

Noise Calculation Worksheets

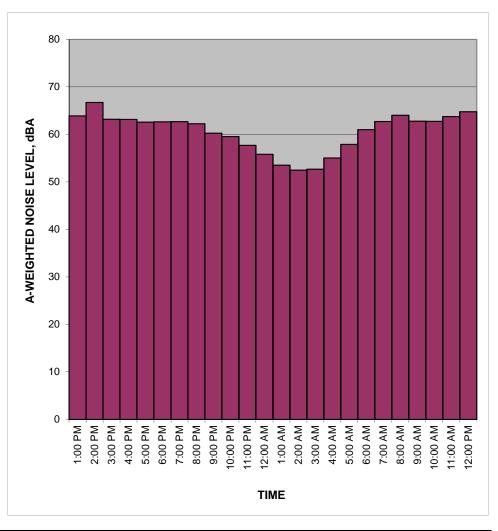
Paseo Marina Project

Noise Calculations Worksheets

Provided by Acoustical Engineering Services

Ambient Noise Measurements

Measured Ambient Noise Levels



Project: Paseo Marina

Location: R1 Sources: Ambient

Date: 5/22 to 5/23/2017

	HNL,
TIME	dB(A)
1:00 PM	63.9
2:00 PM	66.7
3:00 PM	63.2
4:00 PM	63.1
5:00 PM	62.6
6:00 PM	62.6
7:00 PM	62.7
8:00 PM	62.2
9:00 PM	60.2
10:00 PM	59.6
11:00 PM	57.7
12:00 AM	55.8
1:00 AM	53.5
2:00 AM	52.5
3:00 AM	52.7
4:00 AM	55.0
5:00 AM	57.9
6:00 AM	61.0
7:00 AM	62.7
8:00 AM	64.0
9:00 AM	62.8
10:00 AM	62.8
11:00 AM	63.8
12:00 PM	64.8
CNEL, dB(A):	65.7

NOTES:			

Location: R2 -

Date: 5/22/2017

Time Ove	erload Leq	Lmax	L10	L90
12:48:49 PM No	58.9	70.4	61.5	54.5
12:49:49 PM No	53.8	59.7	55.1	52.6
12:50:49 PM No	56.5	61.3	59	54
12:51:49 PM No	57.4	64.9	59.6	54.8
12:52:49 PM No	58.5	65	61.2	55
12:53:49 PM No	55.8	64.8	56.3	54.6
12:54:49 PM No	55.2	58.8	55.9	54.6
12:55:49 PM No	55.6	61	56.3	54.5
12:56:49 PM No	56	60.4	57.9	54
12:57:49 PM No	55.5	66.4	57.1	52.4
12:58:49 PM No	54.2	57.1	55.7	52.4
12:59:49 PM No	53.5	59.6	54	52.2
1:00:49 PM No	55.9	60.5	58.2	53
1:01:49 PM No	56.2	61.9	58.8	53.6
1:02:49 PM No	52.8	55	53.8	52
	FC 4		-	

56.1

Time Overload	Leq	Lmax	L10	L90
10:02:08 PM No	54	59.9	56.1	52.4
10:03:08 PM No	55.8	62.1	60.3	52.8
10:04:08 PM No	52.4	54.8	53.2	51.7
10:05:08 PM No	52.4	54.1	53.1	51.5
10:06:08 PM No	55.2	60.4	57.8	52.5
10:07:08 PM No	53.2	55.3	53.6	52.5
10:08:08 PM No	53.3	56.6	55.3	51.7
10:09:08 PM No	52.4	54	53.3	51.8
10:10:08 PM No	52.5	55	53.5	51.7
10:11:08 PM No	52.4	55.4	53.7	51.3
10:12:08 PM No	52.5	54.8	53.3	51.3
10:13:08 PM No	53.5	55.6	54.7	51.8
10:14:08 PM No	62.1	71.1	67.5	53.3
10:15:08 PM No	53	57.4	53.8	52.2
10:16:08 PM No	52.4	55.4	53.4	51.3

Location: R3

Date: 5/22/2017

Time	Overload	Leq	Lmax	L10	L90
1:10:18 PM	No	66.2	71.3	69.3	61.3
1:11:18 PM	No	67.3	73.1	70	61.2
1:12:18 PM	No	66.2	71.8	69.7	58.7
1:13:18 PM	No	65.2	71.7	69	57.5
1:14:18 PM	No	66	70.8	69.4	56.4
1:15:18 PM	No	65.5	71.6	69.7	54.2
1:16:18 PM	No	65.5	70.3	68.9	60
1:17:18 PM	No	67.6	72.7	69.8	62.5
1:18:18 PM	No	68.3	73.6	70.8	61.7
1:19:18 PM	No	67.1	71.9	70.7	55.4
1:20:18 PM	No	66	70.9	69.7	60
1:21:18 PM	No	65.6	70.8	68.7	59.3
1:22:18 PM	No	64.2	68.8	66.4	59.5
1:23:18 PM	No	66.3	71	69	57.1
1:24:18 PM	No	67	72.9	70.6	59.6

66.4

Time Overload	Leq	Lmax	L10	L90
10:28:48 PM No	66.3	71.8	69.2	60.7
10:29:48 PM No	61.5	68.7	66.4	50.7
10:30:48 PM No	64.3	71.1	68.4	51.1
10:31:48 PM No	63.2	68.1	66.6	55.2
10:32:48 PM No	59.7	69.3	64.5	50.1
10:33:48 PM No	63.1	69.8	68.6	52.3
10:34:48 PM No	63.7	70.2	67.6	52.6
10:35:48 PM No	66.7	72.4	70.1	58.9
10:36:48 PM No	63.5	70.9	67.8	52.9
10:37:48 PM No	61.6	67.9	65.5	54.2
10:38:48 PM No	57.8	65.8	62.1	50.1
10:39:48 PM No	66.2	71.7	69	56.9
10:40:48 PM No	59.5	69.3	65.1	48.1
10:41:48 PM No	60.7	68.7	66.8	48.5
10:42:48 PM No	64.9	71.3	69.2	53.5

Location: R4

Date: 5/22/2017

Time	Overload	Leq	Lmax	L10	L90
1:29:45 PM N	lo	68.9	75.7	71.4	63.3
1:30:45 PM N	lo	68.9	79.6	71.9	62
1:31:45 PM N	lo	67.1	71	70.1	63.3
1:32:45 PM N	lo	67.2	71.8	70.6	61.4
1:33:45 PM N	lo	65.9	70.7	68.8	62.7
1:34:45 PM N	lo	65.6	72.5	68.1	56.9
1:35:45 PM N	lo	65.8	70.3	69	58.7
1:36:45 PM N	lo	66.7	71	69.7	59
1:37:45 PM N	lo	71.7	83.7	73	58.1
1:38:45 PM N	lo	67.6	73.2	70.6	64
1:39:45 PM N	lo	65.2	69.3	68.5	60.3
1:40:45 PM N	lo	67.1	77.6	70.9	59.3
1:41:45 PM N	lo	67.8	74.3	70	62.5
1:42:45 PM N	lo	72.2	79.4	77.7	67.4
1:43:45 PM N	lo	71.7	80.8	75.1	59.8
		68.6			

Time Overload	Leq	Lmax	L10	L90
10:47:32 PM No	57.2	64.3	62.5	51.2
10:48:32 PM No	60.3	68.3	64.3	53.4
10:49:32 PM No	63.6	73.2	66.8	53.1
10:50:32 PM No	63.1	71.6	67.5	52
10:51:32 PM No	60.3	67.6	64.4	53.7
10:52:32 PM No	62.5	69.1	67.2	52.8
10:53:32 PM No	64.6	74.1	68.7	53.4
10:54:32 PM No	60.7	68.2	65.6	52.6
10:55:32 PM No	59.3	69.4	63	50.9
10:56:32 PM No	59.6	66.3	63.5	54.4
10:57:32 PM No	59.5	69.2	64.1	50.2
10:58:32 PM No	61.2	70.4	64.4	53
10:59:32 PM No	61.2	70.6	65.3	54.2
11:00:32 PM No	60.7	69	66.6	49.3
11:01:32 PM No	65.9	78.1	70.8	50.7

Location: R5

Date: 5/22/2017

Time	Overload	Leq	Lmax	L10	L90
1:49:54 PM N	0	64.7	70	69.3	58.8
1:50:54 PM N	0	63.7	72.8	65.6	59.5
1:51:54 PM N	0	63	69.3	67.4	57.6
1:52:54 PM N	0	62.9	67.2	65.8	60.2
1:53:54 PM N	0	64.9	72.8	69.5	57.8
1:54:54 PM N	0	66.8	74.5	70.9	60.1
1:55:54 PM N	0	63.2	69.3	65.6	59.6
1:56:54 PM N	0	63.1	69.9	66.4	59.2
1:57:54 PM N	0	62.5	68.1	65.5	58.9
1:58:54 PM N	0	62.6	67.8	65.5	59.4
1:59:54 PM N	0	64.9	68.5	67.3	60.9
2:00:54 PM N	0	77.1	90.8	78.6	61.1
2:02:54 PM N	0	63.8	68.3	66.5	59.6
2:03:54 PM N	0	63.4	68.8	66.9	59.7

67.7

Time Overload	Leq	Lmax	L10	L90
11:07:30 PM No	62.9	71.1	67.9	54.4
11:08:30 PM No	61.5	73.7	64	53
11:09:30 PM No	62.4	68.6	66.6	53.4
11:10:30 PM No	55.8	61.4	58.5	52.9
11:11:30 PM No	56.7	67.3	56.8	51.7
11:12:30 PM No	59.5	70.9	61.2	52.8
11:13:30 PM No	57.2	64.5	60.3	52.3
11:14:30 PM No	60.3	69.7	63.7	52.1
11:15:30 PM No	57.8	65.2	60.5	53.3
11:16:30 PM No	59.4	65.5	62.5	54.5
11:17:30 PM No	56.5	64	61.3	52
11:18:30 PM No	58.7	70.1	61.3	51.5
11:19:30 PM No	64.2	73.6	69.6	51.1
11:20:30 PM No	62	69.5	67	52.9
11:21:30 PM No	59.2	71	61.2	53.9

Construction Noise & Vibration Calculations

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	50	0
Rubber Tired Loader	1	79	40%	50	0
Air Compressor	1	78	40%	75	0
Tractor/Loader/Backhoe	1	79	40%	75	0
Skid Steer Loader	1	79	40%	100	0
Water Truck/Sweeper	1	81	10%	100	0
Terrain Forklift	1	83	40%	125	0
Welder	1	74	40%	125	0
Concrete Saw	1	90	20%	150	0
Tractor/Loader/Backhoe	1	79	40%	150	0
Signal Boards	2	73	50%	175	0
Crusing/Proc. Equipment	1	76	50%	175	0

13

Receptor: R1

Results:

1-hour Leq: 84.9

Construction Phase: Grading / Excavation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	50	0
Excavator	1	81	40%	50	0
Crane	1	81	16%	75	0
Cement and Mortar Mixers	1	80	50%	75	0
Terrain Forklift	1	83	40%	100	0
Water Truck/Sweeper	1	81	10%	100	0
Tractor/Loader/Backhoe	1	79	40%	125	0
Rubber Tired Loader	1	79	40%	125	0
Welders	2	74	40%	150	0
Skid Steer Loader	1	79	40%	150	0
Bore/Drill Rig	1	84	20%	175	0
Signal Boards	2	73	50%	175	0
Excavator	1	81	40%	200	0
Tractor/Loader/Backhoe	1	79	40%	200	0
Rubber Tired Loader	1	79	40%	200	0
	17				

Receptor: R1

Results:

1-hour Leq: 82.6

Construction Phase: Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane (mobile)	1	84	20%	50	0
Concrete Saw	1	90	20%	50	0
Crane (tower)	1	81	16%	75	0
Cement and Mortar Mixers	3	80	50%	75	0
Plate Compactors	2	83	20%	100	0
Air Compressor	1	78	40%	100	0
Forklift	2	75	20%	125	0
Water Truck/Sweeper	1	81	10%	125	0
Tractor/Loader/Backhoe	3	79	40%	150	0
Signal Boards	2	73	50%	150	0
Terrain Forklift	1	83	40%	175	0
Skid Steer Loader	1	79	40%	175	0
Welders	2	74	40%	200	0
Concrete Saw	2	90	20%	200	0

23

Receptor: R1

Results:

1-hour Leq: 86.1

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane (mobile)	1	84	20%	50	0
Concrete Saw	1	90	20%	50	0
Crane (tower)	1	81	16%	75	0
Rubber Tired Loader	1	79	40%	75	0
Air Compressor	1	78	40%	100	0
Forklift	1	75	20%	100	0
Water Truck/Sweeper	1	81	10%	125	0
Tractor/Loader/Backhoe	1	79	40%	125	0
Signal Boards	2	73	50%	150	0
Terrain Forklift	1	83	40%	150	0
Skid Steer Loader	1	79	40%	175	0
Welders	2	74	40%	175	0
Air Compressor	2	78	40%	200	0
Forklift	2	75	20%	200	0

18

Receptor: R1

Results:

1-hour Leq: 84.9

Construction Phase: Paving/Concrete/Landscape

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Rubber Tired Loader	1	79	40%	50	0
Concrete Saw	1	90	20%	50	0
Paver	1	77	50%	75	0
Cement and Mortar Mixers	2	80	50%	75	0
Plate Compactors	2	83	20%	100	0
Air Compressor	2	78	40%	100	0
Forklift	2	75	20%	125	0
Water Truck/Sweeper	1	81	10%	125	0
Paving Equipment	1	77	50%	150	0
Signal Boards	2	73	50%	150	0
Terrain Forklift	1	83	40%	175	0
Skid Steer Loader	1	79	40%	175	0
Roller	1	80	20%	200	0
Trencher	1	80	50%	200	0
Welders	1	74	40%	200	0

20

Receptor: R1

Results:

1-hour Leq: 85.4

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	140	0
Rubber Tired Loader	1	79	40%	140	0
Air Compressor	1	78	40%	150	0
Tractor/Loader/Backhoe	1	79	40%	150	0
Skid Steer Loader	1	79	40%	175	0
Water Truck/Sweeper	1	81	10%	175	0
Terrain Forklift	1	83	40%	200	0
Welder	1	74	40%	200	0
Concrete Saw	1	90	20%	200	0
Tractor/Loader/Backhoe	1	79	40%	200	0
Signal Boards	2	73	50%	200	0
Crusing/Proc. Equipment	1	76	50%	200	0

13

Receptor: R2

Results:

1-hour Leq: 77.9

Construction Phase: Grading / Excavation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	140	0
Excavator	1	81	40%	140	0
Crane	1	81	16%	150	0
Cement and Mortar Mixers	1	80	50%	150	0
Terrain Forklift	1	83	40%	175	0
Water Truck/Sweeper	1	81	10%	175	0
Tractor/Loader/Backhoe	1	79	40%	200	0
Rubber Tired Loader	1	79	40%	200	0
Welders	2	74	40%	200	0
Skid Steer Loader	1	79	40%	200	0
Bore/Drill Rig	1	84	20%	200	0
Signal Boards	2	73	50%	200	0
Excavator	1	81	40%	200	0
Tractor/Loader/Backhoe	1	79	40%	200	0
Rubber Tired Loader	1	79	40%	200	0
	17				

