APPENDIX M
 Transportation Analysis

M-1 Traffic Assessment

670 Mesquit

Transportation Assessment Draft
PREPARED BY

FEHR PPEERS

600 Wilshire Blvd, Suite 1050
Los Angeles, CA
213.261.3050

Table of Contents

1. INTRODUCTION 6
1.1 Project Description 6
1.2 Study Scope 12
1.3 Organization of Report. 13
2. ENVIRONMENTAL SETTING 14
2.1 Existing Conditions. 14
Study Area 14
Existing Street System 14
Existing Public Transit Service 17
Existing Bicycle and Pedestrian Facilities. 18
2.2 Cumulative Conditions 22
Transportation Infrastructure Projects. 22
Related Projects. 23
3. CEQA TRANSPORTATION ANALYSES 29
3.1 Plans, Programs, Ordinances, or Policies Conflict Review 29
Project Review. 30
Cumulative Review 32
3.2 Vehicle Miles Traveled Analysis. 33
VMT Impact Criteria 33
Impact Analysis 34
Transportation Demand Management Plan 39
3.3 Geometric Design Hazards 41
3.4 Freeway Safety Analysis. 42
4. NON-CEQA TRANSPORTATION ANALYSES 47
4.1 Pedestrian, Bicycle, and Transit Access 47
4.2 Project Access, Safety, and Circulation Element 53
Study Analysis Locations. 53
Level of Service Methodology 55
Existing Traffic Volumes 58
Existing Level of Service 58
Project Traffic 61
Future Base (2026 \& 2040) Traffic Volumes 74
Future Base (2026 \& 2040) Plus Project Traffic Projections 78
Site Access 90
Corrective Actions 93
4.3 Project Construction 109
Anticipated Construction Activity. 109
Construction Period Trip Generation 111
Construction Period Evaluation Criteria 113
Construction Analysis. 114
Construction Management Plan. 115
5. SUMMARY AND CONCLUSIONS 117

Appendices

Appendix A: LADOT MOU

Appendix B: TAG Screening Responses and Supporting Analysis
Appendix C: Plans, Programs, Ordinance or Policies Assessment and Geometric Design Hazards Review
Appendix D: VMT Analysis Worksheets
Appendix E: Intersection Count Sheets
Appendix F: Intersection Lane Configurations and Volumes
Appendix G: Intersection LOS Analysis Sheets
Appendix H: Project Internalization
Appendix I: Detailed Project Trip Generation
Appendix J: Driveway LOS
Appendix K: Ramp Queueing Results
Appendix L: Signal Warrant Analysis Sheets

List of Figures

Figure 1 - Proposed Project Site and Study Intersections ..

Figure 2B - Project with the Deck Concept Site Plan... 10
Figure 2C - Proposed Street Vacation .. 11
Figure 3 - Existing Transit .. 19

Figure 6B - VMT Calculator Results for the Project with the Deck Concept.. 38

Figure 8A - Residential Trip Distribution.. 71
Figure 8B - Regional Commercial Trip Distribution... 72
Figure 8C - Local Commercial Trip Distribution... 73
Figure 9 - Conceptual $7^{\text {th }}$ Street Driveways ... 92
Figure 10 - Conceptual Corrective Action for Santa Fe Avenue \& Jesse Street... 97
Figure 11 - Conceptual Corrective Action for Santa Fe Avenue \& $7^{\text {th }}$ Street.. 98

List of Tables

Table 1 - Existing Transit Service ...

Table 3 - Peak Hour Off-Ramp Queue Analysis: Future Base (2026) plus Project ... 45
Table 4 - Peak Hour Off-Ramp Queue Analysis: Future Base (2040) plus Project .. 45
Table 5 - Peak Hour Off-Ramp Queue Analysis: Future Base (2026) plus Project with Mitigation................. 46
Table 6 - Peak Hour Off-Ramp Queue Analysis: Future Base (2040) plus Project with Mitigation................ 46

Table 8 - Study Intersections .. 54
Table 9A - Level of Service Definitions for Signalized Intersections... 56
Table 9B - Level of Service Definitions for Stop-Controlled Intersections .. 57
Table 10A - Existing Year (2018) Analysis for Signalized Study Intersections... 59
Table 10B - Existing Year (2018) Analysis for Unsignalized Study Intersections 60
Table 11A - Project Trip Generation 67
Table 11B - Project with the Deck Concept Trip Generation 68
Table 12 - Project with the Deck Concept - Weekend Trip Generation 69
Table 13 - Estimated Trip Generation of Temporary Special Events 70
Table 14A - Future Base (2026) plus Project Analysis for Signalized Study Intersections 80
Table 14B - Future Base (2026) plus Project Analysis for Unsignalized Study Intersections 81
Table 15A - Future Base (2026) plus Project with the Deck Concept Analysis for Signalized Study Intersections 82
Table 15B - Future Base (2026) plus Project with the Deck Concept Analysis for Unsignalized Study Intersections 83
Table 16A - Future Base (2040) plus Project Analysis for Signalized Study Intersections 86
Table 16B - Future Base (2040) plus Project Analysis for Unsignalized Study Intersections 87
Table 17A - Future Base (2040) plus Project with the Deck Concept Analysis for Signalized Study Intersections 88
Table 17B - Future Base (2040) plus Project with the Deck Concept Analysis for Unsignalized Study Intersections 89
Table 18A - Driveway Level of Service: Project 91
Table 18B - Driveway Level of Service: Project with the Deck Concept 91
Table 19A - Trip Generation for Project with Corrective Actions. 95
Table 19B - Trip Generation for Project with the Deck Concept with Corrective Actions 96
Table 20A - Signal Warrant Analysis: Project 100
Table 20B - Signal Warrant Analysis: Project with the Deck Concept 101
Table 21A Future Base (2026) plus Project Analysis for Intersections with Corrective Actions. 103
Table 21B Future Base (2026) plus Project with the Deck Concept Analysis for Intersections with Corrective Actions 104
Table 22A Future Base (2040) plus Project Analysis for Intersections with Corrective Actions. 105
Table 22B Future Base (2040) plus Project with the Deck Concept Analysis for Intersections with Corrective Actions 106
Table 23 - Future Year (2026) Project Fair Share Contribution for Project with the Deck Concept. 107
Table 24 - Future Year (2040) Project Fair Share Contribution for Project with the Deck Concept. 108
Table 25 - Construction Period Trip Generation 112
Table 26 - Construction Evaluation 116

1. INTRODUCTION

This report documents the assumptions, methodologies, and findings of a study conducted by Fehr \& Peers to evaluate the potential transportation impacts of the proposed project located at 670 Mesquit Street (Project), situated east and west of Mesquit Street, south of the Sixth Street Viaduct, north of the 7th Street Bridge, and west of the Los Angeles River in the City of Los Angeles. The Project is located on Lots 246-252 and 265-279 of the Wingerter Tract and Lots 76-92 of the Goodwin Tract in City Council District 14. This study was conducted as part of the environmental impact report (EIR) for the proposed Project.

1.1 Project Description

The proposed Project is in the Arts District of Downtown Los Angeles. The Project site flanks Mesquit Street between $6^{\text {th }}$ Street and $7^{\text {th }}$ Street and encompasses eight parcels, including a portion of the Mesquit Street right-of-way (ROW) proposed for vacation. The location of the Project site and the intersections studied in the site access analysis are presented in Figure 1.

The Project site is currently developed with existing one- to four-story cold storage facilities consisting of warehouse and wholesale commercial buildings and associated office space, loading docks, and seven surface parking spaces. The existing buildings total approximately 205,393 gross square feet (sf) of floor area.

The Project would remove the existing on-site cold storage facilities and redevelop the Project site with a mix of uses totaling approximately $1,792,103 \mathrm{sf}$ of floor area on seven proposed ground lots. The development would include creative office space (approximately $944,055 \mathrm{sf}$); 308 multifamily residential housing units; a hotel (236 rooms); and a range of commercial uses including a grocery store (approximately $28,054 \mathrm{sf}$) and food hall (approximately $28,858 \mathrm{sf}$); restaurants (approximately $89,576 \mathrm{sf}$); studio/event/ gallery space and a potential museum (approximately $93,617 \mathrm{sf}$); a gym (approximately 62,148 sf); and general retail (approximately $79,240 \mathrm{sf}$). The Project would also include at- and above-grade landscaped open space and would provide vehicle and bicycle parking spaces to support the proposed on-site uses in accordance with the proposed Mesquit Specific Plan. The Project would provide a minimum of 2,000 traditional vehicle parking spaces, with parking for up to 3,500 vehicles, using a combination of automated parking systems, valet parking, or other efficiency parking methods. In addition, a minimum of 288 shortterm and 519 long-term bicycle parking spaces would be provided. A rooftop heliport is also proposed for emergency and occasional residential and office uses, providing an amenity for the Project's residents, hotel guests, office workers, and visitors.

The Project also proposes significant public benefit commitments related to new transportation and pedestrian improvements and the livability of the neighborhood. It would support the development of new transit connections for the Arts District, the growth of multi-modal transportation infrastructure, and help foster engagement with the Los Angeles River through the provision of landscaped open space. The Project would create multi-modal access directly from the 7th Street Bridge via the southerly River Balcony to an
elevated pedestrian walkway, as well as via the driveway connecting the 7th Street Bridge and Building 5 near the southwestern corner of the Project site. Additionally, the Project proposes a new pedestrian crosswalk on the 7th Street Bridge to provide pedestrian access to the Project site near Building 4. The Project may also include the construction of a pedestrian amenity deck over the railway property adjacent to the Project site to the east; the deck would replace the elevated pedestrian walkway along the eastern edge of the Project site and extend the pedestrian oriented open space further east in closer proximity to the Los Angeles River corridor. The Project with the deck amenity has been studied as the Project with the Deck Concept in this report. The Project site plan is presented in Figure 2A and the Project with the Deck Concept site plan is presented in Figure 2B.

Vehicular and bicycle access to the Project site is anticipated to be obtained via four driveways described below:

- A two-way full-access driveway on Mesquit Street at the northern end of the Project at ground level (Building 1).
- A two-way full-access driveway at the intersection of Mesquit Street $\&$ Jesse Street at ground level (Building 2).
- A two-way signalized driveway connecting the 7th Street Bridge to the third level of Building 4 near the southeastern corner of the Project site that allows for full access out and right-turns only in.
- A one-way right-turn-out-only driveway connecting the 7th Street Bridge to the second level of Building 5 near the southwestern corner of the Project site.

The signalized and non-signalized driveways connecting to the 7th Street Bridge are subject to approval of the City of Los Angeles Department of Transportation (LADOT) and the City of Los Angeles Bureau of Engineering (LABOE).

The project proposes a full-width vacation/merger of Mesquit Street from the northerly right-of-way of $7^{\text {th }}$ Street to the southerly right-of-way of Jesse Street. The project also proposes a half-width subsurface merger for the easterly half of Mesquit Street from the southerly right-of-way of Jesse Street to the southerly line of the LADWP property on the east side of Mesquit Street. The proposed vacation/merger is presented in Figure 2C.

Primary service access would be provided via loading docks located within the ground level of the Project's parking structure. Large truck deliveries would enter and exit the parking structure via the northern driveway on Mesquit Street and have turnaround capability provided within the Project site. A loading area accommodating cars or vans associated with residential and commercial uses would also be accessible via the northern driveway on Mesquit Street. A passenger loading/unloading zone pull-out would be provided along the east side of Mesquit Street north of Jesse Street. The $7^{\text {th }}$ Street driveway would also provide access to an internal passenger loading/unloading area in addition to access to the on-site parking structure.

- Unsignalized Intersection

7TH STREET LEVEL PLAN - NO DECK

Figure 2A
Project Site Plan

Figure 2 B
Project with the Deck Concept Site Plan

SOURCE: Bjarke Ingels Group with Gruen Associates, 2019; KPFF

1.2 Study Scope

The scope of work for this study was determined in consultation with the Los Angeles Department of Transportation and is in accordance with the City's CEQA transportation thresholds of significance and LADOT's Transportation Assessment Guidelines (TAG) updated in July 20201. The base assumptions and technical methodologies were discussed with LADOT as part of the study approach and agreed to in a memorandum of understanding (MOU) dated June 2020 (LADOT Project Case Number ENV-2017-249-EIR). The MOU is included as Appendix A to this document.

The TAG establishes an updated set of guidelines, methods, and impact criteria for CEQA considerations that focus on vehicle miles traveled (VMT), geometric design features, and policy conflicts. The TAG also establishes a framework for various non-CEQA analyses including a pedestrian, bicycle, and transit access assessment; a project access, safety, and circulation assessment; and project construction analysis. Each area of analysis is described in the TAG with a discussion of screening criteria, the methodology for analysis, impact/evaluation criteria, and potential mitigation options when appropriate. Based on the screening criteria set forth in the TAG, the following issue areas described in the TAG are evaluated in this report (the screening analysis is available in Appendix B):

TAG Issue Area	Analysis Required?
CEQA Analyses:	
Conflicts with Plans, Programs, Ordinances, and Policies	Yes
Causing Substantial Additional Vehicle Miles Traveled	Yes
Substantially Inducing Additional Automobile Travel	No
Geometric Design Features	Yes
Non-CEQA Analyses:	
Pedestrian, Bicycle, and Transit Access	Yes
Project Access, Safety, and Circulation	Yes
Project Construction	Yes
Residential Street Cut-Through	No

In addition, in accordance with LADOT's interim guidance on freeway safety analysis issued in May 2020^{2}, a freeway safety analysis was conducted to evaluate whether the addition of Project traffic could cause or lengthen an off-ramp queue onto the freeway mainline that could constitute a potential safety impact under CEQA.

[^0]
1.3 Organization of Report

This report is divided into five chapters, including this introduction. Chapter 2 describes the environmental setting of the project, which includes the existing transportation conditions and cumulative conditions. The required CEQA analyses are summarized in Chapter 3 and include a review of the City's plans, programs, ordinances, and policies; a VMT analysis; a geometric design hazards evaluation; and a freeway off-ramp analysis. Chapter 4 includes the required non-CEQA transportation analyses and contains a pedestrian, bicycle, and transit access assessment; a Project access, safety and circulation evaluation; and Project construction analysis. Chapter 5 contains the study's summary and conclusions.

Appendices to this report include details of the technical analysis, as follows:

- Appendix A includes a copy of the MOU approved by LADOT that describes study parameters and assumptions.
- Appendix B includes responses to the TAG screening criteria.
- Appendix C provides detailed responses for the plans, programs, ordinances, and policies review and geometric design hazards review.
- Appendix D contains the detailed information pertaining to the VMT analysis, including transportation demand strategies, trip estimates, and trip length information.
- Appendix E contains the vehicle intersection turning movement and segment counts for the nonCEQA access analysis locations.
- Appendix F contains the analysis volumes and lane configurations that are inputs to the non-CEQA level of service (LOS) analysis.
- Appendix G includes LOS analysis work sheets for analysis conducted at 32 intersections in accordance with the TAG sections associated with access and circulation review.
- Appendix H contains the internal trip calculation analysis sheets used to determine the internal trip adjustment for each of the Project land uses.
- Appendix I contains detailed trip generation tables that outline all the credits taken for the different Project land uses.
- Appendix J provides the level of service analysis for driveway locations.
- Appendix K provides the ramp queuing results as part of the freeway safety analysis.
- Appendix L provides the signal warrant analysis.

2. ENVIRONMENTAL SETTING

This chapter describes the existing and cumulative environmental setting within the Project study area. The existing conditions include the existing street system, public transit service, and bicycle and pedestrian facilities. The cumulative conditions include transportation projects that are either in construction or planned and related development projects, which are developments expected to be implemented in the vicinity of the proposed Project site prior to the buildout date of the proposed Project.

2.1 Existing Conditions

A comprehensive data collection effort was undertaken to develop a detailed description of existing conditions in the study area. The assessment of conditions relevant to this study includes a description of the study area, an inventory of the local street system in the vicinity of the Project site, and a summary of the current transit service and bicycle and pedestrian facilities in the study area.

Study Area

The Project site is within the Central City North Community Plan area of the City of Los Angeles. The study area selected for analysis generally extends to Alameda Street to the west, $15^{\text {th }}$ Street to the south, Boyle Avenue to the east, and Aliso Street to the north. All the streets and intersections in the study area are under the jurisdiction of the City of Los Angeles. Freeways and freeway ramps are under the jurisdiction of Caltrans.

Existing Street System

Major arterials serving the study area include $4^{\text {th }}, 6^{\text {th }}$, and $7^{\text {th }}$ Streets in the east-west direction and Alameda Street, Mateo Street, Santa Fe Avenue, and Mission Road in the north-south direction. Regional access to the Project site is provided by Interstate 10 (Santa Monica Freeway) approximately 0.5 miles to the south, US-101 and Interstate 5 approximately 0.4 miles to the east, US-101 approximately 1.1 miles to the north, and SR-60 approximately 0.5 miles to the southeast.

Street classifications/standards are designated in the City of Los Angeles Complete Streets Design Guide3. The Complete Streets Design Guide modified the City's street standards originally included in the City's Transportation Element to create a better balance between traffic flow and other important street functions including transit routes and stops, pedestrian environments, bicycle routes, building design, and site access. Roadways are defined as follows in the Complete Streets Design Guide.

- Freeways: High-volume, high-speed roadways with limited access provided by interchanges that carry regional traffic through and do not provide local access to adjacent land uses.

[^1]- Arterial Streets: Major streets that serve through traffic and provide access to major commercial activity centers. Arterials are divided into two categories:
- Boulevards represent the widest streets that typically provide regional access to major destinations and include two categories:
- Boulevard I provides up to four travel lanes in each direction with a target operating speed of 40 mph .
- Boulevard II provides up to three travel lanes in each direction with a target operating speed of 35 mph .
- Avenues pass through both residential and commercial areas and include three categories:
- Avenue I provides up to two travel lanes in each direction with a target operating speed of 35 mph .
- Avenue II provides up to two travel lanes in each direction with a target operating speed of 30 mph .
- Avenue III provides up to two travel lanes in each direction with a target operating speed of 25 mph .
- Collector Streets: Generally located in residential neighborhoods and provide access to and from arterial streets for local traffic and are not intended for cut-through traffic. Collector Streets provide one travel lane in each direction with a target operating speed of 25 mph .
- Local Streets: Intended to accommodate lower volumes of vehicle traffic and provide parking on both sides of the street. Local Streets provide one travel lane in each direction with a target operating speed of 15 to 20 mph . Local Streets can be:
- Continuous local streets that connect to other streets at both ends
- Non-Continuous local streets that lead to a dead-end

In addition, the Mobility Plan 2035 identifies corridors proposed to prioritize bicycle, pedestrian, transit, and vehicle infrastructure improvements. Each of the networks are defined below:

- The Neighborhood-Enhanced Network (NEN) is a selection of streets that provide comfortable and safe routes for localized travel of slower-moving modes such as walking, bicycling, or other slow speed motorized means of travel.
- The Transit-Enhanced Network (TEN) is the network of arterial streets prioritized to improve existing and future bus service for transit riders.
- The Bicycle-Enhanced Network (BEN) is a network of streets that will receive treatments that prioritize bicyclists. Tier 1 Protected Bicycle Lanes are bicycle facilities that are separated from vehicular traffic. Tier 2 and Tier 3 Bicycle Lanes are facilities on roadways with striped separation. Tier 2 Bicycle Lanes are those more likely to be built by 2035.
- The Vehicle-Enhanced Network (VEN) identifies streets that prioritize vehicular movement and offer safe, consistent travel speeds and reliable travel times.
- The Pedestrian-Enhanced Districts (PEDs) identify where pedestrian improvements on arterial streets could be prioritized to provide better walking connections to and from the major destinations within communities.

Listed below are the primary freeways and streets that provide regional and local access to the study area.

Freeways

- Interstate 10 runs in an east-west direction and extends from the Pacific Ocean eastward through Los Angeles County and beyond. In the vicinity of the Project site, I-10 lies to the south of the Project Site and provides up to five lanes in each direction. Ramps near the Project site are provided at Alameda Street, Mateo Street/Santa Fe Avenue, and Boyle Avenue. I-10 shares an alignment with I-5 and runs north/south between the East Los Angeles Interchange and the I-5/I-10 interchange near LAC+USC Medical Center.
- US-101 runs in a southeast-northwest direction and extends from Downtown Los Angeles to Ventura County and beyond. In the vicinity of the Project site, US-101 lies north and east of the Project site and provides three to four lanes in each direction. Freeway ramps closest to the Project site are located at Alameda Street, $7^{\text {th }}$ Street, $4^{\text {th }}$ Street, and $1^{\text {st }}$ Street.
- Interstate 5 runs in a north-south direction and extends from San Diego, through the East Los Angeles Interchange, and north to the rest of California. In the vicinity of the Project site, the freeway lies east of the Project Site and provides up to five lanes in each direction. Freeway ramps closest to the Project Site are located at $4^{\text {th }}$ Street, $7^{\text {th }}$ Street, and Soto Street.
- SR-60 runs in an east-west direction and extends from the East Los Angeles Interchange to Riverside County. In the vicinity of the Project site, the freeway provides four to five lanes in each direction. Access is provided at Soto Street, Mateo Street/Santa Fe Avenue via I-10, and other ramps via US-101 and I-5/I-10.

East-West Streets

- $\mathbf{4}^{\text {th }}$ Street is designated as Avenue II near the Project site with the exception between Alameda Street and Hewitt Street where $4^{\text {th }}$ Street is designated as Avenue III. $4^{\text {th }}$ Street has three to four travel lanes all in the eastbound direction running north of the Project site up to Hewitt Street. Parking is permitted along most portions of the roadway on both sides of the street, with peak hour restrictions west of San Pedro Street. A center running reversible lane exists along $4^{\text {th }}$ Street east of Hewitt Street to the I-5 interchange. The reversible lane operates westbound during the AM peak period and eastbound during the PM peak period. The lane functions as a two-way left-turn lane outside the peak periods.
- 6 ${ }^{\text {th }}$ Street is designated as Avenue II near the Project site. $6^{\text {th }}$ Street is part of the Pedestrian Enhanced District, Transit Enhanced Network and Bicycle Enhanced Network. West of Central Avenue, $6^{\text {th }}$ Street has four travel lanes in the eastbound direction. From Mateo Street to the US-

101 freeway, $6^{\text {th }}$ Street is undergoing construction as part of the Sixth Street Viaduct Replacement Project. When construction is completed in 2022, $6^{\text {th }}$ Street east of Mateo Street will provide two travel lanes in each direction with left-turn pockets at major intersections. East of Central Avenue, $6^{\text {th }}$ Street has two travel lanes in each direction with left-turn pockets at major intersections. Parking is generally permitted on both sides of the street east of Mateo Street, with peak hour restrictions west of Maple Avenue.

- $7^{\text {th }}$ Street is designated as an Avenue II and is part of the Bicycle Enhanced Network. East of Main Street, $7^{\text {th }}$ Street has two travel lanes in each direction, which is reduced to one travel lane in each direction west of Main Street. Left-turn pockets are present at major intersections. Parking is permitted on both sides of the street. There are bike lanes in each direction west of Main Street.
- Jesse Street is designated as a Collector with one through lane in each direction. Jesse Street runs west of the Project site in an east-west direction, starting at Mateo Street and ending as a Tintersection at Mesquit Street. Parallel parking is permitted on both sides of the street between Mateo Street and Santa Fe Avenue, and loading is permitted on both sides of the street between Santa Fe Avenue and Mesquit Street.

North-South Streets

- Alameda Street is designated as an Avenue I near the Project site and is part of the Vehicle Enhanced Network. Alameda Street has two travel lanes in each direction and turn pockets at most intersections. Parking is permitted between 7th Street and Olympic Boulevard on the west side of the street and between 7th Street and Bay Street on the east side of the street. Alameda Street also is part of the Bicycle Enhanced Network and the Goods Movement network.
- Mateo Street is designated as an Avenue III with one travel lane in each direction and parking on both sides of the street. Mateo Street is part of the Pedestrian Enhanced District, Bicycle Enhanced Network and the Neighborhood Enhanced Network.
- Santa Fe Avenue is designated as a Modified Avenue III north of the $4^{\text {th }}$ Street Bridge and an Avenue II south of the $4^{\text {th }}$ Street Bridge. Santa Fe Avenue has one travel lane running in each direction north of $7^{\text {th }}$ Street, and two travel lanes in each direction south of $7^{\text {th }}$ Street. Santa Fe Avenue is part of the Pedestrian Enhanced District and Neighborhood Enhanced Network.
- Mesquit Street is designated as a Collector street with one through lane in each direction. The northern end of Mesquit Street ends at $6^{\text {th }}$ Street and the southern end of Mesquit Street ends at $7^{\text {th }}$ Street. Parking is permitted on both sides on the street, with both parallel and front in parking. A request has been made to modify the designation of Mesquit Street to a Local Street - Limited as part of a request to vacate portions of Mesquit Street, which is described in Section 3.1.

Existing Public Transit Service

Due to its proximity to the transit hubs in downtown Los Angeles, the Project site is served by several transit lines. The Project is located $1 / 4$-mile from the Metro Rapid 720 bus stop at Decatur Street $\& 7$ th Street and $1 / 2$-mile from the Metro Rapid 760 bus stop at Alameda Street $\& 7^{\text {th }}$ Street. Three Metro Local bus routes also run within a $1 / 4$-mile of the Project Site. Metro Local Route 60 runs on 7th Street and Santa Fe Avenue,
and Metro Local Routes 18 and 62 run on 7th Street and Whittier Boulevard. The LADOT Downtown Area Short Hop (DASH) A route has its nearest stop approximately 0.4 miles away from the Project at the corner of Molino Street \& Palmetto Street. Figure 3 shows the various transit routes providing service within walking distance of the Project site. Table $\mathbf{1}$ details the existing transit service displayed in Figure 3.

In addition, the Project site is one mile from the Metro Gold Line Pico/Aliso station and approximately two miles from the 7th Street/Metro Center Station and the Union Station transportation hub.

Existing Bicycle and Pedestrian Facilities

Bicycle Facilities

Figure 4 shows existing bicycle facilities in the Project area. There are currently bike lanes on $4^{\text {th }}$ Place from Alameda Street to Hewitt Street, on $3^{\text {rd }}$ Street from $4^{\text {th }}$ Place to Santa Fe Avenue, and on Mateo Street from $6^{\text {th }}$ Street to East $4^{\text {th }}$ Street in the study area.

Pedestrian Facilities

The study area generally has a patchwork of pedestrian facilities, such as sidewalks and accessible curb ramps. Major streets such as Mateo Street, Santa Fe Avenue, 7th Street, and 6th Street typically have more pedestrian facilities than other minor streets. Many areas and streets lack curbs, sidewalks, and accessible ramps due to the historically industrial nature of the area. Mesquit Street, which runs along the Project Site's frontage, has sidewalks on the eastern and western side of the street from Jesse Street to $6^{\text {th }}$ Street. South of Jesse Street, Mesquit Street has sidewalks on the western side of the street approximately halfway to the dead-end at $7^{\text {th }}$ Street. There are no sidewalks on either side of the street for the remaining length of the street to $7^{\text {th }}$ Street. A detailed inventory of pedestrian facilities is in Section 4.1, Pedestrian, Bicycle, and Transit Access.

As shown in the Site Plans (Figures 2A \& 2B), sidewalks are proposed on all sides of the Project.

High-Injury Network

The City of Los Angeles' High Injury Network (HIN) spotlights streets with a high concentration of traffic collisions that result in severe injuries and deaths, with an emphasis on those involving people walking and bicycling. The study area has several streets that have been identified by the City as part of the HIN. These include:

- Alameda Street (north of $6^{\text {th }}$ Street)
- $4^{\text {th }}$ Street (east of Gless Street)
- $6^{\text {th }}$ Street (west of Mateo Street)
- $7^{\text {th }}$ Street (west of Mateo Street)

No Project driveways are proposed on HIN roadways.

Project Site
Metro Local Bus
\longrightarrow Metro Limited Express Bus
\longrightarrow Metro Rapid Bus
L_LADOT DASH Bus

TABLE 1 670 MESQUIT EXISTING TRANSIT SERVICE						
Line Number	Operator	Service Type	Service From	Via	Weekday AM	Headways PM
60 760 62 20 720 53 16 18 106 51 251 751 66 Dash Downtown A	Metro LADOT	Local Rapid Local Local Rapid Local Local Local Local Local Local Rapid Local Shuttle	Downtown Long Beach to Downtown Los Angeles Lynwood to Downtown Los Angeles Hawaiian Gardens to Downtown Los Angeles Santa Monica to Downtown Los Angeles Santa Monica to Commerce Carson to Downtown Los Angeles Century City to Downtown Los Angeles Koreatown to Montebello Boyle Heights to Montery Park Compton to Koreatown Cypress Park to Lynwood Cypress Park to South Gate Montebello to Koreatown Financial District to Arts District	7th St 7th St Central Ave 7th St 6th St Central Ave 5th \& 6th St Central Ave Boyle Av San Pedro St Soto St Soto St San Pedro St 3rd St	10-14 min. 10-15 min. 25-57 min. 11-12 min. 4-9 min. 5-16 min. 7 min. 8-10 min. 50 min . 15 min. 20 min . 10 min . 2-15 min. 7 min .	9-10 min. $12-15 \mathrm{~min}$. 23-28 min. 10 min . 3-10 min. 7-15 min. 9 min . 9-10 min. 50 min . 12-15 min. 20-40 min. $16-18 \mathrm{~min}$. 6-10 min. 7 min .

Project Site
EXISTING
——Bicycle Lanes
__Bicycle Routes

2.2 Cumulative Conditions

This section details the planned transportation improvements and proposed land use developments within the study area buildout scenarios.

Transportation Infrastructure Projects

Sixth Street Viaduct

Due to the rebuild of the Sixth Street Viaduct, access from Downtown Los Angeles and Boyle Heights/East Los Angeles along 6th Street/Whittier Boulevard was restricted in the existing year. However, in the Project and the Project with the Deck Concept buildout scenarios, it was assumed that the bridge would be open since the current construction schedule shows completion by mid-2022. Therefore, these analysis scenarios reflect the proposed roadway network of the new bridge. The new Sixth Street Viaduct will have the same number of lanes as the previous bridge. Enhancements to pedestrian and bicycle facilities will be included, with dedicated bicycle lanes and wider sidewalks. The new intersection configurations for the ends of the bridge were provided by LADOT.

In association with the rebuild of the Sixth Street Viaduct, public park space (called PARC) will be included along and adjacent to the future bridge. New public park space along the western approach of the future bridge will result in the closure of Mesquit Street where it previously served as a one-way westbound frontage road parallel to the bridge. The future Mesquit Street as it approaches the bridge northbound will use the alignment of the southern frontage road and terminate at Santa Fe Avenue. The existing one-way eastbound frontage road will remain as-is from Mateo Street to Santa Fe Avenue. The future year (2026 and 2040) buildout scenarios for the Project and the Project with the Deck Concept reflect the future Mesquit Street configuration.

Capital Transit Projects

LADOT's Moving Forward Together project, which conducted a detailed transit service analysis of LADOT Transit's network, identified a potential route expansion for DASH Downtown Route F, which currently runs between the Financial District and Exposition Park. The potential expansion would connect Exposition Park to Union Station through the Arts District via $7^{\text {th }}$ Street and Santa Fe Avenue. While a final route expansion and schedule has not been published, the Moving Forward Together project website indicates new DASH routes and schedule changes may begin mid-20204.

The Regional Connector, currently under construction, will better link the Metro L (Gold) Line with the rest of the LA Metro network. As a result of the Regional Connector project, Intersection 4 (Alameda Street \& $1^{\text {st }}$ Street) will be reconfigured by 2022 when the Regional Connector project is forecasted to be completed ${ }^{5}$. Future scenarios in this report assume the proposed intersection configuration as provided by LADOT.

[^2]Potential future expansions to the transit network under study by Metro include the Red/Purple Line extension into the Arts District along the LA River (EIR under development by Metro ${ }^{6}$) and the West Santa Ana Branch Transit Corridor along Alameda (currently in the Metro planning process). The potential Red/Purple Line extension would include a station at $6^{\text {th }}$ Street, adjacent to the Project site.

Capital Bicycle \& Pedestrian Projects

The Mobility Plan 2035 identifies corridors proposed to receive improved bicycle, pedestrian and vehicle infrastructure improvements. Tier 1 Protected Bicycle Lanes are bicycle facilities that are separated from vehicular traffic. Tier 2 and Tier 3 Bicycle Lanes are facilities on roadways with striped separation; the plan states that Tier 2 Bicycle Lanes are those more likely to be built by 2035. The Mobility Plan 2035 identifies Mateo Street and portions of Santa Fe Avenue as part of the Neighborhood Enhanced Network. The Los Angeles River Bike Path from Elysian Park to Maywood via Downtown/Arts District is also planned to provide more access to the Los Angeles River. Mateo Street, Boyle Avenue, and 7th Street are part of the Tier 2 Bike Lane Network.

The Los Angeles River Revitalization Master Plan also outlines significant bicycle and pedestrian investment along the LA River in downtown (as indicated by the LA River Bike Path). If the river revitalization plan is approved and completed, the Project will be adjacent to the PARC which provides a connection to the facilities along the river and creates a new regional link.

The Arts District won an Active Transportation Program (ATP) grant in 2018 that will allow construction of facilities that improve mobility through bicycle and pedestrian infrastructure. The plans call for new bicycle lanes on Traction Avenue, Mateo Street, and other minor collectors in the Arts District. A protected bike lane is proposed for Santa Fe Avenue north of $1^{\text {st }}$ Street.

Pedestrian improvements as part of the ATP grant include new crosswalks at major intersections in the Arts District, including a raised crosswalk at Santa Fe Avenue \& 6th Street. Pedestrian Activated Signals are proposed for several crossings along $4^{\text {th }}$ Place, and over a dozen curb extensions/ADA ramps are proposed throughout the area. The Arts District Mobility Improvements will not result in the reconfiguration of any study intersections.

Related Projects

Related projects are developments expected to be implemented in the vicinity of the proposed Project site prior to the buildout date of the proposed Project. The list of related projects within a 2-mile radius of the Project was prepared based on data from LADOT and verified by City Planning. A total of 141 related projects were identified in the study area; these projects are listed in Table 2 and illustrated in Figure 5. These related projects were assumed to be in place by both Future Year 2026 and Future Year 2040.

[^3]| TABLE 2
 670 MESQUIT PROJECT RELATED PROJECTS | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Project Location | Land Use | Size | | Trip Generation | | | | | | |
| | | | | | Daily | AM | | | PM | | |
| | | | | | IN | OUT | TOTAL | IN | OUT | TOTAL |
| 1 | 540 S Santa Fe Ave | Office | 65.812 | | | 726 | 90 | 12 | 102 | 17 | 81 | 98 |
| 2 | 601 S Main St | Apartments | 452 | du | 2,686 | 36 | 144 | 180 | 152 | 87 | 239 |
| | | Retail | | | | | | | | | |
| 3 | 225 S Los Angeles St | Condominiums | 300 | | 1,910 | 88 | 136 | 224 | 75 | 52 | 126 |
| | | Retail | | | | | | | | | |
| 4 | 150 N Los Angeles St | Office | 713 | ksf | 13,534 | 930 | 118 | 1,048 | 435 | 942 | 1,374 |
| | | Retail | 35 | ksf | | | | | | | |
| | | Child Care | 2.5 | ksf | | | | | | | |
| 5 | 534 S Main St | Apartments | 160 | du | 2,213 | 52 | 75 | 127 | 87 | 58 | 145 |
| | | Retail | 18 | ksf | | | | | | | |
| | | Restaurant | 3.5 | ksf | | | | | | | |
| | | Fast-Food Restaurant | 3.5 | ksf | | | | | | | |
| 6 | 1057 S San Pedro St | Office | 294.641 | ksf | 16,433 | 837 | 434 | 1,271 | 632 | 957 | 1,589 |
| | | Retail | 176.733 | ksf | | | | | | | |
| | | Cinema | 744 | Seats | | | | | | | |
| | | Apartments | 945 | | | | | | | | |
| | | University | 1400 | Students | | | | | | | |
| | | Hotel | 210 | Rooms | | | | | | | |
| 7 | 1525 E Industrial St | Apartments | 344 | du | 2,288 | 58 | 73 | 131 | 86 | 69 | 155 |
| | | Office | 21.4 | ksf | | | | | | | |
| | | Retail | 6.1 | ksf | | | | | | | |
| 8 | 950 E 3rd St | School | 532 | Students | 6,372 | 162 | 177 | 339 | 245 | 213 | 458 |
| | | Retail | 30.062 | ksf | | | | | | | |
| | | Apartments | 635 | du | | | | | | | |
| 9 | 2051 E 7th St | Apartments | 320 | du | 2,310 | 17 | 127 | 144 | 145 | 64 | 209 |
| | | Retail | 15 | ksf | | | | | | | |
| | | Restaurant | 5 | ksf | | | | | | | |
| 10 | 963 E 4th St | Office | 79 | ksf | 2,512 | 106 | 22 | 128 | 113 | 138 | 251 |
| | | Retail | 25 | ksf | | | | | | | |
| | | Restaurant | 20 | ksf | | | | | | | |
| 11 | 826 S Mateo St | Condominiums | 90 | du | 1,267 | 11 | 34 | 45 | 62 | 39 | 101 |
| | | Other | 11 | ksf | | | | | | | |
| | | Other | 5.6 | ksf | | | | | | | |
| 12 | 2030 E 7th St | Office | 243.583 | ksf | 2,306 | 274 | 34 | 308 | 69 | 249 | 318 |
| | | Retail | 40 | ksf | | | | | | | |
| 13 | 360 S Alameda St | Apartments | 55 | du | 670 | 25 | 33 | 58 | 35 | 26 | 61 |
| | | Other | 2.5 | ksf | | | | | | | |
| | | Other | 6.3 | ksf | | | | | | | |
| 14 | 649 S Wall St | Assisted Living | 55 | beds | 104 | 24 | 5 | 29 | 3 | 24 | 27 |
| | | Office | 55 | empl. | | | | | | | |
| 15 | 410 Center St | Office | 110 | ksf | 1,165 | 87 | 0 | 87 | 0 | 79 | 79 |
| 16 | 500 S Mateo St | Restaurant | 12.82 | ksf | 1,052 | 48 | 41 | 89 | 50 | 31 | 81 |
| 17 | 300 S Main St | Apartments | 471 | du | 4,691 | 143 | 243 | 386 | 257 | 153 | 410 |
| | | Retail | 5.19 | ksf | | | | | | | |
| | | Restaurant | 27.78 | ksf | | | | | | | |
| 18 | 400 S Alameda St | Hotel | 66 | Rooms | 512 | 20 | 18 | 38 | 23 | 14 | 37 |
| | | Retail | 0.84 | ksf | | | | | | | |
| | | Restaurant | 2.13 | ksf | | | | | | | |
| 19 | 719 E 5th St | Apartments | 160 | du | 1,033 | 15 | 58 | 73 | 59 | 37 | 96 |
| | | Retail | 7.5 | ksf | | | | | | | |
| 20 | 2130 E Violet St | Office | 94 | ksf | 1,351 | 137 | 30 | 167 | 39 | 122 | 161 |
| | 2130 E Violet St | Retail | 7.45 | ksf | 1,351 | 137 | 30 | 167 | 39 | 122 | 161 |
| 21 | 929 E 2nd St | Mixed Use Private Club | 48.862 | ksf | 2,153 | 68 | 12 | 80 | 105 | 96 | 201 |
| 22 | 1800 E 7th St | Apartments | 122 | | 816 | 26 | 45 | 71 | 45 | 37 | 82 |
| 22 | 1800 E 7th St | Office | 13.6 | ksf | 816 | 26 | 45 | 71 | 45 | 37 | 82 |
| 23 | 1722 E 16th St | Restaurant | 8.151 | ksf | 592 | -4 | 2 | -2 | 36 | 11 | 47 |
| 24 | 454 E Commercial St | Bus Facility | | acres | N/A | 22 | 8 | 30 | 9 | 1 | 10 |
| 25 | $\begin{aligned} & 118 \text { S Astronaut E S Onizuka } \\ & \text { St } \end{aligned}$ | Apartments | 77 | du | 97 | -1 | 20 | 19 | 19 | 6 | 25 |
| 26 | 555 S Mateo St | Retail | 153 | ksf | 4,300 | 5 | 30 | 35 | 220 | 205 | 425 |
| 27 | 1000 S Santa Fe Ave [a] | Restaurant | 8.447 | ksf | 966 | 36 | 37 | 38 | 39 | 40 | 69 |
| 27 | 1000 S Santa Fe Ave [a] | Club | 48 | Rooms | 966 | 36 | 37 | 38 | 39 | 40 | 69 |
| | | Apartments | 110 | du | | | | | | | |
| 28 | 2110 Bay St [a] | Office | 113 | ksf | 2,394 | 180 | 63 | 243 | 89 | 192 | 281 |
| | | Retail | 43.66 | ksf | | | | | | | |
| 29 | 330 S Alameda St [a] | Apartments | 186 | du | 1,662 | 36 | 76 | 112 | 91 | 65 | 156 |
| | | Commercial | 22 | ksf | | | | | | | |
| 30 | 668 S Alameda St [a] | Apartments | 475 | du | 4,002 | 107 | 182 | 289 | 216 | 145 | 361 |
| | | Commercial | 84 | ksf | | | | 289 | 216 | 145 | 361 |
| | | Apartments | 200 | | | | | | | | |
| 31 | 520 Mateo St | Office | 30 | ksf | 4.995 | 157 | 220 | 377 | 274 | 223 | 497 |
| | | Restaurant | | ksf | | | | | | | |
| | | Retail | 15 | ksf | | | | | | | |
| 32 | 717 Maple Ave [a] | Apartments | 452 | du | | | | | | | |
| | 717 Maple Ave [a] | Retail | | ksf | 3,199 | 67 | 179 | 246 | 185 | 105 | 290 |

TABLE 2 670 MESQUIT PROJECT RELATED PROJECTS												
No.	Project Location	Land Use	Size			AM						
					Daily				PM			
					IN	OUT	TOTAL	IN	OUT	TOTAL		
33	232 W 2nd St [b]	Condominiums	107			4,006	467	93	560	118	423	541
		Office	534	ksf								
		Retail	7.2	ksf								
34	433 S Main St	Condominiums	161	Rooms	1,450	32	72	104	61	37	98	
		Mixed Use	6.9	ksf								
35	676 Mateo St [b]	Apartments			1,990	50	95	145	106	51	157	
		Commercial	27	ksf								
36	732 Wall St [b]	Apartments	323	du	2,499	108	82	191	164	141	305	
		Office	53.2	ksf								
		Retail	4.4	ksf								
		Wholesale/Storage	63.585	ksf								
		Restaurant	4.42	ksf								
		Event Space	9.226	ksf								
37	333 S Alameda St [a]	Apartments	994	du	8,445	134	260	394	390	329	719	
		Retail	993	ksf								
38	1129 E 5th St	Retail	26.98	ksf	4,674	130	140	270	157	69	226	
		Restaurant	31.72	ksf								
		Hotel	113	Rooms								
		Apartments	129	du								
		Art School	3.43	ksf								
		Art Space	10.34	ksf								
39	2650 E Olympic BI	Apartments	1000	du	12,247	498	477	975	599	539	1,138	
		Restaurant	N/A	ksf								
		Office	230	ksf								
40	2143 E Violet St	Apartments	320	du	4,477	329	22	351	130	330	460	
		Retail	224.29	ksf								
		Office	46.67	ksf								
41	633 S Spring St	Hotel	176	Rooms	2,045	83	33	116	97	99	196	
		Restaurant	8.43	ksf								
		Bar										
42	732 S Spring St	Apartments			3,359	59	152	211	164	104	268	
		Pharmacy/Drugstore	15	ksf								
43	237 S Los Angeles St	Sports Complex	43	ksf	1,869	79	50	129	161	98	259	
44	640 S Santa Fe Avenue	Commercial	107	ksf	1,330	90	8	98	43	114	157	
45	1745 E $7^{\text {th }}$ Street	Apartments	57	du	635	9	25	34	34	24	58	
		Commercial		ksf								
46	940 E 4th Street	Office		ksf	788	14	37	51	44	31	75	
		Retail	14.3	ksf								
		Apartments	107	du								
47	609 E 5th St	Apartments	151	du	1,004	15	62	77	61	33	94	
48	713 E 5th St	Apartments	51	du	208	15	10	25	9	8	17	
49	1000 S Mateo St	Apartments	113	du	2,238	153	83	236	90	131	221	
		Commercial	134	ksf								
50	926 E 4th St	Office	265.45	ksf	3,448	366	75	411	100	322	422	
		Retail	4.97	ksf								
		Museum	7.8	ksf								
51	2159 E Bay St	Retail	18.33	ksf	2,029	194	30	224	57	192	249	
		Office	204	ksf								
52	1247 S Grand Ave	Apartments	118	du	763	10	41	51	42	25	67	
		Commercial	5.125	ksf								
53	1 Gateway Plaza	Residential	22	du	25,312	862	527					
		Office	7443.2	ksf								
		Retail	645	ksf				1,389	734	1,042	1,776	
		Hotel	750	Room								
		Restaurant	20	ksf								
		Museum	70	ksf								
54	354 S Spring St	Apartments	212	du	1,410	22	87	108	85	46	131	
55	552 S San Pedro	Affordable Housing			2186	107	138	245	96	88	184	
	552 S San Pedro	Retail	12.3	ksf								
56	1005 S Mateo Street	Industrial Park	94.8	ksf	426	40	9	49	10	39	49	
57	1800 E 1st St	Apartments	65	du	433	7	19	25	23	16		
	1800 E 1st St	Retail		ksf	433	7	19	25	23	16	40	
58	1001 E 1st St	Apartments			2166	33	119	152	121	79	200	
	1001 Elst St	Retail	8.742									
		Retail	16.694									
59	755 S Los Angeles St	Office	60.243		2,482	110	57	167	105	100	205	
		Restaurant	26.959	ksf								
60	601 S Central Ave	Apartments	236	du	1,074	17	79	96	70	32	102	
	601 S Central Ave	Retail	12	ksf	1,074							

tABLE 2 670 MESQUIT PROJECT RELATED PROJECTS												
No.	Project Location	Land Use	Size		Daily	AM Trip Generation			PM			
					IN	OUT	TOTAL	IN	OUT	TOTAL		
61	527 Colyton St	Condominiums	310			2,095	36	116	152	121	74	195
		Retail	11.375									
		Production Space	11.736	ksf								
62	1100 E 5th St	Apartments (Live/Work du)	220		2,583	79	119	198	133	74	207	
		Commercial	49	ksf								
63	600 S San Pedro Street	Apartments	303	du	636	38	25	63	30	37	67	
		Retail		ksf								
64	655 S San Pedro Street	Apartments		du	539	8	33	41	33	17	50	
65	656 S Stanford Ave	Apartments	82	du	545	8	34	42	33	18	51	
66	361 S Spring Street	Hotel	315	room	2,273	91	59	150	84	85	169	
67	641 Imperial Street	Residential	140	du	1,093	34	60	94	61	48	109	
		Office	14.749	ksf								
68	2901 E Olympic BI	Apartments			19,382	463	1,044	1,507	1,123	804	1,927	
		Retail	185	ksf								
		Office	125	ksf								
		Medical Office	25									
		Daycare	15	ksf								
		Library	15	ksf								
69	1828 E Cesar Chavez Av	Office	32	ksf	1,168	58	16	74	30	82	112	
70	2407 E 1st St	Apartments	50		354	12	14	26	16	9	35	
		Office	8.5	ksf								
		Retail	3.4	ksf								
71	2420 E Cesar Chavez Av	Apartments	77	du	1,087	25	36	61	54	44	98	
		Retail		ksf								
		Health Club		ksf								
72	119 S Soto St	Apartments	65		433	7	19	26	23	16	40	
		Retail		ksf								
73	810 E 3rd St	Apartments		du	1,487	37	32	69	87	48	135	
		Restaurant	3.5									
		Retail	6.2	ksf								
74	848 S Grand Ave	Condominiums			3,882	66	144	210	212	165	377	
		Retail	38.5	ksf								
75	1050 S Grand Ave	Condominiums	151	du	1,084	15	54	68	64	35	99	
		Retail	3.472	ksf								
		Restaurant	22	ksf								
76	1115 S Hill St	Mixed Use	N/A	Other	543	-45	40	-5	50	-7	43	
77	201 S Broadway Ave	Retail/Restaurant	27.675	ksf	N/A	-40	-41	-81	53	17	70	
78	1200 S Grand Ave	Apartments	640		4,886	92	148	240	181	134	315	
		Retail	45	ksf								
79	928 S Broadway	Apartments			4,715	21	229	250	272	109	381	
		Condominiums	17									
		Retail	58.8	ksf								
80	840 S Olive St	Condominiums	303		3,071	81	166	247	174	96	270	
		Restaurant	9.68	ksf								
		Retail	1.5	ksf								
81	400 S Broadway	Apartments	450	du	3,292	50	187	237	193	112	305	
		Retail	6.904	ksf								
		Bar		ksf								
82	1001 S Olive St	Apartments	225	du	1,581	22	79	101	94	51	145	
		Restaurant		ksf								
83	920 S Hill St	Apartments	239		1,476	23	84	107	87	50	137	
		Retail	5.4	ksf								
84	955 S Broadway	Apartments	201		1,275	21	72	93	74	43	117	
		Retail		ksf								
85	801 S Olive St	Apartments	363			33	129					
85	801 S Olive St	Commercial	10	ksf	2,557	33	129	162	140	83	225	
86	820 S Olive St	Apartments	589	du	3,309	63	202	264	195	106	302	
		Retail	4.5	ksf								
87	1148 S Broadway	Apartments	94	du	553	8	30	38	32	18	50	
	1148 S Broadway	Retail	2.5									
		Apartments										
88	1111 S Broadway	Office	39.7		5,198	144	176	319	258	274	532	
		Retail		ksf								
		Apartments										
89	1120 S Grand Ave	Shopping	20.69		2,730	42	127	170	136	93	229	
		Mixed use	N/A	Other								
90	1036 S Grand Ave	Restaurant	7.149		492	2	,	5	27	14	41	
		Apartments	345									
91	527 N Spring Street	Restaurant		ksf	3,585	49	118		189		320	
	527 N Spring Street	Retail		ksf	3,585			167		131		
		Retail		ksf								
92	737 S Spring St	Apartments	320									
92	737 S Spring St	Pharmacy/Drugstore	250	ksf	3,942	72	141	213	167	116	283	

TABLE 2 670 MESQUIT PROJECT RELATED PROJECTS												
No.	Project Location	Land Use	Size		Trip Generation							
					Daily	AM			PM			
					IN	OUT	TOTAL	IN	OUT	TOTAL		
93	340 S Hill St	Apartments	428			2,253	36	129	163	133	75	208
		Restaurant	2.894									
94	940 S Hill St	Apartments			1,881	20	80	100	115	53	168	
		Restaurant		ksf								
95	744 S Figueroa St	Apartments	436	du	2,644	37	146	183	158	86	244	
		Retail	10	ksf								
96	850 S Hill St	Apartments	300	du	1,970	28	106	134	116	65	181	
		Retail		ksf								
		Restaurant	3.5	ksf								
97	700 W 9th St	Apartments	341	du	2,624	37	146	183	143	95	238	
		Retail	11.7	ksf								
98	649 S Olive St	Hotel	241	Rooms	1,674	65	44	109	63	60	123	
99	1100 S Main St	Apartments	379	du	385	9	103	112	78	14	92	
		Other	25.81	ksf								
100	924 N Spring St [b]	Condominiums	770	du	6,583	169	290	459	307	201	508	
		Retail	51.39	ksf								
101	845 S Olive St	Apartments	208	du	1,305	25	76	101	77	42	119	
		Retail	2.4	ksf								
102	888 S Hope Street	Apartments	526	du	3,498	54	214	268	212	114	326	
103	1000 S Hill Street	Apartments	700	du	3,392	49	193	242	181	104	285	
		Retail		ksf								
		Restaurant	8	ksf								
104	333 W $5^{\text {th }}$ Street	Condominiums	100	du	3,358	64	72	136	201	129	330	
		Hotel	200	Room								
		Commercial	27.5	ksf								
105	100 S Broadway	Apartments		du	8,535	94	341	435	294	38	332	
		Commercial	410	ksf								
106	754 S Hope St	Condominiums		du	2,315	35	137	172	137	78	215	
		Retail	7.329	ksf								
107	100 S Grand Avenue	Apartment		du	21,631	919	632	1,551	1,120	1,344	2,464	
		Condominium	1648	du								
		Retail	225.3	ksf								
		Supermarket	53	ksf								
		Restaurant	67	ksf								
		Health Club	50	ksf								
		Event Facility	250	Seats								
		Hotel	275	Rooms								
		Office	681	ksf								
108	1230 S Olive St	Apartments	360	du	2,114	31	126	157	127	69	196	
		Retail	6.4	ksf								
109	708 N Hill St	Apartments	162	du	980	16	57	73	57	33	90	
		Retail		ksf								
110	211 W Alpine St	Apartments	122	du	566	9	42	51	37	18	55	
		Retail	7.5	ksf								
111	1101 N Main	Condominiums	318	du	1,102	-9	80	71	75	12	87	
112	700 W Cesar Chavez Ave	Apartments	299	du	1.511	7	89	96	99	54	153	
		Retail		ksf								
113	949 S Hope St	Apartments	236	du	791	8	45	53	43	7	50	
113	949 S Hope St	Retail	5.954		791	8	45	53	43	7	50	
		Hotel	560	du								
114	900 W Wilshire BI	Office	1500	ksf	3.624	725	75	800	94	764	858	
	900 W Wishire BI	Retai/Restaurant	275	ksf	3,624	725	75	800	94	764	858	
		Apartments		du								
		Hotel	142									
115		Commercial		ksf								
115	643 N Spring St	Restaurant	2.532	ksf	2,723	61	122	183	138	91	229	
		Apartments										
116	427 W 5th St	Apartments	615		3,134	42	115	157	164	97	261	
116	427 W 5th St	Restaurant	16.309	ksf	3,134	42	115	157	164	97	261	
117	1843 E 41st St	Warehouse	643	ksf	2,581	242	53	295	67	202	269	
118	250 S Hill St	Condos	330		1,217	21	73	94	66	42	108	
		Retail		ksf	1,217	21	73	94	66	42	108	
119	1700 E Martin Luther King	Industrial	480.3	ksf	2,134	153	41	194	54	151	205	
120	1027 S Olive St	Apartments		du	632	9	39	48	38	21	59	
121	3401 E 1st Street	Industrial			458	6	18	24	25	17	42	
121	3401 E 1st Street	Apartments	100		458	6	18	24	25	17	42	
		Apartments		du								
122	1147 E Palmetto	Retail		ksf	2,908	73	141	215	147	83	230	
		Apartments	120	du								
123	1030 N Soto Street	Hotel		rooms	662	25	18	43	25	23	48	
		Manufacturing	36.26									
124	2710 S Compton Ave	Warehouse	46.76		346	37	10	47	15	33	48	
		Warehouse	3.74									

TABLE 2 670 MESQUIT PROJECT RELATED PROJECTS																						
No.	Project Location	Land Use	Size		Trip Generation																	
					Daily	AM			PM													
					IN	OUT	TOTAL	IN	OUT	TOTAL												
125	441 Bauchet St	Jail	3885	Beds		242	0	9	9	0	29	29										
126	129 W College St	Apartments	770		6,583	169	290	459	307	201	508											
		Grocery	34.52	ksf																		
		Restaurant		ksf																		
		Retail	5.87	ksf																		
127	1340 S Hill Street	Apartments	156		1,700	51	82	133	89	57	146											
		Retail		ksf																		
		Restaurant		ksf																		
128	1206 E 6th Street	Apartments	1736		14,258	437	585	1022	710	642	1352											
		Warehouse	316.632	ksf																		
		Office	253.514	ksf																		
		Quality Restaurant	22.639	ksf																		
		High-turnover Restaurant	22.639	ksf																		
		Retail	82.332	ksf																		
		Museum	22.429	ksf																		
		Hotel	514	rooms																		
		School	300	students																		
129	1045 Olive St	Commercial	15	ksf	2,227	39	157	296	138	62	200											
		Condominiums	800																			
130	930 E 6th St	Apartments	236		1,074	17	79	96	70	32	102											
		Retail	12	ksf																		
131	1030 S Hill St	Apartments	700	du	3,392	49	193	242	181	104	285											
		Retail		ksf																		
		Restaurant		ksf																		
132	1024 S Mateo St	Apartments	104		2,095	144	79	223	82	123	205											
		Office	101.983	ksf																		
		Restaurant	16.279	ksf																		
		Retail	5.83	ksf																		
		Other	5.519	ksf																		
133	554 S San Pedro St	Apartments	303	du	636	38	25	63	30	37	67											
		Commercial	19.91																			
134	443 S Soto St	School	625	students	277	131	112	243	32	25	57											
135	220 N Center Street	Apartments	430	du	2,166	33	119	152	121	79	200											
		Retail	8.742																			
136	755 S Wall St	Office	53.2		2,499	112	79	191	164	141	305											
		Apartments	322																			
		Other	4.42																			
		Other	125	Persons																		
		Retail		ksf																		
137	220 E Washington BI	Apartments			2,113	38	118	156	125	53	178											
		Commercial		ksf																		
138	1133 Hope St	Apartments	208		1,543	20	74	94	91	50	141											
		Restaurant	5.03																			
139	400 W 7th St	Apartments	165		2,792	18	57	75	132	127	259											
		Bar	11.9	ksf																		
		Restaurant	14.03																			
140	1229 S Grand Av	Condominiums	161		1,116	23	62	85	62	33	95											
		Restaurant		ksf																		
141	Sixth Street PARC	Park/Recreational		acres	TBD																	
Total					403,394	13,923	15,238	29,161	19,149	18,109	37,258											
Notes:																						
$\mathrm{du}=$ dwelling unit																						
ksf = one thousand square feet																						
Related projects list based on information provided by LADOT on February 22, 2018.																						
[a] Projects were not included in information provided by LADOT. Projects and land use from third party research. Trip generation estimates based on ITE rates[b] Projects were not included in information provided by LADOT. Projects and land use from LADCP Major Projects Website																						
Additional research and coordination with City Planning was conducted to ensure consistency of available information as of April 4, 2018.																						

Project Site

- Related Projects

3. CEQA TRANSPORTATION ANALYSES

3.1 Plans, Programs, Ordinances, or Policies Conflict Review

The City's TAG includes a review for conflicts with transportation-related plans, programs, ordinances, or policies. Based on applying the screening criteria, the threshold test is to assess whether a project would conflict with an adopted program, policy, plan, or ordinance that is adopted to protect the environment. A project would not result in an impact merely if it would not implement a particular program, policy, plan or ordinance. Rather, it is the intention of this threshold test to ensure that a proposed development does not conflict with nor preclude the City from implementing adopted programs, plans, and policies. ${ }^{7}$ Furthermore, under CEQA, a project is considered consistent with an applicable plan if it is consistent with the overall intent of the plan and would not preclude the attainment of its primary goals. A project does not need to be in perfect conformity with each and every policy. Finally, any inconsistency with an applicable policy, plan, or regulation is only a significant impact under CEQA if the policy, plan, or regulation was adopted for the purpose of avoiding or mitigating an environmental effect and if the inconsistency itself would result in a direct physical impact on the environment.

This evaluation was conducted by reviewing the following City documents:

- Mobility Plan 2035 is the City's document to guide the operation and design of streets and other public right-of-way. It lays out a vision for designing safer, more vibrant streets, that are accessible to people, no matter how they travel. The street standards were reviewed and compared to existing and future conditions resulting from the Project, and it was determined that the Project is compliant with Mobility Plan 2035.
- Community Plans make up the land use element of the City's General Plan and guide the physical development of neighborhoods by providing neighborhood level detail for land uses, the transportation network, policies, and implementation strategies. The Project is located in the Central City North Community Plan area.
- Vision Zero is a plan that strives to eliminate traffic related deaths in Los Angeles by 2025 through strategies such as modifying streets to better serve vulnerable road users. Projects located on the HIN should make improvements or fund them. The Project is not along any Vision Zero HIN priority corridors.
- Plan for Healthy LA aims to create healthier communities for all Angelenos by focusing on public health from the perspective of the built environment and City services. The plan states a balanced, affordable, and sustainable transportation system is a cornerstone of a healthy city.
- Los Angeles Municipal Code (LAMC) Section 12.21 A. 16 specifies the requirements for new developments and additions to provide bicycle parking and shower facilities. The Project would provide a minimum of 288 short-term and 519 long-term bicycle parking spaces, as required by

[^4]the proposed Mesquit Specific Plan (described below), which, if adopted, would supersede the City's bicycle parking requirements. The Project would also provide shower facilities and locate bicycle parking in conformance with the proposed Mesquit Specific Plan.

- LAMC Section 12.26J outlines transportation demand management and trip reduction measures required for the construction of new non-residential developments. The Project would provide the required transportation demand management and trip reduction measures, such as transportation information, bicycle parking in conformance with the proposed Mesquit Specific Plan, and designated passenger loading areas.
- Streetscape Plans provide a blueprint for streetscape improvements in the public right-of-way on key street segments to provide pedestrian-friendly environments. The Project is not along any streetscape plan areas.
- The City of Los Angeles Citywide Design Guidelines encompass common design objectives to maintain neighborhood form and character while promoting quality design and creative infill development solutions. The TAG specifically refers to Guidelines $1-3$, which focus on a safe pedestrian experience, incorporation of vehicular access without degrading the pedestrian experience, and maintenance of human scale. The Project was determined to support these guidelines with Project features that are detailed in the discussion below.
- The City of Los Angeles Manual of Policies and Procedures (MPP) Section 321 provides the basic criteria for the review of driveway designs. The Project complies with the location and number of driveways specified in MPP Section 321.
- The City of Los Angeles Transit-Oriented Communities Affordable Housing Incentive Program Guidelines (TOC Guidelines) provide the eligibility standards, incentives, and other necessary components of the TOC program. The Project is classified as a Tier 3 and would not degrade or inhibit trips made by biking, walking, or taking transit.

This evaluation also reviewed the proposed Mesquit Specific Plan, which would establish land use regulations for the Project site to ensure consistent implementation of development standards throughout the Project site. The proposed Specific Plan recognizes the Project site's unique characteristics, including unique opportunities for public benefits and unique constraints posed by the Project site's location which are not experienced by other sites.

Project Review

The Project features and design generally support multimodal transportation options and would be consistent with policies, plans, and programs that support alternative transportation, such as the Mobility Plan 2035. The Project design includes features to minimize impacts to the public right-of-way and enhance the user experience by integrating multimodal transportation options. The Project proposes to add new sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street, street trees along the Project site perimeter, improve street and pedestrian lighting, and add four pedestrian passageways connecting Mesquit Street to the eastern edge of the Project site to enhance connectivity to the existing pedestrian network. On the western side of the Project, the Project proposes a full-width
vacation/merger of Mesquit Street from the northerly right-of-way of 7th Street to the southerly right-ofway of Jesse Street in order to convert Mesquit Street from Jesse Street to 7th Street to a pedestrian paseo with limited vehicle access that connects to 7th Street. The project also proposes a half-width subsurface merger for the easterly half of Mesquit Street from the southerly right-of-way of Jesse Street to the southerly line of the LADWP property on the east side of Mesquit Street. The Project will maintain public access to the vacated portions of Mesquit Street. On the southern side of the Project, the Project proposes to add a pedestrian crosswalk on the $7^{\text {th }}$ Street Bridge to access the eastern portion of the Project site (near Building 4) and an elevated pedestrian walkway along the entire eastern edge of the Project site, which would be replaced with the deck for the Project with the Deck Concept, to connect the North River Balcony and a landscaped balcony at the southerly end of Building 4 (South River Balcony). The North River Balcony would also connect to the Project's Northern Landscaped Area, the proposed open space improvements associated with the Sixth Street Viaduct Replacement project (i.e. the Park, Arts, River, and Connectivity (PARC) Improvements) and the proposed future $6^{\text {th }}$ Street/Arts District Metro light rail station. The Project with the Deck Concept proposes a pedestrian deck over the existing railway properties facing the Los Angeles River that would host permanent and temporary programming. These Project features not only enhance connectivity to the existing pedestrian network and within the Project site but also encourage pedestrian activity. The Project does not propose to narrow sidewalks or remove streetscape amenities or features. The locations of driveways are intended to minimize disruptions to the pedestrian right-of-way. The Project will provide short-term and long-term bicycle parking in accordance with the requirements of the proposed Mesquit Specific Plan and a pull-out passenger loading zone along the east side of Mesquit Street, in front of Building 1.

The Project proposes two driveways along $7^{\text {th }}$ Street with restricted turning movements to minimize disruptions to pedestrians and through traffic. One driveway would be a two-way signalized driveway connecting the $7^{\text {th }}$ Street Bridge to the third level of Building 4 near the southeastern corner of the Project site that allows for full access out and right-turns only in. Another driveway is proposed as a one-way, right-turn-out-only driveway connecting the $7^{\text {th }}$ Street Bridge to the second level of Building 5 near the southwestern corner of the Project site. $7^{\text {th }}$ Street is designated as an Avenue II, and while the existing right-of-way width (72^{\prime}) is less than the Avenue II specification (86^{\prime}), a dedication is not required because $7^{\text {th }}$ Street is a bridge along the Project frontage. The Project also proposes two full-access driveways along Mesquit Street, which is classified as a collector street along the Project frontage. One driveway would be located at the northern end of the Project site at the ground level of Building 1, and another driveway would be located at the intersection of Mesquit Street \& Jesse Street at the ground level of Building 2. The existing right-of-way and roadway widths of Mesquit Street are narrower than the collector specifications, but the Project does not propose to dedicate Mesquit Street because the Project is proposing a vacation of Mesquit Street from $6^{\text {th }}$ Street to $7^{\text {th }}$ Street. The proposal is for a full-width vacation/merger of Mesquit Street from the northerly right-of-way of $7^{\text {th }}$ Street to the southerly right-of-way of Jesse Street and a half-width subsurface merger for the easterly half of Mesquit Street from the southerly right-of-way of Jesse Street to the southerly line of the LADWP property on the east side of Mesquit Street. The intent of the vacation of Mesquit Street is to create a pedestrian paseo with limited vehicle access from Jesse Street to $7^{\text {th }}$ Street and
to shape the streetscape along Mesquit Street while still maintaining access. The Project would not substantially increase hazards, conflicts, or preclude City actions to fulfill or implement projects associated with these networks and will contribute to overall walkability through enhancements to the Project site.

Appendix C provides additional detail regarding the plans, programs, ordinances, and policies conflict review analysis conducted per the City's TAG.

Cumulative Review

The TAG states that the review of plans, ordinances, and policies to assess potential conflicts with proposed projects should be an assessment of potential cumulative impacts that may result from a proposed project in combination with other development projects in the study area. For example, a cumulative impact could occur if the project as well as other future development projects located on the same block were to preclude the City's ability to serve transportation user needs as defined by the City's transportation policy framework.

The nearest related project to the Project site is a mixed-use office, retail, and restaurant project at 640 South Santa Fe Avenue, called "Produce LA," located across Mesquit Street from the proposed Project. This project, currently under construction, will maintain the existing sidewalks along its frontages on Santa Fe Avenue and Mesquit Street and has replaced the existing sidewalk along its frontage on Jesse Street. South Santa Fe Avenue is designated as an Avenue II, but the existing right-of-way and roadway widths along the 640 South Santa Fe Avenue project frontage are narrower than the Avenue II specifications. Jesse Street and Mesquit Street are designated as Collector streets and the existing right-of-way widths are narrower than the Collector street specifications. The Produce LA project dedicated 18 feet along South Santa Fe Avenue and seven feet along Mesquit Street and widened Jesse Street by seven feet, which included replacing the existing sidewalk, along the project frontages ${ }^{8}$. This related project proposes an all-access driveway, with the exception of outbound left turns, on South Santa Fe Avenue and an inbound-only driveway on Mesquit Street. No cumulative impacts are anticipated on Mesquit Street, where the proposed Project includes two driveways because the majority of the related project driveway activity will likely occur on South Santa Fe Avenue based on the proposed driveways. Therefore, traffic volumes for the Project and related project would be distributed on multiple streets rather than concentrating all travel on Mesquit Street. Other related projects located farther from the Project site would not share adjacent street frontages with the Project site. No significant cumulative impacts are anticipated to which both the Project and other nearby related projects would contribute in regard to City transportation policies or standards adopted to protect the environment and support multimodal transportation options.

[^5]
3.2 Vehicle Miles Traveled Analysis

As part of the City's CEQA guidelines, analysis of proposed land use projects is required to assess whether they could result in a substantial impact on vehicle miles traveled. The follow section summarizes an assessment of VMT generated by the Project.

LADOT developed a VMT Calculator tool to assess the VMT impacts of proposed development projects within the City. The VMT Calculator also assesses the effectiveness of selected TDM measures proposed for a project based on available research. Analysis was conducted for the Project using the City's VMT analysis procedures and Version 1.3 of the VMT Calculator (released May 2020). This analysis considered the Project's proposed land uses without and with the Project's proposed transportation demand management (TDM) program.

VMT Impact Criteria

The City's VMT impact criteria for development projects is specified in the TAG. Per the criteria, a development project would have a potential significant impact if the project meets one or more of the following:

- For residential projects, a development project may have a potential significant impact if it generates daily household VMT per capita exceeding 15% below the existing average daily household VMT per capita for the Area Planning Commission (APC) area in which the project is located (see table below). This criterion was used for the multifamily residential component of the Project.
- For office projects, a development project may have a potential significant impact if it generates daily work VMT per employee exceeding 15% below the existing average daily work VMT per employee for the APC in which the project is located (see the table below). This criterion was used for the non-retail employment components of the Project.
- Local-serving retail development tends to shorten trips and reduce VMT whereas regional-serving retail development can lead to substitution of longer trips for shorter ones and could increase VMT. In the latter case, any net increase in VMT is considered to be significant. Local-serving is defined as retail uses less than 50,000 square feet. The proposed retail components of the Project total more than 50,000 square feet and are therefore considered regional-serving. Per the City's proposed procedures, the City of Los Angeles' citywide travel demand forecasting model was run to evaluate the potential for the proposed retail uses and resulted in a net increase in VMT. The methodology for the regional-serving retail uses is further detailed in the next section.
- For mixed-use projects, reductions in daily trips and VMT due to internal capture between the project's land uses should be considered, after which the impact criteria above are applied to each individual land use.

VMT Impact Criteria (15\% Below APC Average)

Area Planning Commission	Daily Household VMT per Capita	Daily Work VMT per Employee
Central	6.0	7.6
East LA	7.2	12.7
Harbor	9.2	12.3
North Valley	9.2	15.0
South LA	6.0	11.6
South Valley	9.4	11.6
West LA	7.4	11.1

The Project is located in the Central APC.
Per the TAG, a project could have a significant cumulative impact on VMT if the project has both a significant project-level impact as determined above and is not consistent with the Southern California Association of Governments' Regional Transportation Plan/Sustainable Communities Strategy (SCAG RTP/SCS) in terms of development location, density, and intensity.

Impact Analysis

Per the City's procedures, daily household VMT per capita and daily work VMT per employee were estimated using the City's VMT Calculator tool for each Project scenario. The VMT Calculator starts with Institute of Transportation Engineers (ITE, 9 ${ }^{\text {th }}$ Edition) trip generation rates ${ }^{9}$, implements the MXD (mixed-use) methodology from the U.S. EPA, and utilizes socioeconomic, transit, and trip length data from the Los Angeles citywide travel demand model (calibrated to Los Angeles conditions) to adjust the trips for internalization, transit, and walkability. The VMT Calculator was calibrated based on local count data collected in the City of Los Angeles. The VMT Calculator allows for the selection of a wide variety of potential land uses including the multi-family housing, hotel, office, retail and restaurant, which was analyzed as half quality restaurant and half high-turnover restaurant, uses proposed as part of both Project options. Certain components of the proposed Project land uses, however, are not explicitly included in the VMT Calculator.

[^6]For the purposes of the VMT analysis, the farmer's market was included with the grocery, the food hall was included with the quality restaurant, and the studio/event/gallery, group exercise classes, and busking were included with the gym.

In addition to the VMT Calculator, the City of Los Angeles' citywide travel demand forecasting model was run to evaluate the potential for the proposed retail uses to result in a net increase in VMT. Since the overall number of trips in the citywide model is based on trips originating in residences (home-based trips), the total number of trips across the entire model network will not be influenced materially by the introduction of the additional retail space. Rather the model will redistribute home-shopping trips from other retail destinations to the proposed retail destination. The retail trips distributed to the Project are considered to be Project-related trips because they are drawn to the Project but are not new from a regional standpoint. Per the City's procedures, retail VMT was estimated through the following steps:

- The model traffic analysis zone (TAZ) in which the Project is located was determined.
- The Project land uses were converted into the appropriate socioeconomic categories utilized in the model. The socioeconomic parameters in the TAZ were adjusted appropriately to reflect removal of the existing land uses and addition of the Project land uses.
- The model process was run for the model existing base year for the four time periods in the model (AM peak period, midday period, PM peak period, nighttime period) for the following scenarios:
- Base ("without project") scenario
- "Project without retail" scenario, consisting of all of the Project's proposed land uses except the retail uses
- "Project with retail" scenario including all project land uses
- The total VMT on the model network within a 12-mile radius of the Project TAZ was calculated for each time period and summed to determine the estimated daily citywide VMT for each scenario. The daily VMT for the "Project without retail" scenario was subtracted from the daily VMT for the "Project with retail" scenario to determine the net change in daily VMT caused by the Project retail uses.

Residential VMT

Figure 6A and Figure 6B present the City's VMT Calculator dashboard as analyzed for the Project and the Project with the Deck Concept, respectively. The Project is estimated by the Calculator to produce a total of 27,040 daily vehicle trips and a total daily VMT of 195,304 . The Project with the Deck Concept is estimated by the Calculator to produce a total of 27,493 daily vehicle trips and a total daily VMT of 198,540. As indicated in Figure 6A and 6B, the daily residential VMT per capita is estimated at 4.0 for both Project options, below the threshold of 6.0 daily residential VMT per capita for the Central APC. Thus, neither Project option would have a significant impact on residential VMT per capita as estimated by the VMT Calculator. Additional details regarding the VMT analysis are available in Appendix D.

Work VMT

The daily work VMT per employee was estimated for both Project options and is estimated at 6.6, which is below the threshold of significance for the Central APC of 7.6 daily work VMT per employee. Thus, the Project and the Project with the Deck Concept would not have a significant impact on daily work VMT per employee as estimated by the VMT Calculator. Additional details regarding the analysis are available in Appendix D.

Regional Serving Retail VMT

Since the retail components of the Project are greater than 50,000 square feet, they were evaluated using the City's travel demand forecasting model. The Project with the Deck Concept includes more land uses and programming and results in a higher VMT than the Project. Therefore, the Project with the Deck Concept's results are presented to be conservative. The City's model estimated a total daily VMT of 96,866,000 miles within a 12-mile radius of the Project TAZ when run without the retail components of the Project with the Deck Concept. With all the Project with the Deck Concept retail uses included, the model estimated a total daily VMT of $96,898,000$ miles within a 12 -mile radius of the Project TAZ. This is a net increase of 32,000 daily miles, or a 0.03% increase from the network before the retail was added. This increase in VMT is considered to be a significant impact, due to the significance criteria identifying an impact when any increase in VMT due to regional retail occurs. Proposed mitigation measures are described below.

Cumulative VMT

As noted above, the Project is projected to have a significant impact on retail VMT. Given its location in a dense area of the City of Los Angeles served by public transit, the mixed-use nature of the Project, its provision of features to encourage walking and bicycling, and its proposed implementation of a TDM plan (as described below), however, the Project would be consistent with the applicable goals and objectives of the SCAG 2020-2045 RTP/SCS (SCAG, September 2020) to locate diverse jobs and housing in infill locations served by multiple transportation options and promote sustainable transportation options. Therefore, since the Project is consistent with the applicable goals and objectives of the SCAG 2020-2045 RTP/SCS, the Project's cumulative impact on VMT would not be significant.

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

Proposed Project Land Use Type	Value	Unit
Housing \| Multi-Family	258	DU
Housing \| Hotel	236	Rooms
Retail \| General Retail	79.24	ksf
Retail \| Supermarket	32.737	ksf
Retail \| Health Club	155.765	ksf
Retaiil \| High-Turnover Sit-Down Restaurant	44.788	ksf
Retail \| Quality Restaurant	73.646	ksf
Office \| General Office	944.055	ksf
Housing \| Affordable Housing - Family	50	DU

TDM Strategies
Select each section to show individual strategies
Use $\bar{\square}$ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Analysis Results

Proposed Project	With Mitigation
27,040 Daily Vehicle Trips	24,484 Daily Vehicle Trips
195,304 Daily VMT	176,517 Daily VMT
4.0 Houseshold VMT per Capita	3.3 Houseshold VMT per Capita
Work VMT per Employee	Work VMT per Employee

Household: No
Threshold = 6.0 15% Below APC

Work: No

Threshold $=7.6$ 15\% Below APC

Household: No
Threshold = 6.0 5\% Below APC

Work: No
Threshold $=7.6$ 15\% Below APC
-) $=1$ Measuring the Miles

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

Proposed Project Land Use Type	Value	Unit
Housing \| Multi-Family	258	DU
Housing \| Hotel	236	Rooms
Retail \| General Retail	79.24	ksf
Retail \| Supermarket	32.737	ksf
Retail \| Health Club	173.378	ksf
Retaiil \| High-Turnover Sit-Down Restaurant	44.788	ksf
Retail \| Quality Restaurant	73.646	ksf
Office \| General Office	944.055	ksf
Housing \| Affordable Housing - Family	50	DU

TDM Strategies
Select each section to show individual strategies
Use $\bar{\square}$ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Analysis Results

Proposed Project	With Mitigation
27,493 Daily Vehicle Trips 198,540 Daily VMT	24,901 Daily Vehicle Trips
4.0 Houseshold VMT per Capita	179,481 Daily VMT
$\mathbf{6 . 6}$ Work VMT per Employee	3.3 Houseshold VMT per Capita
5.4 Work VMT per Employee	
Significant VMT Impact?	

