.4	33.705
11.083	0.000	0.00	0.00	2.70	0.4	33.703
11.167	0.000	0.00	0.00	2.70	0.4	33.700
11.250	0.000	0.00	0.00	2.70	0.4	33.697
11.333	0.000	0.00	0.00	2.70	0.3	33.695
11.417		0.00	0.00	2.70	0.3	
	0.000					33.693
11.500	0.000	0.00	0.00	2.70	0.3	33.691
11.583	0.000	0.00	0.00	2.70	0.3	33.689
11.667	0.000	0.00	0.00	2.70	0.3	33.687
11.750	0.000	0.00	0.00	2.70	0.3	33.685
11.833	0.000	0.00	0.00	2.70	0.2	33.683
11.917	0.000	0.00	0.00	2.70	0.2	33.682
12.000	0.000	0.00	0.00	2.70	0.2	33.680
12.083	0.000	0.00	0.00	2.70	0.2	33.679
12.167	0.000	0.00	0.00	2.70	0.2	33.678
12.250	0.000	0.00	0.00	2.70	0.2	33.676
12.333	0.000	0.00	0.00	2.70	0.2	33.675
12.417	0.000	0.00	0.00	2.70	0.2	33.674
12.500	0.000	0.00	0.00	2.70	0.2	33.673
12.583	0.000	0.00	0.00	2.70	0.1	33.672
12.667	0.000	0.00	0.00	2.70	0.1	33.671
12.750	0.000	0.00	0.00	2.70	0.1	33.670
12.833	0.000	0.00	0.00	2.70	0.1	33.669
12.917				2.70	0.1	
	0.000	0.00	0.00			33.669
13.000	0.000	0.00	0.00	2.70	0.1	33.668
13.083	0.000	0.00	0.00	2.70	0.1	33.667
13.167	0.000	0.00	0.00	2.70	0.1	33.667
13.250	0.000	0.00	0.00	2.70	0.1	33.666
13.333	0.000	0.00	0.00	2.70	0.1	33.665
13.417	0.000	0.00	0.00	2.70	0.1	33.665
13.500	0.000	0.00	0.00	2.70	0.1	33.664
13.583	0.000	0.00	0.00	2.70	0.1	33.664
13.667	0.000	0.00	0.00	2.70	0.1	33.663
13.750	0.000	0.00	0.00	2.70	0.1	33.663
13.833	0.000	0.00	0.00	2.70	0.1	33.663
13.917	0.000	0.00	0.00	2.70	0.1	33.662
14.000	0.000	0.00	0.00	2.70	0.1	33.662
14.083	0.000	0.00	0.00	2.70	0.0	33.662
14.167	0.000	0.00	0.00	2.70	0.0	33.661
14.250	0.000	0.00	0.00	2.70	0.0	33.661
14.333	0.000	0.00	0.00	2.70	0.0	33.661
14.417	0.000	0.00	0.00	2.70	0.0	33.660
14.500	0.000	0.00	0.00	2.70	0.0	33.660
14.583	0.000	0.00	0.00	2.70	0.0	33.660
14.667	0.000	0.00	0.00	2.70	0.0	33.660
14.750	0.000	0.00	0.00	2.70	0.0	33.660
14.833	0.000	0.00	0.00	2.70	0.0	33.659
14.917	0.000	0.00	0.00	2.70	0.0	33.659
15.000	0.000	0.00	0.00	2.70	0.0	33.659
15.083	0.000	0.00	0.00	2.70	0.0	33.659
15.167	0.000	0.00	0.00	2.70	0.0	33.658
15.250	0.000	0.00	0.00	2.70	0.0	33.658
		0.00	0.00			22.030

15.333	0.000	0.00	0.00	2.70	0.0	33.658
15.417	0.000	0.00	0.00	2.70	0.0	33.658
15.500	0.000	0.00	0.00	2.70	0.0	33.657
15.583	0.000	0.00	0.00	2.70	0.0	33.657
15.667	0.000	0.00	0.00	2.70	0.0	33.657
15.750	0.000	0.00	0.00	2.70	0.0	33.657
15.833	0.000	0.00	0.00	2.70	0.0	33.657
15.917	0.000	0.00	0.00	2.70	0.0	33.656
16.000	0.000	0.00	0.00	2.70	0.0	33.656
16.083	0.000	0.00	0.00	2.70	0.0	33.656
16.167	0.000	0.00	0.00	2.70	0.0	33.656
16.250	0.000	0.00	0.00	2.70	0.0	33.655
16.333	0.000	0.00	0.00	2.70	0.0	33.655
16.417	0.000	0.00	0.00	2.70	0.0	33.655
16.500	0.000	0.00	0.00	2.70	0.0	33.655
16.583	0.000	0.00	0.00	2.70	0.0	33.654
16.667	0.000	0.00	0.00	2.70	0.0	33.654
16.750	0.000	0.00	0.00	2.70	0.0	33.654
16.833	0.000	0.00	0.00	2.70	0.0	33.654
16.917	0.000	0.00	0.00	2.70	0.0	33.654
17.000	0.000	0.00	0.00	2.70	0.0	33.653
17.083	0.000	0.00	0.00	2.70	0.0	33.653
17.167	0.000	0.00	0.00	2.70	0.0	33.653
17.250	0.000	0.00	0.00	2.70	0.0	33.653
17.333	0.000	0.00	0.00	2.70	0.0	33.652
17.417	0.000	0.00	0.00	2.70	0.0	33.652
17.500	0.000	0.00	0.00	2.70	0.0	33.652
17.583	0.000	0.00	0.00	2.70	0.0	33.652
17.667	0.000	0.00	0.00	2.70	0.0	33.651
17.750	0.000	0.00	0.00	2.70	0.0	33.651
17.833	0.000	0.00	0.00	2.70	0.0	33.651
17.917	0.000	0.00	0.00	2.70	0.0	33.651
18.000	0.000	0.00	0.00	2.70	0.0	33.651
18.083	0.000	0.00	0.00	2.70	0.0	33.650
18.167	0.000	0.00	0.00	2.70	0.0	33.650
18.250	0.000	0.00	0.00	2.70	0.0	33.650
18.333	0.000	0.00	0.00	2.70	0.0	33.650
18.417	0.000	0.00	0.00	2.70	0.0	33.649
18.500	0.000	0.00	0.00	2.70	0.0	33.649
18.583	0.000	0.00	0.00	2.70	0.0	33.649
18.667	0.000	0.00	0.00	2.70	0.0	33.649
18.750	0.000	0.00	0.00	2.70	0.0	33.649
18.833	0.000	0.00	0.00	2.70	0.0	33.648
18.917	0.000	0.00	0.00	2.70	0.0	33.648
19.000	0.000	0.00	0.00	2.70	0.0	33.648
19.083	0.000	0.00	0.00	2.70	0.0	33.648
19.167	0.000	0.00	0.00	2.70	0.0	33.647
19.250	0.000	0.00	0.00	2.70	0.0	33.647
19.333	0.000	0.00	0.00	2.70	0.0	33.647
19.417	0.000	0.00	0.00	2.70	0.0	33.647
19.500	0.000	0.00	0.00	2.70	0.0	33.646
19.583	0.000	0.00	0.00	2.70	0.0	33.646
19.667	0.000	0.00	0.00	2.70	0.0	33.646
19.750	0.000	0.00	0.00	2.70	0.0	33.646
19.833 19.917	0.000 0.000	0.00 0.00	0.00 0.00	2.70 2.70	0.0 0.0	33.646 33.645
						33.645
20.000	0.000	0.00	0.00	2.70	0.0	33.645
20.083	0.000	0.00	0.00	2.70	0.0	33.645
20.167	0.000	0.00	0.00	2.70	0.0	33.645
20.250	0.000	0.00	0.00	2.70	0.0	33.644
20.333	0.000	0.00	0.00	2.70	0.0	33.644
20.417	0.000	0.00	0.00	2.70	0.0	33.644
20.500	0.000	0.00	0.00	2.70	0.0	33.644
20.583	0.000	0.00	0.00	2.70	0.0	33.643

20.667	0.000	0.00	0.00	2.70	0.0	33.643
20.750	0.000	0.00	0.00	2.70	0.0	33.643
20.833	0.000	0.00	0.00	2.70	0.0	33.643
20.917	0.000	0.00	0.00	2.70	0.0	33.643
21.000	0.000	0.00	0.00	2.70	0.0	33.642
21.083	0.000	0.00	0.00	2.70	0.0	33.642
21.167	0.000	0.00	0.00	2.70	0.0	33.642
21.250	0.000	0.00	0.00	2.70	0.0	33.642
21.333	0.000	0.00	0.00	2.70	0.0	33.641
21.417	0.000	0.00	0.00	2.70	0.0	33.641
21.500	0.000	0.00	0.00	2.70	0.0	33.641
21.583	0.000	0.00	0.00	2.70	0.0	33.641
21.667	0.000	0.00	0.00	2.70	0.0	33.641
21.750	0.000	0.00	0.00	2.70	0.0	33.640
21.833	0.000	0.00	0.00	2.70	0.0	33.640
21.917	0.000	0.00	0.00	2.70	0.0	33.640
22.000	0.000	0.00	0.00	2.70	0.0	33.640
22.083	0.000	0.00	0.00	2.70	0.0	33.639
22.167	0.000	0.00	0.00	2.70	0.0	33.639
22.250	0.000	0.00	0.00	2.70	0.0	33.639
22.333	0.000	0.00	0.00	2.70	0.0	33.639
22.417	0.000	0.00	0.00	2.70	0.0	33.638
22.500	0.000	0.00	0.00	2.70	0.0	33.638
22.583	0.000	0.00	0.00	2.70	0.0	33.638
22.667	0.000	0.00	0.00	2.70	0.0	33.638
22.750	0.000	0.00	0.00	2.70	0.0	33.638
22.833	0.000	0.00	0.00	2.70	0.0	33.637
22.917	0.000	0.00	0.00	2.70	0.0	33.637
23.000	0.000	0.00	0.00	2.70	0.0	33.637
23.083	0.000	0.00	0.00	2.70	0.0	33.637
23.167	0.000	0.00	0.00	2.70	0.0	33.636
23.250	0.000	0.00	0.00	2.70	0.0	33.636
23.333	0.000	0.00	0.00	2.70	0.0	33.636
23.417	0.000	0.00	0.00	2.70	0.0	33.636
23.500	0.000	0.00	0.00	2.70	0.0	33.635
23.583	0.000	0.00	0.00	2.70	0.0	33.635
23.667	0.000	0.00	0.00	2.70	0.0	33.635
23.750	0.000	0.00	0.00	2.70	0.0	33.635
23.833	0.000	0.00	0.00	2.70	0.0	33.635
23.917	0.000	0.00	0.00	2.70	0.0	33.634

PROCESS SUMMARY OF STORAGE:

INFLOW VOLUME = 60.174 AF
BASIN STORAGE = 31.494 AF (WITH 0.000 AF INITIALLY FILLED)

OUTFLOW VOLUME = 28.672 AF LOSS VOLUME = 0.000 AF

FLOOD ROUTING ANALYSIS

ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

(c) Copyright 1989-2015 Advanced Engineering Software (aes) (Synthetic Unit Hydrograph Version 22.0) Release Date: 07/01/2015 License ID 1673

Analysis prepared by:

******* DESCRIPTION OF STUDY ***	*******
* TRAVERTINE DEVELOPMENT	*
* BASIN ROUTING - 100 YEAR STORM 6 HOUR A + B	*
* 09-23-2021 6 - 42IN RISERS	k
***************	********
FILE NAME: TR-BAS6.DAT	
TIME/DATE OF STUDY: 07:46 09/23/2021	
****************	********
FLOW PROCESS FROM NODE 1.00 TO NODE 10.00) TS CODE - 1
FLOW PROCESS FROM NODE 1.00 TO NODE 10.00	9 13 CODE = 1
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<	*
=======================================	· ·
(UNIT-HYDROGRAPH ADDED TO STREAM #1)	

WATERSHED AREA = 220.300 ACRES

BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.204 HOURS

CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.350

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.525

USER-ENTERED RAINFALL = 2.89 INCHES

RCFC&WCD 6-Hour Storm (5-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 40.850

UNIT HYDROGRAPH DETERMINATION

INTERVAL	"S" GRAPH	UNIT HYDROGRAPH	
NUMBER	MEAN VALUES	ORDINATES(CFS)	
1	4.403	117.320	
2	22.644	485.967	
3	50.373	738.765	
4	67.046	444.231	
5	75.561	226.848	
6	80.978	144.325	
7	84.890	104.231	
8	87.828	78.282	
9	90.157	62.038	
10	92.038	50.111	
11	93.582	41.133	
12	94.876	34.477	
13	96.012	30.282	
14	96.844	22.165	
15	97.637	21.120	
16	98.159	13.916	
17	98.452	7.809	
18	98.746	7.814	

19	99.039	7.809	
20	99.332	7.809	
21	99.625	7.809	
22	99.918	7.809	
23	100.000	2.188	

UNIT	UNIT	UNIT	EFFECTIV
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0145	0.0076	0.0069
2	0.0173	0.0091	0.0082
3	0.0173	0.0091	0.0082
4	0.0173	0.0091	0.0082
5	0.0173	0.0091	0.0082
6	0.0202	0.0106	0.0096
7	0.0202	0.0106	0.0096
8	0.0202	0.0106	0.0096
9	0.0202	0.0106	0.0096
10	0.0202	0.0106	0.0096
11	0.0202	0.0106	0.0096
12	0.0231	0.0121	0.0110
13	0.0231	0.0121	0.0110
14	0.0231	0.0121	0.0110
15	0.0231	0.0121	0.0110
16			
	0.0231	0.0121	0.0110
17	0.0231	0.0121	0.0110
18	0.0231	0.0121	0.0110
19	0.0231	0.0121	0.0110
20	0.0231	0.0121	0.0110
21	0.0231	0.0121	0.0110
22	0.0231	0.0121	0.0110
23	0.0231	0.0121	0.0110
24	0.0260	0.0137	0.0124
25	0.0231	0.0121	0.0110
26	0.0260	0.0137	0.0124
27	0.0260	0.0137	0.0124
28	0.0260	0.0137	0.0124
29	0.0260	0.0137	0.0124
30	0.0260	0.0137	0.0124
31	0.0260	0.0137	0.0124
32	0.0260	0.0137	0.0124
33	0.0289	0.0152	0.0137
34	0.0289	0.0152	0.0137
35	0.0289	0.0152	0.0137
36	0.0289	0.0152	0.0137
37	0.0289	0.0152	0.0137
38	0.0318	0.0167	0.0151
39	0.0318	0.0167	0.0151
40	0.0318	0.0167	0.0151
41	0.0347	0.0182	0.0165
42	0.0376	0.0197	0.0178
43	0.0405	0.0212	0.0192
44	0.0405	0.0212	0.0192
45	0.0434	0.0228	0.0206
46	0.0434	0.0228	0.0206
47	0.0462	0.0243	0.0220
48	0.0462	0.0243	0.0220
49	0.0491	0.0258	0.0233
50	0.0520	0.0273	0.0247
51	0.0549	0.0273	0.0247
52	0.0578	0.0292	0.0286
53 54	0.0607 0.0607	0.0292 a a292	0.0315
54	0.0607	0.0292	0.0315
55	0.0636	0.0292	0.0344
56	0.0665	0.0292	0.0373
57	0.0694	0.0292	0.0402
58	0.0694	0.0292	0.0402

59	0.0723	0.0292	0.0431
60	0.0751	0.0292	0.0460
61	0.0896	0.0292	0.0604
62	0.1040	0.0292	0.0749
63	0.1127	0.0292	0.0835
64	0.1214	0.0292	0.0922
65	0.1358	0.0292	0.1067
66	0.1618	0.0292	0.1327
67	0.0549	0.0288	0.0261
68	0.0260	0.0137	0.0124
69	0.0173	0.0091	0.0082
70	0.0145	0.0076	0.0069
71	0.0087	0.0046	0.0041
72	0.0058	0.0030	0.0027

TOTAL STORM RAINFALL(INCHES) = 2.89
TOTAL SOIL-LOSS(INCHES) = 1.26
TOTAL EFFECTIVE RAINFALL(INCHES) = 1.63

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 23.1566 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 29.8836

6-HOUR STORM $\begin{smallmatrix} R & U & N & O & F & F \end{smallmatrix} \qquad H & Y & D & R & O & G & R & A & P & H \\ \end{smallmatrix}$

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS) (Note: Time indicated is at END of Each Unit Intervals)

(No	ote: Time in	dicated i	s at END	of Each	Unit Inte	ervals)	
TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	75.0	150.0	225.0	300.0
0.083	0.0055	0.81	Q				
0.167	0.0352	4.30	Q				
0.250	0.1043	10.04	VQ				
0.333	0.2014	14.10	VQ				
0.417	0.3135	16.27	νQ				
0.500	0.4356	17.73	νQ				
0.583	0.5686	19.31	νQ				
0.667	0.7133	21.01	νQ				
0.750	0.8659	22.15	.vQ				
0.833	1.0235	22.89	.v Q				
0.917	1.1850	23.44	.v Q				
1.000	1.3505	24.04	.v Q				
1.083	1.5232	25.07	. VQ				
1.167	1.7047	26.36	. vQ				
1.250	1.8921	27.21	. vQ				
1.333	2.0830	27.71	. vQ				
1.417	2.2760	28.03	. Q				
1.500	2.4707	28.27	. Q				
1.583	2.6668	28.48	. Q				
1.667	2.8642	28.66	. Q				
1.750	3.0626	28.81	. QV				
1.833	3.2619	28.94	. QV				
1.917	3.4617	29.02	. QV				
2.000	3.6631	29.24	. QV				
2.083	3.8683	29.79	. Q V				
2.167	4.0772	30.33	. QV				
2.250	4.2881	30.63	. QV				
2.333	4.5040	31.36	. Q V	<i>'</i> .			
2.417	4.7235	31.86	. Q V				
2.500	4.9448	32.13	. Q \				•
2.583	5.1672	32.30	. Q \				
2.667	5.3906	32.44		٧.			
2.750	5.6158	32.70	. Q	٧.			
2.833	5.8461	33.44	. Q	٧.			
2.917	6.0838	34.51	. Q	٧.			
3.000	6.3261	35.18	. Q	٧.			
3.083	6.5707	35.52	. Q	V .			
3.167	6.8181	35.92	. Q	٧.			
3.250	7.0712	36.75	. Q	٧.			
3.333	7.3322	37.89	. Q	٧.			
3.417	7.5992	38.77	. Q	V			
3.500	7.8746	39.99	. Q	V			
3.583	8.1646	42.10	. Q	V			
3.667	8.4717	44.59	. Q	٠٧.			
3.750	8.7943	46.85	. (•
3.833	9.1300	48.75	. (•
3.917	9.4791	50.68	. (-			•
4.000	9.8406	52.49	. (-			•
4.083	10.2150	54.37	. `	Q . V			•
4.167	10.6029	56.32		Q . V		•	
4.250	11.0083	58.87		Q . V		•	
4.333	11.4351	61.97			, .	•	
		/			-	-	-

4.417	11.8889	65.89	•	Q.	V .	•	•
4.500	12.3753	70.62	•	Q.	V .	•	•
4.583	12.8927	75.13	•	Q	٧.	•	•
4.667	13.4395	79.39		Q	٧.	•	
4.750	14.0235	84.80	•	.Q	V .		
4.833	14.6481	90.70		. Q	٧.		
4.917	15.3088	95.93		. Q	V		
5.000	16.0022	100.68		. Q	٠٧.		
5.083	16.7447	107.81		. (. V		
5.167	17.5802	121.32		•	Q . V		•
5.250	18.5653	143.04		•	Q. V		•
5.333	19.7174	167.27		•	. Q	V .	
5.417	21.0305	190.67		•		Q V.	
5.500	22.5281	217.44		•		QV	
5.583	24.1707	238.51				.QV	
5.667	25.6670	217.27				Q . V	· .
5.750	26.7066	150.94		•	Q		٧.
5.833	27.4155	102.93		. Q			٧.
5.917	27.9443	76.79		Q			٧.
6.000	28.3586	60.16		Q.			٧.
6.083	28.6851	47.40		Q.			٧.
6.167	28.9406	37.10	. Q				٧.
6.250	29.1386	28.75	. Q	•			٧.
6.333	29.2957	22.80	. Q	•			٧.
6.417	29.4223	18.38	. Q	•			٧.
6.500	29.5243	14.81	.Q	•			٧.
6.583	29.6045	11.65	.Q	•			٧.
6.667	29.6692	9.39	.Q	•			٧.
6.750	29.7186	7.18	Q	•			٧.
6.833	29.7577	5.67	Q	•			٧.
6.917	29.7913	4.88	Q	•			٧.
7.000	29.8198	4.14	Q	•			٧.
7.083	29.8431	3.38	Q	•			٧.
7.167	29.8610	2.60	Q	•			٧.
7.250	29.8731	1.76	Q	•			٧.
7.333	29.8784	0.76	Q	•			٧.
7.417	29.8806	0.33	Q	•			٧.
7.500	29.8820	0.20	Q	•			٧.
7.583	29.8828	0.13	Q	•			٧.
7.667	29.8833	0.07	Q	•			٧.
7.750	29.8835	0.03	Q	•			٧.
7.833	29.8836	0.01	Q	•			V

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
=======================================	=======
0%	470.0
10%	320.0
20%	135.0
30%	85.0
40%	60.0
50%	40.0
60%	30.0
70%	25.0
80%	15.0
90%	15.0

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<

(UNIT-HYDROGRAPH ADDED TO STREAM #2)

WATERSHED AREA = 295.700 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.322 HOURS

CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.358

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.545

USER-ENTERED RAINFALL = 2.89 INCHES

RCFC&WCD 6-Hour Storm (5-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 25.880

UNIT HYDROGRAPH DETERMINATION

INTERVAL NUMBER	"S" GRAPH MEAN VALUES	UNIT HYDROGRAPH ORDINATES(CFS)	
1	2.366	84.607	
2	10.202	280.224	
3	24.613	515.375	
4	43.211	665.070	
5	58.251	537.840	
6	67.091	316.147	
7	72.914	208.215	
8	77.143	151.237	
9	80.487	119.614	
10	83.170	95.934	
11	85.423	80.569	
12	87.296	66.975	
13	88.853	55.683	
14	90.286	51.265	
15	91.500	43.381	
16	92.561	37.949	
17	93.519	34.276	
18	94.379	30.764	
19	95.141	27.218	
20	95.884	26.586	
21	96.438	19.810	
22	96.940	17.969	
23	97.443	17.964	
24	97.921	17.111	
25	98.166	8.744	
26	98.351	6.634	
27	98.537	6.650	
28	98.723	6.639	
29	98.909	6.645	
30	99.094	6.644	
31	99.280	6.644	
32	99.466	6.644	

33	99.652	6.644
34	99.838	6.644
35	100.000	5.808

UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0145	0.0079	0.0066
2	0.0173	0.0095	0.0079
3	0.0173	0.0095	0.0079
4	0.0173	0.0095	0.0079
5	0.0173	0.0095	0.0079
6	0.0202	0.0110	0.0092
7	0.0202	0.0110	0.0092
8	0.0202	0.0110	0.0092
9	0.0202	0.0110	0.0092
10	0.0202	0.0110	0.0092
11	0.0202	0.0110	0.0092
12	0.0231	0.0126	0.0105
13	0.0231	0.0126	0.0105
14	0.0231	0.0126	0.0105
15	0.0231	0.0126	0.0105
16	0.0231	0.0126	0.0105
17	0.0231	0.0126	0.0105
18	0.0231	0.0126	0.0105
19 20	0.0231	0.0126	0.0105
20	0.0231	0.0126	0.0105
21 22	0.0231 0.0231	0.0126 0.0126	0.0105 0.0105
23	0.0231	0.0126	0.0105
24	0.0260	0.0142	0.0103
25	0.0231	0.0142	0.0105
26	0.0260	0.0142	0.0118
27	0.0260	0.0142	0.0118
28	0.0260	0.0142	0.0118
29	0.0260	0.0142	0.0118
30	0.0260	0.0142	0.0118
31	0.0260	0.0142	0.0118
32	0.0260	0.0142	0.0118
33	0.0289	0.0158	0.0131
34	0.0289	0.0158	0.0131
35	0.0289	0.0158	0.0131
36	0.0289	0.0158	0.0131
37	0.0289	0.0158	0.0131
38	0.0318	0.0173	0.0145
39	0.0318	0.0173	0.0145
40	0.0318	0.0173	0.0145
41	0.0347	0.0189	0.0158
42	0.0376	0.0205	0.0171
43	0.0405	0.0221	0.0184
44	0.0405	0.0221	0.0184
45	0.0434	0.0236	0.0197
46	0.0434	0.0236	0.0197
47	0.0462	0.0252	0.0210
48	0.0462	0.0252	0.0210
49	0.0491	0.0268	0.0224
50	0.0520	0.0284	0.0237
51	0.0549	0.0298	0.0251
52	0.0578	0.0298	0.0280
53	0.0607	0.0298	0.0309
54	0.0607	0.0298	0.0309
55 56	0.0636	0.0298	0.0337
56 57	0.0665	0.0298	0.0366 0.0305
57	0.0694	0.0298	0.0395

59	0.0723	0.0298	0.0424
60	0.0751	0.0298	0.0453
61	0.0896	0.0298	0.0598
62	0.1040	0.0298	0.0742
63	0.1127	0.0298	0.0829
64	0.1214	0.0298	0.0915
65	0.1358	0.0298	0.1060
66	0.1618	0.0298	0.1320
67	0.0549	0.0298	0.0251
68	0.0260	0.0142	0.0118
69	0.0173	0.0095	0.0079
70	0.0145	0.0079	0.0066
71	0.0087	0.0047	0.0039
72	0.0058	0.0032	0.0026

TOTAL STORM RAINFALL(INCHES) = 2.89
TOTAL SOIL-LOSS(INCHES) = 1.30
TOTAL EFFECTIVE RAINFALL(INCHES) = 1.59

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 32.0974 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 39.0968