Receptor:

Results:

1-hour Leq: 76.7

R2

Construction Phase: Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane (mobile)	1	84	20%	140	0
Concrete Saw	1	90	20%	140	0
Crane (tower)	1	81	16%	150	0
Cement and Mortar Mixers	3	80	50%	150	0
Plate Compactors	2	83	20%	175	0
Air Compressor	1	78	40%	175	0
Forklift	2	75	20%	200	0
Water Truck/Sweeper	1	81	10%	200	0
Tractor/Loader/Backhoe	3	79	40%	200	0
Signal Boards	2	73	50%	200	0
Terrain Forklift	1	83	40%	200	0
Skid Steer Loader	1	79	40%	200	0
Welders	2	74	40%	200	0
Concrete Saw	2	90	20%	200	0

23

Receptor: R2

Results:

1-hour Leq: 80.1

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane (mobile)	1	84	20%	140	0
Concrete Saw	1	90	20%	140	0
Crane (tower)	1	81	16%	150	0
Rubber Tired Loader	1	79	40%	150	0
Air Compressor	1	78	40%	175	0
Forklift	1	75	20%	175	0
Water Truck/Sweeper	1	81	10%	200	0
Tractor/Loader/Backhoe	1	79	40%	200	0
Signal Boards	2	73	50%	200	0
Terrain Forklift	1	83	40%	200	0
Skid Steer Loader	1	79	40%	200	0
Welders	2	74	40%	200	0
Air Compressor	2	78	40%	200	0
Forklift	2	75	20%	200	0

18

Receptor: R2

Results:

1-hour Leq: 77.5

Construction Phase: Paving/Concrete/Landscape

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Rubber Tired Loader	1	79	40%	140	0
Concrete Saw	1	90	20%	140	0
Paver	1	77	50%	150	0
Cement and Mortar Mixers	2	80	50%	150	0
Plate Compactors	2	83	20%	175	0
Air Compressor	2	78	40%	175	0
Forklift	2	75	20%	200	0
Water Truck/Sweeper	1	81	10%	200	0
Paving Equipment	1	77	50%	200	0
Signal Boards	2	73	50%	200	0
Terrain Forklift	1	83	40%	200	0
Skid Steer Loader	1	79	40%	200	0
Roller	1	80	20%	200	0
Trencher	1	80	50%	200	0
Welders	1	74	40%	200	0

20

Receptor: R2

Results:

1-hour Leq: 78.5

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	90	0
Rubber Tired Loader	1	79	40%	90	0
Air Compressor	1	78	40%	115	0
Tractor/Loader/Backhoe	1	79	40%	115	0
Skid Steer Loader	1	79	40%	140	0
Water Truck/Sweeper	1	81	10%	140	0
Terrain Forklift	1	83	40%	165	0
Welder	1	74	40%	165	0
Concrete Saw	1	90	20%	190	0
Tractor/Loader/Backhoe	1	79	40%	190	0
Signal Boards	2	73	50%	190	0
Crusing/Proc. Equipment	1	76	50%	190	0

13

Receptor: R3

Results:

1-hour Leq: 80.6

Construction Phase: Grading / Excavation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	90	0
Excavator	1	81	40%	90	0
Crane	1	81	16%	115	0
Cement and Mortar Mixers	1	80	50%	115	0
Terrain Forklift	1	83	40%	140	0
Water Truck/Sweeper	1	81	10%	140	0
Tractor/Loader/Backhoe	1	79	40%	165	0
Rubber Tired Loader	1	79	40%	165	0
Welders	2	74	40%	190	0
Skid Steer Loader	1	79	40%	190	0
Bore/Drill Rig	1	84	20%	190	0
Signal Boards	2	73	50%	190	0
Excavator	1	81	40%	190	0
Tractor/Loader/Backhoe	1	79	40%	190	0
Rubber Tired Loader	1	79	40%	190	0
·	17				

Receptor:

Results:

1-hour Leq: 78.9

R3

Construction Phase: Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane (mobile)	1	84	20%	90	0
Concrete Saw	1	90	20%	90	0
Crane (tower)	1	81	16%	115	0
Cement and Mortar Mixers	3	80	50%	115	0
Plate Compactors	2	83	20%	140	0
Air Compressor	1	78	40%	140	0
Forklift	2	75	20%	165	0
Water Truck/Sweeper	1	81	10%	165	0
Tractor/Loader/Backhoe	3	79	40%	190	0
Signal Boards	2	73	50%	190	0
Terrain Forklift	1	83	40%	190	0
Skid Steer Loader	1	79	40%	190	0
Welders	2	74	40%	190	0
Concrete Saw	2	90	20%	190	0

23

Receptor: R3

Results:

1-hour Leq: 82.3

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane (mobile)	1	84	20%	90	0
Concrete Saw	1	90	20%	90	0
Crane (tower)	1	81	16%	115	0
Rubber Tired Loader	1	79	40%	115	0
Air Compressor	1	78	40%	140	0
Forklift	1	75	20%	140	0
Water Truck/Sweeper	1	81	10%	165	0
Tractor/Loader/Backhoe	1	79	40%	165	0
Signal Boards	2	73	50%	190	0
Terrain Forklift	1	83	40%	190	0
Skid Steer Loader	1	79	40%	190	0
Welders	2	74	40%	190	0
Air Compressor	2	78	40%	190	0
Forklift	2	75	20%	190	0

18

Receptor: R3

Results:

1-hour Leq: 80.4

Construction Phase: Paving/Concrete/Landscape

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Rubber Tired Loader	1	79	40%	90	0
Concrete Saw	1	90	20%	90	0
Paver	1	77	50%	115	0
Cement and Mortar Mixers	2	80	50%	115	0
Plate Compactors	2	83	20%	140	0
Air Compressor	2	78	40%	140	0
Forklift	2	75	20%	165	0
Water Truck/Sweeper	1	81	10%	165	0
Paving Equipment	1	77	50%	190	0
Signal Boards	2	73	50%	190	0
Terrain Forklift	1	83	40%	190	0
Skid Steer Loader	1	79	40%	190	0
Roller	1	80	20%	190	0
Trencher	1	80	50%	190	0
Welders	1	74	40%	190	0

20

Receptor: R3

Results:

1-hour Leq: 81.2

Construction Phase: Demolition

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Concrete Saw	1	90	20%	135	0
Rubber Tired Loader	1	79	40%	135	0
Air Compressor	1	78	40%	160	0
Tractor/Loader/Backhoe	1	79	40%	160	0
Skid Steer Loader	1	79	40%	185	0
Water Truck/Sweeper	1	81	10%	185	0
Terrain Forklift	1	83	40%	210	0
Welder	1	74	40%	210	0
Concrete Saw	1	90	20%	210	0
Tractor/Loader/Backhoe	1	79	40%	210	0
Signal Boards	2	73	50%	210	0
Crusing/Proc. Equipment	1	76	50%	210	0

13

Receptor: R4

Results:

1-hour Leq: 77.9

Construction Phase: Grading / Excavation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Bore/Drill Rig	1	84	20%	135	0
Excavator	1	81	40%	135	0
Crane	1	81	16%	160	0
Cement and Mortar Mixers	1	80	50%	160	0
Terrain Forklift	1	83	40%	185	0
Water Truck/Sweeper	1	81	10%	185	0
Tractor/Loader/Backhoe	1	79	40%	210	0
Rubber Tired Loader	1	79	40%	210	0
Welders	2	74	40%	210	0
Skid Steer Loader	1	79	40%	210	0
Bore/Drill Rig	1	84	20%	210	0
Signal Boards	2	73	50%	210	0
Excavator	1	81	40%	210	0
Tractor/Loader/Backhoe	1	79	40%	210	0
Rubber Tired Loader	1	79	40%	210	0
	17				

Receptor:

Results:

1-hour Leq: 76.5

R4

Construction Phase: Foundation

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane (mobile)	1	84	20%	135	0
Concrete Saw	1	90	20%	135	0
Crane (tower)	1	81	16%	160	0
Cement and Mortar Mixers	3	80	50%	160	0
Plate Compactors	2	83	20%	185	0
Air Compressor	1	78	40%	185	0
Forklift	2	75	20%	210	0
Water Truck/Sweeper	1	81	10%	210	0
Tractor/Loader/Backhoe	3	79	40%	210	0
Signal Boards	2	73	50%	210	0
Terrain Forklift	1	83	40%	210	0
Skid Steer Loader	1	79	40%	210	0
Welders	2	74	40%	210	0
Concrete Saw	2	90	20%	210	0

23

Receptor: R4

Results:

1-hour Leq: 79.9

Construction Phase: Building Construction

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Crane (mobile)	1	84	20%	135	0
Concrete Saw	1	90	20%	135	0
Crane (tower)	1	81	16%	160	0
Rubber Tired Loader	1	79	40%	160	0
Air Compressor	1	78	40%	185	0
Forklift	1	75	20%	185	0
Water Truck/Sweeper	1	81	10%	210	0
Tractor/Loader/Backhoe	1	79	40%	210	0
Signal Boards	2	73	50%	210	0
Terrain Forklift	1	83	40%	210	0
Skid Steer Loader	1	79	40%	210	0
Welders	2	74	40%	210	0
Air Compressor	2	78	40%	210	0
Forklift	2	75	20%	210	0

18

Receptor: R4

Results:

1-hour Leq: 77.5

Construction Phase: Paving/Concrete/Landscape

Equipment

		Reference			Estimated
	No. of	Noise Level at	Acoustical	Distance to	Noise
Description	Equip.	50ft, Lmax	Usage Factor	Receptor, ft	Shielding, dBA
Rubber Tired Loader	1	79	40%	135	0
Concrete Saw	1	90	20%	135	0
Paver	1	77	50%	160	0
Cement and Mortar Mixers	2	80	50%	160	0
Plate Compactors	2	83	20%	185	0
Air Compressor	2	78	40%	185	0
Forklift	2	75	20%	210	0
Water Truck/Sweeper	1	81	10%	210	0
Paving Equipment	1	77	50%	210	0
Signal Boards	2	73	50%	210	0
Terrain Forklift	1	83	40%	210	0
Skid Steer Loader	1	79	40%	210	0
Roller	1	80	20%	210	0
Trencher	1	80	50%	210	0
Welders	1	74	40%	210	0

20

Receptor: R4

Results:

1-hour Leq: 78.3

INPUT: ROADWAYS								Pase	o Marina			
Eyestone Environmental					15 F	ebruary	2019					
SKB					TNM	2.5						
INPUT: ROADWAYS								Average	pavement typ	∣ e shall be u	used unles	S
PROJECT/CONTRACT:	Paseo Ma	arina						a State h	ighway agend	y substant	iates the u	se
RUN:	Construc	tion - Der	molition					of a diffe	rent type with	the approv	al of FHW	A
Roadway		Points										
Name	Width	Name	No.	Coordi	nates (pav	s (pavement)		Flow Cor	ntrol		Segment	
				X	Y		Z	Control	Speed	Percent	Pvmt	On
								Device	Constraint	Vehicles	Туре	Struct?
										Affected		
	ft			ft	ft		ft		mph	%		
Haul Route	12.0	point1		1	0.0	0.0	0.0	0 Signal	0.00	100	Average	<u> </u>
		point2	1	2 1.	0.000	0.0	0.0	0				

INPUT: TRAFFIC FOR LAeq1h Volumes	П					P	Paseo Ma	rina				
Eyestone Environmental				15 Feb	oruary 20)19						
SKB				TNM 2	.5		ı					
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Paseo Mari	na										
RUN:	Construction	on - Dem	olition									
Roadway	Points											
Name	Name	No.	Segmer	nt								
			Autos		MTruck	S	HTruck	s	Buses		Motorc	ycles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1	15 February 2019	0									
	point2		2									

INPUT: RECEIVERS								Paseo Ma	rina		
Eyestone Environmental						15 Februa	ry 2019				
SKB						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Pased	Marin	a								
RUN:	Const	ruction	- Demolition								
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Criteri	a	Active
			X	Υ	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
Receptor along Maxella	1	1	250.0	-20.0	0.00	4.92	0.00	71	5.0	0.0) Y
Receptor along Lincoln	10	1	250.0	-30.0	0.00	4.92	0.00	66	10.0	0.8) Y
Receptor along Glencoe	11	1	250.0	60.0	0.00	4.92	0.00	66	10.0	8.0) Y

RESULTS: SOUND LEVELS	,		·				Paseo Mar	ina		,			
Freetone Fusinenmental							45 Fabrus	m. 2010					
Eyestone Environmental							15 Februa	ry 2019					_
SKB							TNM 2.5						
							Calculated	d with TNI	VI 2.5				
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		Paseo	Marina										
RUN:		Constr	uction - De	molition									
BARRIER DESIGN:		INPUT	HEIGHTS					Average	pavement type	shall be use	d unless		
								a State h	ighway agenc	y substantiate	s the us	е	
ATMOSPHERICS:		68 deg	F, 50% RH					of a diffe	rent type with	approval of F	HWA.		
Receiver													
Name	No.	#DUs	Existing	No Barrier					With Barrier				
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated	t
							Sub'l Inc					minus	
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
Receptor along Maxella	1	1	0.0	61.	6 71	61.6	5 5		61.6	0.0		0 (0.0
Receptor along Lincoln	10	1	0.0	60.	0 66	60.0	10		60.0	0.0		8 -8	8.0
Receptor along Glencoe	11	1	0.0	56.	7 66	56.7	10		56.7	0.0		8 -8	8.0
Dwelling Units		# DUs	Noise Red	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		3	0.0	0.	0.0)							
All Impacted		0	0.0	0.	0.0								
All that meet NR Goal		1	0.0	0.	0.0)							

INPUT: ROADWAYS							Pase	o Marina		<u> </u>		
Eyestone Environmental					15 February	2019						
SKB					TNM 2.5							
INPUT: ROADWAYS							Average	pavement typ	e shall be u	used unles	S S	
PROJECT/CONTRACT:	Paseo Ma	arina					a State h	ighway agend	y substant	iates the us	se	
RUN:	Construc	tion - Gra	ding				of a diffe	rent type with	the approv	al of FHW	Δ/	
Roadway		Points										
Name	Width	Name	No.	Coordinates	(pavement)		Flow Cor	ntrol		Segment		
				X	Y	Z	Control	Speed	Percent	Pvmt	On	
							Device	Constraint	Vehicles	Туре	Struct?	
									Affected			
	ft			ft	ft	ft		mph	%			
Haul Route	12.0	point1	1	0.0	0.	0.00	Signal	0.00	100	Average		
		point2	2	1,000.0	0.	0.00						