Household: No
Threshold = 6.0 15% Below APC

Work: No
Threshold $=7.6$ 15\% Below APC

Household: No
Threshold $=6.0$ 5\% Below APC

Work: No
Threshold $=7.6$ 15\% Below APC

Transportation Demand Management Plan

The Project proposes to implement a transportation demand management program as mitigation to reduce the VMT impacts and trip generation of the Project. A TDM program consists of strategies that are aimed at discouraging single-occupancy vehicle trips and encouraging alternative modes of transportation, such as carpooling, taking transit, walking, and biking. The Project as proposed includes compliance with regulatory requirements and site design elements that would be expected to enhance the usage of walking, biking, and transit modes as alternatives to the automobile including:

- Bicycle Amenities - The Project will provide long-term and short-term bicycle parking, bicycle showers, and secure bicycle parking in accordance with the requirements of the proposed Mesquit Specific Plan.
- Site Design - The site will be designed to encourage walking, biking, and taking transit. Amenities would include:
- New sidewalks along the frontage of Mesquit Street from the northern end of Building 1 to Jesse Street
- Street trees along the Project perimeter
- Improved street and pedestrian lighting
- Pedestrian network within the site and connecting to the surrounding pedestrian system
- Readily-accessible drop-off/pick-up zones for shared mobility providers
- EV charging stations

Potential TDM Program Elements

A TDM plan that will detail additional program elements beyond the regulatory and site design features described above will be prepared as mitigation to reduce the trip generation and VMT impacts of the Project. Additional TDM program elements could include measures, such as unbundled parking and discounted transit passes, although the exact measures will be determined when the plan is prepared. The City of Los Angeles requires that the TDM plan be prepared prior to issuance of building permits, with the final TDM plan approved by LADOT prior to the City's issuance of the certificate of occupancy for the Project. Implementation of the TDM plan occurs after building occupancy.

The following potential TDM strategies would be applicable for employees working at the proposed Project office and commercial uses and residents living in the dwelling units:

- Commute trip reduction program for office and commercial workers and residents. Also includes TDM marketing and promotion (website and possible mobile app for transportation information specific to the Project).
- Parking cost unbundled from leases for office and commercial tenants, coupled with employee parking cash-out and pricing workplace parking.
- Parking costs unbundled from rent for residential tenants.
- Tenants in the office and commercial uses and residents would be provided with the opportunity to obtain subsidized/discounted daily or monthly public transit passes to use locally/regionally. These passes can be partially or wholly subsidized by the employer and residential management company, respectively.
- A ride-sharing program would be provided by designating a certain percentage of parking spaces for ride sharing vehicles, designing adequate passenger loading/unloading and waiting areas for ride-sharing vehicles, and providing a website or message board for coordinating rides.
- Enhancements/amenities, such as curb cuts and continental crosswalks, at bus stops nearest to Project site:
- Decatur Street \& $7^{\text {th }}$ Street: Metro Rapid 720
- Alameda Street \& $7^{\text {th }}$ Street: Metro Rapid 760
- Imperial Street \& $7^{\text {th }}$ Street: Metro 18, 60, 62
- Molino Street \& Palmetto Street: LADOT DASH A
- Improved first-mile/last-mile connections to nearby bus stops
- Mobility hub (carshare, bikeshare, bike repair facilities, and real-time transit information)

The VMT Calculator was used to quantify the potential VMT reduction for the Project due to implementation of these TDM measures. The VMT Calculator incorporates research conducted by Fehr \& Peers under contract to the California Air Pollution Control Officers Association (CAPCOA, 2010) and elsewhere. It considers a variety of TDM strategies and the setting in which they may apply, estimates effectiveness for each, and applies caps when appropriate (for example, simply aggregating the effectiveness of individual TDM measures can sometimes yield a result that is overestimated since more than one measure may be targeting the same trip). As shown in Figures 6A and 6B, with the TDM program, the estimated total daily vehicle trips are projected to be reduced from 27,040 to 24,484 for the Project and from 27,493 to 24,901 for the Project with the Deck Concept. The estimated total daily VMT is projected to be reduced from 195,304 to 176,517 for the Project and from 198,540 to 179,481 for the Project with the Deck Concept. The daily residential VMT per capita is projected to be reduced by 18% from 4.0 to 3.3 for both Project options, which would continue to not be a significant impact under the City's criteria. The daily work VMT per employee is projected to be reduced by 18% from 6.6 to 5.4 for both Project options, which would continue to not be a significant impact under the City's criteria.

The TDM program measures related to pedestrian, bicycle, and transit amenities would also help to reduce retail trip making and would partially offset the increase in VMT projected for the Project's retail uses. This transportation assessment is conservative in that it does not quantify the partial reduction in retail VMT that is expected from the TDM program measures. This is because there is insufficient research to do so. There are no additional feasible mitigation measures that would further reduce the retail VMT impact for the Project, and the retail VMT impact would remain significant and unavoidable. Also, as mentioned in Section 2.2, the potential construction and operation of a $6^{\text {th }}$ Street Metro station would further reduce vehicle trips generated by the Project. Additional details regarding the VMT analysis are available in Appendix D.

3.3 Geometric Design Hazards

This section discusses impacts regarding the potential increase of hazards due to a geometric design feature that generally relates to the geometric design of access points to and from the Project site and may include safety, operational, or capacity impacts.

Pedestrian access to the Project site would be provided via existing and new sidewalks around the perimeter of the Project site and through pedestrian paseos accessible to the neighborhood. Residents, visitors, patrons, and employees arriving to the Project site by bicycle would have the same access opportunities as pedestrians but would need to dismount and walk bicycles through the Project site. Cyclists would be able to access on-site bicycle parking facilities through a ground floor entrance on the southern end of the pedestrian paseo between Buildings 3 and 5 and elevators between Buildings 2 and 3. The Project's access locations would be designed to the City standards and would provide adequate sight distance, sidewalks, crosswalks, and pedestrian movement controls that meet the City's requirements to protect pedestrian safety. All roadways and driveways will intersect at right angles. Street trees and other potential impediments to adequate driver and pedestrian visibility would be minimal. Pedestrian entrances separated from vehicular driveways would provide access from the adjacent streets, parking facilities, and transit stops.

The Project was analyzed with the following driveways:

- A two-way full-access driveway on Mesquit Street at the northern end of the Project at ground level (Building 1).
- A two-way full-access driveway at the intersection of Mesquit Street $\&$ Jesse Street at ground level (Building 2).
- A two-way signalized driveway connecting the 7th Street Bridge to the third level of Building 4 near the southeastern corner of the Project site that allows for full access out and right-turns only in.
- A one-way right-turn-out-only driveway connecting the 7th Street Bridge to the second level of Building 5 near the southwestern corner of the Project site.

The Project would reduce the total number of vehicle access points to four driveways as there are currently three driveways and five loading docks on the existing frontage along Mesquit Street south of Jesse Street for loading and unloading at the existing cold storage facility. The Project proposes to locate loading docks for trucks and residential and hotel uses with sufficient turnaround capacity on the eastern side of the ground level of the Project site accessible from Mesquit Street. All trucks and other loading vehicles would enter and exit the parking structure through the northern driveway on Mesquit Street.

The driveways would be designed to comply with LADOT standards. The Project proposes to install a signal for the eastern driveway on $7^{\text {th }}$ Street, which is designated as an Avenue II. This signalized driveway would restrict vehicles from turning left into the driveway and would have a crosswalk to facilitate pedestrians crossing $7^{\text {th }}$ Street. The western driveway proposed on $7^{\text {th }}$ Street would limit vehicles to egress-only with right-turns out of the driveway onto $7^{\text {th }}$ Street. The driveways would not require the removal or relocation
of existing passenger transit stops and would be designed and configured to avoid or minimize potential conflicts with transit services and pedestrian traffic. None of the Project frontages are along streets that are part of the High Injury Network. As a result, the Project would not substantially increase hazards or conflicts and would contribute to overall walkability through enhancements to the Project site. Appendix C contains more detailed responses to the TAG evaluation questions that support this conclusion.

3.4 Freeway Safety Analysis

In May 2020, LADOT provided interim guidance on freeway safety analysis for land use proposals that are required to prepare a Transportation Assessment ${ }^{10}$. The freeway safety analysis evaluates a proposed project's effects to cause or lengthen a forecasted off-ramp queue onto the freeway mainline with speed differentials between vehicles exiting the freeway off-ramps and vehicles operating on the freeway mainline.

The interim guidance on freeway safety analysis requires freeway off-ramps where a proposed project adds 25 or more trips in either the morning or afternoon peak hour to be studied for potential queuing impacts. If the proposed project is not projected to add 25 or more peak hour trips at any freeway off-ramps, then a freeway ramp analysis is not required. The Project is projected to add 25 or more trips to the following freeway off-ramps:

- Study Intersection 22: I-10 Eastbound Off-ramp to Alameda Street (AM peak hour)
- Study Intersection H: US-101 Southbound Off-ramp to $7^{\text {th }}$ Street (AM peak hour)
- Study Intersection J: I-10 Eastbound Off-ramp to Porter Street (AM peak hour)

For the identified freeway off-ramps, a queuing study was conducted for the "Future with Project" conditions for the Project with the Deck Concept, which generates the greater number of peak hour trips. Project traffic volumes and future background traffic volumes at the three analyzed off-ramps were estimated using the methodologies described in Section 4.2 of this report. Per the guidance, the adequacy of the existing and future storage lengths was evaluated with the $95^{\text {th }}$ percentile queue where 100% of the storage length on each lane of the ramp from the stop line to the gore point was used. When an auxiliary lane was present, 50% of the length of the auxiliary lane was added to the ramp storage area.

If the proposed project traffic is expected to cause or add to a queue extending onto the freeway mainline by less than two car lengths, the proposed project would cause a less-than-significant safety impact. If the queue is already extending or projected to extend onto the freeway mainline, and the addition of traffic generated by the proposed project would increases the overflow onto the mainline lanes by less than two car lengths, the project would cause a less-than-significant safety impact. As shown in Table $\mathbf{3}$ and Table 4, the addition of traffic generated by the Project is projected to increase the overflow onto the mainline lanes by six cars in the AM peak hour and two cars in the PM peak hour (assuming an average queue storage

[^7]length of 25 feet per car) for the US-101 Southbound Off-ramp to $7^{\text {th }}$ Street (Study Intersection H) in both Future Base (2026 and 2040) plus Project scenarios. The queue lengths are not projected to exceed the ramp storage capacity at the I-10 Eastbound Off-ramp to Alameda Street or the I-10 Eastbound Off-ramp to Porter Street in either Future Base (2026 or 2040) or Future plus Project scenario.

If a proposed project adds two or more car lengths to the ramp backup that extends to the freeway mainline, then the location must be tested for safety issues which include a test for speed differential between the off-ramp queue and the mainline of the freeway during the particular peak hour. If the speed differential between the mainline lane speeds and the ramp traffic is below 30 mph , the project would be considered to cause a less-than-significant safety impact. If the speed differential is 30 mph or more, then there is a potential safety issue. Per the guidance, Caltrans Performance Measurement System (PeMS) data were used to identify freeway operating speed(s) during the peak hour being analyzed. The PeMS data showed that the average mainline speed on US-101 Southbound freeway near the $7^{\text {th }}$ Street Off-ramp is 57 miles per hour. Assuming that the traffic queued on the ramp is traveling at zero miles per hour since the vehicles extend past the ramp length, this constitutes a potential safety issue at the US-101 Southbound Off-ramp to $7^{\text {th }}$ Street.

The guidance suggests that, to offset a potential safety issue, a proposed project should consider the following preferred corrective measures:

- Transportation demand management program(s) to reduce the project's trip generation,
- Investments to active transportation infrastructure, or transit system amenities (or expansion) to reduce the project's trip generation, and/or
- Potential operational change(s) to the ramp terminal operations including, but not limited to, lane reassignment, traffic signalization, signal phasing or timing modifications, etc. This option requires coordination with Caltrans and LADOT to assess feasibility and for approval of the proposed measure(s).
- A physical change to the ramp itself (addition of auxiliary lane, ramp widening, etc.) may be considered. However, this change would have to demonstrate substantial safety benefits, not be a VMT-inducing improvement, and not result in other environmental issues.

If the cost of the physical change to the ramp is substantial, then a fair-share contribution to the improvement may be required if necessary requirements are met, including, but not limited to, Caltrans defining the improvement cost, and opening a Project File/Project Account to accept a financial contribution for the improvement.

The following mitigation measure was identified to address the impact identified above:

- The Project applicant shall work with the City of Los Angeles and Caltrans to signalize the intersection of the US-101 Southbound Off-ramp \& 7th Street. This would require complying with the Caltrans project development process as a local agency-sponsored project.

As presented in Tables 20A and 20B, the peak hour signal warrant would be met in the AM and PM peak hours. As shown in Table 5 and Table 6, signalization is estimated to reduce the off-ramp queue such that it would no longer extend onto the freeway mainline and would mitigate the Project impact in both Future Base (2026 and 2040) plus Project scenarios. However, since the improvement involves another jurisdiction (Caltrans) beyond the City of Los Angeles, its implementation cannot be guaranteed and the impact is therefore conservatively considered to be significant and unavoidable. Detailed queue calculations are provided in Appendix K. Tables 21A, 21B, 22A, and 22B present the resulting Level of Service with a traffic signal in place.

ABLE 3

PEAK HOUR OFF-RAMP QUEUE ANALYSIS
Uture base (2026) AND FUTURE BASE (2026) PLUS PROJECT
670 MESQUIT STREET PROJEC

ID	Ramp	Cross Street	$\begin{gathered} \text { Total } \\ \text { Capacity }(\mathrm{ft}) \\ {[\mathrm{a}]} \end{gathered}$	Turning Movements by Lanes at Intersection	Control	Future Base (2026) Conditions						Future Base (2026) + Project Option 2							
						AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Exceeds Storage?		AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Length Increase (car lengths) [b]		Potential Safety Issue? [c]	
						Queue (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	Lane (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	AM	PM
22	I-10 EB Off-Ramp	Alameda Street	1,140	$\begin{aligned} & \hline \hline \text { Left } \\ & \text { Right } \\ & \hline \end{aligned}$	Signal	$\begin{aligned} & \hline 227 \\ & \\ & \hline \end{aligned}$	413	$\begin{aligned} & \hline 149 \\ & 116 \end{aligned}$	265	No	No	$\begin{aligned} & 248 \\ & 178 \\ & \hline \end{aligned}$	426	$\begin{aligned} & \hline 162 \\ & 116 \\ & \hline \end{aligned}$	278	1	1	No	No
H	US-101 SB Off-Ramp	7th Street	310	$\begin{aligned} & \hline \text { Left } \\ & \text { Right } \\ & \hline \end{aligned}$	Two-Way Stop	$\begin{aligned} & 48 \\ & 478 \end{aligned}$	526	$\begin{aligned} & 128 \\ & 50 \\ & \hline \end{aligned}$	178	Yes	No	$\begin{array}{r} \hline 55 \\ 613 \\ \hline \end{array}$	668	$\begin{aligned} & 1555 \\ & 65 \\ & \hline \end{aligned}$	220	6	2	Yes	No
J	I-10 EB Off-Ramp	Porter Street	1,120	$\begin{aligned} & \text { Left } \\ & \text { Right } \\ & \hline \hline \end{aligned}$	Two-Way Stop Controlled	$\begin{aligned} & 577 \\ & 266 \\ & \hline \end{aligned}$	843	$\begin{aligned} & 397 \\ & 161 \\ & \hline \hline \end{aligned}$	558	No	No	$\begin{array}{r} 679 \\ 309 \\ \hline \hline \end{array}$	988	$\begin{aligned} & 528 \\ & 227 \\ & \hline \end{aligned}$	755	6	8	No	No

When an auxiliary lane is present, the maximum length includes one half of the length of the auxiliary lane to the gore point of the preceding on-ramp.
[b]: Assumes an average storage length per car of 25 feet.
[c]: If a proposed project adds two or more car lengths to a ramp queue that extends to the freeway mainline, then the location must be tested for safety issues.

TABLE 4 PEAK HOUR OFF-RAMP QUEUE ANALYSIS FUTURE BASE (2040) AND FUTURE BASE (2040) PLUS PROJECT WITH THE DECK CONCEPT 670 MESQUIT STREET PROJECT																			
	Ramp	Cross Street	$\begin{gathered} \text { Total } \\ \text { Capacity (ft) } \\ {[a]} \end{gathered}$	Turning Movements by Lanes at Intersection	Control	Future Base (2040) Conditions						Future Base (2040) + Project with the Deck Concept							
ID						AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Exceeds Storage?		AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Length Increase (car lengths) $[b]$		Potential Safety Issue? [c]	
						Queue (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	Lane (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	AM	PM
22	I-10 EB Off-Ramp	Alameda Street	1,140	$\begin{aligned} & \hline \hline \text { Left } \\ & \text { Right } \\ & \hline \end{aligned}$	Signal	$\begin{aligned} & \hline 229 \\ & 186 \end{aligned}$	415	$\begin{aligned} & \hline 150 \\ & 121 \\ & \hline \end{aligned}$	271	No	No	$\begin{aligned} & \hline 254 \\ & 186 \end{aligned}$	440	$\begin{aligned} & \hline \hline 163 \\ & 121 \\ & \hline \end{aligned}$	284	1	1	No	No
H	US-101 SB Off-Ramp	7th Street	310	$\begin{array}{r} \text { Left } \\ \text { Right } \\ \hline \end{array}$	Two-Way Stop Controlled	$\begin{array}{r} 53 \\ \hline 508 \\ \hline 508 \\ \hline \end{array}$	561	$\begin{aligned} & \begin{array}{l} 140 \\ 53 \end{array} \\ & \hline \end{aligned}$	193	Yes	No	$\begin{array}{r} 100 \\ \hline 60 \\ 643 \\ \hline \end{array}$	703	$\begin{aligned} & 168 \\ & 70 \end{aligned}$	238	6	2	Yes	No
J	I-10 EB Off-Ramp	Porter Street	1,120	$\begin{aligned} & \hline \text { Left } \\ & \text { Right } \\ & \hline \hline \end{aligned}$	Two-Way Stop Controlled	$\begin{aligned} & 631 \\ & 299 \\ & \hline \end{aligned}$	925	$\begin{aligned} & 432 \\ & 178 \end{aligned}$	610	No	No	$\begin{aligned} & 737 \\ & 343 \\ & 343 \end{aligned}$	1,080	$\begin{aligned} & 568 \\ & 254 \\ & \hline \end{aligned}$	822	7	9	No	No

[a]: Ramp lengths determined based on scaled distances from on-ine aerial photographs. Per LADOT guidance, max length is measured from the intersection to the gore point.
When an auxiliary lane is present, the maximum length includes one half of the length of the auxiliary lane to the gore point of the preceding on-ramp.
[c]: If a proposed project adds two or more car lengths to a ramp queue that extends to the freeway mainline, then the location must be tested for safety issues.

ABLE 5

PEAK HOUR OFF-RAMP QUEUE ANALYSIS - WITH MITIGATION
UTURE BASE (2026) AND FUTURE BASE (2026) PLUS PROJECT WITH THE DECK CONCEPT
670 MESQUIT STREET PROJECT

	Ramp	Cross Street	$\begin{gathered} \text { Total } \\ \text { Capacity (ft) } \end{gathered}$ [a]	TurningMovements byLanes atIntersection	Control	Future Base (2026) Conditions						Future Base (2026)+ Project Option 2 with Signal							
ID						AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Exceeds Storage?		AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Length Change (car lengths) $[b]$		Project Impact Mitigated?	
						Queue (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	Lane (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	AM	PM
H	US-101 SB Off-Ramp	7th Street	310	$\begin{aligned} & \hline \hline \text { Left } \\ & \text { Right } \end{aligned}$	Two-Way Stop Controlled	$\begin{gathered} \hline 53 \\ \hline 508 \end{gathered}$	561	$\begin{gathered} \hline 140 \\ 53 \end{gathered}$	193	Yes	No	$\begin{aligned} & 18 \\ & \hline 266 \\ & \hline \end{aligned}$	284	$\begin{aligned} & \hline \hline 55 \\ & 97 \\ & \hline \end{aligned}$	152	-12	-2	Yes	N/A

[a]: Ramp lengths determined based on scaled distances from on-line aerial photographs. Per LADOT guidance, max length is measured from the intersection to the gore point.
When an auxiliary lane is present, the maximum length includes one half of the length of the auxiliary lane to the gore point of the preceding on-ramp.
[b]: Assumes an average storage length per car of 25 feet.

TABLE 6

PEAK HOUR OFF-RAMP QUEUE ANALYSIS - WITH MITIGATION
FUTURE BASE (2040) AND FUTURE BASE (2040) PLUS PROJECT WITH THE DECK CONCEPT 670 MESQUIT STREET PROJECT

ID	Ramp	Cross Street	$\begin{gathered} \text { Total } \\ \text { Capacity (ft) } \end{gathered}$ [a]	Turning Movements by Lanes at Intersection	Control	Future Base (2040) Conditions						Future Base (2040)+ Project Option 2 with Signal							
						AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Exceeds Storage?		AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Length Change (car lengths) [b]		Project Impact Mitigated?	
						Queue (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	Lane (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	AM	PM
H	US-101 SB Off-Ramp	7th Street	310	Left Right	Two-Way Stop Controlled	$\begin{aligned} & \hline 53 \\ & 508 \end{aligned}$	561	$\begin{aligned} & \hline 140 \\ & 53 \\ & \hline \end{aligned}$	193	Yes	No	$\begin{aligned} & \hline 18 \\ & 270 \\ & \hline \end{aligned}$	288	$\begin{gathered} 56 \\ \hline 100 \end{gathered}$	156	-11	-2	Yes	N/A

[a]: Ramp lengths determined based on scaled distances from on-line aerial photographs. Per LADOT guidance, max length is measured from the intersection to the gore point.
When an auxiliary lane is present, the maximum length includes one half of the length of the auxiliary lane to the gore point of the preceding on-ramp.
[b]: Assumes an average storage length per car of 25 feet.

4. NON-CEQA TRANSPORTATIONANALYSES

The purpose of the non-CEQA transportation analyses required in LADOT's TAG are to promote orderly development, evaluate and address transportation-system deficiencies, and promote public safety and the general welfare by ensuring that development projects are properly related to their sites, surrounding properties, and traffic circulation.

4.1 Pedestrian, Bicycle, and Transit Access

The pedestrian, bicycle, and transit facilities assessment is intended to determine a project's potential effects on pedestrian, bicycle, and transit facilities in the vicinity of the proposed Project based on an evaluation of physical or demand-based considerations that would affect the experience of people utilizing the multimodal transportation network.

The pedestrian, bicycle, and transit facilities surrounding the Project site were assessed to determine potential Project effects on pedestrian, bicycle, and transit facilities in the vicinity of the Project. Figure 7A provides a map of pedestrian facilities and Figure 7B provides a map of pedestrian destinations within 1,320 feet of the edge of the Project site. For the purposes of this analysis, all adjacent streets providing access to non-residential uses were included in the figure along with an inventory of the pedestrian facilities (i.e., crosswalks and curb ramps). Table 7 also provides a table identifying sidewalk width ranges, pedestrian push buttons, and other pedestrian amenities such as street trees, bus benches, or lighting. As shown, curb ramps, tactile warnings, and marked crosswalks are not provided at many of the intersections. Several intersections appropriately do not provide push buttons as the intersections are pretimed to provide walk phases for every signal cycle.

The following checklist from the TAG was reviewed to evaluate whether direct or indirect Project effects would lead to removal, modification, or degradation of pedestrian, bicycle, or transit facilities, such as:

- Removal or degradation of existing sidewalks, crosswalks, pedestrian refuge islands, and/or curb extensions/bulbouts
- No, the Project would not remove or degrade existing pedestrian facilities in the pedestrian environment. The Project proposes to improve pedestrian infrastructure by adding new sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street, street trees along the Project perimeter, a new crosswalk across $7^{\text {th }}$ Street near Building 4, a pedestrian paseo on Mesquit Street from Jesse Street to $7^{\text {th }}$ Street, improved street and pedestrian lighting, and an elevated pedestrian walkway along the eastern edge of the Project site. The Project with the Deck Concept also proposes a pedestrian deck along the east side of the Project, which would replace the elevated pedestrian walkway and connect $7^{\text {th }}$ Street to the $6^{\text {th }}$ Street PARC and the potential future Red/Purple Line $6^{\text {th }}$ Street Station.
- Removal or degradation of existing bikeways and/or supporting facilities (e.g., bikeshare stations, on-street bike racks/parking, bike corrals, etc.)
- No, the Project would not remove or degrade the existing bikeways and/or supporting facilities. The Project will include bicycle amenities, such as a self-service bike repair area and short and long-term bicycle parking in accordance with the proposed Mesquit Specific Plan.
- Removal or degradation of existing transit and/or local circulator facilities including stop, bench, shelter, concrete pad, bus lane, or other amenities
- No, the Project would not remove or degrade existing transit and/or local circulator facilities.
- Removal of other existing transportation system elements supporting sustainable mobility
- No, the Project does not propose to remove sustainable transportation elements.
- Increase street crossing distance for pedestrians; increase in number of travel/turning lanes; increase in turning radius or turning speeds
- The Project does not propose to widen streets. As described in Section 4.2, the Project proposes to add a left-turn lane as a corrective action by restriping the eastbound and westbound approaches at Santa Fe Avenue \& Jesse Street and the southbound approach at Santa Fe Avenue $\& 7^{\text {th }}$ Street without widening the street crossing distance. The Project also proposes to upgrade curb ramps to include tactile warning strips and upgrade crosswalks to continental crosswalks at Santa Fe Avenue $\& 7^{\text {th }}$ Street.
- Removal, degradation, or narrowing of an existing sidewalk, path, crossing, or pedestrian access way
- No, the Project does not propose to remove, degrade, or narrow sidewalks or limit pedestrian access paths. The Project would improve pedestrian access around the site by installing new sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street and a new pedestrian paseo within the Project site.
- Removal or narrowing of existing sidewalks or street-buffering elements (e.g., curb extension, parkway, planting strip, street trees, etc.)
- No, the Project does not propose to remove existing street-buffering elements.
- Increase in pedestrian or vehicle volume, and thereby increase the need or attraction to cross a street at unmarked pedestrian crossings or unsignalized or uncontrolled intersections where a crossing is not available without significant rerouting.
- The Project will result in an increase in pedestrian and vehicle volumes around the Project site. The current pedestrian crossings at Jesse Street \& Santa Fe Avenue are unmarked and stop controlled. The signal warrant analysis presented in Section 4.2 determined that installation of
a traffic signal may be warranted at this location. As shown in Figure 7A, the distance between pedestrian crossing locations adjacent to the Project site on $7^{\text {th }}$ Street is approximately 1,760 feet (Santa Fe Avenue \& $7^{\text {th }}$ Street to Rio Street $\& 7^{\text {th }}$ Street). The Project proposes to provide a signalized pedestrian crossing at the signalized driveway on the $7^{\text {th }}$ Street bridge, which would shorten the distances between pedestrian crossing locations adjacent to the Project site on $7^{\text {th }}$ Street to approximately 515 feet (Santa Fe Avenue \& $7^{\text {th }}$ Street to 7 th Street signalized driveway) and 1,245 feet ($7^{\text {th }}$ Street signalized driveway to Rio Street $\& 7^{\text {th }}$ Street).
- Result in new pedestrian demand between Project site entries/exits and major destinations or transit stops expected to serve the development where there are missing pedestrian facilities (e.g., gaps in the sidewalk network) or substandard pedestrian facilities (e.g., narrow or uneven sidewalks, no crosswalks at intersections or mid-block, no marked crossing, or push button crossing rather than actuated, etc.).
- The Project will result in new pedestrian demand. The Project includes the installation of new sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street and a pedestrian paseo with limited vehicle access on Mesquit Street that creates a new connection between Mesquit Street and $7^{\text {th }}$ Street thereby enhancing walkability around the Project site. As shown in Figure 7A, the intersection of Santa Fe Avenue $\& 7^{\text {th }}$ Street has several curb ramps without tactile warning strips and lateral crosswalks. The Project would improve substandard pedestrian facilities.
- Increase transit demand at bus stops that lack marked crossings, with insufficient sidewalks, or are in isolated, unshaded, or unlit areas.
- The Metro bus stop for Routes 18, 60, and 62 on the north and south sides of $7^{\text {th }}$ Street between Imperial Street and Santa Fe Avenue have sidewalks and are lit by streetlights but lack shelters and benches. The current pedestrian crossings at 7th Street \& Santa Fe Avenue are marked and signalized. There are no pedestrian crossings across $7^{\text {th }}$ Street at Imperial Street as this intersection is relatively close to and between two signalized intersections ($7^{\text {th }}$ Street \& Mateo Street and $7^{\text {th }}$ Street $\&$ Santa Fe Avenue, both of which have crosswalks).

The responses provided above reflect conditions upon Project completion. During construction there may be temporary closures that result in temporary impacts.

The Project frontage is not on a street segment that is part of the HIN. Pedestrian and bicyclist entrances to the Project site will be provided along Mesquit Street (including the pedestrian paseo), 7th Street, and under the Project with the Deck Concept, a pedestrian deck along the east side of the Project site. These entrances will be designed with a focus on multimodal integration.

রıоłиəлй Sə!!!!!

$\forall L$ әınб! 」
duey qunj bu!ss!w O

znoyt! $\begin{aligned} & \text { duey qun } \\ & \text { qu }\end{aligned}$
 4ł!

\square

670 Mesquit Project						
Street	Widest Sidewalk (Fieldwork Observation)	Narrowest Sidewalk (Fieldwork Observation)	Intersection	Missing Ped Button	Missing Ped Signals	Identified Facilities: Bus benches/shelters and street trees
Mesquit St	9' 8" (6th St)	5' 1" (6th St)	6th St	N/A (not signalized)		None
			Jesse St			
Santa Fe Ave	12' 11" (Jesse $\mathrm{St})$	4' 8" (Jesse St)	Palmetto St	N/A (not signalized)		None
			Willow St			
			Jesse St			Street trees
			7th St	NE to NW ${ }^{\text {a }}$	None	None
			7th PI	N/A (not signalized)		
			Violet St			Street trees and transit stop
			Bay St			Street trees
ImperialSt	15' 5" (7th St)	4' 10" (Jesse St)	6th St	N/A (not signalized)		none
			Jesse St			Street trees
			7th St			Transit stop
Mateo St	$\begin{gathered} 25^{\prime} 11 " \\ \text { (Conway Pl) } \end{gathered}$	$\begin{gathered} \text { 2'8" } \\ \text { (Industrial St) } \end{gathered}$	Palmetto St	N/A (not signalized)		Street trees, bus benches, and transit stops
			Willow St			
			6th St	SE to $N E^{b}$	SE to $N E^{b}$	
			Conway PI	N/A (not signalized)		
			Jesse St			
			Industrial St			
			7th St	None	None	Transit stops
			Atlantic Ct	N/A (not signalized)		Street trees
			7th Pl			
			Violet St			

a. Push buttons are not provided as crossing movements are pretimed to provide walk phases for every signal cycle.
b. This crossing movement is currently unavailable due to construction of the Sixth Street Viaduct.

4.2 Project Access, Safety, and Circulation Element

This section documents the peak hour intersection analysis conducted based on the screening criteria and trip threshold for intersection analysis provided in the TAG.

Study Analysis Locations

The scope and selection of 32 study intersections were developed in conjunction with LADOT staff. The study locations were selected based on guidance from LADOT's TAG, which indicates that intersections immediately adjacent to the site and those in proximity to the site through which 100 or more net new peak hour project-generated trips would travel should be analyzed. Freeway off-ramps to which the Project is expected to add 25 or more trips in either peak hour are also analyzed. The study intersections are illustrated in Figure 1 and listed in Table 8.

TABLE 8
670 Mesquit
Study Intersections

No.	North-South Street	East-West Street	Control
1	S Central Avenue	7th Street	Signalized
2	N Alameda Street	E. Aliso Street/E. Commercial Street	Signalized
3	Alameda Street	Temple Street	Signalized
4	N Alameda Street	E 1st Street	Signalized
5	N Alameda Street	E 2nd Street	Signalized
6	S Alameda Street	3rd Street	Signalized
7	S Alameda Street	4th Street	Signalized
8	S Alameda Street	6th Street	Signalized
9	S Alameda Street	7th Street	Signalized
10	Molino Street/Merrick Street	4th Street	Signalized
11	Mateo Street	6th Street	Signalized
12	Mateo Street	7th Street	Signalized
13	S Santa Fe Avenue	7th Street	Signalized
14	S Santa Fe Avenue	8th Street	Signalized
15	S Santa Fe Avenue	Porter Street	Signalized
16	S Santa Fe Avenue	Olympic Boulevard	Signalized
17	S Santa Fe Avenue	E 15th Street	Signalized
18	S Rio Street	E 7th Street	Signalized
19	S Anderson Street	E 7th Street	Signalized
20	Boyle Avenue	Whittier Boulevard	Signalized
21	Boyle Avenue	7th Street	Signalized
22	S Alameda Street	I-10 Eastbound Ramps	Signalized
A	Mateo Street	4th Place	Unsignalized
B	Mateo Street	Willow Street	Unsignalized
C	Mateo Street	Jesse Street	Unsignalized
D	S Santa Fe Avenue	Willow Street	Unsignalized
E	S Santa Fe Avenue	Mesquit Street	Unsignalized
F	S Santa Fe Avenue	Jesse Street	Unsignalized
G	Mesquit Street	Jesse Street	Unsignalized
H	US-101 Southbound Off-Ramp	7th Street	Unsignalized
I	I-10 Westbound Ramps	E 8th Street	Unsignalized
J	I-10 Eastbound Ramps	Porter Street	Unsignalized

Level of Service Methodology

Signalized Intersection Level of Service - Critical Movement Analysis

A variety of standard methodologies are available to analyze intersection level of service (LOS). Because much of this analysis was conducted prior to the City's adoption of the City's TAG, and per the direction of LADOT, this analysis uses the Critical Movement Analysis (CMA) method of intersection capacity calculation (Transportation Research Board, 1980) at signalized study intersections. Under this method, the volume/capacity (V/C) ratio is used to find the corresponding LOS based on the definitions in Table 9A. Under the CMA methodology, a V/C ratio is generated for each study intersection based on factors such as the volume of traffic and the number of lanes providing for such vehicle movement and a LOS grade.

The City of Los Angeles' Automated Traffic Surveillance and Control (ATSAC) system is a computer-based traffic signal control system that monitors traffic conditions and system performance to allow ATSACoperations to manage signal timing to improve traffic flow conditions. The Adaptive Traffic Control System (ATCS) is an enhancement to ATSAC and provides fully traffic-adaptive signal control based on real-time traffic conditions. All the study intersections located in the City of Los Angeles are currently operating under the City's ATSAC system and ATCS control. ATSAC and ATCS provide improved operating conditions. Therefore, in accordance with City of Los Angeles procedures, a credit of $0.07 \mathrm{~V} / \mathrm{C}$ reduction was applied at each intersection where ATSAC is implemented and an additional $0.03 \mathrm{~V} / \mathrm{C}$ reduction was applied at each intersection where ATCS is implemented.

Table 9A - Level of Service Definitions for Signalized Intersections		
CMA Methodology		

[^8]Transportation Research Board, 1980

Unsignalized Intersection Level of Service - Highway Capacity Manual

The unsignalized intersection delay methodology from the 2016 Highway Capacity Manual (HCM) (Transportation Research Board, 2016) was used to determine the intersection delay in seconds and corresponding LOS at the unsignalized intersections. The calculation of delay represents the average amount of delay experienced by vehicles passing through the intersection which are controlled by the stop signs. The unsignalized intersections were analyzed using the All-Way Stop-Control (AWSC) and Two-Way Stop-Control (TWSC) methods from the HCM 2016. Delay was calculated based on the intersection delay for AWSC intersections and worst-case approach for the TWSC intersections, and used to assign the corresponding LOS, as presented in Table 9B.

Table 9B - Level of Service Definitions for Stop-Controlled Intersections	
Level of Service	Average Control Delay (seconds/vehicle)
A	>10.0
B	>10.0 and ≤ 15.0
C	>25.0 and ≤ 25.0
D	>35.0 and ≤ 35.0
E	>50.0
F	
Source: Highway Capacity Manual, Transportation Research Board, 2016.	

Existing Traffic Volumes

New weekday AM and PM peak hour turning movement counts were collected at the 32 study intersections on April 11, 2018 and September 25, 2018. The existing weekday morning and afternoon peak hour volumes and lane configurations at the study intersections are provided in Appendix F. Count sheets for these intersections are contained in Appendix E.

Existing Level of Service

Existing traffic volumes were analyzed to determine the projected V/C ratios, delay, and LOS for each intersection. Table 10A summarizes the existing weekday peak hour LOS for signalized study intersections. None of the signalized study intersections operate at LOS E or worse under existing conditions. Table 10B summarizes the existing weekday peak hour LOS for the unsignalized study intersections. The following study intersections operate at LOS E or worse under existing conditions:

- Intersection H: US-101 Southbound ramps \& $7^{\text {th }}$ Street (AM peak period)
- Intersection I: I-10 Westbound ramps \& East $8^{\text {th }}$ Street (AM and PM peak period)

Detailed intersection LOS analysis sheets for signalized and unsignalized intersections are presented in Appendix G.

NO.	TABLE 670 MES EXISTING YE ANALYSIS FOR SIGNALIZED	ITERSE		
	INTERSECTION	PEAK HOUR	EXISTING (2018)	
			V/C	LOS
1	S Central Avenue \& 7th Street	AM	0.583	A
		PM	0.591	A
2	N Alameda Street \& E Aliso Street/E Commercial Street	AM	0.414	A
		PM	0.622	B
3	Alameda Street \& Temple Street	AM	0.528	A
		PM	0.457	A
4	N Alameda Street \& E 1st Street	AM	0.569	A
		PM	0.445	A
5	N Alameda Street \& E 2nd Street	AM	0.475	A
		PM	0.410	A
6	S Alameda Street \& 3rd Street/4th Place	AM	0.661	B
		PM	0.586	A
7	S Alameda Street \& 4th Street	AM	0.313	A
		PM	0.686	B
8	S Alameda Street \& 6th Street	AM	0.443	A
		PM	0.435	A
9	S Alameda Street \& 7th Street	AM	0.714	C
		PM	0.705	C
10	Molino Street/Merrick Street \& 4th Street	AM	0.590	A
		PM	0.423	A
11	Mateo Street \& 6th Street	AM	0.185	A
		PM	0.231	A
12	Mateo Street \& 7th Street	AM	0.583	A
		PM	0.527	A
13	S Santa Fe Avenue \& 7th Street	AM	0.797	C
		PM	0.767	C
14	S Santa Fe Avenue \& 8th Street	AM	0.501	A
		PM	0.445	A
15	S Santa Fe Avenue \& Porter Street	AM	0.476	A
		PM	0.655	B
16	S Santa Fe Avenue \& Olympic Boulevard	AM	0.835	D
		PM	0.756	C
17	S Santa Fe Avenue \& E 15th Street	AM	0.846	D
		PM	0.621	B
18	 E 7th Street	AM	0.613	B
		PM	0.313	A
19	S Anderson Street \& E 7th Street	AM	0.752	C
		PM	0.315	A
20	Boyle Avenue \& Whittier Boulevard	AM	0.596	A
		PM	0.480	A
21	Boyle Avenue \& 7th Street	AM	0.836	D
		PM	0.599	A
22	S Alameda Street \& I-10 Eastbound Ramps	AM	0.586	A
		PM	0.621	B

TABLE 10B 670 MESQUIT EXISTING YEAR (2018) ANALYSIS FOR UNSIGNALIZED STUDY INTERSECTIONS				
NO.	INTERSECTION	PEAK HOUR	EXISTING (2018)	
			Delay	LOS
A	Mateo Street \& 4th Place	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 13.5 \\ & 13.0 \end{aligned}$	B
B	Mateo Street \& Willow Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 12.0 \\ & 12.4 \\ & \hline \end{aligned}$	B
C	Mateo Street \& Jesse Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 12.0 \\ & 11.1 \\ & \hline \end{aligned}$	B
D	S Santa Fe Avenue \& Willow Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{gathered} \hline 9.3 \\ 13.0 \\ \hline \end{gathered}$	A
E	S Santa Fe Avenue \& Mesquit Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 15.4 \\ & 11.5 \end{aligned}$	C
F	S Santa Fe Avenue \& Jesse Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 24.0 \\ & 19.0 \\ & \hline \end{aligned}$	C
G	Mesquit Street \& Jesse Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 8.6 \\ & 8.6 \\ & \hline \end{aligned}$	A
H	 7th Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{gathered} \hline 125.8 \\ 27.9 \end{gathered}$	F
1	 E 8th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	165.3	F
J	I-10 Eastbound ramps \& Porter Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 17.6 \\ & 18.3 \\ & \hline \end{aligned}$	C

Note: * The HCM methodology produces a delay estimate that exceeds 5 minutes or is undefined based on the volume, lane configuration, and traffic control. Actual drivers are likely to change their route or accept smaller than usual gaps when faced with such long delays.

Project Traffic

The development of peak hour vehicular traffic forecasts for the proposed Project involves the use of a three-step process: trip generation, trip distribution, and traffic assignment.

Trip Generation

As summarized in Chapter 1, the proposed Project consists of 944,055 square feet of creative office; 44,788 square feet of quality restaurant; 44,788 square feet of high-turnover restaurant; 236 hotel rooms; 308 residential dwelling units; 93,617 square feet of studio/event/gallery; a 62,148 square foot gym; a 28,054 square foot grocery; 79,240 square feet of general retail; and a 28,858 square foot food hall. The Project with the Deck Concept has an additional amenity deck with permanent programmatic features that were accounted for in trip generation.

Trip generation rates from Trip Generation, $10^{\text {th }}$ Edition (Institute of Transportation Engineers [ITE], 2017) and rates developed in discussion with LADOT were used to estimate the number of peak hour vehicle trips associated with the Project. The ITE Trip Generation, 10th Edition introduces and defines the geographic setting for four different settings/locations: Rural, General Urban/Suburban, Dense Multi-Use Urban, and City Core. In many instances, trip generation rates are provided for each land use by geographic setting. The Project is located in an area that meets the Dense Multi-Use Urban ${ }^{11}$ ITE definitions; therefore, the trip generation rates for Dense Multi-Use Urban were used when available. For the Project's office uses, the trip generation rates for dense multi-use urban areas were used for the peak hours. ITE also provides trip generation rates for mid-rise and high-rise multifamily housing in dense multi-use urban areas. In addition, for mid-rise and high-rise multifamily housing sites in dense multi-use urban areas, empirical peak hour trip generation data from surveys conducted at properties located within the City of Los Angeles area are available as a secondary data source and are provided in the TAG. The local data reveals higher high-rise residential trip generation rates than the ITE $10^{\text {th }}$ edition rates; therefore, the local data was used for peak hour rates for the residential component of this Project.

The total number of trips generated by the new development was adjusted to account for internalization, transit/bicycle/walk, pass-by, transportation network companies (TNCs), and trips generated by the existing land uses.

Internal Capture

Internal trip adjustments are adjustments applied to the trip generation estimates for the individual land uses to account for trips remaining internal to the site. These are trips would be made via walking within the site. Transportation Research Board (TRB) National Cooperative Highway Research Program (NCHRP) Report 684: Enhancing Internal Trip Capture Estimation for Mixed-Use Developments was used to determine the internal trip adjustments for each of the Project land uses. For programmatic features of the Project, a 50% internal

[^9]capture was determined based on these project features being targeted to tenants already on-site. Based on the NCHRP analysis, the internal trip adjustments shown in the internal trip calculation analysis sheets in Appendix \mathbf{H} were used.

Transit/Bicycle/Walking Adjustment

A 25% adjustment was applied to account for trips made to and from the Project site using modes other than automobiles. These include trips on buses, trains, bicycle, walking, etc. LADOT's TAG allow a 15% vehicle trip reduction to be applied to developments located within a quarter-mile walking distance of a rail transit station or Rapid Bus stop, assuming that percentage of visitors may take transit and walk to the Project ${ }^{12}$. The Project is approximately $1 / 4$ mile from the closest 720 Metro Rapid line stop. In addition to the 15% transit adjustment, a 10% walking/biking adjustment was applied to all Project land uses (except 5% for office) due to the diversity of the existing and proposed future land uses within walking and bicycling distance in the Arts District area. An explicit transit adjustment was not applied to the residential and office AM and PM peak hour trips since the local data and ITE Dense Multi-Use Urban trip generation rates used for the AM and PM peak hours for these uses are presumed to already incorporate transit. American Community Survey data from 2016 indicates that the transit/bicycle/walk split for the 90021 zip code, where the Project site is located, is over 50%. The neighboring zip code, 90013 , shares more similar neighborhood characteristics with the Project than 90021, which currently is primarily industrial land uses. The 90013 zip code has a transit/bicycle/walk split of around 40\%. This empirical data indicates that the Project's transit/bicycle/walk adjustment is conservative.

Pass-by Trips
Per LADOT's TAG Attachment H, Policy on Pass-By Trips, a 40\% pass-by adjustment was applied to grocery and retail, a 20% pass-by adjustment was applied to high-turnover restaurant uses and gym, a 15% passby adjustment was applied to the food hall, and a 10% pass-by adjustment was applied to quality restaurant uses. Pass-by adjustments account for the patrons making an intermediate stop on the way from an origin to a primary trip destination without a route diversion. These trips would be attracted from traffic passing the site on Santa Fe Avenue, 7th Street, 6th Street, and other nearby streets.

Transportation Network Companies

The proliferation of shared mobility transportation network companies (TNCs), such as Lyft and Uber, in recent years is important to consider in a project of this size. The various mix of uses at the Project site will likely attract TNC usage to and from the Project site. Given the relatively recent introduction of these services in the urban transportation network, minimal industry research has been conducted to measure the mode split of TNC vehicles, but anecdotal evidence suggests that usage has been steadily growing in recent years. To account for TNCs, recent research informed an assumption that TNCs would make up 5% of the vehicle

[^10]trips generated by each land use. ${ }^{13}$ Available empirical knowledge indicates that TNC trips replace both transit/bike/walk trips and private vehicle trips. ${ }^{14}$ Therefore, 2.5% of the TNC trips were considered to replace transit trips, which results in an additional vehicle trip in and out of the Project site that would not have been considered in the basic trip generation estimates. The 2.5% of TNC trips attributed to the replacement of private vehicles result in an additional vehicle trip added only to the opposite movement of the vehicle trip already considered in the basic trip generation estimates.

Outdoor Programming

Outdoor programming has been identified for the Project and the Project with the Deck Concept. As previously mentioned, the Project with the Deck Concept proposes the construction of up to a 3-acre deck that would be publicly accessible. In order to activate this space, the Project with the Deck Concept has developed outdoor programmatic elements that could be used for the deck. These programs include a weekly farmers market (also part of the Project), group exercise classes, and busking (i.e. informal performances in designated locations). Programming is anticipated regardless of the implementation of the deck, but the Project with the Deck Concept creates more space to allow for bigger and more frequent programs. The trip generation for these activities has been developed based on the amount of people estimated to attend the various events and incorporated into the traffic analysis.

The outdoor programming falls into two categories: permanent events that occur weekly or more frequently and temporary/special events that occur less frequently on weekends and/or seasonally. The proposed permanent programming is described below:

[^11]- Weekly Farmers' Market (both Project options) - Occurs on a weekday every week, from 11:00 AM to 2:00 PM. Anticipated to draw up to 500 people from the Project site and adjacent neighborhood.
- Group Exercise Classes (both Project options) - Occurs multiple times a week from approximately 7:00 AM to 9:00 AM and 4:00 PM to 7:00 PM. Under the Project with the Deck Concept, up to 280 people from the Project site and adjacent neighborhood are anticipated to participate. Smaller group exercise classes are planned for the Project, but participants (up to 90 people) will be entirely internal to the site, generating no additional person or vehicle trips.
- Busking (both Project options) - Occurs multiple times a week from approximately 12:00 PM to 2:00 PM and 7:00 PM to 9:00 PM. Under the Project with the Deck Concept, up to 20 people from the Project site and adjacent neighborhood are anticipated to observe. Busking is planned for the Project, but some observers (up to 10) will be entirely internal to the site, generating no additional person or vehicle trips.
- Weekend Farmers Market (Project with the Deck Concept) - Occurs monthly on the weekend from 8:00 AM to 1:00 PM, with up to 1,500 people anticipated.

The proposed temporary special events are described below:

- Art Fair/Walk (both Project options) - Occurs on a weekend evening. Anticipated to draw up to 1,000 people from the Project site and adjacent neighborhood.
- Weekend Farmers Market (Project) - Occurs monthly on the weekend from 8:00 AM to 1:00 PM, with up to 700 people anticipated.
- Movie Night (Project with the Deck Concept only) - Occurs seasonally on Saturday evenings with up to 2,000 people from the Project site and adjacent neighborhood anticipated to attend.

The temporary special events and the permanent Weekend Farmers Market under the Project with the Deck Concept were not included as part of the peak hour weekday traffic analysis since they would occur on weekends. Weekend trip generation rates for the Project with the Deck Concept that include permanent programming were developed to confirm that weekend land use activity generates less trips than weekday.
Table 12 shows the amount of daily vehicle trips estimated for a weekend day with permanent programming is 20,570. As seen in Figure 6B, the estimated daily vehicles generated by the Project the Deck Concept on an average weekday is 24,901 . A detailed weekend trip generation table can be found in

Appendix I.

Due to the off-peak nature of the temporary special event programming (occurring on the weekends), they are not anticipated to add traffic to weekday peak traffic conditions. In addition, due to the off-peak nature of these events, they can utilize the parking that is freed up by the office building tenants that would not be present on weekends. For the Temporary Special Event programming, a daily trip generation table was developed to provide an estimate of the potential number of vehicle trips generated by these events. Table 13 shows the estimated trip generation of the Temporary Special Events. As described above, these events are anticipated to occur only on the weekends. Adjustments were made to account for internal capture and
transit/bike/walk trips. The same TNC assumptions made for the Project's trip generation were made for these events as well. A detailed trip generation table can be found in Appendix I.

Table 13 shows that as long as the temporary special events do not occur simultaneously, the number of daily trips the events add to a regular weekend day would not be higher than any normal operating weekday. Under the Project, 19,390 weekend daily vehicle trips are estimated to occur without any programming. During the weekday, as seen in Figure 6A, 24,484 daily vehicle trips are estimated. Adding trips from the weekend temporary special events (art fair/walk or weekend farmer's market) does not increase daily weekend trips to above normal weekday vehicle trips. Similarly, as seen in Figure 6B, the Project with the Deck Concept is estimated to have 24,901 daily trips on weekdays. With special events added (art fair/walk or movie night), weekend daily trips are not anticipated to go over 21,618 vehicles.

While these Temporary Special Events are not anticipated to create additional impacts on the peak hour traffic conditions analyzed in the previous chapters, a Special Event Management Plan will be developed as a Condition of Approval. The Special Event Management Plan will describe traffic and parking management for the anticipated special event programming for both Project options.

Existing Land Use

An existing land use credit was applied to the trip generation due to the removal of the existing 205,400 sf of warehouse space. These uses will be demolished to make way for the new development. Based on application of ITE trip rates for warehousing uses, approximately 35 trips (27 inbound/8 outbound) during the AM peak hour and 39 trips (11 inbound/28 outbound) during the PM peak hour were estimated to no longer enter or leave the site by vehicle. As such, these trips were subtracted from the Project's overall trip generation as an existing use credit.

As shown in Table 11A, the Project is projected to generate an estimated net increase of 1,344 vehicle trips (942 inbound/402 outbound) during the AM peak hour and 1,688 vehicle trips (709 inbound/979 outbound) during the PM peak hour. Included in those trips are TNCs, which have been estimated to 144 AM peak hour and 180 PM peak hour vehicle trips.

As shown in Table 11B, the Project with the Deck Concept is projected to generate an estimated net increase of 1,464 vehicle trips (1,002 inbound/462 outbound) during the AM peak hour and 1,805 vehicle trips (768 inbound/1,037 outbound) during the PM peak hour. Included in those trips are TNCs, which have been estimated to represent 154 AM peak hour and 190 PM peak hour vehicle trips. Detailed trip generation tables, which outline all credits taken, can be found in Appendix I.

Trip Distribution

The geographic distribution of trips generated by the proposed Project is dependent on characteristics of the street system serving the Project site; the level of accessibility of routes to and from the proposed Project site; locations of employment and commercial centers to which residents of the Project would be drawn; and residential areas from which the commercial visitors would be drawn. A select zone analysis was
conducted for the proposed uses using the City of Los Angeles Travel Demand Model to inform the general distribution pattern for this study. Three separate trip distributions were developed, considering differences in the trip distribution for residential trips, regional commercial based trips, and local-serving commercial based trips. Regional commercial land uses include office, quality restaurant, studio/gallery/event space, general retail, food hall, hotel, and deck. Local-serving commercial land uses include high-turnover restaurant, gym, grocery, farmer's market, group exercise classes, and busking.

The distribution of project trips is illustrated in Figure 8A for residential trips, Figure 8B for regional commercial trips, and Figure 8C for local commercial trips.

Traffic Assignment

The traffic to be generated by the proposed Project was assigned to the street network using the distribution patterns described in Figures 8A-8C. Appendix F provides the assignment of the proposed project-generated peak hour traffic volumes at the analyzed intersections during the AM and PM peak hours. The assignment of traffic volumes took into consideration the locations of the proposed Project driveways on Mesquit Street and $7^{\text {th }}$ Street as well as the turning movements permitted at the four driveways. TNC vehicles were assigned to begin and end along the pull-out passenger loading zone along Mesquit Street and at the signalized driveway on $7^{\text {th }}$ Street, which leads to an internal passenger loading zone and loop for TNC vehicles to enter and exit the Project site.

TABLE 11A PROJECT TRIP GENERATION 670 MESQUIT PROJECT								
Land Use	ITE Land Use Code [a]	Size	Estimated Trip Generation					
			AM Peak Hour Trips			PM Peak Hour Trips		
			In	Out	Total	In	Out	Total
PROPOSED PROJECT								
Creative Office	710	944.055 ksf	486	33	519	132	592	724
Quality Restaurant	931	44.788 ksf	10	10	20	117	44	161
High-Turnover Restaurant	932	44.788 ksf	132	106	238	122	56	178
Hotel	310	236 rooms	48	19	67	23	19	42
Residential*	222	258 DU	9	41	50	19	8	27
Affordable Housing	[b]	50 DU	11	12	23	3	2	5
Studio, Event, Gallery [c]	495	93.617 ksf	86	47	133	82	91	173
Gym (Health / Fitness Club) [d]	492	62.148 ksf	23	21	44	45	38	83
Grocery	850	28.054 ksf	27	19	46	45	47	92
General Retail	820	79.240 ksf	48	31	79	65	75	140
Food Hall [e]	Blended	28.858 ksf	89	71	160	67	35	102
Farmers' Market	[f]	500 persons	0	0	0	0	0	0
NET EXTERNAL VEHICLE TRIPS			969	410	1,379	720	1,007	1,727
EXISTING USE CREDIT								
Warehousing Total Existing Use Credit	150	205.4 ksf	$\frac{27}{27}$	$\frac{8}{8}$	$\frac{35}{35}$	$\frac{11}{11}$	$\frac{28}{28}$	$\frac{39}{39}$
NET INCREMENTAL EXTERNAL TRIPS			942	402	1,344	709	979	1,688
Notes:								
* Local data collected at high-rise residential sites was approved by LADOT to use for AM and PM peak period trip rates. [a] Source: Institute of Transportation Engineers (ITE), Trip Generation, 10th Edition, 2017. [b] Trip rates for affordable housing taken from LADOT's Transportation Assessment Guidelines, July 2020. [c] Trip generation rates for recreation center used for Studio, Event, Gallery. [d] ITE 10th Edition does not have a daily Health/Fitness club rate, so 9th Edition daily rate was used. [e] Trip generation rates for the food hall element were developed by blending the ITE rates for quality restaurant, high-turnover restaurant, drinking place, and retail. [f] Weekly farmers market from 11 am- 2 pm , no peak hour trips generated. Assumes an average vehicle occupancy of 2 person per vehicle. A larger monthly farmers' market is planned, but will not be part of the traffic analysis because it is planned for weekends only.								

TABLE 13 ESTIMATED TRIP GENERATION OF TEMPORARY SPECIAL EVENTS 670 MESQUIT PROJECT				
Land Use [a]	Size	Estimated Daily Weekend Vehicles from Temporary Special Events	Estimated Daily Weekend Vehicles with Events - Project	Estimated Daily Weekend Vehicles with Events - Project with the Deck Concept
Art Fair/Walk [b]	1,000 persons	654	20,044	21,224
Weekend Farmers Market [c]	700 persons	519	19,909	N/A
Movie Night [d]	2,000 persons	1,048	N/A	21,618
Notes: [a] None of the temporary special events anticipated to occur on the same weekend day. [b] Occurs under both Project Options. Planned for a weekend evening. Assumed a AVO of 2 people per vehicle. [c] Occurs under the Project. Planned for 8:00 AM to 1:00 PM on the weekend. Assumed a AVO of 2 people per vehicle. [d] Occurs under the Project with the Deck Concept. Planned seasonally on weekend evenings. Assumed a AVO of 2.5 people per vehicle.				

uo!̣nq!!ıs!a d!ıı |e!!uəp!!səy
$\forall 8$ コากธ!
\square Project Site

98 ә..nБ! 」

Future Base (2026 \& 2040) Traffic Volumes

To evaluate the potential effects of traffic related to the proposed Project on future (year 2026 \& 2040) conditions, it was necessary to develop estimates of future traffic conditions in the area without and with Project traffic. Estimates of traffic growth were developed for the study area to forecast future conditions without the Project, identified herein as the Future Base conditions. The assumptions and analysis methodology used to develop the Future Base conditions are described in more detail in the following sections.

The Sixth Street Viaduct, located north of the Project site, is currently under construction, and the new Sixth Street Viaduct is scheduled to open in 2022. Since the Project is anticipated to complete construction by 2026, including the reopened bridge as part of the traffic analysis was necessary to present an accurate picture of the Project's potential impacts.

Empirical data exists to complete this analysis. New traffic counts were collected for use in this study in 2018, over two years after the demolition of the old Sixth Street Viaduct. These counts reflect traffic patterns that have resulted from travel adjustments in and through the Arts District as a result of the bridge's closure. In order to analyze the network with the bridge in place, these counts had to be "shifted" to reflect traffic patterns with bridge conditions. Fehr \& Peers also reviewed intersection count data collected for the proposed 6AM project (6AM) in the immediate study area that were collected in 2015 prior to the Sixth Street Viaduct closure. These counts can be found in Appendix E. Using this data, Fehr \& Peers was able to calculate the number of vehicles that had previously traveled along the Sixth Street Viaduct during both AM and PM peak hours. Fehr \& Peers then compared the 2018 Mesquit counts (post-bridge closure) to the 2015 counts (bridge in operation) to assess the volume shift within the study area. The data indicated that a majority of the Sixth Street Viaduct traffic shifted to the 7th Street bridge, with some shifting to the 4th and 1st Street bridges. In addition, the data indicated that some Sixth Street Viaduct traffic had shifted to the US-101 freeway to the north and the I-10 freeway to the south, with more vehicles getting on and off at the $\mathrm{I}-10$ ramps at Mateo and Santa Fe and the US-101 ramps at Alameda in 2018 than in 2015 when the Sixth Street Viaduct was in operation.

For intersections within the Project study area that overlapped with 6AM count locations, the Project used 6AM data plus a three percent growth rate (one percent per year) to account for ambient and related project growth between 2015 and 2018 to reflect traffic patterns for 2018 conditions as if the Sixth Street Viaduct were in place when existing counts were collected for the Project. For intersections within the Project study area that did not overlap with the 6AM count locations, Fehr \& Peers adjusted the 2018 counts to shift the vehicles temporarily traveling on the identified parallel routes due to the construction closure of the Sixth Street Viaduct.

Fehr \& Peers validated the shift by comparing the shifted Project volumes to the 6AM counts with a three percent growth rate and confirmed the shifted volumes aligned with the counts that were collected when the bridge was in operation. This data supported that the Project's adjusted existing volumes, which include
a mix of 6AM counts with a three percent growth rate and the Project counts with a shift, were a valid existing baseline for determining the Project's potential traffic impacts.

Background or Ambient Growth

Based on historic trends and at the direction of LADOT, it was established that an ambient growth factor, which does not include related project traffic described below, of 0.2% per year should be applied to grow the adjusted existing traffic volumes to reflect the effects of regional growth and development by years 2026 and 2040. This growth factor was applied to the adjusted existing (2018) traffic volume data to reflect the effect of ambient growth by the years 2026 and 2040.

Related Project Traffic Generation and Assignment

Future Base traffic forecasts include the effects of related projects, introduced in Chapter 2. As shown in Table 2 and Figure 5, a total of 141 related projects were identified in the study area and assumed to be in place by both Future Year 2026 and Future Year 2040.

Trip Generation

For related projects provided by LADOT, trip generation estimates as provided by LADOT were used. For related projects provided by City Planning or other sources, trip generation was used from a combination of previous study findings and publicly available environmental documentation. Table 2 presents the resulting trip generation estimates for these related projects. These projections are conservative in that they do not in every case account for either the existing uses to be removed or the possible use of non-motorized travel modes (transit, walking, etc.). Corrective action measures associated with the related projects are also not in every case accounted for in the analysis.

Trip Distribution

The geographic distribution of the traffic generated by the related projects is dependent on several factors. These factors include the type and density of the proposed land uses, the geographic distribution of population from which employees and potential patrons of proposed commercial developments may be drawn, the locations of employment and commercial centers to which residents of residential projects may be drawn, and the location of the projects in relation to the surrounding street system. Additionally, if the traffic study or environmental document for a related project was available, the trip distribution from that study was used.

Traffic Assignment

Using the estimated trip generation and trip distribution patterns described above, traffic generated by the related projects was assigned to the street network. Future Year 2026 and 2040 weekday AM and PM peak hour traffic volumes and lane geometries for the analyzed intersections are provided in Appendix F.

Future Base (2026) Traffic Conditions

The Future Base (2026) peak hour traffic volumes were analyzed to determine the projected V/C ratio, delay, and LOS for each of the study intersections. Tables 14A and 15A summarize the Future Base (2026) LOS for signalized intersection locations. The following 13 signalized intersections are projected to operate at LOS E or worse during one or both peak hours under Future Base (2026) conditions:

- Intersection 1: South Central Avenue \& 7th Street (PM peak hour)
- Intersection 2: North Alameda Street \& East Aliso Street/East Commercial Street (PM peak hour)
- Intersection 4: North Alameda Street \& East 1st Street (AM and PM peak hour)
- Intersection 5: North Alameda Street \& East 2nd Street (AM and PM peak hour)
- Intersection 6: North Alameda Street \& 3rd Street/4th Place (AM peak hour)
- Intersection 7: South Alameda Street \& 4th Street (PM peak hour)
- Intersection 8: South Alameda Street $\& 6^{\text {th }}$ Street (AM and PM peak hour)
- Intersection 9: South Alameda Street \& $7^{\text {th }}$ Street (AM and PM peak hour)
- Intersection 11: Mateo Street \& 6th Street (AM peak hour)
- Intersection 12: Mateo Street \& 7th Street (PM peak hour)
- Intersection 13: South Santa Fe Avenue \& 7th Street (AM and PM peak hour)
- Intersection 16: South Santa Fe Avenue \& Olympic Boulevard (AM and PM peak hour)
- Intersection 20: Boyle Avenue \& Whittier Boulevard (AM and PM peak hour)

The remaining signalized study intersections are projected to operate at LOS D or better during the peak periods.

Tables 14B and 15B summarize the Future Base (2026) LOS for unsignalized intersection locations. The following 8 unsignalized intersections are projected to operate at LOS E or worse during one or both peak hours under Future Base (2026) conditions:

- Intersection A: Mateo Street \& $4^{\text {th }}$ Place (PM peak hour)
- Intersection B: Mateo Street \& Willow Street (PM peak hour)
- Intersection C: Mateo Street \& Jesse Street (AM peak hour)
- Intersection E: South Santa Fe Avenue \& Mesquit Street (AM peak hour)
- Intersection F: South Santa Fe Avenue \& Jesse Street (AM and PM peak hours)
- Intersection H: US-101 Southbound ramps \& $7^{\text {th }}$ Street (AM and PM peak hour)
- Intersection I: I-10 Westbound ramps \& East $8^{\text {th }}$ Street (AM and PM peak hour)
- Intersection J: I-10 Eastbound ramps \& Porter Street (AM and PM peak hour)

The remaining unsignalized study intersection are projected to operate at LOS D or better during the peak periods.

Future Base (2040) Traffic Conditions

The Future Base (2040) peak hour traffic volumes were analyzed to determine the projected V/C ratio, delay, and LOS for each of the study intersections. Tables 16A and 17A summarize the Future Base (2040) LOS for signalized intersection locations. The following 15 signalized intersections are projected to operate at LOS E or worse during one or both peak hours under Future Base (2040) conditions:

- Intersection 1: South Central Avenue \& 7th Street (PM peak hour)
- Intersection 2: North Alameda Street \& East Aliso Street/East Commercial Street (PM peak hour)
- Intersection 4: North Alameda Street \& East 1st Street (AM and PM peak hour)
- Intersection 5: North Alameda Street \& East 2nd Street (AM and PM peak hour)
- Intersection 6: North Alameda Street \& 3rd Street/4th Place (AM peak hour)
- Intersection 7: South Alameda Street \& 4th Street (PM peak hour)
- Intersection 8: South Alameda Street $\& 6^{\text {th }}$ Street (AM and PM peak hour)
- Intersection 9: South Alameda Street $\& 7^{\text {th }}$ Street (AM and PM peak hour)
- Intersection 11: Mateo Street \& 6th Street (AM peak hour)
- Intersection 12: Mateo Street \& 7th Street (PM peak hour)
- Intersection 13: South Santa Fe Avenue \& 7th Street (AM and PM peak hour)
- Intersection 16: South Santa Fe Avenue \& Olympic Boulevard (AM and PM peak hour)
- Intersection 17: South Santa Fe Avenue \& East $15^{\text {th }}$ Street (AM peak hour)
- Intersection 20: Boyle Avenue \& Whittier Boulevard (AM and PM peak hour)
- Intersection 21: Boyle Avenue $\& 7^{\text {th }}$ Street (AM peak hour)

The remaining signalized study intersections are projected to operate at LOS D or better during the peak periods.

Tables 16B and 17B summarize the Future Base (2040) LOS for unsignalized intersection locations. The following 9 unsignalized intersections are projected to operate at LOS E or worse during one or both peak hours under Future Base (2040) conditions:

- Intersection A: Mateo Street \& $4^{\text {th }}$ Place (PM peak hour)
- Intersection B: Mateo Street \& Willow Street (AM and PM peak hour)
- Intersection C: Mateo Street \& Jesse Street (AM peak hour)
- Intersection E: South Santa Fe Avenue \& Mesquit Street (AM and PM peak hour)
- Intersection F: South Santa Fe Avenue \& Jesse Street (AM and PM peak hours)
- Intersection H: US-101 Southbound ramps \& $7^{\text {th }}$ Street (AM and PM peak hour)
- Intersection I: I-10 Westbound ramps \& East $8^{\text {th }}$ Street (AM and PM peak hour)
- Intersection J: I-10 Eastbound ramps \& Porter Street (AM and PM peak hour)

The remaining unsignalized study intersection are projected to operate at LOS D or better during the peak periods.

Future Base (2026 \& 2040) Plus Project Traffic Projections

The proposed Project traffic volumes were added to the Future Base 2026 and Future Base 2040 traffic projections to form Future Base (2026) plus Project and Future Base (2040) plus Project AM and PM peak hour traffic volumes. As provided in Appendix F, the Future Base (2026 \& 2040) plus Project scenarios present future traffic conditions with the completion of the proposed Project.

Future Base (2026) plus Project Traffic Conditions

The Future Base (2026) plus Project peak hour traffic volumes, provided in Appendix F, were analyzed to determine the projected future operating conditions with the addition of the proposed Project traffic. The results of the Future Base (2026) plus Project signalized intersection analysis are presented in Table 14A and the results of the Future Base (2026) plus Project with the Deck Concept signalized intersection analysis are presented in Table 15A, with analysis sheets provided in Appendix G. The following 14 signalized intersections are projected to operate LOS E or worse during one or both peak hours under Future plus Project and Project with the Deck Concept conditions:

- Intersection 1: South Central Avenue \& 7th Street (PM peak hour)
- Intersection 2: North Alameda Street \& East Aliso Street/East Commercial Street (PM peak hour)
- Intersection 4: North Alameda Street \& East 1st Street (AM and PM peak hour)
- Intersection 5: North Alameda Street \& East 2nd Street (AM and PM peak hour)
- Intersection 6: North Alameda Street \& 3rd Street/4th Place (AM and PM peak hour)
- Intersection 7: South Alameda Street \& 4th Street (PM peak hour)
- Intersection 8: South Alameda Street $\& 6^{\text {th }}$ Street (AM and PM peak hour)
- Intersection 9: South Alameda Street $\& 7^{\text {th }}$ Street (AM and PM peak hour)
- Intersection 11: Mateo Street \& 6th Street (AM and PM peak hour)
- Intersection 12: Mateo Street \& 7th Street (AM and PM peak hour)
- Intersection 13: South Santa Fe Avenue \& 7th Street (AM and PM peak hour)
- Intersection 16: South Santa Fe Avenue \& Olympic Boulevard (AM and PM peak hour)
- Intersection 20: Boyle Avenue \& Whittier Boulevard (AM and PM peak hour)
- Intersection 21: Boyle Avenue \& $7^{\text {th }}$ Street (AM peak hour)

The remaining signalized study intersections are projected to operate at LOS D or better during the peak periods.

The results of the Future Base (2026) plus Project unsignalized intersection analysis are presented in Table 14B and the results of the Future Base (2026) plus Project with the Deck Concept unsignalized intersection
analysis are presented in Table 15B, with analysis sheets provided in Appendix G. The following 10 unsignalized intersections are projected to operate LOS E or worse during one or both peak hours under Future Base (2026) plus Project and Project with the Deck Concept conditions:

- Intersection A: Mateo Street \& $4^{\text {th }}$ Place (PM peak hour)
- Intersection B: Mateo Street \& Willow Street (AM and PM peak hour)
- Intersection C: Mateo Street \& Jesse Street (AM and PM peak hour)
- Intersection D: South Santa Fe Avenue \& Willow Street (AM and PM peak hour)
- Intersection E: South Santa Fe Avenue \& Mesquit Street (AM and PM peak hour)
- Intersection F: South Santa Fe Avenue \& Jesse Street (AM and PM peak hours)
- Intersection G: Mesquit Street \& Jesse Street (AM peak hour)
- Intersection H: US-101 Southbound ramps \& $7^{\text {th }}$ Street (AM and PM peak hour)
- Intersection I: I-10 Westbound ramps \& East $8^{\text {th }}$ Street (AM and PM peak hour)
- Intersection J: I-10 Eastbound ramps \& Porter Street (AM and PM peak hour)

TABLE 14A 670 MESQUIT FUTURE BASE (2026) PLUS PROJECT SIGNALIZED INTERSECTIONS LEVELS OF SERVICE						
NO.	INTERSECTION	PEAK HOUR	FUTURE	(2026)	FUTURE $+\mathbf{P}$	$\begin{aligned} & \text { E (2026) } \\ & \text { CT } \end{aligned}$
			V/C	LOS	V/C	LOS
1	S Central Avenue \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.821 \\ & 1.039 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 0.843 \\ & 1.087 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$
2	N Alameda Street \& E Aliso Street/E Commercial Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.737 \\ & 1.019 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 0.755 \\ & 1.040 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~F} \end{aligned}$
3	Alameda Street \& Temple Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.763 \\ & 0.789 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 0.800 \\ & 0.812 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$
4	N Alameda Street \& E 1st Street	$\begin{aligned} & \text { AM } \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.166 \\ & 1.201 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.198 \\ & 1.221 \end{aligned}$	F
5	N Alameda Street \& E 2nd Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.053 \\ & 0.960 \end{aligned}$	\bar{F}	$\begin{aligned} & 1.059 \\ & 0.983 \end{aligned}$	F
6	S Alameda Street \& 3rd Street/4th Place	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.948 \\ & 0.871 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 0.986 \\ & 0.913 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{E} \end{aligned}$
7	S Alameda Street \& 4th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.591 \\ & 0.966 \end{aligned}$	A	$\begin{aligned} & 0.611 \\ & 1.003 \\ & \hline \end{aligned}$	B
8	S Alameda Street \& 6th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.045 \\ & 1.055 \end{aligned}$	\bar{F}	$\begin{aligned} & 1.068 \\ & 1.081 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
9	S Alameda Street \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.145 \\ & 1.162 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.162 \\ & 1.249 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
10	Molino Street/Merrick Street \& 4th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.815 \\ & 0.800 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.835 \\ & 0.849 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$
11	Mateo Street \& 6th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.948 \\ & 0.875 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 1.006 \\ & 0.999 \end{aligned}$	F
12	Mateo Street \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.881 \\ & 0.941 \end{aligned}$	D	$\begin{aligned} & 0.941 \\ & 1.093 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{~F} \end{aligned}$
13	S Santa Fe Avenue \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.229 \\ & 1.292 \end{aligned}$	F	$\begin{aligned} & 1.275 \\ & 1.449 \\ & \hline \end{aligned}$	F
14	S Santa Fe Avenue \& 8th Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.711 \\ & 0.554 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 0.750 \\ & 0.603 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~B} \end{aligned}$
15	S Santa Fe Avenue \& Porter Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.599 \\ & 0.809 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.638 \\ & 0.868 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$
16	S Santa Fe Avenue \& Olympic Boulevard	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.998 \\ & 0.983 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 1.032 \\ & 1.016 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
17	S Santa Fe Avenue \& E 15th Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 0.889 \\ & 0.678 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 0.897 \\ & 0.702 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \end{aligned}$
18	 E 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.595 \\ & 0.418 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.649 \\ & 0.461 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$
19	S Anderson Street \& E 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.737 \\ & 0.433 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 0.791 \\ & 0.471 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$
20	Boyle Avenue \& Whittier Boulevard	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.072 \\ & 1.049 \end{aligned}$	F	$\begin{aligned} & 1.109 \\ & 1.078 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
21	Boyle Avenue \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.885 \\ & 0.806 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.939 \\ & 0.843 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$
22	S Alameda Street \& I-10 Eastbound Ramps	$\begin{aligned} & \text { AM } \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.739 \\ & 0.853 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.759 \\ & 0.865 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$

TABLE 14B 670 MESQUIT FUTURE BASE (2026) PLUS PROJECT UNSIGNALIZED INTERSECTIONS LEVELS OF SERVICE						
NO.	INTERSECTION	PEAK HOUR	FUTURE BASE (2026)		FUTURE BASE (2026) + PROJECT	
			Delay	LOS	Delay	LOS
A	Mateo Street \& 4th Place	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & 12.7 \\ & 40.9 \\ & \hline \end{aligned}$	B	$\begin{aligned} & 13.2 \\ & 52.4 \\ & \hline \end{aligned}$	B
B	Mateo Street \& Willow Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 33.9 \\ & 92.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 53.7 \\ 286.1 \end{gathered}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
C	Mateo Street \& Jesse Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 87.8 \\ & 20.3 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \end{aligned}$
D	S Santa Fe Avenue \& Willow Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 22.8 \\ & 24.0 \end{aligned}$	\bar{c}	$\begin{aligned} & \hline 39.6 \\ & 56.0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{~F} \end{aligned}$
E	S Santa Fe Avenue \& Mesquit Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 41.5 \\ & 34.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 137.4 \\ & 149.4 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
F	S Santa Fe Avenue \& Jesse Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 62.3 \\ & 35.6 \end{aligned}$	F		F
G	Mesquit Street \& Jesse Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 49.1 \\ & 24.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{C} \end{aligned}$
H	US-101 Southbound ramps \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{gathered} 299.7 \\ 63.3 \end{gathered}$	F	92.6	$\begin{aligned} & \hline F \\ & F \end{aligned}$
I	I-10 Westbound ramps \& E 8th Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$		F		F
J	I-10 Eastbound ramps \& Porter Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{gathered} \hline 98.4 \\ 101.2 \\ \hline \end{gathered}$	\bar{F}	$\begin{aligned} & \hline 123.5 \\ & 169.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline F \\ & F \\ & \hline \end{aligned}$

Note: * The HCM methodology produces a delay estimate that exceeds 5 minutes or is undefined based on the volume, lane configuration, and traffic control. Actual drivers are likely to change their route or accept smaller than usual gaps when faced with such long delays.