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

(NO	te: Time in	aicatea i	s at ENI	of Each	Unit Inte	ervais)	
TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	75.0	150.0	225.0	300.0
0.083	0.0038	0.56	Q				
0.167	0.0211	2.51	Q			•	
0.250	0.0643	6.27	Q			•	
0.333	0.1422	11.32	VQ			•	
0.417	0.2505	15.73	ν̈́Q			•	
0.500	0.3788	18.63	νõ			•	
0.583	0.5219	20.78	νõ			•	
0.667	0.6784	22.72	v Q			•	
0.750	0.8477	24.58	v Q			•	
0.833	1.0273	26.08	.v q			•	
0.917	1.2143	27.15	.v q			•	
1.000	1.4077	28.08	.v Q			•	
1.083	1.6082	29.10	.v Q			•	
1.167	1.8172	30.35	.v Q		•	•	
1.250	2.0355	31.70	. v Q			•	
1.333	2.2616	32.82	. v Q				
1.417	2.4930	33.60	. v Q				
1.500	2.7285	34.20	. v Q				
1.583	2.9673	34.68	. VQ				
1.667	3.2091	35.11	. VQ				
1.750	3.4532	35.45	. vQ		-		
1.833	3.6994	35.74	. vQ		-		
1.917	3.9474	36.01	. Q		-		
2.000	4.1979	36.37	. Q		-		
2.083	4.4514	36.81	. Q		-		
2.167	4.7087	37.37	. Q	•	•	•	•
2.250	4.9708	38.06	. Q	•	•	•	•
2.333	5.2373	38.69	. Q	•	•	•	•
2.417	5.5086	39.39	. Q	•	•	•	•
2.500	5.7844	40.05	. Q		•	•	•
2.583	6.0633	40.49	. Q'		•	•	•
2.667	6.3443	40.81	. Q'		•	•	•
2.750	6.6279	41.17	. Q'		•	•	•
2.833	6.9155	41.76	_	v .	•	•	•
2.917	7.2091	42.63		v . V .	•	•	•
3.000	7.5095	43.62		v . V .	•	•	•
3.083	7.8155	44.43		v .	•	•	•
3.167	8.1257	45.04	_	ν. Qν.	•	•	•
3.250	8.4408	45.76		γν. Qν.	•	•	•
3.333	8.7624	46.70		γν. Qν.	•	•	•
3.417	9.0923	47.90		ν. Σ V.	•	•	•
3.500	9.4315	49.26		Q V.	•	•	•
3.583	9.7827	50.99		ζ V	•	•	•
3.667	10.1498	53.31	•	Q V	•	•	•
3.750	10.5354	55.99	•	Q V	•	•	•
3.833	10.9391	58.61	•	Q .V	•	•	•
3.917	11.3593	61.01	•	Q.V	•	•	•
4.000	11.7952	63.31	•	Q . V	•	•	•
4.083	12.2469	65.58	•	Q . V Q . V	•	•	•
4.167	12.7150	67.96	•	Q. V	•	•	•
4.167	13.2013	70.61	•	Q. V Q. V	•	•	•
4.230	13.7098	73.84	•	Q. V	•	•	•
4.333	13./030	/3.04	•	ų. V	•	•	•

4.417 14.2468 77.98 Q V .	4 447	14 2460	77.00		0 1/		
4.583				•	•	•	
4.667 16.6794 94.51 Q V . .				•		•	
4,750 16,7720 100,56 Q V . .		15.4285	88.61	•		•	
4.833 17.5097 107.12 . Q V .	4.667	16.0794	94.51	•	. Q V	•	
4.917 18.2953 114.06 . Q V. .	4.750	16.7720	100.56		. Q V	•	
4.917 18.2953 114.06 Q V . . . Q V Q V . <td>4.833</td> <td>17.5097</td> <td>107.12</td> <td></td> <td>. Q V</td> <td>•</td> <td></td>	4.833	17.5097	107.12		. Q V	•	
5.080 19.1278 120.88 . Q V . . 5.083 20.0135 128.60 . Q V . . 5.167 20.9789 140.18 . Q V . . 5.250 22.0675 158.07 . QV . . 5.333 23.3245 182.52 . VQ . . 5.417 24.7776 210.99 . VQ . . 5.580 26.4449 242.09 . VQ . . 5.667 30.1727 273.67 . VQ . . . VQ . 5.583 31.8900 249.35 . VQ . <	4.917	18.2953	114.06				
5.883 20.0135 128.60 Q V . . . Q V .	5.000	19.1278	120.88			٧.	
5.167 20.9789 140.18 . Q.V							
5.250 22,0675 158.07 . .QV . 5.333 23,3245 182,52 . .VQ . 5.417 24,7776 210,99 . .VQ . 5.500 26,4449 242,09 . .VQ . 5.667 30,1727 273,67 . .VQ . 5.750 31,8900 249,35 . .VQ . 5.833 33,2406 196,11 . Q . V 6.000 35,0932 111,66 .QQ . V . 6.083 35,6229 89,98 .QQ . V . 6.167 36,1320 73,93 Q . V . 6.250 36,5517 60,94 Q . V . 6.541 37,1931 42,52 Q . V . 6.550 37,4443 36,47 Q . . V 6.583 37,6640 31.89 Q . . V							
5.333 23.3245 182.52 . VQ . 5.417 24.7776 210.99 . VQ . 5.580 26.4449 242.09 . VQ . 5.583 28.2880 267.61 . VQ . 5.667 30.1727 273.67 . VQ . 5.750 31.8900 249.35 . VQ . 5.833 33.2406 196.11 . Q V . 5.917 34.2342 144.27 . Q . V . 6.083 35.6032 111.66 . Q . V . 6.167 36.1320 73.93 Q . V . 6.250 36.5517 60.94 Q . V . 6.333 36.9003 50.61 Q . V . 6.583 37.6640 31.89 Q . V . 6.583 37.6640 31.89 Q .				_			
5. 417 24,7776 210,99 . V Q . 5.580 26,4449 242,09 . V Q . 5.583 28,2880 267,61 . V Q . 5.667 30,1727 273,67 . V Q . 5.759 31,8900 249,35 . V Q . 5.917 34,2342 144,27 . Q . V . 6.000 35,0032 111,66 . Q . V . 6.083 35,6229 89,98 . Q . V . 6.167 36,1320 73,93 Q . V . 6.250 36,5517 60,94 Q . V . 6.417 37,1931 42,52 Q . V . 6.580 37,4443 36,47 Q . V . 6.583 37,6640 31.89 Q . V . 6.583 37,6640 31.89 Q . V . 6.833 38,1719 21.54 Q . V . 6.750 38,0235 24,41 Q . V . 7.08				•	•		•
5.500 26.4449 242.09 . . V . Q . 5.583 28.2880 267.61 . . V . Q . 5.667 30.1727 273.67 . . V Q . 5.750 31.8900 249.35 . . . VQ . 5.917 34.2342 144.27 . Q . V . 6.080 35.0922 111.66 . Q . V . 6.083 35.6229 89.98 . Q . V . 6.167 36.1320 73.93 . Q. . V . 6.250 36.5517 60.94 . Q . . V . 6.333 36.9003 50.61 . Q . . V . 6.583 37.4911 42.52 . Q . . V . 6.583 37.6640 31.89 . Q . . V . 6.583 37.8554 27.79 . Q . . V . <				•	•		•
5.583 28.2880 267.61 . . V Q . 5.667 30.1727 273.67 . V Q . . VQ . . . VQ . . . VQ . . . VQ VQ .				•	•		
5.667 30.1727 273.67				•	•		
5.750 31.8900 249.35				•	•		
5.833 33.2406 196.11				•	•	•	•
5.917 34.2342 144.27 . Q. . V. 6.000 35.0032 111.66 . Q. . V. 6.083 35.6229 89.98 . Q. . V. 6.167 36.1320 73.93 Q. . V. 6.250 36.5517 60.94 Q. . V. 6.333 36.9003 50.61 Q. . V. 6.500 37.4443 36.47 Q. . V. 6.583 37.6640 31.89 Q. . V. 6.667 37.8554 27.79 Q. . V. 6.750 38.0235 24.41 Q. . V. 6.750 38.0235 24.41 Q. . V. 6.917 38.3027 19.00 Q. . V. 7.000 38.4181 16.75 Q. . V. 7.250 38.6805 14.72 Q. . V. 7.333 38.7457 9.47 Q. . V. 7.500 38.8441 6.32 Q. . V. 7.583 38.89497 4.72				•	•	•	
6.000 35.0032 111.66				•	•		
6.083			144.27	•		Q.	
6.167 36.1320 73.93 . Q	6.000	35.0032	111.66	•	. Q	•	. V .
6.250 36.5517 60.94 . Q	6.083	35.6229	89.98	•	.Q	•	. V .
6.333 36.9003 50.61 . Q	6.167	36.1320	73.93		Q.	•	. V .
6.417 37.1931 42.52 . Q	6.250	36.5517	60.94	•	Q.	•	. V .
6.500 37.4443 36.47 . Q	6.333	36.9003	50.61		Q.	•	. V .
6.500 37.4443 36.47 . Q	6.417	37.1931	42.52	. (•	. V.
6.583		37.4443			•	•	. V.
6.667 37.8554 27.79 . Q	6.583				·	ē	. v.
6.750				_			
6.833 38.1719 21.54 . Q					•		
6.917 38.3027 19.00 . Q				_	·	•	
7.000 38.4181 16.75 . Q					•	•	
7.083 38.5195 14.72 .Q . . V. 7.167 38.6056 12.50 .Q . . V. 7.250 38.6805 10.88 .Q . . V. 7.333 38.7457 9.47 .Q . . V. 7.417 38.8005 7.96 .Q . . V. 7.500 38.8441 6.32 Q . . V. 7.583 38.8822 5.53 Q . . V. 7.667 38.9172 5.09 Q . . V. 7.750 38.9497 4.72 Q . . V. 7.833 38.9998 4.36 Q . . V. 7.917 39.0073 4.00 Q . . V. 8.083 39.0529 3.06 Q . . V. 8.167 39.0701 2.50 Q . . V. 8.250 39.0831 <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td>					•	•	
7.167 38.6056 12.50 .Q . . V. 7.250 38.6805 10.88 .Q . . V. 7.333 38.7457 9.47 .Q . . V. 7.417 38.8005 7.96 .Q . . V. 7.500 38.8441 6.32 Q . . V. 7.583 38.8822 5.53 Q . . V. 7.667 38.9172 5.09 Q . . V. 7.750 38.9497 4.72 Q . . V. 7.833 38.9798 4.36 Q . . V. 7.917 39.0073 4.00 Q . . V. 8.000 39.0319 3.56 Q . . V. 8.083 39.0529 3.06 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0949					•	•	
7.250 38.6805 10.88 .Q . . V. 7.333 38.7457 9.47 .Q . . V. 7.417 38.8005 7.96 .Q . . V. 7.500 38.8441 6.32 Q . . V. 7.583 38.8822 5.53 Q . . V. 7.667 38.9172 5.09 Q . . V. 7.750 38.9497 4.72 Q . . V. 7.833 38.9798 4.36 Q . . V. 7.917 39.0073 4.00 Q . . V. 8.000 39.0319 3.56 Q . . V. 8.083 39.0529 3.06 Q . . V. 8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.417 39.0935					•	•	
7.333 38.7457 9.47 .Q . . V. 7.417 38.8005 7.96 .Q . . V. 7.500 38.8441 6.32 Q . . V. 7.583 38.8822 5.53 Q . . V. 7.667 38.9172 5.09 Q . . V. 7.750 38.9497 4.72 Q . . V. 7.833 38.9798 4.36 Q . . V. 7.917 39.0073 4.00 Q . . V. 8.000 39.0319 3.56 Q . . V. 8.083 39.0529 3.06 Q . . V. 8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . .				-	•	•	
7.417 38.8005 7.96 .Q . . V. 7.500 38.8441 6.32 Q . . V. 7.583 38.8822 5.53 Q . . V. 7.667 38.9172 5.09 Q . . V. 7.750 38.9497 4.72 Q . . V. 7.833 38.9798 4.36 Q . . V. 7.917 39.0073 4.00 Q . . V. 8.000 39.0319 3.56 Q . . V. 8.083 39.0529 3.06 Q . . V. 8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0964					•	•	
7.500 38.8441 6.32 Q					•	•	
7.583 38.8822 5.53 Q . . V. 7.667 38.9172 5.09 Q . . V. 7.750 38.9497 4.72 Q . . V. 7.833 38.9798 4.36 Q . . V. 8.917 39.0073 4.00 Q . . V. 8.000 39.0319 3.56 Q . . V. 8.083 39.0529 3.06 Q . . V. 8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.417 39.0935 0.36 Q . . V. 8.583 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964				-	•	•	
7.667 38.9172 5.09 Q . . V. 7.750 38.9497 4.72 Q . . V. 7.833 38.9798 4.36 Q . . V. 7.917 39.0073 4.00 Q . . V. 8.000 39.0319 3.56 Q . . V. 8.083 39.0529 3.06 Q . . V. 8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.417 39.0935 0.36 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.					•	•	
7.750 38.9497 4.72 Q . . V. 7.833 38.9798 4.36 Q . . V. 7.917 39.0073 4.00 Q . . V. 8.000 39.0319 3.56 Q . . V. 8.083 39.0529 3.06 Q . . V. 8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.417 39.0935 0.36 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.				Q	•	•	
7.833 38.9798 4.36 Q . . V. 7.917 39.0073 4.00 Q . . V. 8.000 39.0319 3.56 Q . . V. 8.083 39.0529 3.06 Q . . V. 8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.417 39.0935 0.36 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.	7.667	38.9172	5.09	Q	•	•	. V.
7.917 39.0073 4.00 Q . . V. 8.000 39.0319 3.56 Q . . V. 8.083 39.0529 3.06 Q . . V. 8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.417 39.0935 0.36 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.	7.750	38.9497	4.72	Q	•	•	. V.
8.000 39.0319 3.56 Q . . V. 8.083 39.0529 3.06 Q . . V. 8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.417 39.0935 0.36 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.		38.9798	4.36	Q	•	•	. V.
8.083 39.0529 3.06 Q . . V. 8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.417 39.0935 0.36 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.	7.917	39.0073	4.00	Q	•	•	. V.
8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.417 39.0935 0.36 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.	8.000	39.0319	3.56	Q	•	•	. V.
8.167 39.0701 2.50 Q . . V. 8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.417 39.0935 0.36 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.	8.083	39.0529	3.06	Q	•		. V.
8.250 39.0831 1.88 Q . . V. 8.333 39.0910 1.15 Q . . V. 8.417 39.0935 0.36 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.	8.167		2.50		•	•	. V.
8.333 39.0910 1.15 Q . . V. 8.417 39.0935 0.36 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.					•		
8.417 39.0935 0.36 Q . . V. 8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.					•		
8.500 39.0949 0.21 Q . . V. 8.583 39.0958 0.13 Q . . V. 8.667 39.0964 0.08 Q . . V. 8.750 39.0967 0.04 Q . . V.					•		
8.583 39.0958 0.13 Q V. 8.667 39.0964 0.08 Q V. 8.750 39.0967 0.04 Q V.					-	-	
8.667 39.0964 0.08 Q V. 8.750 39.0967 0.04 Q V.					•	•	
8.750 39.0967 0.04 Q V.					•	•	
•					•	•	
, א איי, א סספטיפי ככס.ס y					•	•	
	0.033	8050.65	0.02	Ų	•	•	. v.

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
=======================================	=======
0%	530.0
10%	345.0

20%	155.0
30%	100.0
40%	70.0
50%	50.0
60%	35.0
70%	30.0
80%	20.0
90%	15.0

>>>>STREAM NUMBER 1 ADDED TO STREAM NUMBER 2<<<<<

FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 11

>>>>VIEW STREAM NUMBER 2 HYDROGRAPH<

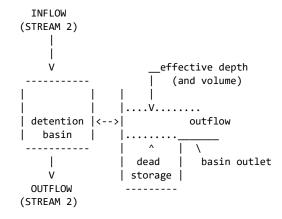
STREAM HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

TIME(HRS) VOLUME(A	F) Q(CFS) 6). 	150.0	300.0	450.0	600.0
0.083 0.0094		Q			•	
0.167 0.056		Q	•	•	•	•
0.250 0.1680	5 16.31	VQ		•	•	•
0.333 0.343		VQ		•	•	•
0.417 0.5640	32.00	V Q		•	•	•
0.500 0.814	4 36.36	V Q	•	•	•	•
0.583 1.090		V Q	•	•	•	•
0.667 1.391	7 43.73	V Q	•	•	•	•
0.750 1.713		V Q	•	•	•	•
0.833 2.0509	9 48.97	.V Q		•	•	•
0.917 2.3993		.V Q		•	•	•
1.000 2.758	2 52.12	.V Q		•	•	•
1.083 3.131		.V Q		•	•	•
1.167 3.5219	9 56.71	. VQ		•	•	•
1.250 3.927	58.92	. VQ		•	•	•
1.333 4.344	5 60.53	. V Q		•	•	•
1.417 4.7689		. V Q		•	•	•
1.500 5.199	2 62.47	. VQ		•	•	•
1.583 5.634		. VQ		•	•	•
1.667 6.073	3 63.76	. VQ	•	•	•	•
1.750 6.515		. VQ	•	•	•	•
1.833 6.9613	2 64.68	. Q	•	•	•	•
1.917 7.409		. Q	•	•	•	•
2.000 7.8610	65.61	. Q	•	•	•	•
2.083 8.319		. Q	•	•	•	•
2.167 8.7859		. QV	•	•	•	•
2.250 9.2589		. QV	•	•	•	•
2.333 9.741		. QV	•	•	•	•
2.417 10.2320		. QV	•	•	•	•
2.500 10.729	2 72.18	. Q V		•	•	•
2.583 11.230	5 72.79	. Q V		•	•	•
2.667 11.7350	73.24	. Q V		•	•	•
2.750 12.243		. Q		•	•	•
2.833 12.761	5 75.20	. Q			•	•
2.917 13.2929	9 77.14	. Q	٧.		•	•
3.000 13.8350	5 78.80	. Q	٧.		•	•

2 222							
3.083	14.3862	79.95	. Q	٧.		•	
3.167	14.9438	80.96	. Q		_	_	
3.250	15.5120	82.51			•	·	•
			. Q		•	•	•
3.333	16.0946	84.60	. Q		•	•	•
3.417	16.6915	86.67	. Q	٧.		•	
3.500	17.3062	89.25	. Q	V	_	_	
3.583	17.9473	93.08		Q V			
				-	•	•	•
3.667	18.6215	97.89	. (Q V	•	•	•
3.750	19.3297	102.84	. (Q.V			
3.833	20.0691	107.36	_	Q .V	_	_	
3.917	20.8383	111.69	•	•	•	·	•
			•	•	•	•	•
4.000	21.6358	115.79	•	Q . V	•	•	•
4.083	22.4619	119.95		Q . V		•	
4.167	23.3179	124.28		Q . V			
4.250	24.2096	129.48		Q. V			
			•	-	•	•	•
4.333	25.1449	135.81	•	Q. V	•	•	•
4.417	26.1358	143.87		Q. V		•	
4.500	27.1935	153.59		Q V			
4.583	28.3212	163.74		ą v			
			•		•	•	•
4.667	29.5189	173.90	•		V .	•	•
4.750	30.7955	185.36	•	. Q	v .	•	
4.833	32.1579	197.82		. Q	٧.		
4.917	33.6041	209.99		. Q	٧.		
			•			•	•
5.000	35.1300	221.56	•	. Q	V	•	•
5.083	36.7582	236.41		. Q	٠٧.	•	
5.167	38.5592	261.50			Q.V		
5.250	40.6329	301.11			Q V		
			•	•	-	,	•
5.333	43.0419	349.79	•	•	. Q\		•
5.417	45.8082	401.66		•	•	Q.	
5.500	48.9730	459.53		•		V Q	
5.583	52.4587	506.12				v Q	
			•	•	•		•
5.667	55.8398	490.94	•	•	•	. Q	•
5.750	58.5965	400.28	•	•	•	Q . V	•
5.833	60.6560	299.04			^		17
	00.0500	200.04	•	•	Q.	•	٧.
			•	. 0	ų.	•	v .
5.917	62.1785	221.06		. Q			v . V .
5.917 6.000	62.1785 63.3618	221.06 171.82	•	.Q	ų.	•	٧.
5.917	62.1785	221.06	•		ų.		
5.917 6.000	62.1785 63.3618	221.06 171.82	· · ·	.Q	ų.	· · · · ·	٧.
5.917 6.000 6.083 6.167	62.1785 63.3618 64.3080 65.0727	221.06 171.82 137.38 111.03		.Q Q. Q .	ų.	· · ·	V . V . V .
5.917 6.000 6.083 6.167 6.250	62.1785 63.3618 64.3080 65.0727 65.6904	221.06 171.82 137.38 111.03 89.69	. Q	.Q Q. Q .	ų.	· · · ·	V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960	221.06 171.82 137.38 111.03 89.69 73.42	. Q	.Q Q. Q .	· · · ·		V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154	221.06 171.82 137.38 111.03 89.69 73.42 60.90	. Q . Q	.Q Q. Q .	· · · · · · · · · · · · · · · · · · ·		V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960	221.06 171.82 137.38 111.03 89.69 73.42	. Q	.Q Q. Q .	· · · · · · · · · · · · · · · · · · ·	· · · · ·	V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154	221.06 171.82 137.38 111.03 89.69 73.42 60.90	. Q . Q . Q	.Q Q. Q .	· · · · · · · · · · · · · · · · · · ·		V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55	. Q . Q . Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19	. Q . Q . Q . Q	.Q Q. Q .	· · · · · · · · · · · · · · · · · · ·		V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59	. Q . Q . Q . Q . Q	.Q Q. Q .	· · · · · · · · · · · · · · · · · · ·		V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21	. Q . Q . Q . Q . Q	.Q Q. Q .	· · · · · · · · · · · · · · · · · · ·		V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59	. Q . Q . Q . Q . Q	.Q Q. Q .	· · · · · · · · · · · · · · · · · · ·		V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21	. Q . Q . Q . Q . Q	.Q Q. Q .	· · · · · · · · · · · · · · · · · · ·		V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89	. Q . Q . Q . Q . Q . Q . Q	.Q Q. Q .	· · · · · · · · · · · · · · · · · · ·		V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10	. Q . Q . Q . Q . Q . Q . Q . Q	.Q Q. Q .	· · · · · · · · · · · · · · · · · · ·		V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 15.10	. Q . Q . Q . Q . Q . Q . Q . Q . Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 15.10	. Q . Q . Q . Q . Q . Q . Q . Q . Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 15.10	. Q . Q . Q . Q . Q . Q . Q . Q . Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23	. Q . Q . Q . Q . Q . Q . Q . Q . Q . Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29	. Q . Q . Q . Q . Q . Q . Q . Q . Q . Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52	. Q Q . Q . Q . Q . Q . Q . Q . Q . Q Q Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260 68.7650	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52 5.66	. Q Q . Q . Q . Q . Q . Q . Q . Q Q Q Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52	. Q Q . Q . Q . Q . Q . Q . Q . Q . Q Q Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260 68.7650 68.8005	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52 5.66 5.16	. Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260 68.7650 68.8005 68.8332	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52 5.66 5.16 4.75	. Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.833	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260 68.7650 68.8005 68.8332 68.8633	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52 5.66 5.16 4.75 4.37	. Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.833 7.917	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260 68.7650 68.8005 68.8332 68.8633 68.8909	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52 5.66 5.16 4.75 4.37 4.00		.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.833	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260 68.7650 68.8005 68.8332 68.8633	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52 5.66 5.16 4.75 4.37	. Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.833 7.917	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260 68.7650 68.8005 68.8332 68.8633 68.8909	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52 5.66 5.16 4.75 4.37 4.00		.Q Q. Q .			V . V . V . V . V . V . V . V . V . V .
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.833 7.917 8.000 8.083	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260 68.7650 68.8005 68.8332 68.8633 68.8909 68.9154 68.9365	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52 5.66 5.16 4.75 4.37 4.00 3.56 3.06		.Q Q. Q .			V
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260 68.7650 68.8005 68.8332 68.8633 68.8909 68.9154 68.9365 68.9537	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52 5.66 5.16 4.75 4.37 4.00 3.56 3.06 2.50		.Q Q. Q .			V
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167 8.250	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260 68.7650 68.8005 68.8332 68.8633 68.8909 68.9154 68.9365 68.9537 68.9666	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52 5.66 5.16 4.75 4.37 4.00 3.56 3.06 2.50 1.88		.Q Q. Q .			V
5.917 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.833 7.917 8.000 8.083 8.167	62.1785 63.3618 64.3080 65.0727 65.6904 66.1960 66.6154 66.9686 67.2685 67.5246 67.7422 67.9296 68.0940 68.2379 68.3626 68.4666 68.5536 68.6241 68.6811 68.7260 68.7650 68.8005 68.8332 68.8633 68.8909 68.9154 68.9365 68.9537	221.06 171.82 137.38 111.03 89.69 73.42 60.90 51.28 43.55 37.19 31.59 27.21 23.88 20.89 18.10 12.64 10.23 8.29 6.52 5.66 5.16 4.75 4.37 4.00 3.56 3.06 2.50		.Q Q. Q .			V

8.417	68.9771	0.36	Q	•	•	٧.
8.500	68.9785	0.21	Q	•	•	٧.
8.583	68.9794	0.13	Q	•		٧.
8.667	68.9800	0.08	Q	•		٧.
8.750	68.9802	0.04	Q	•		٧.
8.833	68.9803	0.02	Q	•		V
8.917	68.9803	0.00	Q	•	•	V


TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have

an instantaneous time duration)

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
=======================================	=======
0%	530.0
10%	335.0
20%	150.0
30%	95.0
40%	65.0
50%	45.0
60%	30.0
70%	25.0
80%	15.0
90%	15.0

FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 3.1

>>>>FLOW-THROUGH DETENTION BASIN ROUTING MODEL APPLIED TO STREAM #2< ______

ROUTE RUNOFF HYDROGRAPH FROM STREAM NUMBER 2 THROUGH A FLOW-THROUGH DETENTION BASIN SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: DEAD STORAGE(AF) = 0.000SPECIFIED DEAD STORAGE(AF) FILLED = 0.000 SPECIFIED EFFECTIVE VOLUME(AF) FILLED ABOVE OUTLET = 0.000 DETENTION BASIN CONSTANT LOSS RATE(CFS) = 0.00

BASIN DEPTH VERSUS OUTFLOW AND STORAGE INFORMATION:

DEPTH OUTFLOW STORAGE INTERVAL NUMBER (FT) (CFS) (AF)

1	0.00	0.00	0.000
2	1.00	0.01	12.220
3	2.00	0.02	24.740
4	2.70	0.03	33.660
5	3.00	33.61	37.530
6	4.00	303.14	50.660

MODIFIED-PULS BASIN ROUTING MODEL RESULTS(5-MINUTE COMPUTATION INTERVALS):
(Note: Computed EFFECTIVE DEPTH and VOLUME are estimated at the clock time;
MEAN OUTFLOW is the average value during the unit interval.)