INPUT: TRAFFIC FOR LAeq1h Volumes						P	Paseo Ma	rina				
Eyestone Environmental				15 Feb	oruary 20)19						
SKB				TNM 2	2.5		I					
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Paseo Mari	na										
RUN:	Construction	on - Grad	ling									
Roadway	Points											
Name	Name	No.	Segmer	nt								
			Autos		MTruck	S	HTruck	S	Buses		Motorc	ycles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1	15 February 2019	0									
	point2		2									

INPUT: RECEIVERS								Paseo Ma	rina		
Eyestone Environmental						15 Februa	ry 2019				
SKB						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Pased	Marin	a								
RUN:	Construction - Grading										
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Criteri	a	Active
		X		Υ	Z	above	Existing	Impact Criteria		NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
Receptor along Maxella	1	1	250.0	-20.0	0.00	4.92	0.00	71	5.0	0.0) Y
Receptor along Lincoln	10	1	250.0	-30.0	0.00	4.92	0.00	66	10.0	0.8) Y
Receptor along Glencoe	11	1	250.0	60.0	0.00	4.92	0.00	66	10.0	8.0) Y

RESULTS: SOUND LEVELS			·				Paseo Mar	ina		,			
Freetone Fusinenmental							45 Fahrus	m. 2010					
Eyestone Environmental							15 Februa	ry 2019					_
SKB							TNM 2.5						
							Calculated	d with TNI	VI 2.5				
RESULTS: SOUND LEVELS													
PROJECT/CONTRACT:		Paseo	Marina										
RUN:		Constr	uction - Gra	ading									
BARRIER DESIGN:		INPUT	HEIGHTS					Average	pavement type	shall be use	d unless		
								a State h	ighway agenc	y substantiate	s the us	е	
ATMOSPHERICS:		68 deg	F, 50% RH					of a diffe	rent type with	approval of F	HWA.		
Receiver													
Name	No.	#DUs	Existing	No Barrier					With Barrier		-		
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculate	d
							Sub'l Inc					minus	
												Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
Receptor along Maxella	1	1	0.0	64	4 71	64.4	5		64.4	0.0		0	0.0
Receptor along Lincoln	10	1	0.0	62	8 66	62.8	10		62.8	0.0		8 -	-8.0
Receptor along Glencoe	11	1	0.0	59	6 66	59.6	10		59.6	0.0		- 8	-8.0
Dwelling Units		# DUs	Noise Red	duction									
			Min	Avg	Max								
			dB	dB	dB								
All Selected		3	0.0	0	0.0)							
All Impacted		0	0.0	0.	0.0)							
All that meet NR Goal		1	0.0	0	0.0)							

INPUT: ROADWAYS						1	Pase	o Marina			
Eyestone Environmental					15 February	2019					
SKB					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	 e shall be u	used unles	S
PROJECT/CONTRACT:	Paseo Ma	arina					a State h	ighway agend	y substant	iates the u	se
RUN:	Garage/P	odium Cor	nstructio	n			of a diffe	rent type with	the approv	al of FHW	A
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Cor	itrol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Haul Route	12.0	point1	1	0.0	0.0	0.0	0 Signal	0.00	100	Average	
		point2	2	1,000.0	0.0	0.0	0				

INPUT: TRAFFIC FOR LAeq1h Volumes						F	Paseo Ma	arina				
Eyestone Environmental				15 Feb	ruary 20)19						
SKB				TNM 2	.5		I					
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Paseo Mar	ina	1		1							
RUN:	Garage/Po	dium Con	struction	1								
Roadway	Points											
Name	Name	No.	Segmer	nt								
			Autos		MTruck	s	HTruck	S	Buses		Motorc	ycles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1		1 60	35	() () ;	5 35		0 (0	0
	point2		2									

INPUT: RECEIVERS								Paseo Ma	rina		
Eyestone Environmental						15 Februa	ry 2019				
SKB						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Pased	Marin	a								
RUN:	Garag	je/Podi	um Construct	ion							
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Criteria	a	Active
			X	Υ	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'I	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
Receptor along Maxella	1	1	250.0	-20.0	0.00	4.92	0.00	71	5.0	0.0) Y
Receptor along Lincoln	10	1	250.0	-30.0	0.00	4.92	0.00	66	10.0	8.0) Y
Receptor along Glencoe	11	1	250.0	60.0	0.00	4.92	0.00	66	10.0	8.0) Y

,		·				Paseo Mar	ina		,		
						45 Fahrus	m. 2010				
							ry 2019				
						-	1	405			
						Calculated	JWITH IN	VI 2.5			
	_		onstruction								
	INPUT	HEIGHTS					Average	pavement type	shall be use	d unless	
							a State h	ighway agenc	y substantiate	s the use	•
	68 deg	F, 50% RH					of a diffe	rent type with	approval of F	HWA.	
No.	#DUs	Existing	No Barrier					With Barrier			
		LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
İ			Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
						Sub'l Inc					minus
											Goal
		dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
1	1	0.0	63	.7 7	1 63.7	5		63.7	0.0		0.0
10	1	0.0	62	.1 66	62.1	10		62.1	0.0		8 -8.0
11	1	0.0	58	.8 66	58.8	10		58.8	0.0		-8.0
	# DUs	Noise Red	duction								
		Min	Avg	Max							
		dB	dB	dB							
	3	0.0	0	.0 0.0	D						
	0	0.0	0	.0 0.0	O						
	1	0.0	0	.0 0.0)						
	1 10	Garage INPUT 68 deg No. #DUs 1 1 1 10 1 11 1 # DUs	No. #DUs Existing LAeq1h	Garage/Podium Construction INPUT HEIGHTS 68 deg F, 50% RH No. #DUs Existing No Barrier LAeq1h Calculated Calculated	Garage/Podium Construction INPUT HEIGHTS 68 deg F, 50% RH	Paseo Marina Garage/Podium Construction INPUT HEIGHTS 68 deg F, 50% RH	Paseo Marina Garage/Podium Construction INPUT HEIGHTS 68 deg F, 50% RH	Paseo Marina Garage/Podium Construction INPUT HEIGHTS Average a State hi of a difference According to the process of the process	15 February 2019 TNM 2.5 Calculated with TNM 2.5	15 February 2019 TNM 2.5 Calculated with TNM 2.5	15 February 2019 TNM 2.5 Calculated with TNM 2.5

INPUT: ROADWAYS							Pase	o Marina			
Eyestone Environmental					15 February	2019					
SKB					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be u	used unles	S
PROJECT/CONTRACT:	Paseo Ma	arina					a State h	ighway agend	y substant	iates the u	se
RUN:	Construc	tion - Build	ding Con	struction			of a diffe	rent type with	the approv	al of FHW	A
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Cor	ntrol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Haul Route	12.0	point1	1	0.0	0.0	0.	00 Signal	0.00	100	Average	
		point2	2	1,000.0	0.0	0.	00				

INPUT: TRAFFIC FOR LAeq1h Volumes	П					Р	Paseo Ma	rina				
Eyestone Environmental				15 Feb	∣ oruary 20	19						
SKB				TNM 2	.5		ı					
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Paseo Mari	ina	1									
RUN:	Construction	on - Build	ling Const	tructio	า							
Roadway	Points											
Name	Name	No.	Segmen	t								
			Autos		MTruck	s	HTrucks	5	Buses	,	Motorcy	cles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1		1 180	35	C) C	5	35	0	0	0	
	point2		2									

INPUT: RECEIVERS								Paseo Ma	rina		
Eyestone Environmental						15 Februa	ry 2019				
SKB						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Pased	Marin	a		'						
RUN:	Const	ruction	- Building Co	onstruction							
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Criteri	a	Active
			X	Υ	Z	above	Existing	Impact Cr	iteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
Receptor along Maxella	1	1	500.0	-20.0	0.00	4.92	0.00	71	5.0	0.	0 Y
Receptor along Lincoln	10	1	500.0	-30.0	0.00	4.92	0.00	66	10.0	8.	0 Y
Receptor along Glencoe	11	1	500.0	60.0	0.00	4.92	0.00	66	3 10.0	8.	0 Y

RESULTS: SOUND LEVELS					·			·	Paseo Mar	rina					
Eyestone Environmental									15 Februa	ry 2019					
SKB									TNM 2.5	•					
-									Calculate	d with TN	M 2.5				
RESULTS: SOUND LEVELS															
PROJECT/CONTRACT:		Paseo	Marina												
RUN:		Constr	ruction	- Bui	ilding Cons	struc	tion								
BARRIER DESIGN:		INPUT	HEIGH	HTS						Average	pavement typ	e shall be use	d unles	5	
										a State h	ighway agenc	y substantiate	s the us	se	
ATMOSPHERICS:		68 deg	g F, 50%	δRΗ						of a diffe	erent type with	approval of F	HWA.		ļ
Receiver															
Name	No.	#DUs	Existi	ng	No Barrier						With Barrier	•			
			LAeq*	1h	LAeq1h			Increase over	r existing	Туре	Calculated	Noise Reduc	tion		
					Calculated	d Cı	rit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcu	lated
									Sub'l Inc					minus	;
														Goal	
			dBA		dBA	dE	ВА	dB	dB		dBA	dB	dB	dB	
Receptor along Maxella	1		1	0.0	65	5.8	71	65.8	8 5		65.8	0.0		0	0.0
Receptor along Lincoln	10		1	0.0	64	4.1	66	64.	1 10		64.1	0.0		8	-8.0
Receptor along Glencoe	11		1	0.0	60	0.8	66	60.8	10		60.8	0.0		8	-8.0
Dwelling Units		# DUs	Noise	e Red	duction										
			Min		Avg	N	l ax								
			dB		dB	d	IB								
All Selected		;	3	0.0	(0.0	0.0)							
All Impacted		(0	0.0	(0.0	0.0								
All that meet NR Goal			1	0.0	(0.0	0.0)							

INPUT: ROADWAYS						1	Pase	o Marina			
Eyestone Environmental					15 February	2019					
SKB					TNM 2.5						
INPUT: ROADWAYS							Average	pavement typ	e shall be u	used unles	S
PROJECT/CONTRACT:	Paseo Ma	arina					a State h	ighway agend	y substant	iates the us	se
RUN:	Construc	tion - Land	dscape				of a diffe	rent type with	the approv	al of FHW	A
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Cor	itrol		Segment	
				X	Y	Z	Control	Speed	Percent	Pvmt	On
							Device	Constraint	Vehicles	Туре	Struct?
									Affected		
	ft			ft	ft	ft		mph	%		
Haul Route	12.0	point1	1	0.0	0.0	0.0	0 Signal	0.00	100	Average	
		point2	2	1,000.0	0.0	0.0	0				

INPUT: TRAFFIC FOR LAeq1h Volumes						F	Paseo Ma	rina				
Eyestone Environmental				15 Feb	ruary 20)19						
SKB				TNM 2	.5		ı					
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Paseo Mar	ina	ı		1							
RUN:	Constructi	on - Land	scape									
Roadway	Points											
Name	Name	No.	Segmer	nt								
			Autos		MTruck	s	HTruck	S	Buses		Motorc	ycles
			V	S	V	S	V	S	V	S	V	S
			veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph	veh/hr	mph
Haul Route	point1		1 28	35	() () 2	2 35		0 (0	0
	point2		2									

INPUT: RECEIVERS								Paseo Ma	ırina		
Eyestone Environmental						15 Februa	ry 2019				
SKB						TNM 2.5					
INPUT: RECEIVERS											
PROJECT/CONTRACT:	Pased	Marin	a		'						
RUN:	Const	ruction	- Landscape	!							
Receiver											
Name	No.	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels	and Criteri	a	Active
			X	Υ	Z	above	Existing	Impact Cr	riteria	NR	in
						Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ft	ft	ft	ft	dBA	dBA	dB	dB	
Receptor along Maxella	1	1	500.0	-20.0	0.00	4.92	0.00	71	5.0	0.	0 Y
Receptor along Lincoln	10	1	500.0	-30.0	0.00	4.92	0.00	66	10.0	8.	0 Y
Receptor along Glencoe	11	1	500.0	60.0	0.00	4.92	0.00	66	10.0	8.	0 Y

RESULTS: SOUND LEVELS							Paseo Mar	ina		,		·
Freetone Fusinenmental							45 Fahrus	m. 2010				
Eyestone Environmental							15 Februa	ry 2019				
SKB							TNM 2.5					
							Calculated	d with TNI	M 2.5			
RESULTS: SOUND LEVELS												
PROJECT/CONTRACT:		Paseo I	Marina									
RUN:		Constru	uction - Lar	idscape								
BARRIER DESIGN:		INPUT	HEIGHTS					Average	pavement type	shall be use	d unless	
								a State h	ighway agency	y substantiate	s the us	е
ATMOSPHERICS:		68 deg	F, 50% RH					of a diffe	rent type with	approval of F	HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier		-	
			LAeq1h	LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
Receptor along Maxella	1	1	0.0	59.	5 71	59.5	5		59.5	0.0		0 0.
Receptor along Lincoln	10	1	0.0	57.	8 66	57.8	10		57.8	0.0		8 -8.
Receptor along Glencoe	11	1	0.0	54.	6 66	54.6	10		54.6	0.0		8 -8.
Dwelling Units		# DUs	Noise Red	duction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		3	0.0	0.	0.0)						
All Impacted		0	0.0	0.	0.0							
All that meet NR Goal		1	0.0	0.	0.0)						

Project: Paseo Marina Project EIR

Construction Vibration Impacts

Reference Levels at 25 feet are based on FTA, 2006 (Transit Noise and Vibration Impact Assessment)
Calculations using FTA procedure with

n=
1.5

ON-SITE CONSTRUCTION ACTIVITIES

Table 1: Construction Equipment Vibration Levels (PPV) - Building Damages

able 1: Construction Equipment Vibration Levels (PPV) - Building Damages										
		Estimat	ed Vibration Le	vels at neares	t off-site build	ling structures	(distance in fe	et), PPV		
	Reference Vibration Levels at 25	Commercial building to the North	Supermarket building to the south	Residential building to the east	Residential building to the west					
Equipment	ft., PPV	80	25	90	50					
Large Bulldozer	0.089	0.016	0.089	0.013	0.032					
Caisson Drilling	0.089	0.016	0.089	0.013	0.032					
Loaded Trucks	0.076	0.013	0.076	0.011	0.027					
Jackhammer	0.035	0.006	0.035	0.005	0.012					
Small bulldozer	0.003	0.001	0.003	0.0004	0.001					
Significance 1	hreshold, PPV	0.2	0.2	0.2	0.2					

Table 2: Construction Equipment Vibration Levels (VdB) - Human Annoyance

	Reference Vibration	Esti	mated Vibration	on Levels at Of	ff-Site Recepto	rs (at note dis	tance in feet),	VdB
	Levels at 25	R1	R2	R3	R4			
Equipment	ft., VdB	50	140	90	135			
Large Bulldozer	87	78	65	70	65			
Caisson Drilling	87	78	65	70	65			
Loaded Trucks	86	77	64	69	64			
Jackhammer	79	70	57	62	57			
Small bulldozer	58	49	36	41	36			
Significance 7	Threshold, VdB	72	72	72	72			

OFF-SITE CONSTRUCTION HAUL TRUCKS

Table 3: Off-Site Haul Trucks - Building Damage

Tubic 3. Off Site Hadi Hacks	· · · · · · · · · · · · · · · · · · ·	•							
	Reference Vibration	Estimated Vibration Levels at noted distance in feet, PPV							
Equipment	Levels at 50 ft., PPV	20							
Typical road surface	0.00565	0.022							
Significance ⁻	Threshold, PPV	0.12							

Ref. Levels based on FTA Figure 7-3 (converted from VdB to PPV)

Table 4: Off-Site Haul Trucks - Human Annoyance

	Reference Vibration		Estimated Vibration Levels at noted distance in feet, VdB								
Equipment	Levels at 50 ft., VdB	20									
Typical road surface	63	75									
Significance T	72										

Ref. Levels based on FTA Figure 7-3

Operation Noise Calculations

Project Composite Noise Calculations (CNEL) Project: PASEO MARINA PROJECT EIR

					Trash		Project	Ambient +	
Receptor	Ambient	Traffic ^a	Mechanical	Parking	Compactor	Outdoor	Composite	Project	Increase
R1	65.7	41.0	48.0	33.0	12.4	55.0	55.9	66.1	0.4
R2	59.8	39.7	52.7	18.3	11.4	61.9	62.4	64.3	4.5
R3	69.0	52.5	52.5	31.3	19.8	65.0	65.4	70.6	1.6
R4	68.9	52.5	51.1	28.0	18.8	64.1	64.6	70.3	1.4

^a - traffic noise levels at each receptor is based on the traffic noise analysis for the roadway segment in front of the receptor.