TABLE 15A 670 MESQUIT FUTURE BASE (2026) PLUS PROJECT WITH THE DECK CONCEPT SIGNALIZED INTERSECTIONS LEVELS OF SERVICE						
NO.	INTERSECTION	PEAK HOUR	FUTURE BASE (2026)		FUTURE BASE (2026) + PROJECT WITH THE DECK CONCEPT	
			V/C	LOS	V/C	LOS
1	S Central Avenue \& 7th Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.821 \\ & 1.039 \end{aligned}$	$\begin{aligned} & \hline D \\ & F \end{aligned}$	$\begin{aligned} & \hline 0.844 \\ & 1.088 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$
2	N Alameda Street \& E Aliso Street/E Commercial Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 0.737 \\ & 1.019 \end{aligned}$	C	$\begin{aligned} & \hline 0.755 \\ & 1.040 \end{aligned}$	C
3	Alameda Street \& Temple Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.763 \\ & 0.789 \end{aligned}$	C	$\begin{aligned} & \hline 0.800 \\ & 0.812 \end{aligned}$	C
4	N Alameda Street \& E 1st Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.166 \\ & 1.201 \end{aligned}$	F	$\begin{aligned} & 1.199 \\ & 1.221 \end{aligned}$	F
5	N Alameda Street \& E 2nd Street	AM PM	$\begin{aligned} & 1.053 \\ & 0.960 \end{aligned}$	F	$\begin{aligned} & 1.060 \\ & 0.983 \end{aligned}$	F
6	S Alameda Street \& 3rd Street/4th Place	AM PM	$\begin{aligned} & 0.948 \\ & 0.871 \end{aligned}$	E	$\begin{aligned} & 0.987 \\ & 0.915 \end{aligned}$	E
7	S Alameda Street \& 4th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.591 \\ & 0.966 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & \hline 0.611 \\ & 1.005 \end{aligned}$	B
8	S Alameda Street \& 6th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.045 \\ & 1.055 \end{aligned}$	F	$\begin{aligned} & 1.069 \\ & 1.083 \end{aligned}$	F
9	S Alameda Street \& 7th Street	AM PM	$\begin{aligned} & 1.145 \\ & 1.162 \end{aligned}$	F	$\begin{aligned} & 1.165 \\ & 1.252 \end{aligned}$	F
10	Molino Street/Merrick Street \& 4th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.815 \\ & 0.800 \end{aligned}$	D	$\begin{aligned} & 0.840 \\ & 0.855 \end{aligned}$	D
11	 6th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.948 \\ & 0.875 \end{aligned}$	E	$\begin{aligned} & 1.013 \\ & 1.007 \end{aligned}$	F
12	Mateo Street \& 7th Street	AM PM	$\begin{aligned} & 0.881 \\ & 0.941 \end{aligned}$	D	$\begin{aligned} & \hline 0.946 \\ & 1.102 \end{aligned}$	E
13	S Santa Fe Avenue \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.229 \\ & 1.292 \end{aligned}$	F	$\begin{aligned} & 1.277 \\ & 1.451 \end{aligned}$	F
14	S Santa Fe Avenue \& 8th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.711 \\ & 0.554 \\ & \hline \end{aligned}$	C	$\begin{aligned} & 0.751 \\ & 0.605 \end{aligned}$	C
15	S Santa Fe Avenue \& Porter Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.599 \\ & 0.809 \end{aligned}$	A	$\begin{aligned} & 0.639 \\ & 0.868 \end{aligned}$	B
16	S Santa Fe Avenue \& Olympic Boulevard	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.998 \\ & 0.983 \end{aligned}$	E	$\begin{aligned} & 1.034 \\ & 1.016 \end{aligned}$	F
17	S Santa Fe Avenue \& E 15th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.889 \\ & 0.678 \end{aligned}$	D	$\begin{aligned} & 0.899 \\ & 0.702 \end{aligned}$	D
18	S Rio Street \& E 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.595 \\ & 0.418 \end{aligned}$	A	$\begin{aligned} & 0.650 \\ & 0.462 \end{aligned}$	B
19	S Anderson Street \& E 4th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.737 \\ & 0.433 \end{aligned}$	C	$\begin{aligned} & \hline 0.792 \\ & 0.469 \end{aligned}$	C
20	Boyle Avenue \& Whittier Boulevard	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.072 \\ & 1.049 \end{aligned}$	F	$\begin{aligned} & 1.112 \\ & 1.081 \end{aligned}$	F
21	Boyle Avenue \& 7th Street	AM PM	$\begin{aligned} & \hline 0.885 \\ & 0.806 \end{aligned}$	D	$\begin{aligned} & 0.941 \\ & 0.845 \end{aligned}$	E
22	S Alameda Street \& I-10 Eastbound ramps	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.739 \\ & 0.853 \end{aligned}$	$\begin{aligned} & C \\ & D \end{aligned}$	$\begin{aligned} & 0.759 \\ & 0.865 \end{aligned}$	C

TABLE 15B 670 MESQUIT FUTURE BASE (2026) PLUS PROJECT WITH THE DECK CONCEPT UNSIGNALIZED INTERSECTIONS LEVELS OF SERVICE						
NO.	INTERSECTION	PEAK HOUR	FUTURE	(2026)	FUTURE PROJECT CO	2026) + HE DECK
			Delay	LOS	Delay	LOS
A	Mateo Street \& 4th Place	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 12.7 \\ & 40.9 \end{aligned}$	\bar{B}	$\begin{aligned} & \hline 13.3 \\ & 53.6 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~F} \end{aligned}$
B	Mateo Street \& Willow Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 33.9 \\ & 92.2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	57.4	$\begin{aligned} & F \\ & F \end{aligned}$
C	Mateo Street \& Jesse Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 87.8 \\ & 20.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{C} \end{aligned}$		F
D	S Santa Fe Avenue \& Willow Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & 22.8 \\ & 24.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 45.0 \\ & 62.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{~F} \end{aligned}$
E	S Santa Fe Avenue \& Mesquit Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 41.5 \\ & 34.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & 152.6 \\ & 164.8 \\ & \hline \end{aligned}$	F
F	S Santa Fe Avenue \& Jesse Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 62.3 \\ & 35.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{E} \\ & \hline \end{aligned}$		\bar{F}
G	Mesquit Street \& Jesse Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 64.2 \\ & 31.1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{D} \\ & \hline \end{aligned}$
H	US-101 Southbound ramps \& 7th Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 299.7 \\ 63.3 \end{gathered}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	92.4	$\begin{aligned} & F \\ & F \end{aligned}$
1	I-10 Westbound ramps \& E 8th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline F \\ & F \\ & \hline \end{aligned}$		$\begin{aligned} & F \\ & F \end{aligned}$
J	 Porter Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 98.4 \\ 101.2 \\ \hline \end{gathered}$	F	$\begin{aligned} & \hline 124.4 \\ & 169.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline F \\ & F \\ & \hline \end{aligned}$

Note: * The HCM methodology produces a delay estimate that exceeds 5 minutes or is undefined based on the volume, lane configuration, and traffic control. Actual drivers are likely to change their route or accept smaller than usual gaps when faced with such long delays.

Future Base (2040) plus Project Traffic Conditions
The Future Base (2040) plus Project peak hour traffic volumes, provided in Appendix F, were analyzed to determine the projected future operating conditions with the addition of the proposed Project traffic. The results of the Future Base (2040) plus Project signalized intersection analysis are presented in Table 16A and the results of the Future Base (2040) plus Project with the Deck Concept signalized intersection analysis are presented in Table 17A, with analysis sheets provided in Appendix G. The following 15 signalized intersections are projected to operate LOS E or worse during one or both peak hours under Future plus Project and Project with the Deck Concept conditions:

- Intersection 1: South Central Avenue \& 7th Street (PM peak hour)
- Intersection 2: North Alameda Street \& East Aliso Street/East Commercial Street (PM peak hour)
- Intersection 4: North Alameda Street \& East 1st Street (AM and PM peak hour)
- Intersection 5: North Alameda Street \& East 2nd Street (AM and PM peak hour)
- Intersection 6: North Alameda Street \& 3rd Street/4th Place (AM and PM peak hour)
- Intersection 7: South Alameda Street \& 4th Street (PM peak hour)
- Intersection 8: South Alameda Street $\& 6^{\text {th }}$ Street (AM and PM peak hour)
- Intersection 9: South Alameda Street $\& 7^{\text {th }}$ Street (AM and PM peak hour)
- Intersection 11: Mateo Street \& 6th Street (AM and PM peak hour)
- Intersection 12: Mateo Street \& 7th Street (AM and PM peak hour)
- Intersection 13: South Santa Fe Avenue \& 7th Street (AM and PM peak hour)
- Intersection 16: South Santa Fe Avenue \& Olympic Boulevard (AM and PM peak hour)
- Intersection 17: South Santa Fe Avenue \& East $15^{\text {th }}$ Street (AM peak hour)
- Intersection 20: Boyle Avenue \& Whittier Boulevard (AM and PM peak hour)
- Intersection 21: Boyle Avenue $\& 7^{\text {th }}$ Street (AM peak hour)

The remaining signalized study intersections are projected to operate at LOS D or better during the peak periods. The results of the Future Base (2040) plus Project unsignalized intersection analysis are presented in Table 16B and the results of the Future Base (2040) plus Project with the Deck Concept unsignalized intersection analysis are presented in Table 17B, with analysis sheets provided in Appendix G. The following 10 unsignalized intersections are projected to operate LOS E or worse during one or both peak hours under Future plus Project and Project with the Deck conditions:

- Intersection A: Mateo Street \& 4 ${ }^{\text {th }}$ Place (PM peak hour)
- Intersection B: Mateo Street \& Willow Street (AM and PM peak hour)
- Intersection C: Mateo Street \& Jesse Street (AM and PM peak hour)
- Intersection D: South Santa Fe Avenue \& Willow Street (AM and PM peak hour)
- Intersection E: South Santa Fe Avenue \& Mesquit Street (AM and PM peak hour)
- Intersection F: South Santa Fe Avenue \& Jesse Street (AM and PM peak hour)
- Intersection G: Mesquit Street $\&$ Jesse Street (AM peak hour)
- Intersection H: US-101 Southbound ramps \& $7^{\text {th }}$ Street (AM and PM peak hour)
- Intersection I: I-10 Westbound ramps \& East $8^{\text {th }}$ Street (AM and PM peak hour)
- Intersection J: I-10 Eastbound ramps \& Porter Street (AM and PM peak hour)

TABLE 16A 670 MESQUIT FUTURE BASE (2040) PLUS PROJECT SIGNALIZED INTERSECTIONS LEVELS OF SERVICE						
NO.	INTERSECTION	PEAK HOUR	FUTURE	(2040)	FUTURE +	$\begin{aligned} & E(2040) \\ & =C T \end{aligned}$
			V/C	LOS	V/C	LOS
1	S Central Avenue \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.838 \\ & 1.059 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 0.859 \\ & 1.107 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$
2	N Alameda Street \& E Aliso Street/E Commercial Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.752 \\ & 1.040 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 0.769 \\ & 1.061 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~F} \end{aligned}$
3	Alameda Street \& Temple Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.778 \\ & 0.804 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.813 \\ & 0.825 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \end{aligned}$
4	N Alameda Street \& E 1st Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.189 \\ & 1.223 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.221 \\ & 1.242 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
5	N Alameda Street \& E 2nd Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.069 \\ & 0.974 \end{aligned}$	F	$\begin{aligned} & 1.076 \\ & 0.996 \end{aligned}$	\bar{F}
6	S Alameda Street \& 3rd Street/4th Place	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.969 \\ & 0.889 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 1.008 \\ & 0.930 \end{aligned}$	$\begin{aligned} & \hline F \\ & E \end{aligned}$
7	S Alameda Street \& 4th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.603 \\ & 0.987 \end{aligned}$	$\begin{aligned} & \hline B \\ & E \end{aligned}$	$\begin{aligned} & 0.621 \\ & 1.025 \end{aligned}$	B
8	S Alameda Street \& 6th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.069 \\ & 1.077 \end{aligned}$	F	$\begin{aligned} & 1.093 \\ & 1.103 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
9	S Alameda Street \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.169 \\ & 1.182 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.186 \\ & 1.269 \end{aligned}$	F
10	Molino Street/Merrick Street \& 4th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.834 \\ & 0.814 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.854 \\ & 0.864 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$
11	Mateo Street \& 6th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.966 \\ & 0.884 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 1.024 \\ & 1.009 \end{aligned}$	\bar{F}
12	Mateo Street \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.898 \\ & 0.957 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 0.957 \\ & 1.107 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{~F} \end{aligned}$
13	S Santa Fe Avenue \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.251 \\ & 1.315 \end{aligned}$	F	$\begin{aligned} & 1.296 \\ & 1.472 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
14	S Santa Fe Avenue \& 8th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.729 \\ & 0.569 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.768 \\ & 0.620 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~B} \end{aligned}$
15	S Santa Fe Avenue \& Porter Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.615 \\ & 0.831 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.654 \\ & 0.889 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$
16	S Santa Fe Avenue \& Olympic Boulevard	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.024 \\ & 1.003 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.055 \\ & 1.037 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
17	S Santa Fe Avenue \& E 15th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 0.915 \\ & 0.697 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 0.923 \\ & 0.722 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \end{aligned}$
18	 E 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.610 \\ & 0.427 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.664 \\ & 0.471 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$
19	S Anderson Street \& E 4th Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.755 \\ & 0.442 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 0.809 \\ & 0.477 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~A} \end{aligned}$
20	Boyle Avenue \& Whittier Boulevard	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.098 \\ & 1.074 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.136 \\ & 1.104 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
21	Boyle Avenue \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.907 \\ & 0.827 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.961 \\ & 0.864 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$
22	S Alameda Street \& I-10 Eastbound ramps	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.759 \\ & 0.874 \end{aligned}$	$\begin{aligned} & C \\ & D \end{aligned}$	$\begin{aligned} & 0.779 \\ & 0.886 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$

TABLE 16B 670 MESQUIT FUTURE BASE (2040) PLUS PROJECT UNSIGNALIZED INTERSECTIONS LEVELS OF SERVICE						
NO.	INTERSECTION	PEAK HOUR	FUTURE BASE (2040)		FUTURE BASE (2040) + PROJECT	
			Delay	LOS	Delay	LOS
A	Mateo Street \& 4th Place	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 12.8 \\ & 42.8 \end{aligned}$	\bar{B}	$\begin{aligned} & \hline 13.3 \\ & 55.6 \end{aligned}$	\bar{B}
B	Mateo Street \& Willow Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{gathered} \hline 35.4 \\ 101.0 \end{gathered}$	\bar{E}	58.7	F
C	Mateo Street \& Jesse Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{gathered} \hline 123.4 \\ 21.2 \end{gathered}$	$\begin{aligned} & \hline F \\ & C \end{aligned}$		$\begin{aligned} & \hline F \\ & F \\ & \hline \end{aligned}$
D	S Santa Fe Avenue \& Willow Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 23.3 \\ & 24.7 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 41.5 \\ & 58.7 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{~F} \end{aligned}$
E	S Santa Fe Avenue \& Mesquit Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 46.0 \\ & 37.3 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 146.2 \\ & 156.6 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
F	S Santa Fe Avenue \& Jesse Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 68.2 \\ & 36.6 \end{aligned}$	$\begin{aligned} & \hline F \\ & E \end{aligned}$		$\begin{aligned} & \hline F \\ & F \end{aligned}$
G	Mesquit Street \& Jesse Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 8.6 \\ & 8.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 49.1 \\ & 24.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{C} \\ & \hline \end{aligned}$
H	 7th Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	72.3	$\begin{aligned} & F \\ & F \end{aligned}$	${ }^{*} 104.9$	F
1	 E 8th Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	*	\bar{F}	*	F
J	I-10 Eastbound ramps \& Porter Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 112.7 \\ & 117.3 \\ & \hline \end{aligned}$	\bar{F}	$\begin{aligned} & \hline 141.5 \\ & 195.9 \\ & \hline \end{aligned}$	F

Note: * The HCM methodology produces a delay estimate that exceeds 5 minutes or is undefined based on the volume, lane configuration, and traffic control. Actual drivers are likely to change their route or accept smaller than usual gaps when faced with such long delays.

TABLE 17A 670 MESQUIT FUTURE BASE (2040) PLUS PROJECT WITH THE DECK CONCEPT UNSIGNALIZED INTERSECTIONS LEVELS OF SERVICE						
NO.	INTERSECTION	PEAK HOUR	FUTURE	(2040)	FUTURE PROJE DEC	
			V/C	LOS	V/C	LOS
1	S Central Avenue \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.838 \\ & 1.059 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.860 \\ & 1.109 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$
2	N Alameda Street \& E Aliso Street/E Commercial Street	AM PM	$\begin{aligned} & 0.752 \\ & 1.040 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.770 \\ & 1.061 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~F} \end{aligned}$
3	Alameda Street \& Temple Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.778 \\ & 0.804 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.814 \\ & 0.825 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \end{aligned}$
4	N Alameda Street \& E 1st Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.189 \\ & 1.223 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.222 \\ & 1.243 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
5	N Alameda Street \& E 2nd Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.069 \\ & 0.974 \end{aligned}$	$\begin{aligned} & \hline F \\ & E \end{aligned}$	$\begin{aligned} & 1.077 \\ & 0.997 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{E} \end{aligned}$
6	S Alameda Street \& 3rd Street/4th Place	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.969 \\ & 0.889 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 1.009 \\ & 0.931 \end{aligned}$	$\begin{aligned} & \hline F \\ & E \end{aligned}$
7	S Alameda Street \& 4th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.603 \\ & 0.987 \end{aligned}$	$\begin{aligned} & \hline B \\ & E \end{aligned}$	$\begin{aligned} & \hline 0.623 \\ & 1.026 \end{aligned}$	B
8	S Alameda Street \& 6th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.069 \\ & 1.077 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.094 \\ & 1.105 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
9	S Alameda Street \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.169 \\ & 1.182 \end{aligned}$	F	$\begin{aligned} & 1.188 \\ & 1.272 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
10	Molino Street/Merrick Street \& 4th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.834 \\ & 0.814 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.859 \\ & 0.869 \end{aligned}$	$\begin{aligned} & \hline D \\ & D \end{aligned}$
11	Mateo Street \& 6th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.966 \\ & 0.884 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 1.031 \\ & 1.017 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
12	Mateo Street \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.898 \\ & 0.957 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 0.963 \\ & 1.117 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{~F} \end{aligned}$
13	S Santa Fe Avenue \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.251 \\ & 1.315 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.299 \\ & 1.299 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
14	S Santa Fe Avenue \& 8th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.729 \\ & 0.569 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.769 \\ & 0.621 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~B} \end{aligned}$
15	S Santa Fe Avenue \& Porter Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.615 \\ & 0.831 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.655 \\ & 0.889 \end{aligned}$	$\begin{aligned} & \hline B \\ & D \end{aligned}$
16	S Santa Fe Avenue \& Olympic Boulevard	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.024 \\ & 1.003 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.056 \\ & 1.037 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
17	S Santa Fe Avenue \& E 15th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.915 \\ & 0.697 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0.925 \\ & 0.722 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \end{aligned}$
18	 E 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.610 \\ & 0.427 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 0.665 \\ & 0.471 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~A} \end{aligned}$
19	S Anderson Street \& E 4th Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 0.755 \\ & 0.442 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 0.810 \\ & 0.478 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \end{aligned}$
20	Boyle Avenue \& Whittier Boulevard	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.098 \\ & 1.074 \end{aligned}$	F	$\begin{aligned} & 1.139 \\ & 1.107 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
21	Boyle Avenue \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.907 \\ & 0.827 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.963 \\ & 0.866 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \end{aligned}$
22	S Alameda Street \& I-10 Eastbound ramps	AM PM	$\begin{aligned} & 0.759 \\ & 0.874 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.779 \\ & 0.886 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$

TABLE 17B

FUTURE BASE (2040) PLUS PROJECT WITH THE DECK CONCEPT UNSIGNALIZED INTERSECTIONS LEVELS OF SERVICE

NO.	INTERSECTION	PEAK HOUR	FUTURE BASE (2040)		FUTURE BASE (2040) + PROJECT WITH THE DECK CONCEPT	
			Delay	LOS	Delay	LOS
A	Mateo Street \&	AM	12.8	B	13.4	B
	4th Place	PM	42.8	E	57.0	F
B	Mateo Street \&	AM	35.4	E	63.7	F
	Willow Street	PM	101.0	F	*	F
C	Mateo Street \&	AM	123.4	F	*	F
	Jesse Street	PM	21.2	C	*	F
D	S Santa Fe Avenue \&	AM	23.3	C	46.8	E
	Willow Street	PM	24.7	C	67.8	F
E	S Santa Fe Avenue \&	AM	46.0	E	161.7	F
	Mesquit Street	PM	37.3	E	172.5	F
F	S Santa Fe Avenue \&	AM	68.2	F	*	F
	Jesse Street	PM	36.6	E	*	F
G	Mesquit Street \&	AM	8.6	A	64.2	F
	Jesse Street	PM	8.6	A	31.2	D
H	US-101 Southbound ramps \&	AM	*	F	*	F
	7th Street	PM	72.3	F	104.7	F
I	I-10 Westbound ramps \&	AM	*	F	*	F
	E 8th Street	PM	*	F	*	F
J	I-10 Eastbound ramps \&	AM	112.7	F	142.0	F
	Porter Street	PM	117.3		195.9	F

[^12]
Site Access

The Project proposes four driveways:

- A two-way full-access driveway on Mesquit Street at the northern end of the Project at ground level (Building 1).
- A two-way full-access driveway at the intersection of Mesquit Street $\&$ Jesse Street at ground level (Building 2).
- A two-way signalized driveway connecting the 7th Street Bridge to the third level of Building 4 near the southeastern corner of the Project site that allows for full access out and right-turns only in.
- A one-way right-turn-out-only driveway connecting the 7th Street Bridge to the second level of Building 5 near the southwestern corner of the Project site.

Loading docks would be located within the ground level of the Project's parking structure and would be accessed via the northern driveway on Mesquit Street.

Level of Service Analysis for Project Driveways
A level of service analysis was conducted to evaluate the ability of the Project's access plan to accommodate the anticipated traffic levels at the four driveways. The two-way full-access driveway on Mesquit Street at the northern end of the Project and the one-way right-turn-out-only driveway on $7^{\text {th }}$ Street were analyzed using the Two-Way Stop Controlled (TWSC) methodology from the HCM. The two-way full-access driveway at the intersection of Mesquit Street \& Jesse Street (Study Intersection G) was analyzed using the All-Way Stop Controlled (AWSC) methodology from the HCM. The TWSC HCM methodology determines the average vehicle delay for the stop-controlled approach to find the corresponding LOS based on the definitions presented in Table 9B. The AWSC HCM methodology determines the average vehicle delay for the intersection to find the corresponding LOS based on the definitions also presented in Table 9B. The two-way signalized driveway on the $7^{\text {th }}$ Street bridge was analyzed using the CMA methodology. The V/C ratio is used to find the corresponding LOS based on the definitions in Table 9A.

Table 18A and Table 18B show the results of the LOS analysis at the Project driveways for the Project and the Project with the Deck Concept, respectively. The northern Mesquit driveway is projected to operate at LOS A in the AM and PM peak period under future conditions for both Project options. The Mesquit \& Jesse driveway is projected to operate at LOS E in the AM peak period and LOS C in the PM peak period under future conditions for the Project and LOS F in the AM peak period and LOS D in the PM peak period under future conditions for the Project with the Deck Concept. The right-out-only driveway approach onto $7^{\text {th }}$ Street is projected to operate at LOS E in the AM peak period and LOS D in the PM peak period under future conditions for both Project options (motorists traveling along $7^{\text {th }}$ Street would be unimpeded). The signalized $7^{\text {th }}$ Street driveway is projected to operate at LOS D in the AM peak period and LOS B in the PM peak period under future conditions for both Project options. Figure $\mathbf{9}$ is a conceptual drawing of the $7^{\text {th }}$ Street driveways and driveway analysis LOS worksheets are included in Appendix J.

Table 18A - Driveway Level of Service: Project

Driveway Location	Peak Hour	Methodology	Future Base (2026) plus Project		Future Base (2040) Project	
			Delay (sec.)	LOS	Delay (sec.)	LOS
N Mesquit Driveway	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	HCM Unsignalized	$\begin{aligned} & 9.1 \\ & 9.6 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.1 \\ & 9.6 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
Mesquit \& Jesse Driveway	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	HCM Unsignalized	$\begin{aligned} & 49.1 \\ & 24.2 \end{aligned}$	E	$\begin{aligned} & 49.1 \\ & 24.3 \end{aligned}$	E
7th Street Right Out Only Driveway	AM PM	HCM Unsignalized	$\begin{aligned} & 41.1 \\ & 25.3 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 42.9 \\ & 25.9 \end{aligned}$	E
7th Street Bridge Driveway		CMA Signalized	V/C	LOS	V/C	LOS
	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$		$\begin{aligned} & 0.809 \\ & 0.627 \end{aligned}$	D B	$\begin{aligned} & 0.825 \\ & 0.636 \end{aligned}$	D

Table 18B - Driveway Level of Service: Project with the Deck Concept

Driveway Location	Peak Hour	Methodology	Future Base (2026) plus Project with the Deck Concept		Future Base (2040) Project with the Deck Concept	
			Delay (sec.)	LOS	Delay (sec.)	LOS
N Mesquit Driveway	AM	HCM Unsignalized	9.2	A	9.2	A
	PM		9.7	A	9.7	A
Mesquit \& Jesse Driveway	AM	HCM Unsignalized	64.2	F	64.2	F
	PM		31.1	D	31.2	D
7th Street Right Out Only Driveway	AM	HCM Unsignalized	43.4	E	45.5	E
	PM		26.1	D	26.7	D
7th Street Bridge Driveway		CMA Signalized	V/C	LOS	V/C	LOS
	AM		0.819	D	0.835	D
	PM		0.634	B	0.643	B

Figure 9
LEGEND Driveway Turning Movements

Corrective Actions

As described in Section 3.2, the proposed TDM program would reduce the daily household VMT per capita by an estimated 18% and the daily work VMT per employee by an estimated 18% for the Project and the Project with the Deck Concept. These reductions were applied to the residential and office uses for both Project options. The TDM program is projected to reduce the overall peak hour trip generation by approximately 8\% in the AM and PM peak periods for the Project, as shown in Table 19A, and by 7\% in the AM and PM peak periods for the Project with the Deck Concept, as shown in Table 19B. The resulting turning movement volumes generated with the TDM program were used for the Corrective Actions analysis.

In addition to the proposed TDM program, the Project proposes several Corrective Actions, which include contributing to a Transportation Management Organization (TMO), intersection signal system modifications, physical intersection improvements, and signalization of several intersections.

Transportation Management Organization

A TMO is an organization that oversees the development, implementation, and operation of trip reduction strategies within a study area. Developers, building owners, and businesses are members of the TMO and fund upfront donations and/or annual dues to support the activities of the TMO. The Applicant proposes to contribute to FASTLink, the Downtown TMO, or to the formation of a new Arts District TMO focused on the area around the Project. The TMO services would be available to anyone within the general Arts District community, not just residents and tenants of the proposed Project, and in this way help to alleviate current and future traffic congestion throughout the area. The Applicant will agree to contribute to the Arts District TMO/Arts District portion of a Downtown TMO following approval of the Project by becoming a member, participating in, and make a one-time contribution of $\$ 100,000$ to TMO operations and marketing efforts. In addition, the applicant will encourage its office and hotel lessees to become members of the TMO and maintain that membership on an ongoing basis.

Intersection Signal System Modifications

The Project proposes to install or pay a fee to LADOT for a new conduit with fiber on 7th Street from Santa Fe Avenue to Alameda Street. As part of the 7th Street improvements, the Project proposes to install or pay a fair share contribution for a new CCTV camera at the Santa Fe \& 7th Street intersection. These improvements will enhance LADOT's ability to monitor traffic flows by providing the fiber optic infrastructure to connect signals on Alameda Street for efficient traffic flows and systemwide benefits.

Physical Intersection Improvements

The Project proposes physical intersection improvements at two intersections:

- Santa Fe Avenue \& Jesse Street: The Project proposes to modify the eastbound and westbound approaches along Jesse Street to provide a left-only turn lane. This Corrective Action would require restriping the eastbound and westbound approaches from one shared left-through-right to one left-only turn lane and one through-right lane. This Corrective Action would require the removal of up to three on-street parking spaces at the eastbound leg and removal of yellow curb space at the westbound leg. Figure 10 shows the conceptual design and striping plan for this Corrective Action.
- Santa Fe Avenue $\& 7^{\text {th }}$ Street: The Project proposes to modify the southbound approach along Santa Fe Avenue to provide a left-only lane. This Corrective Action would require restriping the southbound approach from a shared left-through-right lane to a shared through-right lane and one left-only turn lane. Improvements would also include upgrading curb ramps to include tactile warning strips and crosswalks to continental crosswalks. Figure 11 shows the conceptual design and striping plan for this improvement.

TABLE 19APROJECT TRIP GENERATION - WITH CORRECTIVE ACTIONS670 MESQUIT PROJECT								
Land Use	ITE Land Use Code [a]	Size	Estimated Trip Generation					
			AM Peak Hour Trips			PM Peak Hour Trips		
			In	Out	Total	In	Out	Total
PROPOSED PROJECT								
Creative Office (with TDM)	710	944.055 ksf	399	28	427	109	486	595
Quality Restaurant	931	44.788 ksf	10	10	20	117	44	161
High-Turnover Restaurant	932	44.788 ksf	132	106	238	122	56	178
Hotel	310	236 rooms	48	19	67	23	19	42
Residential*	222	258 DU	8	34	42	16	7	23
Affordable Housing	[b]	50 DU	8	9	17	2	2	4
Studio, Event, Gallery [c]	495	93.617 ksf	86	47	133	82	91	173
Gym (Health / Fitness Club) [d]	492	62.148 ksf	23	21	44	45	38	83
Grocery	850	28.054 ksf	27	19	46	45	47	92
General Retail	820	79.240 ksf	48	31	79	65	75	140
Food Hall [e]	Blended	28.858 ksf	89	71	160	67	35	102
		500 persons			0	0	0	0
NET EXTERNAL VEHICLE TRIPS			878	395	1,273	693	900	1,593
EXISTING USE CREDIT								
Warehousing Total Existing Use Credit	150	205.4 ksf	$\frac{27}{27}$	$\frac{8}{8}$	$\frac{35}{35}$	$\frac{11}{11}$	$\frac{28}{28}$	$\frac{39}{39}$
NET INCREMENTAL EXTERNAL TRIPS			851	387	1,238	682	872	1,554
Notes:								
* Local data collected at high-rise residential sites was approved by LADOT to use for AM and PM peak period trip rates. [a] Source: Institute of Transportation Engineers (ITE), Trip Generation, 10th Edition, 2017. [b] Trip rates for affordable housing taken from LADOT's Transportation Impact Study Guidelines, December 2016. [c] Trip generation rates for recreation center used for Studio, Event, Gallery. [d] ITE 10th Edition does not have a daily Health/Fitness club rate, so 9th Edition daily rate was used. [e] Trip generation rates for the food hall element were developed by blending the ITE rates for quality restaurant, high-turnover restaurant, drinking place, and retail. [f] Weekly farmers market from 11am-2pm, no peak hour trips generated. Assumes an average vehicle occupancy of 2 person per vehicle. A larger monthly farmers' market is planned, but will not be part of the traffic analysis because it is planned for weekends only.								

TABLE 19BPROJECT WITH THE DECK CONCEPT TRIP GENERATION - WITH CORRECTIVE ACTIONS 670 MESQUIT PROJECT								
Land Use	ITE Land Use Code [a]	Size	Estimated Trip Generation					
			AM Peak Hour Trips			PM Peak Hour Trips		
			In	Out	Total	In	Out	Total
PROPOSED PROJECT								
Creative Office (with TDM)	710	944.055 ksf	399	28	427	109	486	595
Quality Restaurant	931	44.788 ksf	10	10	20	117	44	161
High-Turnover Restaurant	932	44.788 ksf	132	106	238	122	56	178
Hotel	310	236 rooms	48	19	67	23	19	42
Residential*	222	258 DU	8	34	42	16	7	23
Affordable Housing	[b]	50 DU	8	9	17	2	2	4
Studio, Event, Gallery [c]	495	93.617 ksf	86	47	133	82	91	173
Gym (Health / Fitness Club) [d]	492	62.148 ksf	23	21	44	45	38	83
Grocery	850	28.054 ksf	27	19	46	45	47	92
General Retail	820	79.240 ksf	48	31	79	65	75	140
Food Hall [e]	Blended	28.858 ksf	89	71	160	67	35	102
Deck	[f]	3.030 acres	4	4	8	3	2	5
Farmers' Market	[g]	500 persons	0	0	0	0	0	0
Group Exercise Classes	[h]	280 persons	56	56	112	56	56	112
Busking	[i]	20 persons	0	0	0	0	0	0
NET EXTERNAL VEHICLE TRIPS			938	455	1,393	752	958	1,710
EXISTING USE CREDIT								
Warehousing Total Existing Use Credit	150	205.4 ksf	$\frac{27}{27}$	$\frac{8}{8}$	$\frac{35}{35}$	$\frac{11}{11}$	$\frac{28}{28}$	$\frac{39}{39}$
NET INCREMENTAL EXTERNAL TRIPS			911	447	1,358	741	930	1,671
Notes:								
* Local data collected at high-rise residential sites was approved by LADOT to use for AM and PM peak period trip rates. [a] Source: Institute of Transportation Engineers (ITE), Trip Generation, 10th Edition, 2017. [b] Trip rates for affordable housing taken from LADOT's Transportation Impact Study Guidelines, December 2016. [c] Trip generation rates for recreation center used for Studio, Event, Gallery. [d] ITE 10th Edition does not have a daily Health/Fitness club rate, so 9th Edition daily rate was used. [e] Trip generation rates for the food hall element were developed by blending the ITE rates for quality restaurant, high-turnover restaurant, drinking place, and retail. [f] Regional Park (Developed) rate from San Diego Association of Governments, (Not So) Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region, April 2002. [g] Weekly farmers market from 11am-2pm, no peak hour trips generated. Assumes an average vehicle occupancy of 2 person per vehicle. A larger monthly farmers' market is planned, but will not be part of the traffic analysis because it is planned for weekends only. [h] Group exercise classes 3-4 times a week, from 7am-9am \& 4pm-7pm. Assumes an average vehicle occupancy of 1 person per vehicle and that within the AM and PM peak hour, a class will begin and end (generating both inbound and outbound trips). [i] Busking occurs six times a month from $12 \mathrm{pm}-2 \mathrm{pm} \& 7 \mathrm{pm}-9 \mathrm{pm}$, no peak hour trips generated. Assumes an average vehicle occupancy of 2 person per vehicle.								

Figure 10
Conceptual Corrective Action
CONCEPTUAL - NOT FOR CONSTRUCTION
DETAILED ANALYSIS AND ENGINEERING

Unsignalized Intersection Signal Warrant Analysis

Given the projected level of service results for the ten unsignalized intersections for the Project and the Project with the Deck Concept, a signal warrant analysis was conducted to determine the need for the installation of a traffic signal or other traffic control device. Traffic volumes and lane configurations, as presented in Appendix F, were used to prepare signal warrant analyses at the unsignalized intersections under Existing, Future Base (2026 and 2040), and Future plus Project (2026 and 2040) conditions for both Project options. Signal warrant results for ten unsignalized intersections for the Project and the Project with the Deck Concept are presented in Table 20A and Table 20B, respectively.

The following intersections do not meet peak hour signal warrants in any scenario:

- Intersection A: Mateo Street \& $4^{\text {th }}$ Place
- Intersection D: S Santa Fe Avenue \& Willow Street

The following intersections meet peak hour signal warrants under Existing conditions:

- Intersection H: $7^{\text {th }}$ Street $\&$ US-101 Southbound Ramp
- Intersection I: E 8 ${ }^{\text {th }}$ Street $\&$ I-10 Westbound Ramp

The following intersections are forecast to meet peak hour signal warrants under Future Base (2026 and 2040) conditions:

- Intersection C: Mateo Street \& Jesse Street
- Intersection J: I-10 Eastbound Ramps \& Porter Street

The four intersections listed below meet peak hour signal warrants under Future (2026) plus Project for both Project options. These signal warrants would be triggered due to the addition of trips generated by the Project.

- Intersection B: Mateo Street \& Willow Street
- Intersection E: S Santa Fe Avenue \& Mesquit Street
- Intersection F: S Santa Fe Avenue \& Jesse Street
- Intersection G: Mesquit Street \& Jesse Street

The other four intersections either currently meet or are projected to meet signal warrants in the future due to other planned developments and traffic growth without the addition of Project traffic. Signal warrant analysis sheets are provided in Appendix L.

TABLE 20A 670 MESQUIT PROJECT PEAK HOUR SIGNAL WARRANT ANALYSIS							
Project							
No.	INTERSECTIONS	PEAK HOUR	EXISTING SIGNAL WARRANT MET	FUTURE (2026) BASE SIGNAL WARRANT MET	FUTURE (2026) PLUS PROJECT SIGNAL WARRANT MET	FUTURE (2040) BASE SIGNAL WARRANT MET	FUTURE (2040) PLUS PROJECT OPTION 1 SIGNAL WARRANT MET
A	$\begin{aligned} & \text { Mateo St \& } \\ & \text { 4th PI } \end{aligned}$	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	$\begin{aligned} & \hline \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	$\begin{aligned} & \hline \text { NO } \\ & \text { NO } \end{aligned}$
B	 Willow St	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$
C	Mateo St \& Jesse St	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \mathrm{NO} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$
D	S Santa Fe Ave \& Willow St	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$
E	S Santa Fe Ave \& Mesquit St	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \\ & \hline \end{aligned}$
F	S Santa Fe Ave \& Jesse St	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$
G	Mesquit St \& Jesse St	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$
H	7th St \& US-101 Southbound ramp	$\begin{aligned} & \text { AM } \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	YES YES	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$
J	 I-10 Westbound ramp	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$
K	 I-10 Easbound ramp	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \mathrm{NO} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \\ & \hline \end{aligned}$

TABLE 20B670 MESQUIT PROJECTPEAK HOUR SIGNAL WARRANT ANALYSIS							
Project with the Deck Concept							
No.	INTERSECTIONS	PEAK HOUR	EXISTING SIGNAL WARRANT MET	FUTURE (2026) BASE SIGNAL WARRANT MET	FUTURE (2026) PLUS PROJECT WITH THE DECK CONCEPT SIGNAL WARRANT MET	FUTURE (2040) BASE SIGNAL WARRANT MET	FUTURE (2040) PLUS PROJECT WITH THE DECK CONCEPT SIGNAL WARRANT MET
A	Mateo St \& 4th PI	$\begin{aligned} & \hline \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline \hline \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$
B	Mateo St \& Willow St	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \hline \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$
C	Mateo St \& Jesse St	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$
D	S Santa Fe Ave \& Willow St	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { NO } \\ & \text { NO } \end{aligned}$
E	S Santa Fe Ave \& Mesquit St	$\begin{aligned} & \text { AM } \\ & \text { PM } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$
F	S Santa Fe Ave \& Jesse St	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	
G	Mesquit St \& Jesse St	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$
H	7th St \& US-101 Southbound ramp	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$
J	 I-10 Westbound ramp	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$
K	Porter St \& I-10 Easbound ramp	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$

Future Base (2026 and 2040) plus Project with Corrective Actions
The Project proposes to signalize the following intersection locations to facilitate access to/from the Project or to address the identified freeway safety impact discussed in Section 3.4:

- Intersection E: Santa Fe Avenue \& Mesquit Street
- Intersection F: S Santa Fe Avenue \& Jesse Street
- Intersection G: Mesquit Street \& Jesse Street
- Intersection H: US-101 Southbound off-ramp \& $7^{\text {th }}$ Street

In addition, the Project proposes to implement physical intersection improvements at Mesquit Street \& Jesse Street and Santa Fe Avenue \& $7^{\text {th }}$ Street. These intersections were analyzed with the installation of a traffic signal and with the proposed physical intersection improvements. As shown in Tables 21A, 21B, 22A, 22B, of the four stop-controlled intersections projected to operate at LOS E or F without the corrective actions, only one intersection will continue to operate at LOS E or F after the implementation of these improvements. The physical improvements at Santa Fe Avenue $\& 7^{\text {th }}$ Street would add capacity to the southbound approach and improve intersection operations.

Traffic Signal Fair-Share Calculation

Although Intersection B: Mateo Street \& Willow Street triggers a signal warrant due to Project-related trips, it does not facilitate access to the site and will not be a project feature; however this intersection will be considered for fair-share contribution. The following intersections meet signal warrants regardless of the Project volumes and are considered to be cumulatively impacted by Project trips:

- Intersection C: Mateo Street \& Jesse Street
- Intersection I: E 8 ${ }^{\text {th }}$ Street $\& \mathrm{I}$-10 Westbound Ramp
- Intersection J: I-10 Eastbound Ramps \& Porter Street

Fair-share calculations were made to determine how much traffic the Project would add to intersections that are estimated to already meet signal warrants in pre-project conditions. Tables $\mathbf{2 3}$ and $\mathbf{2 4}$ show the fair-share contribution that the Project could provide for the installation of signals based on the total new traffic that the Project is adding to these intersections in future years 2026 and 2040. The unsignalized intersections that did not meet signal warrants (A \& D) were not analyzed for fair-share contributions. Only fair share calculations for the Project with the Deck Concept was analyzed to be conservative.

TABLE 21A 670 MESQUIT FUTURE BASE (2026) PLUS PROJECT INTERSECTION LEVELS OF SERVICE INTERSECTIONS WITH CORRECTIVE ACTIONS								
NO.	INTERSECTION	PEAK HOUR	$\begin{gathered} \text { FUTURE BASE } \\ (2026) \\ \hline \end{gathered}$		FUTURE BASE (2026) + PROJECT		FUTURE BASE (2026) + PROJECT WITH CORRECTIVE ACTIONS	
			Delay	LOS	Delay	LOS	V/C	LOS
E	S Santa Fe Avenue \& Mesquit Street	$\begin{aligned} & \hline \text { AM } \\ & \text { PM } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41.5 \\ & 34.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 137.4 \\ & 149.4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 0.544 \\ & 0.548 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
F	S Santa Fe Avenue \& Jesse Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 62.3 \\ & 35.6 \\ & \hline \end{aligned}$	\bar{F}		$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 0.944 \\ & 0.845 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \\ & \hline \end{aligned}$
G	Mesquit Street \& Jesse Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 49.1 \\ & 24.2 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.350 \\ & 0.262 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
H	US-101 Southbound ramps \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{gathered} 299.7 \\ 63.3 \end{gathered}$	\bar{F}	92.6	\bar{F}	$\begin{aligned} & 0.829 \\ & 0.552 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \end{aligned}$
NO.	INTERSECTION	$\begin{aligned} & \hline \text { PEAK } \\ & \text { HOUR } \\ & \hline \hline \end{aligned}$	V/C	LOS	V/C	LOS	V/C	LOS
13	S Santa Fe Avenue \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 1.229 \\ & 1.292 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.275 \\ & 1.449 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.198 \\ & 1.307 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$

TABLE 21B
670 MESQUIT
future base (2026) PLUS PROJECT WITH THE DECK CONCEPT INTERSECTION LEVELS OF SERVICE INTERSECTIONS WITH CORRECTIVE ACTIONS

NO.	INTERSECTION	PEAK HOUR	FUTURE BASE (2026)		FUTURE BASE (2026) + PROJECT WITH THE DECK CONCEPT		FUTURE BASE (2026) + PROJECT WITH THE DECK CONCEPT WITH CORRECTIVE ACTIONS	
			Delay	LOS	Delay	LOS	V/C	LOS
E	S Santa Fe Avenue \&	AM	41.5	E	152.6	F	0.579	A
	Mesquit Street	PM	34.5	D	164.8	F	0.598	A
F	S Santa Fe Avenue \& Jesse Street	AM PM	62.3 35.6	\bar{F}		F	1.049 0.969	\bar{F}
G	Mesquit Street \&	AM	8.6	A	64.2	F	0.445	A
	Jesse Street	PM	8.6	A	31.1	D	0.363	A
H	US-101 Southbound ramps \&	AM	299.7	F	*	F	0.830	D
	7th Street	PM	63.3	F	92.4	F	0.553	A
NO.	INTERSECTION	PEAK	V/C	LOS	V/C	LOS	V/C	LOS
13	S Santa Fe Avenue \&	AM	1.229	F	1.277	F	1.200	F
	7th Street	PM	1.292	F	1.451	F	1.309	F

TABLE 22A 670 MESQUIT FUTURE BASE (2040) PLUS PROJECT INTERSECTION LEVELS OF SERVICE INTERSECTIONS WITH CORRECTIVE ACTIONS								
NO.	INTERSECTION	PEAK HOUR	FUTURE BASE (2040)		FUTURE BASE (2040) + PROJECT		FUTURE BASE (2040) + PROJECT WITH CORRECTIVE ACTIONS	
			Delay	LOS	Delay	LOS	V/C	LOS
E	S Santa Fe Avenue \& Mesquit Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 46.0 \\ & 37.3 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 146.2 \\ & 156.6 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 0.571 \\ & 0.583 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
F	S Santa Fe Avenue \& Jesse Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 68.2 \\ & 36.6 \end{aligned}$	F	*	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & 1.034 \\ & 0.948 \end{aligned}$	F
G	Mesquit Street \& Jesse Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 49.1 \\ & 24.3 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.415 \\ & 0.335 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
H	US-101 Southbound ramps \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	72.3	$\begin{aligned} & F \\ & F \end{aligned}$	104.9	$\begin{aligned} & F \\ & F \end{aligned}$	$\begin{aligned} & 0.847 \\ & 0.562 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \end{aligned}$
NO.	INTERSECTION	PEAK HOUR	V/C	LOS	V/C	LOS	V/C	LOS
13	S Santa Fe Avenue \& 7th Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 1.251 \\ & 1.315 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & \hline 1.296 \\ & 1.472 \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 1.221 \\ & 1.342 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{F} \\ & \mathrm{~F} \end{aligned}$

TABLE 22B
670 MESQUIT
future base (2040) PLUS PROJECT WITH THE DECK CONCEPT INTERSECTION LEVELS OF SERVICE INTERSECTIONS WITH CORRECTIVE ACTIONS

NO.	INTERSECTION	PEAK HOUR	FUTURE BASE (2040)		FUTURE BASE (2040) + PROJECT WITH THE DECK CONCEPT		FUTURE BASE (2040) + PROJECT WITH THE DECK CONCEPT WITH CORRECTIVE ACTIONS	
			Delay	LOS	Delay	LOS	V/C	LOS
E	S Santa Fe Avenue \& Mesquit Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 46.0 \\ & 37.3 \end{aligned}$	$\overline{\mathrm{E}}$	$\begin{aligned} & \hline \hline 161.7 \\ & 172.5 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline \hline 0.590 \\ & \hline 0.606 \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \end{aligned}$
F	S Santa Fe Avenue \& Jesse Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 68.2 \\ & 36.6 \end{aligned}$	F	*	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.063 \\ & 0.978 \end{aligned}$	F
G	Mesquit Street \& Jesse Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 64.2 \\ & 31.2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.445 \\ & 0.364 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
H	US-101 Southbound ramps \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	72.3	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{gathered} * \\ 104.7 \end{gathered}$	\bar{F}	$\begin{aligned} & 0.848 \\ & 0.563 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \end{aligned}$
NO.	INTERSECTION	PEAK HOUR	V/C	LOS	V/C	LOS	V/C	LOS
13	S Santa Fe Avenue \& 7th Street	$\begin{aligned} & \hline \hline \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline \hline 1.251 \\ & 1.315 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline \hline 1.299 \\ & 1.299 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline \hline 1.221 \\ & 1.331 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{F} \\ & \mathrm{~F} \end{aligned}$

TABLE 23670 MESQUITFUTURE YEAR (2026) PROJECT FAIR SHARE CONTRIBUTION - PROJECT WITH THE DECK CONCEPT								
NO.	INTERSECTION	PEAK HOUR	EXISTING BASELINE TRAFFIC	2026 PROJECTED TRAFFIC	PROJECT ONLY TRAFFIC	TOTAL NEW TRAFFIC	PROJECT \% OF NEW TRAFFIC	MAXIMUM CONTRIBUTION
B	Mateo Street \& Willow Street	AM	690	1,585	122	$\begin{gathered} 895 \\ 1,221 \end{gathered}$	$\begin{aligned} & \hline \hline 14 \% \\ & 13 \% \end{aligned}$	14\%
		PM	705	1,926	163			
C	Mateo Street \& Jesse Street	AM	1,173	2,171	426	$\begin{gathered} 998 \\ 1,226 \end{gathered}$	$\begin{aligned} & 43 \% \\ & 42 \% \end{aligned}$	43\%
		PM	686	1,912	511			
E	S Santa Fe Avenue \& Mesquit Street	AM	827	1,638	408	$\begin{aligned} & \hline 811 \\ & 959 \end{aligned}$	$\begin{aligned} & \hline 50 \% \\ & 50 \% \end{aligned}$	100\%[a]
		PM	738	1,697	484			
F	S Santa Fe Avenue \& Jesse Street	AM	976	2,410	1,018	$\begin{aligned} & 1,434 \\ & 1,624 \end{aligned}$	$\begin{aligned} & \hline 71 \% \\ & 70 \% \end{aligned}$	100\%[a]
		PM	835	2,459	1,138			
G	Mesquit Street \& Jesse Street	AM	70	1,087	1,017	$\begin{aligned} & 1,017 \\ & 1,119 \end{aligned}$	$\begin{aligned} & \hline 100 \% \\ & 100 \% \end{aligned}$	100\%[a]
		PM	49	1,168	1,119			
H	US-101 Southbound ramps \& 7th Street	AM	2,114	3,278	184	$\begin{aligned} & 1,164 \\ & 1,349 \end{aligned}$	$\begin{aligned} & \hline 16 \% \\ & 16 \% \\ & \hline \end{aligned}$	100\%[b]
		PM	1,616	2,965	218			
I	 E 8th Street	AM	1,474	1,903	23	$\begin{aligned} & 429 \\ & 462 \end{aligned}$	$\begin{gathered} \hline 5 \% \\ 10 \% \end{gathered}$	10\%
		PM	1,327	1,789	46			
J	I-10 Eastbound ramps \& Porter Street	AM	1,304	1,782	48	$\begin{aligned} & 478 \\ & 653 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10 \% \\ & 11 \% \\ & \hline \end{aligned}$	11\%
		PM	1,106	1,759	75			

Notes
[a] Recommended that the Project signalize these intersection locations as a project feature to facilitate access to/from the Project
[b] Recommended that the Project signalize this intersection as a project mitigation for the identified safety issue at this off-ramp.

TABLE 24
670 MESQUIT
FUTURE (YEAR 2040) PROJECT FAIR SHARE CONTRIBUTION - PROJECT WITH THE DECK CONCEPT

NO.	INTERSECTION	PEAK HOUR	EXISTING BASELINE TRAFFIC	2040 PROJECTED TRAFFIC	PROJECT ONLY TRAFFIC	TOTAL NEW TRAFFIC	PROJECT \% OF NEW TRAFFIC	MAXIMUM CONTRIBUTION
B	Mateo Street \& Willow Street	AM	690	1,604	122	$\begin{gathered} \hline 914 \\ 1,243 \end{gathered}$	$\begin{aligned} & \hline 13 \% \\ & 13 \% \end{aligned}$	13\%
		PM	705	1,948	163			
C	Mateo Street \& Jesse Street	AM	1,173	2,204	426	$\begin{aligned} & 1,031 \\ & 1,246 \end{aligned}$	$\begin{aligned} & 41 \% \\ & 41 \% \end{aligned}$	41\%
		PM	686	1,932	511			
E	S Santa Fe Avenue \& Mesquit Street	AM	827	1,661	408	$\begin{aligned} & 834 \\ & 979 \end{aligned}$	$\begin{aligned} & 49 \% \\ & 49 \% \end{aligned}$	100\%[a]
		PM	738	1,717	484			
F	S Santa Fe Avenue \& Jesse Street	AM	976	2,438	1,018	1,462	70\%	100\%[a]
		PM	835	2,481	1,138	1,646	69\%	
G	Mesquit Street \& Jesse Street	AM	70	1,089	1,017	1,019	100\%	100\%[a]
		PM	49	1,170	1,119	1,121	100\%	
H	US-101 Southbound ramps \& 7th Street	AM	2,114	3,338	184	1,224	15\%	100\%[b]
		PM	1,616	3,010	218	1,394	16\%	
I	 E 8th Street	AM	1,474	1,945	23	471499	$\begin{aligned} & 5 \% \\ & 9 \% \end{aligned}$	9\%
		PM	1,327	1,826	46			
J	 Porter Street	AM	1,304	1,820	48	$\begin{aligned} & 516 \\ & 684 \end{aligned}$	$\begin{gathered} \hline 9 \% \\ \text { 11\% } \end{gathered}$	11\%
		PM	1,106	1,790	75			

Notes
[a] Recommended that the Project signalize these intersections location as a project feature to facilitate access to/from the Project
[b] Recommended that the Project signalize this intersection as a project mitigation for the identified safety issue at this off-ramp.

4.3 Project Construction

This section provides a construction period transportation analysis conducted in accordance with the LADOT TAG.

Anticipated Construction Activity

Construction of the Project is anticipated to be completed as early as 2026. The construction is anticipated to involve seven stages as described below.

- Stage 1: Demolition/Site Preparation - 1.5 months
- Stage 2: Grading/Excavation - 1 year
- Stage 3: Drainage/Utilities/Trenching - 2 months
- Stage 4: Foundations/Concrete Pour - 2 months
- Stage 5: Building Construction -4 years
- Stage 6: Paving - 2.5 months
- Stage 7: Architectural Coatings - 3 years

Stages 1-3 are anticipated to have some overlap. Stage 4 will overlap with Stage 2 . Stages 5-7 overlap with each other.

Construction Trucks

Haul Trucks
Hauling activity is expected to occur during Stages 1, 2, and 6 of construction. Up to 60 haul truck round trips per day are anticipated on peak haul days during Stage 1 . Up to 250 haul truck round trips per day are anticipated on peak haul days during Stage 2. Up to 50 haul truck round trips per day are anticipated on peak haul days during Stage 6.

Hauling hours are anticipated from 7:00 AM to 3:00 PM Monday through Friday and starting at 8:00 AM on Saturdays. Trucks are expected to be staged on-site or in the Mesquit Street roadway, where the parking lane would be closed. Several haul routes are available from the Project site, depending on which landfill is being used to deposit materials. If the landfill is accessed via I-10, I-5, or SR-60, one available outbound haul route is from the Project site southbound via Santa Fe Avenue, taking the freeway ramp at Porter Street. The inbound haul route would use the $8^{\text {th }}$ Street off-ramp and then northbound Santa Fe Avenue to get to the Project site. An alternative route to $\mathrm{I}-5$ is via the $7^{\text {th }}$ Street Bridge, where there are north and southbound freeway exits.

Equipment and Delivery Trucks

In addition to haul trucks, the site is also expected to generate equipment and delivery trucks during all stages. One example would be concrete delivery. Other materials could include building materials, plumbing
supplies, electrical fixtures, and items used in furnishing the building. These materials would be delivered to the site and stored on-site. These deliveries are expected to occur in variously sized vehicles including small delivery trucks to cement mixer trucks and 18 -wheel trucks. Additionally, construction equipment would have to be delivered to the site. This equipment could include cranes, bulldozers, excavators, and other large items of machinery. Most of the heavy equipment is expected to be transported to the site on large trucks such as 18 -wheelers or other similar vehicles. The following stages of construction are expected to involve the following number of equipment/delivery truckloads per day on peak activity days. For the longer construction stages with high peak activity, anticipated daily average number of truck round trips were included to show what the typical daily activity would be like during that stage:

- Stage 1: Demolition/Site Preparation - 31 truck round trips
- Stage 2: Grading/Excavation - 34 truck round trips
- Stage 3: Drainage/Utilities/Trenching - 27 truck round trips
- Stage 4: Foundations/Concrete Pour - 896 truck round trips during peak pour days, most of these would be concrete delivery with a few vendor trucks
- Stage 5: Building Construction - 200 truck round trips during peak construction days, daily average of 46 truck round trips
- Stage 6: Paving - 27 truck round trips
- Stage 7: Architectural Coatings - 11 truck round trips during peak delivery days, daily average of 4 truck round trips

Construction Employees

The number of construction workers would vary throughout the construction period with Stage 5 generating the highest number of workers. The following stages of construction are expected to involve up to the following number of workers on site per day on peak activity days:

- Stage 1: Demolition/Site Preparation - 37 worker round trips
- Stage 2: Grading/Excavation - 60 worker round trips
- Stage 3: Drainage/Utilities/Trenching) - 29 worker round trips
- Stage 4: Foundations/Concrete Pour - 132 worker round trips
- Stage 5: Building Construction - 847 worker round trips
- Stage 6: Paving - 29 worker round trips
- Stage 7: Architectural Coatings - 18 worker round trips

Construction Worker Parking

During the site preparation stage and the first portion of the building construction, while the parking levels are under construction, it is anticipated that construction employees would be parked off-site. Potential offsite parking locations would be identified in the Construction Management Plan. If the off-site parking
location is beyond walking distance (approximately $1 / 2$ mile), the construction employees would be shuttled to the site. Once the subterranean parking structure component of the Project is complete, construction workers would park on-site in the garage.

Construction Period Trip Generation

Based on the aforementioned information, a construction period trip generation analysis was conducted for each stage of construction to estimate daily, morning peak hour, and evening peak hour passenger car equivalent (PCE) trips. Construction workers often travel to and from a worksite outside of the typical peak commute hours. For the purpose of the analysis, it was assumed that up to 40% of the construction workers would arrive during the peak morning commute hour and 40% would depart during the peak evening commute hour. Haul and delivery/equipment trucks were assumed to occur evening throughout the hauling and delivery periods. For the purposes of the trip generation analysis, the hauling hours were assumed to occur from 7:00 AM to 3:00 PM (except for Saturdays, which begin at 8:00 AM). Haul trucks were assumed to make trips evenly throughout the 8 -hour period, and to be conservative these trips were included in the AM and PM peak hours. The delivery/equipment trucks are anticipated to arrive and depart between 7:00 AM and 6:00 PM, a 11-hour period. However, during Stage 4, the longest concrete pour would occur over a 16 -hour period. A PCE factor of 2.0 was used for vendor, haul, and delivery trucks.

Table 25 shows a summary of construction period trip generation under each stage of construction. As shown, the peak construction activity would occur on the most intensive day of Stage 4 (Foundations/Concrete Pour). On a peak construction activity day during Stage 4, a total of up to 3,848 daily PCE trips are estimated to occur, primarily concrete trucks, of which 267 PCE trips would occur during each of the morning and evening peak hours. Stage 5 (Building Construction) is anticipated to produce higher peak hour trips than Stage 4, but lower overall daily trips. On a peak construction activity day during Stage 5, a total of up to 2,494 daily PCE trips are estimated to occur, of which 411 PCE trips would occur during each of the morning and evening peak hours. As mentioned above, some of the stages will overlap with each other. Even with overlapping construction activity, the construction of the Project would generate fewer daily and peak hour trips than are projected for the Project once it is completed and occupied.

The influx of this material and equipment could affect the adjacent roadway network in the following ways:

- There may be intermittent periods when large numbers of material deliveries are required, such as when concrete trucks will be needed for the parking garage and the buildings.
- Some of the materials and equipment could require the use of large trucks (18-wheelers), which could create additional congestion on the adjacent roadways.
- Delivery vehicles may need to park temporarily on adjacent roadways as they deliver their items. Based on experience, it is not uncommon for these types of deliveries to result in temporary lane closures.

TABLE 25670 MESQUITCONSTRUCTION PERIOD TRIP GENERATION - PASSENGER CAR EQUIVALENTS							
Peak Day Activity Under Each Stage							
	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6	Stage 7
	Demolition/ Site Preparation	Grading/ Excavation	Drainage/Utilities/Tr enching	Foundations/C oncrete Pour	Building Construction	Paving	Architectural Coatings
Stage Duration	1.5 months	1 year	2 months	2 months	4 years	2.5 months	3 years
Construction Workers	37	60	29	132	847	29	18
Passenger Car Equivalent (PCE) factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Haul Truckloads	60	250	0	0	0	50	0
Passenger Car Equivalent (PCE) factor	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Delivery/Equipment Truckloads	31	34	27	896	200	27	11
Passenger Car Equivalent (PCE) factor	2.0	2.0	2.0	2.0	2.0	2.0	2.0
CONSTRUCTION PERIOD TRIP GENERATION							
Stage	Daily PCE Trips [1]	AM Peak Hour PCE Trips			PM Peak Hour PCE Trips		
		In	Out	Total	In	Out	Total
Site Preparation/Demolition							
Construction Worker Trips[2]	74	15	0	15	0	15	15
Haul Truck Trips [3]	240	15	15	30	15	15	30
Delivery/Equipment Truck Trips [4]	124	6	6	12	6	6	12
Stage 1 Total	438	36	21	57	21	36	57
Grading/Excavation							
Construction Worker Trips[2]	120	24	0	24	0	24	24
Haul Truck Trips [3]	1,000	63	63	126	63	63	126
Delivery/Equipment Truck Trips [4]	136	6	6	12	6	6	12
Stage 2 Total	1,256	93	69	162	69	93	162
Drainage/Utilities/Trenching							
Construction Worker Trips[2]	58	12	0	12	0	12	12
Haul Truck Trips [3]	0	0	0	0	0	0	0
Delivery/Equipment Truck Trips [4]	108	5	5	10	5	5	10
Stage 3 Total	166	0	5	22	5	17	22
Foundations/Concrete Pour							
Construction Worker Trips[2]	264	53	0	53	0	53	53
Haul Truck Trips [3]	0	0	0	0	0	0	0
Delivery/Equipment Truck Trips [4]	3,584	112	112	224	112	112	224
Stage 4 Total	3,848	165	112	277	112	165	277
Building Construction							
Construction Worker Trips[2]	1,694	339	0	339	0	339	339
Haul Truck Trips [3]	0	0	0	0	0	0	0
Delivery/Equipment Truck Trips [4]	800	36	36	72	36	36	72
Stage 5 Total	2,494	375	36	411	36	375	411
Paving							
Construction Worker Trips[2]	58	12	0	12	0	12	12
Haul Truck Trips [3]	200	13	13	26	13	13	26
Delivery/Equipment Truck Trips [4]	108	5	5	10	5	5	10
Stage 6 Total	366	30	18	48	18	30	48
Architectural Coatings							
Construction Worker Trips[2]	36	7	0	7	0	7	7
Haul Truck Trips [3]	0	0	0	0	0	0	0
Delivery/Equipment Truck Trips [4]	44	2	2	4	2	2	4
Stage 7 Total	80	9	2	11	2	9	11
PCE - Passenger car equivalent							
Notes: [1] - Daily trips were calculated by counting [2] - Up to 40\% of the construction workers peak hour. [3] - Haul trucks were assumed to make trips [4] - Daily delivery/equipment truck trips we peak hour truck trips. With the exception for delivery/equipment truck trips were divided	[3] - Haul trucks were assumed to make trips evenly throughout a 8 hour period, including both AM and PM periods to be conservative. [4] - Daily delivery/equipment truck trips were assumed to occur evenly throughout a 11 -hour construction day. Therefore, the daily delivery/equipment truck trips were divided by 11 hours to calculate peak hour truck trips. With the exception for Stage 4: Foundations/Concrete pour which will have equipment/delivery trucks operating continuously from 7 AM to 11 PM. For this stage, the daily delivery/equipment truck trips were divided by 16 hours to calculate peak hour truck trips.						

Construction Period Evaluation Criteria

The LADOT TAG provides three categories to be considered in regard to in-street construction effects: temporary traffic constraints, temporary loss of access, and temporary loss of bus stops or rerouting of bus lines. The evaluation criteria to be considered in each of these categories are as follows:

- Temporary Traffic Constraints:
- The length of time of temporary street closures or closures of two more traffic lanes;
- The classification of the street (major arterial, state highway, substandard hillside local or collector, etc.) affected;
- The existing congestion levels on the affected street segments and intersections;
- The operational constraints of substandard hillside streets needing to access construction sites;
- Whether the affected street directly leads to a freeway on- or off-ramp or other state highway;
- Potential safety issues involved with street or lane closures;
- The presence of emergency services (fire, hospital, etc.) located nearby that regularly use the affected street.
- Temporary Loss of Access:
- The length of time of any loss of pedestrian or bicycle circulation past a construction area;
- The length of time of any loss of vehicular or pedestrian access to a parcel fronting the construction area;
- The length of time of any loss or impedance of access by emergency vehicles or area residents to hillside properties;
- The length of time of any loss of ADA pedestrian access to a transit station, stop, or facility;
- The availability of alternative vehicular or pedestrian access within $1 / 4$ mile of the lost access;
- The type of land uses affected, and related safety, convenience, and/or economic issues.
- Temporary Loss of Bus Stops or Rerouting of Bus Lines:
- The length of time that an existing bus stop would be unavailable or that existing service would be interrupted;
- The availability of a nearby location (within $1 / 4$ mile) where the bus stop or route can be temporarily relocated;
- The existence of other bus stops or routes with similar routes/destinations within a $1 / 4$ mile radius of the affected stops or routes;
- Whether the interruption would occur on a weekday, weekend or holiday, and whether the existing bus route typically provides service that/those day(s).

LAMC Section 41.40 provides that construction activities are limited to the hours from 7:00 AM to 9:00 PM on weekdays and from 8:00 AM to 6:00 PM on Saturdays and holidays. No construction is permitted on Sundays.

Construction Analysis

The assessment of the Project against the evaluation factors described above is presented in Table 26 and discussed below.

Temporary Traffic Constraints

Temporary travel lane closures on Mesquit Street and on 7th Street are anticipated. Mesquit Street is classified as a Collector street (but a General Plan Amendment to make it a local street has been submitted) with low volumes and a dead end at the Project site. The southern end of Mesquit Street may be closed for truck staging and construction worker parking. Up to one individual vehicle lane may also be temporarily closed on the $7^{\text {th }}$ Street Bridge, which is classified as an Avenue II, during construction of the driveway connections to the Project site, but an open travel lane will always be provided for vehicles (without need for detours). Worksite traffic control plans would be prepared for any temporary vehicle lane, parking lane, or sidewalk closures in accordance with applicable City and Manual on Uniform Traffic Control Devices (MUTCD) guidelines.

Temporary Loss of Access

The existing land uses near the vicinity of the construction site will remain open throughout construction. Sidewalks along eastern Mesquit Street and northern $7^{\text {th }}$ Street may have temporary closures or coverings, but the sidewalk on the opposite side of the street will remain open. The existing land uses near the vicinity of the construction site will have vehicular and pedestrian access maintained throughout construction. No other properties need to use Mesquit Street for access. No loss of ADA pedestrian access to a transit stop, station, or facilities is anticipated.

Temporary Loss of Bus Stops or Rerouting of Bus Lines

Bus stops are not located along the Project frontage of Mesquit Street or 7th Street. Construction is not anticipated to affect bus stops or require rerouting of bus lines in the area.

Construction Management Plan

A Construction Management Plan will be developed by the contractor and approved by the City of Los Angeles to alleviate construction period impacts, which may include but is not limited to the following measures:

- As traffic lane, parking lane and/or sidewalk closures are anticipated, worksite traffic control plan(s), approved by the City of Los Angeles, should be developed and implemented to route vehicular traffic, bicyclists, and pedestrians around any such closures.
- Ensure that access will remain unobstructed for land uses in proximity to the Project site during Project construction.
- Coordinate with the City and emergency service providers to ensure adequate access is maintained to the Project site and neighboring businesses and residences.
- Provide off-site truck staging in a legal area furnished by the construction truck contractor. Anticipated truck access to the Project site will be off Jesse Street.
- Schedule deliveries and pick-ups of construction materials during non-peak travel periods to the extent possible and coordinate to reduce the potential of trucks waiting to load or unload for protracted periods.
- Describe the haul truck routes and avoid haul truck routes that travel past Los Angeles Unified School District facilities.

A Construction Worker Parking Plan will also be developed by the contractor and approved by the City of Los Angeles to ensure that the parking location requirements for construction workers will be strictly enforced. These could include but are not limited to the following measures:

- During construction activities when construction worker parking cannot be accommodated on the Project site, the plan shall identify alternate parking location(s) for construction workers and the method of transportation to and from the Project site (if beyond walking distance) for approval by the City 30 days prior to commencement of construction.
- Construction workers will not be permitted to park on the street with the exception of along Mesquit Street and Jesse Street east of Santa Fe Avenue.
- Provide all construction contractors with written information on where their workers and their subcontractors are permitted to park and provide clear consequences to violators for failure to follow these regulations.

TABLE 26 670 MESQUIT PROJECT CONSTRUCTION EVALUATION	
EVALUATION CRITERIA	Assessment
Temporary Traffic Impacts:	
- The length of time of temporary street closures or closures of two or more traffic lanes; - The classification of the street (major arterial, state highway, substandard hillside local, or collector, etc.) affected; - The existing congestion levels on the affected street segments and intersections; - The operational constraints of substandard hillside streets needing to access construction sites; - Whether the affected street directly leads to a freeway on- or off-ramp or other state highway; - Potential safety issues involved with street or lane closures; - The presence of emergency services (fire, hospital, etc.) located nearby that regularly use the affected street.	- Temporary full street closures or closures of up to one traffic lane are anticipated on Mesquit Street and 7th Street. - Mesquit is identified as a Collector street and 7th Street is an Avenue II. - The Mesquit St \& Jesse St intersection currently operates at LOS A in the AM and PM. The Mesquit St \& Santa Fe Ave intersection currently operates at LOS C in the AM and LOS B in the PM. - There are no hillside streets in the vicinity of the Project site. - 7th Street leads directly lead to a freeway on- or off-ramp, but the closest ramp is 0.4 miles away from the Project Site. - Worksite traffic control plans would be prepared for any temporary lane or sidewalk closures in accordance with applicable City and MUTCD quidelines. - There are no emergency services located within the immediate vicinity of the affected streets.
Temporary Loss of Access:	
- The length of time of any loss of pedestrian or bicycle circulation past a construction area; - The length of time of any loss of vehicular, bicycle, or pedestrian access to a parcel fronting the construction area; - The length of time of any loss or impedance of access by emergency vehicles or area residents to hillside properties; - The length of time of any loss of ADA pedestrian access to a transit station, stop, or facility; - The availability of alternative vehicular or pedestrian access within $1 / 4$ mile of the lost access; - The type of land uses affected, and related safety, convenience, and/or economic issues.	- The existing land uses near the vicinity of the construction site will remain open with vehicular and pedestrian access maintained throughout construction. Sidewalks along eastern Mesquit Street and northern 7th Street may have temporary closures or coverings, but the sidewalk on the opposite side of the street will remain open. No other properties need to use Mesquit Street for access. No loss of ADA pedestrian access to a transit stop, station, or facilities is anticipated.
Temporary Loss of Bus Stops or Rerouting of Bus Lines:	
- The length of time that an existing bus stop would be unavailable or that existing service would be interrupted; - The availability of a nearby location (within $1 / 4$ mile) to which the bus stop or route can be temporarily relocated; - The existence of other bus stops or routes with similar routes/ destinations within a $1 / 4$ mile radius of the affected stops or routes; - Whether the interruption would occur on a weekday, weekend or holiday, and whether the existing bus route typically provides service that/those day(s).	- There are no bus stops or transit lines along the project frontage.

5. SUMMARY AND CONCLUSIONS

This study was undertaken to analyze the potential traffic impacts of the proposed development at 670 Mesquit Street (Project), situated east and west of Mesquit Street between $6^{\text {th }}$ Street and $7^{\text {th }}$ Street. The following summarizes the results of this analysis:

- The proposed Project involves the construction of 944,055 square feet of creative office, 44,788 square feet of quality restaurant, 44,788 square feet of high-turnover restaurant, 236 hotel rooms, 258 residential dwelling units, 50 affordable housing dwelling units, 93,617 square feet of studio/event/gallery, 62,148 square feet of gym, 28,054 square feet of grocery, 79,240 square feet of general retail, and 28,858 square feet of food hall. The Project with the Deck Concept has an additional amenity deck that is approximately 3 acres and includes programmatic features.
- The Project site is located on Mesquit Street between $6^{\text {th }}$ and $7^{\text {th }}$ Streets. It includes a proposed fullwidth vacation/merger of Mesquit Street between $7^{\text {th }}$ Street and the southern edge of Jesse Street and a half-width subsurface merger of the easterly half of Mesquit Street from that point to the southern edge of the LADWP property on the east side of Mesquit Street. The Project would provide four project driveways: a two-way full-access driveway on Mesquit at the northern end of the Project site; a two-way full access driveway at the intersection of Mesquit Street \& Jesse Street; a two-way signalized driveway connecting the $7^{\text {th }}$ Street Bridge to the third level of Building 4; and a one-way right-out-only driveway connecting the $7^{\text {th }}$ Street Bridge to the second level of Building 5.
- The Project features, location, and design would be consistent with City plans, programs, ordinances, and policies that support alternative transportation and have been adopted to protect the environment. Therefore, the Project would have a less than significant impact on the City's transportation-related plans, programs, ordinances, and policies.
- Based on the Project's mix of land uses, location and other characteristics, it is projected to have less than significant VMT impacts for the residential and office land uses. The Project is projected to have significant and unavoidable impacts for the retail land uses. The Project will implement transportation demand measures through compliance with regulatory requirements, site design elements and a transportation demand management plan to reduce and mitigate Project VMT; however, the retail VMT impact will remain significant and unavoidable as there are no additional feasible mitigation measures that would further reduce the retail VMT impact to a less-thansignificant level.
- The Project would not substantially increase hazards, conflicts, or preclude City action to fulfill or implement projects associated with surrounding transportation networks and will contribute to overall walkability through enhancements to the Project site and streetscape.
- Three freeway off-ramps were analyzed for freeway safety analysis: Study Intersection 22: I-10 Eastbound Off-ramp to Alameda Street, Study Intersection H: US-101 Southbound Off-ramp to $7^{\text {th }}$ Street, and Study Intersection J: I-10 Eastbound Off-ramp to Porter Street. The Project is not projected to have a significant safety impact on the I-10 Eastbound Off-ramp to Alameda Street or the I-10 Eastbound Off-ramp to Porter street because the ramp queue is not projected to exceed
the ramp capacity in either Future Base (2026 or 2040) plus Project scenario. The Project is projected to have a significant safety impact on the US-101 Southbound Off-ramp to $7^{\text {th }}$ Street as it is projected to add more than two car lengths (50 feet) to a queue that is extending past the ramp capacity with speed differential greater than 30 mph from the mainline freeway. Signalization of the intersection would mitigate the identified safety issue by reducing the off-ramp queues onto the freeway. However, since the improvement involves another jurisdiction (Caltrans) beyond the City of Los Angeles, its implementation cannot be guaranteed, and the impact is therefore considered to be significant and unavoidable.
- The Project would not have a direct or indirect effect that would lead to removal, modification, or degradation of pedestrian, bicycle, or transit facilities.
- The site circulation and access assessment includes analysis of 32 intersections, of which 22 intersections operate under signal control and the remaining 10 intersections are stop-controlled. With mitigation, the Project would generate an estimated net increase of 24,484 daily vehicle trips, including 1,238 trips during the AM peak hour and 1,554 trips during the PM peak hour. The Project with the Deck Concept would generate an estimated net increase of 24,901 daily vehicle trips, including 1,358 trips during the AM peak hour and 1,671 trips during the PM peak hour.
- The northern Mesquit driveway is projected to operate at LOS A under both Project options. The Mesquit \& Jesse driveway is projected to operate at LOS E under the Project and at LOS F for the Project with the Deck Concept. The right-out-only driveway on $7^{\text {th }}$ Street is projected to operate at LOS E for both Project options. The signalized $7^{\text {th }}$ Street driveway is projected to operate at LOS D or better for both project options
- The LOS analysis for the Future (2026) plus Project scenario determined that 14 signalized intersections and 10 unsignalized intersections are projected to perform at LOS E or worse during at least one of the peak periods for both Project options. The remaining signalized and unsignalized intersections are projected to operate at LOS D or better during both peak periods.
- The LOS analysis for the Future (2040) plus Project scenario determined that 15 signalized intersections and 10 unsignalized intersections are projected to perform at LOS E or worse during at least one of the peak periods for both Project options. The remaining signalized and unsignalized intersections are projected to operate at LOS D or better during both peak periods.
- The signal warrant analysis determined that the projected volumes would meet standard signal warrants for installation of a signal at 8 unsignalized intersections. Out of the 8 intersections that met the peak hour signal warrant analysis, four signal warrants would be triggered due to the trips generated by the Project (i.e., signals are only warranted when Project trips were added). Those four intersections are:
- Intersection B: Mateo Street \& Willow Street
- Intersection E: South Santa Fe Avenue \& Mesquit Street
- Intersection F: South Santa Fe Avenue \& Jesse Street
- Intersection G: Mesquit Street \& Jesse Street

The other four intersections either currently meet or are proposed to meet signal warrants in the future due to other planned developments and traffic growth.