CLOCK					MEAN	
TIME	DEAD-STORAGE	INFLOW	LOSS	EFFECTIVE	OUTFLOW	EFFECTIVE
(HRS)	FILLED(AF)	(CFS)	(CFS)	DEPTH(FT)	(CFS)	VOLUME(AF)
0.083	0.000	1.36	0.00	0.00	0.0	0.009
0.167	0.000	6.81	0.00	0.00	0.0	0.056
0.250	0.000	16.31	0.00	0.01	0.0	0.169
0.333	0.000	25.42	0.00	0.03	0.0	0.344
0.417	0.000	32.00	0.00	0.05	0.0	0.564
0.500	0.000	36.36	0.00	0.07	0.0	0.814
0.583	0.000	40.09	0.00	0.09	0.0	1.091
0.667	0.000	43.73	0.00	0.11	0.0	1.392
0.750	0.000	46.73	0.00	0.14	0.0	1.714
0.833	0.000	48.97	0.00	0.17	0.0	2.051
0.917	0.000	50.59	0.00	0.20	0.0	2.399
1.000	0.000	52.12	0.00	0.23	0.0	2.758
1.083	0.000	54.17	0.00	0.26	0.0	3.131
1.167	0.000	56.71	0.00	0.29	0.0	3.522
1.250	0.000	58.92	0.00	0.32	0.0	3.928
1.333	0.000	60.53	0.00	0.36	0.0	4.344
1.417	0.000	61.63	0.00	0.39	0.0	4.769
1.500	0.000	62.47	0.00	0.43	0.0	5.199
1.583	0.000	63.16	0.00	0.46	0.0	5.634
1.667	0.000	63.76	0.00	0.50	0.0	6.073
1.750	0.000	64.25	0.00	0.53	0.0	6.515
1.833	0.000	64.68	0.00	0.57	0.0	6.961
1.917	0.000	65.04	0.00	0.61	0.0	7.409
2.000	0.000	65.61	0.00	0.64	0.0	7.861
2.083	0.000	66.59	0.00	0.68	0.0	8.319
2.167	0.000	67.70	0.00	0.72	0.0	8.785
2.250	0.000	68.68	0.00	0.76	0.0	9.258
2.333	0.000	70.05	0.00	0.80	0.0	9.741
2.417	0.000	71.25	0.00	0.84	0.0	10.231
2.500	0.000	72.18	0.00	0.88	0.0	10.728
2.583	0.000	72.79	0.00	0.92	0.0	11.230
2.667	0.000	73.24	0.00	0.96	0.0	11.734
2.750	0.000	73.87	0.00	1.00	0.0	12.243
2.833	0.000	75.20	0.00	1.04	0.0	12.761
2.917	0.000	77.14	0.00	1.09	0.0	13.292
3.000	0.000	78.80	0.00	1.13	0.0	13.834
3.083	0.000	79.95	0.00	1.17	0.0	14.385
3.167	0.000	80.96	0.00	1.22	0.0	14.942
3.250	0.000	82.51	0.00	1.26	0.0	15.510
3.333	0.000	84.60	0.00	1.31	0.0	16.093
3.417	0.000	86.67	0.00	1.36	0.0	16.690
3.500	0.000	89.25	0.00	1.41	0.0	17.304
3.583	0.000	93.08	0.00	1.46	0.0	17.945
3.667	0.000	97.89	0.00	1.51	0.0	18.619
3.750	0.000	102.84	0.00	1.57	0.0	19.328
3.833	0.000	107.36	0.00	1.63	0.0	20.067
3.917	0.000	111.69	0.00	1.69	0.0	20.836

4.000	0.000	115.79	0.00	1.75	0.0	21.633
4.083	0.000	119.95	0.00	1.82	0.0	22.459
4.167	0.000	124.28	0.00	1.89	0.0	23.315
4.250	0.000	129.48	0.00	1.96	0.0	24.207
4.333	0.000	135.81	0.00		0.0	25.142
				2.03		
4.417	0.000	143.87	0.00	2.11	0.0	26.132
4.500	0.000	153.59	0.00	2.19	0.0	27.190
4.583	0.000	163.74	0.00	2.28	0.0	28.318
4.667	0.000	173.90	0.00	2.37	0.0	29.515
4.750	0.000	185.36	0.00	2.47	0.0	30.791
4.833	0.000	197.82	0.00	2.58	0.0	32.154
4.917	0.000	209.99	0.00	2.70	0.0	33.600
5.000	0.000	221.56	0.00	2.81	6.2	35.083
5.083	0.000	236.41	0.00	2.93	18.9	36.581
5.167	0.000	261.50	0.00	3.05	35.7	38.136
5.250	0.000	301.11	0.00	3.17	62.9	39.777
5.333	0.000	349.79	0.00	3.30	97.6	41.514
5.417	0.000	401.66	0.00	3.44	134.3	43.355
5.500	0.000	459.53	0.00	3.59	173.4	45.326
5.583	0.000	506.12	0.00	3.75	214.3	47.336
5.667	0.000	490.94	0.00	3.87	251.8	48.983
5.750	0.000	400.28	0.00	3.94	277.4	49.829
5.833	0.000	299.04	0.00	3.94	286.9	49.912
5.917	0.000	221.06	0.00	3.91	283.4	49.483
6.000	0.000	171.82	0.00	3.86	271.9	48.794
6.083	0.000	137.38	0.00	3.80	256.4	47.974
6.167	0.000	111.03	0.00	3.73	239.0	47.093
6.250	0.000	89.69	0.00	3.66	220.7	46.191
6.333	0.000	73.42	0.00	3.59	202.3	45.303
6.417	0.000	60.90	0.00	3.53	184.4	44.452
6.500	0.000	51.28	0.00	3.47	167.5	43.652
6.583	0.000	43.55	0.00	3.41	151.6	42.908
6.667	0.000	37.19	0.00	3.36	136.9	42.221
6.750	0.000	31.59	0.00	3.31	123.4	41.588
6.833	0.000	27.21	0.00	3.27	111.0	41.011
6.917		23.88		3.23	99.7	
	0.000		0.00			40.489
7.000	0.000	20.89	0.00	3.19	89.5	40.016
7.083	0.000	18.10	0.00	3.16	80.3	39.588
7.167	0.000	15.10	0.00	3.13	71.9	39.198
7.250	0.000	12.64	0.00	3.10	64.2	38.842
7.333	0.000	10.23	0.00	3.08	57.2	38.519
7.417	0.000	8.29	0.00	3.05	50.9	38.225
7.500	0.000	6.52	0.00	3.03	45.2	37.959
7.583	0.000	5.66	0.00	3.01	40.0	37.723
7.667	0.000	5.16	0.00	3.00	35.5	37.514
7.750	0.000	4.75	0.00	2.98	32.6	37.322
7.833	0.000	4.37	0.00	2.97	31.0	37.138
7.833			0.00			
	0.000	4.00		2.96	29.5	36.963
8.000	0.000	3.56	0.00	2.94	28.0	36.795
8.083	0.000	3.06	0.00	2.93	26.5	36.633
8.167	0.000	2.50	0.00	2.92	25.2	36.477
8.250	0.000	1.88	0.00	2.91	23.8	36.326
8.333	0.000	1.15	0.00	2.90	22.5	36.179
8.417	0.000	0.36	0.00	2.88	21.3	36.035
8.500	0.000	0.21	0.00	2.87	20.0	35.898
8.583	0.000	0.13	0.00	2.86	18.9	35.769
8.667	0.000	0.08	0.00	2.85	17.8	35.647
8.750	0.000	0.04	0.00	2.85	16.8	35.532
8.833	0.000	0.02	0.00	2.84	15.8	35.423
8.917	0.000	0.00	0.00	2.83	14.9	35.321
9.000	0.000	0.00	0.00	2.82	14.0	35.224
9.083	0.000	0.00	0.00	2.81	13.2	35.133
9.167	0.000	0.00	0.00	2.81	12.4	35.047
9.250	0.000	0.00	0.00	2.80	11.7	34.967

9.333	0.000	0.00	0.00	2.80	11.0	34.891
9.417	0.000	0.00	0.00	2.79	10.4	34.819
9.500	0.000	0.00	0.00	2.78	9.8	34.752
9.583	0.000	0.00	0.00	2.78	9.2	34.688
9.667	0.000	0.00	0.00	2.78	8.7	34.628
9.750	0.000	0.00	0.00	2.77	8.2	34.572
9.833	0.000	0.00	0.00	2.77	7.7	34.519
9.917	0.000	0.00	0.00	2.76	7.3	34.469
10.000	0.000	0.00	0.00	2.76	6.8	34.421
10.083	0.000	0.00	0.00	2.76	6.4	34.377
10.167	0.000	0.00	0.00	2.75	6.1	34.335
10.250	0.000	0.00	0.00	2.75	5.7	34.296
10.333	0.000	0.00	0.00	2.75	5.4	34.259
10.417	0.000	0.00	0.00	2.74	5.1	34.224
10.500	0.000	0.00	0.00	2.74	4.8	34.191
10.583	0.000	0.00	0.00	2.74	4.5	34.160
10.667	0.000	0.00	0.00	2.74	4.2	34.131
10.750	0.000	0.00	0.00	2.73	4.0	34.103
10.833	0.000	0.00	0.00	2.73	3.8	34.077
10.917	0.000	0.00	0.00	2.73	3.5	34.053
11.000	0.000	0.00	0.00	2.73	3.3	34.030
11.083	0.000	0.00	0.00	2.73	3.1	34.008
11.167	0.000	0.00	0.00	2.73	3.0	33.988
11.250	0.000	0.00	0.00	2.72	2.8	33.968
11.333	0.000	0.00	0.00	2.72	2.6	33.950
11.417	0.000	0.00	0.00	2.72	2.5	33.933
11.500	0.000	0.00	0.00	2.72	2.3	33.917
11.583	0.000	0.00	0.00	2.72	2.2	33.902
11.667	0.000	0.00	0.00	2.72	2.1	33.888
11.750	0.000	0.00	0.00	2.72	2.0	33.874
11.833	0.000	0.00	0.00	2.72	1.8	33.862
11.917	0.000	0.00	0.00	2.71	1.7	33.850
12.000	0.000	0.00	0.00	2.71	1.6	33.838
12.083	0.000	0.00	0.00	2.71	1.5	33.828
12.167	0.000	0.00	0.00	2.71	1.4	33.818
12.250	0.000	0.00	0.00	2.71	1.4	33.809
12.333	0.000	0.00	0.00	2.71	1.3	33.800
12.417	0.000	0.00	0.00	2.71	1.2	33.791
12.500	0.000	0.00	0.00	2.71	1.1	33.784
12.583	0.000	0.00	0.00	2.71	1.1	33.776
12.667	0.000	0.00	0.00	2.71	1.0	33.769
12.750	0.000	0.00	0.00	2.71	1.0	33.763
12.833	0.000	0.00	0.00	2.71	0.9	33.756
12.917	0.000	0.00	0.00	2.71	0.8	33.751
13.000	0.000	0.00	0.00	2.71	0.8	33.745
13.083	0.000	0.00	0.00	2.71	0.7	33.740
13.167	0.000	0.00	0.00	2.71	0.7	33.735
13.250	0.000	0.00	0.00	2.71	0.7	33.731
13.333	0.000	0.00	0.00	2.71	0.6	33.726
13.417	0.000	0.00	0.00	2.70	0.6	33.722
13.500	0.000	0.00	0.00	2.70	0.6	33.718
13.583	0.000	0.00	0.00	2.70	0.5	33.715
13.667	0.000	0.00	0.00	2.70	0.5	33.711
13.750	0.000	0.00	0.00	2.70	0.5	33.708
13.833	0.000	0.00	0.00	2.70	0.4	33.705
13.917	0.000	0.00	0.00	2.70	0.4	33.702
14.000	0.000	0.00	0.00	2.70	0.4	33.700
14.083	0.000	0.00	0.00	2.70	0.4	33.697
14.167	0.000	0.00	0.00	2.70	0.3	33.695
14.250	0.000	0.00	0.00	2.70	0.3	33.692
14.333	0.000	0.00	0.00	2.70	0.3	33.690
14.417	0.000	0.00	0.00	2.70	0.3	33.688
14.500	0.000	0.00	0.00	2.70	0.3	33.687
14.583	0.000	0.00	0.00	2.70	0.3	33.685

14.667	0.000	0.00	0.00	2.70	0.2	33.683
14.750	0.000	0.00	0.00	2.70	0.2	33.682
14.833	0.000	0.00	0.00	2.70	0.2	33.680
14.917	0.000	0.00	0.00	2.70	0.2	33.679
15.000	0.000	0.00	0.00	2.70	0.2	33.677
15.083	0.000	0.00	0.00	2.70	0.2	33.676
15.167	0.000	0.00	0.00	2.70	0.2	33.675
15.250	0.000	0.00	0.00	2.70	0.2	33.674
15.333	0.000	0.00	0.00	2.70	0.1	33.673
15.417	0.000	0.00	0.00	2.70	0.1	33.672
15.500	0.000	0.00	0.00	2.70	0.1	33.671
15.583	0.000	0.00	0.00	2.70	0.1	33.670
15.667	0.000	0.00	0.00	2.70	0.1	33.669
15.750	0.000	0.00	0.00	2.70	0.1	33.669
15.833	0.000	0.00	0.00	2.70	0.1	33.668
15.917	0.000	0.00	0.00	2.70	0.1	33.667
16.000	0.000	0.00	0.00	2.70	0.1	33.667
16.083	0.000	0.00	0.00	2.70	0.1	33.666
16.167	0.000	0.00	0.00	2.70	0.1	33.665
16.250	0.000	0.00	0.00	2.70	0.1	33.665
16.333	0.000	0.00	0.00	2.70	0.1	33.664
16.417	0.000	0.00	0.00	2.70	0.1	33.664
16.500	0.000	0.00	0.00	2.70	0.1	
16.583	0.000		0.00	2.70	0.1	33.663
16.667		0.00				33.663
	0.000	0.00	0.00	2.70	0.1	33.663
16.750	0.000	0.00	0.00	2.70	0.1	33.662
16.833	0.000	0.00	0.00	2.70	0.1	33.662
16.917	0.000	0.00	0.00	2.70	0.0	33.662
17.000	0.000	0.00	0.00	2.70	0.0	33.661
17.083	0.000	0.00	0.00	2.70	0.0	33.661
17.167	0.000	0.00	0.00	2.70	0.0	33.661
17.250	0.000	0.00	0.00	2.70	0.0	33.660
17.333	0.000	0.00	0.00	2.70	0.0	33.660
17.417	0.000	0.00	0.00	2.70	0.0	33.660
17.500	0.000	0.00	0.00	2.70	0.0	33.660
17.583	0.000	0.00	0.00	2.70	0.0	33.659
17.667	0.000	0.00	0.00	2.70	0.0	33.659
17.750	0.000	0.00	0.00	2.70	0.0	33.659
17.833	0.000	0.00	0.00	2.70	0.0	33.659
17.917	0.000	0.00	0.00	2.70	0.0	33.659
18.000	0.000	0.00	0.00	2.70	0.0	33.658
18.083	0.000	0.00	0.00	2.70	0.0	33.658
18.167	0.000	0.00	0.00	2.70	0.0	33.658
18.250	0.000	0.00	0.00	2.70	0.0	33.658
18.333	0.000	0.00	0.00	2.70	0.0	33.657
18.417	0.000	0.00	0.00	2.70	0.0	33.657
18.500	0.000	0.00	0.00	2.70	0.0	33.657
18.583	0.000	0.00	0.00	2.70	0.0	33.657
18.667	0.000	0.00	0.00	2.70	0.0	33.657
18.750	0.000	0.00	0.00	2.70	0.0	33.656
18.833	0.000	0.00	0.00	2.70	0.0	33.656
18.917	0.000	0.00	0.00	2.70	0.0	33.656
19.000	0.000	0.00	0.00	2.70	0.0	33.656
19.083	0.000	0.00	0.00	2.70	0.0	33.655
19.167	0.000	0.00	0.00	2.70	0.0	33.655
19.250	0.000	0.00	0.00	2.70	0.0	33.655
19.333	0.000	0.00	0.00	2.70	0.0	33.655
19.417	0.000	0.00	0.00	2.70	0.0	33.654
19.500	0.000	0.00	0.00	2.70	0.0	33.654
19.583	0.000	0.00	0.00	2.70	0.0	33.654
19.667	0.000	0.00	0.00	2.70	0.0	33.654
19.750	0.000	0.00	0.00	2.70	0.0	33.654
19.833	0.000	0.00	0.00	2.70	0.0	33.653
19.917	0.000	0.00	0.00	2.70	0.0	33.653

20.000	0.000	0.00	0.00	2.70	0.0	33.653
20.083	0.000	0.00	0.00	2.70	0.0	33.653
20.167	0.000	0.00	0.00	2.70	0.0	33.652
20.250	0.000	0.00	0.00	2.70	0.0	33.652
20.333	0.000	0.00	0.00	2.70	0.0	33.652
20.417	0.000	0.00	0.00	2.70	0.0	33.652
20.500	0.000	0.00	0.00	2.70	0.0	33.651
20.583	0.000	0.00	0.00	2.70	0.0	33.651
20.667	0.000	0.00	0.00	2.70	0.0	33.651
20.750	0.000	0.00	0.00	2.70	0.0	33.651
20.833	0.000	0.00	0.00	2.70	0.0	33.651
20.917	0.000	0.00	0.00	2.70	0.0	33.650
21.000	0.000	0.00	0.00	2.70	0.0	33.650
21.083	0.000	0.00	0.00	2.70	0.0	33.650
21.167	0.000	0.00	0.00	2.70	0.0	33.650
21.250	0.000	0.00	0.00	2.70	0.0	33.649
21.333	0.000	0.00	0.00	2.70	0.0	33.649
21.417	0.000	0.00	0.00	2.70	0.0	33.649
21.500	0.000	0.00	0.00	2.70	0.0	33.649
21.583	0.000	0.00	0.00	2.70	0.0	33.648
21.667	0.000	0.00	0.00	2.70	0.0	33.648
21.750	0.000	0.00	0.00	2.70	0.0	33.648
21.833	0.000	0.00	0.00	2.70	0.0	33.648
21.917	0.000	0.00	0.00	2.70	0.0	33.648
22.000	0.000	0.00	0.00	2.70	0.0	33.647
22.083	0.000	0.00	0.00	2.70	0.0	33.647
22.167	0.000	0.00	0.00	2.70	0.0	33.647
22.250	0.000	0.00	0.00	2.70	0.0	33.647
22.333	0.000	0.00	0.00	2.70	0.0	33.646
22.417	0.000	0.00	0.00	2.70	0.0	33.646
22.500	0.000	0.00	0.00	2.70	0.0	33.646
22.583	0.000	0.00	0.00	2.70	0.0	33.646
22.667	0.000	0.00	0.00	2.70	0.0	33.646
22.750	0.000	0.00	0.00	2.70	0.0	33.645
22.833	0.000	0.00	0.00	2.70	0.0	33.645
22.917	0.000	0.00	0.00	2.70	0.0	33.645
23.000	0.000	0.00	0.00	2.70	0.0	33.645
23.083	0.000	0.00	0.00	2.70	0.0	33.644
23.167	0.000	0.00	0.00	2.70	0.0	33.644
23.250	0.000	0.00	0.00	2.70	0.0	33.644
23.333	0.000	0.00	0.00	2.70	0.0	33.644
23.417	0.000	0.00	0.00	2.70	0.0	33.643
23.500	0.000	0.00	0.00	2.70	0.0	33.643
23.583	0.000	0.00	0.00	2.70	0.0	33.643
23.667	0.000	0.00	0.00	2.70	0.0	33.643
23.750	0.000	0.00	0.00	2.70	0.0	33.643
23.833	0.000	0.00	0.00	2.70	0.0	33.642
23.917	0.000	0.00	0.00	2.70	0.0	33.642

PROCESS SUMMARY OF STORAGE:

INFLOW VOLUME = 68.980 AF

BASIN STORAGE = 31.501 AF (WITH 0.000 AF INITIALLY FILLED)

OUTFLOW VOLUME = 37.471 AF

LOSS VOLUME = 0.000 AF

FLOOD ROUTING ANALYSIS

ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

(c) Copyright 1989-2015 Advanced Engineering Software (aes)

(Synthetic Unit Hydrograph Version 22.0) Release Date: 07/01/2015 License ID 1673

Analysis prepared by:

FILE NAME: TR-BAS24.DAT TIME/DATE OF STUDY: 08:32 09/23/2021 ***********************************
FLOW PROCESS FROM NODE 1.00 TO NODE 10.00 IS CODE = 1
>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<
(UNIT-HYDROGRAPH ADDED TO STREAM #1) WATERSHED AREA = 220.300 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 0.204 HOURS CAUTION: LAG TIME IS LESS THAN 0.50 HOURS. THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. VALLEY S-GRAPH SELECTED UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.350 LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.525 MINIMUM SOIL-LOSS RATE (INCH/HOUR) = 0.175
USER-ENTERED RAINFALL = 4.61 INCHES RCFC&WCD 24-Hour Storm (15-Minute period) SELECTED *USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 122.549

UNIT HYDROGRAPH DETERMINATION

INTERVAL	"S" GRAPH	UNIT HYDROGRAPH	
NUMBER	MEAN VALUES	ORDINATES(CFS)	
1	25.807	229.184	
2	74.528	432.690	
3	87.625	116.310	
4	93.498	52.159	
5	96.831	29.598	
6	98.452	14.398	
7	99.291	7.448	
8	99.716	3.778	
9	99.929	1.889	

UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0092	0.0048	0.0044
2	0.0138	0.0073	0.0066
3	0.0138	0.0073	0.0066
4	0.0184	0.0097	0.0088
5	0.0138	0.0073	0.0066
6	0.0138	0.0073	0.0066
7	0.0138	0.0073	0.0066
8	0.0184	0.0097	0.0088
9	0.0184	0.0097	0.0088
10	0.0184	0.0097	0.0088
11	0.0231	0.0121	0.0109
12	0.0231	0.0121	0.0109
13	0.0231	0.0121	0.0109
14	0.0231	0.0121	0.0109
15	0.0231	0.0121	0.0109
		0.0145	0.0131
16 17	0.0277		
	0.0277	0.0145	0.0131
18	0.0323	0.0169	0.0153
19	0.0323	0.0169	0.0153
20	0.0369	0.0194	0.0175
21	0.0277	0.0145	0.0131
22	0.0323	0.0169	0.0153
23	0.0369	0.0194	0.0175
24	0.0369	0.0194	0.0175
25	0.0415	0.0218	0.0197
26	0.0415	0.0218	0.0197
27	0.0461	0.0242	0.0219
28	0.0461	0.0242	0.0219
29	0.0461	0.0242	0.0219
30	0.0507	0.0266	0.0241
31	0.0553	0.0290	0.0263
32	0.0599	0.0315	0.0285
33	0.0692	0.0363	0.0328
34	0.0692	0.0363	0.0328
35	0.0738	0.0387	0.0350
36	0.0784	0.0411	0.0372
37	0.0876	0.0460	0.0416
38	0.0922	0.0484	0.0438
39	0.0968	0.0508	0.0460
40	0.1014	0.0532	0.0482
41	0.0692	0.0363	0.0328
42	0.0692	0.0363	0.0328
43	0.0922	0.0484	0.0438
44	0.0922	0.0484	0.0438
45	0.0876	0.0460	0.0416
46	0.0876	0.0460	0.0416
47	0.0784	0.0411	0.0372
48	0.0830	0.0436	0.0394
49	0.1153	0.0605	0.0547
50	0.1199	0.0629	0.0569
51	0.1291	0.0678	0.0613
52	0.1337	0.0702	0.0635
53	0.1567	0.0765	0.0803
54	0.1567	0.0753	0.0814
55	0.1060	0.0557	0.0504
56	0.1060	0.0557	0.0504
57	0.1245	0.0653	0.0591
58	0.1199	0.0629	0.0569

59	0.1199	0.0629	0.0569
60	0.1153	0.0605	0.0547
61	0.1106	0.0581	0.0526
62	0.1060	0.0557	0.0504
63	0.0876	0.0460	0.0416
64	0.0876	0.0460	0.0416
65	0.0184	0.0097	0.0088
66	0.0184	0.0097	0.0088
67	0.0138	0.0073	0.0066
68	0.0138	0.0073	0.0066
69	0.0231	0.0121	0.0109
70	0.0231	0.0121	0.0109
71	0.0231	0.0121	0.0109
72	0.0184	0.0097	0.0088
73	0.0184	0.0097	0.0088
74	0.0184	0.0097	0.0088
75	0.0138	0.0073	0.0066
76	0.0092	0.0048	0.0044
77	0.0138	0.0073	0.0066
78	0.0184	0.0097	0.0088
79	0.0138	0.0073	0.0066
80	0.0092	0.0048	0.0044
81	0.0138	0.0073	0.0066
82	0.0138	0.0073	0.0066
83	0.0138	0.0073	0.0066
84	0.0092	0.0048	0.0044
85	0.0138	0.0073	0.0066
86	0.0092	0.0048	0.0044
87	0.0138	0.0073	0.0066
88	0.0092	0.0048	0.0044
89	0.0138	0.0073	0.0066
90	0.0092	0.0048	0.0044
91	0.0092	0.0048	0.0044
92	0.0092	0.0048	0.0044
93	0.0092	0.0048	0.0044
94	0.0092	0.0048	0.0044
95	0.0092	0.0048	0.0044
96	0.0092	0.0048	0.0044