		Traffic I	Noise Levels,	CNEL					distance to	
			Existing +	Project	distance to		Existing +		Center	adj. for
Receptor	Roadway Segment	Existing	Project	Only	roadway, ft	Existing	Project	barrier	Line	distance
R1	Maxella Ave.	60.4	60.5	41.0	175	67.5	67.6	0	40	-7.1
R2	Glencoe Ave.	56.0	56.1	39.7	550	68.8	68.9	0	30	-12.8
R3	Glencoe Ave.	68.8	68.9	52.5	10	68.8	68.9	0	30	0.0
R4	Glencoe Ave.	68.8	68.9	52.5	10	68.8	68.9	0	30	0.0

Outdoor Mechanical Equipment Noise Calculations Project: PASEO MARINA PROJECT EIR

Hours of Operations

	Estimated N	oise Levels,	Ld (7am to	Le (7pm to	Ln (10pm to
	Leq from SoundPLAN		7pm)	10pm)	7am)
Receptor	Leq	CNEL	12	3	9
R1	41.3	48.0	41.3	41.3	41.3
R2	46.0	52.7	46.0	46.0	46.0
R3	45.8	52.5	45.8	45.8	45.8
R4	44.4	51.1	44.4	44.4	44.4

		Ambient +			
	Ambient	Project	Increase	Ambient	Ambient +
Receptor	CNEL	(CNEL)	(CNEL)	(Leq)	Project (Leq)
R1	65.7	65.8	0.1	57.1	57.2
R2	59.8	60.6	0.8	54.9	55.4
R3	69.0	69.1	0.1	63.6	63.7
R4	68.9	69.0	0.1	61.9	62.0

Parking Structure Noise Calculations Project: PASEO MARINA PROJECT EIR

Hours of Operations

	Estimated N	oise Levels,	Ld (7am to	Le (7pm to	Ln (10pm to	
	Leq from S	oundPLAN	7pm)	10pm)	7am)	
Receptor	Leq	CNEL	12	3	4	
R1	28.9	33.0	28.9	28.9	25.4	
R2	14.2	18.3	14.2	14.2	10.7	
R3	27.2	31.3	27.2	27.2	23.7	
R4	23.9	28.0	23.9	23.9	20.4	

		Ambient +				
	Ambient	Project	Increase	Ambient	Ambient +	Increase
Receptor	CNEL	(CNEL)	(CNEL)	(Leq)	Project (Leq)	(Leq)
R1	65.7	65.7	0.0	57.1	57.1	0.0
R2	59.8	59.8	0.0	54.9	54.9	0.0
R3	69.0	69.0	0.0	63.6	63.6	0.0
R4	68.9	68.9	0.0	61.9	61.9	0.0

Outdoor Noise Calculations

Project: PASEO MARINA PROJECT EIR

ALL LEVEL Hours of Operations

					Ld (7am to	Le (7pm to	Ln (10pm to
	Estimated	d noise levels, l	_eq (From Sou	ndPLAN)	7pm)	10pm)	7am)
Receptor	Sound	Occupants	CNEL	9	3	4	
R1	50.9	38.1	51.1	55.0	49.9	51.1	47.6
R2	54.7	48.8	55.7	59.6	54.5	55.7	52.2
R3	60.8	48.9	61.1	65.0	59.9	61.1	57.6
R4	60.1	44.6	60.2	64.1	59.0	60.2	56.7

COMMUNITY PARK Hours of Operations

			_		Ld (7am to	Le (7pm to	Ln (10pm to
	Estimated	d noise levels, l	7pm)	10pm)	7am)		
	Sound						
Receptor	System	Occupants	Total, Leq	CNEL	9	3	4
R1	25.0	21.1	26.5	30.4	25.3	26.5	23.0
R2	52.5	49.2	54.2	58.1	53.0	54.2	50.7
R3	22.3	33.5	33.8	37.7	32.6	33.8	30.3
R4	20.8	16.5	22.2	26.1	21.0	22.2	18.7

TOTAL COMBINED

			Ambient +				
	Project	Ambient	Project	Increase	Project	Ambient	Ambient +
Receptor	(CNEL)	(CNEL)	(CNEL)	(CNEL)	Noise, (Leq)	(Leq)	Project (Leq)
R1	55.0	65.7	66.1	0.4	51.1	57.1	58.1
R2	61.9	59.8	64.0	4.2	58.0	54.9	59.7
R3	65.0	69.0	70.4	1.4	61.1	63.6	65.5
R4	64.1	68.9	70.1	1.2	60.2	61.9	64.1
r							

Loading and Trash Compactor Noise Calculations Project: PASEO MARINA PROJECT EIR

LOADING

	Estimated N	oise Levels,	Ld (7am to	Le (7pm to	Ln (10pm to
	Leq from SO	DUNDPLAN	7pm)	10pm)	7am)
Receptor	Leq	CNEL	3	3	0
R1	8.3	8.6	2.3	8.3	0.0
R2	10.4	9.8	4.4	10.4	0.0
R3	20.8	18.2	14.8	20.8	0.0
R4	20.5	17.9	14.5	20.5	0.0

TRASH COMPACTOR

	Estimated N	loise Levels,	Ld (7am to	Le (7pm to	Ln (10pm to
	Leq from S0	DUNDPLAN	7pm)	10pm)	7am)
Receptor	Leq	CNEL	3	3	0
R1	10.9	10.1	4.9	10.9	0.0
R2	0.0	6.3	-6.0	0.0	0.0
R3	16.9	14.7	10.9	16.9	0.0
R4	12.9	11.4	6.9	12.9	0.0

TOTAL COMBINED

			Ambient +			daytime	
		Ambient	Project	Increase	Project	ambient	Ambient +
Receptor	Project CNEL	CNEL	(CNEL)	(CNEL)	Noise, (Leq)	(Leq)	Project (Leq)
R1	12.4	65.7	65.7	0.0	12.8	63.4	63.4
R2	11.4	59.8	59.8	0.0	10.8	56.1	56.1
R3	19.8	69.0	69.0	0.0	22.3	66.4	66.4
R4	18.8	68.9	68.9	0.0	21.2	68.6	68.6

Paseo Marina Source Levels in dB(A) - Mechanical

Name	Source type	Lw	
	300.00 () po	_,,	
		dB(A)	
Building 2 - AC 39	Point	85.0	
Building 1 - AC 1	Point	85.0	
Building 1 - AC 2	Point	85.0	
Building 1 - AC 3	Point	85.0	
Building 1 - AC 4	Point	85.0	
Building 1 - AC 5	Point	85.0	
Building 1 - AC 6	Point	85.0	
Building 1 - AC 7	Point	85.0	
Building 1 - AC 8	Point	85.0	
Building 1 - AC 9	Point	85.0	
Building 1 - AC 10	Point	85.0	
Building 1 - AC 11	Point	85.0	
Building 1 - AC 12	Point	85.0	
Building 1 - AC 13	Point	85.0	
Building 1 - AC 14	Point	85.0	
Building 1 - AC 15	Point	85.0	
Building 1 - AC 16	Point	85.0	
Building 1 - AC 17	Point	85.0	
Building 1 - AC 18	Point	85.0	
Building 1 - AC 19	Point	85.0	
Building 1 - AC 20	Point	85.0	
Building 1 - AC 21	Point	85.0	
Building 1 - AC 22	Point	85.0	
Building 1 - AC 23	Point	85.0	
Building 1 - AC 24	Point	85.0	
Building 1 - AC 25	Point	85.0	
Building 1 - AC 26	Point	85.0	
Building 1 - AC 27	Point	85.0	
Building 1 - AC 28	Point	85.0	
Building 1 - AC 29	Point	85.0	
Building 1 - AC 30	Point	85.0	
Building 1 - AC 31	Point	85.0	
Building 1 - AC 32	Point	85.0	
Building 1 - AC 33	Point	85.0	
Building 1 - AC 34	Point	85.0	
Building 1 - AC 35	Point	85.0	
Building 1 - AC 36	Point	85.0	
Building 1 - AC 37	Point	85.0	
Building 1 - AC 38	Point	85.0	

Name	Source type	Lw
		4D(4)
5		dB(A)
Building 1 - AC 39	Point	85.0
Building 1 - AC 40	Point	85.0
Building 1 - AC 41	Point	85.0
Building 1 - AC 42	Point	85.0
Building 1 - AC 43	Point	85.0
Building 1 - AC 44	Point	85.0
Building 1 - AC 45	Point	85.0
Building 1 - AC 46	Point	85.0
Building 1 - AC 47	Point	85.0
Building 1 - AC 48	Point	85.0
Building 1 - AC 49	Point	85.0
Building 1 - AC 50	Point	85.0
Building 1 - AC 51	Point	85.0
Building 1 - AC 52	Point	85.0
Building 2 - AC 1	Point	85.0
Building 2 - AC 2	Point	85.0
Building 2 - AC 3	Point	85.0
Building 2 - AC 4	Point	85.0
Building 2 - AC 5	Point	85.0
Building 2 - AC 6	Point	85.0
Building 2 - AC 7	Point	85.0
Building 2 - AC 8	Point	85.0
Building 2 - AC 9	Point	85.0
Building 2 - AC 10	Point	85.0
Building 2 - AC 11	Point	85.0
Building 2 - AC 12	Point	85.0
Building 2 - AC 13	Point	85.0
Building 2 - AC 14	Point	85.0
Building 2 - AC 15	Point	85.0
Building 2 - AC 16	Point	85.0
Building 2 - AC 17	Point	85.0
Building 2 - AC 18	Point	85.0
Building 2 - AC 19	Point	85.0
Building 2 - AC 20	Point	85.0
Building 2 - AC 21	Point	85.0
Building 2 - AC 22	Point	85.0
Building 2 - AC 23	Point	85.0
Building 2 - AC 23	Point	85.0
Building 2 - AC 25	Point	85.0
Building 2 - AC 25	FOILIT	05.0

Paseo Marina Source Levels in dB(A) - Mechanical

Name	Source type	Lw	
		dB(A)	
Building 2 - AC 26	Point	85.0	
Building 2 - AC 27	Point	85.0	
Building 2 - AC 28	Point	85.0	
Building 2 - AC 29	Point	85.0	
Building 2 - AC 30	Point	85.0	
Building 2 - AC 31	Point	85.0	
Building 2 - AC 32	Point	85.0	
Building 2 - AC 33	Point	85.0	
Building 2 - AC 34	Point	85.0	
Building 2 - AC 35	Point	85.0	
Building 2 - AC 36	Point	85.0	
Building 2 - AC 37	Point	85.0	
Building 2 - AC 38	Point	85.0	
Building 2 - AC 40	Point	85.0	
Building 2 - AC 41	Point	85.0	
Building 2 - AC 42	Point	85.0	
Building 2 - AC 43	Point	85.0	
Building 2 - AC 44	Point	85.0	
Building 2 - AC 45	Point	85.0	
Building 2 - AC 46	Point	85.0	
Building 2 - AC 47	Point	85.0	
Building 2 - AC 48	Point	85.0	
Building 2 - AC 49	Point	85.0	
Building 2 - AC 50	Point	85.0	
Building 2 - AC 51	Point	85.0	
Building 2 - AC 52	Point	85.0	
Building 2 - AC 53	Point	85.0	
Building 3 - AC 1	Point	85.0	
Building 3 - AC 2	Point	85.0	
Building 3 - AC 3	Point	85.0	
Building 3 - AC 4	Point	85.0	
Building 3 - AC 5	Point	85.0	
Building 3 - AC 6	Point	85.0	
Building 3 - AC 7	Point	85.0	
Building 3 - AC 8	Point	85.0	
Building 3 - AC 9	Point	85.0	
Building 3 - AC 10	Point	85.0	
Building 3 - AC 11	Point	85.0	
Building 3 - AC 12	Point	85.0	

Name	Source type	Lw
		dB(A)
Building 3 - AC 13	Point	85.0
Building 3 - AC 14	Point	85.0
Building 3 - AC 15	Point	85.0
Building 3 - AC 16	Point	85.0
Building 3 - AC 17	Point	85.0
Building 3 - AC 18	Point	85.0
Building 3 - AC 19	Point	85.0
Building 3 - AC 20	Point	85.0
Building 3 - AC 21	Point	85.0
Building 3 - AC 22	Point	85.0
Building 3 - AC 23	Point	85.0
Building 3 - AC 24	Point	85.0
Building 3 - AC 25	Point	85.0
Building 3 - AC 26	Point	85.0
Building 3 - AC 27	Point	85.0
Building 3 - AC 28	Point	85.0
Building 3 - AC 29	Point	85.0
Building 3 - AC 30	Point	85.0
Building 3 - AC 31	Point	85.0
Building 3 - AC 32	Point	85.0
Building 3 - AC 33	Point	85.0
Building 3 - AC 34	Point	85.0
Building 3 - AC 35	Point	85.0
Building 3 - AC 36	Point	85.0
Building 3 - AC 37	Point	85.0

Source	l na d
Source	Leq,d
	dB(A)