- The following corrective actions are proposed to address identified non-CEQA traffic deficiencies.
- One-time contribution of $\$ 100,000$ for TMO operations and marketing efforts to FASTLinkDTLA, the Downtown TMO, or to the formation of a new Arts District TMO focused on the area around the Project.
- Intersection signal system modifications
- Physical reconfiguration of the Santa Fe Avenue \& $7^{\text {th }}$ Street and Santa Fe Avenue \& Jesse Street intersections
- Signalize the intersections of Santa Fe Avenue \& Jesse Street, Santa Fe Avenue \& Mesquit Street and Mesquit Street \& Jesse Street.
- Potential fair-share contributions to signalization of three intersections.
- An assessment of construction considerations did not identify substantial interference of Project construction activity on the surrounding circulation system. A construction traffic management plan and a construction worker parking plan will be implemented as project design features.

REFERENCES

Connect SoCal 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy, Southern California Association of Governments, September 2020.

American Fact Finder, United States Census Bureau, 2018.

City of Los Angeles Municipal Code.

Highway Capacity Manual, Sixth Edition: A Guide for Multimodal Mobility Analysis, Transportation Research Board, 2016.

NCHRP Report 684 "Enhancing Internal Trip Capture Estimation for Mixed-Use Developments," 2011.

Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association with Northeast States for Coordinated Air Use Management, National Association of Clean Air Agencies (Environ, Fehr \& Peers), August 2010.

Trip Generation, 9 ${ }^{\text {th }}$ Edition, Institute of Transportation Engineers, 2012.
Trip Generation, $10^{\text {th }}$ Edition, Institute of Transportation Engineers, 2017.
Technical Advisory on Evaluating Transportation Impacts in CEQA, State of California, Governor's Office of Planning and Research, April 2018.

Transportation Assessment Guidelines, Los Angeles Department of Transportation, 2020.

Transportation Assessments - Interim Guidance for Freeway Safety Analysis, Los Angeles Department of Transportation, LADOT, May 2020

Appendix A: LADOT MOU

FehrłPeers

Transportation Assessment Memorandum of Understanding (MOU)

This MOU acknowledges that the Transportation Assessment for the following Project will be prepared in accordance with the latest version of LADOT's Transportation Assessment Guidelines:

I. PROJECT INFORMATION

Project Name: \qquad
Project Address: 670 Mesquit, Los Angeles, CA 90021
Project Description: See Attachment A and Figures 1A \& 1B

LADOT Project Case Number: \qquad ENV-2017-249-EIR Project Site Plan attached? (Required) Yes

II. TRIP GENERATION

Geographic Distribution: N \qquad \% S \qquad \%

E \qquad \%

W \qquad \%

Illustration of Project trip distribution percentages at Study intersections attached? (Required)
Yes
See Figures 2A, 2B, and 2C for distribution percentages developed with use of Los Angeles City Travel Demand Model

Trip Generation Rate(s): ITE 10th Edition / Other \qquad

Trip Generation Adjustment (Exact amount of credit subject to approval by LADOT)	Yes	No
Transit Usage	\square	\square
Transportation Demand Management	\square	\square
Existing Active Land Use	\square	\square
Previous Land Use	\square	\square
Internal Trip	\square	\square
Pass-By Trip	\square	\square

Trip generation table including a description of the proposed land uses, ITE rates, estimated morning and afternoon peak hour volumes (ins/outs/totals), proposed trip credits, etc. attached? (Required) \square Yes

Daily Trips: 27,040 (Opt 1); 27,493 (Opt 2)
See Figures 5A \& 5B (From VMT Calculator)

III. STUDY AREA AND ASSUMPTIONS

Project Buildout Year: 2026/2040 Ambient Growth Rate: 0.2 \% Per Yr.
Related Projects List, researched by the consultant and approved by LADOT, attached?
(Required) \quad Yes \square No See Table 2 and Figure 3

Map of Study Intersections/Segments attached? ■ Yes \square No
STUDY INTERSECTIONS (May be subject to LADOT revision after access, safety and circulation analysis)
See Table 3 and Figure 4
Signalized intersections will be
1 \qquad 3 analyzed using CMA methodology

2 \qquad 4 \qquad
Is this Project located on a street within the High Injury Network?Yes ■ No

See Attachment B for explanation of baseline volume shift process

IV. ACCESS ASSESSMENT

Is the project on a lot that is 0.5 -acre or more in total gross area? ■Yes \square No
Is the project's frontage 250 linear feet or more along an Avenue or Boulevard as classified by the City's General Plan?

■Yes No

Is the project's building frontage encompassing an entire block along an Avenue or Boulevard as classified by the City's General Plan?Yes ■ No

V. CONTACT INFORMATION

CONSULTANT

DEVELOPER
Name: Thomas Gaul, Fehr \& Peers \qquad
Address: 600 Wilshire Blvd, Suite 1050, Los Angeles, CA 90017 Phone Number: (213) 261-3050 \qquad
E-Mail: t.gaul@fehrandpeers.com

RCS VE LLC
319 Lafayette St, New York, NY 10012
213-500-5067
michael@vellagroup.com

*MOUs are generally valid for two years after signing. If after two years a transportation assessment has not been submitted to LADOT, the developer's representative shall check with the appropriate LADOT office to determine if the terms of this MOU are still valid or if a new MOU is needed.
$\forall L$ Әınб!」

$\forall 2$ ann!!

TABLE 1APROPOSED PROJECT OPTION 1 TRIP GENERATION670 MESQUIT PROJECT														
Land Use	ITE Land Use Code	Size	Trip Generation Rates [a]						Estimated Trip Generation					
			AM Peak Hour			PM Peak Hour			AM Peak Hour Trips			PM Peak Hour Trips		
			Rate	In\%	Out\%	Rate	In\%	Out\%	In	Out	Total	In	Out	Total
PROPOSED PROJECT														
Creative Office	710	944.055 ksf	[b]	86\%	14\%	[b]	17\%	83\%	603	98	701	135	657	792
Internal Capture [c]				21\%	91\%		25\%	13\%	(129)	(89)	(218)	(34)	(85)	(119)
Transit, Bike, Ped Adjustment [d]														
Net External Office (before TNC adjustment)									474	9	483	101	572	673
Added TNC - from transit			2.5\%			2.5\%			12	12	24	17	17	34
Added TNC - from vehicles			2.5\%			2.5\%			0	12	12	14	3	17
TNCs already in vehicle trip generation									12	0	12	,	14	17
Total TNC									24	24	48	34	34	68
Non-TNC									462		471	98	558	656
Total Vehicle									486	33	519	132	592	724
Quality Restaurant	931	44.788 ksf	0.73	50\%	50\%	7.8	67\%	33\%	17	16	33	234	115	349
Internal Capture [c]				18\%	22\%		29\%	53\%	(3)	(3)	${ }^{(6)}$	(69)	(61)	(130)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(4)	(3)	(7)	(41)	(14)	(55)
Net Driveway Trips (before TNC adjustment)									10	10	20	124	40	164
Added TNC - from transit			2.5\%			2.5\%			1	1	2	4	4	8
Added TNC - from vehicles			2.5\%			2.5\%			0	0	0	1	3	4
TNCs already in vehicle trip generation									0	0	0	3	1	4
Total TNC									1	1	2	8	8	16
Non-TNC (before pass-by adjustment)									10	10	20	121	39	160
Total Vehicle									11	11	22	129	47	176
Pass-by adjustment [e]			10\%			10\%			(1)	(1)	(2)	(12)	(3)	(15)
Non-TNC									9	9	18	109	36	145
High-Turnover Restaurant	932	44.788 ksf	9.94	55\%	45\%	9.77	62\%	38\%	245	200	445	272	166	438
Internal Capture [c]				18\%	22\%		29\%	53\%	(44)	(44)	(88)	(80)	(88)	(168)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(50)	(39)	(89)	(48)	(20)	(68)
Net Driveway Trips (before TNC adjustment)									151	117	268	144	58	202
Added TNC - from transit			2.5\%			2.5\%			7	7	14	5	5	10
Added TNC - from vehicles			2.5\%			2.5\%			3	4	7	1	4	5
TNCs already in vehicle trip generation									4	3	7	4	1	5
Total TNC									14	14	28	10	10	20
Non-TNC (before pass-by adjustment)									147	114	261	140	57	197
Total Vehicle									161	128	289	150	67	217
Pass-by adjustment [e]			20\%			20\%			(29)	(122)	(51)	(28)	(11)	(39)
Non-tNC									118	92	210	112	46	158
Hotel	310	236 rooms	0.47	59\%	41\%	0.6	51\%	49\%	65	46	111	72	70	142
Internal Capture [c]				4\%	51\%		59\%	67\%	(3)	(24)	(27)	(43)	(47)	(90)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(16)	(6)	(22)	(7)	(6)	(13)
Net External Hotel (before TNC adjustment)									46	16	62	22	17	39
Added TNC - from transit			2.5\%			2.5\%			2	2	4	1	1	2
Added TNC - from vehicles			2.5\%			2.5\%			0	1	1	0	1	1
TNCs already in vehicle trip generation									1	0	1	1	0	
Total TNC									3	3	6	2	2	4
Non-TNC									45	16	61	21	17	38
Total Vehicle									48	19	67	23	19	42
Residential*	222	258 DU	0.23	12\%	88\%	0.30	70\%	30\%	7	52	59	54	23	77
Internal Capture [c]				4\%	23\%		66\%	70\%	\bigcirc	(12)	(12)	(36)	(16)	(52)
Transit, Bike, Ped Adjustment [d]														
Net External Residential (before TNC adjustment)									7	40	47	18	7	25
Added TNC - from transit			2.5\%			2.5\%			1	1	2	1	1	2
Added TNC - from vehicles			2.5\%			2.5\%			1	0	1	0	0	0
TNCs already in vehicle trip generation									0	1	1	0	0	0
Total TNC									2	2	4	1	1	2
Non-TNC									7	39	46	18	7	25
Total Vehicle									9	41	50	19	8	27
Affordable Housing	(f)	50 DU	0.5	40\%	60\%	0.34	55\%	45\%	10	15	25	9	8	17
Internal Capture [c]				4\%	23\%		66\%	70\%	0	(4)	(4)	(6)	(6)	(12)
Net External Affordable Housing									10	11	21	3	2	5
Added TNC - from transit			2.5\%			2.5\%			1	1	2	0	0	0
Added TNC - from vehicles			2.5\%			2.5\%			0	0	0	0	0	0
TNCs already in vehicle trip generation									0	0	0	0	0	-
Total TNC									,	1	2	0	0	0
Non-TNC									10	11	21	3	2	5
Total Vehicle									11	12	23	3	2	5
Studio, Event, Gallery [q]	495	93.617 ksf	1.76	66\%	34\%	2.31	47\%	53\%	109	56	165	102	114	216
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(27)	(14)	(41)	(26)	(29)	(55)
Net External Gallery (before TNC adjustment)									82	42	124	76	85	161
Added TNC - from transit			2.5\%			2.5\%			3	3	6	4	4	8
Added TNC - from vehicles			2.5\%			2.5\%			1	2	3	2	2	4
TNCs already in vehicle trip generation									2	1	3		2	4
Total TNC									6		12	8	8	16
Non-TNC									80	41	121	74	83	157
Total Vehicle									86	47	133	82	91	173
Gym (Health / Fitness Club)	492	62.148 ksf	1.31	51\%	49\%	3.45	57\%	43\%	41	40	81	122	92	214
Internal Capture [c]				19\%	23\%		43\%	38\%	(8)	(9)	(17)	(53)	(35)	(88)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(8)	(8)	(16)	(17)	(14)	(31)
Net Driveway Trips (before TNC adjustment)									25	23	48	52	43	95
Added TNC - from transit			2.5\%			2.5\%			1	1	2		2	4
Added TNC - from vehicles			2.5\%			2.5\%			1	1	2	1	1	2
TNCs already in vehicle trip generation									1	1	2	1	1	2
Total TNC									3		6		4	8
Non-TNC (before pass-by adjustment)									24	22	46	51	42	93
Total Vehicle									27	25	52	55	46	101
Pass-by adjustment [e]			20\%			20\%			(4)	(4)	(8)	(10)	(8)	(18)
Non-TNC									20	18	38	41	34	75

\％	\％	克	真	3	＊	แّ	\％	$\stackrel{\sim}{\square}$	z		
苞	筧	N	$\stackrel{\square}{\square}$		箒	（1）	薆		鹤	管	끙
			$\frac{1}{2}$				营 筄濰 \because 蹋受 炎啰				
 	 	 		$\exists-\circ \circ-\exists \mathbb{E} \overrightarrow{\mathrm{r}}$ NNOON～匡			 뭉	 மE こ あ®N～NOON～日す山	岀 \circ ペ 		
 	 	 	 	～○○○○～の い。○○○u苜	$\vec{\omega} \vec{\infty}-\circ \circ-\vec{\infty}$ 匿告 $\infty \nu-\circ \circ-v$ 佥～ NGNOON N N	 いこ～○ーーコ回要ず 	 致呬～	 	 		

TABLE 2 670 MESQUIT RELATED PROJECTS												
No.	Project Location	Land Use	Size		Trip Generation							
					Daily	AM			PM			
					IN	OUT	TOTAL	IN	OUT	TOTAL		
1	540 S Santa Fe Ave	Office	65.812			726	90	12	102	17	81	98
2	601 S Main St	Apartments			2,686	36	144	180	152	87	239	
		Retail		ksf								
3	225 S Los Angeles St	Condominiums	300		1,910	88	136	224	75	52	126	
		Retail										
4	150 N Los Angeles St	Office	713	ksf	13,534	930	118	1,048	435	942	1,374	
		Retail		ksf								
		Child Care		ksf								
5	534 S Main St	Apartments			2,213	52	75	127	87	58	145	
		Retail		ksf								
		Restaurant										
		Fast-Food Restaurant	3.5	ksf								
6	1057 S San Pedro St	Office	294.641	ksf	16,433	837	434	1,271	632	957	1,589	
		Retail	176.733	ksf								
		Cinema	744	Seats								
		Apartments										
		University	1400	Students								
		Hotel	210	Rooms								
7	1525 E Industrial St	Apartments			2,288	58	73	131	86	69	155	
		Office	21.4	ksf								
		Retail	6.1	ksf								
8	950 E 3rd St	School	532	Students	6,372	162	177	339	245	213	458	
		Retail	30.062	ksf								
		Apartments	635	du								
9	2051 E 7th St	Apartments	320	du	2,310	17	127	144	145	64	209	
		Retail		ksf								
		Restaurant		ksf								
10	963 E 4th St	Office	79	ksf	2,512	106	22	128	113	138	251	
		Retail	25	ksf								
		Restaurant	20	ksf								
11	826 S Mateo St	Condominiums	90	du	1,267	11	34	45	62	39	101	
		Other	11 k	ksf								
		Other	5.6	ksf								
12	2030 E 7th St	Office	243.583	ksf	2,306	274	34	308	69	249	318	
		Retail	40	ksf								
13	360 S Alameda St	Apartments	55	du	670	25	33	58	35	26	61	
		Other	2.5	ksf								
		Other	6.3	ksf								
14	649 S Wall St	Assisted Living	55	beds	104	24	5	29	3	24	27	
		Office		empl.								
15	410 Center St	Office	110	ksf	1,165	87	0	87	0	79	79	
16	500 S Mateo St	Restaurant	12.82	ksf	1,052	48	41	89	50	31	81	
17	300 S Main St	Apartments	471	du	4,691	143	243	386	257	153	410	
		Retail	5.19	ksf								
		Restaurant	27.78	ksf								
18	400 S Alameda St	Hotel	66	Rooms	512	20	18	38	23	14	37	
		Retail	0.84	ksf								
		Restaurant	2.13	ksf								
19	719 E 5th St	Apartments	160	du	1,033	15	58	73	59	37	96	
		Retail	7.5	ksf								
20	2130 E Violet St	Office	94	ksf	1,351	137	30	167	39	122	161	
		Retail	7.45	ksf								
21	929 E 2nd St	Mixed Use Private Club	48.862	ksf	2,153	68	12	80	105	96	201	
		Apartments	122	du			45					
22	1800 E 7th St	Office	13.6	ksf	816	26	45	71	45	37	82	
23	1722 E 16th St	Restaurant	8.151	ksf	592	-4	2	-2	36	11	47	
24	454 E Commercial St	Bus Facility	2	acres	N/A	22	8	30	9	1	10	
25	118 S Astronaut E S Onizuka St	Apartments	77	du	97	-1	20	19	19	6	25	
26	555 S Mateo St	Retail	153	ksf	4,300	5	30	35	220	205	425	
27	1000 S Santa Fe Ave [a]	Restaurant	8.447	ksf	966	36	37	38	39	40	69	
	1000 S Santa Fe Ave [a]	Club	48	Rooms				38	39	40	69	
		Apartments	110	du								
28	2110 Bay St [a]	Office	113	ksf	2,394	180	63	243	89	192	281	
		Retail	43.66	ksf								
29	330 S Alameda St [a]	Apartments	186	du	1,662	36	76	112	91	65	156	
	330 S Alameda St [a]	Commercial	22	ksf								
30	668 S Alameda St [a]	Apartments	475	du	4,002	107	182	289	216	145	361	
	668 S Alameda St [a]	Commercial	84	ksf	4,002						361	
		Apartments	200	du								
31	520 Mateo St	Office	30	ksf	4,995	157	220	377	274	223	497	
	S20 Mateo St	Restaurant	15	ksf	4,995	157	220	377	274	223	497	
		Retail	15	ksf								
32		Apartments	452	du								
32	717 Maple Ave [a]	Retail		ksf	3,199	67	179	246	185	105	290	

No.	Project Location			TABLE 0 MESQ TED PRO								
		Land Use	Size					Generat				
					Daily	AM			PM			
					IN	OUT	TOTAL	IN	OUT	TOTAL		
33	232 W 2nd St [b]	Condominiums				4,006	467	93	560	118	423	541
		Office	534	ksf								
		Retail	7.2	ksf								
34	433 S Main St	Condominiums	161	Rooms	1,450	32	72	104	61	37	98	
		Mixed Use	6.9	ksf								
35	676 Mateo St [b]	Apartments	185	du	1,990	50	95	145	106	51	157	
		Commercial	27	ksf								
36	732 Wall St [b]	Apartments	323	du	2,499	108	82	191	164	141	305	
		Office	53.2	ksf								
		Retail	4.4	ksf								
		Wholesale/Storage	63.585	ksf								
		Restaurant	4.42	ksf								
		Event Space	9.226	ksf								
37	333 S Alameda St [a]	Apartments	994	du	8,445	134	260	394	390	329	719	
		Retail	993	ksf								
38	1129 E 5th St	Retail	26.98	ksf	4,674	130	140	270	157	69	226	
		Restaurant	31.72	ksf								
		Hotel	113	Rooms								
		Apartments	129	du								
		Art School	3.43	ksf								
		Art Space	10.34	ksf								
39	2650 E Olympic BI	Apartments	1000	du	12,247	498	477	975	599	539	1,138	
		Restaurant	N/A	ksf								
		Office	230	ksf								
40	2143 E Violet St	Apartments	320	du	4,477	329	22	351	130	330	460	
		Retail	224.29	ksf								
		Office	46.67	ksf								
41	633 S Spring St	Hotel	176	Rooms	2,045	83	33	116	97	99	196	
		Restaurant	8.43	ksf								
		Bar	5.29	ksf								
42	732 S Spring St	Apartments	400	du	3,359	59	152	211	164	104	268	
		Pharmacy/Drugstore	15	ksf								
43	237 S Los Angeles St	Sports Complex	43	ksf	1,869	79	50	129	161	98	259	
44	640 S Santa Fe Avenue	Commercial	107	ksf	1,330	90	8	98	43	114	157	
45	1745 E $7^{\text {th }}$ Street	Apartments	57	du	635	9	25	34	34	24	58	
		Commercial	6	ksf								
46	940 E 4th Street	Office	6	ksf	788	14	37	51	44	31	75	
		Retail	14.3	ksf								
		Apartments	107	du								
47	609 E 5th St	Apartments	151	du	1,004	15	62	77	61	33	94	
48	713 E 5th St	Apartments	51	du	208	15	10	25	9	8	17	
49	1000 S Mateo St	Apartments	113	du	2,238	153	83	236	90	131	221	
		Commercial	134	ksf								
50	926 E 4th St	Office	265.45	ksf	3,448	366	75	411	100	322	422	
		Retail	4.97	ksf								
		Museum	7.8	ksf								
51	2159 E Bay St	Retail	18.33	ksf	2,029	194	30	224	57	192	249	
		Office	204	ksf								
52	1247 S Grand Ave	Apartments	118	du	763	10	41	51	42	25	67	
		Commercial	5.125	ksf								
53	1 Gateway Plaza	Residential	22	du	25,312	862	527	1,389				
		Office	7443.2	ksf								
		Retail	645	ksf					734	1,042	1,776	
		Hotel	750	Room								
		Restaurant	20	ksf								
		Museum	70	ksf								
54	354 S Spring St	Apartments	212	du	1,410	22	87	108	85	46	131	
55	552 S San Pedro	Affordable Housing	407	du	2186	107	138	245	96	88	184	
		Retail	12.3	ksf								
56	1005 S Mateo Street	Industrial Park	94.8	ksf	426	40	9	49	10	39	49	
57	1800 E 1st St	Apartments	65	du	433	7	19	25	23	16	40	
	1800 E 1st St	Retail	5	ksf								
58	1001 E 1st St	Apartments	430	du	2166	33	119	152	121	79	200	
		Retail	8.742	ksf								
		Retail	16.694	ksf								
59	755 S Los Angeles St	Office	60.243	ksf	2,482	110	57	167	105	100	205	
		Restaurant	26.959	ksf								
60	601 S Central Ave	Apartments	236	du	1,074	17	79	96	70	32	102	
	601 S Central Ave	Retail		ksf	1,074							

No.	Project Location	Land Use	TABLE 2 670 MESQUIT RELATED PROJECTS									
			Size		Trip Generation							
					Daily	AM			PM			
					IN	OUT	TOTAL	IN	OUT	TOTAL		
61	527 Colyton St	Condominiums	310			2,095	36	116	152	121	74	195
		Retail	11.375	ksf								
		Production Space	11.736	ksf								
62	1100 E 5th St	Apartments (Live/Work du)	220	du	2,583	79	119	198	133	74	207	
		Commercial		ksf								
63	600 S San Pedro Street	Apartments	303	du	636	38	25	63	30	37	67	
		Retail		ksf								
64	655 S San Pedro Street	Apartments	81	du	539	8	33	41	33	17	50	
65	656 S Stanford Ave	Apartments	82	du	545	8	34	42	33	18	51	
66	361 S Spring Street	Hotel	315	room	2,273	91	59	150	84	85	169	
67	641 Imperial Street	Residential	140	du	1,093	34	60	94	61	48	109	
		Office	14.749	ksf								
68	2901 E Olympic BI	Apartments	4400	du	19,382	463	1,044	1,507	1,123	804	1,927	
		Retail	185	ksf								
		Office		ksf								
		Medical Office		ksf								
		Daycare	15	ksf								
		Library	15	ksf								
69	1828 E Cesar Chavez Av	Office	32	ksf	1,168	58	16	74	30	82	112	
70	2407 E 1st St	Apartments	50	du	354	12	14	26	16	9	35	
		Office	8.5	ksf								
		Retail	3.4	ksf								
71	2420 E Cesar Chavez Av	Apartments	77	du	1,087	25	36	61	54	44	98	
		Retail	4	ksf								
		Health Club		ksf								
72	119 S Soto St	Apartments	65	du	433	7	19	26	23	16	40	
		Retail		ksf								
73	810 E 3rd St	Apartments		du	1,487	37	32	69	87	48	135	
		Restaurant	3.5	ksf								
		Retail	6.2	ksf								
74	848 S Grand Ave	Condominiums	420	du	3,882	66	144	210	212	165	377	
		Retail	38.5	ksf								
75	1050 S Grand Ave	Condominiums		du	1,084	15	54	68	64	35	99	
		Retail	3.472	ksf								
		Restaurant	22	ksf								
76	1115 S Hill St	Mixed Use	N/A	Other	543	-45	40	-5	50	-7	43	
77	201 S Broadway Ave	Retail/Restaurant	27.675	ksf	N/A	-40	-41	-81	53	17	70	
78	1200 S Grand Ave	Apartments	640	du	4,886	92	148	240	181	134	315	
		Retail	45	ksf								
79	928 S Broadway	Apartments	670	du	4,715	21	229	250	272	109	381	
		Condominiums	17	du								
		Retail	58.8	ksf								
80	840 S Olive St	Condominiums	303	du	3,071	81	166	247	174	96	270	
		Restaurant	9.68	ksf								
		Retail	1.5	ksf								
81	400 S Broadway	Apartments	450	du	3,292	50	187	237	193	112	305	
		Retail	6.904	ksf								
		Bar		ksf								
82	1001 S Olive St	Apartments	225	du	1,581	22	79	101	94	51	145	
		Restaurant		ksf								
83	920 S Hill St	Apartments	239	du	1,476	23	84	107	87	50	137	
		Retail	5.4	ksf								
84	955 S Broadway	Apartments	201	du	1,275	21	72	93	74	43	117	
	gos Broadway	Retail		ksf								
85	801 S Olive St	Apartments	363	du	2557	33	129	162	140	83	225	
85	801 S Olive St	Commercial	10	ksf	2,557	33	129	162	140	83	225	
86	820 S Olive St	Apartments	589	du	3,309	63	202	264	195	106	302	
		Retail	4.5	ksf								
87	1148 S Broadway	Apartments	94	du	553	8	30	38	32	18	50	
	1148 S Broadway	Retail	2.5	ksf								
		Apartments	391									
88	1111 S Broadway	Office	39.7	ksf	5,198	144	176	319	258	274	532	
		Retail		ksf								
		Apartments										
89	1120 S Grand Ave	Shopping	20.69		2,730	42	127	170	136	93	229	
		Mixed use	N/A	Other								
90	1036 S Grand Ave	Restaurant	7.149	ksf	492	2	3	5	27	14	41	
		Apartments	345									
91	527 N Spring Street	Restaurant		ksf								
91	527 N Spring Street	Retail		ksf	3,585	49	118	167	189	131	320	
		Retail		ksf								
92		Apartments	320									
92	737 S Spring St	Pharmacy/Drugstore	250	ksf	3,942	72	141	213	167	116	283	

No.	Project Location	Land Use	TABLE 2 670 MESQUIT RELATED PROJECTS									
			Size		Trip Generation							
					Daily	AM			PM			
					IN	OUT	TOTAL	IN	OUT	TOTAL		
93	340 S Hill St	Apartments	428			2,253	36	129	163	133	75	208
		Restaurant	2.894									
94	940 S Hill St	Apartments			1,881	20	80	100	115	53	168	
		Restaurant		ksf								
95	744 S Figueroa St	Apartments	436		2,644	37	146	183	158	86	244	
		Retail		ksf								
96	850 S Hill St	Apartments	300		1,970	28	106	134	116	65	181	
		Retail		ksf								
		Restaurant	3.5	ksf								
97	700 W 9th St	Apartments	341	du	2,624	37	146	183	143	95	238	
		Retail	11.7	ksf								
98	649 S Olive St	Hotel	241	Rooms	1,674	65	44	109	63	60	123	
99	1100 S Main St	Apartments	379	du	385	9	103	112	78	14	92	
		Other	25.81	ksf								
100	924 N Spring St [b]	Condominiums	770	du	6,583	169	290	459	307	201	508	
		Retail	51.39	ksf								
101	845 S Olive St	Apartments	208	du	1,305	25	76	101	77	42	119	
		Retail	2.4	ksf								
102	888 S Hope Street	Apartments		du	3,498	54	214	268	212	114	326	
103	1000 S Hill Street	Apartments	700	du	3,392	49	193	242	181	104	285	
		Retail		ksf								
		Restaurant		ksf								
104	$333 \mathrm{~W}^{\text {th }}$ Street	Condominiums	100	du	3,358	64	72	136	201	129	330	
		Hotel	200	Room								
		Commercial	27.5									
105	100 S Broadway	Apartments		du	8,535	94	341	435	294	38	332	
		Commercial		ksf								
106	754 S Hope St	Condominiums		du	2,315	35	137	172	137	78	215	
		Retail	7.329	ksf								
107	100 S Grand Avenue	Apartment	412	du	21,631	919	632	1,551	1,120	1,344	2,464	
		Condominium		du								
		Retail	225.3	ksf								
		Supermarket	53	ksf								
		Restaurant	67	ksf								
		Health Club	50	ksf								
		Event Facility	250	Seats								
		Hotel	275	Rooms								
		Office	681	ksf								
108	1230 S Olive St	Apartments	360	du	2,114	31	126	157	127	69	196	
		Retail	6.4	ksf								
109	708 N Hill St	Apartments	162	du	980	16	57	73	57	33	90	
		Retail		ksf								
110	211 W Alpine St	Apartments	122	du	566	9	42	51	37	18	55	
		Retail	7.5	ksf								
111	1101 N Main	Condominiums	318	du	1,102	-9	80	71	75	12	87	
112	700 W Cesar Chavez Ave	Apartments	299	du	1,511	7	89	96	99	54	153	
		Retail		ksf								
113		Apartments	236	du	791	8	45	53	43	7	50	
113	949 S Hope St	Retail	5.954		791	8	45	53	43	7	50	
		Hotel	560	du								
114	900 W Wilshire BI	Office	1500	ksf	3,624	725	75	800	94	764	858	
114	900 W Wishire Bl	Retail/Restaurant	275	ksf	3,624	725	75	800	94	764	858	
		Apartments		du								
		Hotel	142									
115	643 N Spring St	Commercial		ksf		61	122	183	138	91	229	
115	643 N Spring St	Restaurant	2.532	ksf	2,723	61	122	183	138	91	229	
		Apartments										
116	427 W 5th St	Apartments	615		3,134	42	115	157	164	97	261	
	427 W Sth St	Restaurant	16.309	ksf								
117	1843 E 41st St	Warehouse	643	ksf	2,581	242	53	295	67	202	269	
118	250 S Hill St	Condos	330		1,217	21	73	94	66	42	108	
118	250 S Hill St	Retail		ksf	1,217	21	73	94	66			
119	1700 E Martin Luther King	Industrial	480.3	ksf	2,134	153	41	194	54	151	205	
120	1027 S Olive St	Apartments		du	632	9	39	48	38	21	59	
121	3401 E 1st Street	Industrial	480.3		458	6	18	24	25	17	42	
121	3401 E 1st Street	Apartments		du	458	6	18	24	25	17	42	
		Apartments	49	du								
122	1147 E Palmetto	Retail		ksf	2,908	73	141	215	147	83	230	
		Apartments	120	du								
123	1030 N Soto Street	Hotel	81	rooms	662	25	18	43	25	23	48	
		Manufacturing	36.26									
124	2710 S Compton Ave	Warehouse	46.76		346	37	10	47	15	33	48	
		Warehouse	3.74									

Project Site

- Related Projects

TABLE 3
670 Mesquit
Study Intersection Locations

No.	North-South Street	East-West Street	Control
1	S Central Avenue	7th Street	Signalized
2	N Alameda Street	E. Aliso Street/E. Commercial Street	Signalized
3	Alameda Street	Temple Street	Signalized
4	N Alameda Street	E 1st Street	Signalized
5	N Alameda Street	E 2nd Street	Signalized
6	S Alameda Street	3rd Street	Signalized
7	S Alameda Street	4th Street	Signalized
8	S Alameda Street	6th Street	Signalized
9	S Alameda Street	7th Street	Signalized
10	Molino Street/Merrick Street	4th Street	Signalized
11	Mateo Street	6th Street	Signalized
12	Mateo Street	7th Street	Signalized
13	S Santa Fe Avenue	7th Street	Signalized
14	S Santa Fe Avenue	8th Street	Signalized
15	S Santa Fe Avenue	Porter Street	Signalized
16	S Santa Fe Avenue	Olympic Boulevard	Signalized
17	S Santa Fe Avenue	E 15th Street	Signalized
18	S Rio Street	E 7th Street	Signalized
19	S Anderson Street	E 7th Street	Signalized
20	Boyle Avenue	Whittier Boulevard	Signalized
21	Boyle Avenue	7th Street	Signalized
22	S Alameda Street	I-10 Eastbound Ramps	Signalized
A	Mateo Street	4th Place	Unsignalized
B	Mateo Street	Willow Street	Unsignalized
C	Mateo Street	Jesse Street	Unsignalized
D	S Santa Fe Avenue	Willow Street	Unsignalized
E	S Santa Fe Avenue	Mesquit Street	Unsignalized
F	S Santa Fe Avenue	Jesse Street	Unsignalized
G	Mesquit Street	Jesse Street	Unsignalized
H	US-101 Southbound Off-Ramp	7th Street	Unsignalized
I	I-10 Westbound Ramps	E 8th Street	Unsignalized
J	I-10 Eastbound Ramps	Porter Street	Unsignalized

Study Intersections

- Unsignalized Intersection

ATTACHMENT A

Project Description

RCS VE LLC (the Applicant) proposes to construct a new mixed-use development (Project) totaling approximately $1,792,103$ square feet (sf) of floor area on an approximately 5.45 -acre property at 670 Mesquit Street in the Arts District of Downtown Los Angeles. ${ }^{1}$

The Project Site flanks Mesquit Street between the former 6th Street Viaduct right-of-way on the north and the $7^{\text {th }}$ Street Bridge on the south. The majority of the Project Site is on the east side of Mesquit Street; the southern portion of the Project Site also includes parcels on the west side of Mesquit Street at $7^{\text {th }}$ Street. The Project Site is bordered on the east by the railway property (Railway Property), which encompasses freight and passenger rail lines and rail yards owned by Amtrak, Burlington Northern/Santa Fe Railway (BNSF), and the Los Angeles County Metropolitan Transportation Authority (Metro). The Los Angeles River is located just east of the Railway Property with the Boyle Heights community beyond. The Project Site is currently developed with existing cold storage facilities consisting of freezer, cold storage, surface parking, dry storage warehouses, and associated office space totaling approximately 205,393 square feet of gross floor area.

Project implementation would require the removal of all existing on-site uses. New development would include creative office space (approximately 944,055 square feet); a 236 -room hotel; 308 multi-family residential housing units; an Arts District Central Market, a grocery store, and general retail uses totaling approximately 136,152 square feet; restaurants totaling approximately 89,576 square feet; studio/event/gallery space and a potential museum totaling approximately 93,617 square feet; and a gym of approximately 62,148 square feet. As part of the Project, Mesquit Street is proposed for vacation between 6th and 7th Streets.

The Project would provide open space for use by Project residents, hotel guests, employees, and visitors. Proposed open space features include at-grade landscaped areas, pedestrian passageways and walkways, viewing platforms, and above-grade landscaped terraces and pool decks.

The Applicant also seeks to construct a pedestrian deck over the Railway Property (Deck) if agreements can be obtained with Railway Property owners. The Deck would serve as a multi-modal connection between the 7th Street Bridge and the Project Site’s Northern Landscaped Area, which would provide access to the City's proposed Sixth Street Park, Arts, River, and Connectivity (PARC) Improvements. The Deck could include such amenities as a sculpture park, benches and seating areas, landscaping, and other visitor-serving features. The Deck, together with the vacation

[^13]of Mesquit Street, would also offer additional space for programmed special events open to the public. The Deck could also provide access directly to the Los Angeles River. Two versions of the Project are being evaluated in the study: one without and one with the Deck over the Railway Property.

Vehicular and bicycle access to the Project Site is proposed via four driveways: (1) a two-way fullaccess driveway on Mesquit Street at the northern end of the Project Site at ground level, (2) a twoway full-access driveway at the intersection of Mesquit Street and Jesse Street at the ground level, (3) a two-way signalized driveway connecting the $7^{\text {th }}$ Street Bridge and Building 4 near the southeastern corner of the Project Site that allows for full access out and right-turns only in, and (4) a one-way driveway restricted to only right-turns-out that connects the $7^{\text {th }}$ Street Bridge and Building 5 near the southwestern corner of the Project Site. In addition, a passenger loading zone pull-out would be provided along the east side of Mesquit Street north of Jesse Street near Building 2.

The Project proposes structured parking at, above, and below grade. Up to six levels of belowgrade parking are proposed, spanning the buildings' footprints. There would also be at-grade and above-grade parking within Building 5. The Project would provide on-site vehicle parking through a combination of traditional parking stalls, valet, and semi-automated systems. Off-site parking may also be considered. Bicycle parking would be stationed in various locations throughout the Project Site and provide both short-term spaces and long-term storage.

Construction would include approximately 531,319 cubic yards of grading (cut), all of which would be exported from the Project Site. The excavation depth would range from approximatively 61 to 68 feet below ground surface (bgs) for the lowest subterranean parking level. To accommodate elevator pits, maximum excavations would range in depth from approximately 71 to 75 feet bgs in isolated areas.

Project construction is anticipated to commence as early as 2021 and be completed as early as 2026, in a single phase, or as late as 2040 if built in separate phases over time. In the event construction is phased, construction of below-grade parking may also be phased.

Attachment B

Mesquit Volume Shift Methodology

To analyze the Project's potential traffic impacts on the surrounding street network, it is necessary to test all scenarios with an operational 6 th Street Viaduct included as part of the network. A replacement 6 th Street Viaduct is currently under construction. The new 6 th Street Viaduct is anticipated to open in 2020. The Project is anticipated to complete construction in 2027. Therefore, to present an accurate picture of the Project's potential impacts and because current existing conditions are not representative of generally existing conditions, it is appropriate to include the reopened bridge as part of the traffic analysis. This modified baseline will be used to assess potential traffic impacts under both existing conditions and as part of future cumulative scenarios.

Empirical data exists to complete this analysis. The Project collected traffic counts in 2018, over two years after the demolition of the old 6 th Street Viaduct. These counts reflect traffic patterns that have resulted from travel adjustments in and through the Arts District as a result of the bridge's closure. In order to analyze the network with the bridge in place, these counts had to be "shifted" to reflect traffic patterns with bridge conditions.

Fehr \& Peers reviewed intersection count data collected for the proposed 6AM project (6AM) in the immediate study area in 2015 prior to the 6th Street Viaduct closure. Using this data, Fehr \& Peers was able to calculate the number of vehicles that had previously traveled along the 6 th Street Viaduct during both AM and PM peak hours. Fehr \& Peers then compared the 2018 Mesquit counts (post-bridge closure) to the 2015 counts (bridge in operation) to assess the volume shift within the study area. The data indicates that a majority of the 6th Street Viaduct traffic shifted to the 7th Street bridge, with some shifting to the $4_{\text {th }}$ and $1_{\text {st }}$ Street bridges. In addition, the data indicates that some $6_{\text {th }}$ Street Viaduct traffic has shifted to the US-101 freeway to the north and the I-10 freeway to the south, with more vehicles getting on and off at the I-10 ramps at Mateo and Santa Fe and the US-101 ramps at Alameda in 2018 than in 2015 when the 6 th Street Viaduct was in operation.

For intersections within the Project study area that overlap with 6AM count locations, the Project will use the 6AM data with a 3 percent growth rate to account for a 1 percent growth rate per year between 2015 and 2018 as the baseline, which reflects traffic patterns for 2018 conditions as if the 6 th Street Viaduct were in place. For intersections within the Project study area that do not overlap with the 6AM count locations, Fehr \& Peers adjusted the 2018 counts to shift the vehicles temporarily traveling on the identified parallel routes due to the construction closure of the 6 th Street Viaduct.

Fehr \& Peers validated the shift by comparing the shifted Project volumes to the 6AM counts with a 3 percent growth rate and confirmed the shifted volumes aligned with the counts that were collected when the bridge was in operation. This data supports that the Project's baseline volumes, which include a mix of 6AM counts with a 3 percent growth rate and the Project counts with a shift, are a valid baseline for determining the Project's potential traffic impacts.

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

Proposed Project Land Use Type	Value	Unit
Housing \| Multi-Family	258	DU
Housing \| Hotel	236	Rooms
Retail \| General Retail	79.24	ksf
Retail \| Supermarket	32.737	ksf
Retail \| Health Club	155.765	ksf
Retail \| High-Turnover Sit-Down Restaurant	44.788	ksf
Retail \| Quality Restaurant	73.646	ksf
Office \| General Office	944.055	ksf
Housing \| Affordable Housing - Family	50	DU

TDM Strategies
Select each section to show individual strategies
Use $\bar{\square}$ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Analysis Results

Proposed Project	With Mitigation
27,040 Daily Vehicle Trips	24,484 Daily Vehicle Trips
195,304 Daily VMT	176,517 Daily VMT
4.0 Houseshold VMT per Capita	3.3 Houseshold VMT per Capita
Work VMT per Employee	Work VMT per Employee

Household: No
Threshold = 6.0 15% Below APC

Work: No

Threshold $=7.6$ 15\% Below APC

Household: No
Threshold $=6.0$ 5\% Below APC

Work: No
Threshold $=7.6$ 15\% Below APC
$0 \quad=1$ Measuring the Miles

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

Proposed Project Land Use Type	Value	Unit
Housing \| Multi-Family	258	DU
Housing \| Hotel	236	Rooms
Retail \| General Retail	79.24	ksf
Retail \| Supermarket	32.737	ksf
Retail \| Health Club	173.378	ksf
Retail \| High-Turnover Sit-Down Restaurant	44.788	ksf
Retail \| Quality Restaurant	73.646	ksf
Office \| General Office	944.055	ksf
Housing \| Affordable Housing - Family	50	DU

TDM Strategies
Select each section to show individual strategies
Use $\bar{\square}$ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Analysis Results

Proposed Project	With Mitigation
27,493 Daily Vehicle Trips 198,540 Daily VMT	24,901 Daily Vehicle Trips
4.0 Houseshold VMT per Capita	179,481 Daily VMT
Houseshold VMT per Capita	
Work VMT per Employee	5.4 Work VMT per Employee

Household: No
Threshold = 6.0 15% Below APC

Work: No

Threshold $=7.6$ 15\% Below APC

Household: No
Threshold $=6.0$ 5\% Below APC

Work: No
Threshold $=7.6$ 15\% Below APC

0 = Measuring the Miles

Appendix B:

TAG Screening Responses and Supporting Analysis

FEhR刍PEERS

Appendix B: Transportation Analysis Guidelines Screening Responses and Supporting Analysis

(Based on LADOT TAG, July 2020)

Screening Criteria	Screening Evaluation	Analysis Required?
2.1 CONFLICTING WITH PLANS, PROGRAMS, ORDINANCES, OR POLICIES		
If the project requires a discretionary action, and the answer is yes to any of the following questions, further analysis will be required to assess whether the proposed project would negatively affect existing pedestrian, bicycle, or transit facilities: 1. Does the project require a discretionary action that requires the decision maker to find that the decision substantially conforms to the purpose, intent and provisions of the General Plan? 2. Is the project known to directly conflict with a transportation plan, policy, or program adopted to support multimodal transportation options or public safety? 3. Is the project proposing to, or required to make any voluntary or required, modifications to the public right-of-way (i.e., street dedications, reconfigurations of curb line, etc.)?	1. Yes 2. No 3. Yes	Yes, see Chapter 3.1

2.2 CAUSING SUBSTANTIAL VEHICLE MILES TRAVELED

If the project requires a discretionary action, and the answer is no to either T-2.1-1 or T-2.1-2, further analysis will not be required for Threshold T-2.1, and a "no impact" determination can be made for that threshold:

1. $\mathrm{T}-2.1-1$: Would the land use project generate a net increase of 250 or more daily vehicle trips?
2. T-2.1-2: Would the project generate a net increase in daily VMT?

In addition to the above screening criteria, the portion of, or the entirety of a project that contains small-scale or local serving retail uses 13 are assumed to have less than significant VMT impacts. If the answer to the following question is no, then that portion of the project meets the screening criteria and a no impact determination can be made for the portion of the project that contains retail uses. However, if the retail project is part of a larger mixed-use project, then the remaining portion of the project may be subject to further analysis in

670 Mesquit Project
accordance with the above screening criteria. Projects that include retail uses in excess of the screening criteria would need to evaluate the entirety of the project's vehicle miles traveled, as specified in Section 2.2.4.
3. If the project includes retail uses, does the portion of the project that contain retail uses exceed a net 50,000 square feet?

Independent of the above screening criteria, and the project requires a discretionary action, further analysis will be required if the following statement is true:
4. Would the Project or Plan located within a one-half mile of a fixed-rail or fixed-guideway transit station replace an existing number of residential units with a smaller number of residential units?

2.3 SUBSTANTIALLY INDUCING ADDITIONAL AUTOMOBILE TRAVEL

If the answer is no to the following question, further analysis will not be required for Threshold $\mathrm{T}-2.2$, and a no impact determination can be made for that threshold:

1. T-2.2: Would the project include the addition of through traffic lanes on existing or new highways, including general purpose lanes, high-occupancy vehicle (HOV) lanes, peak period lanes, auxiliary lanes, and lanes through grade-separated interchanges (except managed lanes, transit lanes, and auxiliary lanes of less than one mile in length designed to improve roadway safety)?

2.4 SUBSTANTIALLY INCREASING HAZARDS DUE TO A GEOMETRIC DESIGN FEATURE OR INCOMPATIBLE USE

If the project requires a discretionary action, and the answer is "yes" to either of the following questions, further analysis will be required to assess whether the project would result in impacts due to geometric design hazards or incompatible uses:

1. Is the project proposing new driveways, or introducing new vehicle access to the property from the public right-of-way?
2. Is the project proposing to, or required to make any voluntary or required, modifications to the public right-of-way (i.e., street dedications, reconfigurations of curb line, etc.)?

3.2 PEDESTRIAN, BICYCLE, AND TRANSIT ACCESS ASSESSMENT

If the answer is yes to all of the following questions, further analysis will be required to assess whether the project would negatively affect existing pedestrian, bicycle, or transit facilities:

1. Does the land use project involve a discretionary action that would be under review by the Department of City Planning?
[^14]1. Yes

Yes, see
2. Yes

1. Yes
2. Yes

Yes, see
3. Yes
a. 50 dwelling units or guest rooms or combination thereof, or
b. 50,000 square feet of non-residential space?
3. Would the project generate a net increase of 1,000 or more daily vehicle trips, or is the project's frontage along an Avenue or Boulevard (as designated in the City's General Plan), 250 linear feet or more, or is the project's building frontage encompassing an entire block along an Avenue or Boulevard (as designated in the City's General Plan)?

3.3 PROJECT ACCESS, SAFETY, AND CIRCULATION EVALUATION

Land Use Development Projects:

For land use projects, if the answer is yes to all of the following questions, further analysis will be required to assess whether the project

1. Yes
2. Yes
3. Does the land use project involve a discretionary action that would be under review by the Department of City Planning?
4. Would the land use project generate a net increase of 250 or more daily vehicle trips?

3.4 PROJECT CONSTRUCTION

If the answer is yes to any of the following questions, further analysis will be required to assess if the project could negatively affect existing pedestrian, bicycle, transit, or vehicle circulation:

1. Would a project that requires construction activities to take place within the right-of-way of a Boulevard or Avenue (as designated in the
2. No Mobility Plan 2035) which would necessitate temporary lane, alley, or street closures for more than one day (including day and evening hours, and overnight closures if on a residential street?)
3. Would a project require construction activities to take place within the right-of-way of a Collector or Local Street (as designated in the Mobility Plan 2035) which would necessitate temporary lane, alley, or street closures for more than seven days (including day and evening hours, and including overnight closures if on a residential street)?
4. Would in-street construction activities result in the loss of regular vehicle, bicycle, or pedestrian access, including loss of existing bicycle parking to an existing land use for more than one day, including day and evening hours and overnight closures if access is lost to residential units?
5. Would in-street construction activities result in the loss of regular ADA pedestrian access to an existing transit station, stop, or facility (e.g., layover zone) during revenue hours?
6. No
7. No
8. No
9. No
10. No
11. No

Yes, see
Chapter 4.3

670 Mesquit Project
5. Would in-street construction activities result in the temporary loss for more than one day of an existing bus stop or rerouting of a bus route that serves the project site?
6. Would construction activities result in the temporary removal and/or loss of on-street metered parking for more than 30 days?
7. Would the project involve a discretionary action to construct new buildings or additions of more than 1,000 square feet that require access for hauling construction materials and equipment from streets of less than 24 -feet wide in a hillside area?

3.5 RESIDENTIAL STREET CUT-THROUGH ANALYSIS

Land Use Development Projects:

If the answer is yes to all of the following questions, further analysis may be required to assess whether the project would negatively affect residential streets:

1. Would the project generate a net increase of 250 or more daily vehicle trips?
2. Does the land use project include a discretionary action that would be under review by the Department of City Planning?

In addition, for development projects, when selecting residential street segments for analyses during the transportation assessment scoping process, all of the following conditions must be present:
3. The project is located along a currently congested Boulevard or Avenue and adds trips that may lead to trip diversion to parallel routes along residential Local Streets. The congestion level of the Boulevard or Avenue can be determined based on the estimated peak hour LOS under project conditions of the study intersection(s) (as determined in Section 3.3). LOS E and F are considered to represent congested conditions;
4. The project is projected to add a substantial amount of automobile traffic to the congested Boulevard(s), Avenue(s), or Collector(s) that could potentially cause a shift to alternative route(s); and
5. Nearby local residential street(s) (defined as Local streets as designated in the City's General Plan passing through a residential neighborhood) provide motorists with a viable alternative route. A viable alternative route is defined as one which is parallel and reasonably adjacent to the primary route as to make it attractive as an alternative to the primary route. LADOT has discretion to define which routes are viable alternative routes, based on, but not limited to, features such as geography and presence of existing traffic control devices, etc.

1. Yes
2. Yes
3. No
4. No
5. No

Appendix C:

Plans, Programs, Ordinance or Policies Assessment and Geometric Design Hazards Review

FEHR PPEERS

670 Mesquit Project Transportation Assessment

Appendix C: 670 Mesquit Project

Detailed Responses in Support of Determining Plans, Programs, Ordinances, or Policies Applicability

Adapted from Attachment D: Plan Consistency Workshop In Transportation Analysis Guidelines, LADOT, July 2020

I. Screening Criteria for Policy Analysis

If the answer is "yes" to any of the following questions, further analysis is required to demonstrate that the project does not conflict with a plan, policy, or program.

Screening Criteria	Answer
Does the project require a discretionary action that requires the decision maker to find that the decision substantially conforms to the purpose, intent and provisions of the General Plan?	Yes
Is the project known to directly conflict with a transportation plan, policy, or program adopted to support multimodal transportation options or public safety?	No
Is the project required to or proposing to make any voluntary modifications to the public right-of-way (i.e., dedications and/or improvements in the right-of-way, reconfigurations of curb line, etc.)?	Yes

670 Mesquit Project Transportation Assessment
II. Plan Consistency Analysis

Question	Guiding Questions	Relevant Plans, Policies, and Programs	Evaluation
A. MOBILITY Plan 2035 PROW Classification Standards for Dedications and Improvements			
A. 1	Does the project include additions or new construction along a street designated as a Boulevard I, and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone?	MP 2.1, 2.3, 3.2, and Mobility Plan 2035 Street Designations and Standard Roadway Dimensions	$7^{\text {th }}$ Street is designated as an Avenue II along the Project frontage. Per the City of Los Angeles Complete Streets Design Guide, the designated right-of-way and roadway widths of an Avenue II are 86^{\prime} and 56^{\prime}, respectively. $7^{\text {th }}$ Street along the Project frontage has a 72^{\prime} right-of-way and 56^{\prime} roadway. The land use designation is M3-1-RIO (River Improvement Overlay District).
A. 2	If A. 1 is yes, is the project required to make additional dedications or improvements to the Public Right of Way as demonstrated by the street designation?		Based on the designated street widths, the $7^{\text {th }}$ Street right-of-way along the Project frontage would require a dedication.
A. 3	If A. 2 is yes, is the project making the dedications and improvements as necessary to meet the designated dimensions of the fronting street (Boulevard I, and II, or Avenue I, II, or III)?		The Project does not propose any dedications along $7^{\text {th }}$ Street.
A. 4	If the answer to A.3. is NO , is the project applicant asking to waive from the dedication standards?		Given that $7^{\text {th }}$ Street is a bridge along the Project frontage, dedication may not be required.
B. Mobility Plan 2035 PROW Policy Alignment with Project-Initiated Changes			
B. 1	Does the project physically modify the curb placement or turning radius and/or physically alter the sidewalk and parkways space that	MP 2.1, 2.3, 3.2, 2.10, and Street Designations and	The Project will install new sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street and include a pedestrian paseo such that the Project would be supportive of and not preclude or conflict with Mobility Plan 2035 policies such as:

670 Mesquit Project Transportation Assessment

	changes how people access a property?	Standard Roadway Dimensions

2.1 Adaptive Reuse of Streets: Urban streets serve multiple purposes that not only include travel but also play a role in providing other roles such as landscaping and drainage. The Project proposes to vacate the eastern half of Mesquit Street from the southern edge of the LADWP property on the east side of Mesquit Street Jesse Street and all of Mesquit Street from Jesse Street to $7^{\text {th }}$ Street. The Project proposes to convert Mesquit Street from Jesse Street to $7^{\text {th }}$ Street to a pedestrian paseo with limited vehicular access (e.g. for emergency vehicles) that connects Mesquit Street and 7th Street through stairs, elevators, and escalators between Buildings 4 and 5. The Mesquit Paseo would serve multiple purposes by improving bicyclist and pedestrian connectivity with the connection between Mesquit Street and 7th Street and by activating the area with the weekend farmers market. The Project does not propose physical changes to the Mesquit Street roadway from Jesse Street to the southern edge of the LADWP property on the east side of Mesquit Street and will maintain public access. The Project proposes to add street trees around the Project site and new sidewalks along the Project frontage on Mesquit Street from northern end of Building 1 to Jesse Street.
2.3 Pedestrian Infrastructure: This policy recognizes walking as a component of every trip and ensures high quality pedestrian access is considered in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment. The Project proposes several right-of-way improvements to enhance pedestrian access to, from, and around the Project site:

- New pedestrian crosswalk on the $7^{\text {th }}$ Street bridge to access the eastern portion of the Project site (near building 4).
- New elevated pedestrian walkway from the $7^{\text {th }}$ Street bridge to access the eastern portion of the Project site, which would be replaced by the deck under the Project with the Deck Concept.
- New sidewalks along the Project frontage on Mesquit Street from the northern end of Building 1 to Jesse Street
- Improvements to pedestrian lighting around the Project site
3.2 People with Disabilities: When designing developments, it is important to accommodate the needs of all people with varying levels of mobility. The Project proposes to add new ADAcompliant sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street.
2.10 Loading Areas: When designing developments, it is important to consider a loading area that minimally impacts other travelers such as people driving or walking. The Project proposes a curbside passenger loading zone along Mesquit Street, in front of Building 1. Passenger loading activity would likely have a minimal impact on the surrounding street network given that the passenger loading zone is designed as a pull-out along the curb with sufficient space for

670 Mesquit Project Transportation Assessment

			passenger pick-up and drop-off. Primary service access would be provided via loading docks located within the ground level of the Project's parking structure. Large truck deliveries would enter and exit the parking structure via the northern driveway on Mesquit Street and have turnaround capability provided within the Project site. A loading area accommodating cars or vans associated with residential and commercial uses would also be accessible via the northern driveway on Mesquit Street.
B. 2	Does the project add new driveways along a street designated as an Avenue or a Boulevard that conflict with LADOT's Driveway Design Guidelines?	MP 2.10, PL.1, CDG 2, MPP 321	The Project was analyzed to determine if it conflicts with LADOT's Driveway Design Guidelines in the following ways: - Locating new driveways for residential properties on an Avenue or Boulevard, and access is otherwise possible using an alley or a collector/local street or locating new driveways for industrial or commercial properties on an Avenue or Boulevard and access is possible along a collector/local street - Mobility Plan 2035 program PL. 1 encourages vehicular access from non-arterial streets (or alleys). The objective of this program is to minimize interference with pedestrian access and vehicular movement. The two driveways along Mesquit Street conform with PL. 1 because Mesquit Street is classified as a Collector street and is proposed to be redesignated as a Local Street - Limited. While the Project proposes two driveways on 7th Street, which is classified as an Avenue II, the Project minimizes interference with pedestrian access and vehicle movement by restricting vehicles from turning left into the eastern driveway on 7th Street and limiting vehicles to egress-only with right-turns out of the western driveway on 7th Street. The eastern driveway on $7^{\text {th }}$ Street would also be signalized to facilitate safe pedestrian access across the $7^{\text {th }}$ Street bridge. Under CEQA, a project is considered consistent with an applicable plan or program if it is consistent with the overall intent of the plan or program and would not preclude the attainment of its primary goals. A project does not need to be in perfect conformity with each and every plan, program, or policy. Therefore, even though the Project proposes driveways on an arterial street, the Project is consistent with the overall intent of program PL. 1 to minimize interference with pedestrian access or vehicular movement. Furthermore, given the size of the Project, providing driveways on Mesquit Street and $7^{\text {th }}$ Street facilitates safe and efficient pedestrian access and vehicular movement by distributing site access and taking measures to

670 Mesquit Project Transportation Assessment

			minimize vehicle-pedestrian conflicts rather than concentrating vehicular access on Mesquit Street. Moreover, any inconsistency with an applicable plan, program, or policy is only a significant impact under CEQA if the plan, program, or policy was adopted for the purpose of avoiding or mitigating an environmental effect and the inconsistency itself would result in direct physical impact on the environment. The above policy is intended to implement broader regional goals, not to mitigate an environmental effect. Therefore, although the Project is inconsistent with program PL.1, this inconsistency would not be considered to be a significant impact under CEQA. - The total number of new driveways exceeds 1 driveway per every 200 feet along on the Avenue 2 or Boulevard frontage; locating new driveways on an Avenue or Boulevard within 150 feet from the intersecting street; locating new driveways on a collector or local street within 75 feet from the intersecting street; or locating new driveways near mid-block crosswalks, requiring relocation of the mid-block crosswalk - MPP 321 allows up to two driveways for up to 400 feet of frontage and an additional driveway for every additional 400 feet of frontage. The Project proposes two driveways along Project frontage greater than 400 feet on $7^{\text {th }}$ Street. MPP 321 on the design of driveways also states that on a collector or local street, such as Mesquit Street, driveways should not be placed within 75 feet of the adjacent street. The proposed driveway on the southern end of Mesquit Street is located within 75 feet of the Mesquit Street \& Jesse Street intersection as it is directly opposite of the existing end of Jesse Street and would create a fourth leg to the existing 3-legged intersection. MPP 321 further details that driveways at the top of a "T" intersection are to be centered within one foot of the prolongation of the terminating street center line. Therefore, the proposed driveway at Mesquit Street \& Jesse Street complies with MPP 321. The driveway on the northern end of Mesquit Street is more than 75 feet away from 6th Street.
B.2.1	Would the physical changes in the public right of way or new driveways that conflict with LADOT's Driveway Design	Mobility Plan 2035: Transit Enhanced Network, Bicycle Enhanced Network,	Pedestrian Enhanced District: Mobility Plan 2035 identifies Pedestrian Enhanced Districts (PED) where initial analysis suggests arterials can be improved and further analysis and prioritization will occur as funding and projects become available. The Project frontage along Mesquit Street from

670 Mesquit Project Transportation Assessment

Jesse Street to $6^{\text {th }}$ Street is part of the PED. The Project will not narrow or remove pedestrian facilities and proposes several pedestrian access improvements:

- New pedestrian crosswalk on the $7^{\text {th }}$ Street bridge to access the eastern portion of the Project site (near building 4).
- New elevated pedestrian walkway from the $7^{\text {th }}$ Street bridge to access the eastern portion of the Project site, which would be replaced by the deck under the Project with the Deck Concept.
- New sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street
- Improvements to pedestrian lighting around the Project site

Neighborhood Enhanced Network: The Neighborhood Enhanced Network (NEN) is a selection of local streets to provide comfortable and safe routes for localized travel of slower-moving modes, such as walking or biking. The Project frontages are not along streets part of the NEN.

Transit Network: This policy identifies specific streets as part of the Transit Enhanced Network (TEN) to receive improvements that enhance the performance and reliability of existing and future bus service. The Project frontages are not along streets part of TEN.

Bicycle Networks: This policy establishes a Bicycle Enhanced Network (BEN), which is comprised of protected bicycle lanes and bicycle paths, to provide bikeways for a variety of users. The Project frontages are not along any streets part of the BEN.

Vision Zero: The Project frontages are not along anyway roadways identified as part of the City's High Injury Network.

Transit Oriented Community: The Transit-Oriented Community (TOC) guidelines define parameters of housing incentives based on considerations such as proximity to high-quality transit, type of housing, and the land uses being replaced. The location of the Project site qualifies as Tier 3 per ZIMAS

The Project proposes four driveways with two driveways along $7^{\text {th }}$ Street and two driveways along Mesquit Street. The Project does not propose more driveways than allowed by the City's maximum standard and would not preclude the City from advancing the safety of vulnerable roadway users.

670 Mesquit Project Transportation Assessment

C. Network Access			
C1.1	Does the project propose to vacate or otherwise restrict public access to a street, alley, or public stairway?	MP 3.9	The Project proposes a full-width vacation/merger of Mesquit Street from the northerly right-ofway of $7^{\text {th }}$ Street to the southerly right-of-way of Jesse Street. The project also proposes a halfwidth subsurface merger for the easterly half of Mesquit Street from the southerly right-of-way of Jesse Street to the southerly line of the LADWP property on the east side of Mesquit Street. The Project proposes to convert Mesquit Street between Jesse Street and $7^{\text {th }}$ Street to a pedestrian paseo with limited vehicle access. The paseo would improve pedestrian (and bicyclist) access between Mesquit Street and $7^{\text {th }}$ Street. The Project does not propose physical changes to the Mesquit Street roadway from Jesse Street to $6^{\text {th }}$ Street.
C.1.2	If the answer to C.1.1 is Yes, will the project provide or maintain public access to people walking and biking on the street, alley or stairway?		MP 3.9 Increased Network Access: Streets, alleys, stairways, and other public right-of-ways play an important role in the City's mobility system by facilitating better connectivity. Therefore, this policy discourages the vacation of public rights-of-way on the basis that these types of changes may limit connectivity by increasing block sizes and removing previously accessible travel routes for multimodal activity. This policy focuses on maintaining network access through strategies, such as smaller block sizes to facilitate connectivity for travelers in the area. The Project will not restrict public access to Mesquit Street, other than limiting vehicle access (e.g. for emergency vehicles), to the pedestrian paseo from Jesse Street to $7^{\text {th }}$ Street. Although the pedestrian paseo would limit vehicle access to Mesquit Street from Jesse Street to $7^{\text {th }}$ Street, Mesquit Street currently ends in a cul-de-sac at $7^{\text {th }}$ Street so the conversion to a pedestrian paseo would have little to no impacts on network connectivity or vehicular travel. The conversion to the Mesquit Paseo would improve bicyclist and pedestrian connectivity by creating a new connection between Mesquit Street and 7th Street through stairs, elevators, and escalators between Buildings 4 and 5.
C.2.1	Does the project create a cul-desac or is the project located adjacent to an existing cul-de-sac?	MP 3.10	The southern end of Mesquit Street is currently a cul-de-sac that is used for parking under the $7^{\text {th }}$ Street bridge. The Project proposes to convert Mesquit Street from Jesse Street to $7^{\text {th }}$ Street to a pedestrian paseo with limited vehicular access and a view corridor from Mesquit Street to $7^{\text {th }}$ Street with through pedestrian and bicyclist access.
C.2.2	If yes, will the cul-de-sac maintain convenient and direct public access to people walking and biking to the adjoining street network?		MP 3.10 Cul-de-sacs: This policy discourages the use of cul-de-sacs that do not provide access for active transportation options. The southern end of Mesquit Street is currently a cul-de-sac that is used for parking under the 7th Street Bridge. The Project proposes to convert Mesquit Street from Jesse Street to 7th Street to the Mesquit Paseo with limited vehicular access and a view corridor from Mesquit Street to 7th Street with through pedestrian and bicyclist access. The Mesquit Paseo would improve access for people walking and biking by creating convenient and direct public

670 Mesquit Project Transportation Assessment

			access between Mesquit Street and $7^{\text {th }}$ Street through stairs, elevators, and escalators between Buildings 4 and 5 , which is currently unavailable as Mesquit Street and $7^{\text {th }}$ Street are currently not connected.
D. Parking Supply and Transportation Demand Management			
D. 1	Would the project propose a supply of onsite parking that exceeds the baseline amount as required in the Los Angeles Municipal Code or a Specific plan, whichever requirement prevails?	MP 3.8, 4.8, 4.13	4.13 Parking and Land Use Management: This policy states that excessive parking can incentivize undesirable behavior or result in large areas of vacant land that make it harder to reach destinations without a vehicle. The Project would provide a minimum of 2,000 traditional vehicle parking spaces, with parking for up to 3,500 vehicles using a combination of automated parking systems, valet parking, or other efficiency parking methods. The proposed Mesquit Specific Plan will include parking standards considered appropriate for this area and planned uses, and the Project would provide parking in accordance with those vehicle parking regulations.
D. 2	If the answer to D.1. is YES, would the project propose to actively manage the demand of parking by independently pricing the supply to all users (e.g. parking cash-out), or for residential properties, unbundle the supply from the lease or sale of residential units?		4.8 Transportation Demand Management Strategies: This policy encourages greater utilization of Transportation Demand Management Strategies to reduce dependence on single-occupancy vehicles. The Project proposes several features that would actively manage parking demand and dependence on single-occupancy vehicles: - The Project would support multi-modal travel by serving as a mobility hub with car share, bikeshare, bike amenities (e.g. bike parking and bike repair facilities), pedestrian amenities (e.g. new sidewalks, pedestrian lighting, and pedestrian paseo), EV charging stations, and real-time transit information. - The Project will develop a TDM plan during construction, and the final TDM plan will be approved by LADOT prior to the City's issuance of the certificate of occupancy for the Project. Below are several TDM strategies that are applicable to the Project: - Commute Trip Reduction Program - This strategy involves the development of a program targeted towards office workers. This program also includes a promotions and marketing program, detailed below - Promotions and Marketing - This strategy involves the use of marketing and promotional tools to educate and inform employees about site-specific transportation options. This strategy includes a website and possible mobile app for transportation information specific to the Project. - Unbundled Parking - This strategy separately prices parking from leases for commercial tenants and is bundled with employee parking cash-out and pricing workplace parking.

670 Mesquit Project Transportation Assessment

D. 3	Would the project provide the minimum on and off-site bicycle parking spaces as required by Section 12.21 A. 16 of the LAMC?
D. 4	Does the Project include more than 25,000 square feet of gross floor area construction of new non-residential gross floor?

- Subsidized Transit Pass - This strategy would provide tenants in the office space with the opportunity to obtain subsidized/discounted daily or monthly public transit passes to use locally/regionally. These passes can be partially or wholly subsidized by the employer.
- Ride-Sharing Program - This strategy designates a certain percentage of parking spaces for ride-sharing vehicles, designs adequate passenger loading/unloading and waiting areas for ride-sharing vehicles, and provides a website or message board to facilitate coordination of rides.
- The Applicant proposes to contribute to FASTLink, the Downtown TMO, or to the formation of a new Arts District TMO focused on the area around the Project. The TMO services would be available to anyone within the general Arts District community, not just residents and tenants of the proposed Project, and in this way help to alleviate current and future traffic congestion throughout the area. The Applicant will agree to contribute to the Arts District TMO/Arts District portion of a Downtown TMO following approval of the Project by becoming a member, participating in, and make a one-time contribution of \$100,000 to TMO operations and marketing efforts. In addition, the applicant wil encourage its office and hotel lessees to become members of the TMO and maintain that membership on an ongoing basis.
3.8 Bicycle Parking: The Project will provide a minimum of 288 short-term and 519 long-term bicycle parking spaces, as required by the proposed Mesquit Specific Plan, which would substantially conform to the requirements of Section 12.21 A. 16 of the LAMC.

The Project proposes creative office space (approximately $944,055 \mathrm{sf}$); 308 multifamily residential housing units; a hotel (236 rooms); and a range of commercial uses including a grocery store (approximately $28,054 \mathrm{sf}$) and food hall (approximately $28,858 \mathrm{sf}$); restaurants (approximately 89,576 sf); studio/event/gallery space and a potential museum (approximately $93,617 \mathrm{sf}$); a gym (approximately $62,148 \mathrm{sf}$); and general retail (approximately $79,240 \mathrm{sf}$). The Project may also include the construction of a 3-acre pedestrian amenity deck over the railway property adjacent to the Project site to the east (Project with the Deck Concept).

			considered to be an unavoidable significant impact, due to the significance criteria identifying an impact when any increase in VMT due to retail occurs.
E.4	4 If the Answer to E.2 or E.3 is YES, then further evaluation would be necessary to determine whether such a project or land use plan would be shown to be consistent with VMT and GHG reduction goals of the SCAG RTP/SCS	As noted in Question E.3, the Project is projected to have a significant impact on retail VMT. Given its location in a dense area of the City of Los Angeles served by public transit, the mixed-use nature of the Project, its provision of features to encourage walking and bicycling, and its proposed implementation of a TDM plan (as described below), however, the Project would be consistent with the applicable goals and objectives of the SCAG 2020-2045 RTP/SCS (SCAG, September 2020) to locate diverse jobs and housing in infill locations served by multiple transportation options and promote sustainable transportation options. Therefore, the Project's cumulative impact on VMT would not be significant.	

Review of Consistency with Current Central City North Community Plan

The Central City North Community Plan was adopted in 2000 and amended in 2016 as part of the Mobility Plan 2035 Update. While an updated Community Plan is currently under development, the plan from 2016 is currently in effect and forms the basis for this review of conflicts relating to the transportation system.

The Central City North Community Plan (CCNCP) is one of 35 community plans in the City of Los Angeles that establishes the policies and programs that inform the framework for local land use, circulation, and service systems within the selected community plan area. Per the City's TAG, a review of the CCNCP was conducted to evaluate whether the project conflicts with or precludes the implementation of the community plan framework.

The CCNCP contains transportation-related objectives, policies, and programs in Chapter III, Land Use Plan Policies and Programs. The following objectives, policies, and programs are relevant to the Project:

Policy 2-2.2 New development needs to add to and enhance the existing pedestrian street activity (III-6).

- The Project supports this policy by proposing several pedestrian access improvements:
- Add new pedestrian crosswalk on the $7^{\text {th }}$ Street bridge for people walking to access the eastern portion of the Project site (near Building 4).
- Add new elevated pedestrian walkway from the $7^{\text {th }}$ Street bridge for people walking to access the eastern portion of the Project site, which would be replaced by the deck under the Project with the Deck Concept.
- Add four major pedestrian passageways (Entry Plazas) between Mesquit Street and the eastern edge of the Project site that would visually connect Boyle Heights, the Los Angeles River, the Arts District, and greater Downtown. The Entry Plazas would be located between each of Buildings 1 through 5 .
- Add new sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street.
- Improve pedestrian lighting around the Project site.

Policy 2-2.3 and 2-3.4 Require that the first-floor street frontage of structures, including mixed use projects and parking structures located in pedestrian oriented districts, incorporate commercial uses (III-6).

- While the Project is not located in a designated pedestrian oriented district, the Project proposes a variety of commercial uses for the ground floor of the building. The following are uses proposed for the ground floor of each building: Building 1 would have the residential lobby and hotel lobby, Building 2 would have the office lobby and retail, Building 3 would have the studio/event/gallery lobby and retail, and Buildings 4 and 5 would have access to the parking garage.

Policy 2-3.1 New development needs to add to and enhance the existing pedestrian activity (III-6).

- The Project proposes several pedestrian access improvements. The Project would add new pedestrian crosswalks on the $7^{\text {th }}$ Street Bridge for people walking to access the eastern portion of the Project Site near Building 4. The Project would also add the Elevated Pedestrian Walkway from the 7th Street Bridge, which would be replaced by the deck under the Project with the Deck Concept, for people wanting to access the eastern portion of the Project Site. Four major pedestrian passageways (Entry Plazas) are proposed between Mesquit Street and the eastern edge of the Project Site that would visually connect Boyle Heights, the Los Angeles River, the Arts District, and greater Downtown. The Entry Plazas would be located between each of Buildings 1 through 5. The Project would also add new sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street, and improve the pedestrian lighting around the Project Site.

A Transportation Improvement and Mitigation Plan (TIMP), was prepared for the CCNCP through an analysis of the land use impacts on transportation. The TIMP establishes a program of specific measures which are recommended to be undertaken during the life of the Community Plan. The TIMP provides an implementation program for the circulation needs of the Plan area. The following TIMP programs were reviewed to determine Project consistency with the CCNCP:

Street Reclassifications: The TIMP proposes the implementation of a new street classification, local industrial, in the Central City North area (III-17). None of the streets along the Project frontages are classified as local industrial.

670 Mesquit Project Transportation Assessment

Transportation Demand Management (TDM) Program: The TIMP identifies TDM programs and other improvements to enhance safety and mobility in the Central City North area, such as encouraging the formation of Transportation Management Associations (TMA's) and the continued implementation of the Citywide TDM Ordinance (III-20). The following policies are relevant to the Project:

- Policy 12-1.1 encourages non-residential development to provide employee incentives for utilizing alternatives to the automobile (III-21)
- The Project will develop a TDM plan prior to issuance of building permits, and the final TDM plan will be approved by LADOT prior to the City's issuance of the certificate of occupancy for the Project. The following TDM strategies are applicable as mitigation for the office component:
- Commute Trip Reduction Program - This strategy involves the development of a program targeted towards office workers. This program also includes a promotions and marketing program, detailed below.
- Promotions and Marketing - This strategy involves the use of marketing and promotional tools to educate and inform employees about site-specific transportation options. This strategy includes a website and possible mobile app for transportation information specific to the Project.
- Unbundled Parking - This strategy separately prices parking from leases for commercial tenants and is bundled with employee parking cash-out and pricing workplace parking.
- Subsidized Transit Pass - This strategy would provide tenants in the office space with the opportunity to obtain subsidized/discounted daily or monthly public transit passes to use locally/regionally. These passes can be partially or wholly subsidized by the employer.
- Ride-Sharing Program - This strategy designates a certain percentage of parking spaces for ride-sharing vehicles, designs adequate passenger loading/unloading and waiting areas for ride-sharing vehicles, and provides a website or message board to facilitate coordination of rides.
- Transportation Management Organization (TMO) - This strategy involves a TMO, which is an organization that oversees the development, implementation, and operation of trip reduction strategies within a study area. The Applicant proposes to contribute to FASTLink, the Downtown TMO, or to the formation of a new Arts District TMO focused on the area around the Project. The TMO services would be available to anyone within the general Arts District community, not just residents and tenants of the proposed Project, and in this way help to alleviate current and future traffic congestion throughout the area. The Applicant will agree to contribute to the Arts District TMO/Arts District portion of a Downtown TMO following

670 Mesquit Project Transportation Assessment
approval of the Project by becoming a member, participating in, and make a one-time contribution of \$100,000 to TMO operations and marketing efforts. In addition, the applicant will encourage its office and hotel lessees to become members of the TMO and maintain that membership on an ongoing basis.

- Policy 12-1.3 requires that proposals for major new non-residential development projects include submission of a TDM Plan to the City (III21)
- As described for Policy 12-1.1, the Project will develop a TDM plan during construction.
- Policy 12-1.4 states that TDM measures in Central City North should be consistent with adopted City policy As discussed in Section 3.2 of the Transportation Assessment and shown in Appendix G, LADOT's VMT Calculator was used to quantify the potential VMT reduction for the Project due to implementation of the TDM measures proposed for the Project. The VMT Calculator incorporates research conducted by Fehr \& Peers under contract to the California Air Pollution Control Officers Association (CAPCOA, 2010) and elsewhere. It considers a variety of TDM strategies and the setting in which they may apply, estimates effectiveness for each, and applies caps when appropriate (for example, simply aggregating the effectiveness of individual TDM measures can sometimes yield a result that is overestimated since more than one measure may be targeting the same trip). As shown in Table 19A and 19B in the report, with the TDM program, the vehicles trips generated by the commercial office component of the projects are estimated to be reduced by 18%.

The CCNCP also provides for various modes of non-motorized transportation/circulation such as walking and bicycle riding by establishing policies and standards to facilitate the development of a bicycle route system which is intended to compliment other transportation modes. The following policies are relevant to the Project:

Policy 13.1.4 encourages the provision of changing rooms, showers, and bicycle storage at new and existing and non-residential developments and public places (III-25).

- The Project will provide showers and a minimum of 288 short-term and 519 long-term bicycle parking spaces as required by the proposed Mesquit Specific Plan, which would also conform to the requirements of Section 12.21 A. 16 of the LAMC. The Project would also provide a self-service bike repair area.

Relevant policies in Chapter V, Urban Design, were also reviewed to assess the Project's consistency with the CCNCP.