TOTAL STORM RAINFALL(INCHES) = 4.61
TOTAL SOIL-LOSS(INCHES) = 2.41
TOTAL EFFECTIVE RAINFALL(INCHES) = 2.20

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 44.1975 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 40.4136

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

(No	te: Time ind	dicated is at	END (of Eacl	n Unit Inter	vals)	
TIME(HRS)	VOLUME(AF)	Q(CFS) 0.	:	L7.5	35.0	52.5	70.0
0.083	0.0069	1.00 Q					
0.167	0.0138	1.00 Q					
0.250	0.0207	1.00 Q					
0.333	0.0442	3.40 VQ					
0.417	0.0676	3.40 VQ					
0.500	0.0910	3.40 VQ					
0.583	0.1245	4.86 V ()	-			_
0.667	0.1579	4.86 V (-			_
0.750	0.1914	4.86 V (-			-
0.833	0.2316	5.84 V	Q	-			-
0.917	0.2718	5.84 V	Q	-			
1.000	0.3121	5.84 V	Q				
1.083	0.3571	6.53 V	Q		-		_
1.167	0.4020	6.53 V	Q	-			
1.250	0.4470	6.53 V	Q		-		
1.333	0.4881	5.97 V	Q	-			-
1.417	0.5292	5.97 V	Q	-			-
1.500	0.5703	5.97 V	Q	-			-
1.583	0.6109	5.89 V	Q	-			-
1.667	0.6514	5.89 V	Q	•	•	•	•
1.750	0.6920	5.89 V	Q	•	•	•	•
1.833	0.7359	6.38 V	Q	•	•	•	•
1.917	0.7798	6.38 V	Q	•	•	•	•
2.000	0.8237	6.38 V	Q	•	•	•	•
2.083	0.8741	7.31 V	Q	•	•	•	•
2.167	0.9244	7.31 V 7.31 V	Q	•	•	•	•
2.250	0.9747	7.31 V 7.31 V	Q	•	•	•	•
2.333	1.0267	7.55 .V	Q	•	•	•	•
2.417	1.0787	7.55 .V	Q	•	•	•	•
2.500	1.1308	7.55 .V	Q	•	•	•	•
2.583	1.1870	8.16 .V		•	•	•	•
2.667	1.2432	8.16 .V	Q O	•	•	•	•
2.750	1.2994	8.16 .V	Q Q	•	•	•	•
2.730	1.3626	9.17 .V	-	•	•	•	•
2.833	1.4257	9.17 .V	Q	•	•	•	•
3.000	1.4889	9.17 .V 9.17 .V	Q Q	•	•	•	•
3.083	1.5540	9.45 .V	Q	•	•	•	•
3.167	1.6191	9.45 .V	Q	•	•	•	•
3.250	1.6842	9.45 .V	Q	•	•	•	•
3.333	1.7502	9.58 .V	Q	•	•	•	•
3.417	1.8162	9.58 .V	-	•	•	•	•
3.500	1.8822	9.58 .V	Q	•	•	•	•
3.583	1.9487	9.66 .V	Q	•	•	•	•
3.667	2.0152	9.66 .V	Q	•	•	•	•
3.750	2.0817	9.66 . V		•	•	•	•
3.833	2.1519	10.19 . V		•	•	•	•
3.917	2.1319	10.19 . V		•	•	•	•
4.000	2.2923	10.19 . V	-	•	•	•	•
4.000	2.3692	10.19 . V	-	•	•	•	•
4.063	2.4460	11.16 . V	-	•	•	•	•
4.167	2.5229	11.16 . V		•	•	•	•
4.333	2.6050	11.10 . V		•	•	•	•
	2.5050	· ·	٧.	•	•	•	•

4.417	2.6871	11.92		V Q .					
4.500	2.7693	11.92		ν ų .		_	_	_	
4.583	2.8587	12.99		-		•	•	•	
				-		•	•	•	
4.667	2.9482	12.99	•	V Q .		•	•	•	
4.750	3.0376	12.99	•	VQ.		•	•	•	
4.833	3.1328	13.81		VQ.			•		
4.917	3.2279	13.81		VQ.			•		
5.000	3.3230	13.81		ν Q.					
5.083	3.4188	13.90		ν Q.					
						•	•	•	
5.167	3.5145	13.90	•	VQ.		•	•	•	
5.250	3.6102	13.90	•	VQ.		•	•	•	
5.333	3.6987	12.84		VQ.			•		
5.417	3.7872	12.84		VQ.			•		
5.500	3.8756	12.84		VQ.					
5.583	3.9716	13.94		ν Q.					
5.667			•	-		•	•	•	
	4.0676	13.94	•	VQ.		•	•	•	
5.750	4.1636	13.94	•	VQ.		•	•	•	
5.833	4.2669	15.00		VQ.		•	•		
5.917	4.3702	15.00		VQ.			•		
6.000	4.4735	15.00		VQ.					
6.083	4.5822	15.78		ν Q.					
						•	•	•	
6.167	4.6908	15.78	•	V Q.		•	•	•	
6.250	4.7995	15.78	•	V Q.		•	•	•	
6.333	4.9157	16.86		V Q.		•	•		
6.417	5.0318	16.86		V Q.			•		
6.500	5.1479	16.86		V Q.					
6.583	5.2698	17.69		v Q		_	_		
6.667	5.3917	17.69	•			•	•	•	
			•	-		•	•	•	
6.750	5.5135	17.69	•	V Q		•	•	•	
6.833	5.6429	18.79	•	V Q		•	•	•	
6.917	5.7723	18.79		V Q			•		
7.000	5.9017	18.79		V Q					
7.083	6.0335	19.13		v Q					
7.167	6.1652	19.13	•	V Q		•	•	•	
			•			•	•	•	
7.250	6.2970	19.13	•	V Q		•	•	•	
7.333	6.4332	19.79	•	V .Q		•	•	•	
7.417	6.5695	19.79		V .Q		•	•		
7.500	6.7057	19.79		V.Q			•		
7.583	6.8526	21.32		٧.	0				
7.667	6.9994	21.32		٧.					
7.750			•			•	•	•	
	7.1463	21.32	•		Q	•	•	•	
7.833	7.3051	23.07	•	ν.	Q	•	•	•	
7.917	7.4640	23.07	•	٧.	Q	•	•	•	
8.000	7.6228	23.07		٧.	Q		•		
8.083	7.7978	25.41		٧.	Q				
8.167	7.9728	25.41		ν.	Q	_	_	_	
8.250	8.1478	25.41		٧.	Q				
		27.75	•	V .		•	•	•	
8.333	8.3389		•		Q	•	•	•	
8.417	8.5299	27.75	•	V .	Q	•	•	•	
8.500	8.7210	27.75	•	٧.	Q	•	•	•	
8.583	8.9206	28.97		٧.	Q		•		
8.667	9.1201	28.97		٧.	Q				
8.750	9.3196	28.97		٧.	Q	_	_	_	
8.833	9.5315	30.76	•	٧.	Q	•	•	•	
			•			•	•	•	
8.917	9.7433	30.76	•	٧.	Q	•	•	•	
9.000	9.9552	30.76	•	٧.	Q	•	•	•	
9.083	10.1835	33.15		V	Q				
9.167	10.4119	33.15		V			•		
9.250	10.6402	33.15		V			•		
9.333	10.8882	36.01	•	V	£	Q	-		
			•				•	•	
9.417	11.1363	36.01	•	V		Q	•	•	
9.500	11.3843	36.01	•	V		Q	•	•	
9.583	11.6473	38.20	•	٠٧.		.Q	•	•	
9.667	11.9104	38.20		٠٧.		.Q	•		

9.750	12.1735	38.20			V	.Q				
9.833	12.4506	40.25			V	. Q				
9.917	12.7278	40.25			V	. Q				
10.000	13.0050	40.25			V	. Q				
10.083	13.2684	38.24			V	.Q				
10.167	13.5317	38.24			V	.Q				
10.250	13.7950	38.24			V	.õ				
10.333	14.0163	32.13			V	Q.				
10.417	14.2376	32.13			V	Q.				
10.500	14.4589	32.13			V	Q.				
10.583	14.6869	33.11			V	Q.				
10.667	14.9150	33.11			V	Q.				
10.750	15.1430	33.11			V	Q.				
10.833	15.3991	37.18			V	Q.				
10.917	15.6552	37.18			V	.Q				
11.000	15.9113	37.18			V	.Q				
11.083	16.1700	37.57			V					
11.167	16.4287	37.57	•	_	V		_		·	
11.250	16.6875	37.57	•		V					
11.333	16.9423	37.00	•	•	V		•		•	
11.417	17.1971	37.00	•	•		v .Q	•		•	
11.500	17.4520	37.00	•	•		v .Q	•		•	
11.583	17.6997	35.97	•	•		v Q	•		•	
11.667	17.9474	35.97	•	•		v Q	•		•	
11.750	18.1951	35.97	•	•		v Q	•		•	
11.833	18.4331	34.57	•	•		VQ.	•		•	
11.917	18.6712	34.57	•	•		VQ.	•		•	
12.000	18.9093	34.57	•	•		VQ.	•		•	
12.083	19.1744	38.51	•	•		v . Q	•		•	
12.167	19.4396	38.51	•	•		v. Q	•		•	
12.250	19.7048	38.51	•	•		V. Q	•		•	
12.333	20.0193	45.67	•			v. Q V.			•	
12.417	20.3338	45.67	•			v. V	Q.		•	
12.500			•	•		V	Q . Q .		•	
12.583	20.6483 20.9885	45.67 49.39	•	•		V	-		•	
12.667	21.3286	49.39	•	•		V	Q.		•	
			•	•		V	Q.		•	
12.750	21.6688	49.39	•	•		.V	Q.		•	
12.833	22.0327	52.84 52.84	•	•			Q		•	
12.917	22.3966		•	•		. V	Q		•	
13.000	22.7605	52.84	•			. V	Q	^	•	
13.083	23.1648	58.70	•			. V	•	Q	•	
13.167	23.5691	58.70	•	•		. V	•	Q	•	
13.250	23.9733	58.70	•	•		. v		Q		
13.333	24.4346	66.98	•	•			٧.		Q.	
13.417	24.8959	66.98	•			•	٧.		Q.	
13.500	25.3572	66.98	•			•	V .	_	Q.	
13.583	25.7890	62.70	•	•		•	V .	Q	•	
13.667	26.2209	62.70	•			•	٧.	Q	•	
13.750	26.6527	62.70	•	•		•	V .	Q	•	
13.833	27.0004	50.48	•	•		•	VQ.		•	
13.917	27.3480	50.48	•			•	VQ .		•	
14.000	27.6957	50.48	•	•		•	VQ .		•	
14.083	28.0368	49.54	•			•	VQ .		•	
14.167	28.3780	49.54	•	•		•	Q.		•	
14.250	28.7192	49.54	•	•		•	Q.		•	
14.333	29.0740	51.53	•	•		•	VQ.		•	
14.417	29.4289	51.53	•	•		•	Q.		•	
14.500	29.7838	51.53	•	•		•	Q.		•	
14.583	30.1339	50.84	•	•		•	Q.		•	
14.667	30.4840	50.84	•	•		•	QV		•	
14.750	30.8341	50.84	•	•		•	QV		•	
14.833	31.1797	50.17	•	•		•	Q V		•	
14.917	31.5252	50.17	•	•		•	Q V		•	
15.000	31.8707	50.17	•	•		•	Q V		•	

15.083	32.2059	48.67			•	Q	.V	
15.167	32.5411	48.67	_		_	Q	. V	
15.250	32.8764	48.67				Q	. V	
			•	•	•	-	. v	•
15.333	33.1995	46.93	•	•	•	Q		•
15.417	33.5227	46.93	•	•	•	Q	. V	•
15.500	33.8459	46.93		•	•	Q	. V	
15.583	34.1460	43.58			. (Ź	. V	
15.667	34.4461	43.58				2	. V	
15.750	34.7462	43.58				Ž	. V	
15.833	35.0172	39.35	•	•	•	e.	. V	•
			•	•				•
15.917	35.2883	39.35	•	•	. Q		. V	•
16.000	35.5593	39.35	•	•	. Q		. V	•
16.083	35.7700	30.60	•		Q.		. V	
16.167	35.9808	30.60			Q.		. V	
16.250	36.1915	30.60			Q.		. V	
16.333	36.3005	15.82	_	Q.			. v	
16.417	36.4095	15.82	-		·		. V	•
			•	Q.	•			•
16.500	36.5184	15.82		Q.	•		. V	•
16.583	36.5954	11.18	. Q	•	•		. V	•
16.667	36.6725	11.18	. Q	•	•		. V	
16.750	36.7495	11.18	. Q		•		. V	
16.833	36.8071	8.37	. Q		•		. V	
16.917	36.8647	8.37	. Q	_	_		. V	
17.000	36.9224	8.37	. Q				. V	
				•	•			•
17.083	36.9779	8.06	. Q	•	•		. V	•
17.167	37.0334	8.06	. Q	•	•		. V	•
17.250	37.0890	8.06	. Q	•	•		. V	•
17.333	37.1533	9.33	. Q		•		. V	
17.417	37.2175	9.33	. Q		•		. V	
17.500	37.2818	9.33	. Q		_		. v	
17.583	37.3474	9.52	. Q	•	-		. V	•
				•	•			•
17.667	37.4129	9.52	. Q	•	•		. V	•
17.750	37.4784	9.52	. Q	•	•		. V	•
17.833	37.5410	9.08	. Q	•	•		. V	
17.917	37.6035	9.08	. Q		•		. V	
18.000	37.6661	9.08	. Q		•		. V	
18.083	37.7225	8.19	. Q	_	_		. v	
18.167	37.7788	8.19	. Q				. V	
18.250	37.8352	8.19		•	•		. v	•
			. Q	•	•			•
18.333	37.8901	7.96	. Q	•	•		. V	•
18.417	37.9449	7.96	. Q	•	•		. V	•
18.500	37.9998	7.96	. Q	•	•		. V	
18.583	38.0506	7.38	. Q		•		. V	
18.667	38.1014	7.38	. Q		•		. V	
18.750	38.1522	7.38	. Q		•		. V	
18.833	38.1927	5.88	. Q		_		. V	
18.917	38.2331	5.88	. Q	-	·		. v	
19.000	38.2736	5.88	_	•	•		. v	•
				•	•			•
19.083	38.3091	5.15	. Q	•	•		. V	•
19.167	38.3446	5.15	. Q	•	•		. V	•
19.250	38.3801	5.15	. Q	•	•		. V	
19.333	38.4230	6.22	. Q				. V	
19.417	38.4658	6.22	. Q		•		. V	
19.500	38.5087	6.22	. Q	_	_			
19.583		6.73		•	·			
	38.5550		. Q	•	•			
19.667	38.6014	6.73	. Q	•	•			•
19.750	38.6478	6.73	. Q	•	•			•
19.833	38.6860	5.55	. Q	•	•			
19.917	38.7243	5.55	. Q				. V	•
20.000	38.7625	5.55	. Q				. v	
20.083	38.7969	4.98	. Q		-			
20.167	38.8312	4.98	. Q	-				
20.250		4.98		•	•			•
	38.8655		. Q	•	•			
20.333	38.9043	5.63	. Q	•	•		. v	•

20.417	38.9431	5.63	. Q		_	_	V .
20.500	38.9819	5.63	_	•	•		V .
				•	•		
20.583	39.0214	5.74	. Q	•	•	•	V .
20.667	39.0610	5.74	. Q				V .
20.750	39.1006	5.74	. Q				V .
20.833	39.1369	5.28	_				V .
				•	•		
20.917	39.1733	5.28	. Q	•	•	•	V .
21.000	39.2096	5.28	. Q				V .
21.083	39.2431	4.86	. Q				V .
21.167			-	•	-		v .
	39.2766	4.86	. Q	•	•		
21.250	39.3101	4.86	. Q	•	•	•	V .
21.333	39.3450	5.07	. Q				V .
21.417	39.3799	5.07	. Q				V .
21.500	39.4148	5.07	-	•	•	•	٧.
			. Q	•	•	•	
21.583	39.4476	4.77	. Q	•	•	•	٧.
21.667	39.4804	4.77	. Q				٧.
21.750	39.5132	4.77	. Q		_	_	٧.
21.833	39.5477	5.01	-	•	•	•	٧.
			. Q	•	•	•	
21.917	39.5822	5.01	. Q	•	•	•	٧.
22.000	39.6167	5.01	. Q				٧.
22.083	39.6493	4.74	. Q		_		٧.
22.167	39.6820	4.74	-	•	•	•	٧.
			. Q	•	•	•	
22.250	39.7146	4.74	. Q	•	•	•	٧.
22.333	39.7490	5.00	. Q		•		٧.
22.417	39.7834	5.00	. Q	_	_	_	٧.
22.500	39.8179	5.00	. Q	•	•	•	٧.
				•	•	•	
22.583	39.8470	4.23	. Q	•	•	•	٧.
22.667	39.8761	4.23	. Q				٧.
22.750	39.9053	4.23	. Q				٧.
22.833	39.9331	4.04	. Q				٧.
				•	•	•	
22.917	39.9610	4.04	. Q	•	•	•	٧.
23.000	39.9888	4.04	. Q		•		٧.
23.083	40.0162	3.97	. Q				٧.
23.166	40.0436	3.97	. Q				٧.
				•	•	•	
23.250	40.0710	3.97	. Q	•	•	•	٧.
23.333	40.0980	3.93	. Q		•		٧.
23.416	40.1251	3.93	. Q				٧.
23.500	40.1522	3.93	. Q				٧.
				•	•	•	
23.583	40.1791	3.91	. Q	•	•	•	٧.
23.666	40.2060	3.91	. Q	•	•		٧.
23.750	40.2329	3.91	. Q				٧.
23.833	40.2598	3.90	. Q				٧.
				•	•	•	
23.916	40.2866	3.90	. Q	•	•	•	٧.
24.000	40.3135	3.90	. Q	•	•		٧.
24.083	40.3334	2.89	.Q				٧.
24.166	40.3533	2.89	.Q	_	_	_	٧.
24.250	40.3732	2.89		•	•	•	٧.
			.Q	•	•	•	
24.333	40.3800	0.99	Q	•	•	•	٧.
24.416	40.3869	0.99	Q				٧.
24.500	40.3937	0.99	Q				٧.
24.583	40.3970	0.48	Q				٧.
				•	•	•	
24.666	40.4003	0.48	Q	•	•	•	٧.
24.750	40.4036	0.48	Q		•		٧.
24.833	40.4054	0.25	Q				٧.
24.916	40.4071	0.25	Q				٧.
				•	•	•	
25.000	40.4089	0.25	Q	•	•	•	٧.
25.083	40.4097	0.12	Q		•		٧.
25.166	40.4106	0.12	Q		•		٧.
25.250	40.4114	0.12	Q				٧.
				•	•	•	
25.333	40.4118	0.06	Q	•	•	•	٧.
25.416	40.4123	0.06	Q		•		٧.
25.500	40.4127	0.06	Q		•		٧.
25.583	40.4129	0.03	Q				٧.
				-	•	•	
25.666	40.4131	0.03	Q	•	•	•	٧.

25.750	40.4132	0.03	Q			٧.	
25.833	40.4133	0.01	Q			٧.	
25.916	40.4134	0.01	Q	•	•	٧.	
26.000	40.4135	0.01	Q	•	•	٧.	
26.083	40.4135	0.00	Q	•	•	٧.	
26.166	40.4135	0.00	Q	•	•	٧.	
26.250	40.4135	0.00	Q	•	•	٧.	

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE:

(Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
=======================================	=======
0%	1575.0
10%	1020.0
20%	690.0
30%	525.0
40%	480.0
50%	375.0
60%	225.0
70%	180.0
80%	45.0
90%	30.0

FLOW PROCESS FROM NODE 2.00 TO NODE 10.00 IS CODE = 1

>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<

(UNIT-HYDROGRAPH ADDED TO STREAM #2)

WATERSHED AREA = 295.700 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE

*USER ENTERED "LAG" TIME = 0.322 HOURS

CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.358

LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.545

MINIMUM SOIL-LOSS RATE(INCH/HOUR) = 0.179

USER-ENTERED RAINFALL = 4.61 INCHES

RCFC&WCD 24-Hour Storm (15-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 1.0000

UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG-TIME = 77.640

UNIT HYDROGRAPH DETERMINATION

INTERVAL	"S" GRAPH	UNIT HYDROGRAPH	
NUMBER	MEAN VALUES	ORDINATES(CFS)	
1	12.394	147.738	
2	56.184	522.001	

3	76.848	246.318
4	85.296	100.709
5	90.213	58.608
6	93.486	39.021
7	95.821	27.826
8	97.435	19.239
9	98.351	10.926
10	98.908	6.643
11	99.414	6.023
12	99.765	4.193
13	99.941	2.097
14	100.000	0.699

UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0092	0.0050	0.0042
2	0.0138	0.0075	0.0063
3	0.0138	0.0075	0.0063
4	0.0184	0.0100	0.0084
5	0.0138	0.0075	0.0063
6	0.0138	0.0075	0.0063
7	0.0138	0.0075	0.0063
8	0.0184	0.0100	0.0084
9	0.0184	0.0100	0.0084
10	0.0184	0.0100	0.0084
11	0.0231	0.0126	0.0105
12	0.0231	0.0126	0.0105
13	0.0231	0.0126	0.0105
14	0.0231	0.0126	0.0105
15	0.0231	0.0126	0.0105
16	0.0277	0.0151	0.0126
17	0.0277	0.0151	0.0126
18	0.0323	0.0176	0.0120
		0.0176	0.0147
19	0.0323		
20	0.0369	0.0201	0.0168
21	0.0277	0.0151	0.0126
22	0.0323	0.0176	0.0147
23	0.0369	0.0201	0.0168
24	0.0369	0.0201	0.0168
25	0.0415	0.0226	0.0189
26	0.0415	0.0226	0.0189
27	0.0461	0.0251	0.0210
28	0.0461	0.0251	0.0210
29	0.0461	0.0251	0.0210
30	0.0507	0.0276	0.0231
31	0.0553	0.0301	0.0252
32	0.0599	0.0327	0.0273
33	0.0692	0.0377	0.0315
34	0.0692	0.0377	0.0315
35	0.0738	0.0402	0.0336
36	0.0784	0.0427	0.0357
37	0.0876	0.0477	0.0399
38	0.0922	0.0502	0.0420
39	0.0968	0.0528	0.0440
40	0.1014	0.0553	0.0461
41	0.0692	0.0377	0.0315
42	0.0692	0.0377	0.0315
43	0.0922	0.0502	0.0420
44	0.0922	0.0502	0.0420
45	0.0876	0.0477	0.0399
46	0.0876	0.0477	0.0399
47	0.0784	0.0427	0.0357
48	0.0830	0.0452	0.0378
49	0.1153	0.0628	0.0524
50	0.1199	0.0653	0.0545
51	0.1291	0.0703	0.0587
52	0.1337	0.0729	0.0608
53	0.1567	0.0782	0.0785
54	0.1567	0.0771	0.0797
55	0.1060	0.0578	0.0482
56 57	0.1060	0.0578	0.0482
57	0.1245	0.0678	0.0566
58	0.1199	0.0653	0.0545

59	0.1199	0.0653	0.0545
60	0.1153	0.0628	0.0524
61	0.1106	0.0603	0.0503
62	0.1060	0.0578	0.0482
63	0.0876	0.0477	0.0399
64	0.0876	0.0477	0.0399
65	0.0184	0.0100	0.0084
66	0.0184	0.0100	0.0084
67	0.0138	0.0075	0.0063
68	0.0138	0.0075	0.0063
69	0.0231	0.0126	0.0105
70	0.0231	0.0126	0.0105
71	0.0231	0.0126	0.0105
72	0.0184	0.0100	0.0084
73	0.0184	0.0100	0.0084
74	0.0184	0.0100	0.0084
75	0.0138	0.0075	0.0063
76	0.0092	0.0050	0.0042
77	0.0138	0.0075	0.0063
78	0.0184	0.0100	0.0084
79	0.0138	0.0075	0.0063
80	0.0092	0.0050	0.0042
81	0.0138	0.0075	0.0063
82	0.0138	0.0075	0.0063
83	0.0138	0.0075	0.0063
84	0.0092	0.0050	0.0042
85	0.0138	0.0075	0.0063
86	0.0092	0.0050	0.0042
87	0.0138	0.0075	0.0063
88	0.0092	0.0050	0.0042
89	0.0138	0.0075	0.0063
90	0.0092	0.0050	0.0042
91	0.0092	0.0050	0.0042
92	0.0092	0.0050	0.0042
93	0.0092	0.0050	0.0042
94	0.0092	0.0050	0.0042
95	0.0092	0.0050	0.0042
96	0.0092	0.0050	0.0042

TOTAL STORM RAINFALL(INCHES) = 4.61
TOTAL SOIL-LOSS(INCHES) = 2.50
TOTAL EFFECTIVE RAINFALL(INCHES) = 2.11

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 61.5276 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 52.0437

24-HOUR STORM $\begin{smallmatrix} R & U & N & O & F & F \end{smallmatrix} \qquad H & Y & D & R & O & G & R & A & P & H \\ \end{smallmatrix}$

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS) (Note: Time indicated is at END of Each Unit Intervals)