Receiver R1 Le	eq,d 41.3	dB(A)
Building 3 - AC 1	13.3	
Building 3 - AC 2	11.9	
Building 3 - AC 3	13.2	
Building 3 - AC 4	13.0	
Building 3 - AC 5	12.9	
Building 3 - AC 6	12.8	
Building 3 - AC 7	12.6	
Building 3 - AC 8	12.5	
Building 3 - AC 9	12.4	
Building 3 - AC 10	12.2	
Building 3 - AC 11	12.1	
Building 3 - AC 12	13.0	
Building 3 - AC 13	12.9	
Building 3 - AC 14	12.7	
Building 3 - AC 15	12.6	
Building 3 - AC 16	12.5	
Building 3 - AC 17	12.4	
Building 3 - AC 18	12.3	
Building 3 - AC 19	12.2	
Building 3 - AC 20	12.1	
Building 3 - AC 21	12.0	
Building 3 - AC 22	11.8	
Building 3 - AC 23	11.7	
Building 3 - AC 24	11.6	
Building 3 - AC 25	11.5	
Building 3 - AC 26	11.4	
Building 3 - AC 27	11.3	
Building 3 - AC 28	11.1	
Building 3 - AC 29	11.1	
Building 3 - AC 30	11.0	
Building 3 - AC 31	10.9	
Building 3 - AC 32	10.8	
Building 3 - AC 33	10.7	
Building 3 - AC 34	10.6	
Building 3 - AC 35	10.4	
Building 3 - AC 36	10.3	
Building 3 - AC 37	10.2	
Building 1 - AC 1	25.5	
Building 1 - AC 2	25.9	

Source	Leq,d	
	dB(A)	
Building 1 - AC 3	26.2	
Building 1 - AC 4	26.0	
Building 1 - AC 5	25.8	
Building 1 - AC 6	25.7	
Building 1 - AC 7	25.8	
Building 1 - AC 8	25.6	
Building 1 - AC 9	27.5	
Building 1 - AC 10	26.0	
Building 1 - AC 11	26.8	
Building 1 - AC 12	26.6	
Building 1 - AC 13	26.1	
Building 1 - AC 14	26.3	
Building 1 - AC 15	26.5	
Building 1 - AC 16	27.0	
Building 1 - AC 17	27.4	
Building 1 - AC 18	27.3	
Building 1 - AC 19	27.2	
Building 1 - AC 20	23.1	
Building 1 - AC 21	17.4	
Building 1 - AC 22	19.7	
Building 1 - AC 23	21.2	
Building 1 - AC 24	18.4	
Building 1 - AC 25	22.0	
Building 1 - AC 26	20.5	
Building 1 - AC 27	18.8	
Building 1 - AC 28	17.8	
Building 1 - AC 29	22.5 21.5	
Building 1 - AC 30 Building 1 - AC 31	21.5	
Building 1 - AC 32	20.0	
Building 1 - AC 33	19.2	
Building 1 - AC 34	18.6	
Building 1 - AC 35	18.2	
Building 1 - AC 36	17.6	
Building 1 - AC 37	18.0	
Building 1 - AC 38	20.7	
Building 1 - AC 39	20.2	
Building 1 - AC 40	19.5	
Building 1 - AC 41	19.1	
Building 1 - AC 42	18.7	
Building 1 - AC 43	17.7	
. 3	1	

Source	Leq,d dB(A)	
	ub(A)	
Building 1 - AC 44	18.4	
Building 1 - AC 45	18.7	
Building 1 - AC 46	18.5	
Building 1 - AC 47	18.6	
Building 1 - AC 48	18.5	
Building 1 - AC 49	18.2	
Building 1 - AC 50	17.8	
Building 1 - AC 51	18.1	
Building 1 - AC 52	18.0	
Building 2 - AC 53	14.1	
Building 2 - AC 52	12.2	
Building 2 - AC 51	13.2	
Building 2 - AC 50	14.0	
Building 2 - AC 49	13.3	
Building 2 - AC 48	13.8	
Building 2 - AC 47	13.5	
Building 2 - AC 46	13.0	
Building 2 - AC 45	12.5	
Building 2 - AC 44	12.8	
Building 2 - AC 43	12.6	
Building 2 - AC 42	15.2	
Building 2 - AC 41	14.7	
Building 2 - AC 40	15.2	
Building 2 - AC 39	15.1	
Building 2 - AC 38	14.8	
Building 2 - AC 37	15.1	
Building 2 - AC 36	14.9	
Building 2 - AC 35	15.0	
Building 2 - AC 34	14.9	
Building 2 - AC 33	15.0	
Building 2 - AC 32	14.9	
Building 2 - AC 31	15.2	
Building 2 - AC 30	15.2	
Building 2 - AC 29	15.3	
Building 2 - AC 28	15.2	
Building 2 - AC 27	15.2	
Building 2 - AC 26	15.2	
Building 2 - AC 25	15.2	
Building 2 - AC 24	15.2	
Building 2 - AC 23	17.1	
Building 2 - AC 22	12.7	

Source	Leq,d dB(A)	
	ub(A)	
Building 2 - AC 21	14.6	
Building 2 - AC 20	14.5	
Building 2 - AC 19	12.8	
Building 2 - AC 18	14.3	
Building 2 - AC 17	12.9	
Building 2 - AC 16	14.1	
Building 2 - AC 15	13.1	
Building 2 - AC 14	13.9	
Building 2 - AC 13	13.3	
Building 2 - AC 12	13.7	
Building 2 - AC 11	13.5	
Building 2 - AC 10	16.8	
Building 2 - AC 9	14.8	
Building 2 - AC 8	16.6	
Building 2 - AC 7	15.1	
Building 2 - AC 6	16.3	
Building 2 - AC 5	15.3	
Building 2 - AC 4	16.1	
Building 2 - AC 3	15.5	
Building 2 - AC 2	15.9	
Building 2 - AC 1	15.7	
	eq,d 46.0	dB(A)
Building 3 - AC 1	26.1	
Building 3 - AC 2	20.9	
Building 3 - AC 3	25.5	
Building 3 - AC 4	24.8	
Building 3 - AC 5	24.2	
Building 3 - AC 6	23.6	
Building 3 - AC 7	23.1	
Building 3 - AC 8	22.6	
Building 3 - AC 9	22.2	
Building 3 - AC 10	21.7	
Building 3 - AC 11	21.3	
Building 3 - AC 12	26.3	
Building 3 - AC 13	26.3	
Building 3 - AC 14	26.3	
Building 3 - AC 15	26.3	
Building 3 - AC 16	26.2	
Building 3 - AC 17	26.2	
Building 3 - AC 18	26.2	

Source	Leq,d	
	dB(A)	
Building 3 - AC 19	26.2	
Building 3 - AC 20	26.1	
Building 3 - AC 21	27.5	
Building 3 - AC 22	27.5	
Building 3 - AC 23	27.0	
Building 3 - AC 24	26.5	
Building 3 - AC 25	24.5	
Building 3 - AC 26	23.9	
Building 3 - AC 27	23.5	
Building 3 - AC 28	23.1	
Building 3 - AC 29	22.8	
Building 3 - AC 30	22.4	
Building 3 - AC 31	22.1	
Building 3 - AC 32	21.7	
Building 3 - AC 33	21.3	
Building 3 - AC 34	21.0	
Building 3 - AC 35	20.7	
Building 3 - AC 36	20.4	
Building 3 - AC 37	20.1	
Building 1 - AC 1	20.0	
Building 1 - AC 2	21.3	
Building 1 - AC 3	21.0	
Building 1 - AC 4	17.8	
Building 1 - AC 5	17.5	
Building 1 - AC 6	21.2	
Building 1 - AC 7	22.8	
Building 1 - AC 8	17.2	
Building 1 - AC 9	22.6	
Building 1 - AC 10	24.6	
Building 1 - AC 11	23.2	
Building 1 - AC 12	22.1	
Building 1 - AC 13	23.8	
Building 1 - AC 14	23.2	
Building 1 - AC 15	22.6	
Building 1 - AC 16	23.0	
Building 1 - AC 17	21.6	
Building 1 - AC 18	22.4	
Building 1 - AC 19	22.7	
Building 1 - AC 20	28.7	
Building 1 - AC 21	27.7	
Building 1 - AC 22	28.5	

Building 1 - AC 23 28.6	
Building 1 - AC 24	
Building 1 - AC 24 28.1 Building 1 - AC 25 28.6 Building 1 - AC 26 28.6 Building 1 - AC 27 28.2 Building 1 - AC 28 27.9 Building 1 - AC 29 28.6 Building 1 - AC 30 28.6 Building 1 - AC 31 28.8 Building 1 - AC 32 28.5 Building 1 - AC 33 28.3 Building 1 - AC 34 28.1 Building 1 - AC 35 28.0 Building 1 - AC 36 27.8 Building 1 - AC 37 27.9 Building 1 - AC 38 28.7 Building 1 - AC 39 28.6 Building 1 - AC 40 28.4 Building 1 - AC 41 28.3	
Building 1 - AC 25	
Building 1 - AC 26	
Building 1 - AC 27 Building 1 - AC 28 Building 1 - AC 29 Building 1 - AC 30 Building 1 - AC 31 Building 1 - AC 31 Building 1 - AC 31 Building 1 - AC 32 Building 1 - AC 33 Building 1 - AC 33 Building 1 - AC 34 Building 1 - AC 35 Building 1 - AC 36 Building 1 - AC 37 Building 1 - AC 37 Building 1 - AC 38 Building 1 - AC 39 Building 1 - AC 40 Building 1 - AC 41 Building 1 - AC 41	
Building 1 - AC 28	
Building 1 - AC 29	
Building 1 - AC 30	
Building 1 - AC 31	
Building 1 - AC 32 28.5 Building 1 - AC 33 28.3 Building 1 - AC 34 28.1 Building 1 - AC 35 28.0 Building 1 - AC 36 27.8 Building 1 - AC 37 27.9 Building 1 - AC 38 28.7 Building 1 - AC 39 28.6 Building 1 - AC 40 28.4 Building 1 - AC 41 28.3	
Building 1 - AC 33 28.3 Building 1 - AC 34 28.1 Building 1 - AC 35 28.0 Building 1 - AC 36 27.8 Building 1 - AC 37 27.9 Building 1 - AC 38 28.7 Building 1 - AC 39 28.6 Building 1 - AC 40 28.4 Building 1 - AC 41 28.3	
Building 1 - AC 34 28.1 Building 1 - AC 35 28.0 Building 1 - AC 36 27.8 Building 1 - AC 37 27.9 Building 1 - AC 38 28.7 Building 1 - AC 39 28.6 Building 1 - AC 40 28.4 Building 1 - AC 41 28.3	
Building 1 - AC 35 28.0 Building 1 - AC 36 27.8 Building 1 - AC 37 27.9 Building 1 - AC 38 28.7 Building 1 - AC 39 28.6 Building 1 - AC 40 28.4 Building 1 - AC 41 28.3	
Building 1 - AC 36 27.8 Building 1 - AC 37 27.9 Building 1 - AC 38 28.7 Building 1 - AC 39 28.6 Building 1 - AC 40 28.4 Building 1 - AC 41 28.3	
Building 1 - AC 37 27.9 Building 1 - AC 38 28.7 Building 1 - AC 39 28.6 Building 1 - AC 40 28.4 Building 1 - AC 41 28.3	
Building 1 - AC 38 28.7 Building 1 - AC 39 28.6 Building 1 - AC 40 28.4 Building 1 - AC 41 28.3	
Building 1 - AC 39 28.6 Building 1 - AC 40 28.4 Building 1 - AC 41 28.3	
Building 1 - AC 40 28.4 Building 1 - AC 41 28.3	
Building 1 - AC 41 28.3	
Building 1 - AC 42 23.8	
Building 1 - AC 43 27.5	
Building 1 - AC 44 27.7	
Building 1 - AC 45 19.2	
Building 1 - AC 46 24.4	
Building 1 - AC 47 19.6	
Building 1 - AC 48 19.9	
Building 1 - AC 49 27.9	
Building 1 - AC 50 27.2	
Building 1 - AC 51 22.3	
Building 1 - AC 52 25.2	
Building 2 - AC 53 27.4	
Building 2 - AC 52 23.4	
Building 2 - AC 51 23.6	
Building 2 - AC 50 26.5	
Building 2 - AC 49 23.9	
Building 2 - AC 48 25.5	
Building 2 - AC 47 24.6	
Building 2 - AC 46 23.5	
Building 2 - AC 45 23.5	
Building 2 - AC 44 23.4	
Building 2 - AC 43 23.3	

	dB(A)	
Building 2 - AC 42	16.2	
Building 2 - AC 41	27.4	
Building 2 - AC 40	24.8	
Building 2 - AC 39	24.9	
Building 2 - AC 38	26.3	
Building 2 - AC 37	19.3	
Building 2 - AC 36	26.2	
Building 2 - AC 35	19.7	
Building 2 - AC 34	25.7	
Building 2 - AC 33	25.2	
Building 2 - AC 32	25.3	
Building 2 - AC 31	16.2	
Building 2 - AC 30	24.6	
Building 2 - AC 29	16.5	
Building 2 - AC 28	17.8	
Building 2 - AC 27	16.7	
Building 2 - AC 26	17.5	
Building 2 - AC 25	17.0	
Building 2 - AC 24	17.2	
Building 2 - AC 23	15.4	
Building 2 - AC 22	19.6	
Building 2 - AC 21	15.1	
Building 2 - AC 20	15.0	
Building 2 - AC 19	19.7	
Building 2 - AC 18	14.9	
Building 2 - AC 17	14.7	
Building 2 - AC 16	14.9	
Building 2 - AC 15	14.7	
Building 2 - AC 14	14.8	
Building 2 - AC 13	14.7	
Building 2 - AC 12	14.8	
Building 2 - AC 11	14.8	
Building 2 - AC 10	15.4	
Building 2 - AC 9	15.1	
Building 2 - AC 8	15.4	
Building 2 - AC 7	15.3	
Building 2 - AC 6	15.4	
Building 2 - AC 5	15.3	
Building 2 - AC 4	15.5	
Building 2 - AC 3	15.2	
Building 2 - AC 2	15.4	

Building 2 - AC 1	15.2	
Receiver R3 Le	q,d 45.8	dB(A)
Building 3 - AC 1	26.0	
Building 3 - AC 2	28.0	
Building 3 - AC 3	26.1	
Building 3 - AC 4	26.2	
Building 3 - AC 5	26.4	
Building 3 - AC 6	21.3	
Building 3 - AC 7	21.8	
Building 3 - AC 8	22.4	
Building 3 - AC 9	26.8	
Building 3 - AC 10	27.1	
Building 3 - AC 11	27.5	
Building 3 - AC 12	26.4	
Building 3 - AC 13	26.5	
Building 3 - AC 14	26.5	
Building 3 - AC 15	26.6	
Building 3 - AC 16	26.7	
Building 3 - AC 17	19.6	
Building 3 - AC 18	26.1	
Building 3 - AC 19	30.0	
Building 3 - AC 20	28.5	
Building 3 - AC 21	28.4	
Building 3 - AC 22	26.5	
Building 3 - AC 23	26.1	
Building 3 - AC 24	26.2	
Building 3 - AC 25	26.3	
Building 3 - AC 26	26.4	
Building 3 - AC 27	26.5	
Building 3 - AC 28	26.6	
Building 3 - AC 29	26.7	
Building 3 - AC 30	26.8	
Building 3 - AC 31	28.7	
Building 3 - AC 32	27.1	
Building 3 - AC 33	26.8	
Building 3 - AC 34	26.6	
Building 3 - AC 35	26.7	
Building 3 - AC 36	27.1	
Building 3 - AC 37	28.6	
Building 1 - AC 1	15.7	