670 Mesquit Project Transportation Assessment

Design Policies for Individual Projects

- C. Multiple Residential - 1. Site Planning requires all multi-family residential projects of five or more units to be designed around a landscaped focal point or courtyard to serve as an amenity for residents (V-4).
- The Project proposes a landscaped pedestrian paseo on Mesquit Street between Jesse Street and $7^{\text {th }}$ Street that would be accessible to not only residents, employees, and patrons but also to the neighborhood. The Project also proposes several gardens on several buildings, such as a productive garden on Building 2, a sculpture garden on Building 3, and a desert pollinator garden and public plaza flex deck on Building 4. The Project with the Deck Concept also proposes a deck that would not only be open to the public but also host outdoor programmatic elements, such as a weekly farmers market, group exercise classes, and busking.
- C. Multiple Residential - 3. Parking Structures requires that parking structures be integrated with the design of the buildings they serve (V4).
- The Project proposes a subterranean parking structure, with some ground floor parking, which will maximize commercial uses on the ground floor as suggested in this policy.

Detailed Responses for 2.4 Substantially Increasing Hazards Due to A Geometric Design Feature or Incompatible Use

Adapted from Section 2.4 in Transportation Analysis Guidelines, LADOT, July 2020

Impacts regarding the potential increase of hazards due to a geometric design feature generally relate to the design of access points to and from the project site, and may include safety, operational, or capacity impacts. Impacts can be related to vehicle/vehicle, vehicle/bicycle, or vehicle/pedestrian conflicts as well as to operational delays caused by vehicles slowing and/or queuing to access a project site. These conflicts may be created by the driveway configuration or through the placement of project driveway(s) in areas of inadequate visibility, adjacent to bicycle or pedestrian facilities, or too close to busy or congested intersections. These impacts are typically evaluated for permanent conditions after project completion but can also be evaluated for temporary conditions during project construction. If the project requires a discretionary action, and the answer is "yes" to either of the following questions, further analysis will be required to assess whether the project would result in impacts due to geometric design hazards or incompatible uses:

Screening Criteria

- Is the project proposing new driveways, or introducing new vehicle access to the property from the public right-of-way?
- Yes, the Project proposes new driveways and to introduce new vehicle access to the property from the public right-of-way. The Project would reduce the total number of vehicle access points to 4 driveways as there are currently three driveways and five loading docks on the existing frontage along Mesquit Street south of Jesse Street for loading and unloading at the existing cold storage facility.
- Is the project proposing to, or required to make any voluntary or required, modifications to the public right-of-way (i.e., street dedications, reconfigurations of curb line, etc.)?
- The Project is not proposing to make any dedications. $7^{\text {th }}$ Street is designated as an Avenue II and has an existing right-of-way width that is narrower than the Avenue II specification. However, given that $7^{\text {th }}$ Street is a bridge along the Project frontage, a dedication may not be required. Mesquit Street is designated as a Collector street and has existing right-of-way and roadway widths that are narrower than the Collector street specification. However, given that the Project is proposing a full-width vacation/merger of Mesquit Street between $7^{\text {th }}$ Street and the southern edge of Jesse Street and a half-width subsurface merger of the easterly half of Mesquit Street from that point to the southern edge of the LADWP property on the east side of Mesquit Street, the Project does not propose any dedications along Mesquit Street. The Project is proposing to add sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street as the existing sidewalk network around the Project site is not complete.

670 Mesquit Project Transportation Assessment

Assessing Project Impacts

Project access points, internal circulation, and parking access were reviewed to assess vehicle, bicycle, and pedestrian safety impacts from an operational and safety perspective (e.g. turning radii, driveway queuing, and line of sight for turns into and out of project driveway[s]) through the lens of Threshold T-3:

Threshold T-3: Would the project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

Operational and safety issues related to the potential for vehicle/pedestrian and vehicle/bicycle conflicts and the severity of consequences that could result were considered for locations where project driveways would cross pedestrian facilities or bicycle facilities (bike lanes or bike paths). Preliminary project access plans were reviewed through the lens of commonly accepted traffic engineering design standards (e.g. Section 321 of LADOT's Manual of Policies and Procedures, which provides guidance on driveway design) to ascertain whether any deficiencies are apparent in the site access plans which would be considered significant. The determination of significance considered the following factors:

- The relative amount of pedestrian activity at project access points.
- The Project site is located in a primarily industrial area with limited commercial development. The Project collected pedestrian counts at the intersections of $7^{\text {th }}$ Street $\&$ Santa Fe Avenue and Mesquit Street $\&$ Jesse Street, which are the closest intersections to the Project driveways. The 7th Street \& Santa Fe Avenue intersection had low pedestrian activity with 125 pedestrians observed in the AM peak period and 176 pedestrians observed in the PM peak period. The Mesquit Street \& Jesse Street intersection also had low pedestrian activity with 10 pedestrians observed in the AM peak period and 3 pedestrians observed in the PM peak period. The Project will contribute to improving walkability with enhancements to the Project site, such as proposing to add new sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street.
- Design features/physical configurations that affect the visibility of pedestrians and bicyclists to drivers entering and exiting the site, and the visibility of cars to pedestrians and bicyclists.
- Pedestrian access to the Project site would be provided via new sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street, a signalized driveway with a crosswalk across the $7^{\text {th }}$ Street bridge, and pedestrian walkways accessible to the neighborhood. Residents, visitors, patrons and employees arriving to the Project site by bicycle would have the same access opportunities as pedestrians and would be able to utilize on-site bicycle parking facilities. The Project's access locations would be designed to City standards and would provide adequate sight distance, sidewalks, crosswalks, and pedestrian movement controls that meet the City's requirements to protect pedestrian safety. All roadways and driveways will intersect at right angles. Streets would have trees and other potential impediments to adequate driver and pedestrian visibility would be minimal. Pedestrian entrances separated from vehicular driveways would provide access from the adjacent streets, parking facilities, and transit stops.

670 Mesquit Project Transportation Assessment

- The type of bicycle facilities the project driveway(s) crosses and the relative level of utilization.
- There are no existing or planned bicycle facilities along Mesquit Street or $7^{\text {th }}$ Street. Bicyclists traveling eastbound on $7^{\text {th }}$ Street would cross the signalized driveway and right-out-only driveway on $7^{\text {th }}$ Street. The counts collected at $7^{\text {th }}$ Street \& Santa Fe Avenue show 16 bicyclists in the AM peak and 4 bicyclists in the PM peak periods traveling eastbound on $7^{\text {th }}$ Street. Bicyclists traveling eastbound on $7^{\text {th }}$ Street would have minimal conflicts with vehicles at the driveways (just vehicles turning right) since one of the driveways is signalized with restricted left-turns into the driveway and the other driveway is right-out-only. Bicyclists traveling on Mesquit Street would cross the driveways located along Mesquit Street at Jesse Street and at the northern end of the Project site. The counts collected at Mesquit Street \& Jesse Street show 5 cyclists in the AM peak and 7 cyclists in the PM peak. Given that vehicles traveling on Mesquit Street will primarily be Project traffic and there will be less vehicle access points than currently present, the Project is not projected to an increase of conflicts for this factor.
- The physical conditions of the site and surrounding area, such as curves, slopes, walks, landscaping or other barriers, that could result in vehicle/pedestrian, vehicle/bicycle, or vehicle/vehicle impacts.
- The streets surrounding the Project site are mostly flat and do not curve. The only street that is not flat is the $7^{\text {th }}$ Street bridge. People driving westbound on $7^{\text {th }}$ Street toward the Project site would have limited visibility as they approach the top of $7^{\text {th }}$ Street bridge. The Project proposes to install a signal for the driveway on $7^{\text {th }}$ Street; this signalized driveway has a crosswalk to facilitate pedestrians crossing $7^{\text {th }}$ Street. The Project would contribute to minimizing vehicle/pedestrian, vehicle/bicycle, and vehicle/vehicle impacts by providing designated pedestrian space with the new sidewalks along the frontage on Mesquit Street from the northern end of Building 1 to Jesse Street and locating driveways at right angles to avoid visibility challenges. The driveway along Mesquit Street at Jesse Street is sloped for vehicles to enter and exit the subterranean parking garage. Drivers exiting the subterranean parking garage may have limited visibility of pedestrians crossing the driveway. The Project could implement blind spot mirrors to improve driver visibility and warning sounds/lights to alert pedestrians of approaching vehicles. The Project would locate driveways at right angles to avoid visibility challenges once vehicles have exited the subterranean parking garage.
- The project location, or project-related changes to the public right-of-way, relative to proximity to the High Injury Network or a Safe Routes to School program area.
- There are no streets along the Project's frontage that are on the High Injury Network, and the Project is not located in a Safe Routes to School program area.
- Any other conditions, including the approximate location of incompatible uses that would substantially increase a transportation hazard.
- While the Project is located in a primarily industrial area, the Project area is undergoing a shift from primarily industrial uses to more residential and commercial (e.g. restaurants and retail) uses; the Project proposes a mix of land uses and site amenities that is in line with the ongoing shift in land uses. The Project's multimodal amenities and location of driveways would not substantially increase transportation hazards.

670 Mesquit Project Transportation Assessment

Cumulative Impacts

The nearest related project to the Project site is a mixed-use office, retail, and restaurant project at 640 South Santa Fe Avenue called "Produce LA," located across Mesquit Street from the proposed Project. This project, currently under construction, will maintain the existing sidewalks along its frontages along Santa Fe Avenue and Mesquit Street and has replaced the existing sidewalk along its frontages along Jesse Street. This related project proposes an all-access driveway, with the exception of outbound left turns, on South Santa Fe Avenue and an inbound-only driveway on Mesquit Street. No cumulative impacts with the Project driveways on Mesquit are anticipated as the majority of the related project driveway activity will likely occur on South Santa Fe Avenue based on the proposed driveways. Therefore, traffic volumes for the Project and related Project would be distributed on multiple streets rather than concentrated on Mesquit Street. Other related projects located farther from the Project site would not share adjacent street frontages with the Project site.

Appendix D: VMT Analysis Worksheets

FehrłPeers

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

```
Yes O No
```

Existing Land Use

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

| Land Use Type | Value | Unit |
| :--- | :--- | :--- | :--- |
| Housing \| Affordable Housing - Family | 50 | DU |
| Housing \| Multi-Family | 258 | DU |
| Housing \| Hotel | 236 | Rooms |
| Retail \| General Retail | 79.24 | ksf |
| Retail \| Supermarket | 32.737 | ksf |
| Retail \| Health Club | 155.765 | ksf |
| Retail \| High-Turnover Sit-Down Restaurant | 44.788 | ksf |
| Retail \| Quality Restaurant | 73.646 | ksf |
| Office \| General Office | 944.055 | ksf |
| Housing \| Affordable Housing - Family | 50 | DU |
| | | |
| | | |
| | | |

Click here to add a single custom land use type (will be included in the above list)

Project Screening Summary

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

Proposed Project Land Use Type	Value	Unit
Housing \| Multi-Family	258	DU
Housing \| Hotel	236	Rooms
Retail \| General Retail	79.24	ksf
Retail \| Supermarket	32.737	ksf
Retail \| Health Club	155.765	ksf
Retail \| High-Turnover Sit-Down Restaurant	44.788	ksf
Retail \| Quality Restaurant	73.646	ksf
Office \| General Office	944.055	ksf
Housing \| Affordable Housing - Family	50	DU

TDM Strategies
Select each section to show individual strategies
Use $\bar{\square}$ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Analysis Results

Proposed Project	With Mitigation
27,040	24,484
Daily Vehicle Trips	Daily Vehicle Trips
195,304	176,517
Daily VMT	Daily VMT
4.0	3.3
Houseshold VMT per Capita	Houseshold VMT per Capita
6.6	5.4
Work VMT per Employee	Work VMT per Employee
Significant VMT Impact?	

Household: No
Threshold = 6.0
15% Below APC

Work: No

Threshold $=7.6$
15\% Below APC

Household: No
Threshold $=6.0$ 15% Below APC

Work: No
Threshold $=7.6$ 15\% Below APC

Project Information			
Land Use Type		Value	Units
Housing	Single Family	0	DU
	Multi Family	258	DU
	Townhouse	0	DU
	Hotel	236	Rooms
	Motel	0	Rooms
Affordable Housing	Family	50	DU
	Senior	0	DU
	Special Needs	0	DU
	Permanent Supportive	0	DU
Retail	General Retail	79.240	ksf
	Furniture Store	0.000	ksf
	Pharmacy/Drugstore	0.000	ksf
	Supermarket	32.737	ksf
	Bank	0.000	ksf
	Health Club	155.765	ksf
	High-Turnover Sit-Down Restaurant	44.788	ksf
	Fast-Food Restaurant	0.000	ksf
	Quality Restaurant	73.646	ksf
	Auto Repair	0.000	ksf
	Home Improvement	0.000	ksf
	Free-Standing Discount	0.000	ksf
	Movie Theater	0	Seats
Office	General Office	944.055	ksf
	Medical Office	0.000	ksf
Industrial	Light Industrial	0.000	ksf
	Manufacturing	0.000	ksf
	Warehousing/Self-Storage	0.000	ksf
School	University	0	Students
	High School	0	Students
	Middle School	0	Students
	Elementary	0	Students
	Private School (K-12)	0	Students
Other		0	Trips

Project and Analysis Overview
3 of 13

Analysis Results			
Total Employees: 4,813			
Total Population: 738			
Proposed Project		With Mitigation	
$\begin{gathered} \hline 27,040 \\ 195,304 \end{gathered}$	Daily Vehicle Trips Daily VMT	$\begin{gathered} \hline 24,484 \\ 176,517 \end{gathered}$	Daily Vehicle Trips Daily VMT
	Household VMT per Capita	3.3	Household VMT per Capita
6.6	Work VMT per Employee	5.4	Work VMT per Employee
Significant VMT Impact?			
APC: Central			
Impact Threshold: 15\% Below APC Average Household $=6.0$ Work $=7.6$			
Proposed Project		With Mitigation	
VMT Threshold	Impact	VMT Threshold	Impact
Household > 6.0	No	Household > 6.0	No
Work > 7.6	No	Work > 7.6	No

TDM Strategy Inputs				
Strategy Type		Description	Proposed Project	Mitigations
Parking	Reduce parking supply	City code parking provision (spaces)	0	0
		Actual parking provision (spaces)	0	0
	Unbundle parking	Monthly cost for parking (\$)	\$0	\$125
	Parking cash-out	Employees eligible (\%)	0\%	50\%
	Price workplace parking	Daily parking charge (\$)	\$0.00	\$6.00
		Employees subject to priced parking (\%)	0\%	50\%
	Residential area parking permits	Cost of annual permit (\$)	\$0	\$0
		cont. on following page		

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Transit	Reduce transit headways	Reduction in headways (increase in frequency) (\%)	0\%	0\%
		Existing transit mode share (as a percent of total daily trips) (\%)	0\%	0\%
		$\begin{aligned} & \text { Lines within project } \\ & \text { site improved (}<50 \% \text {, } \\ & >=50 \% \text {) } \end{aligned}$	0	0
	Implement neighborhood shuttle	Degree of implementation (low, medium, high)	0	0
		Employees and residents eligible (\%)	0\%	0\%
	Transit subsidies	Employees and residents eligible (\%)	0\%	100\%
		Amount of transit subsidy per passenger (daily equivalent) (\$)	\$0.00	\$0.75
Education \& Encouragement	Voluntary travel behavior change program	$\begin{aligned} & \text { Employees and } \\ & \text { residents } \\ & \text { participating (\%) } \end{aligned}$	0\%	0\%
	Promotions and marketing	Employees and residents participating (\%)	0\%	100\%
(cont. on following page)				

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Commute Trip Reductions	Required commute trip reduction program	Employees participating (\%)	0\%	90\%
	Alternative Work Schedules and	Employees participating (\%)	0\%	0\%
	Telecommute	Type of program	0	0
	Employer sponsored vanpool or shuttle	Degree of implementation (low, medium, high)	0	0
		Employees eligible (\%)	0\%	0\%
		Employer size (small, medium, large)	0	0
	Ride-share program	Employees eligible (\%)	0\%	0\%
Shared Mobility	Car share	Car share project setting (Urban, Suburban, All Other)	0	Urban + Comprehensive Transit
	Bike share	Within 600 feet of existing bike share station - ORimplementing new bike share station (Yes/No)	0	Yes
	School carpool program	Level of implementation (Low, Medium, High)	0	0
(cont. on following page)				

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Bicycle Infrastructure	Implement/Improve on-street bicycle facility	Provide bicycle facility along site (Yes/No)	0	0
	Include Bike parking per LAMC	Meets City Bike Parking Code (Yes/No)	Yes	Yes
	Include secure bike parking and showers	Includes indoor bike parking/lockers, showers, \& repair station (Yes/No)	Yes	Yes
Neighborhood Enhancement	Traffic calming improvements	Streets with traffic calming improvements (\%)	0\%	0\%
		Intersections with traffic calming improvements (\%)	0\%	0\%
	Pedestrian network improvements	Included (within project and connecting offsite/within project onlv)	within project and connecting off-site	within project and connecting off-site

CITY OF LOS ANGELES VMT CALCULATOR
Report 3: TDM Outputs
Date: June 30, 2020
Project Name: 670 Mesquit
Project Scenario: Project Option 1
Project Address: 670 S MESQUIT ST, 90021

TDM Adjustments by Trip Purpose \& Strategy

Place type: Suburban Center

		Home Based Work Production		Attraction		Home Based Other Production		Home Based Other Attraction	Attraction	Non-Home Based Other Production		Non-Home Based Other Attraction		Source
		Production		Proposed	Mitigated									
Parking	Reduce parking supply	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Parking sections 1-5
	Unbundle parking	0\%	15\%	0\%	0\%	0\%	15\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Parking cash-out	0%	0\%	0\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	
	Price workplace parking	0\%	0\%	0\%	3\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Residential area parking permits	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	
	Reduce transit headways	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Transit sections 1-3
Transit	Implement neighborhood shuttle	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Transit subsidies	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	
Education \& Encouragement	Voluntary travel behavior change program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Education \& Encouragement sections 1-2
	Promotions and marketing	0\%	4\%	0\%	4\%	0\%	4\%	0\%	4\%	0\%	4\%	0\%	0\%	
Commute Trip Reductions	Required commute trip reduction program	0\%	0\%	0\%	19\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Alternative Work Schedules and Telecommute Program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Commute Trip
	Employer sponsored vanpool or shuttle	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	sections 1-4
	Ride-share program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
Shared Mobility	Car-share	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	TDM Strategy
	Bike share	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	Appendix, Shared
	School carpool program	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	Mobility sections $1-3$

CITY OF LOS ANGELES VMT CALCULATOR
Report 3: TDM Outputs
Date: June 30, 2020
Project Name: 670 Mesquit
Project Scenario: Project Option 1
Project Address: 670 S MESQUIT ST, 90021

TDM Adjustments by Trip Purpose \& Strategy, Cont.
Place type: Suburban Center

Place type: Suburban Center														
		Home Based Work Production		Home Based Work Attraction		Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction		Source
		Proposed	Mitigated											
Bicycle Infrastructure	Implement/ Improve on-street bicycle facility	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	TDM Strategy Appendix, Bicycle Infrastructure sections 1-3
	Include Bike parking per LAMC	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	
	Include secure bike parking and showers	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	
	Traffic calming improvements	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	TDM Strategy Appendix,
Enhancement	Pedestrian network improvements	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	Neighborhood Enhancement sections 1-2

Final Combined \& Maximum TDM Effect

	Home Based Work Production		Home Based Work Attraction		Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction	
	Proposed	Mitigated										
COMBINED TOTAL	3\%	24\%	3\%	32\%	3\%	24\%	3\%	11\%	3\%	11\%	3\%	7\%
MAX. TDM EFFECT	3\%	20\%	3\%	20\%	3\%	20\%	3\%	11\%	3\%	11\%	3\%	11\%

\left.| = Minimum (X\%, 1-[(1-A)*(1-B)...]) | | |
| :---: | :---: | :---: |
| where X\%= | | |$\right]$

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,....). See the TDM Strategy Appendix (Transportation Assessment Guidelines Attachment G) for further discussion of dampening.

CITY OF LOS ANGELES VMT CALCULATOR

MXD Methodology - Project Without TDM						
	Unadjusted Trips	MXD Adjustment	MXD Trips	Average Trip Length	Unadjusted VMT	MXD VMT
Home Based Work Production	274	-67.5\%	89	7.4	2,028	659
Home Based Other Production	758	-40.9\%	448	5.3	4,017	2,374
Non-Home Based Other Production	6,706	-4.6\%	6,400	7.9	52,977	50,560
Home-Based Work Attraction	5,306	-26.6\%	3,893	8.4	44,570	32,701
Home-Based Other Attraction	15,689	-30.1\%	10,965	6.5	101,979	71,273
Non-Home Based Other Attraction	6,438	-4.6\%	6,144	7.2	46,354	44,237

MXD Methodology with TDM Measures

	Proposed Project			Project with Mitigation Measures		
	TDM Adjustment	Project Trips	Project VMT	TDM Adjustment	Mitigated Trips	Mitigated VMT
Home Based Work Production	-3.2\%	86	638	-20.0\%	71	527
Home Based Other Production	-3.2\%	434	2,298	-20.0\%	358	1,899
Non-Home Based Other Production	-3.2\%	6,194	48,931	-10.9\%	5,701	45,037
Home-Based Work Attraction	-3.2\%	3,768	31,648	-20.0\%	3,114	26,161
Home-Based Other Attraction	-3.2\%	10,612	68,977	-10.9\%	9,767	63,488
Non-Home Based Other Attraction	-3.2\%	5,946	42,812	-10.9\%	5,473	39,405

MXD VMT Methodology Per Capita \& Per Employee

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

Existing Land Use

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

Land Use Type	Value	Unit
Retail \| Health Club		173.378
ksf		
Housing \| Multi-Family	258	DU
Housing \| Hotel	236	Rooms
Retail \| General Retail	79.24	ksf
Retail \| Supermarket	32.737	ksf
Retail \| Health Club	173.378	ksf
Retail \| High-Turnover Sit-Down Restaurant	44.788	ksf
Retail \| Quality Restaurant	73.646	ksf
Office \| General Office	944.055	ksf
Housing \| Affordable Housing - Family	50	DU

Click here to add a single custom land use type (will be included in the above list)

Project Screening Summary

Existing Land Use	
428	Proposed Project
Daily Vehicle Trips	
3,135	$\mathbf{2 8 , 4 0 8}$
Daily VMT	205,148
Daily Vehicle Trips VMT	

Tier 1 Screening Criteria

Project will have less residential units compared to existing residential units $\&$ is within one-half
mile of a fixed-rail station.
Tier 2 Screening Criteria
The net increase in daily trips < 250 trips 27,980
Net Daily Trips

The net increase in daily VMT $\leq 0 \quad 202,013$
Net Daily VMT

The proposed project consists of only retail 403.789
land uses $\leq 50,000$ square feet total.
ksf

The proposed project is required to perform VMT analysis.

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

Proposed Project Land Use Type	Value	Unit
Housing \| Multi-Family	258	DU
Housing \| Hotel	236	Rooms
Retail \| General Retail	79.24	ksf
Retail \| Supermarket	32.737	ksf
Retail \| Health Club	173.378	ksf
Retail \| High-Turnover Sit-Down Restaurant	44.788	ksf
Retail \| Quality Restaurant	73.646	ksf
Office \| General Office	944.055	ksf
Housing \| Affordable Housing - Family	50	DU

TDM Strategies
Select each section to show individual strategies
Use $\bar{\square}$ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Analysis Results

Proposed Project	With Mitigation
27,493 Daily Vehicle Trips 198,540 Daily VMT	24,901 Daily Vehicle Trips
4.0 Houseshold VMT per Capita	179,481 Daily VMT
Houseshold VMT per Capita	
Work VMT per Employee	5.4 Work VMT per Employee

Household: No
Threshold = 6.0
15% Below APC

Work: No

Threshold $=7.6$
15\% Below APC

Household: No
Threshold $=6.0$ 15% Below APC

Work: No
Threshold $=7.6$ 15\% Below APC

Project Information			
Land Use Type		Value	Units
Housing	Single Family	0	DU
	Multi Family	258	DU
	Townhouse	0	DU
	Hotel	236	Rooms
	Motel	0	Rooms
Affordable Housing	Family	50	DU
	Senior	0	DU
	Special Needs	0	DU
	Permanent Supportive	0	DU
Retail	General Retail	79.240	ksf
	Furniture Store	0.000	ksf
	Pharmacy/Drugstore	0.000	ksf
	Supermarket	32.737	ksf
	Bank	0.000	ksf
	Health Club	173.378	ksf
	High-Turnover Sit-Down Restaurant	44.788	ksf
	Fast-Food Restaurant	0.000	ksf
	Quality Restaurant	73.646	ksf
	Auto Repair	0.000	ksf
	Home Improvement	0.000	ksf
	Free-Standing Discount	0.000	ksf
	Movie Theater	0	Seats
Office	General Office	944.055	ksf
	Medical Office	0.000	ksf
Industrial	Light Industrial	0.000	ksf
	Manufacturing	0.000	ksf
	Warehousing/Self-Storage	0.000	ksf
School	University	0	Students
	High School	0	Students
	Middle School	0	Students
	Elementary	0	Students
	Private School (K-12)	0	Students
Other		0	Trips

Project and Analysis Overview
3 of 13

Analysis Results			
Total Employees: 4,831			
Total Population: 738			
Proposed Project		With Mitigation	
$\begin{gathered} \hline 27,493 \\ 198,540 \end{gathered}$	Daily Vehicle Trips Daily VMT	$\begin{gathered} 24,901 \\ 179,481 \end{gathered}$	Daily Vehicle Trips Daily VMT
	Household VMT per Capita	3.3	Household VMT per Capita
6.6	Work VMT per Employee	5.4	Work VMT per Employee
Significant VMT Impact?			
APC: Central			
Impact Threshold: 15\% Below APC Average Household $=6.0$ Work $=7.6$			
Proposed Project		With Mitigation	
VMT Threshold	Impact	VMT Threshold	Impact
Household > 6.0	No	Household > 6.0	No
Work > 7.6	No	Work > 7.6	No

TDM Strategy Inputs				
Strategy Type		Description	Proposed Project	Mitigations
Parking	Reduce parking supply	City code parking provision (spaces)	0	0
		Actual parking provision (spaces)	0	0
	Unbundle parking	Monthly cost for parking (\$)	\$0	\$125
	Parking cash-out	Employees eligible (\%)	0\%	50\%
	Price workplace parking	Daily parking charge (\$)	\$0.00	\$6.00
		Employees subject to priced parking (\%)	0\%	50\%
	Residential area parking permits	Cost of annual permit (\$)	\$0	\$0
		cont. on following page		

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Transit	Reduce transit headways	Reduction in headways (increase in freaqency) (\%) in frequency) (\%)	0\%	0\%
		Existing transit mode share (as a percent of total daily trips) (\%)	0\%	0\%
		Lines within project site improved (<50\%, >=50\%)	0	0
	Implement neighborhood shuttle	Degree of implementation (low, medium, high)	0	0
		Employees and residents eligible (\%)	0\%	0\%
	Transit subsidies	Employees and residents eligible (\%)	0\%	100\%
		Amount of transit subsidy per passenger (daily equivalent) (\$)	\$0.00	\$0.75
Education \& Encouragement	Voluntary travel behavior change program	$\begin{aligned} & \text { Employees and } \\ & \text { residents } \\ & \text { participating (\%) } \end{aligned}$	0\%	0\%
	Promotions and marketing	Employees and residents participating (\%)	0\%	100\%
(cont. on following page)				

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Commute Trip Reductions	Required commute trip reduction program	Employees participating (\%)	0\%	90\%
	Alternative Work Schedules and	Employees participating (\%)	0\%	0\%
	Telecommute	Type of program	0	0
	Employer sponsored vanpool or shuttle	Degree of implementation (low, medium, high)	0	0
		Employees eligible (\%)	0\%	0\%
		Employer size (small, medium, large)	0	0
	Ride-share program	Employees eligible (\%)	0\%	0\%
Shared Mobility	Car share	Car share project setting (Urban, Suburban, All Other)	0	Urban + Comprehensive Transit
	Bike share	Within 600 feet of existing bike share station - ORimplementing new bike share station (Yes/No)	0	Yes
	School carpool program	Level of implementation (Low, Medium, High)	0	0
(cont. on following page)				

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Bicycle Infrastructure	Implement/Improve on-street bicycle facility	Provide bicycle facility along site (Yes/No)	0	0
	Include Bike parking per LAMC	Meets City Bike Parking Code (Yes/No)	Yes	Yes
	Include secure bike parking and showers	Includes indoor bike parking/lockers, showers, \& repair station (Yes/No)	Yes	Yes
Neighborhood Enhancement	Traffic calming improvements	Streets with traffic calming improvements (\%)	0\%	0\%
		Intersections with traffic calming improvements (\%)	0\%	0\%
	Pedestrian network improvements	Included (within project and connecting offsite/within project onlv)	within project and connecting off-site	within project and connecting off-site

CITY OF LOS ANGELES VMT CALCULATOR
Report 3: TDM Outputs
Date: June 30, 2020
Project Name: 670 Mesquit
Project Scenario: Project Option 2
Project Address: 670 S MESQUIT ST, 90021

TDM Adjustments by Trip Purpose \& Strategy

Place type: Suburban Center

		Production	Home Based Work Production	Attraction			Home Based Other Production	Home Based Other Attraction	Attraction	Non-Home Based Other Production		Non-Home Based Other Attraction		Source
			Mitigated	Proposed	Mitigated									
Parking	Reduce parking supply	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Parking sections 1-5
	Unbundle parking	0\%	15\%	0\%	0\%	0\%	15\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Parking cash-out	0\%	0\%	0\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Price workplace parking	0\%	0\%	0\%	3\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Residential area parking permits	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	
	Reduce transit headways	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Transit sections 1-3
Transit	Implement neighborhood shuttle	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Transit subsidies	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	
Education \& Encouragement	Voluntary travel behavior change program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Encouragement sections 1-2
	Promotions and marketing	0\%	4\%	0\%	4\%	0\%	4\%	0\%	4\%	0\%	4\%	0\%	0\%	
Commute Trip Reductions	Required commute trip reduction program	0\%	0\%	0\%	19\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Alternative Work Schedules and Telecommute Program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Commute Trip
	Employer sponsored vanpool or shuttle	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	sections 1-4
	Ride-share program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
Shared Mobility	Car-share	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	TDM Strategy
	Bike share	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	Appendix, Shared
	School carpool program	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	Mobility sections 1-3

CITY OF LOS ANGELES VMT CALCULATOR
Report 3: TDM Outputs
Date: June 30, 2020
Project Name: 670 Mesquit

TDM Adjustments by Trip Purpose \& Strategy, Cont.
Place type: Suburban Center

Place type: Suburban Center														
		Home Based Work Production		Home Based Work Attraction		Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction		Source
		Proposed	Mitigated											
Bicycle Infrastructure	Implement/ Improve on-street bicycle facility	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	TDM Strategy Appendix, Bicycle Infrastructure sections 1-3
	Include Bike parking per LAMC	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	
	Include secure bike parking and showers	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	
	Traffic calming improvements	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	TDM Strategy Appendix,
Enhancement	Pedestrian network improvements	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	Neighborhood Enhancement sections 1-2

Final Combined \& Maximum TDM Effect

	Home Based Work Production		Home Based Work Attraction		Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction	
	Proposed	Mitigated										
COMBINED TOTAL	3\%	24\%	3\%	32\%	3\%	24\%	3\%	11\%	3\%	11\%	3\%	7\%
MAX. TDM EFFECT	3\%	20\%	3\%	20\%	3\%	20\%	3\%	11\%	3\%	11\%	3\%	11\%

\left.| = Minimum (X\%, 1-[(1-A)*(1-B)...]) | | |
| :---: | :---: | :---: |
| where X\%= | | |$\right]$

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (Transportation Assessment Guidelines Attachment G) for further discussion of dampening.

[^15]10 of 13

CITY OF LOS ANGELES VMT CALCULATOR

MXD Methodology - Project Without TDM						
	Unadjusted Trips	MXD Adjustment	MXD Trips	Average Trip Length	Unadjusted VMT	MXD VMT
Home Based Work Production	274	-67.5\%	89	7.4	2,028	659
Home Based Other Production	758	-41.0\%	447	5.3	4,017	2,369
Non-Home Based Other Production	6,835	-4.6\%	6,523	7.9	53,997	51,532
Home-Based Work Attraction	5,331	-26.6\%	3,912	8.4	44,780	32,861
Home-Based Other Attraction	15,985	-30.1\%	11,170	6.5	103,903	72,605
Non-Home Based Other Attraction	6,567	-4.6\%	6,267	7.2	47,282	45,122

MXD Methodology with TDM Measures

	Proposed Project			Project with Mitigation Measures		
	TDM Adjustment	Project Trips	Project VMT	TDM Adjustment	Mitigated Trips	Mitigated VMT
Home Based Work Production	-3.2\%	86	638	-20.0\%	71	527
Home Based Other Production	-3.2\%	433	2,293	-20.0\%	358	1,895
Non-Home Based Other Production	-3.2\%	6,313	49,872	-10.9\%	5,810	45,903
Home-Based Work Attraction	-3.2\%	3,786	31,802	-20.0\%	3,130	26,289
Home-Based Other Attraction	-3.2\%	10,810	70,266	-10.9\%	9,950	64,674
Non-Home Based Other Attraction	-3.2\%	6,065	43,669	-10.9\%	5,582	40,193

MXD VMT Methodology Per Capita \& Per Employee

Total Home Based Production VMT	Total Population: 738 Total Employees: 4,831 APC: Central		
	Proposed Project		Project with Mitigation Measures
	2,931		2,422
Total Home Based Work Attraction VMT	31,802		26,289
Total Home Based VMT Per Capita	4.0		3.3
Total Work Based VMT Per Employee	6.6		5.4

Appendix E:

Intersection Count Sheets

FEHRやPEERS

Intersection Counts

April 2018

S Central Ave \& 7th St

Peak Hour Turning Movement Count

ID: 18-05238-006
City: Los Angeles

Cars (NOON)

HT (PM)

Molino St/Merrick St \& 4th St
Peak Hour Turning Movement Count

ID: 18-05238-022
City: Los Angeles

Molino St/Merrick St
SOUTHBOUND

AM	25	16	11	0	104	AM
NOON	0	0	0	0	0	NOON
PM 31 26	48	0	142	PM		

07:00 AM - 10:00 AM
NONE

03:00 PM - 06:00 PM
Day: Wednesday
Date: 04/11/2018

PM NOON AM

Cars (NOON)

HT (PM)

Mateo St \& 6th St

Peak Hour Turning Movement Count

ID: 18-05238-024
City: Los Angeles

	09:00 AM - 10:00 AM
	NONE
	05:00 PM - 06:00 PM

Day: Wednesday
Date: 04/11/2018

Mateo St \& 7th St

Peak Hour Turning Movement Count

ID: 18-05238-025
City: Los Angeles

$\left[\right.$| PM | 417 | 0 | 98 | 132 | 62 | PM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 0 | 0 | 0 | 0 | NOON |
| AOM | 424 | 0 | 74 | 207 | 30 | AM |
| Mateo St | | | | | | |
| NORTHBOUND | | | | | | |
| | | | | | | |

Cars (NOON)

HT (PM)

S Santa Fe Ave \& 7th St

Peak Hour Turning Movement Count

ID: 18-05238-026
City: Los Angeles

Cars (NOON)

NORTHBOUND
S Santa Fe Ave

V
\sum
$<$

HT (PM)

S Santa Fe Ave \& 8th St

Peak Hour Turning Movement Count

ID: 18-05238-027
City: Los Angeles

S Santa Fe Ave
SOUTHBOUND

Day: Wednesday
Date: 04/11/2018

Cars (NOON)

HT (PM)

S Santa Fe Ave \& Porter St

Peak Hour Turning Movement Count

ID: 18-05238-028
City: Los Angeles

	07:00 AM - 08:00 AM
	NONE
	04:00 PM - 05:00 PM

Day: Wednesday
Date: 04/11/2018

HT (NOON)

HT (PM)

S Santa Fe Ave \& Olympic Blvd

Peak Hour Turning Movement Count

ID: 18-05238-029
City: Los Angeles

	07:15 AM - 08:15 AM
	NONE
	04:30 PM - 05:30 PM

S Rio St \& E 7th St

Peak Hour Turning Movement Count

ID: 18-05238-032
City: Los Angeles

	07:30 AM - 08:30 AM
	NONE
	05:00 PM - 06:00 PM

S Rio St
SOUTHBOUND

Day: Tuesday
Date: 04/10/2018

HT (NOON)

HT (PM)

S Anderson St \& E 7th St

Peak Hour Turning Movement Count

ID: 18-05238-034
City: Los Angeles

Day: Tuesday
Date: 04/10/2018

N
NO

S Anderson St
SOUTHBOUND

Cars (NOON)

HT (PM)

Boyle Ave \& Whittier Blvd

Peak Hour Turning Movement Count

ID: 18-05238-040 City: Los Angeles

	07:15 AM - 08:15 AM
	NONE
	05:00 PM - 06:00 PM

Boyle Ave
SOUTHBOUND

AM	9	372	68	0	956	AM
NOON	0	0	0	0	0	NOON
	PM	9	374	134	0	950

Day: Tuesday
Date: 04/10/2018

07:00 AM - 10:00 AM	\bigcirc
NONE	㽞
03:00 PM - 06:00 PM	응

Boyle Ave
Cars (NOON)

HT (PM)

Boyle Ave \& 7th St

Peak Hour Turning Movement Count

ID: 18-05238-041
City: Los Angeles

	07:15 AM - 08:15 AM
	NONE
	05:00 PM - 06:00 PM

| | AM NOON PM | |
| :--- | :--- | :--- | :--- |
| | | |

Day: Tuesday
Date: 04/10/2018

HT (NOON)

HT (PM)

Mateo St \& 4th Pl

Peak Hour Turning Movement Count

ID: 18-05238-049
City: Los Angeles

	09:00 AM - 10:00 AM
	NONE
	05:00 PM - 06:00 PM

SOUTHBOUND

AM	0	253	21	0	148	AM
	NOON	0	0	0	0	0

Day: Wednesday
Date: 04/11/2018

Cars (NOON)

HT (PM)

Mateo St \& Willow St

Peak Hour Turning Movement Count

ID: 18-05238-050
City: Los Angeles

SOUTHBOUND

AM	0	285	36	2	262	AM
NOON	0	0	0	0	0	NOON
PM	0	251	20	2	398	PM

Day: Wednesday
Date: 04/11/2018

HT (NOON)

HT (PM)

Mateo St \& Jesse St

Peak Hour Turning Movement Count

ID: 18-05238-051
City: Los Angeles

\sim	07:30 AM - 08:30 AM
	NONE
ロ	04:30 PM - 05:30 PM

Day: Wednesday
Date: 04/11/2018
SOUTHBOUND

AM	1	252	17	4	372	AM
	0	0	0	0	0	nOON

I-10 WB ramps \& E 8th St

Peak Hour Turning Movement Count

ID: 18-05238-052
City: Los Angeles

\sim	08:15 AM - 09:15 AM
	NONE
Ш	05:00 PM - 06:00 PM

I-10 WB ramps
SOUTHBOUND

AM	0	0	0	0	0	AM
	NOON	0	0	0	0	0

Day: Wednesday
Date: 04/11/2018

07:00 AM - 10:00 AM

NONE

03:00 PM - 06:00 PM

PM NOON AM

Cars (NOON)

HT (PM)

I-10 EB ramps \& Porter St

Peak Hour Turning Movement Count

ID: 18-05238-053
City: Los Angeles

Day: Wednesday
Date: 04/11/2018

PM	3	0	0	0	5	PM
NOON	0	0	0	0	0	NOON
AM	2	0	2	0	0	AM
NORTHBOUND						
I-10 EB ramps						

Cars (NOON)

HT (PM)

S Santa Fe Ave \& Willow St

Peak Hour Turning Movement Count

ID: 18-05238-054
City: Los Angeles

Cars (NOON)

\section*{| \sum |
| :--- |
| $\overline{\overline{0}}$ |
| |
| |}

HT (NOON)

HT (PM)

S Santa Fe Ave \& Mesquit St

Peak Hour Turning Movement Count

ID: 18-05238-055
City: Los Angeles

	07:15 AM - 08:15 AM
	NONE
	04:45 PM - 05:45 PM

Day: Wednesday
Date: 04/11/2018

HT (NOON)

HT (PM)

S Santa Fe Ave \& Jesse St

Peak Hour Turning Movement Count

ID: 18-05238-056
City: Los Angeles

	07:15 AM - 08:15 AM
	NONE
	04:45 PM - 05:45 PM

S Santa Fe Ave
SOUTHBOUND

Day: Wednesday
Date: 04/11/2018

Cars (NOON)

HT (PM)

Mesquit St \& Jesse St

Peak Hour Turning Movement Count

ID: 18-05238-057
City: Los Angeles

\sim	09:00 AM - 10:00 AM
오	NONE
山	03:15 PM - 04:15 PM

Day: Wednesday
Date: 04/11/2018

HT (NOON)

HT (PM)

US-101 SB ramps \& 7th St

Peak Hour Turning Movement Count

ID: 18-05238-058
City: Los Angeles

Day: Tuesday
Date: 04/10/2018
07:00 AM - 10:00 AM

NONE

03:00 PM - 06:00 PM

$\stackrel{1}{5}$
$\underset{\sim}{0}$

Cars (NOON)

Cars (PM)

HT (PM)

S Boyle Ave \& I-5 NB ramp

Peak Hour Turning Movement Count

ID: 18-05238-060
City: Los Angeles

	07:15 AM - 08:15 AM
	NONE
	05:00 PM - 06:00 PM

Day: Tuesday
Date: 04/10/2018

Cars (NOON)

HT (PM)

Intersection Counts

September 2018

Prepared by National Data \& Surveying Services

Alameda St \& Temple St

Peak Hour Turning Movement Count

Intersection Counts (6AM)

September 2015

ITM Peak Hour Summary

Prepared by:
NDS
National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary

Prepared by:
NDS
National Data \& Surveying Services

Total Volume Per Leg

ITM Peak Hour Summary

Prepared by:
NDS
National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary

Prepared by:
NDS
National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary

Prepared by:
NDS
National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary

Prepared by:
NDS
National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary

Prepared by:
NDS
National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary

Prepared by:
NDS
National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary

Prepared by:
NDS
National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

ITM Peak Hour Summary

Prepared by:
NDS
National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

National Data \& Surveying Services

Total Ins \& Outs

Total Volume Per Leg

Appendix F:
 Intersection Lane Configurations and Volumes

FEhR刍PEERS

		［				（1）
						（
				in		年
				I		逆

Semata Aemenern sureer				
denama stealas sum				
5 Smane enemenoivme			Selen steen	

$$
\begin{array}{lll}
\text { LEGEND } \\
\hline \boldsymbol{\#} & \text { Study Intersection } & \text { AM (PM) Peak Hour Traffic Volume } \\
\text { Lane Configuration } & \text { Stop Sign } \\
& \text { 排 } & \text { Signalized }
\end{array}
$$

1. S Cenral Avenuerru Stuet	reet	3. Alameda Street Temple Street	4. NAlameda StrevevE 1 ststreet	5.N Alameda Streve E 2nd Stret
reelzrid Steeluth Place	7. S Alameda Streeluhb Stuet	Sth 5	9. S Alameda Streevrint steet	Moino Streemericios Steevalt strea
11. Mateo Strevestit Street	U7th	13. S Sana Fe Avenuerth street	14. S Santa Fe Avenueesh Street	s samata Fe Avenuer
16. S Santa Fe Avemuelolympic oulevard	S Sanat Fe Avenuel 15 hinstret	B. S Rio StreevE 7 It street	19. S Anderson Streve 7 7t Street	20. Boyle AvenueM Mhitier Boulevard

LEGEND

Study Intersection

Lane Configuration

> | AM (PM) | Peak Hour Traffic Volume |
| :---: | :--- |
| Stop Sign | |
| 排 | Signalized |

LEGEND

| * | Study Intersection | AM (PM) Peak Hour Traffic Volume |
| :--- | :--- | :--- | :--- |
| Lane Configuration | Stop Sign | |
| | 排 | Signalized |

1. S Centa Avenuerth Street	reet	3. Alameda Street Temple Street	4. NAlameda StrevevE 1 ststreet	5.N Alameda Streve E 2nd Stret
	7. S Alameda Streeluhb Stuet	Git 5 ste	9. S Alameda Streevrint steet	Molino Streemericick Steeluth Stee
11. Mateo Strevelth street	12. Mateo Streerrit Street	13.5 Sana Fe Avenuerln Street	14. S Santa Fe Avenueesh Street	s samara Fe Avenuer
16. S Santa Fe Avemuelolympic oulevard	S Sana Fe Avenuel 15int Stret	B. S Rio StreevE 7 It street	19. S Anderson Streve 7 7t Street	20. Boyle AvenueM Mhitier Boulevard

LEGEND

$$
\begin{array}{lcl}
\hline \text { Study Intersection } & \text { AM (PM) Peak Hour Traffic Volume } \\
\text { Lane Configuration } & \text { Stop Sign } \\
& \text { 排 } & \text { Signalized }
\end{array}
$$

LEGEND

| * | Study Intersection | AM (PM) Peak Hour Traffic Volume |
| :--- | :--- | :--- | :--- |
| Lane Configuration | Stop Sign | |
| | 排 | Signalized |

S Comata Aemenern simet	reat			
5 Ammed Streesas	7.5 Ameneat streemath steer	8. 5 Ammeas streasins streed	9. 4 Ameneal steerins steed	10. Moros steememerick seeeltans seeer
	Maeos steernms sieen	nareamemenh steen	Feamemeans steen	nepa

$$
\begin{array}{ccc}
\text { LEGEND } \\
\hline \text { \# Study Intersection } & \text { AM (PM) Peak Hour Traffic Volume } \\
\text { Lane Configuration } & \text { Stop Sign } \\
& & \text { 排 } \\
\text { Signalized }
\end{array}
$$

21. Bove Avenuerth street	22. SA Alameda Streell/10 Eastound famps		A. Mateo Streetath Place		B. Mateo Streetwiliow Steet		C. Mateo Streetlesese Street					
D. 5 Sanata Fe Avenuemwilow stret	5 Santa Fe Avenuemessuit Stret	uelessese Stree			c. Mesquit Steelijesse Street		H. Us-101 Soutbound ramp/7. Street					
						$\underset{\sim}{A}$		- $\leftleftarrows 2,104(1,059)$ \qquad				
${ }^{1} .1 .10$ Westbound rampstE in Street	J. 1110 Eastound damssPropere Street											

1.5 cemmatavenernh sieet		3 3. Ameneas sreefremenestreet		
		8. 5 Ameneas steestis street	9. Ameneas steernh steed	10. Wemios steemenemids steentuns sieer
			14.5 Smanafe Aenemenenssteer	
		18. SRas Srieelerins sieet	19.5 Andesesm Sreeelerins Steet	

LEGEND

Study Intersection

Lane Configuration

> | AM (PM) | Peak Hour Traffic Volume |
| :---: | :--- |
| Stop Sign | |
| 排 | Signalized |

21. Bove Avenuerlin stret	22. S Alameda 5 Steell-10 Eastound		A. Mateo Strevilth Place		B. Mateo Streelwillow Steet		C. Mateo Streeljesese Street	
s Santa Fe Avenuemwiowstreet			F. S Sama Fe Averuelesess Street		6. Mesquil Sreelluesse Stret		H. Us-101 Southbound ramp/7. Street	
								0 $\leftleftarrows 2,241(1,147)$
${ }^{1.1 .10 ~ W e s t b o u n d ~ r a m p s e ~ s t h ~ S t r e e t ~}$	J. 11.0 Eastound damssporere Stree							

LEGEND

| * | Study Intersection | AM (PM) Peak Hour Traffic Volume |
| :--- | :--- | :--- | :--- |
| Lane Configuration | Stop Sign | |
| | 排 | Signalized |

1.5 cemmatavenernh sieet		3 3. Ameneas sreefremenestreet	4. . Alameas steelel is street	5.NAameas sirevel 2nis steer
		8. 5 Ameneas steestis street	9. Ameneas steernh steed	10. Wemios steemenemids steentuns sieer
			14.5 Ssanfe enemeneans Sreer	15.5 samara Ae evemeperes streat
		18. SRas Srieelerins sieet	19.5 Andesesm Sreeelerins steet	

LEGEND

Study Intersection

Lane Configuration

$$
\begin{array}{ll}
\hline \text { AM (PM) Peak Hour Traffic Volume } \\
\text { Stop Sign } \\
\text { Signalized }
\end{array}
$$

LEGEND

| * | Study Intersection | AM (PM) Peak Hour Traffic Volume |
| :--- | :--- | :--- | :--- |
| Lane Configuration | Stop Sign | |
| | 排 | Signalized |

		3.Ameneas sreatremple Steen		5.NALameas steelel 2ns street
		8. sameneas sreelsins steed	0. 5 Ameneas steerins steed	
1. .aneos steelins steer	12. Meeos sieerins sieer	${ }_{13.5}^{\text {Ssanafe enemenernstreer }}$		15.5 Sanala eavenemperes sum

LEGEND

> Study Intersection
> Lane Configuration

$$
\begin{array}{ll}
\hline \text { AM (PM) Peak Hour Traffic Volume } \\
\text { Stop Sign } \\
\text { 排 } & \text { Signalized }
\end{array}
$$

21. Boye Avenuer7n Street	22. SAlameda Streel-10 Easstound ramps	A. Mateo Steevtalt Place	B. Mateo Streetwiliow Steet	c. Mateo Streetlesse Steet
D. 5 Sanata Fe Avenuemiliowstret	E. S Sana Fe Avenuemescuit street	. S Sana Fe Avenue/jesse Street	6. Mesquil Streeldesse Steet	H. US-101 Soutbound ramp/7t Street
1.1.10 Westround rampstE \&t Street	${ }^{\text {J. } 110 \text { Eassbound rampsPPorere Street }}$			
$\tau_{\substack{0 \\ 4(18)}}^{0(0)}$				
	$\underset{\substack{7 \\ 0(27) \\ 0(0)}}{\substack{\text { and }}}$			

LEGEND

| * | Study Intersection | AM (PM) Peak Hour Traffic Volume |
| :--- | :--- | :--- | :--- |
| Lane Configuration | Stop Sign | |
| | 排 | Signalized |

1.5 Cenral Avenuerth Street	alstret	3. Alameda Streit Temple Steet	4.N Alameda Streeve 1s Struet	5. N Alameda Steete 2 2nd Steet
. S Alameda Steel3ric Strevalt Place	7. S Alameda Streeluht street	8. 5 Alameda Streevich Street	9. S Alameda Streerrib street	10. Moino StreemMerick Strevalth Stret
Mateo Streevtin Street	nst	13. S Sana Fe Avenuernh Stre	14. S Sana Fe Avenuesin street	15. 5 Sanata Fe Avenueforote Steet
	17. S Samara Fe Avenuele 1 Sht Street	18. S R Sio Steeve 7 It Street	19. S Anderson Streele 7 ln Street	20. Boyle AvemueM Mitierer Boulevard

LEGEND

Study Intersection
 Lane Configuration

> | AM (PM) | Peak Hour Traffic Volume |
| :--- | :--- |
| | Stop Sign |
| 排 | Signalized |

21. Boye Avenuer7n Street	22. SAlameda Streel-10 Easstound ramps	A. Mateo Steevtalt Place	B. Mateo Streetwiliow Steet	c. Mateo Streetlesse Steet
D. 5 Sanata Fe Avenuemiliowstreet	Sanat Fe Avenuemesquis Street	s Sana Fe Avenuelosesse Street	6. Mesquil Streeldesse Steet	H. US-101 Soutbound ramp/7t Street
${ }^{1.1 .100 ~ W e s t b o u n d ~ r a m p s t ~ s t h ~ S t r e e t ~}$	J. 1.120 Eastound rampsporoter Stee			
$\tau_{\substack{0 \\ 5(18)}}^{0(0)}$				

LEGEND

| * | Study Intersection | AM (PM) Peak Hour Traffic Volume |
| :--- | :--- | :--- | :--- |
| Lane Configuration | Stop Sign | |
| | 排 | Signalized |

Appendix G: Intersection LOS Analysis Sheets

FEHR \wp PEERS

EXISTING CONDITIONS
CMA WORKSHEETS

Level of Service Workheet
（Circular 212 Method）
\square PROJECT TITLE： 670 Mesquit
North－South Street：S Central Avenue
East－West Street：7th Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
ㅇ 2 0 0 0 10 1 0 0 2	Left Left－Through Through	93 412 121	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	93 267 121	56 774 212	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	56 493 212
		26 632 102	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	26 393 393	42 620 48	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	42 418 418
		26 275 57	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	26 166 57	60 727 66	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	60 397 66
Q 3 0 0 0 0 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 201 \\ 957 \\ 68 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 201 \\ 513 \\ 68 \end{array}$	104 545 68	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 104 \\ 307 \\ 68 \end{array}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 486 \\ 539 \\ 1025 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 535 \\ 501 \\ 1036 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.683 \\ 0.583 \\ \text { A } \end{gathered}$			$\begin{aligned} & 0.691 \\ & 0.591 \\ & \text { A } \\ & \hline \end{aligned}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
2

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street
East－West Street：E Aliso Street／E Commercial Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{l\|l} N B-- & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 2 0 2 2
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	0 516 132	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 258 0	0 1064 152	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 532 119
	Left Left－Through Through Right Through－Right Left－Right	$\begin{array}{r} 90 \\ 1108 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 90 \\ 369 \\ 0 \end{array}$	114 711 0	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	114 237 0
		61 40 161	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 34 \\ 40 \\ 161 \end{array}$	405 48 37	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	223 48 37
ㅇ \vdots 0 0 0 6 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 202 \\ 0 \\ 152 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 202 \\ 0 \\ 152 \end{array}$	67 0 160	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	67 0 160
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{aligned} & \hline 369 \\ & 363 \\ & 732 \\ & \hline \end{aligned}$		rth－South： East－West： SUM：	$\begin{array}{r} 646 \\ 383 \\ 1029 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.514 \\ 0.414 \\ \text { A } \end{gathered}$			$\begin{gathered} 0.722 \\ 0.622 \\ \text { B } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
3

PROJECT TITLE： 670 Mesquit
North－South Street：Alameda Street
East－West Street：Temple Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{l\|l} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through \uparrow Through \uparrow Through－Right Right \uparrow Left－Through－Right Left－Right	151 659 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	151 330 0	103 672 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	103 336 0
	Left Left－Through Through Right Through－Right Left－Right	$\begin{array}{r} 11 \\ 969 \\ 371 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	11 485 328	60 595 266	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	60 298 143
		$\begin{array}{r} 86 \\ 100 \\ 123 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	86 100 48	246 397 198	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	246 298 198
ㅇ \vdots 0 0 0 6 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 55 \\ 236 \\ 46 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 55 \\ 141 \\ 46 \end{array}$	19 165 73	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	19 119 73
	CRITICAL VOLUMES		rth－South East－West： SUM：	$\begin{aligned} & \hline 636 \\ & 227 \\ & 863 \\ & \hline \end{aligned}$		rth－South： East－West： SUM：	$\begin{aligned} & 401 \\ & 365 \\ & 766 \\ & \hline \end{aligned}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.628 \\ 0.528 \\ \text { A } \end{gathered}$			$\begin{gathered} 0.557 \\ 0.457 \\ \text { A } \\ \hline \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
4

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street
East－West Street：E 1st Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 0 \\ & 3 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through \uparrow Through \uparrow Through－Right Right \uparrow Left－Through－Right Left－Right	60 763 72	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	60 382 72	74 584 132	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	74 292 132
	Left Left－Through Through Right Through－Right Left－Right	$\begin{array}{r} 17 \\ 877 \\ 123 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	17 439 60	34 630 108	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	34 315 0
		63 164 70	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 63 \\ 117 \\ 70 \end{array}$	225 572 113	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	225 343 113
ㅇ \vdots 0 0 0 6 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 1 \\ 728 \\ 56 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ 392 \\ 56 \end{array}$	0 314 11	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 163 11
	CRITICAL VOLUMES		rth－South East－West： SUM：	$\begin{aligned} & 499 \\ & 455 \\ & 954 \\ & \hline \end{aligned}$		rth－South： East－West： SUM：	$\begin{aligned} & \hline 389 \\ & 388 \\ & 777 \\ & \hline \end{aligned}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.669 \\ 0.569 \\ \text { A } \end{gathered}$			$\begin{gathered} 0.545 \\ 0.445 \\ \text { A } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
5

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street
East－West Street：E 2nd Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
ㅇ 2 0 0 0 10 1 0 0 2	Left Left－Through Through	95 850 30	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	95 440 30	106 681 78	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	106 380 78
		37 768 67	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	37 418 67	38 660 50	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	38 355 50
		55 90 79	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	55 90 32	118 222 159	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	118 222 106
9 2 0 0 6 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 124 \\ 230 \\ 64 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 124 \\ 294 \\ 0 \end{array}$	82 113 37	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	82 150 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{aligned} & 513 \\ & 349 \\ & 862 \end{aligned}$		rth－South： East－West： SUM：	$\begin{aligned} & 461 \\ & 304 \\ & 765 \\ & \hline \end{aligned}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.575 \\ 0.475 \\ \text { A } \end{gathered}$			$\begin{gathered} 0.510 \\ 0.410 \\ \text { A } \end{gathered}$

Level of Service Workheet
(Circular 212 Method)

I/S \#:
6

PROJECT TITLE: 670 Mesquit
North-South Street: S Alameda Stre
East-West Street: 3rd Street/4th Place
Scenario: Existing (2018)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
ㅇ 2 0 0 0 10 1 0 0 2	Left Left-Through Through	106 622 0	$\begin{aligned} & \hline 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	106 311 0	379 518 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	379 259 0
		0 821 203	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 411 203	0 676 141	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 338 141
		0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
9 2 0 0 6 0 3	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right $亡$ Right \leftarrow Left-Through-Right \leftarrow Left-Right	$\begin{array}{r} 165 \\ 2330 \\ 315 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 165 \\ & 624 \\ & 315 \end{aligned}$	147 1100 91	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 147 \\ 312 \\ 91 \end{array}$
	CRITICAL VOLUMES		rth-South: East-West: SUM:	$\begin{array}{r} 517 \\ 624 \\ 1141 \\ \hline \end{array}$		rth-South: East-West: SUM:	$\begin{array}{r} 717 \\ 312 \\ 1029 \\ \hline \end{array}$
	VOLUME/CAPACITY (V/C) RATIO: /C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{gathered} 0.761 \\ 0.661 \\ \text { B } \end{gathered}$			$\begin{gathered} 0.686 \\ 0.586 \\ \text { A } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
7

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street
East－West Street：4th Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
ㅇ 2 0 0 0 10 1 0 0 2	Left Left－Through Through	0 701 47	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 374 47	0 890 140	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 515 140
		80 923 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	80 462 0	104 727 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	104 364 0
		71 374 157	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	71 148 157	134 1547 207	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	134 560 207
9 2 0 0 6 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{aligned} & 462 \\ & 157 \\ & 619 \end{aligned}$		rth－South： East－West： SUM：	$\begin{array}{r} 619 \\ 560 \\ 1179 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.413 \\ 0.313 \\ \text { A } \\ \hline \end{gathered}$			$\begin{gathered} 0.786 \\ 0.686 \\ \text { B } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
8

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street
East－West Street：6th Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
ㅇ 2 0 0 0 10 1 0 0 2	Left Left－Through Through	120 609 34	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	120 322 34	104 865 29	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	104 447 29
		42 827 140	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	42 484 140	81 758 124	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	81 441 124
		65 93 117	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	65 93 57	132 337 155	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	132 246 155
9 2 0 0 6 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 24 \\ 224 \\ 68 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 24 \\ 146 \\ 68 \end{array}$	11 110 42	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	11 76 42
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{aligned} & 604 \\ & 211 \\ & 815 \end{aligned}$		rth－South： East－West： SUM：	$\begin{aligned} & \hline 545 \\ & 257 \\ & 802 \end{aligned}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.543 \\ 0.443 \\ \text { A } \end{gathered}$			$\begin{gathered} 0.535 \\ 0.435 \\ \text { A } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
9

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Stree
East－West Street：7th Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	$\begin{array}{r} 94 \\ 620 \\ 79 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	94 350 79	99 790 89	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	99 440 89
		$\begin{array}{r} 96 \\ 751 \\ 130 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 441 130	147 699 68	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 147 \\ 384 \\ 68 \end{array}$
		$\begin{array}{r} 54 \\ 295 \\ 112 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 54 \\ 204 \\ 112 \end{array}$	74 780 134	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	74 457 134
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 136 \\ 1015 \\ 127 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	136 571 127	$\begin{array}{r} 103 \\ 543 \\ 144 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 103 \\ & 344 \\ & 144 \end{aligned}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 535 \\ 625 \\ 1160 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 587 \\ 560 \\ 1147 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.814 \\ & 0.714 \\ & \text { C } \\ & \hline \end{aligned}$			$\begin{aligned} & 0.805 \\ & 0.705 \\ & \text { C } \end{aligned}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
10

PROJECT TITLE： 670 Mesquit
North－South Street：Molino Street／Merrick Street East－West Street：4th Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 1 0 0 2 0	NB－－ \|EB--	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	30 19 7	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	30 56 0	71 62 4	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	71 137 0
	Left Left－Through Through Right Left－Through－Right Left－Right	11 16 25	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	11 0 25	48 26 31	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	48 0 31
		1 306 57	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 182 \\ 57 \end{array}$	$\begin{array}{r} 10 \\ 1624 \\ 55 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 560 55
9 2 0 0 0 6 3 3	\ulcorner Left \longleftarrow Left－Through \longleftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 15 \\ 2622 \\ 84 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 902 \\ 84 \end{array}$	3 962 70	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 516 \\ 70 \end{array}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 81 \\ 902 \\ 983 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{aligned} & \hline 185 \\ & 560 \\ & 745 \\ & \hline \end{aligned}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.690 \\ 0.590 \\ \text { A } \end{gathered}$			$\begin{gathered} 0.523 \\ 0.423 \\ \text { A } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
11

PROJECT TITLE： 670 Mesquit
North－South Street：Mateo Street
East－West Street：6th Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through \uparrow Through \uparrow Through－Right Right \uparrow Left－Through－Right Left－Right	159 5	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	0	2	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	0
	Left Left－Through \downarrow Through Through－Right Right \rightarrow Left－Through－Right Left－Right	$\begin{array}{r} 6 \\ 184 \\ 123 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 6 \\ 190 \\ 84 \end{array}$	3 184 80	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 3 \\ 187 \\ 0 \end{array}$
		$\begin{array}{r} 79 \\ 21 \\ 104 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 79 \\ 125 \\ 0 \end{array}$	$\begin{array}{r} 237 \\ 38 \\ 184 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 237 \\ 222 \\ 0 \end{array}$
	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	4 0 6	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 0 0
	CRITICAL VOLUMES	North－South： East－West： SUM：		$\begin{aligned} & \hline 303 \\ & 125 \\ & 428 \\ & \hline \end{aligned}$	North－South： East－West： SUM：		$\begin{aligned} & 260 \\ & 237 \\ & 497 \\ & \hline \end{aligned}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.285 \\ & 0.185 \\ & \text { A } \\ & \hline \end{aligned}$			$\begin{gathered} 0.331 \\ 0.231 \\ \text { A } \\ \hline \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
12

PROJECT TITLE： 670 Mesquit
North－South Street：Mateo Street
East－West Street：7th Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	NB－－ \|EB--	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	74 207 30	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	74 311 0	98 132 62	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 98 \\ 292 \\ 0 \end{array}$
	Left Left－Through \downarrow Through Through－Right Right \rightarrow Left－Through－Right Left－Right	$\begin{array}{r} 40 \\ 187 \\ 32 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	40 227 18	90 227 33	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 90 \\ 317 \\ 12 \end{array}$
		$\begin{array}{r} 28 \\ 301 \\ 62 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 28 \\ 182 \\ 62 \end{array}$	42 809 140	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 42 \\ 475 \\ 140 \end{array}$
9 2 0 0 0 6 3 3	ζ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 175 \\ 1197 \\ 94 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 175 \\ 646 \\ 94 \end{array}$	$\begin{array}{r} 50 \\ 582 \\ 58 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \\ 320 \\ 58 \end{array}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 351 \\ 674 \\ 1025 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{aligned} & \hline 415 \\ & 525 \\ & 940 \\ & \hline \end{aligned}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.683 \\ 0.583 \\ \text { A } \end{gathered}$			$\begin{gathered} 0.627 \\ 0.527 \\ \text { A } \end{gathered}$

Existing AM Peak Hour (Year 2018)

NWB

$=16$

$$
\left\{\frac{365}{1}+\frac{53}{1}\right\} \quad \text { or } \quad\left\{\frac{142}{1}+\frac{53}{1}\right\}
$$

$=\quad 418$

$$
\begin{array}{cc}
\text { Critical Volumes }=16+800+418=1,234 \\
\text { V/C }= & \frac{1,234}{1,375}-0.10=0.797 \\
\text { LOS } C
\end{array}
$$

Existing PM Peak Hour (Year 2018)

$$
\begin{aligned}
& \left\{\frac{354}{1}+\frac{76}{1}\right\} \quad \text { or } \quad\left\{\frac{250}{1}+\frac{76}{1}\right\} \\
= & 449
\end{aligned}
$$

$$
\begin{aligned}
\text { Critical Volumes } & 8+735+449=1,192 \\
\text { V/C }=\frac{1,192}{1,375}-0.10=0.767 & \text { LOS } C
\end{aligned}
$$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
14

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue
East－West Street：8th Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
ㅇ 2 0 0 0 10 1 0 0 2	Left Left－Through Through	169 627 18	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	169 645 0	175 476 21	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	175 497 0
		19 344 387	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	19 210 387	18 511 210	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	18 274 210
		55 8 312	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	55 63 228	41 18 376	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	41 59 289
9 2 0 0 6 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	10 11 15	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	10 36 0	13 13 22	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	13 48 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{aligned} & 664 \\ & 238 \\ & 902 \end{aligned}$		rth－South： East－West： SUM：	$\begin{aligned} & 515 \\ & 302 \\ & 817 \end{aligned}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.601 \\ 0.501 \\ \text { A } \end{gathered}$			$\begin{gathered} 0.545 \\ 0.445 \\ \text { A } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
15

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：Porter Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	308 672 25	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	308 349 25	423 549 27	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	423 288 27
		18 652 32	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	18 342 32	15 874 47	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	15 461 47
		105 28 418	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	105 133 110	65 19 260	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	65 84 0
ㅇ 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	20 46 22	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	20 66 13	42 85 24	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 42 \\ 127 \\ 17 \end{array}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{aligned} & 650 \\ & 171 \\ & 821 \end{aligned}$		rth－South： East－West： SUM：	$\begin{array}{r} 884 \\ 192 \\ 1076 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.576 \\ 0.476 \\ \text { A } \end{gathered}$			$\begin{gathered} 0.755 \\ 0.655 \\ \text { B } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
16

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue
East－West Street：Olympic Boulevard
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	$\begin{array}{r} 232 \\ 894 \\ 72 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	232 483 72	118 904 169	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	118 537 169
		114 938 31	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	114 485 31	118 942 51	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	118 497 51
		$\begin{array}{r} 32 \\ 271 \\ 309 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 32 \\ 136 \\ 77 \end{array}$	35 860 379	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	35 430 261
ㅇ \vdots 0 0 0 \vdots 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 186 \\ 991 \\ 80 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 186 \\ 536 \\ 80 \end{array}$	92 711 85	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	92 398 85
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 717 \\ 568 \\ 1285 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 655 \\ 522 \\ 1177 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.935 \\ 0.835 \\ \text { D } \\ \hline \end{gathered}$			$\begin{gathered} 0.856 \\ 0.756 \\ \text { C } \end{gathered}$

Level of Service Workheet
(Circular 212 Method)

I/S \#:
17

PROJECT TITLE: 670 Mesquit
North-South Street: S Santa Fe Avenue East-West Street: E 15th Street
Scenario: Existing (2018)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{l\|l} N B-- & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left-Through \uparrow Through \uparrow Through-Right Right \uparrow Left-Through-Right Left-Right	215	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	102 544 0	163	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 113 \\ & 453 \\ & 146 \end{aligned}$
	Left Left-Through Through Right Through-Right Left-Right	63 1222 61	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	63 642 61	190 1195 16	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	190 606 16
		$\begin{aligned} & 26 \\ & 46 \\ & 57 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	26 103 0	57 318 173	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	57 274 274
	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right \leftarrow Right \leftarrow Left-Through-Right \leftarrow Left-Right	$\begin{array}{r} 24 \\ 578 \\ 107 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	24 578 76	34 80 113	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	34 80 18
	CRITICAL VOLUMES	North-South: East-West: SUM:		$\begin{array}{r} 744 \\ 604 \\ 1348 \\ \hline \end{array}$	North-South: East-West: SUM:		$\begin{array}{r} 719 \\ 308 \\ 1027 \\ \hline \end{array}$
VOLUME/CAPACITY (V/C) RATIO: V/C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):				$\begin{gathered} 0.946 \\ 0.846 \\ \text { D } \end{gathered}$			$\begin{gathered} 0.721 \\ 0.621 \\ \mathrm{~B} \\ \hline \hline \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
18

PROJECT TITLE： 670 Mesquit
North－South Street：S Rio Street
East－West Street：E 7th Street
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	36 2 64	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	36 38 26	22 1 64	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	22 23 47
	Left Left－Through \downarrow Through Through－Right Right \rightarrow Left－Through－Right Left－Right	18 2 12	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	18 32 0	15 0 8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	15 23 0
		10 360 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 10 \\ 180 \\ 0 \end{array}$	$\begin{array}{r} 10 \\ 1048 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 524 0
ㅇ \vdots 0 0 0 6 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 77 \\ 1969 \\ 13 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 77 \\ 991 \\ 13 \end{array}$	34 738 2	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	34 370 2
	CRITICAL VOLUMES		rth－South East－West： SUM：	$\begin{array}{r} 68 \\ 1001 \\ 1069 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 62 \\ 558 \\ 620 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.713 \\ 0.613 \\ \text { B } \\ \hline \end{gathered}$			$\begin{gathered} 0.413 \\ 0.313 \\ \text { A } \end{gathered}$

Level of Service Workheet
(Circular 212 Method)
I/S \#:

PROJECT TITLE: 670 Mesquit
North-South Street: S Anderson Street
East-West Street: E 7th Street
Scenario: Existing (2018)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2
MOVEMENT		Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left-Through Through	13 1 4	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	13 18 0	0 0 2	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	0 2 0
		35 2 53	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	35 37 29	96 0 76	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	96 96 42
		49 363 7	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 49 \\ 185 \\ 7 \end{array}$	69 1040 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	69 520 0
9 2 0 0 6 0 3	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right $亡$ Right \leftarrow Left-Through-Right \leftarrow Left-Right	$\begin{array}{r} 10 \\ 1994 \\ 357 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 10 \\ 1176 \\ 357 \end{array}$	5 715 97	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	5 406 97
	CRITICAL VOLUMES		rth-South: East-West: SUM:	$\begin{array}{r} 53 \\ 1225 \\ 1278 \\ \hline \end{array}$		rth-South: East-West: SUM:	$\begin{array}{r} 98 \\ 525 \\ 623 \\ \hline \end{array}$
	VOLUME/CAPACITY (V/C) RATIO: /C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{aligned} & 0.852 \\ & 0.752 \\ & \text { C } \end{aligned}$			$\begin{gathered} 0.415 \\ 0.315 \\ \text { A } \end{gathered}$

Level of Service Workheet
(Circular 212 Method)

I/S \#:
20

PROJECT TITLE: 670 Mesquit
North-South Street: Boyle Avenue
East-West Street: Whittier Boulevard
Scenario: Existing (2018)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
ㅇ 2 0 0 0 10 1 0 0 2	Left Left-Through Through	43 466 122	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	43 294 122	137 757 215	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	137 486 215
		68 372 9	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	68 191 9	134 374 9	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	134 192 9
		1 1 10	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	1 12 0	2 0 4	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	2 6 0
Q 3 0 0 0 0 0 3	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right $亡$ Right \leftarrow Left-Through-Right \leftarrow Left-Right	$\begin{aligned} & 583 \\ & 147 \\ & 504 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 583 \\ & 147 \\ & 470 \end{aligned}$	171 81 202	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	171 81 135
	CRITICAL VOLUMES		rth-South: East-West: SUM:	$\begin{aligned} & \hline 362 \\ & 595 \\ & 957 \end{aligned}$		rth-South: East-West: SUM:	$\begin{aligned} & 620 \\ & 177 \\ & 797 \end{aligned}$
	VOLUME/CAPACITY (V/C) RATIO: /C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{gathered} 0.696 \\ 0.596 \\ \text { A } \end{gathered}$			$\begin{gathered} 0.580 \\ 0.480 \\ \text { A } \end{gathered}$

Level of Service Workheet
(Circular 212 Method)

I/S \#:
21

PROJECT TITLE: 670 Mesquit
North-South Street: Boyle Avenue
East-West Street: 7th Street
Scenario: Existing (2018)

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
22

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street
East－West Street：I－10 Eastbound ramps
Scenario：Existing（2018）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	390 993 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	390 497 0	441 968 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	441 484 0
	Left Left－Through \downarrow Through f Through－Right Right \rightarrow Left－Through－Right \downarrow Left－Right	1 726 381	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	1 363 156	0 1028 403	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 514 330
		$\begin{array}{r} 225 \\ 0 \\ 510 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 225 \\ 0 \\ 120 \end{array}$	73 0 352	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	73 0 0
9 2 0 0 1 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \longleftarrow Left－Right	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{aligned} & 753 \\ & 225 \\ & 978 \end{aligned}$		North－South： East－West： SUM：	$\begin{array}{r} 955 \\ 73 \\ 1028 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.686 \\ 0.586 \\ \text { A } \end{gathered}$			$\begin{gathered} 0.721 \\ 0.621 \\ \text { B } \end{gathered}$

CUMULATIVE BASE (2026)

CMA WORKSHEETS

PROJECT TITLE: 670 Mesquit
North-South Street: S Central Avenue
Future Base (2026)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left \uparrow Left-Through \uparrow Through \uparrow Through-Right Right	60 390 360	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	60 375 360	88 1019 412	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	88 716 412
	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right	$\begin{array}{r} 35 \\ 878 \\ 153 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	35 586 586	47 776 78	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	47 568 568
		54 650 50	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	54 350 50	127 1085 85	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	127 585 85
	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right $亡$ Right τ Left-Through-Right \leftarrow Left-Right	$\begin{array}{r} 386 \\ 1085 \\ 87 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 386 \\ 586 \\ 87 \end{array}$	$\begin{aligned} & 360 \\ & 840 \\ & 110 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 360 \\ & 475 \\ & 110 \end{aligned}$
	CRITICAL VOLUMES		rth-South: East-West: SUM:	$\begin{array}{r} 646 \\ 736 \\ 1382 \end{array}$		rth-South: East-West: SUM:	$\begin{array}{r} 763 \\ 945 \\ 1708 \\ \hline \end{array}$
	VOLUME/CAPACITY (V/C) RATIO: V/C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{aligned} & 0.921 \\ & 0.821 \\ & \text { D } \\ & \hline \end{aligned}$			$\begin{gathered} 1.139 \\ 1.039 \\ \mathrm{~F} \\ \hline \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street
East－West Street：E Aliso Street／E Commercial Street
Scenario：Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} N B-- & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|l} \hline N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 2 0 2 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	$\begin{array}{r} 0 \\ 1141 \\ 274 \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 571 0	0 1619 458	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 810 408
1 2 2 0 0 1 \vdots 0 0	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 218 \\ 1555 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	218 518 0	323 1151 0	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 323 \\ 384 \\ 0 \end{array}$
0 2 3 0 0 0 0 $\mathbf{4}$		$\begin{array}{r} 85 \\ 40 \\ 141 \end{array}$	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 47 \\ 40 \\ 141 \end{array}$	389 70 59	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	214 70 59
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 142 \\ 0 \\ 263 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 142 \\ 0 \\ 263 \end{array}$	100 0 247	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	100 0 247
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 789 \\ 404 \\ 1193 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1133 \\ 461 \\ 1594 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.837 \\ & 0.737 \\ & \text { C } \\ & \hline \end{aligned}$			$\begin{gathered} 1.119 \\ 1.019 \\ F \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：Alameda Street
East－West Street：Temple Street
Scenario：Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{l\|l} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 2 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 2 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through	$\begin{array}{r} 172 \\ 1217 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	172 609 0	127 1460 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	127 730 0
	Left \rightarrow Left－Through \downarrow Through f Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 11 \\ 1379 \\ 386 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	11 690 340	61 1075 281	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 61 \\ 538 \\ 150 \end{array}$
		$\begin{array}{r} 93 \\ 109 \\ 355 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	93 109 269	263 409 476	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 263 \\ 409 \\ 413 \end{array}$
0 2 2 0 0 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 56 \\ 244 \\ 47 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 56 \\ 146 \\ 47 \end{array}$	19 178 74	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	19 126 74
	CRITICAL VOLUMES		th－South： East－West： SUM：	$\begin{array}{r} 862 \\ 325 \\ 1187 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 791 \\ 432 \\ 1223 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： L LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.863 \\ 0.763 \\ \text { C } \end{gathered}$			$\begin{aligned} & 0.889 \\ & 0.789 \\ & \text { C } \end{aligned}$