(No	ote: Time in	dicated is at E	ND of Eacl	h Unit Inte	rvals)	
TIME(HRS)	VOLUME(AF)	Q(CFS) 0.	22.5	45.0	67.5	90.0
0.083	0.0043	0.62 Q				
0.167	0.0085	0.62 Q		•		
0.250	0.0128	0.62 Q	•			
0.333	0.0343	3.12 VQ	•			
0.417	0.0558	3.12 VQ	•			
0.500	0.0773	3.12 VQ	•			
0.583	0.1134	5.25 V Q		•		
0.667	0.1495	5.25 V Q		•		
0.750	0.1857	5.25 V Q		•		
0.833	0.2304	6.50 V Q		•		
0.917	0.2752	6.50 V Q			•	
1.000	0.3199	6.50 V Q			•	
1.083	0.3732	7.74 V Q	•		•	
1.167	0.4265	7.74 V Q	•		•	
1.250	0.4798	7.74 V Q	•		•	
1.333	0.5311	7.45 V Q	•		•	
1.417	0.5824	7.45 V Q	•		•	
1.500	0.6337	7.45 V Q	•		•	
1.583	0.6842	7.34 V Q	•		•	
1.667	0.7348	7.34 V Q	•		•	
1.750	0.7853	7.34 V Q	•		•	
1.833	0.8384	7.70 V Q	•		•	
1.917	0.8914	7.70 V Q	•		•	
2.000	0.9445	7.70 V Q	•		•	
2.083	1.0053	8.84 V Q			•	•
2.167	1.0662	8.84 V Q	•		•	
2.250	1.1271	8.84 V Q			•	•
2.333	1.1918	9.39 V Q			•	•
2.417	1.2564	9.39 V Q			•	•
2.500	1.3210	9.39 V Q			•	•
2.583	1.3894	9.93 .V Q			•	•
2.667	1.4578	9.93 .V Q			•	
2.750	1.5261	9.93 .V Q		•	•	
2.833	1.6030	11.16 .V Q		•	•	
2.917	1.6798	11.16 .V Q		•	•	
3.000	1.7567	11.16 .V Q			•	
3.083	1.8377		Q .		•	
3.167	1.9187		Q .		•	
3.250	1.9998		Q .		•	
3.333	2.0827		Q .		•	
3.417	2.1656	12.04 .V	Q .		•	
3.500	2.2485		Q .		•	
3.583	2.3326		Q .		•	
3.667	2.4166		Q .		•	
3.750	2.5006		Q.	•	•	•
3.833	2.5875		Q.	•	•	•
3.917	2.6744		Q.	•	•	•
4.000	2.7612		Q .		•	•
4.083	2.8561	13.78 . V	Q.		•	
4.167	2.9510	13.78 . V	Q.		•	
4.250	3.0459	13.78 . V	Q.		•	
4.333	3.1468	14.65 . V	Q.		•	
			-			

4.417	3.2477	14.65	V Q		
4.500	3.3486	14.65	ν Q.		
				•	•
4.583	3.4588		V Q	•	•
4.667	3.5689	15. 99 .	V Q		•
4.750	3.6791	15.99	V Q		•
4.833	3.7959	16.96	v Q		
			•	•	•
4.917	3.9127	16.96	V Q	•	•
5.000	4.0295	16.96	V Q		•
5.083	4.1517	17.74	V Q		
5.167	4.2739	17.74	ν Q		
				•	•
5.250	4.3961	17.74	V Q	•	•
5.333	4.5102	16. 57 .	V Q		•
5.417	4.6243	16.57	V Q		
5.500	4.7384	16.57	ν Q		
			-	•	•
5.583	4.8574	17.28	-	•	•
5.667	4.9764	17.28	V Q		•
5.750	5.0954	17.28	V Q .		
5.833	5.2240	18.67			
				•	•
5.917	5.3526	18.67	•	•	•
6.000	5.4812	18.67	V Q		•
6.083	5.6162	19.60	V Q		•
6.167	5.7512	19.60			_
6.250	5.8862	19.60	V Q	•	-
				•	•
6.333	6.0305	20.96	V Q		•
6.417	6.1749	20.96	V Q		•
6.500	6.3193	20.96	V Q		
6.583	6.4704	21.94			
				•	•
6.667	6.6214	21.94	•	• •	•
6.750	6.7725	21.94	V Q		•
6.833	6.9333	23.34	V Q .		
6.917	7.0941	23.34	•		
			•	•	•
7.000	7.2548	23.34	V Q .	• •	•
7.083	7.4206	24.06	V Q.		•
7.167	7.5863	24.06	V Q .		
7.250	7.7520	24.06	v Q.		
				•	•
7.333	7.9222	24.72	V Q .	•	•
7.417	8.0924	24.72	V Q .		•
7.500	8.2626	24.72	V Q .		
7.583	8.4439	26.32	v .Q .		
			<u> </u>	•	•
7.667	8.6252	26.32	V .Q .	•	•
7.750	8.8065	26.32	V .Q .		•
7.833	9.0020	28.38	V . Q .		•
7.917	9.1974	28.38	V . Q .	_	
				•	•
8.000	9.3929	28.38	V . Q .	•	•
8.083	9.6058	30.92	V . Q .		•
8.167	9.8188	30.92	V . Q .		
8.250	10.0317	30.92	V . Q .		
8.333	10.2661	34.02	V . Q .		
			_	•	•
8.417	10.5004	34.02	V . Q .	•	•
8.500	10.7347	34.02	V. Q.		•
8.583	10.9814	35.83	V. Q.		•
8.667	11.2282	35.83	v. Q.		_
8.750	11.4749	35.83	<u> </u>	•	•
				•	•
8.833	11.7362	37.94	V. Q .		•
8.917	11.9975	37.94	V. Q.		•
9.000	12.2588	37.94	V. Q.		•
9.083	12.5385		_	•	-
		40.61	V. Q.		•
9.167	12.8182	40.61	V. Q.		•
9.250	13.0979	40.61	V Q.		•
9.333	13.4019	44.14	v Q.		
9.417	13.7059	44.14			-
フ・4 エ/		44.14	V Q.		•
			., -		
9.500	14.0099	44.14	V Q.		•
			V Q.		
9.500	14.0099	44.14	•		•

9.750	14.9832	47.11		٠٧.	Q			
9.833	15.3261	49.79		٠٧.	. Q			
9.917	15.6690	49.79		. V	. Q			
10.000	16.0119	49.79		. V	. Q			
10.083	16.3556	49.91	•	. V	. Q	•	•	
10.167	16.6993	49.91	•	. v	. Q	•	•	
			•			•	•	
10.250	17.0431	49.91	•	. V	. Q	•	•	
10.333	17.3420	43.41	•	. V	Q.	•	•	
10.417	17.6410	43.41	•	. V	Q.	•	•	
10.500	17.9400	43.41	•	. V	Q.	•	•	
10.583	18.2291	41.98	•	. V	Q.	•	•	
10.667	18.5183	41.98		. V	Q.		•	
10.750	18.8074	41.98		. V	Q.			
10.833	19.1268	46.38		. V	Q			
10.917	19.4462	46.38		. V	Q			
11.000	19.7657	46.38		. v				
11.083	20.0966	48.06		. V				
11.167	20.4276	48.06	•	. v		•	•	
11.250	20.7586	48.06	•	. v	•	•	•	
			•		-	•	•	
11.333	21.0865	47.62	•	•	V .Q	•	•	
11.417	21.4145	47.62	•	•	V .Q	•	•	
11.500	21.7425	47.62	•	•	V .Q	•	•	
11.583	22.0648	46.80	•	•	V Q	•	•	
11.667	22.3871	46.80	•	•	V Q	•	•	
11.750	22.7095	46.80			V Q		•	
11.833	23.0188	44.91			V Q.		•	
11.917	23.3281	44.91		•	V Q.			
12.000	23.6374	44.91			VQ.			
12.083	23.9625	47.20			v Q			
12.167	24.2876	47.20			νõ			
12.250	24.6126	47.20			νQ			
12.333	24.9936	55.32	•	•	v. Q	•	•	
12.417	25.3746	55.32	•	•	•	•	•	
			•	•	•	•	•	
12.500	25.7555	55.32	•	•	V. Q		•	
12.583	26.1729	60.60	•	•	V (•	
12.667	26.5902	60.60	•	•	V (•	
12.750	27.0075	60.60	•	•	V (•	
12.833	27.4554	65.02	•	•	٠٧.	Q.	•	
12.917	27.9032	65.02	•	•	٠٧.	Q.	•	
13.000	28.3510	65.02			.V	Q.	•	
13.083	28.8387	70.81			. V	.Q		
13.167	29.3264	70.81		•	. V	.Q		
13.250	29.8141	70.81		•	. V	.Q		
13.333	30.3778	81.85			. V		Q.	
13.417	30.9415	81.85		•	. V		Q.	
13.500	31.5051	81.85			. V		Q.	
13.583	32.0776	83.12		•	. V		Q.	
13.667	32.6501	83.12	•	•	. v	•	Q.	
13.750	33.2226	83.12	•	•	. v	•	Q.	
			•	•	. v		ν.	
13.833	33.7006	69.40	•	•		Q ' o	•	
13.917	34.1785	69.40	•	•	. \	•	•	
14.000	34.6565	69.40	•	•	. \	•	•	
14.083	35.1003	64.44	•	•	. \	/ Q .	•	
14.167	35.5441	64.44	•	•	•	VQ .	•	
14.250	35.9878	64.44	•	•	•	VQ .	•	
14.333	36.4448	66.35		•	•	VQ.	•	
14.417	36.9018	66.35		•	•	VQ.	•	
14.500	37.3587	66.35				VQ.		
14.583	37.8147	66.21			•	Q.	•	
14.667	38.2707	66.21				ą.	•	
14.750	38.7266	66.21		•		Q.		
14.833	39.1777	65.50			-	QV	<u>.</u>	
14.917	39.6288	65.50		•	•	Q۷	•	
15.000	40.0799	65.50	•	•	•	Q۷	•	
17.000	-0.0/33	05.50	•	•	•	δ,	•	

15.083	40.5192	63.79						0	٠٧.		
15.167	40.9586	63.79							٠٧.		
15.250	41.3979	63.79					•		٠٧.		
15.333	41.8225	61.65	•		•		•	-	. V		•
			•		•		•	Q			•
15.417	42.2470	61.65	•		•		•	Q	. V		•
15.500	42.6716	61.65	•		•		•	Q	. V		•
15.583	43.0747	58.53						Q	. V		•
15.667	43.4778	58.53						Q	. V		
15.750	43.8808	58.53						Q	. V		
15.833	44.2478	53.28					. ()	. V		
15.917	44.6147	53.28					. (. V		
16.000	44.9816	53.28	•				. (. V		
16.083	45.2988	46.05	•		•		Q `	٤	. v		•
16.167			•		•				. v		•
	45.6160	46.05	•		•		Q				•
16.250	45.9331	46.05	•		•	_	Q		. V		•
16.333	46.1290	28.44	•		•	Q	•		. V		•
16.417	46.3248	28.44	•		•	Q	•		. V		•
16.500	46.5207	28.44	•		•	Q	•		. V		
16.583	46.6562	19.68			Q.				. V		
16.667	46.7917	19.68			Q.				. V		
16.750	46.9272	19.68			Q.				. v		
16.833	47.0302	14.96		Q	-				. v		
16.917	47.1333	14.96		Q					. v		
17.000	47.2364	14.96		Q					. V		
17.083	47.3254	12.92			•		•		. v		•
			•	Q	•		•		. v		•
17.167	47.4143	12.92	•	Q	•		•				•
17.250	47.5033	12.92	•	Q	•		•		. V		•
17.333	47.5960	13.46	•	Q	•		•		. V		•
17.417	47.6888	13.46	•	Q	•		•		. V		
17.500	47.7815	13.46		Q					. V		
17.583	47.8736	13.37		Q					. V		
17.667	47.9656	13.37		Q					. v		
17.750	48.0577	13.37		Q					. v		
17.833	48.1452	12.71		Q						V	
17.917	48.2328	12.71		Q						V	
18.000	48.3204	12.71		Q	•		•			V	•
18.083	48.3988	11.40			•		•			V	•
			•	Q	•		•				•
18.167	48.4773	11.40	•	Q	•		•			V	•
18.250	48.5558	11.40	•	Q	•		•			V	•
18.333	48.6299	10.75	•	Q	•		•			V	•
18.417	48.7039	10.75	•	Q	•		•			V	
18.500	48.7780	10.75	•	Q	•		•			V	
18.583	48.8477	10.12		Q						V	
18.667	48.9174	10.12		Q						V	
18.750	48.9870	10.12		Q						V	
18.833	49.0457	8.52		Q						V	
18.917	49.1044	8.52		Q						V	
19.000	49.1630	8.52		Q						V	
19.083	49.2119	7.10	•	Q	•		•			V	•
19.167	49.2609		•		•		•			V	•
		7.10	•	Q	•		•				•
19.250	49.3098	7.10	•	Q	•		•			V	•
19.333	49.3629	7.72	•	Q	•		•			V	•
19.417	49.4161	7.72	•	Q	•		•		•	V	•
19.500	49.4692	7.72	•	Q	•		•			V	
19.583	49.5289	8.67		Q						V	
19.667	49.5886	8.67		Q						٧	
19.750	49.6483	8.67		Q						٧	
19.833	49.7018	7.78		Q						٧	
19.917	49.7554	7.78		Q	_					٧	
20.000	49.8090	7.78		Q	•		-		_	٧	
20.083	49.8549	6.66			•		•		•	V	
			•	Q	•		•		•		
20.167	49.9008	6.66	•		•		•		•	V	
20.250	49.9467	6.66	•	•	•		•		•	٧	
20.333	49.9957	7.13	•	Q	•		•		•	V	•

20.417	50.0448	7.13	. Q	•			٧.
20.500	50.0939	7.13	. Q		•		ν.
20.583	50.1447	7.38	. Q	_	_		٧.
20.667	50.1956	7.38	. Q				٧.
20.750	50.2464	7.38		•	•	•	٧.
			. Q	•	•	•	
20.833	50.2955	7.13	. Q	•	•	•	٧.
20.917	50.3446	7.13	. Q	•	•	•	٧.
21.000	50.3937	7.13	. Q	•			٧.
21.083	50.4376	6.37	. Q				٧.
21.167	50.4814	6.37	. Q				٧.
21.250	50.5253	6.37	. Q	·	•	•	٧.
			_	•	•	•	v . V .
21.333	50.5709	6.63	. Q	•	•	•	
21.417	50.6166	6.63	. Q	•	•	•	٧.
21.500	50.6623	6.63	. Q	•	•	•	٧.
21.583	50.7047	6.16	. Q	•			٧.
21.667	50.7472	6.16	. Q				٧.
21.750	50.7896	6.16	. Q	_	_	_	٧.
21.833	50.8346	6.54	. Q	·	•	•	٧.
			-	•	•	•	
21.917	50.8796	6.54	. Q	•	•	•	٧.
22.000	50.9246	6.54	. Q	•	•	•	٧.
22.083	50.9667	6.11	. Q	•	•	•	٧.
22.167	51.0088	6.11	. Q				٧.
22.250	51.0508	6.11	. Q				٧.
22.333	51.0955	6.49	. Q	_	_	_	٧.
22.417	51.1401	6.49	. Q	·	•	•	٧.
			_	•	•	•	
22.500	51.1848	6.49	. Q	•	•	•	٧.
22.583	51.2244	5.76	. Q	•	•	•	٧.
22.667	51.2641	5.76	. Q	•	•	•	٧.
22.750	51.3037	5.76	. Q	•			٧.
22.833	51.3407	5.37	. Q				٧.
22.917	51.3777	5.37	. Q				٧.
23.000	51.4147	5.37	. Q	•	•	•	٧.
			_	•	•	•	
23.083	51.4507	5.23	. Q	•	•	•	٧.
23.166	51.4867	5.23	. Q	•	•	•	٧.
23.250	51.5228	5.23	. Q		•		٧.
23.333	51.5583	5.15	. Q		•		٧.
23.416	51.5937	5.15	. Q				٧.
23.500	51.6292	5.15	. Q				٧.
23.583	51.6643	5.10	. Q	·	•	•	٧.
			_	•	•	•	
23.666	51.6995	5.10	. Q	•	•	•	٧.
23.750	51.7346	5.10	. Q	•	•	•	٧.
23.833	51.7695	5.07	. Q	•	•	•	٧.
23.916	51.8044	5.07	. Q		•		٧.
24.000	51.8392	5.07	. Q		•		٧.
24.083	51.8697	4.42	.Q	_	_		٧.
24.166	51.9001	4.42	.Q				٧.
24.250	51.9306	4.42	. Q . Q	•	•	•	٧.
				•	•	•	
24.333	51.9458	2.22	Q	•	•	•	٧.
24.416	51.9611	2.22	Q	•	•	•	٧.
24.500	51.9764	2.22	Q	•	•	•	٧.
24.583	51.9844	1.17	Q	•			٧.
24.666	51.9925	1.17	Q				٧.
24.750	52.0006	1.17	Q	_	_		٧.
24.833	52.0058	0.75	Q	-		•	٧.
				•	•	•	
24.916	52.0109	0.75	Q	•	•	•	٧.
25.000	52.0160	0.75	Q	•	•	•	٧.
25.083	52.0194	0.49	Q	•	•	•	٧.
25.166	52.0228	0.49	Q	•	•		٧.
25.250	52.0262	0.49	Q		•		٧.
25.333	52.0285	0.33	Q		_	_	٧.
25.416	52.0308	0.33	Q		-	-	٧.
25.500		0.33		•	•	•	٧.
	52.0330		Q	•	•	•	
25.583	52.0344	0.21	Q	•		•	٧.
25.666	52.0359	0.21	Q	•	•	•	٧.

25.750	52.0373	0.21	Q		•	٧.
25.833	52.0382	0.13	Q			٧.
25.916	52.0391	0.13	Q			٧.
26.000	52.0400	0.13	Q			٧.
26.083	52.0405	0.08	Q			٧.
26.166	52.0411	0.08	Q			٧.
26.250	52.0417	0.08	Q			٧.
26.333	52.0421	0.05	Q	•		٧.
26.416	52.0424	0.05	Q	•		٧.
26.500	52.0428	0.05	Q	•		٧.
26.583	52.0430	0.03	Q	•		٧.
26.666	52.0432	0.03	Q	•		٧.
26.750	52.0434	0.03	Q	•		٧.
26.833	52.0435	0.01	Q	•		٧.
26.916	52.0436	0.01	Q	•		٧.
27.000	52.0437	0.01	Q	•		٧.
27.083	52.0437	0.00	Q	•		V
27.166	52.0437	0.00	Q	•		V
27.250	52.0437	0.00	Q	•		V

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE:

(Note: 100% of Peak Flow Rate estimate assumed to have

an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
=======================================	=======
0%	1635.0
10%	1035.0
20%	705.0
30%	540.0
40%	480.0
50%	420.0
60%	240.0
70%	195.0
80%	60.0
90%	30.0

>>>>STREAM NUMBER 1 ADDED TO STREAM NUMBER 2<<<<

10.00 IS CODE = 7 FLOW PROCESS FROM NODE 10.00 TO NODE

****************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 11

______ >>>>VIEW STREAM NUMBER 2 HYDROGRAPH<

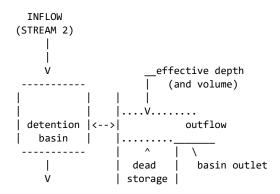
STREAM HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS) (Note: Time indicated is at END of Each Unit Intervals)

TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	50.0	100.0	150.0	200.0
0.083	0.0112	1.62	Q				
0.167	0.0224	1.62	Q			•	•
0.250	0.0335	1.62	Q				•
0.333	0.0784	6.52	VQ	•			•
0.417	0.1234	6.52	VQ				
0.500	0.1683	6.52	VQ	•			
0.583	0.2378	10.11	νQ	•			•

0.667	0.3074	10.11 V Q		_		
0.750	0.3770		•	•	•	•
		•	•	•	•	•
0.833	0.4620	12.34 V Q	•	•	•	•
0.917	0.5470	12.34 V Q		•		
1.000	0.6320	12.34 V Q				
		•	•	•	•	•
1.083	0.7303	14.27 V Q	•	•	•	•
1.167	0.8285	14.27 V Q	•	•		
1.250	0.9268	14.27 V Q				
		•	•	•	•	•
1.333	1.0192	13.41 V Q	•	•	•	•
1.417	1.1116	13.41 V Q	•			
1.500	1.2040	13.41 V Q	_	_	_	_
		•	•	•	•	•
1.583	1.2951	-	•	•	•	•
1.667	1.3862	13.23 V Q	•	•	•	•
1.750	1.4774	13.23 V Q				
1.833	1.5743	14.08 V Q				
		•	•	•	•	•
1.917	1.6713	14.08 V Q	•	•	•	•
2.000	1.7682	14.08 V Q	•	•		
2.083	1.8794	16.15 V Q				
		-	•	•	•	•
2.167	1.9906	16.15 V Q	•	•	•	•
2.250	2.1018	16.15 V Q	•	•		
2.333	2.2185	16.94 V Q		_		
2.417	2.3351	•	•	•	•	•
		-	•	•	•	•
2.500	2.4518	16.94 .V Q	•	•	•	•
2.583	2.5764	18.09 .V Q		•		
2.667	2.7010	18.09 .V Q				
			•	•	•	•
2.750	2.8256	18.09 .V Q	•	•	•	•
2.833	2.9656	20.33 .V Q	•	•		
2.917	3.1056	20.33 .V Q		_		
3.000	3.2456	•				
		•	•	•	•	•
3.083	3.3917	21.22 .V Q	•	•	•	•
3.167	3.5378	21.22 .V Q		•		
3.250	3.6840	21.22 .V Q				
		•	•	•	•	•
3.333	3.8329	21.62 .V Q	•	•	•	•
3.417	3.9818	21.62 .V Q	•	•		•
3.500	4.1308	21.62 .V Q				
3.583	4.2813					
			•	•	•	•
3.667	4.4318	21.86 .V Q	•	•	•	•
3.750	4.5824	21.86 .V Q		•		
3.833	4.7394	22.81 . V Q				
			•	•	•	•
3.917	4.8965	22.81 . V Q	•	•	•	•
4.000	5.0536	22.81 . V Q	•			
4.083	5.2253	24.94 . V Q	_	_	_	
			•	•	•	•
4.167	5.3970		•	•	•	•
4.250	5.5688	24.94 . V Q	•	•		•
4.333	5.7518	26.58 . V Q				
4.417	5.9349	26.58 . V Q				
				•	•	•
4.500	6.1179	26.58 . V Q		•	•	•
4.583	6.3175	28.98 . V Q		•		
4.667	6.5171	28.98 . V Q		_		
4.750				•	•	•
	6.7167			•	•	•
4.833	6.9286	30.77 . V	Q.	•	•	•
4.917	7.1406	30.77 . V	Q.			
5.000	7.3525		Q.			
				•	•	•
5.083	7.5704		Q.	•	•	•
5.167	7.7884	31.64 . V	Q.			
5.250	8.0063		Q.	_		
				•	•	•
5.333	8.2089	29.41 . V Q		•	•	•
5.417	8.4114	29.41 . V Q		•	•	•
5.500	8.6140	29.41 . V Q				
5.583	8.8290				•	-
			Q.	•	•	•
5.667	9.0440		Q.	•	•	•
5.750	9.2590	31.22 . V	Q.	•		
5.833	9.4909	33.67 . V		_		
				•	•	•
5.917	9.7228	33.67 . V	ų .	•	•	•

6.000	9.9547	33.67 .	VQ.		
6.083	10.1984	25 20	νę.	•	•
				•	•
6.167	10.4420	35.38 .	VQ.	•	•
6.250	10.6857	35.38 .	VQ.		•
6.333	10.9462	37.82 .	VQ.		
6.417	11.2067	37.82 .	ν Q .		
6.500	11.4672	37.82 .	V Q .	•	•
			-	•	•
6.583	11.7401	39.63 .	VQ.	•	•
6.667	12.0131	39.63 .	VQ.		
6.750	12.2860	39.63 .	VQ.		•
6.833	12.5762	42.13 .	ν Q.		
				•	•
6.917	12.8664	42.13 .	V Q.	•	•
7.000	13.1566	42.13 .	V Q.		•
7.083	13.4540	43.19 .	V Q.		•
7.167	13.7515	43.19 .	V Q.		•
7.250	14.0489	43.19 .	νQ.		
7.333	14.3554	44.50 .	VQ.	•	•
			-	•	•
7.417	14.6619	44.50 .	VQ.	•	•
7.500	14.9684	44.50 .	VQ.		•
7.583	15.2965	47.65 .	V Q.		•
7.667	15.6246	47.65 .	v Q.		_
7.750	15.9528	47.65 .	v Q.	•	•
					•
7.833	16.3071	51.45 .	V Q		•
7.917	16.6614	51.45 .	V Q		•
8.000	17.0157	51.45 .	V Q		•
8.083	17.4037	56.33 .	V .Q		•
8.167	17.7916	56.33 .	v .Q		
8.250			•	•	•
	18.1795	56.33 .	V .Q		•
8.333	18.6049	61.77 .	V.Q	•	•
8.417	19.0303	61.77 .	V . Q		•
8.500	19.4557	61.77 .	V . Q		•
8.583	19.9020	64.80 .	V.Q		
8.667	20.3483	64.80 .	v. Q		
			v . Q V . Q	•	•
8.750	20.7945	64.80 .		•	•
8.833	21.2677	68.70 .	V. Q	•	•
8.917	21.7408	68.70 .	V. Q		•
9.000	22.2140	68.70 .	V. Q		•
9.083	22.7220	73.77 .	V. Q		•
9.167	23.2301	73.77 .	v Q		_
9.250	23.7381	73.77 .	V Q	•	•
					•
9.333	24.2901	80.15 .	V Q		•
9.417	24.8421	80.15 .	V Q		•
9.500	25.3941	80.15 .	V Q		•
9.583	25.9816	85.30 .	.V Q		•
9.667	26.5691	85.30 .	٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠		
9.750	27.1566	85.30 .		•	•
			-	•	•
9.833	27.7767	90.04 .	-	•	•
9.917	28.3968	90.04 .			•
10.000	29.0169	90.04 .	. V Q		
10.083	29.6240	88.15 .	. V Q		•
10.167	30.2310	88.15 .	. V Q		_
10.250	30.8381	88.15 .	. V Q	•	•
					•
10.333	31.3584	75.54 .	. V Q	•	•
10.417	31.8786	75.54 .	. V Q		•
10.500	32.3989	75.54 .	. VQ		•
10.583	32.9160	75.09 .	. VQ		
10.667	33.4332	75.09 .	. VQ		-
10.750	33.9504	75.09 .	. vQ	•	•
				•	•
10.833	34.5259	83.57 .	. V Q	•	•
10.917	35.1014	83.57 .	. VQ		•
11.000	35.6769	83.57 .	. VQ	•	•
11.083	36.2666	85.62 .	. VQ		•
11.167	36.8563	85.62 .	. v Q		
11.250	37.4460	85.62 .	. VQ		
	2			•	•