Source	Leq,d	
	dB(A)	
Building 1 - AC 2	15.8	
Building 1 - AC 3	15.9	
Building 1 - AC 4	15.9	
Building 1 - AC 5	15.8	
Building 1 - AC 6	15.8	
Building 1 - AC 7	15.8	
Building 1 - AC 8	15.7	
Building 1 - AC 9	15.8	
Building 1 - AC 10	19.8	
Building 1 - AC 11	16.4	
Building 1 - AC 12	14.2	
Building 1 - AC 13	19.6	
Building 1 - AC 14	19.4	
Building 1 - AC 15	19.3	
Building 1 - AC 16	16.3	
Building 1 - AC 17	15.9	
Building 1 - AC 18	16.0	
Building 1 - AC 19	16.1	
Building 1 - AC 20	11.7	
Building 1 - AC 21	26.7	
Building 1 - AC 22	24.5	
Building 1 - AC 23	12.3	
Building 1 - AC 24	26.6	
Building 1 - AC 25	12.0	
Building 1 - AC 26	21.4	
Building 1 - AC 27	26.1	
Building 1 - AC 28	27.9	
Building 1 - AC 29	11.9	
Building 1 - AC 30	12.1	
Building 1 - AC 31	20.9	
Building 1 - AC 32	24.2	
Building 1 - AC 33	25.1	
Building 1 - AC 34	26.3	
Building 1 - AC 35	27.0	
Building 1 - AC 36	28.4	
Building 1 - AC 37	27.4	
Building 1 - AC 38	21.2 21.7	
Building 1 - AC 39		
Building 1 - AC 40	24.8	
Building 1 - AC 41 Building 1 - AC 42	26.3 15.2	
Building 1 - AC 42	13.2	

Source	Leq,d dB(A)	
	ub(A)	
Building 1 - AC 43	20.9	
Building 1 - AC 44	18.9	
Building 1 - AC 45	15.2	
Building 1 - AC 46	18.5	
Building 1 - AC 47	15.2	
Building 1 - AC 48	18.4	
Building 1 - AC 49	19.2	
Building 1 - AC 50	20.5	
Building 1 - AC 51	19.7	
Building 1 - AC 52	20.0	
Building 2 - AC 53	25.4	
Building 2 - AC 52	31.2	
Building 2 - AC 51	23.8	
Building 2 - AC 50	25.4	
Building 2 - AC 49	23.3	
Building 2 - AC 48	25.5	
Building 2 - AC 47	23.1	
Building 2 - AC 46	24.5	
Building 2 - AC 45	28.4	
Building 2 - AC 44	25.6	
Building 2 - AC 43	26.9	
Building 2 - AC 42	24.5	
Building 2 - AC 41	24.7	
Building 2 - AC 40	24.6	
Building 2 - AC 39	19.1	
Building 2 - AC 38	24.4	
Building 2 - AC 37	19.2	
Building 2 - AC 36	24.2	
Building 2 - AC 35	19.3	
Building 2 - AC 34	19.4	
Building 2 - AC 33	19.3	
Building 2 - AC 32	19.4	
Building 2 - AC 31	24.5	
Building 2 - AC 30	18.9	
Building 2 - AC 29	18.8 18.9	
Building 2 - AC 28 Building 2 - AC 27	18.9	
Building 2 - AC 27 Building 2 - AC 26	19.0	
Building 2 - AC 25	18.9	
Building 2 - AC 25 Building 2 - AC 24	18.9	
Building 2 - AC 23	15.9	
Dullully 2 - AC 23	10.8	

Source	Leq,d	
	dB(A)	
Building 2 - AC 22	29.7	
Building 2 - AC 21	21.9	
Building 2 - AC 20	22.0	
Building 2 - AC 19	28.0	
Building 2 - AC 18	22.0	
Building 2 - AC 17	26.3	
Building 2 - AC 16	22.1	
Building 2 - AC 15	25.2	
Building 2 - AC 14	22.2	
Building 2 - AC 13	26.2	
Building 2 - AC 12	22.4	
Building 2 - AC 11	25.6	
Building 2 - AC 10	16.1	
Building 2 - AC 9	19.0	
Building 2 - AC 8	16.5	
Building 2 - AC 7	18.6	
Building 2 - AC 6	21.6	
Building 2 - AC 5	18.2	
Building 2 - AC 4	22.1	
Building 2 - AC 3	23.3	
Building 2 - AC 2	22.5	
Building 2 - AC 1	22.8	
Receiver R4 Le	q,d 44.4	dB(A)
Building 3 - AC 1	18.5	
Building 3 - AC 2	26.5	
Building 3 - AC 3	18.5	
Building 3 - AC 4	18.5	
Building 3 - AC 5	18.9	
Building 3 - AC 6	19.4	
Building 3 - AC 7	19.8	
Building 3 - AC 8	25.1	
Building 3 - AC 9	25.3	
Building 3 - AC 10	27.7	
Building 3 - AC 11	27.9	
Building 3 - AC 12	17.9	
Building 3 - AC 13	17.9	
Building 3 - AC 14	18.0	
Building 3 - AC 15	18.0	
Building 3 - AC 16	17.9	
Building 3 - AC 17	17.9	

Source	Leq,d dB(A)	
	ub(A)	
Building 3 - AC 18	18.0	
Building 3 - AC 19	18.0	
Building 3 - AC 20	18.1	
Building 3 - AC 21	23.6	
Building 3 - AC 22	24.9	
Building 3 - AC 23	25.0	
Building 3 - AC 24	25.1	
Building 3 - AC 25	25.2	
Building 3 - AC 26	23.0	
Building 3 - AC 27	20.7	
Building 3 - AC 28	20.6	
Building 3 - AC 29	20.6	
Building 3 - AC 30	20.6	
Building 3 - AC 31	20.8	
Building 3 - AC 32	21.2	
Building 3 - AC 33	21.7	
Building 3 - AC 34	22.3	
Building 3 - AC 35	22.9	
Building 3 - AC 36	25.8	
Building 3 - AC 37	25.0	
Building 1 - AC 1	18.7	
Building 1 - AC 2	15.8	
Building 1 - AC 3	16.9	
Building 1 - AC 4	17.4	
Building 1 - AC 5	17.8	
Building 1 - AC 6	16.5	
Building 1 - AC 7	16.1	
Building 1 - AC 8	18.3	
Building 1 - AC 9	15.3	
Building 1 - AC 10	12.9	
Building 1 - AC 11	14.0	
Building 1 - AC 12	13.7	
Building 1 - AC 13	13.1	
Building 1 - AC 14	13.3	
Building 1 - AC 15	13.5	
Building 1 - AC 16	14.2	
Building 1 - AC 17	15.0	
Building 1 - AC 18	14.7	
Building 1 - AC 19	14.5	
Building 1 - AC 20	12.2	
Building 1 - AC 21	14.5	

Paseo Marina Assessed contribution level - Mechanical

Source	Leq,d	
	dB(A)	
Building 1 - AC 22	12.8	
Building 1 - AC 23	12.4	
Building 1 - AC 24	18.5	
Building 1 - AC 25	12.3	
Building 1 - AC 26	12.5	
Building 1 - AC 27	13.4	
Building 1 - AC 28	19.0	
Building 1 - AC 29	12.3	
Building 1 - AC 30	12.3	
Building 1 - AC 31	12.4	
Building 1 - AC 32	12.7	
Building 1 - AC 33	13.1	
Building 1 - AC 34	13.5	
Building 1 - AC 35	18.7	
Building 1 - AC 36	19.2	
Building 1 - AC 37	18.8	
Building 1 - AC 38	12.5	
Building 1 - AC 39	12.5	
Building 1 - AC 40	12.9	
Building 1 - AC 41	13.2	
Building 1 - AC 42	16.5	
Building 1 - AC 43	19.6	
Building 1 - AC 44	15.0	
Building 1 - AC 45	16.1	
Building 1 - AC 46	15.4	
Building 1 - AC 47	15.8	
Building 1 - AC 48	15.6	
Building 1 - AC 49	14.9	
Building 1 - AC 50	19.7	
Building 1 - AC 51	14.8	
Building 1 - AC 52	14.8 24.7	
Building 2 - AC 53 Building 2 - AC 52	24.7 27.9	
Building 2 - AC 52 Building 2 - AC 51	27.9 25.7	
Building 2 - AC 50	19.3	
Building 2 - AC 49	25.7	
Building 2 - AC 48	19.9	
Building 2 - AC 47	22.9	
Building 2 - AC 47	25.8	
Building 2 - AC 45	28.5	
Building 2 - AC 44	27.3	

Paseo Marina Assessed contribution level - Mechanical

Source	Leq,d	
	dB(A)	
Building 2 - AC 43	28.6	
Building 2 - AC 43 Building 2 - AC 42	22.7	
Building 2 - AC 42	18.3	
Building 2 - AC 41	18.8	
Building 2 - AC 39	18.8	
Building 2 - AC 38	18.3	
Building 2 - AC 37	18.7	
Building 2 - AC 36	18.4	
Building 2 - AC 35	18.6	
Building 2 - AC 34	18.5	
Building 2 - AC 33	18.6	
Building 2 - AC 32	18.5	
Building 2 - AC 31	22.2	
Building 2 - AC 30	23.5	
Building 2 - AC 29	21.9	
Building 2 - AC 28	25.0	
Building 2 - AC 27	21.7	
Building 2 - AC 26	25.0	
Building 2 - AC 25	21.5	
Building 2 - AC 24	21.5	
Building 2 - AC 23	24.6	
Building 2 - AC 22	32.8	
Building 2 - AC 21	27.9	
Building 2 - AC 20	28.0	
Building 2 - AC 19	30.5	
Building 2 - AC 18	26.6	
Building 2 - AC 17	28.5	
Building 2 - AC 16	26.7	
Building 2 - AC 15	27.1	
Building 2 - AC 14	25.3	
Building 2 - AC 13	25.8	
Building 2 - AC 12	25.4	
Building 2 - AC 11	25.6	
Building 2 - AC 10	23.7	
Building 2 - AC 9 Building 2 - AC 8	27.8	
Building 2 - AC 8 Building 2 - AC 7	23.8 28.0	
Building 2 - AC 7 Building 2 - AC 6	23.9	
Building 2 - AC 5	23.9	
Building 2 - AC 4	24.0	
Building 2 - AC 3	24.0	
Building 2 7000	27.0	

Paseo Marina Assessed contribution level - Mechanical

Source	Leq,d dB(A)	
Building 2 - AC 2 Building 2 - AC 1	24.1 24.2	

Paseo Marina Source Levels in dB(A) - Parking

3

Parking 1		
Parking 1		dB(A)
i airaing i	Parking lot	92.8
Parking 2	Parking lot	90.1
Parking 3	Parking lot	90.4

AES 22801 Crespi St Woodland Hills, CA 91364 USA

1

Paseo Marina Assessed contribution level - Parking

Source	Leq,d
	dB(A)

Receiver R1 Le	q,d 28.9	dB(A)
Parking 1	28.9	
Parking 2	0.3	
Parking 3	4.4	
Receiver R2 Le	q,d 14.2	dB(A)
Parking 1	7.9	
Parking 2	12.5	
Parking 3	3.4	
Receiver R3 Le	q,d 27.2	dB(A)
Parking 1	4.3	
Parking 2	26.4	
Parking 3	19.1	
Receiver R4 Le	q,d 23.9	dB(A)
Parking 1	-5.0	
Parking 2	22.2	
Parking 3	19.0	

Paseo Marina Source Levels in dB(A) - Trash

3

Name	Source type	Lw
		dB(A)
Trash 1	Point	88.0
Trash 2	Point	88.0
Trash 3	Point	88.0

AES 22801 Crespi St Woodland Hills, CA 91364 USA

1

Paseo Marina Assessed contribution level - Trash

	ı
Source	Leq,d
	dB(A)

Receiver R1 L	.eq,d 10.9	dB(A)
Trash 1	10.3	
Trash 2	1.8	
Trash 3	-9.4	
Receiver R2 L	.eq,d -2.1	dB(A)
Trash 1		
Trash 2	-6.6	
Trash 3	-3.9	
Receiver R3 L	.eq,d 16.9	dB(A)
Trash 1		
Trash 2	16.2	
Trash 3	8.3	
Receiver R4 L	.eq,d 12.9	dB(A)
Trash 1		
Trash 2	12.4	
Trash 3	3.3	

Paseo Marina Source Levels in dB(A) - Loading

3

Name	Source type	Lw		
		dB(A)		
Loading	Point	102.0		
Loading	Point	102.0		

Paseo Marina Assessed contribution level - Loading

Source	h na l	
Source	Leq,a	
	ID (A)	
	dB(A)	
	()	

Loading 2.6 Loading 6.9 Receiver R2 Leq,d 10.4 dB(A) Loading 8.5 Loading 5.8 Receiver R3 Leq,d 20.8 dB(A) Loading 17.4 Loading 18.2 Receiver R4 Leq,d 20.5 dB(A) Loading 19.8 Loading 12.4	Receiver R	1 Lec	ı,d 8.3	dB(A)	
Receiver R2 Leq,d 10.4 dB(A) Loading 8.5 Loading 5.8 Receiver R3 Leq,d 20.8 dB(A) Loading 17.4 Loading 18.2 Receiver R4 Leq,d 20.5 dB(A) Loading 19.8	Loading		2.6		
Loading 8.5 Loading 5.8 Receiver R3 Leq,d 20.8 dB(A) Loading 17.4 Loading 18.2 Receiver R4 Leq,d 20.5 dB(A) Loading 19.8	Loading		6.9		
Loading 5.8 Receiver R3 Leq,d 20.8 dB(A) Loading 17.4 Loading Loading 18.2 Receiver R4 Leq,d 20.5 dB(A) Loading 19.8	Receiver R2	2 Lec	,d 10.4	dB(A)	
Receiver R3 Leq,d 20.8 dB(A) Loading 17.4 Loading 18.2 Receiver R4 Leq,d 20.5 dB(A) Loading 19.8	Loading		8.5		
Loading 17.4 Loading 18.2 Receiver R4 Leq,d 20.5 dB(A) Loading 19.8	Loading		5.8		
Loading 18.2 Receiver R4 Leq,d 20.5 dB(A) Loading 19.8	Receiver R3	3 Lec	,d 20.8	dB(A)	
Receiver R4 Leq,d 20.5 dB(A) Loading 19.8	Loading		17.4		
Loading 19.8	Loading		18.2		
	Receiver R4	4 Lec	,d 20.5	dB(A)	
Loading 12.4	Loading		19.8		
	Loading		12.4		