I／S \＃：
4

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street
Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 3 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 3 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 3 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	256 1405 55	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	256 703 39	$\begin{array}{r} 277 \\ 1392 \\ 129 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	277 696 97
	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	63 1332 207	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	63 666 80	$\begin{array}{r} 100 \\ 1331 \\ 173 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	100 666 0
		$\begin{aligned} & 127 \\ & 247 \\ & 191 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	127 247 63	423 755 357	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	423 755 219
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 16 \\ 755 \\ 120 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 16 \\ 755 \\ 89 \end{array}$	$\begin{array}{r} 32 \\ 488 \\ 97 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	32 488 47
	CRITICAL VOLUMES		th－South： East－West： SUM：	$\begin{array}{r} 922 \\ 882 \\ 1804 \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 943 \\ 911 \\ 1854 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.266 \\ 1.166 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{gathered} 1.301 \\ 1.201 \\ \mathrm{~F} \\ \hline \end{gathered}$

I／S \＃：
5

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street
Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \hline \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	144 1380 135	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	144 758 135	114 1453 145	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	114 799 145
	Left Left－Through \downarrow Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	337 1117 83	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	337 600 83	270 1353 68	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	270 711 68
		36 203 94	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	36 203 22	88 258 146	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	88 258 89
n 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{aligned} & 132 \\ & 469 \\ & 129 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 132 \\ 598 \\ 0 \end{array}$	$\begin{array}{r} 73 \\ 246 \\ 187 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	73 433 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 1095 \\ 634 \\ 1729 \\ \hline \end{array}$		th－South： East－West： SUM：	$\begin{array}{r} 1069 \\ 521 \\ 1590 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 1.153 \\ & 1.053 \\ & \text { F } \end{aligned}$			$\begin{aligned} & 1.060 \\ & 0.960 \\ & \text { E } \end{aligned}$

I/S \#:
6

PROJECT TITLE: 670 Mesquit
North-South Street: S Alameda Street
Scenario: Future Base (2026)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No. of Lanes	Lane Volume	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
O 2 0 0 0 1 0 0 2	Left \uparrow Left-Through \uparrow Through \uparrow Through-Right Right	$\begin{array}{r} 264 \\ 1270 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	264 635 0	$\begin{array}{r} 352 \\ 1218 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	352 609 0
9 2 2 0 9 1 \vdots 0 0	Left Left-Through \downarrow Through $\&$ Through-Right Right \rightarrow Left-Through-Right Left-Right	$\begin{array}{r} 0 \\ 1095 \\ 136 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 548 136	0 1458 143	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 729 143
		0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
9 2 0 0 \vdots 0 3 3	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right τ Right \leftarrow Left-Through-Right \longleftarrow Left-Right	$\begin{array}{r} 141 \\ 2898 \\ 453 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 141 \\ & 760 \\ & 453 \end{aligned}$	$\begin{array}{r} 162 \\ 1343 \\ 307 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 162 \\ 376 \\ 307 \end{array}$
	CRITICAL VOLUMES		rth-South: East-West: SUM:	$\begin{array}{r} 812 \\ 760 \\ 1572 \end{array}$		th-South: East-West: SUM:	$\begin{array}{r} 1081 \\ 376 \\ 1457 \\ \hline \end{array}$
	VOLUME/CAPACITY (V/C) RATIO: C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{gathered} 1.048 \\ 0.948 \\ \text { E } \\ \hline \end{gathered}$			$\begin{aligned} & 0.971 \\ & 0.871 \\ & \text { D } \\ & \hline \end{aligned}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street
Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \hline \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	0 1203 59	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 631 59	0 1207 131	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 669 131
	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 115 \\ 1211 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 115 \\ 606 \\ 0 \end{array}$	$\begin{array}{r} 168 \\ 1292 \\ 0 \end{array}$	1 0 2 0 0 0 0	$\begin{array}{r} 168 \\ 646 \\ 0 \end{array}$
9 3 0 0 0 0 $\mathbf{0}$ $\mathbf{1}$		$\begin{aligned} & 222 \\ & 652 \\ & 201 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 222 \\ & 291 \\ & 201 \end{aligned}$	$\begin{array}{r} 307 \\ 1978 \\ 341 \end{array}$	0 1 2 0 1 0 0	$\begin{aligned} & 307 \\ & 762 \\ & 341 \end{aligned}$
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0 0 0 0 0 0 0 0		0 0 0
	CRITICAL VOLUMES	North－South： East－West： SUM：		$\begin{array}{r} 746 \\ 291 \\ 1037 \\ \hline \end{array}$	North－South： East－West： SUM：		$\begin{array}{r} 837 \\ 762 \\ 1599 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.691 \\ & 0.591 \\ & \text { A } \\ & \hline \end{aligned}$			$\begin{gathered} 1.066 \\ 0.966 \\ \text { E } \end{gathered}$

I/S \#:
8

PROJECT TITLE: 670 Mesquit
North-South Street: S Alameda Street
Scenario: Future Base (2026)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{l\|l} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No. of Lanes	Lane Volume	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
O 2 0 0 0 1 0 0 2	Left \uparrow Left-Through \uparrow Through \uparrow Through-Right Right	130 987 84	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	130 536 84	$\begin{array}{r} 178 \\ 1218 \\ 156 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	178 687 156
9 2 2 0 9 1 \vdots 0 0	Left Left-Through \downarrow Through Through-Right Right Left-Through-Right	$\begin{array}{r} 97 \\ 1216 \\ 204 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	97 710 204	161 1207 216	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	161 712 216
		$\begin{aligned} & 148 \\ & 485 \\ & 206 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 148 \\ & 346 \\ & 206 \end{aligned}$	250 1267 185	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	250 726 185
9 2 0 0 \vdots 0 3 3	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right τ Right \leftarrow Left-Through-Right \longleftarrow Left-Right	$\begin{array}{r} 195 \\ 1282 \\ 176 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 195 \\ & 729 \\ & 176 \end{aligned}$	116 580 63	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 116 \\ 322 \\ 63 \end{array}$
	CRITICAL VOLUMES		th-South: East-West: SUM:	$\begin{array}{r} 840 \\ 877 \\ 1717 \end{array}$		rth-South: East-West: SUM:	$\begin{array}{r} 890 \\ 842 \\ 1732 \\ \hline \end{array}$
	VOLUME/CAPACITY (V/C) RATIO: C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{gathered} 1.145 \\ 1.045 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.155 \\ 1.055 \\ \text { F } \\ \hline \end{gathered}$

I／S \＃：
9

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street
Scenario：Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{l\|l} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
O 2 0 0 0 1 0 0 2	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	117 827 126	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	117 477 126	$\begin{array}{r} 124 \\ 1140 \\ 133 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	124 637 133
9 2 2 0 9 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	$\begin{array}{r} 269 \\ 1225 \\ 383 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	269 804 383	210 1163 209	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 210 \\ & 686 \\ & 209 \end{aligned}$
		$\begin{aligned} & 180 \\ & 737 \\ & 140 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	180 439 140	314 1088 169	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 314 \\ & 629 \\ & 169 \end{aligned}$
9 2 0 0 \vdots 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 170 \\ 1144 \\ 202 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 170 \\ & 673 \\ & 202 \end{aligned}$	$\begin{aligned} & 157 \\ & 988 \\ & 286 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 157 \\ & 637 \\ & 286 \end{aligned}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 921 \\ 853 \\ 1774 \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 847 \\ 951 \\ 1798 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.245 \\ 1.145 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.262 \\ 1.162 \\ \text { F } \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：Molino Street／Merrick Street East－West Street：4th Street
Scenario：Future Base（2027）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{l\|l} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 1 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	178 122 20	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	178 320 0	326 149 12	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	326 487 0
9 2 2 0 9 1 \vdots 0 0	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{aligned} & 24 \\ & 62 \\ & 47 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	24 0 47	86 138 67	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	86 0 67
		$\begin{array}{r} 1 \\ 374 \\ 302 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 338 302	$\begin{array}{r} 10 \\ 1816 \\ 310 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 709 310
9 2 0 0 \vdots 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 15 \\ 2709 \\ 103 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 937 103	3 1101 97	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 599 97
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 367 \\ 937 \\ 1304 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 573 \\ 709 \\ 1282 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.915 \\ 0.815 \\ \text { D } \end{gathered}$			$\begin{aligned} & 0.900 \\ & 0.800 \\ & \mathrm{C} \\ & \hline \end{aligned}$

PROJECT TITLE： 670 Mesquit
North－South Street：Mateo Street
Scenario：Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|l\|l} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	115 261 46	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	115 422 0	142 434 145	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	142 721 0
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right Left－Right	104 356 143	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	104 460 61	149 360 212	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	149 509 84
		$\begin{aligned} & 165 \\ & 360 \\ & 172 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	165 177 172	256 1256 143	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	256 466 143
0 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 145 \\ 1423 \\ 240 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 145 \\ & 832 \\ & 240 \end{aligned}$	$\begin{array}{r} 20 \\ 483 \\ 188 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	20 336 188
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 575 \\ 997 \\ 1572 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 870 \\ 592 \\ 1462 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.048 \\ 0.948 \\ \text { E } \\ \hline \end{gathered}$			$\begin{gathered} 0.975 \\ 0.875 \\ \text { D } \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：Mateo Street
Scenario：Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
O 2 0 0 0 1 0 0 2	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	107 255 62	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	107 424 0	200 384 126	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	200 710 0
9 2 2 0 9 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	$\begin{aligned} & 114 \\ & 405 \\ & 131 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	114 519 79	95 271 131	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	95 366 39
		$\begin{aligned} & 105 \\ & 803 \\ & 145 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	105 474 145	185 1067 136	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	185 602 136
9 2 0 0 \vdots 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 371 \\ 1193 \\ 75 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 371 \\ 634 \\ 75 \end{array}$	154 1046 92	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 154 \\ 569 \\ 92 \end{array}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 626 \\ 845 \\ 1471 \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 805 \\ 756 \\ 1561 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.981 \\ & 0.881 \\ & \text { D } \\ & \hline \end{aligned}$			$\begin{aligned} & 1.041 \\ & 0.941 \\ & \text { E } \\ & \hline \end{aligned}$

Intersection 13

Future Year AM Peak Hour (2026)

NWB

$=16$
EB-WB 2) $\left\{\frac{1468+265}{2}+\frac{23}{1}\right\}$ or $\left\{\frac{265}{1}+\frac{23}{1}\right\}$ or
$\left\{\frac{610+318}{2}+\frac{607}{1}\right\}$ or $\left\{\frac{318}{1}+\frac{607}{1}\right\}$
$=1071$

Critical Volumes $=$	$16+1071+741=1,828$
V/C $=$	$\frac{1,828}{1,375}-0.10=1.229$

Intersection 13
Future Year PM Peak Hour (2026)

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue
Scenario：Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	220 906 18	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	220 902 902	232 661 21	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	232 682 0
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	19 521 391	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	19 299 391	18 867 314	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	18 470 314
		$\begin{array}{r} 222 \\ 8 \\ 285 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 222 \\ & 230 \\ & 285 \end{aligned}$	110 18 382	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	110 128 266
n 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{aligned} & 10 \\ & 11 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	10 36 0	13 13 22	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	13 48 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 921 \\ 295 \\ 1216 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{aligned} & \hline 702 \\ & 279 \\ & 981 \\ & \hline \end{aligned}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.811 \\ & 0.711 \\ & \mathrm{C} \\ & \hline \end{aligned}$			$\begin{gathered} 0.654 \\ 0.554 \\ \text { A } \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue
Scenario：Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	313 908 25	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	313 467 25	430 748 27	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	430 388 27
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	18 748 85	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	18 417 85	$\begin{array}{r} 15 \\ 1059 \\ 201 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	15 630 201
		199 28 502	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 199 \\ & 227 \\ & 189 \end{aligned}$	107 19 397	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	107 126 0
0 2 2 0 0 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	20 47 22	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	20 67 13	43 86 24	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 43 \\ 129 \\ 17 \end{array}$
	CRITICAL VOLUMES		th－South： East－West： SUM：	$\begin{aligned} & \hline 730 \\ & 266 \\ & 996 \\ & \hline \end{aligned}$		rth－South： East－West： SUM：	$\begin{array}{r} 1060 \\ 236 \\ 1296 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.699 \\ & 0.599 \\ & \text { A } \\ & \hline \end{aligned}$			$\begin{aligned} & 0.909 \\ & 0.809 \\ & \text { D } \\ & \hline \end{aligned}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：Olympic Boulevard
Scenario：Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 237 \\ 1014 \\ 73 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	237 544 73	$\begin{array}{r} 121 \\ 1023 \\ 172 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	121 598 172
9 2 0 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	214 1032 16	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	214 524 16	292 1084 55	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	292 570 55
		36 403 315	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	36 202 78	37 1011 385	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	37 506 264
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 189 \\ 1229 \\ 196 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 189 \\ & 713 \\ & 196 \end{aligned}$	93 908 170	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 93 \\ 539 \\ 170 \end{array}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 761 \\ 749 \\ 1510 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 890 \\ 599 \\ 1489 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.098 \\ 0.998 \\ \mathrm{E} \\ \hline \end{gathered}$			$\begin{gathered} 1.083 \\ 0.983 \\ \mathrm{E} \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue
Scenario：Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	104 1211 218	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	104 606 0	115 1025 166	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 115 \\ & 513 \\ & 149 \end{aligned}$
$\begin{aligned} & \text { Q } \\ & \vdots \\ & 0 \\ & \text { m } \\ & \underline{I} \\ & \vdots \\ & 0 \end{aligned}$	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 64 \\ 1322 \\ 62 \end{array}$	1 0 1 1 0 0 0	$\begin{array}{r} 64 \\ 692 \\ 62 \end{array}$	$\begin{array}{r} 193 \\ 1341 \\ 16 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 193 \\ 679 \\ 16 \end{array}$
		26 47 58	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 26 \\ 105 \\ 105 \end{array}$	$\begin{array}{r} 58 \\ 323 \\ 176 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 58 \\ 279 \\ 279 \end{array}$
	\digamma Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 24 \\ 587 \\ 109 \end{array}$	1 0 1 0 1 0 0	$\begin{array}{r} 24 \\ 587 \\ 77 \end{array}$	$\begin{array}{r} 35 \\ 81 \\ 115 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 35 \\ & 81 \\ & 19 \end{aligned}$
	CRITICAL VOLUMES	North－South： East－West： SUM：		$\begin{array}{r} \hline 796 \\ 613 \\ 1409 \\ \hline \end{array}$	North－South： East－West： SUM：		$\begin{array}{r} 794 \\ 314 \\ 1108 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.989 \\ 0.889 \\ \text { D } \\ \hline \end{gathered}$			$\begin{aligned} & 0.778 \\ & 0.678 \\ & \text { B } \\ & \hline \end{aligned}$

I／S \＃：
18

PROJECT TITLE： 670 Mesquit
North－South Street：S Rio Street
Scenario：Future Base（2026）
East－West Street：E 7th Street

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{l\|l} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|l\|l} \hline N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through	37 2 65	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	37 39 26	22 1 65	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	22 23 48
	\ll Left Left－Through \downarrow Through f Through－Right Right \rightarrow Left－Through－Right Left－Right	$\begin{array}{r} 18 \\ 2 \\ 12 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	18 32 0	15 0 8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	15 23 0
		$\begin{array}{r} 10 \\ 694 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 347 0	$\begin{array}{r} 10 \\ 1357 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 679 0
0 2 2 0 0 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 78 \\ 1914 \\ 13 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 78 \\ 964 \\ 13 \end{array}$	$\begin{array}{r} 35 \\ 1182 \\ 2 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	35 592 2
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 69 \\ 974 \\ 1043 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 63 \\ 714 \\ 777 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.695 \\ & 0.595 \\ & \text { A } \\ & \hline \end{aligned}$			$\begin{gathered} 0.518 \\ 0.418 \\ \text { A } \\ \hline \end{gathered}$

PROJECT TITLE: 670 Mesquit
North-South Street: S Anderson Street
Scenario: Future Base (2026)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left \uparrow Left-Through \uparrow Through \uparrow Through-Right Right	13 1 4	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	13 18 0	0 0 2	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	0 2 0
	Left Left-Through \downarrow Through f Through-Right Right Left-Through-Right Left-Right	36 2 54	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	36 38 29	98 0 77	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	98 98 42
				$\begin{array}{r} 50 \\ 352 \\ 7 \end{array}$	$\begin{array}{r} 70 \\ 1349 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 70 \\ 675 \\ 0 \end{array}$
	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right $亡$ Right τ Left-Through-Right \leftarrow Left-Right	$\begin{array}{r} 10 \\ 1939 \\ 363 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 10 \\ 1151 \\ 363 \end{array}$	5 1159 99	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	5 629 99
	CRITICAL VOLUMES		rth-South: East-West: SUM:	$\begin{array}{r} 54 \\ 1201 \\ 1255 \end{array}$		rth-South: East-West: SUM:	$\begin{aligned} & 100 \\ & 699 \\ & 799 \\ & \hline \end{aligned}$
	VOLUME/CAPACITY (V/C) RATIO: V/C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{gathered} 0.837 \\ 0.737 \\ \text { C } \end{gathered}$			$\begin{gathered} 0.533 \\ 0.433 \\ \text { A } \end{gathered}$

I/S \#:
20

PROJECT TITLE: 670 Mesquit
North-South Street: Boyle Avenue East-West Street: Whittier Boulevard
Scenario: Future Base (2026)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 2 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 2 0 0 2 0
MOVEMENT		Volume	No. of Lanes	Lane Volume	Volume	No. of Lanes	Lane Volume
	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right	279 449 111	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	279 280 111	266 957 194	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	266 576 194
	Left Left-Through Through Through-Right Right Left-Through-Right	$\begin{array}{r} 96 \\ 439 \\ 188 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 314 188	96 351 36	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 194 36
		26 340 61	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	26 201 61	166 909 107	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	166 508 107
	\ulcorner Left τ Left-Through \leftarrow Through $亡$ Through-Right τ Right $亡$ Left-Through-Right τ Left-Right	$\begin{array}{r} 180 \\ 1488 \\ 145 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 180 \\ 817 \\ 145 \end{array}$	53 635 164	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	53 400 164
	CRITICAL VOLUMES		th-South: ast-West: SUM:	$\begin{array}{r} 593 \\ 1018 \\ 1611 \end{array}$		rth-South: East-West: SUM:	$\begin{array}{r} 672 \\ 908 \\ 1580 \\ \hline \end{array}$
	VOLUME/CAPACITY (V/C) RATIO: V/C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{gathered} 1.172 \\ 1.072 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.149 \\ 1.049 \\ \mathrm{~F} \\ \hline \end{gathered}$

I／S \＃：
21

PROJECT TITLE： 670 Mesquit
North－South Street：Boyle Avenue
Scenario：Future Base（2026）
East－West Street：7th Street

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 1 0 2 0	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 1 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right \uparrow Left－Through－Right Left－Right	243 465 100	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	243 283 100	168 698 130	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	168 414 130
	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 59 \\ 481 \\ 313 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	59 397 313	60 428 134	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	60 281 134
		$\begin{aligned} & 111 \\ & 233 \\ & 160 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	111 233 39	326 616 352	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 326 \\ & 616 \\ & 268 \end{aligned}$
0 2 0 0 0 0 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 62 \\ 536 \\ 68 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 62 \\ 604 \\ 0 \end{array}$	$\begin{array}{r} 13 \\ 319 \\ 127 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	13 446 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 640 \\ 715 \\ 1355 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 474 \\ 772 \\ 1246 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.985 \\ 0.885 \\ \text { D } \end{gathered}$			$\begin{gathered} 0.906 \\ 0.806 \\ \text { D } \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street
Scenario：Future Base（2026）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0	$\begin{array}{\|l\|l} \hline N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through	$\begin{array}{r} 341 \\ 1237 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	341 619 0	418 1311 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	418 656 0
	Left Left－Through \downarrow Through f Through－Right Right \checkmark Left－Through－Right Left－Right	$\begin{array}{r} 1 \\ 1094 \\ 467 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	1 547 160	3 1488 525	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	3 744 329
		$\begin{array}{r} 307 \\ 0 \\ 543 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 307 \\ 0 \\ 202 \end{array}$	196 0 364	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	196 0 0
0 2 2 0 0 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	0 1 1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 888 \\ 307 \\ 1195 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1162 \\ 196 \\ 1358 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.839 \\ 0.739 \\ \text { C } \end{gathered}$			$\begin{gathered} 0.953 \\ 0.853 \\ \text { D } \end{gathered}$

CUMULATIVE PLUS PROJECT (2026) - OPTION 1 CMA WORKSHEETS

Level of Service Workheet
 （Circular 212 Method）

\square PROJECT TITLE： 670 Mesquit
North－South Street：S Central Avenue East－West Street：7th Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	60 390 393	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	60 390 193	88 1019 433	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	88 726 433
ㅇ 2 0 0 0 1 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	35 878 153	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	35 586 586	47 776 78	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	47 568 568
		$\begin{array}{r} 54 \\ 684 \\ 50 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	54 367 50	$\begin{array}{r} 127 \\ 1108 \\ 85 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	127 597 85
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 401 \\ 1105 \\ 87 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 401 \\ 596 \\ 87 \end{array}$	$\begin{aligned} & 410 \\ & 900 \\ & 110 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 410 \\ & 505 \\ & 110 \end{aligned}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} \hline 646 \\ 768 \\ 1414 \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} \hline 773 \\ 1007 \\ 1780 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.943 \\ & 0.843 \\ & \text { D } \end{aligned}$			$\begin{gathered} 1.187 \\ 1.087 \\ \text { F } \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street East－West Street：E Aliso Street／E Commercial Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 2 0 2 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	$\begin{array}{r} 0 \\ 1159 \\ 279 \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 580 0	0 1679 475	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 840 418
1 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	$\begin{array}{r} 218 \\ 1596 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	218 532 0	323 1179 0	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	323 393 0
0 2 3 0 0 0 0 $\mathbf{4}$		$\begin{array}{r} 85 \\ 40 \\ 157 \end{array}$	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 47 \\ 40 \\ 157 \end{array}$	389 70 69	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	214 70 69
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 165 \\ 0 \\ 263 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 165 \\ 0 \\ 263 \end{array}$	114 0 247	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	114 0 247
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 798 \\ 420 \\ 1218 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1163 \\ 461 \\ 1624 \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.855 \\ 0.755 \\ \text { C } \\ \hline \end{gathered}$			$\begin{gathered} 1.140 \\ 1.040 \\ \mathrm{~F} \\ \hline \end{gathered}$

I／S \＃：
3

PROJECT TITLE： 670 Mesquit
North－South Street：Alameda Street
East－West Street：Temple Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 2 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 2 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 175 \\ 1233 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	175 617 0	135 1519 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	135 760 0
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	11 1459 386	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	11 730 340	61 1127 281	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	61 564 150
	\uparrow Left $\xrightarrow{\boldsymbol{\mu}}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\overrightarrow{\vec{r}}$ Left－Through－Right \prec Left－Right	$\begin{array}{r} 93 \\ 109 \\ 363 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	93 109 276	263 409 481	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	263 409 414
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 56 \\ 244 \\ 54 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 56 \\ 149 \\ 54 \end{array}$	$\begin{array}{r} 19 \\ 178 \\ 92 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	19 135 92
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 905 \\ 332 \\ 1237 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 821 \\ 433 \\ 1254 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.900 \\ & 0.800 \\ & \text { C } \\ & \hline \end{aligned}$			$\begin{aligned} & 0.912 \\ & 0.812 \\ & \text { D } \\ & \hline \end{aligned}$

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street East－West Street：E 1st Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 3 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0	$\begin{array}{ll} N B-- & 3 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	258 1424 55	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	258 712 39	277 1459 129	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	277 730 97
	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 63 \\ 1419 \\ 207 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	63 710 80	100 1387 173	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	100 694 0
	\uparrow Left $\xrightarrow{\rightarrow}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\stackrel{\rightharpoonup}{r}$ Left－Through－Right $\hat{\imath}$ Left－Right	$\begin{aligned} & 127 \\ & 247 \\ & 192 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	127 247 63	423 755 358	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	423 755 220
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 16 \\ 755 \\ 120 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	16 755 89	32 488 97	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	32 488 47
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 968 \\ 882 \\ 1850 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 971 \\ 911 \\ 1882 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.298 \\ 1.198 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.321 \\ 1.221 \\ \text { F } \\ \hline \end{gathered}$

I／S \＃：

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street East－West Street：E 2nd Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 147 \\ 1401 \\ 135 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	147 768 135	122 1520 145	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	122 833 145
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 337 \\ 1205 \\ 83 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	337 644 83	270 1410 68	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	270 739 68
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	36 203 94	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	36 203 21	88 258 146	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	88 258 85
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{aligned} & 132 \\ & 469 \\ & 129 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 132 \\ 598 \\ 0 \end{array}$	73 246 187	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	73 433 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 1105 \\ 634 \\ 1739 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1103 \\ 521 \\ 1624 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.159 \\ 1.059 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{gathered} 1.083 \\ 0.983 \\ \text { E } \end{gathered}$

I／S \＃：
6

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：3rd Street／4th Place
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 272 \\ 1289 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	272 645 0	$\begin{array}{r} 378 \\ 1285 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	378 643 0
	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	$\begin{array}{r} 0 \\ 1190 \\ 136 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 595 136	0 1520 143	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 760 143
		0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
0 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 141 \\ 2907 \\ 458 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 141 \\ & 762 \\ & 458 \end{aligned}$	162 1363 315	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 162 \\ 381 \\ 315 \end{array}$
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 867 \\ 762 \\ 1629 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1138 \\ 381 \\ 1519 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.086 \\ 0.986 \\ \text { E } \\ \hline \end{gathered}$			$\begin{aligned} & 1.013 \\ & 0.913 \\ & \text { E } \\ & \hline \end{aligned}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：4th Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	0 1230 59	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 645 59	0 1300 131	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 716 131
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 123 \\ 1298 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	123 649 0	173 1348 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	173 674 0
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	$\begin{aligned} & 222 \\ & 671 \\ & 226 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	222 298 226	307 1992 358	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	307 766 358
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 768 \\ 298 \\ 1066 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 889 \\ 766 \\ 1655 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.711 \\ & 0.611 \\ & \text { B } \end{aligned}$			$\begin{gathered} 1.103 \\ 1.003 \\ \mathrm{~F} \\ \hline \end{gathered}$

I／S \＃：
8

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：6th Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	130 1002 84	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	130 543 84	178 1269 156	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	178 713 156
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	161 1264 204	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	161 734 204	202 1238 216	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	202 727 216
		$\begin{array}{r} 148 \\ 527 \\ 206 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	148 367 206	$\begin{array}{r} 250 \\ 1295 \\ 185 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	250 740 185
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 195 \\ 1292 \\ 188 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 195 \\ & 740 \\ & 188 \end{aligned}$	116 599 105	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	116 352 105
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 864 \\ 888 \\ 1752 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 915 \\ 856 \\ 1771 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 1.168 \\ & 1.068 \\ & \text { F } \end{aligned}$			$\begin{aligned} & 1.181 \\ & 1.081 \\ & \text { F } \\ & \hline \end{aligned}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
9

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：7th Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{aligned} & 117 \\ & 827 \\ & 169 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	117 498 169	124 1140 158	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	124 649 158
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	317 1225 383	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	317 804 383	241 1163 209	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	241 686 209
	\uparrow Left $\xrightarrow{\boldsymbol{\mu}}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\overrightarrow{\vec{r}}$ Left－Through－Right \prec Left－Right	$\begin{aligned} & 180 \\ & 804 \\ & 140 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	180 472 140	314 1132 169	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	314 651 169
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 180 \\ 1178 \\ 217 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 180 \\ & 698 \\ & 217 \end{aligned}$	$\begin{array}{r} 204 \\ 1099 \\ 337 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	204 718 337
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 921 \\ 878 \\ 1799 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 890 \\ 1032 \\ 1922 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.262 \\ 1.162 \\ \text { F } \\ \hline \end{gathered}$			$\begin{aligned} & 1.349 \\ & 1.249 \\ & \text { F } \\ & \hline \end{aligned}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
10

PROJECT TITLE： 670 Mesquit
North－South Street：Molino Street／Merrick Street East－West Street：4th Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 1 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 1 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	207 122 20	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	207 349 0	382 149 12	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	382 543 0
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	24 62 47	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	24 0 47	86 138 67	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	86 0 67
		$\begin{array}{r} 1 \\ 374 \\ 358 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 366 358	10 1816 355	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 724 355
n 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 15 \\ 2709 \\ 103 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 937 103	3 1101 97	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 599 97
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} \hline 396 \\ 937 \\ 1333 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 629 \\ 724 \\ 1353 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.935 \\ 0.835 \\ \text { D } \\ \hline \end{gathered}$			$\begin{gathered} 0.949 \\ 0.849 \\ \text { D } \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：Mateo Street
East－West Street：6th Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|l\|} N B-- \\ E B-- \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	141 268 69	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	141 478 0	197 453 215	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	197 865 0
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	155 366 154	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	155 521 72	192 368 233	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	192 560 105
		$\begin{aligned} & 165 \\ & 431 \\ & 222 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	165 216 222	$\begin{array}{r} 256 \\ 1310 \\ 177 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	256 496 177
Q 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 209 \\ 1423 \\ 240 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 209 \\ & 832 \\ & 240 \end{aligned}$	$\begin{array}{r} 70 \\ 483 \\ 188 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	70 336 188
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 662 \\ 997 \\ 1659 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1057 \\ 592 \\ 1649 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.106 \\ 1.006 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{aligned} & 1.099 \\ & 0.999 \\ & \text { E } \end{aligned}$

PROJECT TITLE： 670 Mesquit
Scenario：Future plus Project（2026）－Option

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	107 325 62	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	107 494 0	200 433 126	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	200 759 0
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{aligned} & 114 \\ & 429 \\ & 157 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	114 543 64	95 340 190	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	95 435 68
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	187 924 145	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	187 535 145	244 1164 136	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	244 650 136
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 376 \\ 1258 \\ 93 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 376 \\ 676 \\ 93 \end{array}$	164 1229 153	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	164 691 153
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 650 \\ 911 \\ 1561 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 854 \\ 935 \\ 1789 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.041 \\ 0.941 \\ \text { E } \end{gathered}$			$\begin{gathered} 1.193 \\ 1.093 \\ \mathrm{~F} \\ \hline \end{gathered}$

Future Year Plus Project AM Peak Hour (2026) - Option 1

Intersection 13

Future Year Plus Project PM Peak Hour (2026) - Option 1

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：8th Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 220 \\ 1024 \\ 18 \end{array}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	220 961 961	232 737 21	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	232 758 0
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	19 556 395	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	19 335 395	18 985 332	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	18 529 332
		$\begin{array}{r} 239 \\ 8 \\ 285 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	239 247 285	121 18 382	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	121 139 266
n 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{aligned} & 10 \\ & 11 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	10 36 0	13 13 22	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	13 48 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 980 \\ 295 \\ 1275 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 776 \\ 279 \\ 1055 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.850 \\ & 0.750 \\ & \mathrm{C} \\ & \hline \end{aligned}$			$\begin{gathered} 0.703 \\ 0.603 \\ \text { B } \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：Porter Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	313 988 25	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	313 507 25	430 800 27	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	430 414 27
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	18 775 93	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	18 434 93	15 1144 234	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	15 689 234
		$\begin{array}{r} 237 \\ 28 \\ 502 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 237 \\ & 265 \\ & 189 \end{aligned}$	131 19 397	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	131 150 0
n 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{aligned} & 20 \\ & 47 \\ & 22 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	20 67 13	43 86 24	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	43 129 17
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 747 \\ 304 \\ 1051 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1119 \\ 260 \\ 1379 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.738 \\ 0.638 \\ \text { B } \\ \hline \end{gathered}$			$\begin{gathered} 0.968 \\ 0.868 \\ \text { D } \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
16

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：Olympic Boulevard
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	237 1079 73	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	237 576 73	121 1067 172	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	121 620 172
	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 217 \\ 1056 \\ 16 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	217 536 16	308 1154 55	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	308 605 55
	\uparrow Left $\xrightarrow{\rightarrow}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\stackrel{\rightharpoonup}{r}$ Left－Through－Right $\hat{\imath}$ Left－Right	36 409 315	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	36 205 78	37 1028 385	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	37 514 264
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 189 \\ 1245 \\ 210 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 189 \\ 728 \\ 210 \end{array}$	93 918 178	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	93 548 178
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 793 \\ 764 \\ 1557 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 928 \\ 607 \\ 1535 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.132 \\ 1.032 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{gathered} 1.116 \\ 1.016 \\ \mathrm{~F} \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：E 15th Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{\|l\|l} \hline N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through	$\begin{array}{r} 104 \\ 1260 \\ 218 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	104 630 0	$\begin{array}{r} 115 \\ 1056 \\ 166 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	115 528 149
$\begin{aligned} & \text { Q } \\ & \text { Z } \\ & \text { O} \\ & \text { @T } \\ & \vdots \\ & \text { O} \end{aligned}$	Left Left－Through \downarrow Through f Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 64 \\ 1346 \\ 62 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	64 704 62	193 1411 16	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	193 714 16
		26 47 58	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	26 105 105	58 323 176	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	58 279 279
0 2 2 0 0 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 24 \\ 587 \\ 127 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 24 \\ 587 \\ 95 \end{array}$	$\begin{array}{r} 35 \\ 81 \\ 127 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	35 81 31
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 808 \\ 613 \\ 1421 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 829 \\ 314 \\ 1143 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.997 \\ 0.897 \\ \text { D } \\ \hline \end{gathered}$			$\begin{aligned} & 0.802 \\ & 0.702 \\ & \mathrm{C} \\ & \hline \end{aligned}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
18

PROJECT TITLE： 670 Mesquit
North－South Street：S Rio Street East－West Street：E 7th Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	37 2 65	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	37 39 26	22 1 65	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	22 23 48
$\begin{aligned} & \text { Q } \\ & \text { Z } \\ & \text { O} \\ & \text { M } \\ & \vdots \\ & \text { O} \\ & 0 \end{aligned}$	Left Left－Through Through Through－Right Right Left－Through－Right	18 2 12	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	18 32 0	15 0 8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	15 23 0
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	10 732 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 366 0	10 1488 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 744 0
Q 2 0 0 0 0 3 3	ζ Left ζ Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 78 \\ 2076 \\ 13 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 78 \\ 1045 \\ 13 \end{array}$	$\begin{array}{r} 35 \\ 1286 \\ 2 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	35 644 2
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 69 \\ 1055 \\ 1124 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 63 \\ 779 \\ 842 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.749 \\ & 0.649 \\ & \text { B } \end{aligned}$			$\begin{aligned} & 0.561 \\ & 0.461 \\ & \text { A } \end{aligned}$

PROJECT TITLE: 670 Mesquit
North-South Street: S Anderson Street East-West Street: E 7th Street
Scenario: Future plus Project (2026) - Option 1

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：Boyle Avenue
East－West Street：Whittier Boulevard
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 2 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 2 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	279 454 111	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	279 283 111	266 974 194	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	266 584 194
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 96 \\ 462 \\ 216 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 339 216	96 365 57	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 211 57
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	26 358 61	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	26 210 61	166 945 107	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	166 526 107
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 180 \\ 1523 \\ 145 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 180 \\ 834 \\ 145 \end{array}$	$\begin{array}{r} 53 \\ 664 \\ 164 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	53 414 164
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 618 \\ 1044 \\ 1662 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 680 \\ 940 \\ 1620 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.209 \\ 1.109 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.178 \\ 1.078 \\ \text { F } \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
21

PROJECT TITLE： 670 Mesquit
North－South Street：Boyle Avenue East－West Street：7th Street
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 1 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 1 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{aligned} & 243 \\ & 465 \\ & 100 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	243 283 100	168 698 130	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	168 414 130
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	59 481 351	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	59 416 351	60 428 157	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	60 293 157
		$\begin{aligned} & 116 \\ & 260 \\ & 160 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	116 260 39	343 704 352	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	343 704 268
n 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 62 \\ 586 \\ 68 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 62 \\ 654 \\ 0 \end{array}$	$\begin{array}{r} 13 \\ 353 \\ 127 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	13 480 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 659 \\ 770 \\ 1429 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 474 \\ 823 \\ 1297 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.039 \\ 0.939 \\ \text { E } \\ \hline \end{gathered}$			$\begin{gathered} 0.943 \\ 0.843 \\ \text { D } \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：I－10 Eastbound ramps
Scenario：Future plus Project（2026）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0	$\begin{array}{\|l\|l} \hline N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through	$\begin{array}{r} 341 \\ 1237 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	341 619 0	418 1311 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	418 656 0
	Left Left－Through \downarrow Through f Through－Right Right \checkmark Left－Through－Right Left－Right	$\begin{array}{r} 1 \\ 1094 \\ 467 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	1 547 131	3 1488 525	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	3 744 312
		$\begin{array}{r} 336 \\ 0 \\ 543 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 336 \\ 0 \\ 202 \end{array}$	213 0 364	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	213 0 0
0 2 2 0 0 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	0 1 1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 888 \\ 336 \\ 1224 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1162 \\ 213 \\ 1375 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.859 \\ 0.759 \\ \text { C } \end{gathered}$			$\begin{gathered} 0.965 \\ 0.865 \\ \text { D } \end{gathered}$

CUMULATIVE PLUS PROJECT (2026) - OPTION 2 CMA WORKSHEETS

Level of Service Workheet
 （Circular 212 Method）

\square PROJECT TITLE： 670 Mesquit
North－South Street：S Central Avenue East－West Street：7th Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{l\|l} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	60 390 394	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	60 390 193	88 1019 435	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	88 727 435
9 2 2 0 9 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	$\begin{array}{r} 35 \\ 878 \\ 153 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	35 586 586	47 776 78	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 47 \\ 568 \\ 568 \end{array}$
		$\begin{array}{r} 54 \\ 685 \\ 50 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	54 368 50	127 1109 85	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 127 \\ 597 \\ 85 \end{array}$
9 2 0 0 \vdots 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 402 \\ 1106 \\ 87 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 402 \\ 597 \\ 87 \end{array}$	$\begin{aligned} & 411 \\ & 902 \\ & 110 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 411 \\ & 506 \\ & 110 \end{aligned}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 646 \\ 770 \\ 1416 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 774 \\ 1008 \\ 1782 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.944 \\ 0.844 \\ \text { D } \end{gathered}$			$\begin{gathered} 1.188 \\ 1.088 \\ \text { F } \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street East－West Street：E Aliso Street／E Commercial Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 2 0 2 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 2 0 2 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	0 1161 279	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 581 0	0 1680 475	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 840 418
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 218 \\ 1599 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	218 533 0	323 1180 0	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	323 393 0
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	$\begin{array}{r} 85 \\ 40 \\ 157 \end{array}$	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	47 40 157	389 70 69	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	214 70 69
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 165 \\ 0 \\ 263 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	165 0 263	114 0 247	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	114 0 247
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 799 \\ 420 \\ 1219 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1163 \\ 461 \\ 1624 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.855 \\ & 0.755 \\ & \text { C } \\ & \hline \end{aligned}$			$\begin{gathered} 1.140 \\ 1.040 \\ \mathrm{~F} \\ \hline \end{gathered}$

I／S \＃：
3

PROJECT TITLE： 670 Mesquit
North－South Street：Alameda Street
East－West Street：Temple Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 2 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 2 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 175 \\ 1235 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	175 618 0	135 1519 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	135 760 0
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	11 1460 386	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	11 730 340	61 1128 281	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	61 564 150
	\uparrow Left $\xrightarrow{\boldsymbol{\mu}}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\overrightarrow{\vec{r}}$ Left－Through－Right \prec Left－Right	$\begin{array}{r} 93 \\ 109 \\ 363 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	93 109 276	263 409 481	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	263 409 414
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 56 \\ 244 \\ 55 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 56 \\ 150 \\ 55 \end{array}$	19 178 93	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	19 136 93
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 905 \\ 332 \\ 1237 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 821 \\ 433 \\ 1254 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.900 \\ & 0.800 \\ & \text { C } \\ & \hline \end{aligned}$			$\begin{aligned} & 0.912 \\ & 0.812 \\ & \text { D } \\ & \hline \end{aligned}$

I／S \＃：
4

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street East－West Street：E 1st Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 3 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0	$\begin{array}{\|l\|l} \hline N B-- & 3 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	258 1426 55	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	258 713 39	277 1460 129	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	277 730 97
	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 63 \\ 1421 \\ 207 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	63 711 80	100 1389 173	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	100 695 0
	\uparrow Left $\xrightarrow{\rightarrow}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\stackrel{\rightharpoonup}{r}$ Left－Through－Right $\hat{\imath}$ Left－Right	$\begin{aligned} & 127 \\ & 247 \\ & 192 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	127 247 63	423 755 358	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	423 755 220
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 16 \\ 755 \\ 120 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	16 755 89	32 488 97	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	32 488 47
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 969 \\ 882 \\ 1851 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 972 \\ 911 \\ 1883 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.299 \\ 1.199 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.321 \\ 1.221 \\ \text { F } \\ \hline \end{gathered}$

I／S \＃：

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street East－West Street：E 2nd Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	147 1403 135	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	147 769 135	122 1521 145	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	122 833 145
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 337 \\ 1206 \\ 83 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	337 645 83	270 1411 68	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	270 740 68
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	36 203 94	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	36 203 21	88 258 146	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	88 258 85
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{aligned} & 132 \\ & 469 \\ & 129 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 132 \\ 598 \\ 0 \end{array}$	73 246 187	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	73 433 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 1106 \\ 634 \\ 1740 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1103 \\ 521 \\ 1624 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.160 \\ 1.060 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{gathered} 1.083 \\ 0.983 \\ \text { E } \end{gathered}$

I／S \＃：
6

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：3rd Street／4th Place
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 273 \\ 1291 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	273 646 0	$\begin{array}{r} 379 \\ 1286 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	379 643 0
	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	$\begin{array}{r} 0 \\ 1192 \\ 136 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 596 136	0 1521 143	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 761 143
		0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
0 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 141 \\ 2908 \\ 458 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 141 \\ & 762 \\ & 458 \end{aligned}$	$\begin{array}{r} 162 \\ 1364 \\ 315 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 162 \\ & 382 \\ & 315 \end{aligned}$
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 869 \\ 762 \\ 1631 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1140 \\ 382 \\ 1522 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.087 \\ 0.987 \\ \text { E } \\ \hline \end{gathered}$			$\begin{aligned} & 1.015 \\ & 0.915 \\ & \mathrm{E} \\ & \hline \end{aligned}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：4th Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 0 \\ 1233 \\ 59 \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 646 59	0 1302 131	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 717 131
1 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	$\begin{array}{r} 123 \\ 1300 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	123 650 0	173 1349 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	173 675 0
		$\begin{aligned} & 222 \\ & 672 \\ & 227 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	222 298 227	307 1993 359	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	307 767 359
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 0 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 769 \\ 298 \\ 1067 \\ \hline \end{array}$		th－South： East－West： SUM：	$\begin{array}{r} 890 \\ 767 \\ 1657 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.711 \\ & 0.611 \\ & \text { B } \\ & \hline \end{aligned}$			$\begin{gathered} 1.105 \\ 1.005 \\ \mathrm{~F} \\ \hline \end{gathered}$

I／S \＃：
8

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：6th Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	130 1004 84	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	130 544 84	178 1271 156	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	178 714 156
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 161 \\ 1266 \\ 204 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	161 735 204	203 1240 216	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	203 728 216
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	$\begin{array}{r} 148 \\ 528 \\ 206 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	148 367 206	250 1296 185	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	250 741 185
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 195 \\ 1293 \\ 189 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 195 \\ & 741 \\ & 189 \end{aligned}$	116 599 105	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 116 \\ & 352 \\ & 105 \end{aligned}$
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 865 \\ 889 \\ 1754 \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 917 \\ 857 \\ 1774 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.169 \\ 1.069 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{gathered} 1.183 \\ 1.083 \\ \mathrm{~F} \\ \hline \end{gathered}$

I／S \＃：
9

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：7th Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	117 827 169	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	117 498 169	124 1140 158	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	124 649 158
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	319 1225 383	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	319 804 383	243 1163 209	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	243 686 209
		$\begin{aligned} & 180 \\ & 806 \\ & 140 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	180 473 140	314 1135 169	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	314 652 169
0 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 180 \\ 1182 \\ 219 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 180 \\ 701 \\ 219 \end{array}$	$\begin{array}{r} 204 \\ 1101 \\ 339 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 204 \\ & 720 \\ & 339 \end{aligned}$
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 921 \\ 881 \\ 1802 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} \hline 892 \\ 1034 \\ 1926 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.265 \\ 1.165 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.352 \\ 1.252 \\ \text { F } \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
10

PROJECT TITLE： 670 Mesquit
North－South Street：Molino Street／Merrick Street East－West Street：4th Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 1 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 1 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	213 122 20	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	213 355 0	388 149 12	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	388 549 0
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	24 62 47	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	24 0 47	86 138 67	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	86 0 67
		$\begin{array}{r} 1 \\ 374 \\ 364 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 369 364	10 1816 361	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 726 361
n 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 15 \\ 2709 \\ 103 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 937 103	3 1101 97	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 599 97
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 402 \\ 937 \\ 1339 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 635 \\ 726 \\ 1361 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.940 \\ 0.840 \\ \text { D } \\ \hline \end{gathered}$			$\begin{gathered} 0.955 \\ 0.855 \\ \text { D } \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：Mateo Street East－West Street：6th Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	145 270 73	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	145 488 0	201 455 218	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	201 874 0
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{aligned} & 160 \\ & 367 \\ & 154 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	160 527 72	195 369 233	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	195 564 105
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	$\begin{aligned} & 165 \\ & 436 \\ & 225 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	165 218 225	256 1316 179	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	256 498 179
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 212 \\ 1423 \\ 240 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 212 \\ & 832 \\ & 240 \end{aligned}$	73 483 188	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	73 336 188
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 672 \\ 997 \\ 1669 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1069 \\ 592 \\ 1661 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.113 \\ 1.013 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{gathered} 1.107 \\ 1.007 \\ \text { F } \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	107 327 62	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	107 496 0	200 435 126	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	200 761 0
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{aligned} & 114 \\ & 431 \\ & 161 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	114 545 65	95 342 194	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	95 437 70
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	$\begin{aligned} & 192 \\ & 935 \\ & 145 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	192 540 145	248 1174 136	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	248 655 136
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 377 \\ 1270 \\ 96 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 377 \\ 683 \\ 96 \end{array}$	166 1241 156	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 166 \\ & 699 \\ & 156 \end{aligned}$
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 652 \\ 917 \\ 1569 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 856 \\ 947 \\ 1803 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.046 \\ 0.946 \\ \text { E } \\ \hline \end{gathered}$			$\begin{gathered} 1.202 \\ 1.102 \\ \text { F } \\ \hline \end{gathered}$

Intersection 13

Future Year Plus Project AM Peak Hour (2026) - Option 2

NWB

$=16$

$$
\begin{aligned}
& \left\{\frac{560}{1}+\frac{105}{1}\right\} \quad \text { or } \quad\left\{\frac{220}{1}+\frac{105}{1}\right\} \\
= & 789
\end{aligned}
$$

$$
\begin{array}{cc}
\text { Critical Volumes }=16+1089+789=1,894 \\
\text { V/C }= & \frac{1,894}{1,375}-0.10=1.277 \\
\text { LOS } F
\end{array}
$$

Intersection 13

Future Year Plus Project PM Peak Hour (2026) - Option 2

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：8th Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 220 \\ 1026 \\ 18 \end{array}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	220 962 962	232 739 21	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	232 760 0
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right Left－Right	19 558 396	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	19 336 396	18 987 332	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	18 530 332
		$\begin{array}{r} 239 \\ 8 \\ 285 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	239 247 285	121 18 382	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	121 139 266
0 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{aligned} & 10 \\ & 11 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	10 36 0	13 13 22	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	13 48 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 981 \\ 295 \\ 1276 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 778 \\ 279 \\ 1057 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.851 \\ & 0.751 \\ & \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & 0.705 \\ & 0.605 \\ & \text { B } \end{aligned}$

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：Porter Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	Lane Volume
	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	313 991 25	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	313 508 25	430 802 27	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	430 415 27
ㅇ 2 0 0 0 1 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	18 778 93	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	18 436 93	15 1146 234	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	15 690 234
	\uparrow Left $\xrightarrow{\lambda}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\stackrel{\rightharpoonup}{\prec}$ Left－Through－Right \uparrow Left－Right	$\begin{array}{r} 237 \\ 28 \\ 502 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 237 \\ & 265 \\ & 189 \end{aligned}$	131 19 397	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	131 150 0
$\begin{aligned} & \text { ㅁ } \\ & \vdots \\ & 0 \\ & 0 \\ & 6 \\ & 6 \\ & 3 \end{aligned}$	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{aligned} & 20 \\ & 47 \\ & 22 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	20 67 13	43 86 24	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	43 129 17
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 749 \\ 304 \\ 1053 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1120 \\ 260 \\ 1380 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.739 \\ 0.639 \\ \text { B } \\ \hline \end{gathered}$			$\begin{gathered} 0.968 \\ 0.868 \\ \text { D } \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
16

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：Olympic Boulevard
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	237 1082 73	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	237 578 73	121 1068 172	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	121 620 172
	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 217 \\ 1059 \\ 16 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	217 538 16	308 1155 55	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	308 605 55
	\uparrow Left $\xrightarrow{\rightarrow}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\stackrel{\rightharpoonup}{r}$ Left－Through－Right $\hat{\imath}$ Left－Right	36 409 315	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	36 205 78	37 1028 385	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	37 514 264
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 189 \\ 1245 \\ 210 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 189 \\ 728 \\ 210 \end{array}$	93 918 178	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	93 548 178
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 795 \\ 764 \\ 1559 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 928 \\ 607 \\ 1535 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.134 \\ 1.034 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.116 \\ 1.016 \\ \mathrm{~F} \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：E 15th Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	104 1261 218	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	104 631 0	115 1058 166	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	115 529 149
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 64 \\ 1349 \\ 62 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	64 706 62	193 1412 16	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	193 714 16
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	26 47 58	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	26 105 105	58 323 176	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	58 279 279
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 24 \\ 587 \\ 127 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 24 \\ 587 \\ 95 \end{array}$	35 81 128	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	35 81 32
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 810 \\ 613 \\ 1423 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 829 \\ 314 \\ 1143 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.999 \\ 0.899 \\ \text { D } \end{gathered}$			$\begin{aligned} & 0.802 \\ & 0.702 \\ & \text { C } \\ & \hline \end{aligned}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
18

PROJECT TITLE： 670 Mesquit
North－South Street：S Rio Street East－West Street：E 7th Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	2 65	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 37 \\ & 39 \\ & 26 \end{aligned}$	22 1 65	0 1 0 0 1 0 0	$\begin{aligned} & 22 \\ & 23 \\ & 48 \end{aligned}$
	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 18 \\ 2 \\ 12 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 18 \\ 32 \\ 0 \end{array}$	15 0 8	0 0 0 0 0 1 0	$\begin{array}{r} 15 \\ 23 \\ 0 \end{array}$
		10 734 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 367 0	10 1490 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 745 0
n 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 78 \\ 2079 \\ 13 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 78 \\ 1046 \\ 13 \end{array}$	$\begin{array}{r} 35 \\ 1289 \\ 2 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	35 646 2
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 69 \\ 1056 \\ 1125 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 63 \\ 780 \\ 843 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.750 \\ 0.650 \\ \text { B } \\ \hline \end{gathered}$			$\begin{gathered} 0.562 \\ 0.462 \\ \text { A } \\ \hline \end{gathered}$

PROJECT TITLE: 670 Mesquit
North-South Street: S Anderson Street East-West Street: E 7th Street
Scenario: Future plus Project (2026) - Option 2

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：Boyle Avenue East－West Street：Whittier Boulevard
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 2 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 2 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	279 454 111	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	279 283 111	266 974 194	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	266 584 194
	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 96 \\ 462 \\ 217 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 340 217	96 365 57	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 211 57
	\uparrow Left $\xrightarrow{\rightarrow}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\stackrel{\rightharpoonup}{r}$ Left－Through－Right $\hat{\imath}$ Left－Right	$\begin{array}{r} 26 \\ 361 \\ 61 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	26 211 61	166 949 107	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	166 528 107
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 180 \\ 1526 \\ 145 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 180 \\ 836 \\ 145 \end{array}$	$\begin{array}{r} 53 \\ 668 \\ 164 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	53 416 164
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 619 \\ 1047 \\ 1666 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 680 \\ 944 \\ 1624 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.212 \\ 1.112 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.181 \\ 1.081 \\ \text { F } \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
21

PROJECT TITLE： 670 Mesquit
North－South Street：Boyle Avenue East－West Street：7th Street
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 1 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{aligned} & 243 \\ & 465 \\ & 100 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	243 283 100	168 698 130	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	168 414 130
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	59 481 351	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	59 416 351	60 428 157	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	60 293 157
		$\begin{aligned} & 116 \\ & 261 \\ & 160 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	116 261 39	343 705 352	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	343 705 268
n 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 62 \\ 589 \\ 68 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 62 \\ 657 \\ 0 \end{array}$	13 355 127	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	13 482 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 659 \\ 773 \\ 1432 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 474 \\ 825 \\ 1299 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.041 \\ 0.941 \\ \text { E } \\ \hline \end{gathered}$			$\begin{gathered} 0.945 \\ 0.845 \\ \text { D } \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：I－10 Eastbound ramps
Scenario：Future plus Project（2026）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0	$\begin{array}{\|l\|l} \hline N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through	$\begin{array}{r} 341 \\ 1237 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	341 619 0	418 1311 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	418 656 0
	Left Left－Through \downarrow Through f Through－Right Right \checkmark Left－Through－Right Left－Right	$\begin{array}{r} 1 \\ 1094 \\ 467 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	1 547 131	3 1488 525	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	3 744 312
		$\begin{array}{r} 336 \\ 0 \\ 543 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 336 \\ 0 \\ 202 \end{array}$	213 0 364	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	213 0 0
0 2 2 0 0 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	0 1 1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 888 \\ 336 \\ 1224 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1162 \\ 213 \\ 1375 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.859 \\ 0.759 \\ \text { C } \end{gathered}$			$\begin{gathered} 0.965 \\ 0.865 \\ \text { D } \end{gathered}$

CUMULATIVE BASE (2040)

CMA WORKSHEETS

Level of Service Workheet
（Circular 212 Method）
\square PROJECT TITLE： 670 Mesquit
North－South Street：S Central Avenue
East－West Street：7th Street
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	61 399 364	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	61 382 364	90 1043 417	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	90 730 417
		35 899 157	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	35 598 598	48 794 80	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	48 581 581
		55 660 51	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	55 356 51	130 1107 88	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	130 598 88
ㅇ \vdots 0 0 0 \vdots 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 392 \\ 1109 \\ 90 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 392 \\ 600 \\ 90 \end{array}$	363 853 112	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 363 \\ & 483 \\ & 112 \end{aligned}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 659 \\ 748 \\ 1407 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 778 \\ 961 \\ 1739 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.938 \\ 0.838 \\ \text { D } \\ \hline \end{gathered}$			$\begin{gathered} 1.159 \\ 1.059 \\ \text { F } \end{gathered}$

Level of Service Workheet
(Circular 212 Method)

I/S \#:
2

PROJECT TITLE: 670 Mesquit
North-South Street: N Alameda Street
East-West Street: E Aliso Street/E Commercial Street
Scenario: Future Base (2040)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} N B--1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 2 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 2 0 2 2
MOVEMENT		Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left-Through Through	0 1162 276	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 581 0	0 1650 464	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 825 413
		$\begin{array}{r} 221 \\ 1587 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	221 529 0	328 1169 0	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	328 390 0
		87 41 145	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	48 41 145	398 72 61	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	219 72 61
9 2 0 0 6 0 3	\ulcorner Left \longleftarrow Left-Through \leftarrow Through \leftarrow Through-Right $亡$ Right \leftarrow Left-Through-Right \leftarrow Left-Right	$\begin{array}{r} 146 \\ 0 \\ 267 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 146 \\ 0 \\ 267 \end{array}$	103 0 252	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	103 0 252
	CRITICAL VOLUMES		rth-South: East-West: SUM:	$\begin{array}{r} 802 \\ 412 \\ 1214 \\ \hline \end{array}$		rth-South: East-West: SUM:	$\begin{array}{r} 1153 \\ 471 \\ 1624 \end{array}$
	VOLUME/CAPACITY (V/C) RATIO: /C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{aligned} & 0.852 \\ & 0.752 \\ & \text { C } \end{aligned}$			$\begin{gathered} 1.140 \\ 1.040 \\ \text { F } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
PROJECT TITLE： 670 Mesquit
3
North－South Street：Alameda Street
East－West Street：Temple Street
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
ㅇ 2 0 0 0 10 1 0 0 2	Left Left－Through Through	$\begin{array}{r} 177 \\ 1235 \\ 0 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	177 618 0	130 1479 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	130 740 0
		$\begin{array}{r} 11 \\ 1406 \\ 396 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	11 703 348	63 1091 289	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	63 546 154
		96 111 358	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 111 270	270 420 482	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	270 420 417
Q 3 0 0 0 0 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 57 \\ 250 \\ 48 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 57 \\ 149 \\ 48 \end{array}$	20 182 76	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	20 129 76
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 880 \\ 327 \\ 1207 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 803 \\ 440 \\ 1243 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.878 \\ & 0.778 \\ & \text { C } \end{aligned}$			$\begin{gathered} 0.904 \\ 0.804 \\ \text { D } \end{gathered}$

Level of Service Workheet
(Circular 212 Method)

PROJECT TITLE: 670 Mesquit
North-South Street: N Alameda Street
East-West Street: E 1st Street
Scenario: Future Base (2040)

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
5

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street
East－West Street：E 2nd Street
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	$\begin{array}{r} 148 \\ 1400 \\ 135 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	148 768 135	117 1474 147	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	117 811 147
		$\begin{array}{r} 338 \\ 1137 \\ 86 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 338 \\ 612 \\ 86 \end{array}$	271 1372 70	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	271 721 70
		37 206 97	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 37 \\ 206 \\ 23 \end{array}$	91 263 150	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	91 263 92
ㅇ 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{aligned} & 136 \\ & 480 \\ & 131 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	136 611 0	75 250 188	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	75 438 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 1106 \\ 648 \\ 1754 \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1082 \\ 529 \\ 1611 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.169 \\ 1.069 \\ \text { F } \end{gathered}$			$\begin{gathered} 1.074 \\ 0.974 \\ \text { E } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
6

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street
East－West Street：3rd Street／4th Place
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	$\begin{array}{r} 268 \\ 1289 \\ 0 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	268 645 0	360 1237 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	360 619 0
		$\begin{array}{r} 0 \\ 1115 \\ 140 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 558 140	0 1480 147	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 740 147
		0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
ㅇ 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 144 \\ 2969 \\ 462 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 144 \\ & 778 \\ & 462 \end{aligned}$	165 1367 309	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	165 383 309
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 826 \\ 778 \\ 1604 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1100 \\ 383 \\ 1483 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.069 \\ 0.969 \\ \text { E } \end{gathered}$			$\begin{gathered} 0.989 \\ 0.889 \\ \text { D } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
7

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street
East－West Street：4th Street
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	NB－－ EB－－	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	0 1223 61	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 642 61	0 1227 135	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 681 135
	Left Left－Through \downarrow Through f Through－Right Right \rightarrow Left－Through－Right \downarrow Left－Right	$\begin{array}{r} 117 \\ 1236 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 117 \\ 618 \\ 0 \end{array}$	171 1314 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	171 657 0
		$\begin{aligned} & 224 \\ & 661 \\ & 205 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 224 \\ & 295 \\ & 205 \end{aligned}$	313 2023 348	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	313 779 348
9 2 0 0 1 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 759 \\ 295 \\ 1054 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 852 \\ 779 \\ 1631 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.703 \\ 0.603 \\ \text { B } \end{gathered}$			$\begin{gathered} 1.087 \\ 0.987 \\ \text { E } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
8

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street
East－West Street：6th Street
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 133 \\ 1004 \\ 87 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	133 546 87	180 1240 161	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	180 701 161
		$\begin{array}{r} 98 \\ 1241 \\ 207 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	98 724 207	164 1230 219	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	164 725 219
		150 493 209	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 150 \\ & 351 \\ & 209 \end{aligned}$	253 1295 188	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	253 742 188
ㅇ \vdots 0 0 0 \vdots 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 200 \\ 1312 \\ 181 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 200 \\ & 747 \\ & 181 \end{aligned}$	118 588 65	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	118 327 65
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 857 \\ 897 \\ 1754 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 905 \\ 860 \\ 1765 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.169 \\ 1.069 \\ \text { F } \end{gathered}$			$\begin{gathered} 1.177 \\ 1.077 \\ \text { F } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
9

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street
East－West Street：7th Street
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	120 843 129	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	120 486 129	127 1162 135	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	127 649 135
		$\begin{array}{r} 271 \\ 1250 \\ 389 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	271 820 389	213 1187 211	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	213 699 211
		182 746 144	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	182 445 144	318 1110 173	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	318 642 173
ㅇ \vdots 0 0 0 \vdots 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 174 \\ 1168 \\ 205 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 174 \\ & 687 \\ & 205 \end{aligned}$	159 1003 290	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	159 647 290
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 940 \\ 869 \\ 1809 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 862 \\ 965 \\ 1827 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.269 \\ 1.169 \\ \text { F } \end{gathered}$			$\begin{gathered} 1.282 \\ 1.182 \\ \text { F } \end{gathered}$

Level of Service Workheet
(Circular 212 Method)

I/S \#:
10

PROJECT TITLE: 670 Mesquit
North-South Street: Molino Street/Merrick Street East-West Street: 4th Street
Scenario: Future Base (2040)

Level of Service Workheet
(Circular 212 Method)

I/S \#:
11

PROJECT TITLE: 670 Mesquit
North-South Street: Mateo Street
East-West Street: 6th Street
Scenario: Future Base (2040)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left-Through \uparrow Through \uparrow Through-Right Right \uparrow Left-Through-Right Left-Right	117 264 46	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	117 427 0	143 438 147	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	143 728 0
	Left Left-Through Through Right Through-Right Left-Right	$\begin{aligned} & 105 \\ & 360 \\ & 145 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	105 465 62	150 364 214	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 150 \\ 514 \\ 85 \end{array}$
		$\begin{array}{r} 166 \\ 366 \\ 175 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 166 \\ & 180 \\ & 175 \end{aligned}$	258 1286 145	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 258 \\ & 477 \\ & 145 \end{aligned}$
ㅇ \vdots 0 0 0 6 3 3	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right $亡$ Right \vdots Left-Through-Right \leftarrow Left-Right	$\begin{array}{r} 149 \\ 1458 \\ 244 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 149 \\ 851 \\ 244 \end{array}$	$\begin{array}{r} 21 \\ 491 \\ 189 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 21 \\ 340 \\ 189 \end{array}$
	CRITICAL VOLUMES		rth-South East-West: SUM:	$\begin{array}{r} 582 \\ 1017 \\ 1599 \\ \hline \end{array}$		rth-South: East-West: SUM:	$\begin{array}{r} 878 \\ 598 \\ 1476 \\ \hline \end{array}$
	VOLUME/CAPACITY (V/C) RATIO: /C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{gathered} 1.066 \\ 0.966 \\ \text { E } \\ \hline \end{gathered}$			$\begin{gathered} 0.984 \\ 0.884 \\ \text { D } \\ \hline \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
12

PROJECT TITLE： 670 Mesquit
North－South Street：Mateo Street
East－West Street：7th Street
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	$\begin{array}{r} 109 \\ 258 \\ 63 \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	109 430 0	203 389 128	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	203 720 0
		$\begin{aligned} & 116 \\ & 413 \\ & 133 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	116 529 80	96 275 132	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	96 371 38
		$\begin{array}{r} 106 \\ 812 \\ 147 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	106 480 147	188 1088 139	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	188 614 139
ㅇ \vdots 0 0 0 \vdots 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 379 \\ 1219 \\ 76 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 379 \\ 648 \\ 76 \end{array}$	156 1061 93	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	156 577 93
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 638 \\ 859 \\ 1497 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 816 \\ 770 \\ 1586 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.998 \\ 0.898 \\ \text { D } \end{gathered}$			$\begin{gathered} 1.057 \\ 0.957 \\ \text { E } \end{gathered}$

Intersection 13

Future Year AM Peak Hour (2040)

NWB

$=16$

$$
\begin{aligned}
& \left\{\frac{427}{1}+\frac{84}{1}\right\} \quad \text { or } \quad\left\{\frac{224}{1}+\frac{84}{1}\right\} \\
= & 753
\end{aligned}
$$

$$
\begin{array}{cc}
\text { Critical Volumes }= & 16+1089+753=1,858 \\
\text { V/C }= & \frac{1,858}{1,375}-0.10=1.251 \\
\text { LOS } F
\end{array}
$$

Intersection 13
Future Year PM Peak Hour (2040)

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
14

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue
East－West Street：8th Street
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
ㅇ 2 0 0 0 10 1 0 0 2	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	224 924 19	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	224 920 920	237 674 22	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	237 696 0
		20 530 401	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	20 305 401	19 880 320	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	19 478 320
		223 8 293	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 223 \\ & 231 \\ & 293 \end{aligned}$	111 19 393	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	111 130 275
9 2 0 0 6 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	10 11 16	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	10 37 0	14 14 23	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	14 51 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 940 \\ 303 \\ 1243 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 715 \\ 289 \\ 1004 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.829 \\ & 0.729 \\ & \text { C } \end{aligned}$			$\begin{gathered} 0.669 \\ 0.569 \\ \text { A } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
15

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：Porter Street
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
ㅇ 2 0 0 0 10 1 0 0 2	Left Left－Through Through	322 927 26	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	322 477 26	442 763 28	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	442 396 28
		19 766 86	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	19 426 86	16 1082 201	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	16 642 201
		202 29 513	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 202 \\ & 231 \\ & 191 \end{aligned}$	109 20 402	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	109 129 0
9 2 0 0 6 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	21 48 23	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	21 69 14	44 89 25	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	44 133 17
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 748 \\ 271 \\ 1019 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1084 \\ 242 \\ 1326 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.715 \\ 0.615 \\ \text { B } \end{gathered}$			$\begin{gathered} 0.931 \\ 0.831 \\ \text { D } \\ \hline \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
16

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue
East－West Street：Olympic Boulevard
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 243 \\ 1039 \\ 75 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	243 557 75	124 1049 176	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	124 613 176
		$\begin{array}{r} 216 \\ 1058 \\ 17 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	216 538 17	292 1110 56	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	292 583 56
		36 411 324	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	36 206 81	38 1032 396	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	38 516 272
ㅇ 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 194 \\ 1257 \\ 199 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 194 \\ & 728 \\ & 199 \end{aligned}$	96 928 173	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 551 173
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 781 \\ 764 \\ 1545 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 905 \\ 612 \\ 1517 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.124 \\ 1.024 \\ \text { F } \end{gathered}$			$\begin{gathered} 1.103 \\ 1.003 \\ \mathrm{~F} \\ \hline \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
17

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue
East－West Street：E 15th Street
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B--1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	$\begin{array}{r} 106 \\ 1242 \\ 224 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	106 621 0	118 1051 170	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	118 526 153
		66 1356 64	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	66 710 64	198 1375 17	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	198 696 17
		27 48 60	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	27 108 0	60 332 181	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	60 287 287
ㅇ \vdots 0 0 0 \vdots 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 25 \\ 603 \\ 112 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 25 \\ 603 \\ 79 \end{array}$	35 84 118	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	35 84 19
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 816 \\ 630 \\ 1446 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 814 \\ 322 \\ 1136 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 1.015 \\ & 0.915 \\ & \text { E } \end{aligned}$			$\begin{gathered} 0.797 \\ 0.697 \\ \text { B } \end{gathered}$

Level of Service Workheet
(Circular 212 Method)

I/S \#:
18

PROJECT TITLE: 670 Mesquit
North-South Street: S Rio Street
East-West Street: E 7th Street
Scenario: Future Base (2040)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0
MOVEMENT		Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left-Through Through	38 2 67	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	38 40 27	23 1 67	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	23 24 50
		19 2 13	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	19 34 0	16 0 8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	16 24 0
		10 703 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 10 \\ 352 \\ 0 \end{array}$	10 1379 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 690 0
ㅇ 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right $亡$ Right \leftarrow Left-Through-Right \leftarrow Left-Right	$\begin{array}{r} 80 \\ 1951 \\ 14 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 80 \\ 983 \\ 14 \end{array}$	$\begin{array}{r} 35 \\ 1201 \\ 2 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	35 602 2
	CRITICAL VOLUMES		rth-South: East-West: SUM:	$\begin{array}{r} 72 \\ 993 \\ 1065 \\ \hline \end{array}$		rth-South: East-West: SUM:	$\begin{array}{r} 66 \\ 725 \\ 791 \\ \hline \end{array}$
	VOLUME/CAPACITY (V/C) RATIO: /C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{gathered} 0.710 \\ 0.610 \\ \text { B } \end{gathered}$			$\begin{gathered} 0.527 \\ 0.427 \\ \text { A } \end{gathered}$

Level of Service Workheet
(Circular 212 Method)

I/S \#:
19

PROJECT TITLE: 670 Mesquit
North-South Street: S Anderson Stree
Future Base (2040)

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2
MOVEMENT		Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No. of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left-Through Through	14 1 4	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	14 19 0	0 0 2	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	0 2 0
		37 2 55	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	37 39 30	100 0 79	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	100 100 43
		51 706 7	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 51 \\ 357 \\ 7 \end{array}$	72 1370 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	72 685 0
9 2 0 0 6 0 3	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right $亡$ Right \leftarrow Left-Through-Right \leftarrow Left-Right	$\begin{array}{r} 10 \\ 1977 \\ 373 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 10 \\ 1175 \\ 373 \end{array}$	5 1177 101	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	5 639 101
	CRITICAL VOLUMES		rth-South: East-West: SUM:	$\begin{array}{r} 56 \\ 1226 \\ 1282 \\ \hline \end{array}$		rth-South: East-West: SUM:	$\begin{aligned} & 102 \\ & 711 \\ & 813 \end{aligned}$
	VOLUME/CAPACITY (V/C) RATIO: /C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{aligned} & 0.855 \\ & 0.755 \\ & \text { C } \end{aligned}$			$\begin{gathered} 0.542 \\ 0.442 \\ \text { A } \end{gathered}$

Level of Service Workheet
(Circular 212 Method)

I/S \#:
20

PROJECT TITLE: 670 Mesquit
North-South Street: Boyle Avenue
East-West Street: Whittier Boulevard
Scenario: Future Base (2040)

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
21

PROJECT TITLE： 670 Mesquit
North－South Street：Boyle Avenue
East－West Street：7th Street
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 1 0 2 0	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 1 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	$\begin{aligned} & 249 \\ & 478 \\ & 102 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	249 290 102	173 717 134	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	173 426 134
		61 494 322	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	61 408 322	62 440 138	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	62 289 138
		114 235 165	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 114 \\ 235 \\ 41 \end{array}$	333 625 362	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	333 625 276
ㅇ 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 64 \\ 544 \\ 70 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 64 \\ 614 \\ 0 \end{array}$	14 323 131	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	14 454 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 657 \\ 728 \\ 1385 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 488 \\ 787 \\ 1275 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.007 \\ 0.907 \\ \text { E } \\ \hline \end{gathered}$			$\begin{gathered} 0.927 \\ 0.827 \\ \text { D } \end{gathered}$

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
22

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street
East－West Street：I－10 Eastbound ramps
Scenario：Future Base（2040）

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 3 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & N B-- \\ & E B-- \end{aligned}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 3 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through	$\begin{array}{r} 351 \\ 1266 \\ 0 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	351 633 0	$\begin{array}{r} 429 \\ 1340 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	429 670 0
		$\begin{array}{r} 1 \\ 1118 \\ 478 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	1 559 164	3 1522 537	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	3 761 339
		314 0 557	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 314 \\ 0 \\ 206 \end{array}$	198 0 374	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	198 0 0
ㅇ 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	0 1 1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 910 \\ 314 \\ 1224 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1190 \\ 198 \\ 1388 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.859 \\ 0.759 \\ \text { C } \end{gathered}$			$\begin{gathered} 0.974 \\ 0.874 \\ \text { D } \end{gathered}$

CUMULATIVE PLUS PROJECT (2040) - OPTION 1 CMA WORKSHEETS

Level of Service Workheet
 （Circular 212 Method）

\square PROJECT TITLE： 670 Mesquit
North－South Street：S Central Avenue East－West Street：7th Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	61 399 397	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	61 398 397	90 1043 438	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	90 741 438
ㅇ 2 0 0 0 1 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right Left－Right	35 899 157	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	35 598 598	48 794 80	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	48 581 581
		55 694 51	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	55 373 51	$\begin{array}{r} 130 \\ 1130 \\ 88 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	130 609 88
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 407 \\ 1129 \\ 90 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 407 \\ 610 \\ 90 \end{array}$	$\begin{aligned} & 413 \\ & 913 \\ & 112 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 413 \\ & 513 \\ & 112 \end{aligned}$
	CRITICAL VOLUMES		th－South： East－West： SUM：	$\begin{array}{r} 659 \\ 780 \\ 1439 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 789 \\ 1022 \\ 1811 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.959 \\ & 0.859 \\ & \text { D } \end{aligned}$			$\begin{gathered} 1.207 \\ 1.107 \\ \text { F } \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street East－West Street：E Aliso Street／E Commercial Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|l} \hline N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 2 0 2 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
O 2 0 0 0 1 0 0 2	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	$\begin{array}{r} 0 \\ 1180 \\ 281 \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 590 0	0 1710 481	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 855 423
9 2 2 0 9 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	$\begin{array}{r} 221 \\ 1628 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	221 543 0	328 1197 0	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	328 399 0
		$\begin{array}{r} 87 \\ 41 \\ 161 \end{array}$	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 48 \\ 41 \\ 161 \end{array}$	398 72 71	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	219 72 71
9 2 0 0 \vdots 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 169 \\ 0 \\ 267 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 169 \\ 0 \\ 267 \end{array}$	117 0 252	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	117 0 252
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 811 \\ 428 \\ 1239 \\ \hline \end{array}$		th－South： East－West： SUM：	$\begin{array}{r} 1183 \\ 471 \\ 1654 \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.869 \\ & 0.769 \\ & \mathrm{C} \\ & \hline \end{aligned}$			$\begin{gathered} 1.161 \\ 1.061 \\ \mathrm{~F} \\ \hline \end{gathered}$

I／S \＃：
3

PROJECT TITLE： 670 Mesquit
North－South Street：Alameda Street
East－West Street：Temple Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 2 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 2 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 180 \\ 1251 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	180 626 0	138 1538 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	138 769 0
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	11 1486 396	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	11 743 348	63 1143 289	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	63 572 154
		$\begin{array}{r} 96 \\ 111 \\ 366 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 111 276	270 420 487	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	270 420 418
0 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 57 \\ 250 \\ 55 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 57 \\ 153 \\ 55 \end{array}$	$\begin{array}{r} 20 \\ 182 \\ 94 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	20 138 94
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 923 \\ 333 \\ 1256 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 832 \\ 440 \\ 1272 \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.913 \\ 0.813 \\ \mathrm{D} \\ \hline \end{gathered}$			$\begin{aligned} & 0.925 \\ & 0.825 \\ & \text { D } \end{aligned}$

I／S \＃：
4

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street East－West Street：E 1st Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 3 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 3 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{ll} N B-- & 3 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
O 2 0 0 0 1 0 0 2	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	260 1450 56	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	260 725 40	$\begin{array}{r} 279 \\ 1479 \\ 132 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	279 740 100
9 2 2 0 9 1 \vdots 0 0	Left Left－Through Through Right Left－Through－Right Left－Right	$\begin{array}{r} 64 \\ 1441 \\ 211 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	64 721 81	101 1407 176	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 101 \\ 704 \\ 0 \end{array}$
		$\begin{aligned} & 130 \\ & 251 \\ & 193 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	130 251 63	433 772 360	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 433 \\ & 772 \\ & 221 \end{aligned}$
9 2 0 0 \vdots 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 16 \\ 772 \\ 123 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 16 \\ 772 \\ 91 \end{array}$	32 497 98	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 32 \\ 497 \\ 48 \end{array}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 981 \\ 902 \\ 1883 \\ \hline \end{array}$		th－South： East－West： SUM：	$\begin{array}{r} 983 \\ 930 \\ 1913 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.321 \\ 1.221 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.342 \\ 1.242 \\ \mathrm{~F} \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
5

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street East－West Street：E 2nd Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|l\|l} \hline N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 151 \\ 1421 \\ 135 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	151 778 135	$\begin{array}{r} 125 \\ 1541 \\ 147 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	125 844 147
1 2 2 0 0 1 \vdots 0 0	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 338 \\ 1225 \\ 86 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	338 656 86	271 1429 70	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	271 750 70
		37 206 97	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	37 206 22	91 263 150	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	91 263 88
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{aligned} & 136 \\ & 480 \\ & 131 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 136 \\ 611 \\ 0 \end{array}$	75 250 188	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	75 438 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 1116 \\ 648 \\ 1764 \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1115 \\ 529 \\ 1644 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.176 \\ 1.076 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{gathered} 1.096 \\ 0.996 \\ \mathrm{E} \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
6