11.333	38.0288	84.62		•	Q.	•	
11.417	38.6116	84.62			Q.		
11.500	39.1944	84.62			_		
			•	•	Q .	•	•
11.583	39.7645	82.77	•	•	QV .	•	•
11.667	40.3345	82.77	•	•	QV .	•	•
11.750	40.9046	82.77		•	QV .	•	
11.833	41.4520	79.48			QV.	•	
11.917	41.9993	79.48			QV.		
12.000	42.5467	79.48	-		QV.	•	•
			•	•		•	•
12.083	43.1369	85.70	•	•	QV .	•	•
12.167	43.7272	85.70	•	•	QV .	•	•
12.250	44.3174	85.70		•	Q V.	•	
12.333	45.0129	100.98			VQ	•	
12.417	45.7084	100.98			VQ		
12.500	46.4039	100.98			Q		
			•	•		•	•
12.583	47.1614	109.99	•	•	VQ	•	•
12.667	47.9188	109.99	•	•	VQ	•	•
12.750	48.6763	109.99		•	.Q	•	
12.833	49.4881	117.87		•	.v Q	•	
12.917	50.2998	117.87			.v Q		
13.000	51.1115	117.87			. VQ		
			•	•	-	•	•
13.083	52.0035	129.51	•	•	. V Q	•	•
13.167	52.8954	129.51	•	•	. V Q	•	•
13.250	53.7874	129.51		•	. V Q	•	
13.333	54.8124	148.83			. V	Q.	
13.417	55.8373	148.83			. V	Q.	
13.500	56.8623	148.83			. V	Q.	
			•	•			•
13.583	57.8666	145.83	•	•	. V	Q.	•
13.667	58.8709	145.83	•	•	. V	Q.	•
13.750	59.8753	145.83		•	. V	Q.	
13.833	60.7009	119.88			. Q V	•	
13.917	61.5265	119.88			. Q V		
14.000	62.3522	119.88	-		. Q V	•	•
			•	•	-	•	•
14.083	63.1371	113.97	•	•	. Q V	•	•
14.167	63.9220	113.97	•	•	. Q V	•	•
14.250	64.7070	113.97			. Q V	•	
14.333	65.5188	117.88			. Q '	V .	
14.417	66.3306	117.88	_	_		v .	
14.500	67.1425	117.88	-		0	٧.	•
			•	•			•
14.583	67.9485	117.04	•	•	. Q	٧.	•
14.667	68.7546	117.04	•	•	. Q	٧.	•
14.750	69.5607	117.04		•	. Q	V	
14.833	70.3573	115.67			. Q	V	
14.917	71.1539	115.67			. 0	V	
15.000	71.9506	115.67	-		. Q	.V	•
			•	•			•
15.083	72.7251	112.47	•	•	. Q	.V	•
15.167	73.4997	112.47	•	•	. Q	٠٧.	•
15.250	74.2742	112.47	•	•	. Q	. V	•
15.333	75.0220	108.57			.Q	. V	
15.417	75.7697	108.57			.Q	. V	
15.500	76.5175	108.57		_	.Q	. V	
15.583	77.2206	102.10	-		Q	. V	•
			•	•			•
15.667	77.9238	102.10	•	•	Q	. V	•
15.750	78.6270	102.10	•	•	Q	. V	•
15.833	79.2650	92.63		•	Q.	. V	•
15.917	79.9029	92.63			Q.	. V	
16.000	80.5409	92.63			Q.	. V	
16.083	81.0688	76.65		-	Q.	. V	
			•	•			•
16.167	81.5967	76.65	•	•	Q .	. V	•
16.250	82.1246	76.65	•	•	Q .	. V	•
16.333	82.4294	44.26	•	Q.	•	. V	•
16.417	82.7342	44.26		Q.	•	. V	•
16.500	83.0391	44.26		Q.		. V	
16.583	83.2516	30.86		Q.	_	. V	_
		-0.00	-	₹ '	•	- •	-


16.667	83.4641	30.86	. Q		•	•	٧.
16.750	83.6766	30.86	. Q				٧.
16.833	83.8373	23.33	. Q				٧.
16.917	83.9980	23.33	. Q	_		_	٧.
17.000	84.1587	23.33	•	•	·	•	٧.
				•	•	•	
17.083	84.3032	20.99	. Q	•	•	•	٧.
17.167	84.4477	20.99	. Q	•	•	•	٧.
17.250	84.5923	20.99	. Q	•	•	•	ν.
17.333	84.7493	22.80	. Q				٧.
17.417	84.9063	22.80	. Q				٧.
17.500	85.0633	22.80	. Q	_		_	٧.
17.583	85.2209	22.88	•	•	·	•	٧.
	85.3785			•	•	•	v . V .
17.667		22.88	. Q	•	•	•	
17.750	85.5361	22.88	. Q	•	•	•	ν.
17.833	85.6862	21.79	. Q	•	•	•	٧.
17.917	85.8363	21.79	. Q		•	•	ν.
18.000	85.9864	21.79	. Q				٧.
18.083	86.1212	19.58	. Q				٧.
18.167	86.2561	19.58	. Q	_		_	٧.
18.250	86.3910	19.58	. Q	•	·	•	٧.
18.333	86.5199			•	•	•	v . V .
		18.72	. Q	•	•	•	
18.417	86.6488	18.72	. Q	•	•	•	٧.
18.500	86.7777	18.72	. Q	•	•	•	٧.
18.583	86.8982	17.49	. Q		•	•	٧.
18.667	87.0187	17.49	. Q				٧.
18.750	87.1392	17.49	. Q		•		٧.
18.833	87.2383	14.40	. Q				٧.
18.917	87.3375	14.40	. Q				٧.
19.000	87.4366	14.40	. Q				٧.
19.083	87.5210	12.26	. Q	•	•	•	v .
			-	•	•	•	v . V .
19.167	87.6054	12.26	. Q	•	•	•	
19.250	87.6898	12.26	. Q	•	•	•	٧.
19.333	87.7858	13.94	. Q	•	•	•	٧.
19.417	87.8818	13.94	. Q	•	•	•	٧.
19.500	87.9778	13.94	. Q		•	•	V .
19.583	88.0839	15.40	. Q			•	٧.
19.667	88.1900	15.40	. Q				٧.
19.750	88.2960	15.40	. Q				٧.
19.833	88.3878	13.33	. Q	_		_	٧.
19.917	88.4797	13.33	. Q	-	·	•	٧.
20.000	88.5715	13.33	. Q	•	•	•	۷.
	88.6517		-	•	•	•	v . V .
20.083		11.65	. Q	•	•	•	
20.167	88.7319	11.65	. Q	•	•	•	٧.
20.250	88.8121	11.65	. Q	•	•	•	٧.
20.333	88.9000	12.76	. Q	•	•	•	٧.
20.417	88.9879	12.76	. Q		•	•	٧.
20.500	89.0758	12.76	. Q				٧.
20.583	89.1662	13.12	. Q				٧.
20.667	89.2565	13.12	. Q				٧.
20.750	89.3469	13.12	. Q				٧.
20.833	89.4324	12.41	. Q	•	•	•	v . V .
				•	•	•	
20.917	89.5179	12.41	. Q	•	•	•	٧.
21.000	89.6034	12.41	. Q	•	•	•	٧.
21.083	89.6807	11.23	. Q	•	•	•	٧.
21.167	89.7580	11.23	. Q		•	•	V .
21.250	89.8353	11.23	. Q		•		٧.
21.333	89.9159	11.70	. Q				٧.
21.417	89.9965	11.70	. Q		•		٧.
21.500	90.0770	11.70	. Q		-		٧.
21.583	90.1523	10.93	. Q	-	•	•	٧.
				•	•	•	v. V.
21.667	90.2275	10.93	. Q	•	•	•	
21.750	90.3028	10.93	. Q	•	•	•	٧.
21.833	90.3823	11.55	. Q	•	•	•	٧.
21.917	90.4618	11.55	. Q	•	•	•	٧.

22.000	90.5413	11.55	. Q				٧.
22.083	90.6160	10.85	. Q				٧.
22.167	90.6907	10.85	. Q	•			٧.
22.250	90.7654	10.85	. Q				٧.
22.333	90.8445	11.48	. Q				٧.
22.417	90.9235	11.48	. Q				٧.
22.500	91.0026	11.48	. Q				٧.
22.583	91.0714	9.99	.Q				٧.
22.667	91.1402	9.99	.Q				٧.
22.750	91.2089	9.99	.Q				٧.
22.833	91.2738	9.42	.Q				٧.
22.917	91.3386	9.42	.Q				٧.
23.000	91.4035	9.42	.Q				٧.
23.083	91.4669	9.21	.Q				٧.
23.167	91.5303	9.21	.Q				٧.
23.250	91.5937	9.21	.Q		•		٧.
23.333	91.6562	9.08	.Q	•	•		٧.
23.417	91.7188	9.08	.Q	•	•		٧.
23.500	91.7813	9.08	.Q	•	•		٧.
23.583	91.8434	9.01	.Q	•	•		٧.
23.667	91.9054	9.01	.Q	•	•		٧.
23.750	91.9675	9.01	.Q	•	•		٧.
23.833	92.0292	8.96	.Q	•			٧.
23.917	92.0910	8.96	.Q	•	•	•	٧.
24.000	92.1527	8.96	.Q	•			٧.

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated	Duration
Peak Flow Rate	(minutes)
=======================================	=======
0%	1445.0
10%	1020.0
20%	705.0
30%	525.0
40%	480.0
50%	420.0
60%	240.0
70%	180.0
80%	60.0
90%	30.0

FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 3.1 >>>>FLOW-THROUGH DETENTION BASIN ROUTING MODEL APPLIED TO STREAM #2<<<<< ______

-----OUTFLOW (STREAM 2)

ROUTE RUNOFF HYDROGRAPH FROM STREAM NUMBER 2 THROUGH A FLOW-THROUGH DETENTION BASIN SPECIFIED BASIN CONDITIONS ARE AS FOLLOWS: DEAD STORAGE(AF) = 0.000SPECIFIED DEAD STORAGE(AF) FILLED = 0.000 SPECIFIED EFFECTIVE VOLUME(AF) FILLED ABOVE OUTLET = 0.000 DETENTION BASIN CONSTANT LOSS RATE(CFS) = 0.00

BASIN DEPTH VERSUS OUTFLOW AND STORAGE INFORMATION:

INTERVAL	DEPTH	OUTFLOW	STORAGE
NUMBER	(FT)	(CFS)	(AF)
1	0.00	0.00	0.000
2	1.00	0.01	12.220
3	2.00	0.02	24.740
4	2.70	0.03	33.660
5	3.00	33.61	37.530
6	4 00	303.14	50.660

_____ MODIFIED-PULS BASIN ROUTING MODEL RESULTS(5-MINUTE COMPUTATION INTERVALS): (Note: Computed EFFECTIVE DEPTH and VOLUME are estimated at the clock time;

MEAN OUTFLOW is the average value during the unit interval.)

CLOCK					MEAN	
TIME	DEAD-STORAGE	INFLOW	LOSS	EFFECTIVE	OUTFLOW	EFFECTIVE
(HRS)	FILLED(AF)	(CFS)	(CFS)	DEPTH(FT)	(CFS)	VOLUME(AF)
0.083	0.000	1.62	0.00	0.00	0.0	0.011
0.167	0.000	1.62	0.00	0.00	0.0	0.022
0.250	0.000	1.62	0.00	0.00	0.0	0.034
0.333	0.000	6.52	0.00	0.01	0.0	0.078
0.417	0.000	6.52	0.00	0.01	0.0	0.123
0.500	0.000	6.52	0.00	0.01	0.0	0.168
0.583	0.000	10.11	0.00	0.02	0.0	0.238
0.667	0.000	10.11	0.00	0.03	0.0	0.307
0.750	0.000	10.11	0.00	0.03	0.0	0.377
0.833	0.000	12.34	0.00	0.04	0.0	0.462
0.917	0.000	12.34	0.00	0.04	0.0	0.547
1.000	0.000	12.34	0.00	0.05	0.0	0.632
1.083	0.000	14.27	0.00	0.06	0.0	0.730
1.167	0.000	14.27	0.00	0.07	0.0	0.829
1.250	0.000	14.27	0.00	0.08	0.0	0.927
1.333	0.000	13.41	0.00	0.08	0.0	1.019
1.417	0.000	13.41	0.00	0.09	0.0	1.112
1.500	0.000	13.41	0.00	0.10	0.0	1.204
1.583	0.000	13.23	0.00	0.11	0.0	1.295
1.667	0.000	13.23	0.00	0.11	0.0	1.386
1.750	0.000	13.23	0.00	0.12	0.0	1.477
1.833	0.000	14.08	0.00	0.13	0.0	1.574
1.917	0.000	14.08	0.00	0.14	0.0	1.671
2.000	0.000	14.08	0.00	0.14	0.0	1.768
2.083	0.000	16.15	0.00	0.15	0.0	1.879
2.167	0.000	16.15	0.00	0.16	0.0	1.990
2.250	0.000	16.15	0.00	0.17	0.0	2.102
2.333	0.000	16.94	0.00	0.18	0.0	2.218
2.417	0.000	16.94	0.00	0.19	0.0	2.335

2.500	0.000	16.94	0.00	0.20	0.0	2.452
2.583	0.000	18.09	0.00	0.21	0.0	2.576
2.667	0.000	18.09	0.00	0.22	0.0	2.701
2.750	0.000	18.09	0.00	0.23	0.0	2.825
2.833	0.000	20.33	0.00	0.24	0.0	2.965
2.917	0.000	20.33	0.00	0.25	0.0	3.105
3.000	0.000	20.33	0.00	0.27	0.0	3.245
3.083	0.000	21.22	0.00	0.28	0.0	3.391
3.167	0.000	21.22	0.00	0.29	0.0	3.538
3.250	0.000	21.22	0.00	0.30	0.0	3.684
3.333	0.000	21.62	0.00	0.31	0.0	3.833
3.417	0.000	21.62	0.00	0.33	0.0	3.981
3.500	0.000	21.62	0.00	0.34	0.0	4.130
3.583	0.000	21.86	0.00	0.35	0.0	4.281
3.667						
	0.000	21.86	0.00	0.36	0.0	4.431
3.750	0.000	21.86	0.00	0.37	0.0	4.582
3.833	0.000	22.81	0.00	0.39	0.0	4.739
3.917	0.000	22.81	0.00	0.40	0.0	4.896
4.000	0.000	22.81	0.00	0.41	0.0	5.053
4.083	0.000	24.94	0.00	0.43	0.0	5.225
4.167	0.000	24.94	0.00	0.44	0.0	5.396
4.250	0.000	24.94	0.00	0.46	0.0	5.568
4.333	0.000	26.58	0.00	0.47	0.0	5.751
4.417	0.000	26.58	0.00	0.49	0.0	5.934
4.500	0.000	26.58	0.00	0.50	0.0	6.117
4.583	0.000	28.98	0.00	0.52	0.0	6.317
4.667	0.000	28.98	0.00	0.53	0.0	6.516
4.750	0.000	28.98	0.00	0.55	0.0	6.716
4.833	0.000	30.77	0.00	0.57	0.0	6.928
4.917	0.000	30.77	0.00	0.58	0.0	7.140
5.000	0.000	30.77	0.00	0.60	0.0	7.351
5.083	0.000	31.64	0.00	0.62	0.0	7.569
5.167	0.000	31.64	0.00	0.64	0.0	7.787
5.250	0.000	31.64	0.00	0.66	0.0	8.005
5.333	0.000	29.41	0.00	0.67	0.0	8.208
5.417	0.000	29.41	0.00	0.69	0.0	8.410
5.500	0.000	29.41	0.00	0.70	0.0	8.613
5.583	0.000	31.22	0.00	0.72	0.0	8.828
5.667	0.000	31.22	0.00	0.74	0.0	9.043
5.750	0.000	31.22	0.00	0.76	0.0	9.257
5.833	0.000	33.67	0.00	0.78	0.0	9.489
5.917	0.000	33.67	0.00	0.80	0.0	9.721
6.000	0.000	33.67	0.00	0.81	0.0	9.953
6.083	0.000	35.38	0.00	0.83	0.0	10.197
6.167	0.000	35.38	0.00	0.85	0.0	10.440
6.250	0.000	35.38	0.00	0.87	0.0	10.684
6.333	0.000	37.82	0.00	0.90	0.0	10.944
6.417	0.000	37.82	0.00	0.92	0.0	11.205
6.500	0.000	37.82	0.00	0.94	0.0	11.465
6.583	0.000	39.63	0.00	0.96	0.0	11.738
6.667	0.000	39.63	0.00	0.98	0.0	12.011
6.750	0.000	39.63	0.00	1.01	0.0	12.284
6.833	0.000	42.13	0.00	1.03	0.0	12.574
6.917	0.000	42.13	0.00	1.05	0.0	12.864
7.000	0.000	42.13	0.00	1.07	0.0	13.154
7.083	0.000	43.19	0.00	1.10	0.0	13.451
7.167	0.000	43.19	0.00	1.12	0.0	13.749
7.250	0.000	43.19	0.00	1.15	0.0	14.046
7.333	0.000	44.50	0.00	1.17	0.0	14.353
7.417	0.000	44.50	0.00	1.19	0.0	14.659
7.500	0.000	44.50	0.00	1.22	0.0	14.965
7.583	0.000	47.65	0.00	1.25	0.0	15.293
7.667	0.000	47.65	0.00	1.27	0.0	15.621
7.750	0.000	47.65	0.00	1.30	0.0	15.949

7.833	0.000	51.45	0.00	1.33	0.0	16.304
7.917	0.000	51.45	0.00	1.35	0.0	16.658
8.000	0.000	51.45	0.00	1.38	0.0	17.012
8.083	0.000	56.33	0.00	1.41	0.0	17.400
8.167	0.000	56.33	0.00	1.44	0.0	17.788
8.250	0.000	56.33	0.00	1.48	0.0	18.176
8.333	0.000	61.77	0.00	1.51	0.0	18.601
8.417	0.000	61.77	0.00	1.54	0.0	19.026
8.500	0.000	61.77	0.00	1.58	0.0	19.451
8.583	0.000	64.80	0.00	1.61	0.0	19.898
8.667	0.000	64.80	0.00	1.65	0.0	20.344
8.750	0.000	64.80	0.00	1.68	0.0	20.790
8.833	0.000	68.70	0.00	1.72	0.0	21.263
8.917	0.000	68.70	0.00	1.76	0.0	21.736
9.000	0.000	68.70	0.00	1.80	0.0	22.209
9.083	0.000	73.77	0.00	1.84	0.0	22.717
9.167	0.000	73.77	0.00	1.88	0.0	23.225
9.250	0.000	73.77	0.00	1.92	0.0	23.733
9.333	0.000	80.15	0.00	1.96	0.0	24.284
9.417	0.000	80.15	0.00	2.01	0.0	24.836
9.500	0.000	80.15	0.00	2.05	0.0	25.388
9.583	0.000	85.30	0.00	2.10	0.0	25.975
9.667	0.000	85.30	0.00	2.14	0.0	26.563
9.750	0.000	85.30	0.00	2.19	0.0	27.150
9.833	0.000	90.04	0.00	2.24	0.0	27.770
9.917	0.000	90.04	0.00	2.29	0.0	28.390
10.000	0.000	90.04	0.00	2.34	0.0	29.010
10.083	0.000	88.15	0.00	2.38	0.0	29.617
10.167	0.000	88.15	0.00	2.43	0.0	30.224
10.250	0.000	88.15	0.00	2.48	0.0	30.830
10.230	0.000	75.54	0.00	2.52	0.0	31.351
10.333	0.000	75.54	0.00	2.56	0.0	31.871
10.500	0.000	75.54	0.00	2.60	0.0	32.391
10.583	0.000	75.09	0.00	2.64	0.0	32.908
10.667	0.000	75.09	0.00	2.68	0.0	33.425
10.750	0.000	75.09	0.00	2.72	1.2	33.933
10.730	0.000	83.57	0.00	2.76	4.8	34.476
10.033	0.000	83.57	0.00	2.80	9.3	34.987
11.000	0.000	83.57	0.00	2.84	13.6	35.469
11.083	0.000	85.62	0.00	2.88	17.8	35.936
11.167	0.000	85.62	0.00	2.91	21.7	36.377
11.250	0.000	85.62	0.00	2.94	25.4	36.791
11.333	0.000	84.62	0.00	2.97	28.9	37.175
11.417	0.000	84.62	0.00	3.00	32.1	37.537
11.500	0.000	84.62	0.00	3.03	37.1	37.864
11.583	0.000	82.77	0.00	3.05	43.3	38.136
11.667	0.000	82.77	0.00	3.06	48.5	38.372
11.750	0.000	82.77	0.00	3.08	53.0	38.577
11.833	0.000	79.48	0.00	3.09	56.7	38.734
11.917	0.000	79.48	0.00	3.10	59.7	38.870
12.000	0.000	79.48	0.00	3.11	62.3	38.988
12.083	0.000	85.70	0.00	3.12	65.0	39.131
12.167	0.000	85.70	0.00	3.13	67.7	39.254
12.250	0.000	85.70	0.00	3.14	70.1	39.362
12.333	0.000	100.98	0.00	3.15	73.2	39.553
12.417	0.000	100.98	0.00	3.17	76.9	39.720
12.417	0.000	100.98	0.00	3.18	80.0	39.720
12.583	0.000	100.98	0.00	3.19	83.4	40.047
						40.206
12.667 12.750	0.000	109.99	0.00 0.00	3.20	86.9	40.206
12.750	0.000	109.99 117.87		3.21	90.0 93.1	
12.833	0.000	117.87	0.00	3.23	93.1	40.514
12.917	0.000	117.87	0.00	3.24	96.4	40.662
13.000	0.000	117.87 129 51	0.00	3.25	99.2 102.5	40.791 40.977
13.083	0.000	129.51	0.00	3.26	102.5	40.3//

13.167	0.000	129.51	0.00	3.27	106.0	41.139
13.250	0.000	129.51	0.00	3.29	109.1	41.279
13.333	0.000	148.83	0.00	3.30	113.1	41.525
13.417	0.000	148.83	0.00	3.32	117.8	41.739
13.500	0.000	148.83	0.00	3.33	121.9	41.924
13.583	0.000	145.83	0.00	3.35	125.3	42.066
13.667	0.000	145.83	0.00	3.35	128.0	42.189
13.750	0.000	145.83	0.00	3.36	130.3	42.295
13.833	0.000	119.88	0.00	3.36	130.7	42.221
13.917	0.000	119.88	0.00	3.35	129.2	42.157
14.000	0.000	119.88	0.00	3.35	128.0	42.101
14.083	0.000	113.97	0.00	3.34	126.5	42.014
14.167	0.000	113.97	0.00	3.34	124.9	41.939
14.250	0.000	113.97	0.00	3.33	123.4	41.874
14.333	0.000	117.88	0.00	3.33	122.5	41.842
14.417	0.000	117.88	0.00	3.33	121.8	41.815
14.500	0.000	117.88	0.00	3.32	121.3	41.791
14.583	0.000	117.04	0.00	3.32	120.8	41.765
14.667	0.000	117.04	0.00	3.32	120.3	41.743
14.750	0.000	117.04	0.00	3.32	119.9	41.723
14.833	0.000	115.67	0.00	3.32	119.4	41.697
14.917	0.000	115.67	0.00	3.32	118.9	41.675
15.000	0.000	115.67	0.00	3.31	118.5	41.655
15.083	0.000	112.47	0.00	3.31	117.9	41.618
15.167	0.000	112.47	0.00	3.31	117.2	41.585
15.250	0.000	112.47	0.00	3.31	116.6	41.557
15.333	0.000	108.57	0.00	3.30	115.8	41.507
15.417	0.000	108.57	0.00	3.30	114.8	41.464
15.500	0.000	108.57	0.00	3.30	114.0	41.427
15.583	0.000	102.10	0.00	3.29	112.9	41.353
15.667	0.000	102.10	0.00	3.29	111.4	41.289
15.750	0.000	102.10	0.00	3.28	110.2	41.233
15.833	0.000	92.63	0.00	3.27	108.5	41.124
15.917	0.000	92.63	0.00	3.27	106.4	41.029
16.000	0.000	92.63	0.00	3.26	104.6	40.947
16.083	0.000	76.65	0.00	3.25	102.0	40.772
16.167	0.000	76.65	0.00	3.24	98.6	40.621
16.250	0.000	76.65	0.00	3.23	95.7	40.490
16.333	0.000	44.26	0.00	3.20	91.1	40.167
16.417	0.000	44.26	0.00	3.18	84.9	39.888
16.500	0.000	44.26	0.00	3.16	79.5	39.645
16.583	0.000	30.86	0.00	3.14	74.0	39.348
16.667	0.000	30.86	0.00	3.12	68.3	39.090
16.750	0.000	30.86	0.00	3.10	63.3	38.866
16.833	0.000	23.33	0.00	3.08	58.6	38.624
16.917	0.000	23.33	0.00	3.07	53.9	38.413
17.000	0.000	23.33	0.00	3.05	49.9	38.231
17.083	0.000	20.99	0.00	3.04	46.2	38.057
17.167	0.000	20.99	0.00	3.03	42.9	37.906
17.250	0.000	20.99	0.00	3.02	40.0	37.775
17.333	0.000	22.80	0.00	3.01	37.6	37.673
17.417	0.000	22.80	0.00	3.00	35.6	37.585
17.500	0.000	22.80	0.00	3.00	34.1	37.507
17.583	0.000	22.88	0.00	2.99	33.1	37.437
17.667	0.000	22.88	0.00	2.99	32.5	37.370
17.750	0.000	22.88	0.00	2.98	32.0	37.308
17.833	0.000	21.79	0.00	2.98	31.4	37.242
17.917	0.000	21.79	0.00	2.97	30.8	37.180
18.000	0.000	21.79	0.00	2.97	30.3	37.121
18.083	0.000	19.58	0.00	2.96	29.8	37.051
18.167	0.000	19.58	0.00	2.96	29.2	36.985
18.250	0.000	19.58	0.00	2.95	28.6	36.923
18.333	0.000	18.72	0.00	2.95	28.1	36.858
18.417	0.000	18.72	0.00	2.94	27.5	36.798
		· · -		=== .		