Name	Source type	Lw	
		dB(A))
Patio 3 (Rest. 8)	Area	80.8	8
Patio 1 (Rest. 1)	Area	83.3	3
Patio 2 (Rest. 3, 4 and 5)	Area	87.2	2
Patio 4 (Rest. 9, 10, 11 and 12)	Area	85.8	8
Paseo	Area	93.4	4
Retail/Pedestrian Plaza (NW)	Area	88.9	9
Pedestrian Plaza 3 (East)	Area	87.0	О
Pedestrian Plaza 2 (West)	Area	88.6	6
Building 2 - Deck 2 - NW	Area	80.8	8
Building 2 - Deck 3	Area	83.3	3
Building 2 - Deck 4	Area	83.8	8
Building 3 - Deck 5	Area	87.8	8
Building 3 - Deck 6	Area	87.8	8
Building 1 - Deck 1	Area	86.1	1
Pool Deck 1	Area	96.7	7
Pool Deck 3	Area	96.1	1
Pool Deck 2	Area	97.2	2

9

Source dB(A)	Leq,d dB(A)	
	uD(A)	
Receiver R1 Leq,d 38.1	п	dB(A)
Retail/Pedestrian Plaza (NW)	33.9	
Pool Deck 1	32.4	
Building 1 - Deck 1	29.6	
Pedestrian Plaza 2 (West)	27.1	
Paseo	24.0	
Pool Deck 2	22.6	
Patio 2 (Rest. 3, 4 and 5)	20.2	
Pool Deck 3	19.2	
Patio 4 (Rest. 9, 10, 11 and 12)	19.2	
Pedestrian Plaza 3 (East)	15.0	
Building 2 - Deck 2 - NW	11.2	
Building 3 - Deck 5	9.9	
Building 3 - Deck 6	7.7	
Building 2 - Deck 4	6.1	
Patio 1 (Rest. 1)	6.0	
Building 2 - Deck 3	5.8	
Patio 3 (Rest. 8)	3.2	
Receiver R2 Leq,d 48.8		dB(A)
Pedestrian Plaza 2 (West)	46.4	
Paseo	44.0	
Building 1 - Deck 1	35.6	
Pedestrian Plaza 3 (East)	35.3	
Pool Deck 1	27.4	
Pool Deck 2	24.4	
Pool Deck 3	21.4	
Building 3 - Deck 5	21.3	
Patio 1 (Rest. 1)	18.5	
Patio 2 (Rest. 3, 4 and 5)	15.8	
Building 3 - Deck 6	14.6	
Retail/Pedestrian Plaza (NW)	14.4	
Patio 4 (Rest. 9, 10, 11 and 12)	13.7	
Building 2 - Deck 4	13.5	
Building 2 - Deck 3	11.1	
Building 2 - Deck 2 - NW	6.2	
Patio 3 (Rest. 8)	3.8	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

dB(A)

45.0

42.5

39.1

Receiver R3
Pool Deck 3

Pool Deck 2

Pedestrian Plaza 3 (East)

Leq,d 48.9

S

Building 3 - Deck 6	A) dB(A) 38.1	
Building 3 - Deck 6	38.1	
Danian g o Doort o		
Building 3 - Deck 5	37.4	
Paseo	36.5	
Building 2 - Deck 4	32.0	
Building 2 - Deck 3	29.3	
Patio 3 (Rest. 8)	24.7	
Pool Deck 1	23.8	
Pedestrian Plaza 2 (West)	20.3	
Patio 2 (Rest. 3, 4 and 5)	14.6	
Patio 4 (Rest. 9, 10, 11 and 12)	13.1	
Retail/Pedestrian Plaza (NW)	12.0	
Patio 1 (Rest. 1)	10.3	
Building 1 - Deck 1	6.9	
Building 2 - Deck 2 - NW	5.8	
Receiver R4 Leq,d 4		dB(A)
Patio 3 (Rest. 8)	40.8	
Pool Deck 2	38.6	
Building 2 - Deck 3	32.9	
Building 3 - Deck 5	32.6	
Pool Deck 3	31.7	
Building 3 - Deck 6	31.7	
Retail/Pedestrian Plaza (NW)	31.0	
Building 2 - Deck 4	29.6	
Paseo	26.2	
Pool Deck 1	23.8	
Patio 2 (Rest. 3, 4 and 5)	22.2	
Building 2 - Deck 2 - NW	17.7	
Pedestrian Plaza 3 (East)	17.2	
Patio 4 (Rest. 9, 10, 11 and 12)	15.0	
Pedestrian Plaza 2 (West)	11.1	
Building 1 - Deck 1	7.2	
Patio 1 (Rest. 1)	4.0	

Paseo Marina Source Levels in dB(A) - Speaker 42018

Source type	Law
Source type	Lw
	dB(A)
Point	108.6
Point	113.6
	108.6
	108.6
	108.6
r e e e e e e e e e e e e e e e e e e e	108.6
	108.6
	108.6
r e e e e e e e e e e e e e e e e e e e	108.6
r e e e e e e e e e e e e e e e e e e e	108.6
Point	103.6
	Point

Paseo Marina Source Levels in dB(A) - Speaker 42018

-	
V	

Name	Source type	Lw
		dB(A)
Retail Plaza	Point	103.6
Speaker Pedestrian Plaza 1	Point	98.6
Speaker Pedestrian Plaza 1	Point	98.6
Speaker Pedestrian Plaza 1	Point	98.6
Speaker Pedestrian Plaza 2	Point	103.6
Speaker Pedestrian Plaza 2	Point	103.6

9

Source	Leq,	d
	dB(A) dB(A)

Receiver R1 Leq,d 50.9)dB(A)
Speaker Patio 3	43.9
Speaker Pool Deck 1	43.2
Speaker Pool Deck 1	41.0
Speaker Patio 2	39.9
Speaker Patio 3	39.9
Speaker Pool Deck 1	39.5
Speaker Retail Plaza	39.5
Speaker Patio 2	38.4
Speaker Pool Deck 1	38.2
Retail Plaza	38.2
Speaker Pool Deck 1	33.6
Speaker Pool Deck 1	31.2
Speaker Building 2 NW Corner	29.9
Speaker Building 1 SW Corner	29.5
Speaker Patio 2	25.6
Speaker Pool Deck 2	24.2
Speaker Patio 3	23.2
Speaker Pool Deck 3	22.5
Speaker Pool Deck 3	21.8
Speaker Pool Deck 2	21.4
Speaker Pool Deck 3	21.2
Speaker Pool Deck 2	19.2
Speaker Pool Deck 2	18.9
Speaker Pool Deck 3	17.8
Speaker Pool Deck 2	17.7
Speaker Pool Deck 2	15.4
Speaker Pool Deck 2	14.1
Speaker Pedestrian Plaza 2	13.0
Speaker Pool Deck 3	12.9
Speaker Pool Deck 3	12.5
Speaker Pool Deck 3	12.3
Speaker Building 2 SE Corner	12.0
Speaker Building 2 SE Corner	12.0
Speaker Building 2 NE Corner	11.3
Speaker Building 3 NE Corner	11.2
Speaker Building 2 NE Corner	11.2
Speaker Building 3 NE Corner	11.0
Speaker Building 3 SE Corner	10.4
Speaker Building 3 SE Corner	10.2

1	1	٦	١
	•	4	
		d	,

Source	Leq,d	
dB(A)	dB(A)	
Consider Dedication Diagram	0.5	
Speaker Pedestrian Plaza 1	9.5	
Speaker Pedestrian Plaza 2	7.3	
Speaker Patio 1	7.0	
Speaker Patio 4	6.9	
Speaker Pedestrian Plaza 1	5.9	
Speaker Pedestrian Plaza 1	4.2	
Receiver R2 Leq,d 54.)dB(A)
Speaker Pedestrian Plaza 1	50.6	
Speaker Pedestrian Plaza 1	48.6	
Speaker Building 1 SW Corner	46.7	
Speaker Pedestrian Plaza 1	42.4	
Speaker Patio 2	42.1	
Speaker Pedestrian Plaza 2	38.4	
Speaker Pedestrian Plaza 2	37.8	
Speaker Pool Deck 1	36.0	
Speaker Pool Deck 1	29.7	
Speaker Pool Deck 1	29.3	
Speaker Patio 2	28.7	
Speaker Pool Deck 2	27.8	
Speaker Building 3 NE Corner	27.2	
Speaker Pool Deck 1	27.1	
Speaker Pool Deck 1	26.9	
Speaker Patio 3	26.3	
Speaker Pool Deck 1	25.7	
Speaker Pool Deck 2	25.6	
Speaker Building 2 SE Corner	25.0	
Speaker Pool Deck 2	24.7	
Speaker Pool Deck 2	24.6	
Speaker Pool Deck 2	22.6	
Speaker Building 2 SE Corner	21.7	
Speaker Pool Deck 3	21.3	
Speaker Pool Deck 3	21.0	
Speaker Building 2 NE Corner	20.9	
Speaker Building 2 NE Corner	20.2	
Speaker Building 3 SE Corner	20.0	
Speaker Building 3 SE Corner	20.0	
Speaker Pool Deck 3	19.7	
Speaker Building 3 NE Corner	19.5	
Speaker Pool Deck 3	19.5	
Speaker Patio 3	19.3	
		ı

1	1	٦	١
	•	4	
		d	,

Source	Leq,d	
dB(A)	dB(A)	
T dB(A)	ub(A)	
Speaker Building 2 NW Corner	19.2	
Speaker Patio 2	19.0	
Speaker Pool Deck 3	19.0	
Speaker Pool Deck 3	18.4	
Speaker Pool Deck 2	17.9	
Speaker Pool Deck 2	16.1	
Speaker Patio 3	16.0	
Speaker Patio 1	15.9	
Speaker Pool Deck 3	15.4	
Speaker Patio 4	8.4	
Speaker Retail Plaza	5.7	
Retail Plaza	4.3	
Receiver R3 Leq,d 60.8	T)dB(A)
Speaker Pool Deck 3	53.9	
Speaker Building 3 NE Corner	50.6	
Speaker Building 3 SE Corner	50.4	
Speaker Building 3 NE Corner	49.9	
Speaker Pool Deck 2	49.9	
Speaker Building 3 SE Corner	48.8	
Speaker Pool Deck 3	48.3	
Speaker Pool Deck 3	46.3	
Speaker Building 2 NE Corner	46.2	
Speaker Pool Deck 3	46.1	
Speaker Pool Deck 2	45.7	
Speaker Pedestrian Plaza 2	45.5	
Speaker Pool Deck 3	45.3	
Speaker Building 2 SE Corner	45.0	
Speaker Pedestrian Plaza 2	44.4	
Speaker Pool Deck 2	43.6	
Speaker Pool Deck 2	43.2	
Speaker Building 2 SE Corner	43.2	
Speaker Pool Deck 2	41.0	
Speaker Building 2 NE Corner	39.5	
Speaker Pool Deck 2	38.6	
Speaker Pool Deck 3	34.4	
Speaker Pool Deck 1	31.0	
Speaker Pool Deck 2	30.3	
Speaker Pool Deck 3	30.1	
Speaker Pool Deck 1	30.1	
Speaker Pool Deck 1	28.5	

(ľ	1	١
•	٠	2	,

Source	Leq,d	
dB(A)	dB(A)	
==(: ')	G= (/ ·/	
Speaker Pool Deck 1	27.6	
Speaker Patio 4	26.2	
Speaker Patio 3	25.0	
Speaker Pool Deck 1	24.7	
Speaker Patio 2	20.4	
Speaker Pool Deck 1	20.1	
Speaker Patio 2	19.0	
Speaker Patio 2	18.0	
Speaker Patio 3	16.9	
Speaker Patio 1	14.1	
Speaker Pedestrian Plaza 1	13.7	
Speaker Building 2 NW Corner	11.4	
Speaker Pedestrian Plaza 1	11.2	
Speaker Pedestrian Plaza 1	9.7	
Speaker Patio 3	9.6	
Speaker Building 1 SW Corner	9.0	
Retail Plaza	5.7	
Speaker Retail Plaza	3.6	
Receiver R4 Leq,d 60.1	')dB(A)
Speaker Patio 4	56.7	
Speaker Building 2 NE Corner	52.5	
Speaker Pool Deck 2	51.0	
Speaker Building 2 SE Corner	45.6	
Speaker Pool Deck 3	45.5	
Speaker Building 2 NE Corner	45.2	
Speaker Pool Deck 2	44.9	
Speaker Pool Deck 2	44.3	
Speaker Pool Deck 3	43.5	
Speaker Pool Deck 3	43.4	
Speaker Building 3 NE Corner	38.9	
Speaker Building 3 SE Corner	38.4	
Speaker Building 3 NE Corner	38.2	
Speaker Building 2 SE Corner	37.9	
Speaker Building 3 SE Corner	37.7	
Speaker Pool Deck 3	37.4	
Speaker Pool Deck 2	33.5	
Speaker Retail Plaza	33.5	
Speaker Pool Deck 2	32.9	
Speaker Pool Deck 2	32.2	
Speaker Pool Deck 3	29.8	

9

Source		Leq,d	
	dB(A)	dB(A)	
Speaker Pool Deck 2		29.7	
Speaker Pool Deck 1		29.5	
Speaker Pool Deck 3		28.6	
Speaker Patio 3		28.0	
Speaker Pool Deck 1		27.9	
Speaker Pool Deck 1		27.5	
Speaker Pool Deck 1		26.3	
Speaker Building 2 NW Corne	r	26.3	
Speaker Pool Deck 3		25.5	
Speaker Pool Deck 1		24.0	
Retail Plaza		23.9	
Speaker Pool Deck 1		23.0	
Speaker Patio 3		21.5	
Speaker Pedestrian Plaza 2		20.7	
Speaker Patio 3		20.4	
Speaker Pedestrian Plaza 2		19.2	
Speaker Patio 2		13.4	
Speaker Building 1 SW Corne	r	13.2	
Speaker Patio 2		11.5	
Speaker Patio 2		11.0	
Speaker Patio 1		7.4	
Speaker Pedestrian Plaza 1		0.5	
Speaker Pedestrian Plaza 1		-1.6	
Speaker Pedestrian Plaza 1		-3.9	

4	•
•	_

Name	Source type	Lw
		dB(A)
Speaker Community Park	Point	103.6
Speaker Community Park	Point	103.6
Speaker Community Park	Point	103.6
Speaker Community Park	Point	103.6

Paseo Marina Assessed contribution level - Community Park -Speaker 42018

' . '	
l baal	
204,4	
4D(V)	
UD(A)	
	dB(A)