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：3rd Street／4th Place
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 276 \\ 1308 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	276 654 0	$\begin{array}{r} 386 \\ 1304 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	386 652 0
	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	$\begin{array}{r} 0 \\ 1210 \\ 140 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 605 140	0 1542 147	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 771 147
		0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
0 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 144 \\ 2978 \\ 467 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 144 \\ 781 \\ 467 \end{gathered}$	$\begin{array}{r} 165 \\ 1387 \\ 317 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 165 \\ & 388 \\ & 317 \end{aligned}$
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 881 \\ 781 \\ 1662 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1157 \\ 388 \\ 1545 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.108 \\ 1.008 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.030 \\ 0.930 \\ \text { E } \\ \hline \end{gathered}$

PROJECT TITLE: 670 Mesquit
North-South Street: S Alameda Street East-West Street: 4th Street
Scenario: Future plus Project (2040) - Option 1

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{gathered} \text { SB-- } \\ \text { WB-- } \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No. of Lanes	Lane Volume	Volume	No. of Lanes	Lane Volume
	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right	0 1250 61	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 656 61	0 1320 135	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 728 135
	Left Left-Through Through Through-Right Right \rightarrow Left-Through-Right $\text { Left-Right }$	$\begin{array}{r} 125 \\ 1323 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 125 \\ 662 \\ 0 \end{array}$	176 1370 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 176 \\ 685 \\ 0 \end{array}$
		$\begin{aligned} & 224 \\ & 680 \\ & 230 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 224 \\ & 301 \\ & 230 \end{aligned}$	$\begin{array}{r} 313 \\ 2037 \\ 365 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 313 \\ & 783 \\ & 365 \end{aligned}$
9 3 0 0 0 0 3 3		0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0 0 0 0 0		0 0 0
	CRITICAL VOLUMES	North-South: East-West: SUM:		$\begin{array}{r} 781 \\ 301 \\ 1082 \\ \hline \end{array}$	North-South: East-West: SUM:		$\begin{array}{r} 904 \\ 783 \\ 1687 \\ \hline \end{array}$
	VOLUME/CAPACITY (V/C) RATIO: V/C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{gathered} 0.721 \\ 0.621 \\ \text { B } \\ \hline \end{gathered}$			$\begin{gathered} 1.125 \\ 1.025 \\ \text { F } \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
8

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：6th Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	133 1019 87	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	133 553 87	180 1291 161	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	180 726 161
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 162 \\ 1289 \\ 207 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	162 748 207	205 1261 219	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	205 740 219
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	$\begin{aligned} & 150 \\ & 535 \\ & 209 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	150 372 209	253 1323 188	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	253 756 188
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 200 \\ 1322 \\ 193 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 758 \\ & 193 \end{aligned}$	118 607 107	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	118 357 107
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 881 \\ 908 \\ 1789 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 931 \\ 874 \\ 1805 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.193 \\ 1.093 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{gathered} 1.203 \\ 1.103 \\ \mathrm{~F} \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
9

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：7th Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	120 843 172	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	120 508 172	$\begin{array}{r} 127 \\ 1162 \\ 160 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	127 661 160
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	319 1250 389	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	319 820 389	244 1187 211	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	244 699 211
	\uparrow Left $\xrightarrow{\boldsymbol{\mu}}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\overrightarrow{\vec{r}}$ Left－Through－Right \prec Left－Right	$\begin{aligned} & 182 \\ & 813 \\ & 144 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	182 479 144	318 1154 173	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	318 664 173
Q 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 184 \\ 1202 \\ 220 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 184 \\ 711 \\ 220 \end{gathered}$	$\begin{array}{r} 206 \\ 1114 \\ 341 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	206 728 341
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 940 \\ 893 \\ 1833 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 905 \\ 1046 \\ 1951 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 1.286 \\ & 1.186 \\ & \text { F } \\ & \hline \end{aligned}$			$\begin{aligned} & 1.369 \\ & 1.269 \\ & \text { F } \\ & \hline \end{aligned}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
10

PROJECT TITLE： 670 Mesquit
North－South Street：Molino Street／Merrick Street East－West Street：4th Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 1 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 1 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	208 123 20	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	208 351 0	384 151 12	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	384 547 0
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	24 63 48	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	24 0 48	87 139 68	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	87 0 68
		$\begin{array}{r} 1 \\ 380 \\ 360 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 370 360	10 1861 356	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 739 356
n 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 16 \\ 2780 \\ 104 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ 961 \\ 104 \end{array}$	3 1125 99	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 612 99
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 399 \\ 961 \\ 1360 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 634 \\ 739 \\ 1373 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.954 \\ 0.854 \\ \text { D } \\ \hline \end{gathered}$			$\begin{gathered} 0.964 \\ 0.864 \\ \text { D } \end{gathered}$

I／S \＃：
11

PROJECT TITLE： 670 Mesquit
North－South Street：Mateo Street East－West Street：6th Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	143 271 69	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	143 483 0	198 457 217	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	198 872 0
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	156 370 156	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	156 526 73	193 372 235	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	193 565 106
		$\begin{aligned} & 166 \\ & 437 \\ & 225 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	166 219 225	$\begin{array}{r} 258 \\ 1340 \\ 179 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	258 506 179
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 213 \\ 1458 \\ 244 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 213 \\ & 851 \\ & 244 \end{aligned}$	$\begin{array}{r} 71 \\ 491 \\ 189 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	71 340 189
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 669 \\ 1017 \\ 1686 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1065 \\ 598 \\ 1663 \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.124 \\ 1.024 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{aligned} & 1.109 \\ & 1.009 \\ & F \\ & \hline \end{aligned}$

PROJECT TITLE： 670 Mesquit
Mateo Street
East－West Street：7th Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	109 328 63	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	109 500 0	203 438 128	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	203 769 0
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{aligned} & 116 \\ & 437 \\ & 159 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	116 553 65	96 344 191	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	96 440 68
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	$\begin{aligned} & 188 \\ & 933 \\ & 147 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	188 540 147	247 1185 139	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	247 662 139
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 384 \\ 1284 \\ 94 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 384 \\ 689 \\ 94 \end{array}$	166 1244 154	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	166 699 154
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 662 \\ 924 \\ 1586 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 865 \\ 946 \\ 1811 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.057 \\ 0.957 \\ \text { E } \end{gathered}$			$\begin{gathered} 1.207 \\ 1.107 \\ \text { F } \\ \hline \end{gathered}$

Intersection 13

Future Year Plus Project AM Peak Hour (2040) - Option 1

Future Year Plus Project PM Peak Hour (2040) - Option 1

$$
\begin{aligned}
& \text { th Street Santa Fe Ave } \\
& \text { NaB } \\
& =8
\end{aligned}
$$

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：8th Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 224 \\ 1042 \\ 19 \end{array}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	224 979 979	237 750 22	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	237 772 0
	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right Left－Right	20 565 405	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	20 343 405	19 998 338	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	19 537 338
		$\begin{array}{r} 240 \\ 8 \\ 293 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	240 248 293	122 19 393	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	122 141 275
0 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{aligned} & 10 \\ & 11 \\ & 16 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	10 37 0	14 14 23	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	14 51 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 999 \\ 303 \\ 1302 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 791 \\ 289 \\ 1080 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.868 \\ & 0.768 \\ & \text { C } \\ & \hline \end{aligned}$			$\begin{gathered} 0.720 \\ 0.620 \\ \text { B } \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：Porter Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \hline \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 322 \\ 1007 \\ 26 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	322 517 26	442 815 28	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	442 422 28
	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	19 793 94	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	19 444 94	$\begin{array}{r} 16 \\ 1167 \\ 234 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	16 701 234
		240 29 513	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 240 \\ & 269 \\ & 191 \end{aligned}$	133 20 402	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	133 153 0
0 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	21 48 23	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	21 69 14	44 89 25	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 44 \\ 133 \\ 17 \end{array}$
	CRITICAL VOLUMES		th－South： East－West： SUM：	$\begin{array}{r} 766 \\ 309 \\ 1075 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1143 \\ 266 \\ 1409 \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.754 \\ 0.654 \\ B \\ \hline \hline \end{gathered}$			$\begin{aligned} & 0.989 \\ & 0.889 \\ & \text { D } \end{aligned}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
16

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：Olympic Boulevard
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 243 \\ 1104 \\ 75 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	243 590 75	124 1093 176	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	124 635 176
	$\begin{array}{ll} \text { Left } \\ \text { Left-Through } \\ \downarrow & \text { Through } \\ \text { Through-Right } \\ \text { Right } \\ \qquad \text { Left-Through-Right } \\ \text { Left-Right } \end{array}$	$\begin{array}{r} 219 \\ 1082 \\ 17 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	219 550 17	$\begin{array}{r} 308 \\ 1180 \\ 56 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	308 618 56
		$\begin{array}{r} 36 \\ 417 \\ 324 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	36 209 81	38 1049 396	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	38 525 272
0 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 194 \\ 1273 \\ 213 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 194 \\ 743 \\ 213 \end{array}$	$\begin{array}{r} 96 \\ 938 \\ 181 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 560 181
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 809 \\ 779 \\ 1588 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 943 \\ 621 \\ 1564 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.155 \\ 1.055 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.137 \\ 1.037 \\ \text { F } \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：E 15th Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{\|l\|l} \hline N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through	$\begin{array}{r} 106 \\ 1291 \\ 224 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	646 0	$\begin{array}{r} 1082 \\ 170 \end{array}$	1 0 2 0 1 0 0	$\begin{aligned} & 118 \\ & 541 \\ & 153 \end{aligned}$
$\begin{aligned} & \text { Q } \\ & \text { Z } \\ & \text { O} \\ & \text { @T } \\ & \vdots \\ & \text { O} \end{aligned}$	Left Left－Through \downarrow Through \downarrow Through－Right Right $\checkmark \rightarrow$ Left－Through－Right Left－Right	$\begin{array}{r} 66 \\ 1380 \\ 64 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	66 722 64	198 1445 17	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	198 731 17
		27 48 60	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	27 108 0	60 332 181	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	60 287 287
0 2 2 0 0 0 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 25 \\ 603 \\ 130 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 25 \\ 603 \\ 97 \end{array}$	35 84 130	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	35 84 31
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 828 \\ 630 \\ 1458 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 849 \\ 322 \\ 1171 \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 1.023 \\ & 0.923 \\ & \text { E } \\ & \hline \end{aligned}$			$\begin{aligned} & 0.822 \\ & 0.722 \\ & \text { C } \end{aligned}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Rio Street East－West Street：E 7th Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	38 2 67	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	38 40 27	23 1 67	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	23 24 50
	Left Left－Through \downarrow Through \downarrow Through－Right Right \rightarrow Left－Through－Right Left－Right	19 2 13		$\begin{array}{r} 19 \\ 34 \\ 0 \end{array}$	16 0 8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 16 \\ 24 \\ 0 \end{array}$
		10 741 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 371 0	10 1510 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 755 0
n 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 80 \\ 2113 \\ 14 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 80 \\ 1064 \\ 14 \end{array}$	$\begin{array}{r} 35 \\ 1305 \\ 2 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	35 654 2
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 72 \\ 1074 \\ 1146 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 66 \\ 790 \\ 856 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.764 \\ 0.664 \\ \text { B } \\ \hline \end{gathered}$			$\begin{aligned} & 0.571 \\ & 0.471 \\ & \text { A } \end{aligned}$

PROJECT TITLE: 670 Mesquit
North-South Street: S Anderson Street East-West Street: E 7th Street
Scenario: Future plus Project (2040) - Option 1

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：Boyle Avenue
East－West Street：Whittier Boulevard
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 2 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 2 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	286 466 114	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	286 290 114	272 1000 199	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	272 600 199
	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 98 \\ 474 \\ 221 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	98 348 221	98 374 58	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	98 216 58
	\uparrow Left $\xrightarrow{\rightarrow}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\stackrel{\rightharpoonup}{r}$ Left－Through－Right $\hat{\imath}$ Left－Right	$\begin{array}{r} 27 \\ 361 \\ 63 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	27 212 63	170 963 110	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	170 537 110
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 185 \\ 1558 \\ 149 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 185 \\ 854 \\ 149 \end{array}$	$\begin{array}{r} 54 \\ 672 \\ 168 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	54 420 168
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 634 \\ 1066 \\ 1700 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 698 \\ 957 \\ 1655 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.236 \\ 1.136 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.204 \\ 1.104 \\ \text { F } \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
21

PROJECT TITLE： 670 Mesquit
North－South Street：Boyle Avenue East－West Street：7th Street
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 1 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 1 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{aligned} & 249 \\ & 478 \\ & 102 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	249 290 102	173 717 134	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	173 426 134
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	61 494 360	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	61 427 360	62 440 161	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	62 301 161
		$\begin{aligned} & 119 \\ & 262 \\ & 165 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	119 262 41	350 713 362	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	350 713 276
n 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right \leftarrow Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 64 \\ 594 \\ 70 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 64 \\ 664 \\ 0 \end{array}$	14 357 131	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	14 488 0
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 676 \\ 783 \\ 1459 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 488 \\ 838 \\ 1326 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.061 \\ 0.961 \\ \text { E } \\ \hline \end{gathered}$			$\begin{gathered} 0.964 \\ 0.864 \\ \text { D } \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：I－10 Eastbound ramps
Scenario：Future plus Project（2040）－Option 1

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 351 \\ 1266 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	351 633 0	429 1340 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	429 670 0
	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	$\begin{array}{r} 1 \\ 1118 \\ 478 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	1 559 135	3 1522 537	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	3 761 322
		343 0 557	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	343 0 206	215 0 374	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	215 0 0
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	0 1 1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 0 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 910 \\ 343 \\ 1253 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1190 \\ 215 \\ 1405 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.879 \\ & 0.779 \\ & \mathrm{C} \\ & \hline \end{aligned}$			$\begin{gathered} 0.986 \\ 0.886 \\ \text { D } \\ \hline \end{gathered}$

CUMULATIVE PLUS PROJECT (2040) - OPTION 2 CMA WORKSHEETS

Level of Service Workheet
 （Circular 212 Method）

\square PROJECT TITLE： 670 Mesquit
North－South Street：S Central Avenue East－West Street：7th Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	61 399 398	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	61 399 398	90 1043 440	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	90 742 440
	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right Left－Right	35 899 157	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	35 598 598	48 794 80	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	48 581 581
		55 695 51	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	55 373 51	$\begin{array}{r} 130 \\ 1131 \\ 88 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	130 610 88
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 408 \\ 1130 \\ 90 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 408 \\ 610 \\ 90 \end{array}$	$\begin{aligned} & 414 \\ & 915 \\ & 112 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 414 \\ & 514 \\ & 112 \end{aligned}$
	CRITICAL VOLUMES		th－South： East－West： SUM：	$\begin{array}{r} 659 \\ 781 \\ 1440 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} \hline 790 \\ 1024 \\ 1814 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： ／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.960 \\ 0.860 \\ \text { D } \end{gathered}$			$\begin{gathered} 1.209 \\ 1.109 \\ \text { F } \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street East－West Street：E Aliso Street／E Commercial Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{l\|l} \text { NB-- } & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 2 0 2 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	$\begin{array}{r} 0 \\ 1182 \\ 281 \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 591 0	0 1711 481	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 856 423
1 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	$\begin{array}{r} 221 \\ 1631 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	221 544 0	328 1198 0	$\begin{aligned} & 1 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 328 \\ 399 \\ 0 \end{array}$
0 2 3 0 0 0 0 $\mathbf{4}$		$\begin{array}{r} 87 \\ 41 \\ 161 \end{array}$	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 48 \\ 41 \\ 161 \end{array}$	398 72 71	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	219 72 71
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 169 \\ 0 \\ 267 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 169 \\ 0 \\ 267 \end{array}$	117 0 252	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	117 0 252
	CRITICAL VOLUMES		th－South： East－West： SUM：	$\begin{array}{r} 812 \\ 428 \\ 1240 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1184 \\ 471 \\ 1655 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.870 \\ & 0.770 \\ & \text { C } \\ & \hline \end{aligned}$			$\begin{gathered} 1.161 \\ 1.061 \\ \mathrm{~F} \\ \hline \end{gathered}$

I／S \＃：
3

PROJECT TITLE： 670 Mesquit
North－South Street：Alameda Street
East－West Street：Temple Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 2 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
$\begin{aligned} & 0 \\ & \underline{2} \\ & 0 \\ & 0 \\ & \underline{1} \\ & \hline 1 \\ & 0 \\ & 0 \end{aligned}$	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 180 \\ 1253 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	180 627 0	$\begin{array}{r} 138 \\ 1538 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	138 769 0
	Left Left－Through \downarrow Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	$\begin{array}{r} 11 \\ 1487 \\ 396 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	11 744 348	$\begin{array}{r} 63 \\ 1144 \\ 289 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	63 572 154
		$\begin{array}{r} 96 \\ 111 \\ 366 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 96 \\ 111 \\ 276 \end{array}$	270 420 487	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 270 \\ & 420 \\ & 418 \end{aligned}$
$$	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \longleftarrow Left－Right	$\begin{array}{r} 57 \\ 250 \\ 56 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 57 \\ 153 \\ 56 \end{array}$	$\begin{array}{r} 20 \\ 182 \\ 95 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	20 139 95
	CRITICAL VOLUMES		th－South： East－West： SUM：	$\begin{array}{r} 924 \\ 333 \\ 1257 \\ \hline \end{array}$		th－South： East－West： SUM：	$\begin{array}{r} 832 \\ 440 \\ 1272 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.914 \\ 0.814 \\ \text { D } \end{gathered}$			$\begin{gathered} 0.925 \\ 0.825 \\ \text { D } \end{gathered}$

I／S \＃：
4

PROJECT TITLE： 670 Mesquit
North－South Street：N Alameda Street East－West Street：E 1st Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 3 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0	$\begin{array}{\|l\|l} \hline N B-- & 3 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	260 1452 56	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	260 726 40	279 1480 132	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	279 740 100
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 64 \\ 1443 \\ 211 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	64 722 81	101 1409 176	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	101 705 0
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	$\begin{aligned} & 130 \\ & 251 \\ & 193 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	130 251 63	433 772 360	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	433 772 221
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 16 \\ 772 \\ 123 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	16 772 91	32 497 98	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	32 497 48
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 982 \\ 902 \\ 1884 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 984 \\ 930 \\ 1914 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.322 \\ 1.222 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.343 \\ 1.243 \\ \text { F } \\ \hline \end{gathered}$

I/S \#:

PROJECT TITLE: 670 Mesquit
North-South Street: N Alameda Street East-West Street: E 2nd Street
Scenario: Future plus Project (2040) - Option 2

I／S \＃：
6

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：3rd Street／4th Place
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{l\|l} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	$\begin{array}{r} 277 \\ 1310 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	277 655 0	387 1305 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	387 653 0
1 2 2 0 0 1 \vdots 0 0	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 0 \\ 1212 \\ 140 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 606 140	$\begin{array}{r} 0 \\ 1543 \\ 147 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	0 772 147
0 2 3 0 0 0 0 $\mathbf{4}$		0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 144 \\ 2979 \\ 467 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 144 \\ 781 \\ 467 \end{gathered}$	$\begin{array}{r} 165 \\ 1388 \\ 317 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 165 \\ & 388 \\ & 317 \end{aligned}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 883 \\ 781 \\ 1664 \\ \hline \end{array}$		th－South： East－West： SUM：	$\begin{array}{r} 1159 \\ 388 \\ 1547 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.109 \\ 1.009 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{gathered} 1.031 \\ 0.931 \\ \text { E } \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：4th Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{l\|l} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	$\begin{array}{r} 0 \\ 1253 \\ 61 \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 657 61	0 1322 135	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 729 135
1 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right	$\begin{array}{r} 125 \\ 1325 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	125 663 0	176 1371 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	176 686 0
0 2 3 0 0 0 0 $\mathbf{4}$		$\begin{aligned} & 224 \\ & 681 \\ & 231 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	224 302 231	313 2038 366	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	313 784 366
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 0 0
	CRITICAL VOLUMES		th－South： East－West： SUM：	$\begin{array}{r} 782 \\ 302 \\ 1084 \end{array}$		th－South： East－West： SUM：	$\begin{array}{r} 905 \\ 784 \\ 1689 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.723 \\ 0.623 \\ \text { B } \\ \hline \end{gathered}$			$\begin{gathered} 1.126 \\ 1.026 \\ \mathrm{~F} \\ \hline \end{gathered}$

I／S \＃：
8

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：6th Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	133 1021 87	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	133 554 87	180 1293 161	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	180 727 161
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	162 1291 207	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	162 749 207	206 1263 219	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	206 741 219
		$\begin{array}{r} 150 \\ 536 \\ 209 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	150 373 209	253 1324 188	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	253 756 188
Q 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 200 \\ 1323 \\ 194 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 200 \\ & 759 \\ & 194 \end{aligned}$	$\begin{aligned} & 118 \\ & 607 \\ & 107 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	118 357 107
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 882 \\ 909 \\ 1791 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 933 \\ 874 \\ 1807 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.194 \\ 1.094 \\ \text { F } \\ \hline \end{gathered}$			$\begin{aligned} & 1.205 \\ & 1.105 \\ & \text { F } \\ & \hline \end{aligned}$

I／S \＃：
9

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：7th Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{gathered} \text { SB-- } \\ \text { WB-- } \end{gathered}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	120 843 172	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	120 508 172	127 1162 160	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	127 661 160
	Left Left－Through \downarrow Through Through－Right Right \rightarrow Left－Through－Right Left－Right	$\begin{array}{r} 321 \\ 1250 \\ 389 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	321 820 389	$\begin{array}{r} 246 \\ 1187 \\ 211 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	246 699 211
		182 815 144	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 182 \\ & 480 \\ & 144 \end{aligned}$	318 1157 173	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	318 665 173
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 184 \\ 1206 \\ 222 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 184 \\ 714 \\ 222 \end{gathered}$	$\begin{array}{r} 206 \\ 1116 \\ 343 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 206 \\ & 730 \\ & 343 \end{aligned}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 940 \\ 896 \\ 1836 \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 907 \\ 1048 \\ 1955 \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.288 \\ 1.188 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.372 \\ 1.272 \\ \text { F } \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
10

PROJECT TITLE： 670 Mesquit
North－South Street：Molino Street／Merrick Street East－West Street：4th Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 1 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 1 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	214 123 20	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	214 357 0	390 151 12	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	390 553 0
Q 2 2 0 0 1 \vdots 0 0	Left Left－Through \downarrow Through Through－Right Right $\downarrow \rightarrow$ Left－Through－Right \downarrow Left－Right	24 63 48	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	24 0 48	87 139 68	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	87 0 68
		$\begin{array}{r} 1 \\ 380 \\ 366 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 373 366	10 1861 362	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 741 362
n 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 16 \\ 2780 \\ 104 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 961 \\ 104 \end{array}$	3 1125 99	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 612 99
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} \hline 405 \\ 961 \\ 1366 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 640 \\ 741 \\ 1381 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.959 \\ 0.859 \\ \text { D } \\ \hline \end{gathered}$			$\begin{gathered} 0.969 \\ 0.869 \\ \text { D } \\ \hline \end{gathered}$

I／S \＃：
11

PROJECT TITLE： 670 Mesquit
North－South Street：Mateo Street East－West Street：6th Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 2 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	147 273 73	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	147 493 0	202 459 220	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	202 881 0
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	161 371 156	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	161 532 73	196 373 235	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	196 569 106
		$\begin{aligned} & 166 \\ & 442 \\ & 228 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	166 221 228	$\begin{array}{r} 258 \\ 1346 \\ 181 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	258 509 181
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 216 \\ 1458 \\ 244 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 216 \\ & 851 \\ & 244 \end{aligned}$	$\begin{array}{r} 74 \\ 491 \\ 189 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	74 340 189
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 679 \\ 1017 \\ 1696 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1077 \\ 598 \\ 1675 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 1.131 \\ & 1.031 \\ & \text { F } \\ & \hline \end{aligned}$			$\begin{aligned} & 1.117 \\ & 1.017 \\ & \mathrm{~F} \\ & \hline \end{aligned}$

PROJECT TITLE： 670 Mesquit
North－South Street：Mateo Street
East－West Street：7th Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	109 330 63	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	109 502 0	203 440 128	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	203 771 0
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	116 439 163	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	116 555 67	96 346 195	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	96 442 70
		$\begin{array}{r} 193 \\ 944 \\ 147 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	193 546 147	$\begin{array}{r} 251 \\ 1195 \\ 139 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	251 667 139
Q 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 385 \\ 1296 \\ 97 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 385 \\ 697 \\ 97 \end{array}$	$\begin{array}{r} 168 \\ 1256 \\ 157 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	168 707 157
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 664 \\ 931 \\ 1595 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 867 \\ 958 \\ 1825 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.063 \\ 0.963 \\ \text { E } \end{gathered}$			$\begin{aligned} & 1.217 \\ & 1.117 \\ & F \\ & \hline \end{aligned}$

Intersection 13

Future Year Plus Project AM Peak Hour (2040) - Option 2

Future Year Plus Project PM Peak Hour (2040) - Option 2

> NWB
> $=8$

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：8th Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 224 \\ 1044 \\ 19 \end{array}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	224 980 980	237 752 22	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	237 774 0
	Left Left－Through \downarrow Through Through－Right Right Left－Through－Right Left－Right	20 567 406	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	20 344 406	19 1000 338	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	19 538 338
		$\begin{array}{r} 240 \\ 8 \\ 293 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	240 248 293	122 19 393	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	122 141 275
0 2 0 0 0 0 3 3	$\|$$\ulcorner$ Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{aligned} & 10 \\ & 11 \\ & 16 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	10 37 0	14 14 23	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	14 51 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 1000 \\ 303 \\ 1303 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 793 \\ 289 \\ 1082 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： V／C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.869 \\ & 0.769 \\ & \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & 0.721 \\ & 0.621 \\ & \text { B } \\ & \hline \end{aligned}$

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：Porter Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{l\|l} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	$\begin{array}{r} 322 \\ 1010 \\ 26 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	322 518 26	442 817 28	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	442 423 28
1 2 2 0 0 1 \vdots 0 0	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	19 796 94	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	19 445 94	16 1169 234	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	16 702 234
0 2 3 0 0 0 0 $\mathbf{4}$		240 29 513	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	240 269 191	133 20 402	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	133 153 0
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{aligned} & 21 \\ & 48 \\ & 23 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	21 69 14	44 89 25	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 44 \\ 133 \\ 17 \end{array}$
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 767 \\ 309 \\ 1076 \\ \hline \end{array}$		th－South： East－West： SUM：	$\begin{array}{r} 1144 \\ 266 \\ 1410 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.755 \\ 0.655 \\ \text { B } \\ \hline \end{gathered}$			$\begin{gathered} 0.989 \\ 0.889 \\ \text { D } \\ \hline \end{gathered}$

Level of Service Workheet
 （Circular 212 Method）

I／S \＃：
16

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：Olympic Boulevard
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 243 \\ 1107 \\ 75 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	243 591 75	124 1094 176	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	124 635 176
	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 219 \\ 1085 \\ 17 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	219 551 17	308 1181 56	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	308 619 56
	\uparrow Left $\xrightarrow{\rightarrow}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\stackrel{\rightharpoonup}{r}$ Left－Through－Right $\hat{\imath}$ Left－Right	$\begin{array}{r} 36 \\ 417 \\ 324 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	36 209 81	38 1049 396	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	38 525 272
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 194 \\ 1273 \\ 213 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 194 \\ 743 \\ 213 \end{array}$	96 938 181	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	96 560 181
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 810 \\ 779 \\ 1589 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 943 \\ 621 \\ 1564 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.156 \\ 1.056 \\ \mathrm{~F} \\ \hline \end{gathered}$			$\begin{gathered} 1.137 \\ 1.037 \\ \text { F } \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Santa Fe Avenue East－West Street：E 15th Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 1 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	$\begin{array}{r} 106 \\ 1292 \\ 224 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	106 646 0	$\begin{array}{r} 118 \\ 1084 \\ 170 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	118 542 153
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	66 1383 64	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	66 724 64	198 1446 17	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	198 732 17
		$\begin{aligned} & 27 \\ & 48 \\ & 60 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	27 108 0	60 332 181	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	60 287 287
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 25 \\ 603 \\ 130 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 25 \\ 603 \\ 97 \end{array}$	35 84 131	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	35 84 32
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 830 \\ 630 \\ 1460 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 850 \\ 322 \\ 1172 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 1.025 \\ & 0.925 \\ & \text { E } \end{aligned}$			$\begin{aligned} & 0.822 \\ & 0.722 \\ & \mathrm{C} \\ & \hline \end{aligned}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Rio Street East－West Street：E 7th Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{lll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|l\|} N B-- \\ E B-- \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	38 2 67	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	38 40 27	23 1 67	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	23 24 50
ㅇ 2 0 0 0 \vdots 0 0	Left Left－Through Through $\&$ Through－Right Right \rightarrow Left－Through－Right Left－Right	19 2 13	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	19 34 0	16 0 8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	16 24 0
	\uparrow Left $\xrightarrow{\boldsymbol{\mu}}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\overrightarrow{\vec{r}}$ Left－Through－Right \prec Left－Right	$\begin{array}{r} 10 \\ 743 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 372 0	10 1512 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 756 0
Q 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right \leftarrow Left－Right	$\begin{array}{r} 80 \\ 2116 \\ 14 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 80 \\ 1065 \\ 14 \end{array}$	$\begin{array}{r} 35 \\ 1308 \\ 2 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	35 655 2
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 72 \\ 1075 \\ 1147 \\ \hline \end{array}$		th－South： East－West： SUM：	$\begin{array}{r} \hline 66 \\ 791 \\ 857 \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.765 \\ & 0.665 \\ & \text { B } \end{aligned}$			$\begin{aligned} & 0.571 \\ & 0.471 \\ & \text { A } \\ & \hline \end{aligned}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Anderson Street East－West Street：E 7th Street
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \hline \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	14 1 4	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	14 19 0	0 0 2	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	0 2 0
Q 2 2 0 m 1 2 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	37 2 55	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	37 39 30	100 0 79	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	100 100 43
	\uparrow Left $\xrightarrow{\wedge}$ Left－Through \rightarrow Through $\vec{\nabla}$ Through－Right 7 Right $\underset{\vec{r}}{\vec{r}}$ Left－Through－Right Left－Right	51 746 7	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	51 377 7	72 1503 0	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	72 752 0
Q 2 0 0 0 0 3 3	ζ Left ζ Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 10 \\ 2142 \\ 373 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \\ 1258 \\ 373 \end{array}$	$\begin{array}{r} 5 \\ 1284 \\ 101 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	5 693 101
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 56 \\ 1309 \\ 1365 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{aligned} & 102 \\ & 765 \\ & 867 \\ & \hline \end{aligned}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.910 \\ & 0.810 \\ & \text { D } \end{aligned}$			$\begin{aligned} & 0.578 \\ & 0.478 \\ & \text { A } \end{aligned}$

Level of Service Workheet
 （Circular 212 Method）

PROJECT TITLE： 670 Mesquit
North－South Street：Boyle Avenue
East－West Street：Whittier Boulevard
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 2 0 0 2 0	$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 2 0 0 2 0
MOVEMENT		Volume	No．of Lanes	Lane Volume	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right Left－Through－Right Left－Right	286 466 114	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	286 290 114	272 1000 199	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	272 600 199
	Left Left－Through Through Through－Right Right Left－Through－Right	$\begin{array}{r} 98 \\ 474 \\ 222 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	98 348 222	98 374 58	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	98 216 58
	\uparrow Left $\xrightarrow{\rightarrow}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\stackrel{\rightharpoonup}{r}$ Left－Through－Right $\hat{\imath}$ Left－Right	$\begin{array}{r} 27 \\ 364 \\ 63 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	27 214 63	170 967 110	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	170 539 110
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	$\begin{array}{r} 185 \\ 1561 \\ 149 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 185 \\ 855 \\ 149 \end{array}$	$\begin{array}{r} 54 \\ 676 \\ 168 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	54 422 168
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 634 \\ 1069 \\ 1703 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 698 \\ 961 \\ 1659 \\ \hline \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 1.239 \\ 1.139 \\ \text { F } \\ \hline \end{gathered}$			$\begin{gathered} 1.207 \\ 1.107 \\ \text { F } \\ \hline \end{gathered}$

Level of Service Workheet
 (Circular 212 Method)

I/S \#:
21

PROJECT TITLE: 670 Mesquit
North-South Street: Boyle Avenue East-West Street: 7th Street
Scenario: Future plus Project (2040) - Option 2

No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3? Right Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity		AM			PM		
		$\begin{array}{ll} \text { NB-- } & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 1 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	4 0 1 0 2 0
MOVEMENT		Volume	No. of Lanes	Lane Volume	Volume	No. of Lanes	Lane Volume
	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right	$\begin{aligned} & 249 \\ & 478 \\ & 102 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	249 290 102	173 717 134	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	173 426 134
Q 2 2 0 0 1 \vdots 0 0	Left Left-Through \downarrow Through Through-Right Right $\downarrow \rightarrow$ Left-Through-Right \downarrow Left-Right	61 494 360	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	61 427 360	62 440 161	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	62 301 161
		$\begin{aligned} & 119 \\ & 263 \\ & 165 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	119 263 41	350 714 362	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	350 714 276
n 2 0 0 0 0 3 3	\ulcorner Left \longleftarrow Left-Through \leftarrow Through $亡$ Through-Right \leftarrow Right $亡$ Left-Through-Right ζ Left-Right	$\begin{array}{r} 64 \\ 597 \\ 70 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 64 \\ 667 \\ 0 \end{array}$	$\begin{array}{r} 14 \\ 359 \\ 131 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	14 490 0
	CRITICAL VOLUMES		rth-South: East-West: SUM:	$\begin{array}{r} 676 \\ 786 \\ 1462 \\ \hline \end{array}$		rth-South: East-West: SUM:	$\begin{array}{r} 488 \\ 840 \\ 1328 \\ \hline \end{array}$
	VOLUME/CAPACITY (V/C) RATIO: V/C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			$\begin{gathered} 1.063 \\ 0.963 \\ \mathrm{E} \\ \hline \end{gathered}$			$\begin{gathered} 0.966 \\ 0.866 \\ \text { D } \\ \hline \end{gathered}$

PROJECT TITLE： 670 Mesquit
North－South Street：S Alameda Street East－West Street：I－10 Eastbound ramps
Scenario：Future plus Project（2040）－Option 2

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0	$\begin{array}{\|l\|l} \hline N B-- & 0 \\ E B-- & 3 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	3 0 3 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	Lane Volume
	Left \uparrow Left－Through \uparrow Through \uparrow Through－Right Right	$\begin{array}{r} 351 \\ 1266 \\ 0 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	351 633 0	429 1340 0	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	429 670 0
ㅇ 2 0 0 0 1 0 0	Left Left－Through Through Through－Right Right Left－Through－Right	1 1118 478	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	1 559 135	3 1522 537	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	3 761 322
	\uparrow Left $\xrightarrow{\lambda}$ Left－Through \rightarrow Through $\vec{\checkmark}$ Through－Right 7 Right $\stackrel{\rightharpoonup}{\prec}$ Left－Through－Right \uparrow Left－Right	$\begin{array}{r} 343 \\ 0 \\ 557 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	343 0 206	215 0 374	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	215 0 0
$\begin{aligned} & \text { ㅁ } \\ & \vdots \\ & 0 \\ & 0 \\ & 6 \\ & 6 \\ & 3 \end{aligned}$	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right ζ Left－Right	0 1 1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0 0 0
	CRITICAL VOLUMES		th－South： ast－West： SUM：	$\begin{array}{r} 910 \\ 343 \\ 1253 \\ \hline \end{array}$		rth－South： East－West： SUM：	$\begin{array}{r} 1190 \\ 215 \\ 1405 \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{aligned} & 0.879 \\ & 0.779 \\ & \text { C } \end{aligned}$			$\begin{gathered} 0.986 \\ 0.886 \\ \text { D } \end{gathered}$

ALL SCENARIOS

UNSIGNALIZED INTERSECTION ANALYSIS

 SYNCHRO WORKSHEETS| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 3.3 | | | | | |
| Movement | WBL | WBR | NBT | NBR | SBL | SBT |
| Lane Configurations | 1 | | \uparrow | | | \uparrow |
| Traffic Vol, veh/h | 110 | 25 | 123 | 66 | 21 | 253 |
| Future Vol, veh/h | 110 | 25 | 123 | 66 | 21 | 253 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, \# | 0 | - | 0 | - | - | 0 |
| Grade, \% | 0 | - | 0 | - | - | 0 |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 120 | 27 | 134 | 72 | 23 | 275 |

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	491	170	0	0	206	0
Stage 1	170	-	-	-	-	-
Stage 2	321	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	537	874	-	-	1365	-
Stage 1	860	-	-	-	-	-
Stage 2	735	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	526	874	-	-	1365	-
Mov Cap-2 Maneuver	526	-	-	-	-	-
Stage 1	860	-	-	-	-	-
Stage 2	720	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.5		0		0.6	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	568	1365	-
HCM Lane V/C Ratio		-	-	0.258	0.017	-
HCM Control Delay (s)		-	-	13.5	7.7	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	1	0.1	-

Intersection						
Int Delay, s/veh	1.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	MF		1			\uparrow
Traffic Vol, veh/h	27	41	219	16	38	285
Future Vol, veh/h	27	41	219	16	38	285
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	29	45	238	17	41	310

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	639	247	0	0	255	0
Stage 1	247	-	-	-	-	-
Stage 2	392	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	440	792	-	-	1310	-
Stage 1	794	-	-	-	-	-
Stage 2	683	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	423	792	-	-	1310	-
Mov Cap-2 Maneuver	- 423	-	-	-	-	-
Stage 1	794	-	-	-	-	-
Stage 2	657	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	S 12		0		0.9	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	588	1310	-
HCM Lane V/C Ratio		-	-	0.126	0.032	-
HCM Control Delay (s)		-	-	12	7.8	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.4	0.1	-

Intersection						
Int Delay, s/veh	1.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		\uparrow			\uparrow
Traffic Vol, veh/h	20	61	301	24	21	252
Future Vol, veh/h	20	61	301	24	21	252
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	22	66	327	26	23	274

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	660	340	0	0	353	0
Stage 1	340	-	-	-	-	-
Stage 2	320	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	428	702	-	-	1206	-
Stage 1	721	-	-	-	-	-
Stage 2	736	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	- 419	702	-	-	1206	-
Mov Cap-2 Maneuver	- 419	-	-	-	-	-
Stage 1	721	-	-	-	-	-
Stage 2	720	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	S 12		0		0.6	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	602	1206	-
HCM Lane V/C Ratio		-	-	0.146	0.019	-
HCM Control Delay (s)		-	-	12	8	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.5	0.1	-

Intersection						
Int Delay, s/veh	251.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\mathbf{7}$			-	r	$\mathbf{7}$
Traffic Vol, veh/h	15	266	549	14	282	367
Future Vol, veh/h	15	266	549	14	282	367
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	125
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	16	289	597	15	307	399

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	$\mathbf{1}$	$\mathbf{7}$		\mathbf{A}	\mathbf{F}	
Traffic Vol, veh/h	0	15	33	535	177	7
Future Vol, veh/h	0	15	33	535	177	7
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	16	36	582	192	8

Intersection	
Intersection Delay, s/veh	15.4
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	7	1	13	1	0	9	0	566	0	7	192	0
Future Vol, veh/h	7	1	13	1	0	9	0	566	0	7	192	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	1	14	1	0	10	0	615	0	8	209	0
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	2			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		2		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				2		1		
HCM Control Delay	8.8			8.6				17.8		9.5		
HCM LOS	A			A				C		A		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	33%	100%	0%	4%
Vol Thru, \%	100%	5%	0%	0%	96%
Vol Right, \%	0%	62%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	566	21	1	9	199
LT Vol	0	7	1	0	7
Through Vol	566	1	0	0	192
RT Vol	0	13	0	9	0
Lane Flow Rate	615	23	1	10	216
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.727	0.035	0.002	0.015	0.279
Departure Headway (Hd)	4.256	5.546	6.879	5.659	4.641
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	849	644	519	631	774
Service Time	2.273	3.594	4.631	3.41	2.664
HCM Lane V/C Ratio	0.724	0.036	0.002	0.016	0.279
HCM Control Delay	17.8	8.8	9.6	8.5	9.5
HCM Lane LOS	C	A	A	A	A
HCM 95th-tile Q	6.5	0.1	0	0	1.1

Intersection						
Int Delay, s/veh	6.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	MF			$\mathbf{1}$	个	$\mathbf{7}$
Traffic Vol, veh/h	8	28	23	3	1	7
Future Vol, veh/h	8	28	23	3	1	7
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	0
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	9	30	25	3	1	8

Intersection												
Int Delay, s/veh	7.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		中 ${ }^{\text {a }}$			44					${ }^{7}$		「
Traffic Vol, veh/h	0	260	144	2	2243	0	0	0	0	14	0	146
Future Vol, veh/h	0	260	144	2	2243	0	0	0	0	14	0	146
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	100	-	0
Veh in Median Storage, \#	\#	0	-	-	0	-		16974	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	283	157	2	2438	0	0	0	0	15	0	159

Major/Minor	Major1	Major2						Minor2			
Conflicting Flow All	,	0	0	440	0	0		2584	-	1219	
Stage 1	-	-	-	-	-	-		2442	-	-	
Stage 2	-	-	-	-	-	-		142	-	-	
Critical Hdwy	-	-	-	4.14	-	-		6.84	-	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-		5.84	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-		5.84	-	-	
Follow-up Hdwy	-	-	-	2.22	-	-		3.52	-	3.32	
Pot Cap-1 Maneuver	0	-	-	1116	-	0		21	0	172	
Stage 1	0	-	-	-	-	0		51	0	-	
Stage 2	0	-	-	-	-	0		870	0	-	
Platoon blocked, \%		-	-		-						
Mov Cap-1 Maneuver	-	-	-	1116	-	-		21	0		
Mov Cap-2 Maneuver	-	-	-	-	-	-		21	0	-	
Stage 1	-	-	-	-	-	-		51	0	-	
Stage 2	-	-	-	-	-	-		870	0	-	
Approach	EB			WB				SB			
HCM Control Delay, s	0			0				125.8			
HCM LOS								F			
Minor Lane/Major Mvmt EBT EBR WBL WBT SBLn1 SBLn2											
Capacity (veh/h)		-	-	1116	-	21	172				
HCM Lane V/C Ratio		-	-	0.002	-	. 725	0.923				
HCM Control Delay (s)		-	-	8.2		358.9	103.4				
HCM Lane LOS		-	-	A	-	F	F				
HCM 95th \%tile Q(veh)		-	-	0	-	2.1	6.9				

Intersection						
Int Delay, s/veh	9.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	I	\mathbf{T}		$\mathbf{4}$	个4	
Traffic Vol, veh/h	125	207	0	511	951	0
Future Vol, veh/h	125	207	0	511	951	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	200	0	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	136	225	0	555	1034	0

Intersection						
Int Delay, s/veh	1.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\neq
Traffic Vol, veh/h	27	20	223	212	37	198
Future Vol, veh/h	27	20	223	212	37	198
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	29	22	242	230	40	215

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	652	357	0	0	472	0
Stage 1	357	-	-	-	-	-
Stage 2	295	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	433	687	-	-	1090	-
Stage 1	708	-	-	-	-	-
Stage 2	755	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	415	687	-	-	1090	-
Mov Cap-2 Maneuver	415	-	-	-	-	-
Stage 1	708	-	-	-	-	-
Stage 2	723	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13		0		1.3	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	499	1090	-
HCM Lane V/C Ratio		-	-	0.102	0.037	-
HCM Control Delay (s)		-	-	13	8.4	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.3	0.1	-

Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			$\neq 1$
Traffic Vol, veh/h	12	29	367	24	22	251
Future Vol, veh/h	12	29	367	24	22	251
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	13	32	399	26	24	273

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	733	412	0	0	425	0
Stage 1	412	-	-	-	-	-
Stage 2	321	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	388	640	-	-	1134	-
Stage 1	669	-	-	-	-	-
Stage 2	735	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	378	640	-	-	1134	-
Mov Cap-2 Maneuver	378	-	-	-	-	-
Stage 1	669	-	-	-	-	-
Stage 2	717	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.4		0		0.7	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	532	1134	-
HCM Lane V/C Ratio		-	-	0.084	0.021	-
HCM Control Delay (s)		-	-	12.4	8.2	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.3	0.1	-

Intersection						
Int Delay, s/veh						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	MF		1			\uparrow
Traffic Vol, veh/h	13	28	161	18	29	388
Future Vol, veh/h	13	28	161	18	29	388
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	14	30	175	20	32	422

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	671	185	0	0	195	0
Stage 1	185	-	-	-	-	-
Stage 2	486	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	422	857	-	-	1378	-
Stage 1	847	-	-	-	-	-
Stage 2	618	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	409	857	-	-	1378	-
Mov Cap-2 Maneuver	409	-	-	-	-	-
Stage 1	847	-	-	-	-	-
Stage 2	599	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11.1		0		0.5	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	636	1378	-
HCM Lane V/C Ratio		-	-	0.07	0.023	-
HCM Control Delay (s)		-	-	11.1	7.7	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0.1	-

Intersection						
Int Delay, s/veh	95.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\mathbf{F}			-	r	$\mathbf{7}$
Traffic Vol, veh/h	9	207	338	37	341	424
Future Vol, veh/h	9	207	338	37	341	424
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	125
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	10	225	367	40	371	461

Intersection						

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 11.5 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	0	0	0	1	0	2	0	432	0	2	299	2
Future Vol, veh/h	0	0	0	1	0	2	0	432	0	2	299	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	1	0	2	0	470	0	2	325	2
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		2		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		2		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				2		1		
HCM Control Delay		0		8.7				12.3		10.3		
HCM LOS		-		A				B		B		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	0%	100%	0%	1%
Vol Thru, \%	100%	100%	0%	0%	99%
Vol Right, \%	0%	0%	0%	100%	1%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	432	0	1	2	303
LT Vol	0	0	1	0	2
Through Vol	432	0	0	0	299
RT Vol	0	0	0	2	2
Lane Flow Rate	470	0	1	2	329
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.546	0	0.002	0.003	0.402
Departure Headway (Hd)	4.184	5.745	6.736	5.519	4.397
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	850	0	533	650	823
Service Time	2.279	3.761	4.452	3.235	2.397
HCM Lane V/C Ratio	0.553	0	0.002	0.003	0.4
HCM Control Delay	12.3	8.8	9.5	8.3	10.3
HCM Lane LOS	B	N	A	A	B
HCM 95th-tile Q	3.4	0	0	0	2

Major/Minor	Minor2	Minor1									
Conflicting Flow All	848	847	316	885	853	457	324	0	0	459	0
Stage 1	322	322	-	523	523	-	-	-	-	-	-

Intersection						
Int Delay, s/veh	5.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	MF			$\mathbf{1}$	个	$\mathbf{7}$
Traffic Vol, veh/h	4	6	24	1	1	14
Future Vol, veh/h	4	6	24	1	1	14
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	4	7	26	1	1	15

Intersection						
l						

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{r}		\uparrow			\uparrow
Traffic Vol, veh/h	1	25	468	88	21	569
Future Vol, veh/h	1	25	468	88	21	569
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	1	27	509	96	23	618

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1221	557	0	0	605	0
Stage 1	557	-	-	-	-	-
Stage 2	664	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	199	530	-	-	973	-
Stage 1	574	-	-	-	-	-
Stage 2	512	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	192	530	-	-	973	-
Mov Cap-2 Maneuver	192	-	-	-	-	-
Stage 1	574	-	-	-	-	-
Stage 2	494	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.7		0		0.3	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	496	973	-
HCM Lane V/C Ratio		-	-	0.057	0.023	-
HCM Control Delay (s)		-	-	12.7	8.8	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0.1	-

Intersection						
Int Delay, s/veh	2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	32	42	655	93	39	601
Future Vol, veh/h	32	42	655	93	39	601
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	35	46	712	101	42	653

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1500	763	0	0	813	0
Stage 1	763	-	-	-	-	-
Stage 2	737	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	134	404	-	-	814	-
Stage 1	460	-	-	-	-	-
Stage 2	473	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	123	404	-	-	814	-
Mov Cap-2 Maneuver	123	-	-	-	-	-
Stage 1	460	-	-	-	-	-
Stage 2	435	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	33.9		0		0.6	
HCM LOS	D					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	203	814	-
HCM Lane V/C Ratio		-	-	0.396	0.052	-
HCM Control Delay (s)		-	-	33.9	9.7	0
HCM Lane LOS		-	-	D	A	A
HCM 95th \%tile Q(veh)		-	-	1.8	0.2	-

Intersection						
Int Delay, s/veh	6.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		\uparrow			\uparrow
Traffic Vol, veh/h	20	94	489	24	210	898
Future Vol, veh/h	20	94	489	24	210	898
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	22	102	532	26	228	976

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1977	545	0	0	558	0
Stage 1	545	-	-	-	-	-
Stage 2	1432	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	68	538	-	-	1013	-
Stage 1	581	-	-	-	-	-
Stage 2	220	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	35	538	-	-	1013	-
Mov Cap-2 Maneuver	- 35	-	-	-	-	-
Stage 1	581	-	-	-	-	-
Stage 2	112	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	S 87.8		0		1.8	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	153	1013	-
HCM Lane V/C Ratio		-	-	0.81	0.225	-
HCM Control Delay (s)		-	-	87.8	9.6	0
HCM Lane LOS		-	-	F	A	A
HCM 95th \%tile Q(veh)		-	-	5.2	0.9	-

Intersection						

Intersection						
Int Delay, s/veh	1.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	$\mathbf{1}$	\mathbf{F}		\mathbf{A}	\mathbf{F}	
Traffic Vol, veh/h	45	47	34	702	412	12
Future Vol, veh/h	45	47	34	702	412	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	49	51	37	763	448	13

Intersection	
Intersection Delay, s/veh	41.5
Intersection LOS	E

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	7	1	13	1	0	9	0	733	0	7	459	0
Future Vol, veh/h	7	1	13	,	0	9	0	733	0	7	459	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	1	14	1	0	10	0	797	0	8	499	0
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	2			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		2		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				2		1		
HCM Control Delay	9.9			9.7				57.7		18		
HCM LOS	A			A				F		C		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	33%	100%	0%	2%
Vol Thu, $\%$	100%	5%	0%	0%	98%
Vol Right, \%	0%	62%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	733	21	1	9	466
LT Vol	0	7	1	0	7
Through Vol	033	1	0	0	459
RT Vol	0	13	0	9	0
Lane Flow Rate	2	23	1	10	507
Geometry Grp	5	7	7	2	
Degree of Util (X)	1.017	0.041	0.002	0.018	0.686
Departure Headway (Hd)	4.595	6.64	8	6.766	4.874
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	789	543	450	532	740
Service Time	2.642	4.64	5.7	4.466	2.931
HCM Lane V/C Ratio	1.01	0.042	0.002	0.019	0.685
HCM Control Delay	57.7	9.9	10.7	9.6	18
HCM Lane LOS	F	A	B	A	C
HCM 95th-tile Q	18	0.1	0	0.1	5.5

Intersection						
Int Delay, s/veh	6.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\mathbf{r}			\mathbf{A}	个	$\mathbf{7}$
Traffic Vol, veh/h	8	28	23	3	1	7
Future Vol, veh/h	8	28	23	3	1	7
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	9	30	25	3	1	8

Intersection						

Intersection						
Int Delay, s/veh	1.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	27	20	702	50	38	689
Future Vol, veh/h	27	20	702	50	38	689
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	29	22	763	54	41	749

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1621	790	0	0	817	0
Stage 1	790	-	-	-	-	-
Stage 2	831	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	113	390	-	-	811	-
Stage 1	447	-	-	-	-	-
Stage 2	428	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	103	390	-	-	811	-
Mov Cap-2 Maneuver	103	-	-	-	-	-
Stage 1	447	-	-	-	-	-
Stage 2	391	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	40.9		0		0.5	
HCM LOS	E					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	150	811	-
HCM Lane V/C Ratio		-	-	0.341	0.051	-
HCM Control Delay (s)		-	-	40.9	9.7	0
HCM Lane LOS		-	-	E	A	A
HCM 95th \%tile Q(veh)		-	-	1.4	0.2	-

Intersection						
Int Delay, s/veh	4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	44	29	809	33	22	826
Future Vol, veh/h	44	29	809	33	22	826
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	48	32	879	36	24	898

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1843	897	0	0	915	0
Stage 1	897	-	-	-	-	-
Stage 2	946	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	83	339	-	-	745	-
Stage 1	398	-	-	-	-	-
Stage 2	377	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	78	339	-	-	745	-
Mov Cap-2 Maneuver	78	-	-	-	-	-
Stage 1	398	-	-	-	-	-
Stage 2	353	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	92.2		0		0.3	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	112	745	-
HCM Lane V/C Ratio		-	-	0.708	0.032	-
HCM Control Delay (s)		-	-	92.2	10	0
HCM Lane LOS		-	-	F	A	A
HCM 95th \%tile Q(veh)		-	-	3.8	0.1	-

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	13	71	600	18	62	615
Future Vol, veh/h	13	71	600	18	62	615
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	14	77	652	20	67	668

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1464	662	0	0	672	0
Stage 1	662	-	-	-	-	-
Stage 2	802	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	141	462	-	-	919	-
Stage 1	513	-	-	-	-	-
Stage 2	441	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	125	462	-	-	919	-
Mov Cap-2 Maneuver	125	-	-	-	-	-
Stage 1	513	-	-	-	-	-
Stage 2	390	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	20.3		0		0.8	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	326	919	-
HCM Lane V/C Ratio		-	-	0.28	0.073	-
HCM Control Delay (s)		-	-	20.3	9.2	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	1.1	0.2	-

Intersection						

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\mathbf{T}	\mathbf{F}		\mathbf{A}	\mathbf{F}	
Traffic Vol, veh/h	21	13	17	706	489	40
Future Vol, veh/h	21	13	17	706	489	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	23	14	18	767	532	43

Intersection	
Intersection Delay, s/veh $\quad 34.5$	
Intersection LOS	D

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*		*		「		\uparrow			\uparrow	
Traffic Vol, veh/h	0	0	0	1	0	2	0	712	0	2	494	2
Future Vol, veh/h	0	0	0	,	0	2	0	712	0	2	494	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	1	0	2	0	774	0	2	537	2
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		2		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		2		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				2		1		
HCM Control Delay		0		9.8				45.8		18.5		
HCM LOS		-		A				E		C		

| Lane | NBLn1 | EBLn1 | WBLn1 | WBLn2 | SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | 0% | 0% | 100% | 0% | 0% |
| Vol Thru, \% | 100% | 100% | 0% | 0% | 99% |
| Vol Right, \% | 0% | 0% | 0% | 100% | 0% |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 712 | 0 | 1 | 2 | 498 |
| LT Vol | 0 | 0 | 1 | 0 | 2 |
| Through Vol | 712 | 0 | 0 | 0 | 494 |
| RT Vol | 0 | 0 | 0 | 2 | 2 |
| Lane Flow Rate | 774 | 0 | 1 | 2 | 541 |
| Geometry Grp | 2 | 5 | 7 | 7 | 2 |
| Degree of Util (X) | 0.97 | 0 | 0.002 | 0.004 | 0.71 |
| Departure Headway (Hd) | 4.512 | 6.787 | 7.776 | 6.546 | 4.723 |
| Convergence, Y/N | Yes | Yes | Yes | Yes | Yes |
| Cap | 805 | 0 | 457 | 542 | 763 |
| Service Time | 2.539 | 4.884 | 5.574 | 4.343 | 2.754 |
| HCM Lane V/C Ratio | 0.961 | 0 | 0.002 | 0.004 | 0.009 |
| HCM Control Delay | 45.8 | 9.9 | 10.6 | 9.4 | 18.5 |
| HCM Lane LOS | E | N | B | A | C |
| HCM 95th-tile Q | 15.6 | 0 | 0 | 0 | 6 |

Intersection												
Int Delay, s/veh	2.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\&			\$			\$	
Traffic Vol, veh/h	31	3	74	9	3	3	12	685	5	3	464	29
Future Vol, veh/h	31	3	74	9	3	3	12	685	5	3	464	29
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Stap	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	34	3	80	10	3	3	13	745	5	3	504	32

Intersection						
Int Delay, s/veh	5.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			$\mathbf{1}$	个	$\mathbf{7}$
Traffic Vol, veh/h	4	6	24	1	1	14
Future Vol, veh/h	4	6	24	1	1	14
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	0
Veh in Median Storage,	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	4	7	26	1	1	15

Intersection						

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	1	25	497	103	21	626
Future Vol, veh/h	1	25	497	103	21	626
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	27	540	112	23	680

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1322	596	0	0	652	0
Stage 1	596	-	-	-	-	-
Stage 2	726	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	173	504	-	-	935	-
Stage 1	550	-	-	-	-	-
Stage 2	479	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	166	504	-	-	935	-
Mov Cap-2 Maneuver	166	-	-	-	-	-
Stage 1	550	-	-	-	-	-
Stage 2	460	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.2		0		0.3	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	467	935	-
HCM Lane V/C Ratio		-	-	0.061	0.024	-
HCM Control Delay (s)		-	-	13.2	8.9	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0.1	-

Intersection						
Int Delay, s/veh	4.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	48	79	662	93	39	658
Future Vol, veh/h	48	79	662	93	39	658
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	52	86	720	101	42	715

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1570	771	0	0	821	0
Stage 1	771	-	-	-	-	-
Stage 2	799	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	122	400	-	-	808	-
Stage 1	456	-	-	-	-	-
Stage 2	443	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	112	400	-	-	808	-
Mov Cap-2 Maneuver	112	-	-	-	-	-
Stage 1	456	-	-	-	-	-
Stage 2	405	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	53.7		0		0.5	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	203	808	-
HCM Lane V/C Ratio		-	-	0.68	0.052	-
HCM Control Delay (s)		-	-	53.7	9.7	0
HCM Lane LOS		-	-	F	A	A
HCM 95th \%tile Q(veh)		-	-	4.2	0.2	-

Intersection						

Intersection						
Int Delay, s/veh	3.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	$\mathbf{1}$	\mathbf{F}		\mathbf{A}	\mathbf{F}	
Traffic Vol, veh/h	45	47	87	762	490	12
Future Vol, veh/h	45	47	87	762	490	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	49	51	95	828	533	13

Intersection	
Intersection Delay, s/veh 137.4	
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	7	107	37	31	0	119	0	753	4	65	488	0
Future Vol, veh/h	7	107	37	31	0	119	0	753	4	65	488	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	116	40	34	0	129	0	818	4	71	530	0
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	2			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		2		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				2		1		
HCM Control Delay	16.8			14.3				226.5		81.8		
HCM LOS	C			B				F		F		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	5%	100%	0%	12%
Vol Thru, \%	99%	71%	0%	0%	88%
Vol Right, \%	1%	25%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	757	151	31	119	553
LT Vol	0	7	31	0	65
Through Vol	753	107	0	0	488
RT Vol	4	37	0	119	0
Lane Flow Rate	823	164	34	129	601
Geometry Grp	2	5	7	7	2
Degree of Util (X)	1.439	0.357	0.083	0.275	1.056
Departure Headway (Hd)	6.526	8.895	9.857	8.602	7.037
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	568	407	366	420	523
Service Time	4.526	6.895	7.557	6.302	5.037
HCM Lane V/C Ratio	1.449	0.403	0.093	0.307	1.149
HCM Control Delay	226.5	16.8	13.4	14.5	81.8
HCM Lane LOS	F	C	B	B	F
HCM 95th-tile Q	38.1	1.6	0.3	1.1	16.1

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 49.1 |
| Intersection LOS | E |

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	个		*	
Traffic Vol, veh/h	101	670	180	15	61	13
Future Vol, veh/h	101	670	180	15	61	13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	110	728	196	16	66	14
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	62.7		10.2		10.4	
HCM LOS	F		B		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	13%	0%	82%
Vol Thru, \%	87%	92%	0%
Vol Right, \%	0%	8%	18%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	771	195	74
LT Vol	101	0	61
Through Vol	670	180	0
RT Vol	0	15	13
Lane Flow Rate	838	212	80
Geometry Grp	1	1	1
Degree of Util (X)	1.038	0.296	0.14
Departure Headway (Hd)	4.457	5.02	6.391
Convergence, Y/N	Yes	Yes	Yes
Cap	813	710	565
Service Time	2.501	3.09	4.391
HCM Lane V/C Ratio	1.031	0.299	0.142
HCM Control Delay	62.7	10.2	10.4
HCM Lane LOS	F	B	B
HCM 95th-tile Q	19.6	1.2	0.5

Intersection						
Int Delay, s/veh	1.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			\uparrow
Traffic Vol, veh/h	27	20	759	88	38	735
Future Vol, veh/h	27	20	759	88	38	735
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	29	22	825	96	41	799

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1754	873	0	0	921	0
Stage 1	873	-	-	-	-	-
Stage 2	881	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	94	349	-	-	741	-
Stage 1	409	-	-	-	-	-
Stage 2	405	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	85	349	-	-	741	-
Mov Cap-2 Maneuver	85	-	-	-	-	-
Stage 1	409	-	-	-	-	-
Stage 2	365	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	52.4		0		0.5	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	125	741	-
HCM Lane V/C Ratio		-	-	0.409	0.056	-
HCM Control Delay (s)		-	-	52.4	10.1	0
HCM Lane LOS		-	-	F	B	A
HCM 95th \%tile Q(veh)		-	-	1.7	0.2	-

Intersection						

Intersection						
Int Delay, s/veh	214.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\uparrow			\uparrow
Traffic Vol, veh/h	151	166	661	126	174	615
Future Vol, veh/h	151	166	661	126	174	615
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	164	180	718	137	189	668

Intersection						
Int Delay, s/veh	501.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	1	$\mathbf{7}$
Traffic Vol, veh/h	22	371	611	46	302	444
Future Vol, veh/h	22	371	611	46	302	444
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	125
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	24	403	664	50	328	483

Intersection						
Int Delay, s/veh	1.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\mathbf{T}	\mathbf{F}		\mathbf{A}	\mathbf{F}	
Traffic Vol, veh/h	21	13	117	797	569	40
Future Vol, veh/h	21	13	117	797	569	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	23	14	127	866	618	43

Intersection	
Intersection Delay, s/veh 149.4	
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	0	89	20	38	0	194	0	738	5	59	530	2
Future Vol, veh/h	0	89	20	38	0	194	0	738	5	59	530	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	97	22	41	0	211	0	802	5	64	576	2
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		2		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		2		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				2		1		
HCM Control Delay		16.3		17				235		118.3		
HCM LOS		C		C				F		F		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	0%	100%	0%	10%
Vol Thru, \%	99%	82%	0%	0%	90%
Vol Right, \%	1%	18%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	743	109	38	194	591
LT Vol	0	0	38	0	59
Through Vol	738	89	0	0	530
RT Vol	5	20	0	194	2
Lane Flow Rate	808	118	41	211	642
Geometry Grp	2	5	7	7	2
Degree of Util (X)	1.456	0.272	0.1	0.438	1.162
Departure Headway (Hd)	6.848	9.697	9.79	8.535	7.256
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	541	373	368	426	507
Service Time	4.848	7.697	7.49	6.235	5.256
HCM Lane V/C Ratio	1.494	0.316	0.111	0.495	1.266
HCM Control Delay	235	16.3	13.6	17.7	118.3
HCM Lane LOS	F	C	B	C	F
HCM 95th-tile Q	37.6	1.1	0.3	2.2	20.6

Intersection													
Int Delay, s/veh	0.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			¢			¢		
Traffic Vol, veh/h	31	301	74	188	276	20	12	704	254	67	467	62	
Future Vol, veh/h	31	301	74	188	276	20	12	704	254	67	467	62	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	34	327	80	204	300	22	13	765	276	73	508	67	

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 24.2 |
| Intersection LOS | C |

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	个		M	
Traffic Vol, veh/h	101	500	432	30	52	21
Future Vol, veh/h	101	500	432	30	52	21
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	110	543	470	33	57	23
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	30.8		17.8		10.6	
HCM LOS	D		C		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	17%	0%	71%
Vol Thru, \%	83%	94%	0%
Vol Right, \%	0%	6%	29%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	601	462	73
LT Vol	101	0	52
Through Vol	500	432	0
RT Vol	0	30	21
Lane Flow Rate	653	502	79
Geometry Grp	1	1	1
Degree of Util (X)	0.867	0.679	0.144
Departure Headway (Hd)	4.778	4.866	6.521
Convergence, Y/N	Yes	Yes	Yes
Cap	751	733	553
Service Time	2.859	2.954	4.521
HCM Lane V/C Ratio	0.87	0.685	0.143
HCM Control Delay	30.8	17.8	10.6
HCM Lane LOS	D	C	B
HCM 95th-tile Q	10.5	5.4	0.5

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{T}		\uparrow			\uparrow
Traffic Vol, veh/h	1	25	502	104	21	631
Future Vol, veh/h	1	25	502	104	21	631
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	27	546	113	23	686

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1335	603	0	0	659	0
Stage 1	603	-	-	-	-	-
Stage 2	732	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	169	499	-	-	929	-
Stage 1	546	-	-	-	-	-
Stage 2	476	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	162	499	-	-	929	-
Mov Cap-2 Maneuver	162	-	-	-	-	-
Stage 1	546	-	-	-	-	-
Stage 2	457	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.3		0		0.3	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	462	929	-
HCM Lane V/C Ratio		-	-	0.061	0.025	-
HCM Control Delay (s)		-	-	13.3	9	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0.1	-

Intersection						
Int Delay, s/veh	5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		F			\uparrow
Traffic Vol, veh/h	49	84	664	93	39	663
Future Vol, veh/h	49	84	664	93	39	663
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	53	91	722	101	42	721

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1578	773	0	0	823	0
Stage 1	773	-	-	-	-	-
Stage 2	805	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	120	399	-	-	807	-
Stage 1	455	-	-	-	-	-
Stage 2	440	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	110	399	-	-	807	-
Mov Cap-2 Maneuver	110	-	-	-	-	-
Stage 1	455	-	-	-	-	-
Stage 2	402	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	57.4		0		0.5	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	203	807	-
HCM Lane V/C Ratio		-	-	0.712	0.053	-
HCM Control Delay (s)		-	-	57.4	9.7	0
HCM Lane LOS		-	-	F	A	A
HCM 95th \%tile Q(veh)		-	-	4.6	0.2	-

Intersection						
Int Delay, s/veh	3.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T	$\mathbf{7}$		\uparrow	$\mathbf{7}$	
Traffic Vol, veh/h	45	47	93	777	504	12
Future Vol, veh/h	45	47	93	777	504	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	49	51	101	845	548	13

Intersection	
Intersection Delay, s/veh 152.6	
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	7	116	37	34	0	132	0	761	5	73	494	0
Future Vol, veh/h	7	116	37	34	0	132	0	761	5	73	494	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	126	40	37	0	143	0	827	5	79	537	0
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	2			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		2		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				2		1		
HCM Control Delay	17.8			15.1				249.6		99.9		
HCM LOS	C			C				F		F		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	4%	100%	0%	13%
Vol Thru, \%	99%	72%	0%	0%	87%
Vol Right, \%	1%	23%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	766	160	34	132	567
LT Vol	0	7	34	0	73
Through Vol	761	116	0	0	494
RT Vol	5	37	0	132	0
Lane Flow Rate	833	174	37	143	616
Geometry Grp	2	5	7	7	2
Degree of Util (X)	1.491	0.383	0.091	0.307	1.109
Departure Headway (Hd)	6.749	9.2	10.077	8.821	7.28
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	550	393	358	410	505
Service Time	4.749	7.2	7.777	6.521	5.28
HCM Lane V/C Ratio	1.515	0.443	0.103	0.349	1.22
HCM Control Delay	249.6	17.8	13.8	15.4	99.9
HCM Lane LOS	F	C	B	C	F
HCM 95th-tile Q	40.2	1.8	0.3	1.3	18.1

Approach	EB	WB	NB
HCM Control Delay, s	0.6	SB	

HCM LOS

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1026	-	-	-	-	572	-

Notes

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined \quad : All major volume in platoon

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 64.2 |
| Intersection LOS | F |

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		*	
Traffic Vol, veh/h	106	704	205	17	66	13
Future Vol, veh/h	106	704	205	17	66	13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	115	765	223	18	72	14
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	84		10.8		10.7	
HCM LOS	F		B		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	13%	0%	84%
Vol Thru, \%	87%	92%	0%
Vol Right, \%	0%	8%	16%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	810	222	79
LT Vol	106	0	66
Through Vol	704	205	0
RT Vol	0	17	13
Lane Flow Rate	880	241	86
Geometry Grp	1	1	1
Degree of Util (X)	1.104	0.335	0.15
Departure Headway (Hd)	4.516	5.173	6.562
Convergence, Y/N	Yes	Yes	Yes
Cap	801	700	550
Service Time	2.557	3.173	4.562
HCM Lane V/C Ratio	1.099	0.344	0.156
HCM Control Delay	84	10.8	10.7
HCM Lane LOS	F	B	B
HCM 95th-tile Q	23.9	1.5	0.5

Intersection						
Int Delay, s/veh	1.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	27	20	764	89	38	740
Future Vol, veh/h	27	20	764	89	38	740
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	29	22	830	97	41	804

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1765	879	0	0	927	0
Stage 1	879	-	-	-	-	-
Stage 2	886	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	92	347	-	-	737	-
Stage 1	406	-	-	-	-	-
Stage 2	403	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	83	347	-	-	737	-
Mov Cap-2 Maneuver	83	-	-	-	-	-
Stage 1	406	-	-	-	-	-
Stage 2	362	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	53.6		0		0.5	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	123	737	-
HCM Lane V/C Ratio		-	-	0.415	0.056	-
HCM Control Delay (s)		-	-	53.6	10.2	0
HCM Lane LOS		-	-	F	B	A
HCM 95th \%tile Q(veh)		-	-	1.8	0.2	-

Intersection						

Intersection						
Int Delay, s/veh 501.3						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\hat{\dagger}$			\uparrow	${ }^{7}$	「
Traffic Vol, veh/h	22	371	611	46	302	444
Future Vol, veh/h	22	371	611	46	302	444
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	125
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	24	403	664	50	328	483

Intersection	
Intersection Delay, s/veh 164.8	
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	0	97	20	41	0	206	0	746	6	67	536	2
Future Vol, veh/h	0	97	20	41	0	206	0	746	6	67	536	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	105	22	45	0	224	0	811	7	73	583	2
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		2		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		2		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				2		1		
HCM Control Delay		17.2		18.1				256.7		139.1		
HCM LOS		C		C				F		F		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	0%	100%	0%	11%
Vol Thru, \%	99%	83%	0%	0%	89%
Vol Right, \%	1%	17%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	752	117	41	206	605
LT Vol	0	0	41	0	67
Through Vol	746	97	0	0	536
RT Vol	6	20	0	206	2
Lane Flow Rate	817	127	45	224	658
Geometry Grp	2	5	7	7	2
Degree of Util (X)	1.505	0.296	0.108	0.469	1.215
Departure Headway (Hd)	7.067	10.02	9.991	8.734	7.486
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	523	361	361	416	493
Service Time	5.067	8.02	7.691	6.434	5.486
HCM Lane V/C Ratio	1.562	0.352	0.125	0.538	1.335
HCM Control Delay	256.7	17.2	13.9	18.9	139.1
HCM Lane LOS	F	C	B	C	F
HCM 95th-tile Q	39.4	1.2	0.4	2.4	22.6

Intersection	
Intersection Delay, s/veh $\quad 31.1$	
Intersection LOS	D

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	个		*	
Traffic Vol, veh/h	106	533	456	31	57	22
Future Vol, veh/h	106	533	456	31	57	22
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	115	579	496	34	62	24
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	41.1		21.2		11	
HCM LOS	E		C		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	17%	0%	72%
Vol Thru, \%	83%	94%	0%
Vol Right, \%	0%	6%	28%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	639	487	79
LT Vol	106	0	57
Through Vol	533	456	0
RT Vol	0	31	22
Lane Flow Rate	695	529	86
Geometry Grp	1	1	1
Degree of Util (X)	0.934	0.743	0.16
Departure Headway (Hd)	4.953	5.053	6.693
Convergence, Y/N	Yes	Yes	Yes
Cap	736	720	538
Service Time	2.953	3.053	4.712
HCM Lane V/C Ratio	0.944	0.735	0.16
HCM Control Delay	41.1	21.2	11
HCM Lane LOS	E	C	B
HCM 95th-tile Q	13.2	6.7	0.6

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{r}		\uparrow			\uparrow
Traffic Vol, veh/h	1	26	472	90	22	576
Future Vol, veh/h	1	26	472	90	22	576
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	1	28	513	98	24	626

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1236	562	0	0	611	0
Stage 1	562	-	-	-	-	-
Stage 2	674	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	195	526	-	-	968	-
Stage 1	571	-	-	-	-	-
Stage 2	506	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	188	526	-	-	968	-
Mov Cap-2 Maneuver	188	-	-	-	-	-
Stage 1	571	-	-	-	-	-
Stage 2	487	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.8		0		0.3	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	493	968	-
HCM Lane V/C Ratio		-	-	0.06	0.025	-
HCM Control Delay (s)		-	-	12.8	8.8	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0.1	-

Intersection						
Int Delay, s/veh	2.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Tr		\mathbf{T}			\uparrow
Traffic Vol, veh/h	33	43	664	94	40	607
Future Vol, veh/h	33	43	664	94	40	607
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	36	47	722	102	43	660

Intersection						
Int Delay, s/veh	9.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			\uparrow
Traffic Vol, veh/h	21	96	496	25	214	916
Future Vol, veh/h	21	96	496	25	214	916
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	23	104	539	27	233	996

Intersection						
Int Delay, s/veh	1.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1	\mathbf{F}		\mathbf{T}	\mathbf{F}	
Traffic Vol, veh/h	45	48	34	717	417	12
Future Vol, veh/h	45	48	34	717	417	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	49	52	37	779	453	13

Intersection	
Intersection Delay, s/veh	46
Intersection LOS	E

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	7	1	14	1	0	9	0	749	0	7	465	0
Future Vol, veh/h	7	1	14	,	0	9	0	749	0	7	465	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	1	15	1	0	10	0	814	0	8	505	0
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	2			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		2		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				2		1		
HCM Control Delay	10			9.7				64.8		18.6		
HCM LOS	A			A				F		C		

Lane	NBLn1	EBLn1	WBLLn1	WBLn2	SBLn1
Vol Left, \%	0%	32%	100%	0%	1%
Vol Thru, \%	100%	5%	0%	0%	99%
Vol Right, \%	0%	64%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Sttop
Traffic Vol by Lane	749	22	1	9	472
LT Vol	0	7	1	0	7
Through Vol	749	1	0	0	465
RT Vol	0	14	0	9	0
Lane Flow Rate	814	24	1	10	513
Geometry Grp	2	5	7	7	2
Degree of Util (X)	1.042	0.043	0.002	0.018	0.698
Departure Headway (Hd)	4.608	6.679	8.058	6.823	4.899
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	782	539	447	528	734
Service Time	2.657	4.679	5.758	4.523	2.957
HCM Lane V/C Ratio	1.041	0.0045	0.002	0.019	0.699
HCM Control Delay	64.8	10	10.8	9.6	18.6
HCM Lane LOS	F	A	B	A	C
HCM 95th-tile Q	19.5	0.1	0	0.1	5.7

Intersection						
Int Delay, s/veh	6.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\mathbf{r}			\mathbf{A}	个	$\mathbf{7}$
Traffic Vol, veh/h	8	29	24	3	1	7
Future Vol, veh/h	8	29	24	3	1	7
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	9	32	26	3	1	8

Intersection							

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	28	21	709	50	39	697
Future Vol, veh/h	28	21	709	50	39	697
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	30	23	771	54	42	758

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1640	798	0	0	825	0
Stage 1	798	-	-	-	-	-
Stage 2	842	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	110	386	-	-	805	-
Stage 1	443	-	-	-	-	-
Stage 2	423	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	100	386	-	-	805	-
Mov Cap-2 Maneuver	100	-	-	-	-	-
Stage 1	443	-	-	-	-	-
Stage 2	385	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	42.8		0		0.5	
HCM LOS	E					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	147	805	-
HCM Lane V/C Ratio		-	-	0.362	0.053	-
HCM Control Delay (s)		-	-	42.8	9.7	0
HCM Lane LOS		-	-	E	A	A
HCM 95th \%tile Q(veh)		-	-	1.5	0.2	-

Intersection						
Int Delay, s/veh	4.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		\uparrow			\uparrow
Traffic Vol, veh/h	45	30	816	34	23	837
Future Vol, veh/h	45	30	816	34	23	837
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	49	33	887	37	25	910

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1866	906	0	0	924	0
Stage 1	906	-	-	-	-	-
Stage 2	960	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	80	334	-	-	739	-
Stage 1	394	-	-	-	-	-
Stage 2	372	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	75	334	-	-	739	-
Mov Cap-2 Maneuver	75	-	-	-	-	-
Stage 1	394	-	-	-	-	-
Stage 2	347	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	101		0		0.3	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	109	739	-
HCM Lane V/C Ratio		-	-	0.748	0.034	-
HCM Control Delay (s)		-	-	101	10	0
HCM Lane LOS		-	-	F	B	A
HCM 95th \%tile Q(veh)		-	-	4.1	0.1	-