18.500	0.000	18.72	0.00	2.94	27.0	36.741
18.583	0.000	17.49	0.00	2.93	26.5	36.679
18.667	0.000	17.49	0.00	2.93	26.0	36.620
18.750	0.000	17.49	0.00	2.93	25.5	36.565
18.833	0.000	14.40	0.00	2.92	24.9	36.493
18.917	0.000	14.40	0.00	2.91	24.3	36.424
19.000	0.000	14.40	0.00	2.91	23.7	36.360
19.083	0.000	12.26	0.00	2.90	23.1	36.285
19.167	0.000	12.26	0.00	2.90	22.5	36.215
19.250	0.000	12.26	0.00	2.89	21.9	36.148
19.333	0.000	13.94	0.00	2.89	21.4	36.097
19.417	0.000	13.94	0.00	2.89	21.0	36.048
19.500	0.000	13.94	0.00	2.88	20.6	36.003
19.583	0.000	15.40	0.00	2.88	20.2	35.970
19.667	0.000	15.40	0.00	2.88	19.9	35.938
19.750	0.000	15.40	0.00	2.87	19.7	35.909
19.833	0.000	13.33	0.00	2.87	19.4	35.867
19.917	0.000	13.33	0.00	2.87	19.0	35.828
20.000	0.000	13.33	0.00	2.87	18.7	35.791
20.083	0.000	11.65	0.00	2.86	18.3	35.745
20.167	0.000	11.65	0.00	2.86	17.9	35.702
20.250	0.000	11.65	0.00	2.86	17.6	35.661
20.333	0.000	12.76	0.00	2.85	17.3	35.630
20.417	0.000	12.76	0.00	2.85	17.0	35.601
20.500	0.000	12.76	0.00	2.85	16.8	35.574
20.583	0.000	13.12	0.00	2.85	16.5	35.550
20.667	0.000	13.12	0.00	2.84	16.3	35.528
20.750	0.000	13.12	0.00	2.84	16.1	35.507
20.833	0.000	12.41	0.00	2.84	16.0	35.483
20.917	0.000	12.41	0.00	2.84	15.7	35.460
21.000	0.000	12.41	0.00	2.84	15.6	35.438
21.083	0.000	11.23	0.00	2.84	15.3	35.410
21.167	0.000	11.23	0.00	2.83	15.1	35.383
21.250	0.000	11.23	0.00	2.83	14.9	35.358
21.333	0.000	11.70	0.00	2.83	14.7	35.337
21.417	0.000	11.70	0.00	2.83	14.5	35.318
21.500	0.000	11.70	0.00	2.83	14.3	35.300
21.583	0.000	10.93	0.00	2.83	14.2	35.278
21.667	0.000	10.93	0.00	2.82	14.0	35.257
21.750	0.000	10.93	0.00	2.82	13.8	35.237
21.833	0.000	11.55	0.00	2.82	13.7	35.222
21.833	0.000	11.55	0.00	2.82	13.7	35.222
22.000	0.000	11.55	0.00	2.82	13.4	35.196
22.083	0.000	10.85	0.00	2.82	13.3	35.179
22.167	0.000	10.85	0.00	2.82	13.1	35.163
22.250	0.000	10.85	0.00	2.82	13.1	35.148
22.333	0.000	11.48	0.00	2.82	12.9	35.148
22.417	0.000	11.48	0.00	2.81	12.8	35.129
22.500	0.000	11.48	0.00	2.81	12.7	35.121
22.583	0.000	9.99	0.00	2.81	12.6	35.102
22.667	0.000	9.99	0.00	2.81	12.5	35.085
22.750	0.000	9.99	0.00	2.81	12.3	35.069
22.833	0.000	9.42	0.00	2.81	12.3	35.050
			0.00	2.81	12.2	
22.917 23.000	0.000 0.000	9.42 9.42	0.00	2.81	11.9	35.032 35.015
			0.00		11.9	34.998
23.083	0.000	9.21		2.80		
23.167	0.000	9.21	0.00	2.80	11.6	34.982
23.250	0.000	9.21	0.00	2.80	11.4 11.3	34.966
23.333	0.000	9.08	0.00 0.00	2.80		34.951
23.417	0.000	9.08		2.80	11.2	34.937
23.500	0.000	9.08	0.00	2.80	11.1	34.923
23.583	0.000	9.01 9.01	0.00	2.80	10.9	34.910
23.667 23.750	0.000		0.00	2.80	10.8	34.897 34.886
23.750	0.000	9.01	0.00	2.80	10.7	34.886

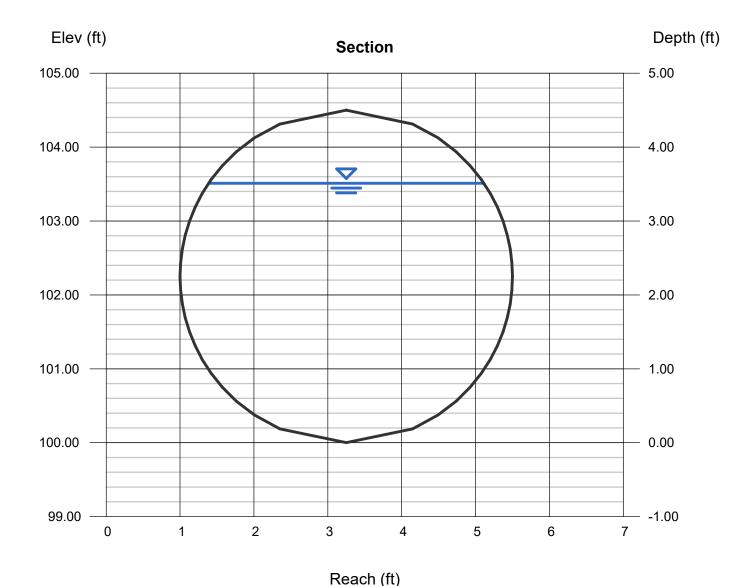
23.833	0.000	8.96	0.00	2.79	10.6	34.874
23.917	0.000	8.96	0.00	2.79	10.5	34.864
PROCESS SUMMARY OF INFLOW VOLUME = BASIN STORAGE = OUTFLOW VOLUME = LOSS VOLUME =	92.457	AF (WITH AF	0.00	0 AF INIT	IALLY FILI	LED)

END OF FLOODSCx ROUTING ANALYSIS

APPENDIX E- HYDRAULIC ANALYSIS FOR PEAKFLOW Q_{100} NORMAL DEPTH

E.1 – DRAINAGE FACILITIES BASED ON NORMAL DEPTH METHOD				

Known Q (cfs)

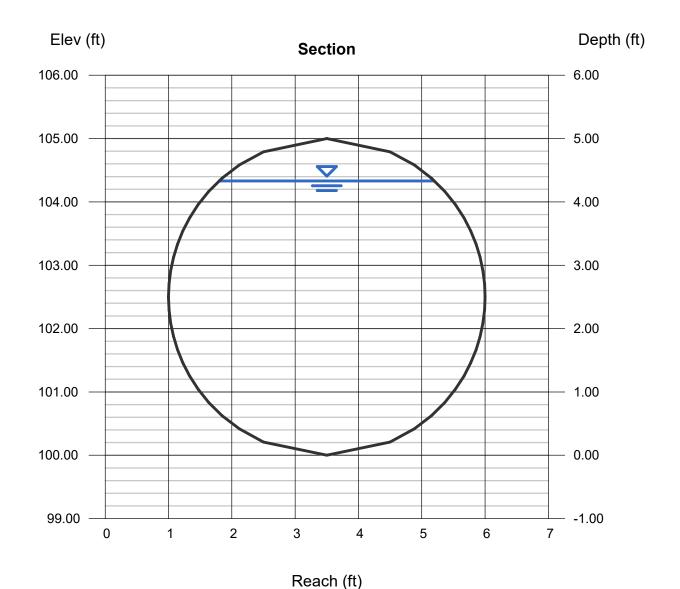

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 187.00

Thursday, Oct 15 2020

STORM DRAIN LINE-A (NODE 9-16)

Circular Highlighted = 4.50Diameter (ft) Depth (ft) = 3.51Q (cfs) = 187.00Area (sqft) = 13.34Velocity (ft/s) Invert Elev (ft) = 100.00= 14.01 Slope (%) = 1.00Wetted Perim (ft) = 9.77Crit Depth, Yc (ft) N-Value = 0.013= 3.94Top Width (ft) = 3.72EGL (ft) **Calculations** = 6.56Compute by: Known Q

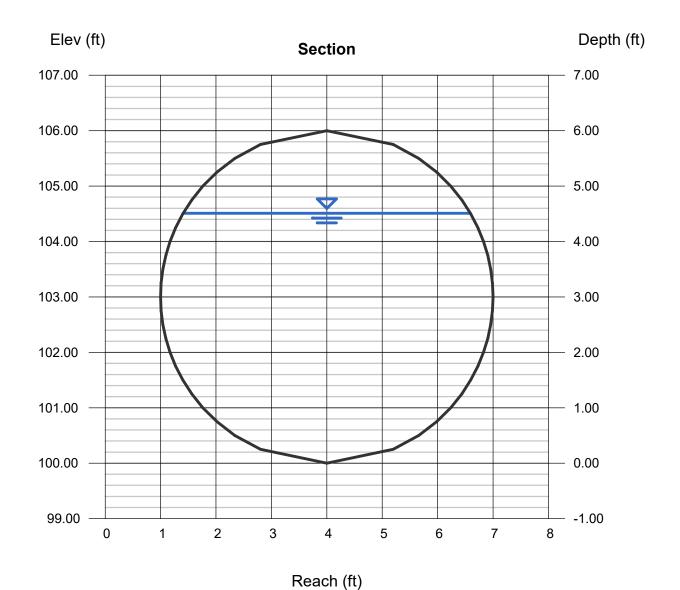


Known Q (cfs)

= 272.00

STORM DRAIN LINE-A (NODE 16-21)

Circular		Highlighted	
Diameter (ft)	= 5.00	Depth (ft)	= 4.33
		Q (cfs)	= 272.00
		Area (sqft)	= 18.08
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 15.04
Slope (%)	= 1.00	Wetted Perim (ft)	= 11.98
N-Value	= 0.013	Crit Depth, Yc (ft)	= 4.55
		Top Width (ft)	= 3.40
Calculations		EGL (ft)	= 7.85
Compute by:	Known Q	• •	



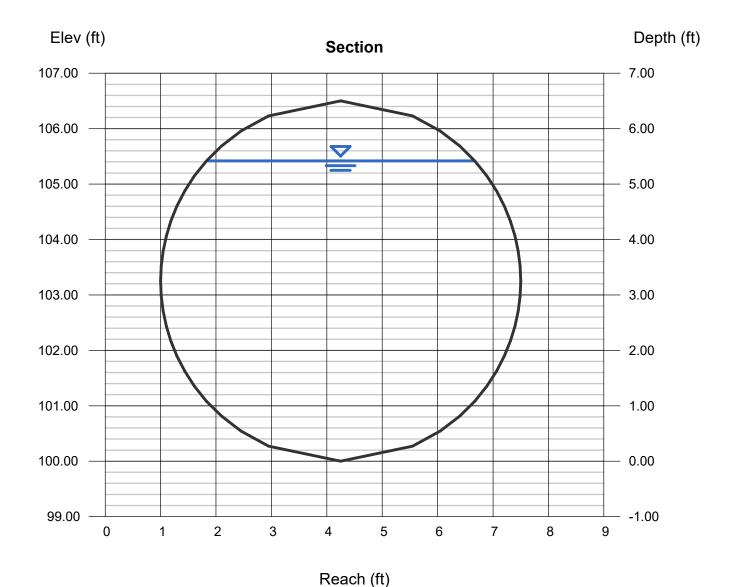
Known Q (cfs)

= 387.00

STORM DRAIN LINE-A (NODE 21-30)

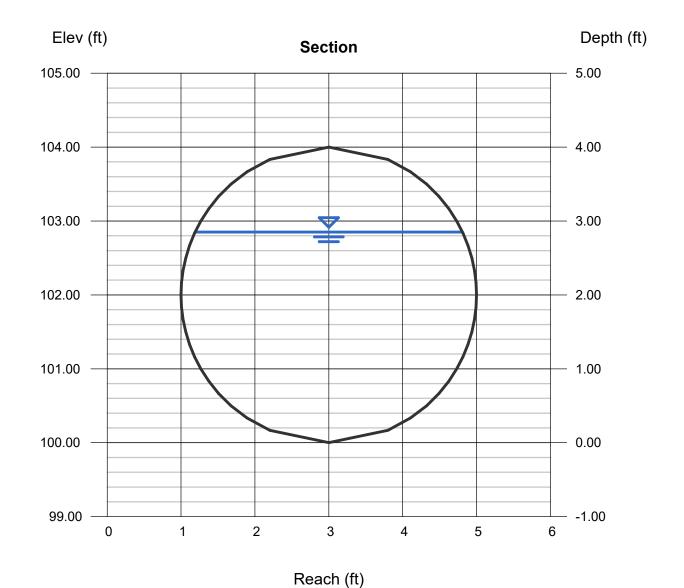
Circular		Highlighted	
Diameter (ft)	= 6.00	Depth (ft)	= 4.51
		Q (cfs)	= 387.00
		Area (sqft)	= 22.82
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 16.96
Slope (%)	= 1.00	Wetted Perim (ft)	= 12.60
N-Value	= 0.013	Crit Depth, Yc (ft)	= 5.28
		Top Width (ft)	= 5.18
Calculations		EGL (ft)	= 8.98
Compute by:	Known Q	• •	

Known Q (cfs)


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 532.00

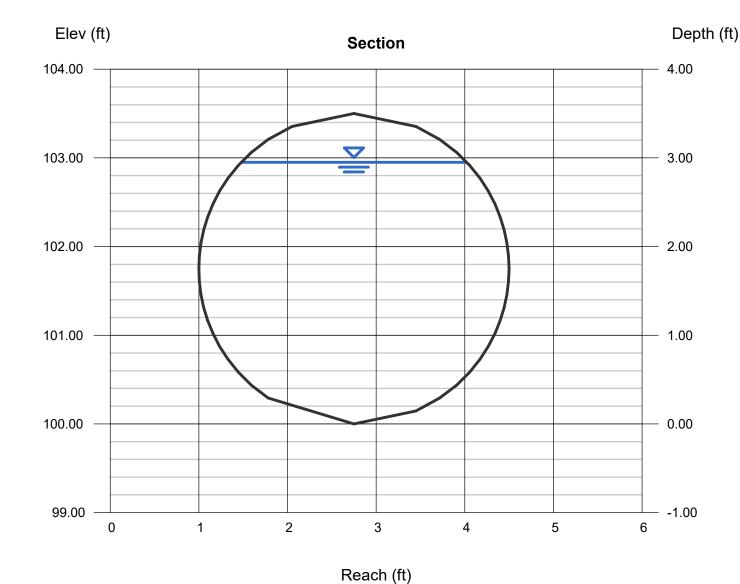
Thursday, Oct 15 2020


STORM DRAIN LINE-A (NODE 30-40)

Circular		Highlighted	
Diameter (ft)	= 6.50	Depth (ft)	= 5.42
. ,		Q (cfs)	= 532.00
		Area (sqft)	= 29.60
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 17.97
Slope (%)	= 1.00	Wetted Perim (ft)	= 14.98
N-Value	= 0.013	Crit Depth, Yc (ft)	= 5.94
		Top Width (ft)	= 4.83
Calculations		EĠL (ft)	= 10.44
Compute by:	Known Q	` ,	

STORM DRAIN LINE-2A (NODE 21-25)

Circular		Highlighted	
Diameter (ft)	= 4.00	Depth (ft)	= 2.85
		Q (cfs)	= 123.00
		Area (sqft)	= 9.58
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 12.84
Slope (%)	= 1.00	Wetted Perim (ft)	= 8.04
N-Value	= 0.013	Crit Depth, Yc (ft)	= 3.34
		Top Width (ft)	= 3.62
Calculations		EGL (ft)	= 5.41
Compute by:	Known Q		
Known Q (cfs)	= 123.00		



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Oct 15 2020

STORM DRAIN LINE-2A (NODE 25-24)

Circular		Highlighted	
Diameter (ft)	= 3.50	Depth (ft)	= 2.95
		Q (cfs)	= 103.00
		Area (sqft)	= 8.66
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 11.89
Slope (%)	= 1.00	Wetted Perim (ft)	= 8.16
N-Value	= 0.013	Crit Depth, Yc (ft)	= 3.10
		Top Width (ft)	= 2.54
Calculations		EGL (ft)	= 5.15
Compute by:	Known Q		
Known Q (cfs)	= 103.00		


Known Q (cfs)

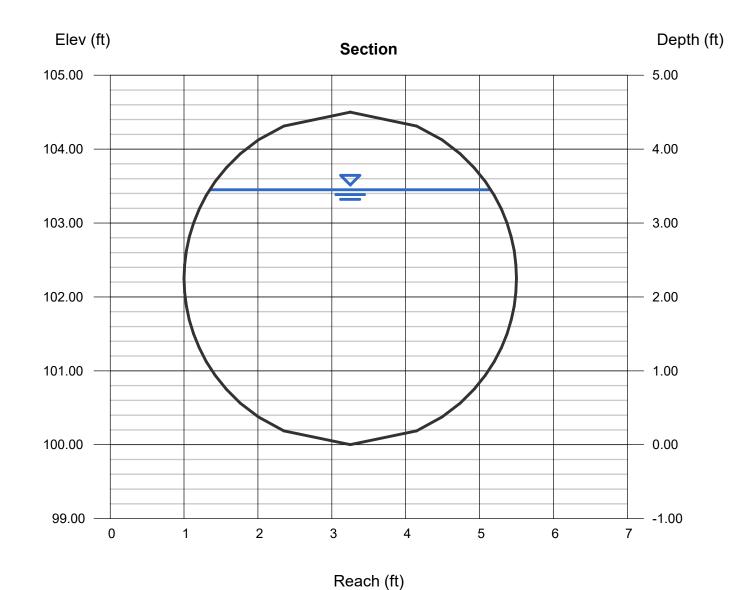
= 112.00

Thursday, Oct 15 2020

STORM DRAIN LINE-3A (NODE 34-30)

Circular		Highlighted	
Diameter (ft)	= 4.00	Depth (ft)	= 2.66
		Q (cfs)	= 112.00
		Area (sqft)	= 8.90
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 12.59
Slope (%)	= 1.00	Wetted Perim (ft)	= 7.64
N-Value	= 0.013	Crit Depth, Yc (ft)	= 3.20
		Top Width (ft)	= 3.77
Calculations		EGL (ft)	= 5.12
Compute by:	Known Q	` ,	

Known Q (cfs)


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

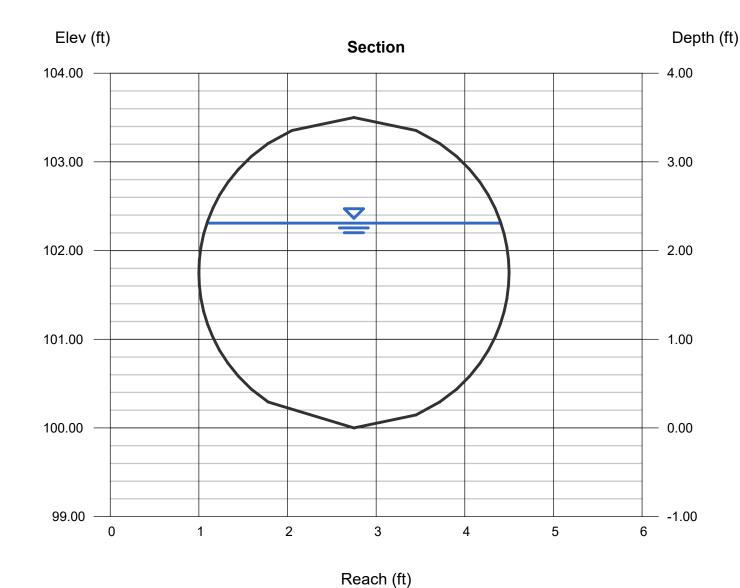
= 184.00

Thursday, Oct 15 2020

STORM DRAIN LINE-B (NODE 140-160)

Circular		Highlighted	
Diameter (ft)	= 4.50	Depth (ft)	= 3.45
		Q (cfs)	= 184.00
		Area (sqft)	= 13.10
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 14.05
Slope (%)	= 1.00	Wetted Perim (ft)	= 9.61
N-Value	= 0.013	Crit Depth, Yc (ft)	= 3.92
		Top Width (ft)	= 3.80
Calculations		EGL (ft)	= 6.52
Compute by:	Known Q		

Known Q (cfs)

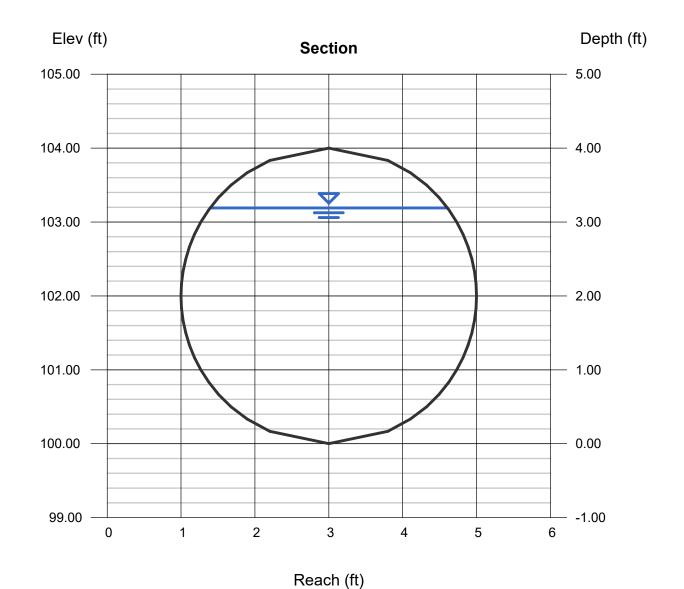

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 78.00

Thursday, Oct 15 2020

STORM DRAIN LINE-B (NODE 158-150)

Circular		Highlighted	
Diameter (ft)	= 3.50	Depth (ft)	= 2.31
, ,		Q (cfs)	= 78.00
		Area (sqft)	= 6.76
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 11.55
Slope (%)	= 1.00	Wetted Perim (ft)	= 6.65
N-Value	= 0.013	Crit Depth, Yc (ft)	= 2.76
		Top Width (ft)	= 3.31
Calculations		EGL (ft)	= 4.38
Compute by:	Known Q		



Соптрите ру: Known Q (cfs)

= 140.00

STORM DRAIN LINE-B (NODE 160-158)

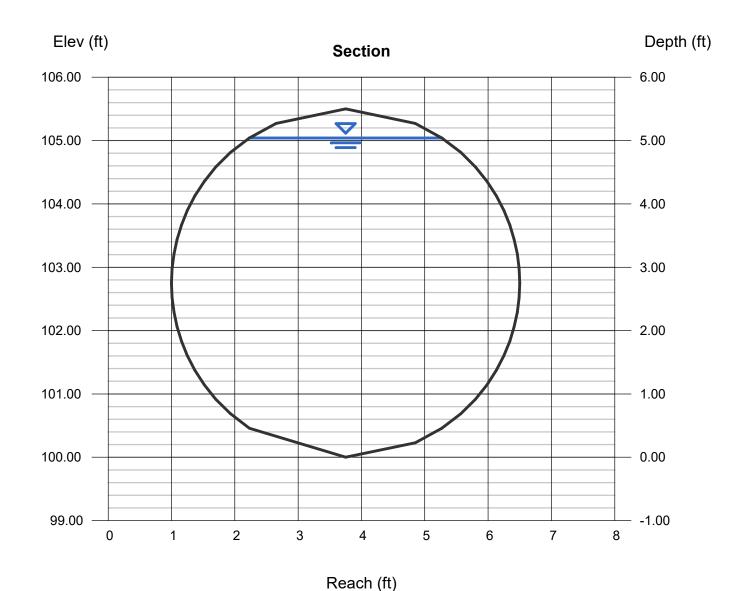
Circular		Highlighted	
Diameter (ft)	= 4.00	Depth (ft)	= 3.19
		Q (cfs)	= 140.00
		Area (sqft)	= 10.76
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 13.02
Slope (%)	= 1.00	Wetted Perim (ft)	= 8.84
N-Value	= 0.013	Crit Depth, Yc (ft)	= 3.51
		Top Width (ft)	= 3.21
Calculations		EGL (ft)	= 5.82
Compute by:	Known Q		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Oct 15 2020

= 5.04 = 360.00 = 22.81 = 15.78 = 14.05 = 5.07

= 3.04


= 8.91

STORM DRAIN LINE-B (NODE 180-140)

Circular		Highlighted
Diameter (ft)	= 5.50	Depth (ft)
		Q (cfs)
		Area (sqft)
Invert Elev (ft)	= 100.00	Velocity (ft/s)
Slope (%)	= 1.00	Wetted Perim (ft)
N-Value	= 0.013	Crit Depth, Yc (ft)
		Top Width (ft)