Receiver R1	Leac	25.0	dB(A)
Speaker Community Park	_04,0	20.8	GD(/1)
Speaker Community Park	1	18.9	
Speaker Community Park	1	18.8	
Speaker Community Park	1	16.5	
Receiver R2	Leq,c	52.5	dB(A)
Speaker Community Park		46.9	
Speaker Community Park		46.7	
Speaker Community Park	:	46.3	
Speaker Community Park	·	46.0	
Receiver R3	Leq,c	22.3	dB(A)
Speaker Community Park		17.0	
Speaker Community Park		16.9	
Speaker Community Park		16.4	
Speaker Community Park		14.3	
Receiver R4	Leq,c	20.8	dB(A)
Speaker Community Park		16.0	
Speaker Community Park		14.8	
0 1 0 " D 1	·	14.3	
Speaker Community Park Speaker Community Park		5 1	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

9

Paseo Marina Source Levels in dB(A) - Community Park - People 42018

3

Name	Source type	Lw
		dB(A)
Community Park	Area	94.1
		· · · ·

Paseo Marina Assessed contribution level - Community Park - People 42018

_	
Source	Leg.d
-	17
	dB(A)
	UD(A)

Receiver R1	Leq,d 21.1	dB(A)
Community Park	21.1	
Receiver R2	Leq,d 49.2	dB(A)
Community Park	49.2	
Receiver R3	Leq,d 33.5	dB(A)
Community Park	33.5	
Receiver R4	Leq,d 16.5	dB(A)
Community Park	16.5	

AES 22801 Crespi St Woodland Hills, CA 91364 USA

9

Traffic Distribution as % of ADT Vehicle Type Sub total Night Day Eve 77.6% 9.7% 9.7% 97.0% Auto Medium Truck 1.6% 0.2% 0.2% 2.0% Heavy Truck 0.8% 0.1% 0.1% 1.0%

80.0%

10.0%

PHV to ADT factor 8%

EXISTING CONDITIONS	Doodway	Distance to	Distance to	Chood	Speed Traffic Volume		DUV to	Dorrior	Site	24-Hour
Roadway Segment	Roadway Width*, ft	Edge of Roadway, ft	Centerline, feet	Speed mph	PHV	ADT	PHV to ADT factor	Barrier Atten.	Adjust., dBA	CNEL
Abbot Kinney Boulevard	widii , it	rtoadway, it	1001	Шрп	1111	ADI	ADTIACIO	/ tttori.	ub/\	ONLL
- North of Venice Blvd.	50	10	35	35	1,560	19,500	8%	0	0	68.9
- Between Venice Blvd. and Washington Blvd.	50	10	35	35	1,485	18,563	8%	0	0	68.6
Lincoln Boulevard					,,,,,,	,		·	•	
- Between Rose Ave. and Venice Blvd.	70	10	45	35	3,304	41,300	8%	0	0	70.9
- Between Venice Blvd. and Washington Blvd.	70	10	45	35	3,268	40,850	8%	0	0	70.9
- Between Washington Blvd. and Maxella Ave.	80	10	50	35	4,203	52,538	8%	0	0	71.6
- Between Maxella Ave. and Mindanao Wy.	80	10	50	35	3,931	49,138	8%	0	0	71.3
- Between Mindanao Wy. and Jefferson Blvd.	80	10	50	35	4,829	60,363	8%	0	0	72.2
Glencoe Avenue										
- Between Washington Blvd. and Maxella Ave.	40	10	30	35	1,437	17,963	8%	0	0	69.2
- Between Maxella Ave. and Mindanao Wy.	40	10	30	35	1,308	16,350	8%	0	0	68.8
- South of Mindanao Wy.	50	10	35	35	1,922	24,025	8%	0	0	69.8
Centinela Avenue										
- Between Venice Ave. and Washington Blvd.	70	10	45	35	2,725	34,063	8%	0	0	70.1
- Between Washington Blvd. and Short Ave.	60	10	40	35	2,820	35,250	8%	0	0	70.8
 Between Short Ave. and Culver Blvd. 	60	10	40	35	2,969	37,113	8%	0	0	71.1
Venice Boulevard										
- Between Abbot Kinney Blvd. and Lincoln Blvd.	90	10	55	35	1,965	24,563	8%	0	0	67.8
 Between Lincoln Blvd. and Beethoven St. 	100	10	60	35	2,777	34,713	8%	0	0	69.0
- Between Beethoven St. and Centinela Ave.	100	10	60	35	3,225	40,313	8%	0	0	69.6
Washington Boulevard										
 West of Abbot Kinney Blvd. 	70	10	45	35	1,892	23,650	8%	0	0	68.5
- Between Abbot Kinney Blvd. and Lincoln Blvd.	70	10	45	35	2,803	35,038	8%	0	0	70.2
 Between Lincoln Blvd. and Glencoe Ave. 	70	10	45	35	2,264	28,300	8%	0	0	69.3
- Between Glencoe Ave. and Centinela Ave.	70	10	45	35	2,487	31,088	8%	0	0	69.7
Maxella Avenue										

10.0%

100.0%

EXISTING CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
- Between Lincoln Blvd. and Glencoe Ave.	40	10	30	35	964	12,050	8%	0	0	67.5
- East of Glencoe Ave.	40	10	30	35	588	7,350	8%	0	0	65.3
Mindano Way										
- Between Lincoln Blvd. and Glencoe Ave.	60	10	40	35	1,782	22,275	8%	0	0	68.8
- East of Glencoe Ave.	60	10	40	35	613	7,663	8%	0	0	64.2

^{*} Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to ADT factor 8%

EXISTING + PROJECT CONDITIONS	Roadway	Distance to Edge of	Distance to Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Site Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Abbot Kinney Boulevard										
- North of Venice Blvd.	50	10	35	35	1,575	19,688	8%	0	0	68.9
 Between Venice Blvd. and Washington Blvd. 	50	10	35	35	1,496	18,700	8%	0	0	68.7
Lincoln Boulevard										
 Between Rose Ave. and Venice Blvd. 	70	10	45	35	3,325	41,563	8%	0	0	70.9
 Between Venice Blvd. and Washington Blvd. 	70	10	45	35	3,298	41,225	8%	0	0	70.9
 Between Washington Blvd. and Maxella Ave. 	80	10	50	35	4,218	52,725	8%	0	0	71.6
 Between Maxella Ave. and Mindanao Wy. 	80	10	50	35	3,945	49,313	8%	0	0	71.3
 Between Mindanao Wy. and Jefferson Blvd. 	80	10	50	35	4,836	60,450	8%	0	0	72.2
Glencoe Avenue										
 Between Washington Blvd. and Maxella Ave. 	40	10	30	35	1,505	18,813	8%	0	0	69.4
- Between Maxella Ave. and Mindanao Wy.	40	10	30	35	1,333	16,663	8%	0	0	68.9
- South of Mindanao Wy.	50	10	35	35	2,020	25,250	8%	0	0	70.0
Centinela Avenue										
- Between Venice Ave. and Washington Blvd.	70	10	45	35	2,731	34,138	8%	0	0	70.1
 Between Washington Blvd. and Short Ave. 	60	10	40	35	2,820	35,250	8%	0	0	70.8
 Between Short Ave. and Culver Blvd. 	60	10	40	35	2,977	37,213	8%	0	0	71.1
Venice Boulevard										
- Between Abbot Kinney Blvd. and Lincoln Blvd.	90	10	55	35	1,966	24,575	8%	0	0	67.8
- Between Lincoln Blvd. and Beethoven St.	100	10	60	35	2,780	34,750	8%	0	0	69.0
- Between Beethoven St. and Centinela Ave.	100	10	60	35	3,228	40,350	8%	0	0	69.6
Washington Boulevard										
 West of Abbot Kinney Blvd. 	70	10	45	35	1,898	23,725	8%	0	0	68.5
- Between Abbot Kinney Blvd. and Lincoln Blvd.	70	10	45	35	2,827	35,338	8%	0	0	70.2
- Between Lincoln Blvd. and Glencoe Ave.	70	10	45	35	2,271	28,388	8%	0	0	69.3
- Between Glencoe Ave. and Centinela Ave.	70	10	45	35	2,502	31,275	8%	0	0	69.7
Maxella Avenue										

EXISTING + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
- Between Lincoln Blvd. and Glencoe Ave.	40	10	30	35	972	12,150	8%	0	0	67.5
- East of Glencoe Ave.	40	10	30	35	588	7,350	8%	0	0	65.3
Mindano Way										
- Between Lincoln Blvd. and Glencoe Ave.	60	10	40	35	1,806	22,575	8%	0	0	68.9
- East of Glencoe Ave.	60	10	40	35	618	7,725	8%	0	0	64.2

^{*} Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to ADT factor 8%

FUTURE NO PROJECT CONDITIONS	Roadway	Distance to Edge of	Distance to Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Site Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Abbot Kinney Boulevard		•		'						
- North of Venice Blvd.	50	10	35	35	1,751	21,887	8%	0	0	69.4
- Between Venice Blvd. and Washington Blvd.	50	10	35	35	1,613	20,163	8%	0	0	69.0
Lincoln Boulevard										
- Between Rose Ave. and Venice Blvd.	70	10	45	35	3,885	48,563	8%	0	0	71.6
- Between Venice Blvd. and Washington Blvd.	70	10	45	35	3,991	49,888	8%	0	0	71.7
- Between Washington Blvd. and Maxella Ave.	80	10	50	35	4,918	61,475	8%	0	0	72.2
- Between Maxella Ave. and Mindanao Wy.	80	10	50	35	4,612	57,650	8%	0	0	72.0
 Between Mindanao Wy. and Jefferson Blvd. 	80	10	50	35	5,590	69,875	8%	0	0	72.8
Glencoe Avenue										
- Between Washington Blvd. and Maxella Ave.	40	10	30	35	1,573	19,663	8%	0	0	69.6
- Between Maxella Ave. and Mindanao Wy.	40	10	30	35	1,478	18,475	8%	0	0	69.3
- South of Mindanao Wy.	50	10	35	35	2,186	27,328	8%	0	0	70.3
Centinela Avenue										
- Between Venice Ave. and Washington Blvd.	70	10	45	35	3,088	38,600	8%	0	0	70.6
- Between Washington Blvd. and Short Ave.	60	10	40	35	3,348	41,850	8%	0	0	71.6
 Between Short Ave. and Culver Blvd. 	60	10	40	35	3,432	42,900	8%	0	0	71.7
Venice Boulevard										
- Between Abbot Kinney Blvd. and Lincoln Blvd.	90	10	55	35	2,227	27,838	8%	0	0	68.3
- Between Lincoln Blvd. and Beethoven St.	100	10	60	35	2,985	37,313	8%	0	0	69.3
- Between Beethoven St. and Centinela Ave.	100	10	60	35	3,459	43,238	8%	0	0	69.9
Washington Boulevard										
 West of Abbot Kinney Blvd. 	70	10	45	35	2,137	26,717	8%	0	0	69.0
- Between Abbot Kinney Blvd. and Lincoln Blvd.	70	10	45	35	3,096	38,700	8%	0	0	70.6
- Between Lincoln Blvd. and Glencoe Ave.	70	10	45	35	2,463	30,788	8%	0	0	69.6
- Between Glencoe Ave. and Centinela Ave.	70	10	45	35	2,772	34,650	8%	0	0	70.2
Maxella Avenue										

FUTURE NO PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
- Between Lincoln Blvd. and Glencoe Ave.	40	10	30	35	1,112	13,900	8%	0	0	68.1
- East of Glencoe Ave.	40	10	30	35	668	8,352	8%	0	0	65.9
Mindano Way										
- Between Lincoln Blvd. and Glencoe Ave.	60	10	40	35	1,968	24,600	8%	0	0	69.3
- East of Glencoe Ave.	60	10	40	35	761	9,509	8%	0	0	65.1

^{*} Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.

Traffic Distribution as % of ADT				
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

PHV to ADT factor 8%

FUTURE + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed		Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
Abbot Kinney Boulevard										
 North of Venice Blvd. 	50	10	35	35	1,766	22,075	8%	0	0	69.4
 Between Venice Blvd. and Washington Blvd. 	50	10	35	35	1,624	20,300	8%	0	0	69.0
Lincoln Boulevard										
 Between Rose Ave. and Venice Blvd. 	70	10	45	35	3,906	48,825	8%	0	0	71.6
 Between Venice Blvd. and Washington Blvd. 	70	10	45	35	4,021	50,263	8%	0	0	71.8
 Between Washington Blvd. and Maxella Ave. 	80	10	50	35	4,934	61,675	8%	0	0	72.3
 Between Maxella Ave. and Mindanao Wy. 	80	10	50	35	4,626	57,825	8%	0	0	72.0
 Between Mindanao Wy. and Jefferson Blvd. 	80	10	50	35	5,597	69,963	8%	0	0	72.8
Glencoe Avenue										
- Between Washington Blvd. and Maxella Ave.	40	10	30	35	1,666	20,825	8%	0	0	69.8
- Between Maxella Ave. and Mindanao Wy.	40	10	30	35	1,528	19,100	8%	0	0	69.5
- South of Mindanao Wy.	50	10	35	35	2,284	28,553	8%	0	0	70.5
Centinela Avenue										
- Between Venice Ave. and Washington Blvd.	70	10	45	35	3,094	38,675	8%	0	0	70.6
- Between Washington Blvd. and Short Ave.	60	10	40	35	3,348	41,850	8%	0	0	71.6
- Between Short Ave. and Culver Blvd.	60	10	40	35	3,440	43,000	8%	0	0	71.7
Venice Boulevard										
- Between Abbot Kinney Blvd. and Lincoln Blvd.	90	10	55	35	2,228	27,850	8%	0	0	68.3
- Between Lincoln Blvd. and Beethoven St.	100	10	60	35	2,988	37,350	8%	0	0	69.3
- Between Beethoven St. and Centinela Ave.	100	10	60	35	3,463	43,288	8%	0	0	69.9
Washington Boulevard										
- West of Abbot Kinney Blvd.	70	10	45	35	2,143	26,792	8%	0	0	69.0
- Between Abbot Kinney Blvd. and Lincoln Blvd.	70	10	45	35	3,120	39,000	8%	0	0	70.7
- Between Lincoln Blvd. and Glencoe Ave.	70	10	45	35	2,470	30,875	8%	0	0	69.7
- Between Glencoe Ave. and Centinela Ave.	70	10	45	35	2,786	34,825	8%	0	0	70.2
Maxella Avenue										

FUTURE + PROJECT CONDITIONS		Distance to	Distance to						Site	
	Roadway	Edge of	Centerline,	Speed	Traffic	Volume	PHV to	Barrier	Adjust.,	24-Hour
Roadway Segment	Width*, ft	Roadway, ft	feet	mph	PHV	ADT	ADT factor	Atten.	dBA	CNEL
- Between Lincoln Blvd. and Glencoe Ave.	40	10	30	35	1,120	14,000	8%	0	0	68.1
- East of Glencoe Ave.	40	10	30	35	668	8,352	8%	0	0	65.9
Mindano Way										
- Between Lincoln Blvd. and Glencoe Ave.	60	10	40	35	2,016	25,200	8%	0	0	69.4
- East of Glencoe Ave.	60	10	40	35	766	9,571	8%	0	0	65.2

^{*} Estimated based on Google Earth map.

** Calculated using FHWA's TNM Version 2.5 Computer Noise Model.