Calculations

Compute by: Known Q Known Q (cfs) = 360.00

EGL (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

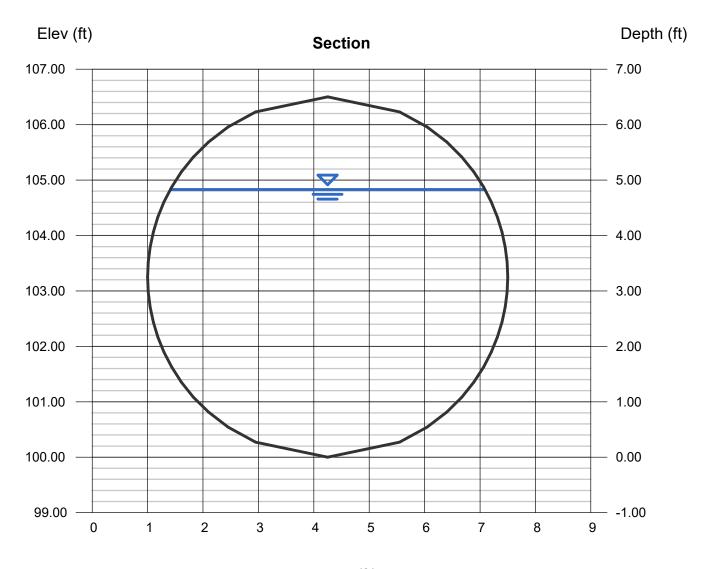
Thursday, Oct 15 2020

= 9.78

STORM DRAIN LINE-B (NODE 195-180)

Circular Diameter (ft)	= 6.50

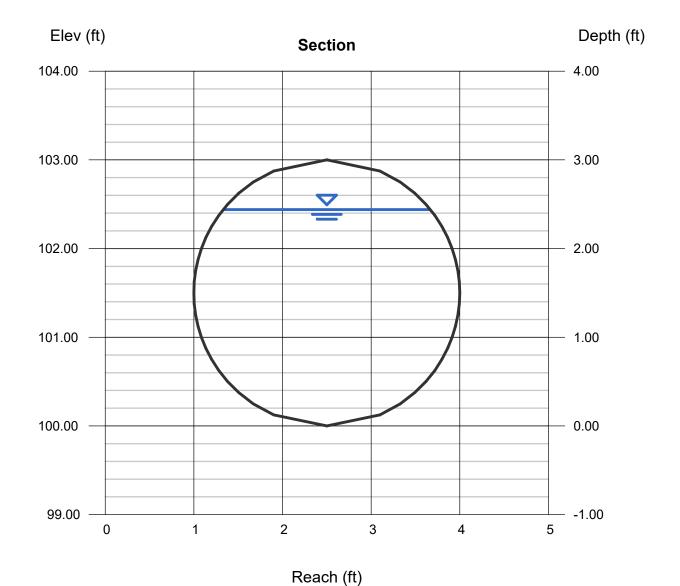
Invert Elev (ft) = 100.00 Slope (%) = 1.00 N-Value = 0.013


Calculations

Compute by: Known Q Known Q (cfs) = 472.00

= 4.83Depth (ft) Q (cfs) = 472.00Area (sqft)

Highlighted

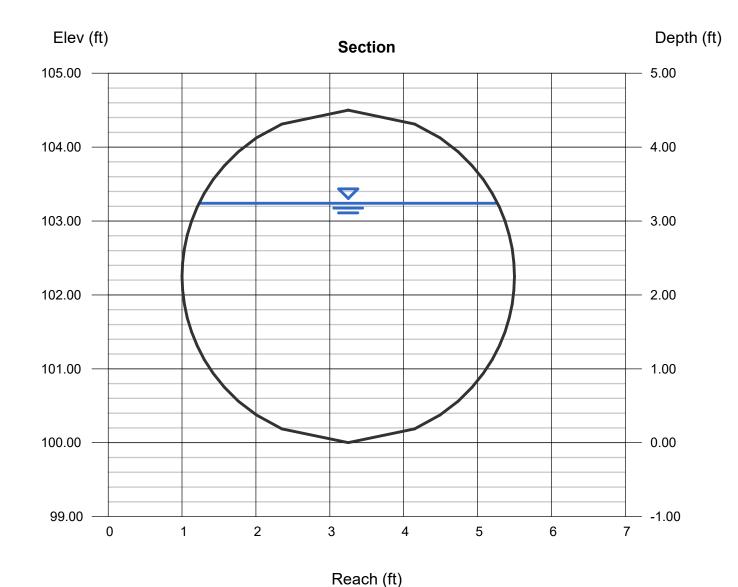

= 26.47Velocity (ft/s) = 17.83 Wetted Perim (ft) = 13.52 Crit Depth, Yc (ft) = 5.71 Top Width (ft) = 5.68EGL (ft)

Reach (ft)

STORM DRAIN LINE-2B (NODE 110-106)

Circular		Highlighted	
Diameter (ft)	= 3.00	Depth (ft)	= 2.44
		Q (cfs)	= 66.00
		Area (sqft)	= 6.16
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 10.71
Slope (%)	= 1.00	Wetted Perim (ft)	= 6.75
N-Value	= 0.013	Crit Depth, Yc (ft)	= 2.61
		Top Width (ft)	= 2.33
Calculations		EGL (ft)	= 4.22
Compute by:	Known Q		
Known Q (cfs)	= 66.00		

Known Q (cfs)


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

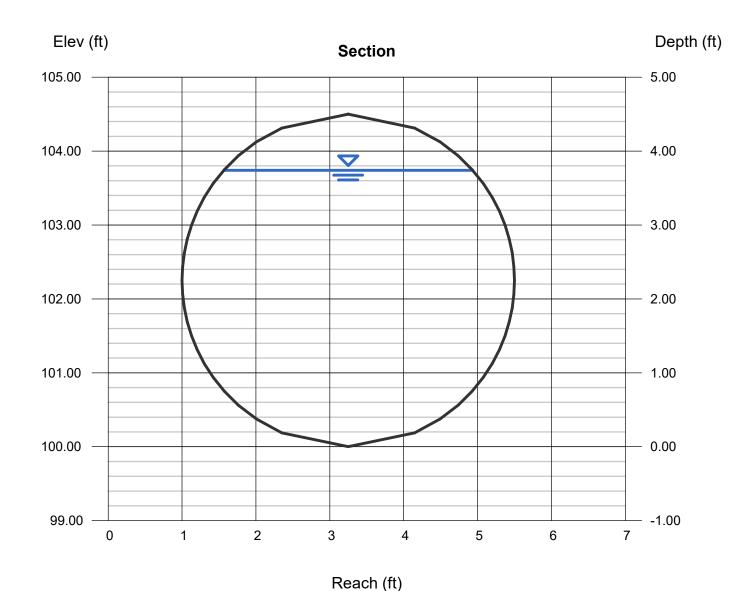
= 171.00

Thursday, Oct 15 2020

STORM DRAIN LINE-2B (NODE 130-110)

Circular		Highlighted	
Diameter (ft)	= 4.50	Depth (ft)	= 3.24
, ,		Q (cfs)	= 171.00
		Area (sqft)	= 12.29
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 13.92
Slope (%)	= 1.00	Wetted Perim (ft)	= 9.13
N-Value	= 0.013	Crit Depth, Yc (ft)	= 3.80
		Top Width (ft)	= 4.03
Calculations		EGL (ft)	= 6.25
Compute by:	Known Q	• •	

Known Q (cfs)

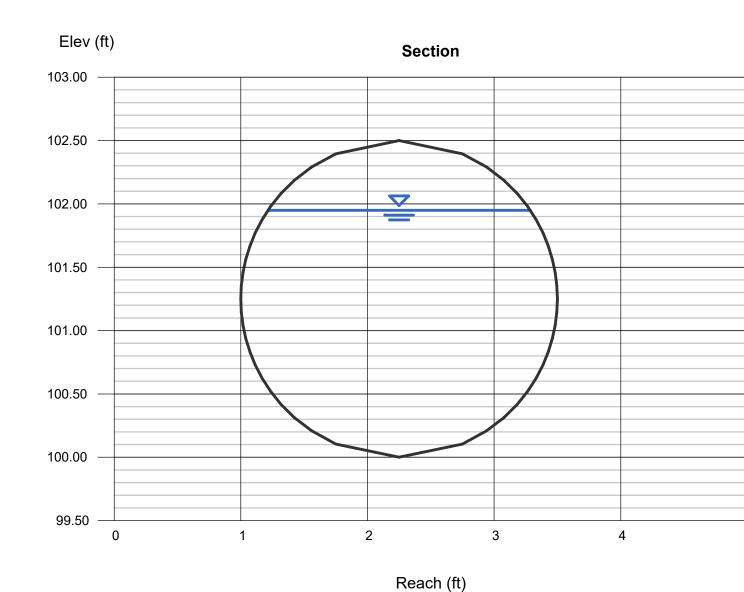

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 199.00

Thursday, Oct 15 2020

STORM DRAIN LINE-2B (NODE 140-130)

Circular		Highlighted	
Diameter (ft)	= 4.50	Depth (ft)	= 3.74
		Q (cfs)	= 199.00
		Area (sqft)	= 14.13
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 14.08
Slope (%)	= 1.00	Wetted Perim (ft)	= 10.33
N-Value	= 0.013	Crit Depth, Yc (ft)	= 4.03
		Top Width (ft)	= 3.37
Calculations		EGL (ft)	= 6.82
Compute by:	Known Q		

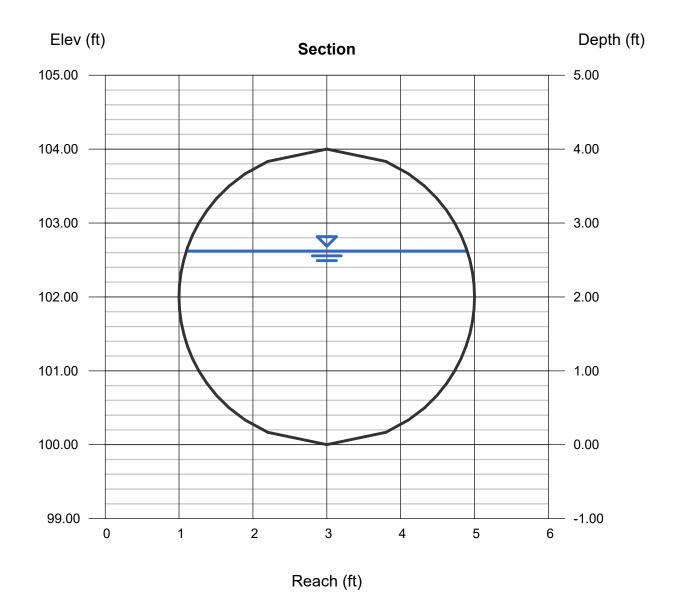


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Oct 15 2020

STORM DRAIN LINE-3B (NODE 160-165)

Circular		Highlighted	
Diameter (ft)	= 2.50	Depth (ft)	= 1.95
		Q (cfs)	= 39.00
		Area (sqft)	= 4.12
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 9.47
Slope (%)	= 1.00	Wetted Perim (ft)	= 5.43
N-Value	= 0.013	Crit Depth, Yc (ft)	= 2.11
		Top Width (ft)	= 2.06
Calculations		EGL (ft)	= 3.34
Compute by:	Known Q		
Known Q (cfs)	= 39.00		



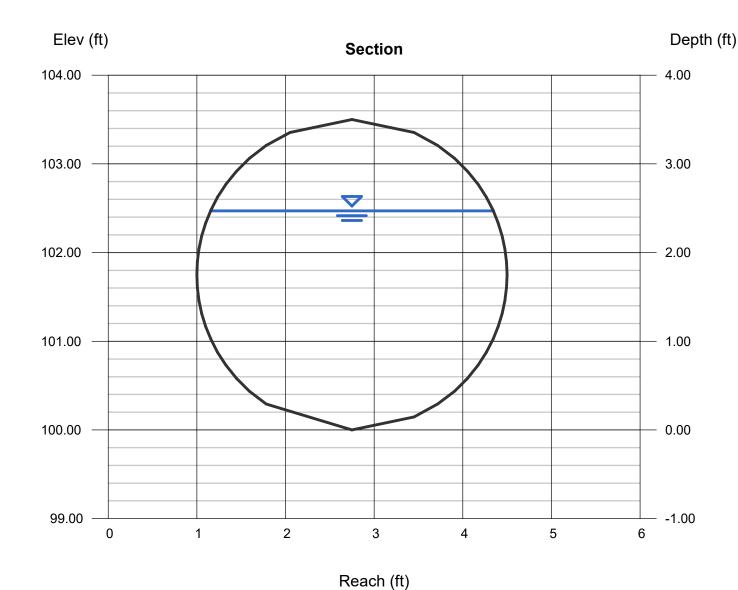
Соптрите ру: Known Q (cfs)

= 110.00

STORM DRAIN LINE-4B (NODE 180-186)

Circular		Highlighted	
Diameter (ft)	= 4.00	Depth (ft)	= 2.62
		Q (cfs)	= 110.00
		Area (sqft)	= 8.75
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 12.57
Slope (%)	= 1.00	Wetted Perim (ft)	= 7.56
N-Value	= 0.013	Crit Depth, Yc (ft)	= 3.17
		Top Width (ft)	= 3.80
Calculations		EGL (ft)	= 5.08
Compute by:	Known Q		

Known Q (cfs)


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 85.00

Thursday, Oct 15 2020

STORM DRAIN LINE-4B (NODE 186-184)

Circular		Highlighted	
Diameter (ft)	= 3.50	Depth (ft)	= 2.47
		Q (cfs)	= 85.00
		Area (sqft)	= 7.26
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 11.71
Slope (%)	= 1.00	Wetted Perim (ft)	= 6.98
N-Value	= 0.013	Crit Depth, Yc (ft)	= 2.87
		Top Width (ft)	= 3.19
Calculations		EGL (ft)	= 4.60
Compute by:	Known Q		

DATE: 9/23/2021

TIME: 9:19

WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1

CARD SECT CH CODE NO TY	HN NO OF YPE PIERS	AVE PIER WIDTH	HEIGHT 1 DIAMETER	ZL	ZR	INV DROP	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)	Y(6)	Y(7)	Y(8)	Y(9)	Y(10)
CD 36 4	4		3.00													
CD 48 4	4		4.00													
CD 54 4	4		4.50													
CD 60 4	4		5.00													
CD 66 4	4		5.50													
CD 72 4	4		6.00													

PAGE NO 3

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

TRAVERTINE

HEADING LINE NO 2 IS -

BASIN OUTLET PIPE

HEADING LINE NO 3 IS -

09-23-2021

PAGE NO 2

WATER SURFACE PROFILE - ELEMENT CARD LISTING

ELEMENT NO	1 IS A SYSTEM OUT	TLET *	*	*										
	U/S DATA	STATION	INVERT	SECT					WS	ELEV				
		1000.00	-10.00	66					:	15.60				
THE ABOVE ELE	MENT CONTAINED AN	INVERT ELEV	WHICH W	AS NOT	GREATER TH	IAN THE	PREVIOUS	INVERT	ELEV	-WARNI	NG			
ELEMENT NO	2 IS A REACH	*	*	*										
	U/S DATA	STATION	INVERT	SECT		N					RADIUS	ANGLE	ANG PT	MAN H
		1200.00	1.00	66		0.013					0.00	0.00	0.00	0
ELEMENT NO	3 IS A REACH	*	*	*										
	U/S DATA	STATION	INVERT	SECT		N					RADIUS	ANGLE	ANG PT	MAN H
		1982.00	10.00	66		0.013					45.00	78.00	0.00	0
ELEMENT NO	4 IS A JUNCTION	*	*	*	*		*			*		*	:	
	U/S DATA	STATION	INVERT	SECT I	AT-1 LAT-2	2 N	Q3	04	INV	ERT-3	INVERT-4	PHI 3	PHI 4	
	-, -	1982.00	11.00	66	36 0	0.014	-	0.0		12.00	0.00	60.00	0.00	
ELEMENT NO	5 IS A REACH	*	*	*										
LLLIILINI NO	U/S DATA	STATION	INVERT	SECT		N					RADIUS	ANGLE	ANG PT	MAN H
	U/J DATA	2043.00	12.00	66		0.013					0.00	0.00	0.00	0
		20.5100				0.025					0.00	0.00	0.00	ŭ
ELEMENT NO	6 IS A REACH	*	*	*										
	U/S DATA	STATION	INVERT	SECT		N					RADIUS	ANGLE	ANG PT	MAN H
		2323.00	16.00	66		0.013					0.00	0.00	0.00	0
ELEMENT NO	7 IS A SYSTEM HEA	ADWORKS		*			*							
	U/S DATA	STATION	INVERT	SECT					WS	ELEV				
	,	2323.00	16.00	66						0.00				
NO EDIT ERROR	S ENCOUNTERED-COM	PUTATION IS	NOW BEGI	NNING										

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING
** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = INV + DC

PAGE 1

WATER SURFACE PROFILE LISTING

TRAVERTINE BASIN OUTLET PIPE 09-23-2021

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM ******	S0 ******	******	******	******	******	SF AVE ******	HF ******	*****	N ******	ORM DEPTH		*****	ZR ****	****	****
1000.00	-10.00	25.600	15.600	286.9	12.08	2.264	17.864	0.00	4.682		5.50	0.00	0.00	0	0.00
200.00	0.05500					.007299	1.46			2.296			0.00		
1200.00	1.00	16.060	17.060	286.9	12.08	2.264	19.324	0.00	4.682		5.50	0.00	0.00	0	0.00
782.00	0.01151					.007299	5.71			3.709			0.00		
1982.00	10.00	13.189	23.189	286.9	12.08	2.264	25.453	0.00	4.682		5.50	0.00	0.00	0	0.00
JUNCT STR	0.00000					.005292	0.00						0.00		
1982.00	11.00	13.887	24.887	143.5	6.04	0.566	25.453	0.00	3.339		5.50	0.00	0.00	0	0.00
61.00	0.01639					.001826	0.11			2.188			0.00		
2043.00	12.00	12.999	24.999	143.5	6.04	0.566	25.565	0.00	3.339		5.50	0.00	0.00	0	0.00
280.00	0.01429					.001826	0.51			2.273			0.00		
2323.00	16.00	9.510	25.510	143.5	6.04	0.566	26.076	0.00	3.339		5.50	0.00	0.00	0	0.00

APPENDIX F – SPILLWAY CALCULATIONS

Spillway Calculations:

Spillway to handle the proposed 6 hour 100 year unit hydrograph peak flow. Split evenly over two spillways. This assumes both outlet pipes are blocked, basins can hold their full volume and difference goes over the two spillways.

Q₁₀₀=287 cfs

$$L = \frac{Q}{CH^{3/2}}$$

Given:

 $\frac{1}{2}$ x Q₁₀₀=143.5 cfs

H=1.0'

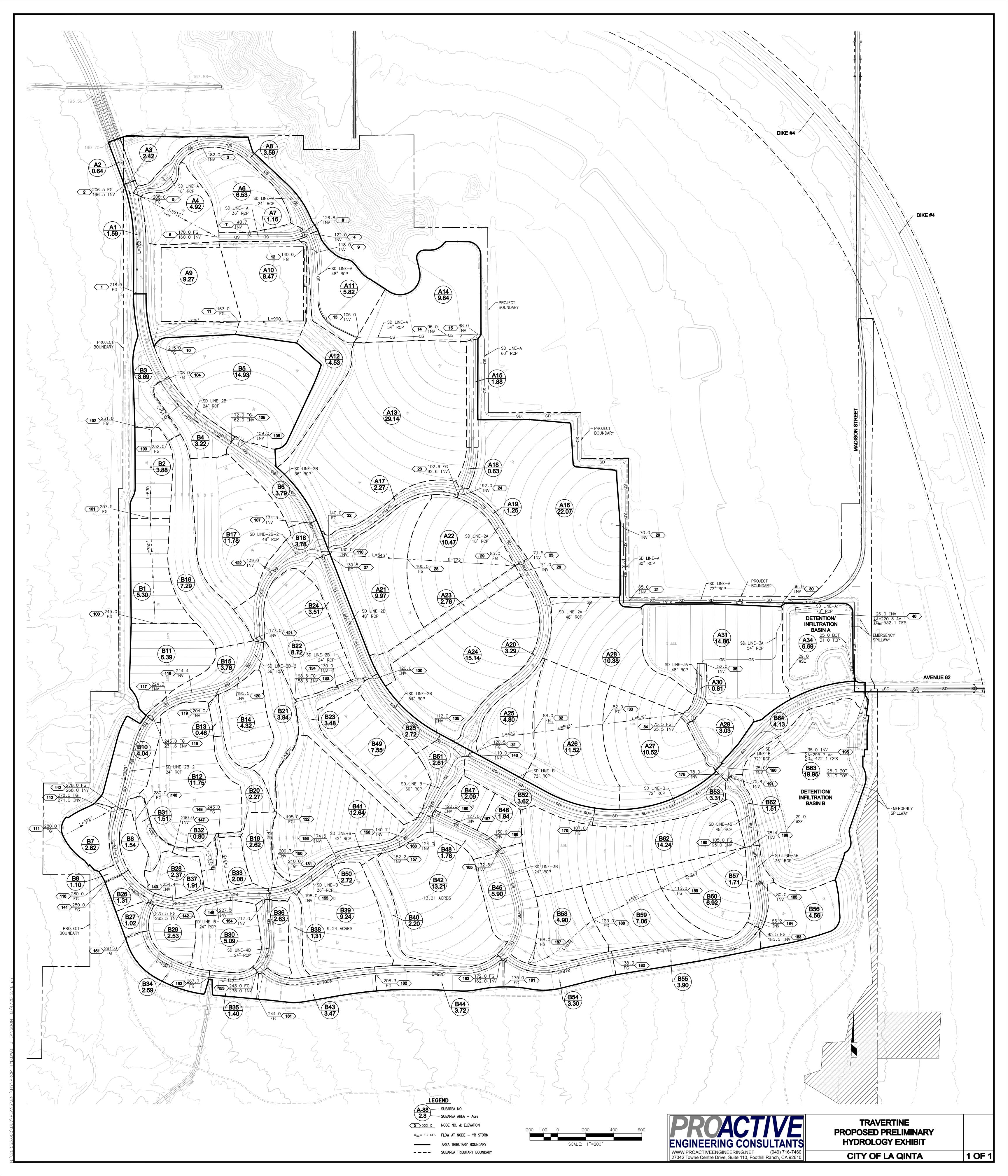
C=2.64

L=54.4'

Basin top elevation 31.0'.


Design spillway to have 1' of freeboard below top of basin.

Design spillway with 1' depth of flow.


Therefore spillway elevation = 29.0'

APPENDIX G - LIST OF MAPS

EXISTING HYDROLOGY MAP

PROPOSED HYDROLOGY MAP

Appendix G

AGREEMENTS – CC&RS, COVENANT AND AGREEMENTS, BMP

MAINTENANCE AGREEMENTS AND/OR OTHER

MECHANISMS FOR ENSURING ONGOING OPERATION,

MAINTENANCE, FUNDING AND TRANSFER OF

REQUIREMENTS FOR THIS PROJECT-SPECIFIC WQMP

Not applicable; project is in the preliminary phase.

Appendix H

PHASE 1 ENVIRONMENTAL SITE ASSESSMENT – SUMMARY OF SITE REMEDIATION CONDUCTED AND USE RESTRICTIONS

Not applicable; project is in the preliminary phase.

2014 Whitewater River Region WQMP

Appendix I

PROJECT-SPECIFIC WQMP SUMMARY DATA FORM

Project-Specific WQMP Summary Data Form

	Ap	plicant Information						
	Name and Title	Lisa Hofmann Morgan						
	Company	Hofmann Land Development Co.						
	Phone	(925) 478-2000						
	Email							
	Pi	oject Information						
(as shown on project application/pro	Project Name oject-specific WQMP)	Travertine Project (TTM 37387)						
	Street Address	West Madison, East of Jefferson Street along Avenue 62, La Quinta CA						
Ne	arest Cross Streets	Madison Street and Avenue 62						
(City or Unin	Municipality corporated County)	City of La Quinta						
	Zip Code							
Tract Number(s) and/or Assessor	Parcel Number(s)	766-110-003, 766-110-004, 766-110-007, 766-110-009, 766-120-001, 766-120-002, 766-120-003, 766-120-006, 766-120-016, 766-120-018, 766-120-015, 766-120-021, 766-120-023, 766-280-057, 764-280-059, 764-280-061, 753-040-014, 753-040-017, 753-040-016, 743-050-029, 753-050-007, 753-060-003						
(other information to help identi	Other							
Indicate type of project.		Development Projects (Use an "X" in cell preceding project type):						
, and the property of the prop		residence; impervious area ≥ 10,000 sq. ft.; Slope ≥ 25%						
		residence; impervious area $\geq 10,000$ sq. ft.; Slope $\geq 10\%$ & erosive soils						
	Commercia	al or Industrial ≥ 100,000 sq. ft.						
	Automotiv	e repair shop						
	Retail Gaso	oline Outlet disturbing > 5,000 sq. ft.						
	Restaurant	disturbing > 5,000 sq. ft.						
	X Home subc	division ≥ 10 housing units						
	X Parking lot	$t \ge 5,000 \text{ sq. ft. or } \ge 25 \text{ parking spaces}$						
Date Project-Specific								
Size of Project A	rea (nearest 0.1 acre)	855.4 acres, 514.2 acres disturbed						
Will the project replace more than 50% surfaces on an existi		No						
Project Area managed with LID	(nearest 0.1 acre)	516						
Are Treatment Contro		No						
Is the project subject to onsite retention	policy?	Yes, partial						
	Measurable Goal?	Yes						
Name of the entity that will imple maintain the post-		Pending						
	Contact Name	Pending – Preliminary Phase						
Street o	or Mailing Address	Pending – Preliminary Phase						
	City	Pending – Preliminary Phase						
	Zip Code	Pending – Preliminary Phase						
	Phone	Pending – Preliminary Phase						
	-	Use by City/County Staff Only						
Preceding Info	ormation Verified b							
Date Project-Specifi								
	Data Entered b	y Name:						

	Date:
Other Comments	