Intersection						
Int Delay, s/veh	1.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	MF		\mathbf{F}			\uparrow
Traffic Vol, veh/h	14	71	607	19	63	625
Future Vol, veh/h	14	71	607	19	63	625
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	15	77	660	21	68	679

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1486	671	0	0	681	0
Stage 1	671	-	-	-	-	-
Stage 2	815	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	137	456	-	-	912	-
Stage 1	508	-	-	-	-	-
Stage 2	435	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	121	456	-	-	912	-
Mov Cap-2 Maneuver	121	-	-	-	-	-
Stage 1	508	-	-	-	-	-
Stage 2	383	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	21.2		0		0.8	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	313	912	-
HCM Lane V/C Ratio		-	-	0.295	0.075	-
HCM Control Delay (s)		-	-	21.2	9.3	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	1.2	0.2	-

Intersection						
Int Delay, s/veh	490.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			-	r	$\mathbf{7}$
Traffic Vol, veh/h	23	354	605	47	308	443
Future Vol, veh/h	23	354	605	47	308	443
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	125
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	25	385	658	51	335	482

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	a	\mathbf{F}		\mathbf{A}	\mathbf{F}	
Traffic Vol, veh/h	22	14	18	718	497	40
Future Vol, veh/h	22	14	18	718	497	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	24	15	20	780	540	43

Intersection	
Intersection Delay, s/veh $\quad 37.3$	
Intersection LOS	E

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*		*		「		\uparrow			\uparrow	
Traffic Vol, veh/h	0	0	0	1	0	2	0	724	0	2	502	2
Future Vol, veh/h	0	0	0	,	0	2	0	724	0	2	502	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	1	0	2	0	787	0	2	546	2
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		2		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		2		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				2		1		
HCM Control Delay		0		9.8				50.1		19.2		
HCM LOS		-		A				F		C		

Lane	NBLn1	EBLn1	WBLLn1	WBLn2	SBLn1
Vol Left, \%	0%	0%	100%	0%	0%
Vol Thru, \%	100%	100%	0%	0%	99%
Vol Right, \%	0%	0%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Sttop
Traffic Vol by Lane	724	0	1	2	506
LT Vol	0	0	1	0	2
Through Vol	024	0	0	0	502
RT Vol	0	0	0	2	2
Lane Flow Rate	787	0	1	2	550
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.989	0	0.002	0.004	0.724
Departure Headway (Hd)	4.523	6.93	7.92	6.589	4.738
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	803	0	455	538	765
Service Time	2.55	4.93	5.62	4.388	2.77
HCM Lane V/C Ratio	0.98	0	0.002	0.004	0.719
HCM Control Delay	50.1	9.9	10.6	9.4	19.2
HCM Lane LOS	F	N	B	A	C
HCM 95th-tile Q	16.6	0	0	0	6.3

Intersection						
Int Delay, s/veh	5.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	MF			$\mathbf{1}$	个	$\mathbf{7}$
Traffic Vol, veh/h	4	6	25	1	1	15
Future Vol, veh/h	4	6	25	1	1	15
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	0
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	4	7	27	1	1	16

Intersection						
l						

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	1	26	501	105	22	633
Future Vol, veh/h	1	26	501	105	22	633
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	28	545	114	24	688

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1338	602	0	0	659	0
Stage 1	602	-	-	-	-	-
Stage 2	736	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	169	500	-	-	929	-
Stage 1	547	-	-	-	-	-
Stage 2	474	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	162	500	-	-	929	-
Mov Cap-2 Maneuver	162	-	-	-	-	-
Stage 1	547	-	-	-	-	-
Stage 2	454	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.3		0		0.3	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	464	929	-
HCM Lane V/C Ratio		-	-	0.063	0.026	-
HCM Control Delay (s)		-	-	13.3	9	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0.1	-

Intersection						
Int Delay, s/veh	5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	49	80	671	94	40	664
Future Vol, veh/h	49	80	671	94	40	664
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	53	87	729	102	43	722

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1588	780	0	0	831	0
Stage 1	780	-	-	-	-	-
Stage 2	808	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	119	395	-	-	801	-
Stage 1	452	-	-	-	-	-
Stage 2	438	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	108	395	-	-	801	-
Mov Cap-2 Maneuver	108	-	-	-	-	-
Stage 1	452	-	-	-	-	-
Stage 2	399	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	58.7		0		0.6	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	197	801	-
HCM Lane V/C Ratio		-	-	0.712	0.054	-
HCM Control Delay (s)		-	-	58.7	9.8	0
HCM Lane LOS		-	-	F	A	A
HCM 95th \%tile Q(veh)		-	-	4.5	0.2	-

Intersection						
Int Delay, s/veh	3.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1	\mathbf{F}		$\mathbf{1}$	\mathbf{F}	
Traffic Vol, veh/h	45	48	87	777	495	12
Future Vol, veh/h	45	48	87	777	495	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	49	52	95	845	538	13

Intersection	
Intersection Delay, s/veh 146.2	
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	7	107	38	31	0	119	0	769	4	65	494	0
Future Vol, veh/h	7	107	38	31	0	119	0	769	4	65	494	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	116	41	34	0	129	0	836	4	71	537	0
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	2			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		2		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				2		1		
HCM Control Delay	16.9			14.4				240.7		86		
HCM LOS	C			B				F		F		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	5%	100%	0%	12%
Vol Thru, \%	99%	70%	0%	0%	88%
Vol Right, \%	1%	25%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	773	152	31	119	559
LT Vol	0	7	31	0	65
Through Vol	769	107	0	0	494
RT Vol	4	38	0	119	0
Lane Flow Rate	840	165	34	129	608
Geometry Grp	2	5	7	7	2
Degree of Util (X)	1.472	0.359	0.083	0.275	1.069
Departure Headway (Hd)	6.547	8.969	9.931	8.675	7.084
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	563	403	363	416	516
Service Time	4.547	6.969	7.631	6.375	5.084
HCM Lane VIC Ratio	1.492	0.409	0.094	0.31	1.178
HCM Control Delay	240.7	16.9	13.5	14.6	86
HCM Lane LOS	F	C	B	B	F
HCM 95th-tile Q	40	1.6	0.3	1.1	16.6

Intersection													
Int Delay, s/veh	0.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			¢			\uparrow			¢		
Traffic Vol, veh/h	13	356	69	76	136	19	81	748	377	62	457	47	
Future Vol, veh/h	13	356	69	76	136	19	81	748	377	62	457	47	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized		-	None	-	-	None	-	-	None	-	-	None	
Storage Length		-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#		0	-	-	0	-	-	0	-	-	0	-	
Grade, \%		0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%		2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	14	387	75	83	148	21	88	813	410	67	497	51	

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 49.1 |
| Intersection LOS | E |

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	个		*	
Traffic Vol, veh/h	101	670	180	15	61	13
Future Vol, veh/h	101	670	180	15	61	13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	110	728	196	16	66	14
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	62.7		10.2		10.4	
HCM LOS	F		B		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	13%	0%	82%
Vol Thru, \%	87%	92%	0%
Vol Right, \%	0%	8%	18%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	771	195	74
LT Vol	101	0	61
Through Vol	670	180	0
RT Vol	0	15	13
Lane Flow Rate	838	212	80
Geometry Grp	1	1	1
Degree of Util (X)	1.038	0.296	0.14
Departure Headway (Hd)	4.457	5.02	6.391
Convergence, Y/N	Yes	Yes	Yes
Cap	813	710	565
Service Time	2.501	3.09	4.391
HCM Lane V/C Ratio	1.031	0.299	0.142
HCM Control Delay	62.7	10.2	10.4
HCM Lane LOS	F	B	B
HCM 95th-tile Q	19.6	1.2	0.5

Intersection						
Int Delay, s/veh	1.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\neq
Traffic Vol, veh/h	28	21	766	88	39	743
Future Vol, veh/h	28	21	766	88	39	743
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	30	23	833	96	42	808

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1773	881	0	0	929	0
Stage 1	881	-	-	-	-	-
Stage 2	892	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	91	346	-		736	-
Stage 1	405	-	-	-	-	-
Stage 2	400	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	82	346	-	-	736	-
Mov Cap-2 Maneuver	82	-	-	-	-	-
Stage 1	405	-	-	-	-	-
Stage 2	358	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	55.6		0		0.5	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	122	736	-
HCM Lane V/C Ratio		-	-	0.437	0.058	-
HCM Control Delay (s)		-	-	55.6	10.2	0
HCM Lane LOS		-	-	F	B	A
HCM 95th \%tile Q(veh)		-	-	1.9	0.2	-

Intersection						

Intersection						
Int Delay, s/veh 566	566.7					
Movement E	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	${ }^{7}$	「
Traffic Vol, veh/h	23	378	623	47	308	454
Future Vol, veh/h	23	378	623	47	308	454
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Fr	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	125
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	25	411	677	51	335	493

Intersection						
Int Delay, s/veh	2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ri	$\mathbf{7}$		\uparrow	$\mathbf{7}$	
Traffic Vol, veh/h	22	14	118	809	577	40
Future Vol, veh/h	22	14	118	809	577	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	24	15	128	879	627	43

Intersection	
Intersection Delay, s/veh 156.6	
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	0	89	20	38	0	194	0	750	5	59	538	2
Future Vol, veh/h	0	89	20	38	0	194	0	750	5	59	538	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	97	22	41	0	211	0	815	5	64	585	2
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		2		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		2		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				2		1		
HCM Control Delay		16.4		17.1				245.3		124.3		
HCM LOS		C		C				F		F		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	0%	100%	0%	10%
Vol Thru, \%	99%	82%	0%	0%	90%
Vol Right, \%	1%	18%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	755	109	38	194	599
LT Vol	0	0	38	0	59
Through Vol	750	89	0	0	538
RT Vol	5	20	0	194	2
Lane Flow Rate	821	118	41	211	651
Geometry Grp	2	5	7	7	2
Degree of Util (X)	1.48	0.272	0.1	0.439	1.178
Departure Headway (Hd)	6.871	9.776	9.844	8.588	7.289
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	533	370	366	422	501
Service Time	4.871	7.776	7.544	6.288	5.289
HCM Lane V/C Ratio	1.54	0.319	0.112	0.5	1.299
HCM Control Delay	245.3	16.4	13.6	17.8	124.3
HCM Lane LOS	F	C	B	C	F
HCM 95th-tile Q	38.9	1.1	0.3	2.2	21.3

Intersection													
Int Delay, s/veh	0.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			\$			¢		
Traffic Vol, veh/h	32	301	76	188	276	20	12	715	254	67	474	63	
Future Vol, veh/h	32	301	76	188	276	20	12	715	254	67	474	63	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mumt Flow	35	327	83	204	300	22	13	777	276	73	515	68	

Intersection	
Intersection Delay, s/veh	24.3
Intersection LOS	C

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	个		*	
Traffic Vol, veh/h	101	500	432	30	52	22
Future Vol, veh/h	101	500	432	30	52	22
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	110	543	470	33	57	24
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	30.9		17.8		10.6	
HCM LOS	D		C		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	17%	0%	70%
Vol Thru, \%	83%	94%	0%
Vol Right, \%	0%	6%	30%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	601	462	74
LT Vol	101	0	52
Through Vol	500	432	0
RT Vol	0	30	22
Lane Flow Rate	653	502	80
Geometry Grp	1	1	1
Degree of Util (X)	0.868	0.679	0.146
Departure Headway (Hd)	4.782	4.87	6.515
Convergence, Y/N	Yes	Yes	Yes
Cap	751	733	553
Service Time	2.864	2.959	4.515
HCM Lane V/C Ratio	0.87	0.685	0.145
HCM Control Delay	30.9	17.8	10.6
HCM Lane LOS	D	C	B
HCM 95th-tile Q	10.6	5.4	0.5

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	1	26	506	106	22	638
Future Vol, veh/h	1	26	506	106	22	638
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	28	550	115	24	693

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1349	608	0	0	665	0
Stage 1	608	-	-	-	-	-
Stage 2	741	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	166	496	-	-	924	-
Stage 1	543	-	-	-	-	-
Stage 2	471	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	159	496	-	-	924	-
Mov Cap-2 Maneuver	159	-	-	-	-	-
Stage 1	543	-	-	-	-	-
Stage 2	451	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.4		0		0.3	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	460	924	-
HCM Lane V/C Ratio		-	-	0.064	0.026	-
HCM Control Delay (s)		-	-	13.4	9	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0.1	-

Intersection						
Int Delay, s/veh	5.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	50	85	673	94	40	669
Future Vol, veh/h	50	85	673	94	40	669
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	54	92	732	102	43	727

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1596	783	0	0	834	0
Stage 1	783	-	-	-	-	-
Stage 2	813	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	117	394	-	-	799	-
Stage 1	450	-	-	-	-	-
Stage 2	436	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	106	394	-	-	799	-
Mov Cap-2 Maneuver	106	-	-	-	-	-
Stage 1	450	-	-	-	-	-
Stage 2	397	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	63.7		0		0.6	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	196	799	-
HCM Lane V/C Ratio		-	-	0.749	0.054	-
HCM Control Delay (s)		-	-	63.7	9.8	0
HCM Lane LOS		-	-	F	A	A
HCM 95th \%tile Q(veh)		-	-	5	0.2	-

Intersection						
Int Delay, s/veh 49,	490.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			\uparrow	\%	F
Traffic Vol, veh/h	24	459	613	16	287	550
Future Vol, veh/h	24	459	613	16	287	550
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	125
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	26	499	666	17	312	598

Intersection						
Int Delay, s/veh	3.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T	$\mathbf{7}$		\uparrow	$\mathbf{7}$	
Traffic Vol, veh/h	45	48	93	792	509	12
Future Vol, veh/h	45	48	93	792	509	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	49	52	101	861	553	13

Intersection	
Intersection Delay, s/veh 161.7	
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	7	116	38	34	0	132	0	777	5	73	500	0
Future Vol, veh/h	7	116	38	34	0	132	0	777	5	73	500	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	126	41	37	0	143	0	845	5	79	543	0
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	2			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		2		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				2		1		
HCM Control Delay	18			15.2				264.3		104.6		
HCM LOS	C			C				F		F		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	4%	100%	0%	13%
Vol Thru, \%	99%	72%	0%	0%	87%
Vol Right, \%	1%	24%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	782	161	34	132	573
LT Vol	0	7	34	0	73
Through Vol	777	116	0	0	500
RT Vol	5	38	0	132	0
Lane Flow Rate	850	175	37	143	623
Geometry Grp	2	5	7	7	2
Degree of Util (X)	1.525	0.386	0.092	0.307	1.122
Departure Headway (Hd)	6.776	9.28	10.156	8.898	7.336
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	544	390	355	406	498
Service Time	4.776	7.28	7.856	6.598	5.336
HCM Lane V/C Ratio	1.563	0.449	0.104	0.352	1.251
HCM Control Delay	264.3	18	13.9	15.5	104.6
HCM Lane LOS	F	C	B	C	F
HCM 95th-tile Q	42.1	1.8	0.3	1.3	18.6

Intersection
Intersection Delay, s/veh $\quad 64.2$
Intersection LOS

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		*	
Traffic Vol, veh/h	106	704	205	17	66	13
Future Vol, veh/h	106	704	205	17	66	13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	115	765	223	18	72	14
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	84		10.8		10.7	
HCM LOS	F		B		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	13%	0%	84%
Vol Thru, \%	87%	92%	0%
Vol Right, \%	0%	8%	16%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	810	222	79
LT Vol	106	0	66
Through Vol	704	205	0
RT Vol	0	17	13
Lane Flow Rate	880	241	86
Geometry Grp	1	1	1
Degree of Util (X)	1.104	0.335	0.15
Departure Headway (Hd)	4.516	5.173	6.562
Convergence, Y/N	Yes	Yes	Yes
Cap	801	700	550
Service Time	2.557	3.173	4.562
HCM Lane V/C Ratio	1.099	0.344	0.156
HCM Control Delay	84	10.8	10.7
HCM Lane LOS	F	B	B
HCM 95th-tile Q	23.9	1.5	0.5

Intersection						
Int Delay, s/veh	1.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1			\neq
Traffic Vol, veh/h	28	21	771	89	39	748
Future Vol, veh/h	28	21	771	89	39	748
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	30	23	838	97	42	813

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1784	887	0	0	935	0
Stage 1	887	-	-	-	-	-
Stage 2	897	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	90	343	-		732	-
Stage 1	402	-	-	-	-	-
Stage 2	398	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	81	343	-	-	732	-
Mov Cap-2 Maneuver	81	-	-	-	-	-
Stage 1	402	-	-	-	-	-
Stage 2	356	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	57		0		0.5	
HCM LOS	F					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	120	732	-
HCM Lane V/C Ratio		-	-	0.444	0.058	-
HCM Control Delay (s)		-	-	57	10.2	0
HCM Lane LOS		-	-	F	B	A
HCM 95th \%tile Q(veh)		-	-	1.9	0.2	-

Intersection						
Int Delay, s/veh	31.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			\neq
Traffic Vol, veh/h	71	110	837	34	23	888
Future Vol, veh/h	71	110	837	34	23	888
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	77	120	910	37	25	965

Intersection						
Int Delay, s/veh	274.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		1			\neq
Traffic Vol, veh/h	159	175	671	133	186	625
Future Vol, veh/h	159	175	671	133	186	625
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	173	190	729	145	202	679

Intersection						
Int Delay, s/veh	566.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			-	r	$\mathbf{7}$
Traffic Vol, veh/h	23	378	623	47	308	454
Future Vol, veh/h	23	378	623	47	308	454
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	125
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	25	411	677	51	335	493

Intersection						
Int Delay, s/veh	2.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	i	$\mathbf{7}$		\mathbf{T}	\mathbf{b}	
Traffic Vol, veh/h	22	14	124	824	591	40
Future Vol, veh/h	22	14	124	824	591	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	65	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	24	15	135	896	642	43

Intersection	
Intersection Delay, s/veh 172.5	
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*		${ }^{*}$		「		\uparrow			\uparrow	
Traffic Vol, veh/h	0	97	20	41	0	206	0	758	6	67	544	2
Future Vol, veh/h	0	97	20	41	0	206	0	758	6	67	544	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	105	22	45	0	224	0	824	7	73	591	2
Number of Lanes	0	1	0	1	0	1	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		2		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		2		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				2		1		
HCM Control Delay		17.3		18.2				267.6		145.7		
HCM LOS		C		C				F		F		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	0%	0%	100%	0%	11%
Vol Thru, \%	99%	83%	0%	0%	89%
Vol Right, \%	1%	17%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	764	117	41	206	613
LT Vol	0	0	41	0	67
Through Vol	758	97	0	0	544
RT Vol	6	20	0	206	2
Lane Flow Rate	830	127	45	224	666
Geometry Grp	2	5	7	7	2
Degree of Util (X)	1.53	0.296	0.108	0.469	1.232
Departure Headway (Hd)	7.09	10.101	10.047	8.789	7.519
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	523	359	359	412	486
Service Time	5.09	8.101	7.747	6.489	5.519
HCM Lane V/C Ratio	1.587	0.354	0.125	0.544	1.37
HCM Control Delay	267.6	17.3	14	19	145.7
HCM Lane LOS	F	C	B	C	F
HCM 95th-tile Q	40.8	1.2	0.4	2.4	23.4

Intersection	
Intersection Delay, s/veh	31.2
Intersection LOS	D

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	F		M	
Traffic Vol, veh/h	106	533	456	31	57	23
Future Vol, veh/h	106	533	456	31	57	23
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	115	579	496	34	62	25
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	41.3		21.2		11	
HCM LOS	E		C		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	17%	0%	71%
Vol Thru, \%	83%	94%	0%
Vol Right, \%	0%	6%	29%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	639	487	80
LT Vol	106	0	57
Through Vol	533	456	0
RT Vol	0	31	23
Lane Flow Rate	695	529	87
Geometry Grp	1	1	1
Degree of Util (X)	0.935	0.744	0.162
Departure Headway (Hd)	4.958	5.058	6.687
Convergence, Y/N	Yes	Yes	Yes
Cap	736	720	538
Service Time	2.958	3.058	4.708
HCM Lane V/C Ratio	0.944	0.735	0.162
HCM Control Delay	41.3	21.2	11
HCM Lane LOS	E	C	B
HCM 95th-tile Q	13.3	6.7	0.6

Appendix H: Project Internalization

FEHRやPEERS

NCHRP 8-51 Internal Trip Capture Estimation Tool				
Project Name:		Organization:		
Project Location:	670 Mesquit		Performed By:	
Scenario Description:	Option 1	Date:		
Analysis Year:		Checked By:		
Analysis Period:	AM Street Peak Hour	Date:		

Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)						
Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips		
Land Use	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office				701	603	98
Retail				379	223	156
Restaurant				765	420	345
Cinema/Entertainment				0		
Residential				84	17	67
Hotel				111	65	46
All Other Land Uses ${ }^{2}$				165	109	56
Total				2205	1437	768

Table 2-A: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ.	\% Transit	\% Non-Motorized	Veh. Occ.	\% Transit	\% Non-Motorized
Office	1.10			1.10		
Retail	1.70			1.70		
Restaurant	1.70			1.70		
Cinema/Entertainment						
Residential	1.40			1.40		
Hotel	1.53			1.53		
All Other Land Uses ${ }^{2}$	1.00			1.00		

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)						
	Destination (To)					
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office						
Retail						
Restaurant						
Cinema/Entertainment						
Residential						
Hotel						

Table 4-A: Internal Person-Trip Origin-Destination Matrix*						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		30	68	0	0	0
Retail	27		34	0	0	0
Restaurant	93	30		0	1	4
Cinema/Entertainment	0	0	0		0	0
Residential	2	1	19	0		0
Hotel	20	10	6	0	0	

Table 5-A: Computations Summary			
	Total	Entering	Exiting
All Person-Trips	3,168	1,988	1,180
Internal Capture Percentage	22%	17%	29%
External Vehicle-Trips 3	1,715	1,187	528
External Transit-Trips ${ }^{4}$	0	0	0
External Non-Motorized Trips 4	0	0	0

Table 6-A: Internal Trip Capture Percentages by Land Use		
Land Use	Entering Trips	Exiting Trips
Office	21%	91%
Retail	19%	23%
Restaurant	18%	22%
Cinema/Entertainment	N/A	N/A
Residential	4%	23%
Hotel	4%	51%

[^16]
${ }^{4}$ Person-Trips

*Indicates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas Transportation Institute

Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)						
Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips		
Land Use	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office				792	135	657
Retail				973	495	478
Restaurant				1023	645	378
Cinema/Entertainment				0		
Residential				94	63	31
Hotel				142	72	70
All Other Land Uses ${ }^{2}$				216	102	114
Total				3240	1512	1728

Table 2-P: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ.	\% Transit	\% Non-Motorized	Veh. Occ.	\% Transit	\% Non-Motorized
Office	1.10			1.10		
Retail	1.70			1.70		
Restaurant	1.70			1.70		
Cinema/Entertainment						
Residential	1.40			1.40		
Hotel	1.53			1.53		
All Other Land Uses ${ }^{2}$	1.00			1.00		

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		145	145		290	
Retail						
Restaurant					290	
Cinema/Entertainment						
Residential		290	290			
Hotel						

Table 4-P: Internal Person-Trip Origin-Destination Matrix*						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		67	22	0	4	0
Retail	16		236	0	40	19
Restaurant	19	264		0	14	45
Cinema/Entertainment	0	0	0		0	0
Residential	2	18	9	0		1
Hotel	0	17	55	0	0	

Table 5-P: Computations Summary				Table 6-P: Internal Trip Capture Percentages by Land Use		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	4,831	2,388	2,443	Office	25\%	13\%
Internal Capture Percentage	35\%	36\%	35\%	Retail	43\%	38\%
				Restaurant	29\%	53\%
External Vehicle-Trips ${ }^{3}$	2,181	990	1,191	Cinema/Entertainment	N/A	N/A
External Transit-Trips ${ }^{4}$	0	0	0	Residential	66\%	70\%
External Non-Motorized Trips ${ }^{4}$	0	0	0	Hotel	59\%	67\%

[^17]
${ }^{4}$ Person-Trips

*Indicates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas Transportation Institute

Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)						
Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips		
Land Use	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office				701	603	98
Retail				379	223	156
Restaurant				765	420	345
Cinema/Entertainment				0		
Residential				84	17	67
Hotel				111	65	46
All Other Land Uses ${ }^{2}$				173	113	60
Total				2213	1441	772

Table 2-A: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ.	\% Transit	\% Non-Motorized	Veh. Occ.	\% Transit	\% Non-Motorized
Office	1.10			1.10		
Retail	1.70			1.70		
Restaurant	1.70			1.70		
Cinema/Entertainment						
Residential	1.40			1.40		
Hotel	1.53			1.53		
All Other Land Uses ${ }^{2}$	1.00			1.00		

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office						
Retail						
Restaurant						
Cinema/Entertainment						
Residential						
Hotel						

Table 4-A: Internal Person-Trip Origin-Destination Matrix*						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		30	68	0	0	0
Retail	27		34	0	0	0
Restaurant	93	30		0	1	4
Cinema/Entertainment	0	0	0		0	0
Residential	2	1	19	0		0
Hotel	20	10	6	0	0	

Table 5-A: Computations Summary			
	Total	Entering	Exiting
All Person-Trips	3,176	1,992	1,184
Internal Capture Percentage	22%	17%	29%
External Vehicle-Trips 3	1,723	1,191	532
External Transit-Trips 4	0	0	0
External Non-Motorized Trips 4	0	0	0

Table 6-A: Internal Trip Capture Percentages by Land Use		
Land Use	Entering Trips	Exiting Trips
Office	21%	91%
Retail	19%	23%
Restaurant	18%	22%
Cinema/Entertainment	N/A	N/A
Residential	4%	23%
Hotel	4%	51%

[^18]
${ }^{4}$ Person-Trips

*Indicates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas Transportation Institute

NCHRP 8-51 Internal Trip Capture Estimation Tool				
Project Name:		Organization:		
Project Location:	670 Mesquit		Performed By:	
Scenario Description:	Option 2	Date:		
Analysis Year:		Checked By:		
Analysis Period:	PM Street Peak Hour	Date:		

Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)						
Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips		
Land Use	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office				792	135	657
Retail				973	495	478
Restaurant				1023	645	378
Cinema/Entertainment				0		
Residential				94	63	31
Hotel				142	72	70
All Other Land Uses ${ }^{2}$				221	105	116
Total				3245	1515	1730

Table 2-P: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ.	\% Transit	\% Non-Motorized	Veh. Occ.	\% Transit	\% Non-Motorized
Office	1.10			1.10		
Retail	1.70			1.70		
Restaurant	1.70			1.70		
Cinema/Entertainment						
Residential	1.40			1.40		
Hotel	1.53			1.53		
All Other Land Uses ${ }^{2}$	1.00			1.00		

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		145	145		290	
Retail						
Restaurant					290	
Cinema/Entertainment						
Residential		290	290			
Hotel						

Table 4-P: Internal Person-Trip Origin-Destination Matrix*						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		67	22	0	4	0
Retail	16		236	0	40	19
Restaurant	19	264		0	14	45
Cinema/Entertainment	0	0	0		0	0
Residential	2	18	9	0		1
Hotel	0	17	55	0	0	

Table 5-P: Computations Summary			
	Total	Entering	Exiting
All Person-Trips	4,836	2,391	2,445
Internal Capture Percentage	35%	35%	35%
External Vehicle-Trips 3	2,186	993	1,193
External Transit-Trips 4	0	0	0
External Non-Motorized Trips 4	0	0	0

Table 6-P: Internal Trip Capture Percentages by Land Use		
Land Use	Entering Trips	Exiting Trips
Office	25%	13%
Retail	43%	38%
Restaurant	29%	53%
Cinema/Entertainment	N/A	N/A
Residential	66%	70%
Hotel	59%	67%

${ }^{1}$ Land Use Codes (LUCs) from Trip Generation Informational Report, published by the Institute of Transportation Engineers.
${ }^{2}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
${ }^{3}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

${ }^{4}$ Person-Trips

*Indicates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas Transportation Institute

Appendix I:

Detailed Project Trip Generation

FehrłPeers

TABLE 1APROPOSED PROJECT OPTION 1 TRIP GENERATION670 MESQUIT PROJECT														
Land Use	ITE Land Use Code	Size	Trip Generation Rates [a]						Estimated Trip Generation					
			AM Peak Hour			PM Peak Hour			AM Peak Hour Trips			PM Peak Hour Trips		
			Rate	In\%	Out\%	Rate	In\%	Out\%	In	Out	Total	In	Out	Total
PROPOSED PROJECT														
Creative Office	710	944.055 ksf	[b]	86\%	14\%	[b]	17\%	83\%	603	98	701	135	657	792
Internal Capture [c]				21\%	91\%		25\%	13\%	(129)	(89)	(218)	(34)	(85)	(119)
Transit, Bike, Ped Adjustment [d]														
Net External Office (before TNC adjustment)									474	9	483	101	572	673
Added TNC - from transit			2.5\%			2.5\%			12	12	24	17	17	34
Added TNC - from vehicles			2.5\%			2.5\%			0	12	12	14	3	17
TNCs already in vehicle trip generation									12	0	12	,	14	17
Total TNC									24	24	48	34	34	68
Non-TNC									462		471	98	558	656
Total Vehicle									486	33	519	132	592	724
Quality Restaurant	931	44.788 ksf	0.73	50\%	50\%	7.8	67\%	33\%	17	16	33	234	115	349
Internal Capture [c]				18\%	22\%		29\%	53\%	(3)	(3)	${ }^{(6)}$	(69)	(61)	(130)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(4)	(3)	(7)	(41)	(14)	(55)
Net Driveway Trips (before TNC adjustment)									10	10	20	124	40	164
Added TNC - from transit			2.5\%			2.5\%			1	1	2	4	4	8
Added TNC - from vehicles			2.5\%			2.5\%			0	0	0	1	3	4
TNCs already in vehicle trip generation									0	0	0	3	1	4
Total TNC									1	1	2	8	8	16
Non-TNC (before pass-by adjustment)									10	10	20	121	39	160
Total Vehicle									11	11	22	129	47	176
Pass-by adjustment [e]			10\%			10\%			(1)	(1)	(2)	(12)	(3)	(15)
Non-TNC									9	9	18	109	36	145
High-Turnover Restaurant	932	44.788 ksf	9.94	55\%	45\%	9.77	62\%	38\%	245	200	445	272	166	438
Internal Capture [c]				18\%	22\%		29\%	53\%	(44)	(44)	(88)	(80)	(88)	(168)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(50)	(39)	(89)	(48)	(20)	(68)
Net Driveway Trips (before TNC adjustment)									151	117	268	144	58	202
Added TNC - from transit			2.5\%			2.5\%			7	7	14	5	5	10
Added TNC - from vehicles			2.5\%			2.5\%			3	4	7	1	4	5
TNCs already in vehicle trip generation									4	3	7	4	1	5
Total TNC									14	14	28	10	10	20
Non-TNC (before pass-by adjustment)									147	114	261	140	57	197
Total Vehicle									161	128	289	150	67	217
Pass-by adjustment [e]			20\%			20\%			(29)	(122)	(51)	(28)	(11)	(39)
Non-tNC									118	92	210	112	46	158
Hotel	310	236 rooms	0.47	59\%	41\%	0.6	51\%	49\%	65	46	111	72	70	142
Internal Capture [c]				4\%	51\%		59\%	67\%	(3)	(24)	(27)	(43)	(47)	(90)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(16)	(6)	(22)	(7)	(6)	(13)
Net External Hotel (before TNC adjustment)									46	16	62	22	17	39
Added TNC - from transit			2.5\%			2.5\%			2	2	4	1	1	2
Added TNC - from vehicles			2.5\%			2.5\%			0	1	1	0	1	1
TNCs already in vehicle trip generation									1	0	1	1	0	
Total TNC									3	3	6	2	2	4
Non-TNC									45	16	61	21	17	38
Total Vehicle									48	19	67	23	19	42
Residential*	222	258 DU	0.23	12\%	88\%	0.30	70\%	30\%	7	52	59	54	23	77
Internal Capture [c]				4\%	23\%		66\%	70\%	\bigcirc	(12)	(12)	(36)	(16)	(52)
Transit, Bike, Ped Adjustment [d]														
Net External Residential (before TNC adjustment)									7	40	47	18	7	25
Added TNC - from transit			2.5\%			2.5\%			1	1	2	1	1	2
Added TNC - from vehicles			2.5\%			2.5\%			1	0	1	0	0	0
TNCs already in vehicle trip generation									0	1	1	0	0	0
Total TNC									2	2	4	1	1	2
Non-TNC									7	39	46	18	7	25
Total Vehicle									9	41	50	19	8	27
Affordable Housing	(f)	50 DU	0.5	40\%	60\%	0.34	55\%	45\%	10	15	25	9	8	17
Internal Capture [c]				4\%	23\%		66\%	70\%	0	(4)	(4)	(6)	(6)	(12)
Net External Affordable Housing									10	11	21	3	2	5
Added TNC - from transit			2.5\%			2.5\%			1	1	2	0	0	0
Added TNC - from vehicles			2.5\%			2.5\%			0	0	0	0	0	0
TNCs already in vehicle trip generation									0	0	0	0	0	-
Total TNC									,	1	2	0	0	0
Non-TNC									10	11	21	3	2	5
Total Vehicle									11	12	23	3	2	5
Studio, Event, Gallery [q]	495	93.617 ksf	1.76	66\%	34\%	2.31	47\%	53\%	109	56	165	102	114	216
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(27)	(14)	(41)	(26)	(29)	(55)
Net External Gallery (before TNC adjustment)									82	42	124	76	85	161
Added TNC - from transit			2.5\%			2.5\%			3	3	6	4	4	8
Added TNC - from vehicles			2.5\%			2.5\%			1	2	3	2	2	4
TNCs already in vehicle trip generation									2	1	3		2	4
Total TNC									6		12	8	8	16
Non-TNC									80	41	121	74	83	157
Total Vehicle									86	47	133	82	91	173
Gym (Health / Fitness Club)	492	62.148 ksf	1.31	51\%	49\%	3.45	57\%	43\%	41	40	81	122	92	214
Internal Capture [c]				19\%	23\%		43\%	38\%	(8)	(9)	(17)	(53)	(35)	(88)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(8)	(8)	(16)	(17)	(14)	(31)
Net Driveway Trips (before TNC adjustment)									25	23	48	52	43	95
Added TNC - from transit			2.5\%			2.5\%			1	1	2		2	4
Added TNC - from vehicles			2.5\%			2.5\%			1	1	2	1	1	2
TNCs already in vehicle trip generation									1	1	2	1	1	2
Total TNC									3		6		4	8
Non-TNC (before pass-by adjustment)									24	22	46	51	42	93
Total Vehicle									27	25	52	55	46	101
Pass-by adjustment [e]			20\%			20\%			(4)	(4)	(8)	(10)	(8)	(18)
Non-TNC									20	18	38	41	34	75

\％	\％	克	真	3	＊	แّ	\％	$\stackrel{\sim}{\square}$	z		
苞	筧	N	$\stackrel{\square}{\square}$		箒	（1）	薆		鹤	管	끙
			$\frac{1}{2}$				营 筄濰 \because 蹋受 炎啰				
 	 	 		$\exists-\circ \circ-\exists \mathbb{E} \overrightarrow{\mathrm{r}}$ NNOON～匡			 뭉	 மE こ あ®N～NOON～日す山	岀 \circ ペ 		
 	 	 	 	～○○○○～の い。○○○u苜	$\vec{\omega} \vec{\infty}-\circ \circ-\vec{\infty}$ 匿告 $\infty \nu-\circ \circ-v$ 佥～ NGNOON N N	 いこ～○ーーコ回要ず 	 致呬～	 	 		

TABLE 1APROPOSED PROJECT TRIP GENERATION - WITH TDM ADJUSTMENT670 MESQUIT PROJECT														
Land Use	ITE Land Use Code	Size	Trip Generation Rates [a]						Estimated Trip Generation					
			AM Peak Hour			PM Peak Hour			AM Peak Hour Trips			PM Peak Hour Trips		
			Rate	In\%	Out\%	Rate	In\%	Out\%	In	Out	Total	In	Out	Total
PROPOSED PROJECT														
Creative Office	710	944.055 ksf	[b]	86\%	14\%	[b]	17\%	83\%	603	98	701	135	657	792
Internal Capture [c]					91\%		25\%	13\%	(129)	(89)	(218)	(34)	(85)	(119)
Transit, Bike, Ped Adjustment [d]														
TDM Adjustment Il			18\%			18\%			(85)	(1)	(86)	(18)	(102)	(120)
Net External Office (before TNC adjustment)									389	8	397	83	470	553
Added TNC - from transit			2.5\%			2.5\%			10	10	20	14	14	28
Added TNC - from vehicles			2.5\%			2.5\%			0	10	10	12	2	14
TNCS already in vehicle trip generation									10	0	10	2	12	14
Total TNC									20	20	40	28	28	56
Non-TNC									379	8	387	81	458	539
Total Vehicle									399	28	427	109	486	595
Quality Restaurant	931	44.788 ksf	0.73	50\%	50\%	7.8	67\%	33\%	17	16	33	234	115	349
Internal Capture [c]				18\%	22\%		29\%	53\%	(3)	(3)	(6)	(69)	(61)	(130)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(4)	(3)	(7)	(41)	(14)	(55)
Net Driveway Trips (before TNC adjustment)									10	10	20	124	40	164
Added TNC - from transit			2.5\%			2.5\%			1	1	2	4	4	8
Added TNC - from vehicles			2.5\%			2.5\%			0	0	0	1	3	4
TNCs already in vehicle trip generation									0	0	0	3	1	4
Total TNC									1	1	2	8	8	16
Non-TNC (before pass-by adjustment)									10	10	20	121	39	160
Total Vehicle									11	11	22	129	47	176
Pass-by adjustment [e]			10\%			10\%			(1)	(1)	(2)	(12)	(3)	(15)
Non-TNC									,	析	18	109	36	145
High-Turnover Restaurant	932	44.788 ksf	9.94	55\%	45\%	9.77	62\%	38\%	245	200	445	272	166	438
Internal Capture [c]				18\%	22\%		29\%	53\%	(44)	(44)	(88)	(80)	(88)	(168)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(50)	(39)	(89)	(48)	(20)	(68)
Net Driveway Trips (before TNC adjustment)									151	117	268	144	58	202
Added TNC - from transit			2.5\%			2.5\%			7	7	14	5	5	10
Added TNC - from vehicles			2.5\%			2.5\%			3	4	7	1	4	5
TNCs already in vehicle trip generation									4	3	7	4	1	5
Total TNC									14	14	28	10	10	20
Non-TNC (before pass-by adjustment)									147	114	261	140	57	197
Total Vehicle									161	128	289	150	67	217
Pass-by adjustment [e]			20\%			20\%			(29)	(122)	(51)	(28)	(11)	(39)
Non-TNC									118	92	210	112	46	158
Hotel	310	236 rooms	0.47	59\%	41\%	0.6	51\%	49\%	65	46	111	72	70	142
Internal Capture [c]				4\%	51\%		59\%	67\%	(3)	(24)	(27)	(43)	(47)	(90)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(16)	(6)	(22)	(7)	(6)	(13)
Net External Hotel (before TNC adjustment)									46	16	62	22	17	39
Added TNC - from transit			2.5\%			2.5\%				2	4	1	1	2
Added TNC - from vehicles			2.5\%			2.5\%			0	1	1	0	1	1
TNCs already in vehicle trip generation									1	0	1	1	0	1
Total TNC									3	3	6	2	2	
Non-TNC									45	16	61	21	17	38
Total Vehicle									48	19	67	23	19	42
Residential ${ }^{\text {a }}$	222	258 DU	0.23	12\%	88\%	0.30	70\%	30\%	7	52	59	54	23	77
Internal Capture [c]				4\%	23\%		66\%	70\%	\bigcirc	(12)	(12)	(36)	(16)	(52)
Transit, Bike, Ped Adjustment [d]														
TDM Adjustment [l]			18\%			18\%			(1)	(7)	(8)	(3)	(1)	(4)
Net External Residential (before TNC adjustment)									6	33	39	15	6	21
Added TNC - from transit			2.5\%			2.5\%			1	1	2	1	1	2
Added TNC - from vehicles			2.5\%			2.5\%			1	0	1	0	0	0
TNCs already in vehicle trip generation									0	1	1	0	0	
Total TNC									2	2	4	1	1	2
Non-twc									6	32	38	15	6	21
Total Vehicle									8	34	42	16	7	23
Affordable Housing	[f]	50 DU	0.5	40\%		0.34	55\%	45\%	10	15	25	(6)	8	17
Internal Capture [c]				4\%	23\%		66\%	70\%	0	(4)	(4)	(6)	(6)	(12)
TDM Adjustment [l]			18\%			18\%			(2)	(2)	(4)	(1)	0	(1)
Net External Affordable Housing									8	9	17	2	2	4
Added TNC - from transit			2.5\%			2.5\%			0	0	0	0	0	
Added TNC - from vehicles			2.5\%			2.5\%			0	0	0	0	0	0
Tota TNC TNCs already in vehicle trip generation									0	0	0	0	0	0
Total TNC									0	0	17	0	0	0
Non-twc									8	9	17	2	2	4
Total Vehicle									8	9	17	2	2	4
Studio, Event, Gallery [g]	495	93.617 ksf	1.76	66\%	34\%	2.31	47\%	53\%	109	56	165	102	114	216
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(27)	(14)	(41)	(26)	(29)	(55)
Net External Gallery (before TNC adjustment)									82	42	124	76	85	161
Added TNC - from transit			2.5\%			2.5\%			3		6	4	4	8
Added TNC - from vehicles			2.5\%			2.5\%			1	2	3	2	2	4
TNCS already in vehicle trip generation									2	1	3	2	2	4
Total TNC										6	12	8	8	16
Non-TNC									80	41	121	74	83	157
Total Vehicle									86	47	133	82	91	173
Gym (Health / Fitness Club)	492	62.148 ksf	1.31	51\%	49\%	3.45	57\%	43\%	41	40	81	122	92	214
Internal Capture [c]				19\%	23\%		43\%	38\%	(8)	(9)	(17)	(53)	(35)	(88)
Transit, Bike, Ped Adjustment [d]			25\%			25\%			(8)	(8)	(16)	(17)	(14)	(31)
Net Driveway Trips (before TNC adjustment)									25	23	48	52	43	95
Added TNC - from transit			2.5\%			2.5\%			1	1	2	${ }^{2}$	2	4
Added TNC - from vehicles			2.5\%			2.5\%			1	1	2	1	1	2
TNCs already in vehicle trip generation									1	1	2	1	1	2
Total TNC												4	4	8
Non-TNC (before pass-by adjustment)									24	22	46	51	42	93
Total Vehicle									27	25	52	55	46	101
Pass-by adjustment [e]			20\%			20\%			(4)	(4)	(8)	(10)	(8)	(18)
Non-TNC									20	18	38	41	34	75

Appendix J: Driveway LOS

FehrłPeers

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 49.1 |
| Intersection LOS | E |

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		*	
Traffic Vol, veh/h	101	670	180	15	61	13
Future Vol, veh/h	101	670	180	15	61	13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	110	728	196	16	66	14
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	62.7		10.2		10.4	
HCM LOS	F		B		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	13%	0%	82%
Vol Thru, \%	87%	92%	0%
Vol Right, \%	0%	8%	18%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	771	195	74
LT Vol	101	0	61
Through Vol	670	180	0
RT Vol	0	15	13
Lane Flow Rate	838	212	80
Geometry Grp	1	1	1
Degree of Util (X)	1.038	0.296	0.14
Departure Headway (Hd)	4.457	5.02	6.391
Convergence, Y/N	Yes	Yes	Yes
Cap	813	710	565
Service Time	2.501	3.09	4.391
HCM Lane V/C Ratio	1.031	0.299	0.142
HCM Control Delay	62.7	10.2	10.4
HCM Lane LOS	F	B	B
HCM 95th-tile Q	19.6	1.2	0.5

Intersection						
Int Delay, s/veh	3.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			\uparrow
Traffic Vol, veh/h	0	61	84	34	104	70
Future Vol, veh/h	0	61	84	34	104	70
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	66	91	37	113	76

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	412	110	0	0	128	0
Stage 1	110	-	-	-	-	-
Stage 2	302	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	596	943	-	-	1458	-
Stage 1	915	-	-	-	-	-
Stage 2	750	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	548	943	-	-	1458	-
Mov Cap-2 Maneuver	548	-	-	-	-	-
Stage 1	915	-	-	-	-	-
Stage 2	689	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.1		0		4.6	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	943	1458	-
HCM Lane V/C Ratio		-	-	0.07	0.078	-
HCM Control Delay (s)		-	-	9.1	7.7	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0.3	-

Intersection
Intersection Delay, s/veh
Intersection LOS 24.2

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		M	
Traffic Vol, veh/h	101	500	432	30	52	21
Future Vol, veh/h	101	500	432	30	52	21
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	110	543	470	33	57	23
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	30.8		17.8		10.6	
HCM LOS	D		C		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	17%	0%	71%
Vol Thru, \%	83%	94%	0%
Vol Right, \%	0%	6%	29%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	601	462	73
LT Vol	101	0	52
Through Vol	500	432	0
RT Vol	0	30	21
Lane Flow Rate	653	502	79
Geometry Grp	1	1	1
Degree of Util (X)	0.867	0.679	0.144
Departure Headway (Hd)	4.778	4.866	6.521
Convergence, Y/N	Yes	Yes	Yes
Cap	751	733	553
Service Time	2.859	2.954	4.521
HCM Lane V/C Ratio	0.87	0.685	0.143
HCM Control Delay	30.8	17.8	10.6
HCM Lane LOS	D	C	B
HCM 95th-tile Q	10.5	5.4	0.5

Intersection						
Int Delay, s/veh	4.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			\uparrow
Traffic Vol, veh/h	0	119	108	23	95	56
Future Vol, veh/h	0	119	108	23	95	56
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	129	117	25	103	61

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	397	130	0	0	142	0
Stage 1	130	-	-	-	-	-
Stage 2	267	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	608	920	-	-	1441	-
Stage 1	896	-	-	-	-	-
Stage 2	778	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	563	920	-	-	1441	-
Mov Cap-2 Maneuver	563	-	-	-	-	-
Stage 1	896	-	-	-	-	-
Stage 2	720	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.6		0		4.8	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	920	1441	-
HCM Lane V/C Ratio		-	-	0.141	0.072	-
HCM Control Delay (s)		-	-	9.6	7.7	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.5	0.2	-

Intersection						

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 64.2 |
| Intersection LOS | F |

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		* ${ }^{\text {F }}$	
Traffic Vol, veh/h	106	704	205	17	66	13
Future Vol, veh/h	106	704	205	17	66	13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	115	765	223	18	72	14
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	84		10.8		10.7	
HCM LOS	F		B		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	13%	0%	84%
Vol Thru, \%	87%	92%	0%
Vol Right, \%	0%	8%	16%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	810	222	79
LT Vol	106	0	66
Through Vol	704	205	0
RT Vol	0	17	13
Lane Flow Rate	880	241	86
Geometry Grp	1	1	1
Degree of Util (X)	1.104	0.335	0.15
Departure Headway (Hd)	4.516	5.173	6.562
Convergence, Y/N	Yes	Yes	Yes
Cap	801	700	550
Service Time	2.557	3.173	4.562
HCM Lane V/C Ratio	1.099	0.344	0.156
HCM Control Delay	84	10.8	10.7
HCM Lane LOS	F	B	B
HCM 95th-tile Q	23.9	1.5	0.5

Intersection						
Int Delay, s/veh	4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\neq
Traffic Vol, veh/h	0	72	90	35	116	76
Future Vol, veh/h	0	72	90	35	116	76
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	78	98	38	126	83

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	452	117	0	0	136	0
Stage 1	117	-	-	-	-	-
Stage 2	335	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	565	935	-	-	1448	-
Stage 1	908	-	-	-	-	-
Stage 2	725	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	514	935	-	-	1448	-
Mov Cap-2 Maneuver	514	-	-	-	-	-
Stage 1	908	-	-	-	-	-
Stage 2	659	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.2		0		4.7	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	935	1448	-
HCM Lane V/C Ratio		-	-	0.084	0.087	-
HCM Control Delay (s)		-	-	9.2	7.7	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.3	0.3	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 31.1 |
| Intersection LOS | D |

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		*	
Traffic Vol, veh/h	106	533	456	31	57	22
Future Vol, veh/h	106	533	456	31	57	22
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	115	579	496	34	62	24
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	41.1		21.2		11	
HCM LOS	E		C		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	17%	0%	72%
Vol Thru, \%	83%	94%	0%
Vol Right, \%	0%	6%	28%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	639	487	79
LT Vol	106	0	57
Through Vol	533	456	0
RT Vol	0	31	22
Lane Flow Rate	695	529	86
Geometry Grp	1	1	1
Degree of Util (X)	0.934	0.743	0.16
Departure Headway (Hd)	4.953	5.053	6.693
Convergence, Y/N	Yes	Yes	Yes
Cap	736	720	538
Service Time	2.953	3.053	4.712
HCM Lane V/C Ratio	0.944	0.735	0.16
HCM Control Delay	41.1	21.2	11
HCM Lane LOS	E	C	B
HCM 95th-tile Q	13.2	6.7	0.6

Intersection						
Int Delay, s/veh	4.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			\uparrow
Traffic Vol, veh/h	0	129	113	24	107	61
Future Vol, veh/h	0	129	113	24	107	61
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	140	123	26	116	66

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	434	136	0	0	149	0
Stage 1	136	-	-	-	-	-
Stage 2	298	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	579	913	-	-	1432	-
Stage 1	890	-	-	-	-	-
Stage 2	753	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	530	913	-	-	1432	-
Mov Cap-2 Maneuver	530	-	-	-	-	-
Stage 1	890	-	-	-	-	-
Stage 2	690	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.7		0		4.9	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	913	1432	-
HCM Lane V/C Ratio		-	-	0.154	0.081	-
HCM Control Delay (s)		-	-	9.7	7.7	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.5	0.3	-

Intersection						

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 49.1 |
| Intersection LOS | E |

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		*	
Traffic Vol, veh/h	101	670	180	15	61	13
Future Vol, veh/h	101	670	180	15	61	13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	110	728	196	16	66	14
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	62.7		10.2		10.4	
HCM LOS	F		B		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	13%	0%	82%
Vol Thru, \%	87%	92%	0%
Vol Right, \%	0%	8%	18%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	771	195	74
LT Vol	101	0	61
Through Vol	670	180	0
RT Vol	0	15	13
Lane Flow Rate	838	212	80
Geometry Grp	1	1	1
Degree of Util (X)	1.038	0.296	0.14
Departure Headway (Hd)	4.457	5.02	6.391
Convergence, Y/N	Yes	Yes	Yes
Cap	813	710	565
Service Time	2.501	3.09	4.391
HCM Lane V/C Ratio	1.031	0.299	0.142
HCM Control Delay	62.7	10.2	10.4
HCM Lane LOS	F	B	B
HCM 95th-tile Q	19.6	1.2	0.5

Intersection						
Int Delay, s/veh	3.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			\uparrow
Traffic Vol, veh/h	0	61	84	34	104	70
Future Vol, veh/h	0	61	84	34	104	70
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	66	91	37	113	76

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	412	110	0	0	128	0
Stage 1	110	-	-	-	-	-
Stage 2	302	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	596	943	-	-	1458	-
Stage 1	915	-	-	-	-	-
Stage 2	750	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	548	943	-	-	1458	-
Mov Cap-2 Maneuver	548	-	-	-	-	-
Stage 1	915	-	-	-	-	-
Stage 2	689	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.1		0		4.6	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	943	1458	-
HCM Lane V/C Ratio		-	-	0.07	0.078	-
HCM Control Delay (s)		-	-	9.1	7.7	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0.3	-

Intersection						

Intersection	
Intersection Delay, s/veh $\quad 24.3$	
Intersection LOS	C

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	F			
Traffic Vol, veh/h	101	500	432	30	52	22
Future Vol, veh/h	101	500	432	30	52	22
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	110	543	470	33	57	24
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1	0		
Conflicting Approach Left	SB			WB		
Conflicting Lanes Left	1		0	1		
Conflicting Approach Right			SB	EB		
Conflicting Lanes Right	0	1	1			
HCM Control Delay	30.9	17.8	10.6			
HCM LOS	D	C	B			

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	17%	0%	70%
Vol Thru, \%	83%	94%	0%
Vol Right, \%	0%	6%	30%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	601	462	74
LT Vol	101	0	52
Through Vol	500	432	0
RT Vol	0	30	22
Lane Flow Rate	653	502	80
Geometry Grp	1	1	1
Degree of Util (X)	0.868	0.679	0.146
Departure Headway (Hd)	4.782	4.87	6.515
Convergence, Y/N	Yes	Yes	Yes
Cap	751	733	553
Service Time	2.864	2.959	4.515
HCM Lane V/C Ratio	0.87	0.685	0.145
HCM Control Delay	30.9	17.8	10.6
HCM Lane LOS	D	C	B
HCM 95th-tile Q	10.6	5.4	0.5

Intersection						
Int Delay, s/veh	4.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			\uparrow
Traffic Vol, veh/h	0	119	108	23	95	56
Future Vol, veh/h	0	119	108	23	95	56
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	129	117	25	103	61

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 64.2 |
| Intersection LOS | F |

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		* ${ }^{\text {F }}$	
Traffic Vol, veh/h	106	704	205	17	66	13
Future Vol, veh/h	106	704	205	17	66	13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	115	765	223	18	72	14
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	84		10.8		10.7	
HCM LOS	F		B		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	13%	0%	84%
Vol Thru, \%	87%	92%	0%
Vol Right, \%	0%	8%	16%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	810	222	79
LT Vol	106	0	66
Through Vol	704	205	0
RT Vol	0	17	13
Lane Flow Rate	880	241	86
Geometry Grp	1	1	1
Degree of Util (X)	1.104	0.335	0.15
Departure Headway (Hd)	4.516	5.173	6.562
Convergence, Y/N	Yes	Yes	Yes
Cap	801	700	550
Service Time	2.557	3.173	4.562
HCM Lane V/C Ratio	1.099	0.344	0.156
HCM Control Delay	84	10.8	10.7
HCM Lane LOS	F	B	B
HCM 95th-tile Q	23.9	1.5	0.5

Intersection						
Int Delay, s/veh	4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\neq
Traffic Vol, veh/h	0	72	90	35	116	76
Future Vol, veh/h	0	72	90	35	116	76
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	78	98	38	126	83

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	452	117	0	0	136	0
Stage 1	117	-	-	-	-	-
Stage 2	335	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	565	935	-	-	1448	-
Stage 1	908	-	-	-	-	-
Stage 2	725	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	514	935	-	-	1448	-
Mov Cap-2 Maneuver	514	-	-	-	-	-
Stage 1	908	-	-	-	-	-
Stage 2	659	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.2		0		4.7	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	935	1448	-
HCM Lane V/C Ratio		-	-	0.084	0.087	-
HCM Control Delay (s)		-	-	9.2	7.7	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.3	0.3	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 31.2 |
| Intersection LOS | D |

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		*	
Traffic Vol, veh/h	106	533	456	31	57	23
Future Vol, veh/h	106	533	456	31	57	23
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	115	579	496	34	62	25
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	41.3		21.2		11	
HCM LOS	E		C		B	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	17%	0%	71%
Vol Thru, \%	83%	94%	0%
Vol Right, \%	0%	6%	29%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	639	487	80
LT Vol	106	0	57
Through Vol	533	456	0
RT Vol	0	31	23
Lane Flow Rate	695	529	87
Geometry Grp	1	1	1
Degree of Util (X)	0.935	0.744	0.162
Departure Headway (Hd)	4.958	5.058	6.687
Convergence, Y/N	Yes	Yes	Yes
Cap	736	720	538
Service Time	2.958	3.058	4.708
HCM Lane VIC Ratio	0.944	0.735	0.162
HCM Control Delay	41.3	21.2	11
HCM Lane LOS	E	C	B
HCM 95th-tile Q	13.3	6.7	0.6

Intersection						
Int Delay, s/veh	4.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			\uparrow
Traffic Vol, veh/h	0	129	113	24	107	61
Future Vol, veh/h	0	129	113	24	107	61
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	140	123	26	116	66

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	434	136	0	0	149	0
Stage 1	136	-	-	-	-	-
Stage 2	298	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	579	913	-	-	1432	-
Stage 1	890	-	-	-	-	-
Stage 2	753	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	530	913	-	-	1432	-
Mov Cap-2 Maneuver	530	-	-	-	-	-
Stage 1	890	-	-	-	-	-
Stage 2	690	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.7		0		4.9	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	913	1432	-
HCM Lane V/C Ratio		-	-	0.154	0.081	-
HCM Control Delay (s)		-	-	9.7	7.7	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.5	0.3	-

Intersection						

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	-	0	-	0	-	907
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	0	0	279
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, \%		-	-			
Mov Cap-1 Maneuver	-	-	-	-	-	279
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		26.7	
HCM LOS					D	
Minor Lane/Major Mvmt		EBT WBT SBLn1				
Capacity (veh/h)		279				
HCM Lane V/C Ratio		-	- 0.413			
HCM Control Delay (s)		-	-	26.7		
HCM Lane LOS		-	-	D		
HCM 95th \%tile Q(veh)		-	-	1.9		

Level of Service Workheet
(Circular 212 Method)

I/S \#:
PROJECT TITLE: 670 Mesquit
North-South Street: Driveway
Scenario: CP
Count Date: 4/11/2018
East-West Street: 7th Street

Analyst: Fehr \& Peers Date:
5/1/2020

Level of Service Workheet
（Circular 212 Method）

I／S \＃：
PROJECT TITLE： 670 Mesquit
North－South Street：Driveway
Scenario：CP－Opt 2
Count Date：4／11／2018
East－West Street：7th Street

Analyst：Fehr \＆Peers Date：
5／1／2020

No．of Phases Opposed Ø＇ing：N／S－1，E／W－2 or Both－3？ Right Turns：FREE－1，NRTOR－2 or OLA－3？ ATSAC－1 or ATSAC＋ATCS－2？ Override Capacity		AM			PM		
		$\begin{array}{ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0	$\begin{array}{\|ll} N B-- & 0 \\ E B-- & 0 \end{array}$	$\begin{aligned} & \text { SB-- } \\ & \text { WB-- } \end{aligned}$	2 0 0 0 2 0
MOVEMENT		Volume	No．of Lanes	$\begin{gathered} \hline \text { Lane } \\ \text { Volume } \end{gathered}$	Volume	No．of Lanes	Lane Volume
	Left Left－Through Through Through－Right Right	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0
	Left Left－Through \downarrow Through f Through－Right Right \rightarrow Left－Through－Right $\text { Left－Right }$	40 0 94	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	40 0 94	103 0 251	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	103 0 251
Q 2 0 0 0 0 $\mathbf{4}$		0 941 0	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 471 \\ 0 \end{array}$	0 1700 0	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 850 0
	\ulcorner Left \longleftarrow Left－Through \leftarrow Through $亡$ Through－Right $亡$ Right $亡$ Left－Through－Right $亡$ Left－Right	$\begin{array}{r} 0 \\ 2437 \\ 131 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 1284 \\ 131 \end{array}$	0 1396 95	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 746 95
	CRITICAL VOLUMES		rth－South： East－West： SUM：	$\begin{array}{r} 94 \\ 1284 \\ 1378 \end{array}$		rth－South East－West： SUM：	$\begin{array}{r} 251 \\ 850 \\ 1101 \end{array}$
	VOLUME／CAPACITY（V／C）RATIO： C LESS ATSAC／ATCS ADJUSTMENT： LEVEL OF SERVICE（LOS）：			$\begin{gathered} 0.919 \\ 0.819 \\ \text { D } \\ \hline \end{gathered}$			$\begin{gathered} 0.734 \\ 0.634 \\ \text { B } \\ \hline \end{gathered}$

Level of Service Workheet
(Circular 212 Method)

I/S \#:
PROJECT TITLE: 670 Mesquit
North-South Street: Driveway
Scenario: CP 2040-Opt 2
Count Date: 4/11/2018
East-West Street: 7th Street

Analyst: Fehr \& Peers Date:
5/1/2020

Level of Service Workheet
(Circular 212 Method)
\square PROJECT TITLE: 670 Mesquit
North-South Street: Driveway
$\begin{array}{rr}\text { North-South Street: } & \text { Driveway } \\ \text { Scenario: } & \text { CP } 2040\end{array}$
Count Date: 4/11/2018
East-West Street: 7th Street

I/S \#:
1

Analyst: Fehr \& Peers Date:
5/1/2020

Appendix K: Ramp Queueing Resullts

FEhR刍PEERS

	$\stackrel{ }{*}$			4	4	-	\downarrow	\checkmark
Lane Group	EBL	EBR	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	334	590	2	371	1345	1	1189	508
v/c Ratio	0.67	0.60	no cap	0.61	0.61	0.01	1.20	0.48
Control Delay	35.4	12.0		26.7	13.6	31.0	134.4	6.2
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Total Delay	35.4	12.0	Error	26.7	13.6	31.0	134.4	6.2
Queue Length 50th (ft)	171	175	0	124	232	0	~ 459	64
Queue Length 95th (ft)	227	186	0	243	384	5	\#697	132
Internal Link Dist (ft)			36		352		336	
Turn Bay Length (ft)	350					50		
Base Capacity (vph)	684	1153	1	622	2193	81	987	1056
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.49	0.51	2.00	0.60	0.61	0.01	1.20	0.48
Intersection Summary								
~ Volume exceeds capacity, queue is theoretically infinite.								
\# Queue shown is maximum after two cycles.								
Queue shown is maximum after two cycles.								

	\rangle			4	\uparrow		\downarrow	\downarrow
Lane Group	EBL	EBR	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	213	396	3	454	1425	3	1617	571
v / C Ratio	0.53	0.47	0.02	0.84	0.60	0.04	1.23	0.52
Control Delay	34.2	13.3	0.0	41.3	11.2	29.3	141.4	8.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.2	13.3	0.0	41.3	11.2	29.3	141.4	8.2
Queue Length 50th (ft)	112	128	0	187	200	1	~ 620	106
Queue Length 95th (ft)	149	116	0	\#356	396	10	\#951	206
Internal Link Dist (ft)			36		352		336	
Turn Bay Length (ft)	350					50		
Base Capacity (vph)	627	1039	145	621	2376	80	1310	1092
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.34	0.38	0.02	0.73	0.60	0.04	1.23	0.52
Intersection Summary								
~ Volume exceeds capacity, queue is theoretically infinite.								
Queue shown is maximum after two cycles.								
\# 95th percentile volume exceeds capacity, queue may be longer.								
Queue shown is maximum after two cycles.								

18: I-10 EB Ramps \& Alameda St

	y	\geqslant		4	\dagger		\downarrow	\downarrow
Lane Group	EBL	EBR	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	365	590	2	371	1345	1	1189	508
v/c Ratio	0.70	0.58	no cap	0.61	0.63	0.01	1.27	0.48
Control Delay	35.5	11.2		26.9	14.5	32.0	160.7	6.2
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Total Delay	35.5	11.2	Error	26.9	14.5	32.0	160.7	6.2
Queue Length 50th (t)	186	165	0	125	244	0	~ 477	63
Queue Length 95th (t)	248	178	0	243	391	5	\#706	131
Internal Link Dist (ft)			36		352		336	
Turn Bay Length (ft)	350					50		
Base Capacity (vph)	684	1153	1	622	2142	80	938	1068
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.53	0.51	2.00	0.60	0.63	0.01	1.27	0.48
Intersection Summary								
~ Volume exceeds capacity, queue is theoretically infinite.								

18: I-10 EB Ramps \& Alameda St

	\rangle			4	\uparrow		\downarrow	\downarrow
Lane Group	EBL	EBR	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	232	396	3	454	1425	3	1617	571
v / C Ratio	0.56	0.46	0.02	0.84	0.60	0.04	1.25	0.52
Control Delay	35.2	13.1	0.0	41.1	11.4	29.3	146.8	8.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	35.2	13.1	0.0	41.1	11.4	29.3	146.8	8.2
Queue Length 50th (ft)	123	128	0	186	200	1	~ 620	105
Queue Length 95th (ft)	162	116	0	\#355	396	10	\#951	205
Internal Link Dist (ft)			36		352		336	
Turn Bay Length (ft)	350					50		
Base Capacity (vph)	627	1039	145	621	2363	81	1296	1092
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.37	0.38	0.02	0.73	0.60	0.04	1.25	0.52
Intersection Summary								
~ Volume exceeds capacity, queue is theoretically infinite.								
Queue shown is maximum after two cycles.								
\# 95th percentile volume exceeds capacity, queue may be longer.								
Queue shown is maximum after two cycles.								

18: I-10 EB Ramps \& Alameda St

	7	7		4	4		\dagger	\downarrow
Lane Group	EBL	EBR	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	341	605	2	382	1376	1	1215	520
v/c Ratio	0.68	0.60	no cap	0.62	0.63	0.01	1.26	0.49
Control Delay	35.2	12.0		27.3	14.2	31.0	156.2	6.7
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Total Delay	35.2	12.0	Error	27.3	14.2	31.0	156.2	6.7
Queue Length 50th (ft)	175	180	0	130	243	0	~ 480	72
Queue Length 95th (ft)	229	186	0	254	406	5	\#723	144
Internal Link Dist (ft)			36		352		336	
Turn Bay Length (ft)	350					50		
Base Capacity (vph)	684	1153	1	622	2178	80	966	1060
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.50	0.52	2.00	0.61	0.63	0.01	1.26	0.49
Intersection Summary								
~ Volume exceeds capacity, queue is theoretically infinite.								
\# 95th percentile volume exceeds capacity, queue may be longer.								

18: I-10 EB Ramps \& Alameda St

	\rangle			4	\dagger		\downarrow	\downarrow
Lane Group	EBL	EBR	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	215	407	3	466	1457	3	1654	584
v / C Ratio	0.52	0.47	0.02	0.85	0.62	0.04	1.30	0.54
Control Delay	33.4	12.8	0.0	42.0	11.8	30.0	170.2	8.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	33.4	12.8	0.0	42.0	11.8	30.0	170.2	8.7
Queue Length 50th (ft)	111	127	0	195	217	1	~ 665	117
Queue Length 95th (ft)	150	121	0	\#370	411	10	\#975	220
Internal Link Dist (ft)			36		352		336	
Turn Bay Length (ft)	350					50		
Base Capacity (vph)	627	1044	145	621	2353	80	1270	1083
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.34	0.39	0.02	0.75	0.62	0.04	1.30	0.54
Intersection Summary								
~ Volume exceeds capacity, queue is theoretically infinite.								
Queue shown is maximum after two cycles.								
\# 95th percentile volume exceeds capacity, queue may be longer.								
Queue shown is maximum after two cycles.								

18: I-10 EB Ramps \& Alameda St

	4			4	\dagger		\dagger	\downarrow
Lane Group	EBL	EBR	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	373	605	2	382	1376	1	1215	520
v/c Ratio	0.71	0.59	no cap	0.63	0.65	0.01	1.32	0.49
Control Delay	35.3	11.1		27.5	15.1	32.0	185.2	6.7
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Total Delay	35.3	11.1	Error	27.5	15.1	32.0	185.2	6.7
Queue Length 50th (ft)	190	170	0	131	256	0	~ 500	71
Queue Length 95th (ft)	254	186	0	252	406	5	\#723	143
Internal Link Dist (ft)			36		352		336	
Turn Bay Length (ft)	350					50		
Base Capacity (vph)	684	1153	1	621	2125	80	917	1059
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.55	0.52	2.00	0.62	0.65	0.01	1.32	0.49
Intersection Summary								
~ Volume exceeds capacity, queue is theoretically infinite.								
Queue shown is maximum after two cycles.\# 95th percentile volume exceeds capacity, queue may be longer.								
Queue shown is maximum after two cycles.								

18: I-10 EB Ramps \& Alameda St

	\rangle			4	\uparrow		\downarrow	\downarrow
Lane Group	EBL	EBR	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	234	407	3	466	1457	3	1654	584
v / C Ratio	0.55	0.46	0.02	0.85	0.63	0.04	1.33	0.54
Control Delay	33.8	12.5	0.0	42.1	12.2	30.0	180.5	8.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	33.8	12.5	0.0	42.1	12.2	30.0	180.5	8.7
Queue Length 50th (ft)	120	123	0	196	226	1	~ 678	117
Queue Length 95th (ft)	163	121	0	\#369	411	10	\#975	220
Internal Link Dist (ft)			36		352		336	
Turn Bay Length (ft)	350					50		
Base Capacity (vph)	627	1044	145	621	2330	80	1248	1083
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.37	0.39	0.02	0.75	0.63	0.04	1.33	0.54
Intersection Summary								
~ Volume exceeds capacity, queue is theoretically infinite.								
Queue shown is maximum after two cycles.								
\# 95th percentile volume exceeds capacity, queue may be longer.								
Queue shown is maximum after two cycles.								

	\rightarrow	4	-	\checkmark
Lane Group	EBT	WBT	SBL	SBR
Lane Group Flow (vph)	1725	1233	76	212
v/c Ratio	0.71	0.53	0.28	0.66
Control Delay	7.4	5.8	24.1	23.9
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	7.4	5.8	24.1	23.9
Queue Length 50th (ft)	143	93	24	40
Queue Length 95th (ft)	235	145	55	97
Internal Link Dist (ft)	258	273		
Turn Bay Length (ft)			100	
Base Capacity (vph)	2417	2347	339	376
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.71	0.53	0.22	0.56
Intersection Summary				

	\rightarrow	\downarrow	\checkmark	\downarrow
Lane Group	EBT	WBT	SBL	SBR
Lane Group Flow (vph)	1751	1250	78	215
v/c Ratio	0.73	0.53	0.28	0.67
Control Delay	7.7	5.9	24.1	24.7
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	7.7	5.9	24.1	24.7
Queue Length 50th (ft)	151	96	25	42
Queue Length 95th (ft)	243	148	56	100
Internal Link Dist (tt)	258	273		
Turn Bay Length (ft)			100	
Base Capacity (vph)	2412	2343	339	374
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.73	0.53	0.23	0.57

[^19]
Appendix L:

Signal Warrant Analysis Sheets

FEHR \wp PEERS

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	7th Street	Project Driveway	
Number of Approach Lanes	$\mathbf{2}$	$\mathbf{2}$	NO
Traffic Volume (VPH) *	$\mathbf{3 , 4 8 1}$	$\mathbf{1 1 7}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	7th Street	Scenario	CP AM 2026 - Opt 1
Minor Street	Project Driveway	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	36	0	0
Through	0	0	939	2,427
Right	0	81	0	115
Total	0	117	939	2,542

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

790.3
SB
117

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP AM 2026-Opt 1	25.7	117	3,598	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

					Project	M	
Major Street	7th Street				Scenario	,	- Opt 1
Minor Street	Project Dr				Peak Hour		
Turn Movem	t Volumes					r	t Direction
	NB	SB	EB	WB			
Left	0	89	0	0			North/South
Through	0	0	1,689	1,386		X	East/West

	Major Street	Minor Street	Warrant Met
	7th Street	Project Driveway	
Number of Approach Lanes	$\mathbf{2}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{3 , 1 6 3}$	$\mathbf{3 0 5}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	7th Street	Scenario	CP PM 2026 - Opt 1
Minor Street	Project Driveway	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	89	0	0
Through	0	0	1,689	1,386
Right	0	216	0	88
Total	0	305	1,689	1,474

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

790.3
$S B$
305

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP PM 2026-Opt 1	67	305	3,468	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	7th Street	Project Driveway	
Number of Approach Lanes	2	2	NO
Traffic Volume (VPH) *	3,486	130	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	7th Street	Scenario	CP AM 2026 - Opt 2
Minor Street	Project Driveway	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	38	0	0
Through	0	0	940	2,427
Right	0	92	0	119
Total	0	130	940	2,546

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

790.3
SB
130

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP AM 2026-Opt 2	28.5	130	3,616	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	7th Street	Project Driveway	
Number of Approach Lanes	$\mathbf{2}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{3 , 1 6 8}$	$\mathbf{3 1 8}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street Minor Street	7th Street
Srojerio			

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	92	0	0
Through	0	0	1,690	1,386
Right	0	226	0	92
Total	0	318	1,690	1,478

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

790.3
$S B$
318

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP PM 2026- Opt 2	69.8	318	3,486	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	7th Street	Project Driveway	
Number of Approach Lanes	2	2	NO
Traffic Volume (VPH) *	3,543	117	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	7th Street	Scenario	CP AM 2040- Opt 1
Minor Street	Project Driveway	Peak Hou	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	36	0	0
Through	0	0	954	2,474
Right	0	81	0	115
Total	0	117	954	2,589

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

790.3
SB
117

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP AM 2040 - Opt 1	25.7	117	3,660	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	7th Street	Project Driveway	
Number of Approach Lanes	$\mathbf{2}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{3 , 2 1 2}$	$\mathbf{3 0 5}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	7th Street	Scenario	CP PM 2040 - Opt 1
Minor Street	Project Driveway	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	89	0	0
Through	0	0	1,717	1,407
Right	0	216	0	88
Total	0	305	1,717	1,495

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

790.3
SB
305

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP PM 2040- Opt 1	67	305	3,517	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	7th Street	Project Driveway	
Number of Approach Lanes	2	2	NO
Traffic Volume (VPH) *	3,548	130	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	7th Street	Scenario	CP AM 2040- Opt 2
Minor Street	Project Driveway	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	38	0	0
Through	0	0	955	2,474
Right	0	92	0	119
Total	0	130	955	2,593

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

790.3
SB
130

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP AM 2040 - Opt 2	28.5	130	3,678	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	7th Street	Project Driveway	
Number of Approach Lanes	$\mathbf{2}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{3 , 2 1 7}$	$\mathbf{3 1 8}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street Minor Street	7th Street
Srojerio			

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	92	0	0
Through	0	0	1,718	1,407
Right	0	226	0	92
Total	0	318	1,718	1,499

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

790.3
$S B$
318

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP PM 2040- Opt 2	69.8	318	3,535	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

EXISTING CONDITIONS

SIGNAL WARRANT WORKSHEETS

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	EX AM
Minor Street	4th Pl	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	21	0	110
Through	123	253	0	0
Right	66	0	0	25
Total	190	274	0	135

Major Street Direction
\qquad North/South
\qquad East/West

	Major Street	Minor Street	Warrant Met
	Mateo St	4th PI	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{4 6 4}$	$\mathbf{1 3 5}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	EX AM
Minor Street	4th Pl	Peak Hour	AM

Turn Movement Volumes				
	NB	SB	EB	WB
Left	1	21	0	110
Through	123	253	0	0
Right	66	0	0	25
Total	190	274	0	135

Major Street Direction

x	North/South
	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

13.5
WB
135

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX AM	0.5	135	599	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Met	Not Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	EX PM
Minor Street	4th Pl	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	37	0	27
Through	223	198	0	0
Right	212	0	0	20
Total	435	235	0	47

Major Street Direction

$\mathrm{x} \quad$ North/South	
	East/West

	Major Street	Minor Street	Warrant Met
	Mateo St	4th PI	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{6 7 0}$	$\mathbf{4 7}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	EX PM
Minor Street	4th Pl	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	37	0	27
Through	223	198	0	0
Right	212	0	0	20
Total	435	235	0	47

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

13.1
$W B$
47

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX PM	0.2	47	717	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	EX AM
Minor Street	Willow St	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	38	0	27
Through	219	285	0	0
Right	16	0	0	41
Total	236	323	0	68

Major Street Direction
\qquad North/South
\qquad East/West

	Major Street	Minor Street	Warrant Met
	Mateo St	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{5 5 9}$	$\mathbf{6 8}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	EX AM
Minor Street	Willow St	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	38	0	27
Through	219	285	0	0
Right	16	0	0	41
Total	236	323	0	68

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

12
$W B$
68

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX AM	0.2	68	627	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	EX PM
Minor Street	Willow St	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	22	0	12
Through	367	251	0	0
Right	24	0	0	29
Total	391	273	0	41

Major Street Direction
\qquad North/South East/West

	Major Street	Minor Street	Warrant Met
	Mateo St	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{6 6 4}$	$\mathbf{4 1}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Mateo St Minor Street
	Willow St	Scenario	EX PM
		Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	22	0	12
Through	367	251	0	0
Right	24	0	0	29
Total	391	273	0	41

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

12.4
WB
41

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX PM	0.1	41	705	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	Mateo St Minor Street
	Sesse St	Peak Hourit	
		AM AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	21	6	20
Through	301	252	0	0
Right	24	1	3	61
Total	325	274	9	81

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{5 9 9}$	$\mathbf{8 1}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Mateo St Minor Street		
	Sesse St	Scenario			
Meak Hour					EX AM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	21	6	20
Through	301	252	0	0
Right	24	1	3	61
Total	325	274	9	81

Intersection Geometry

Number of Approach Lanes for Minor Street	1
Total Approaches	4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

12
$W B$
81

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX AM	0.3	81	689	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	EX PM
Minor Street	Jesse St	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	29	2	13
Through	161	388	1	1
Right	18	7	3	28
Total	187	424	6	42

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{6 1 1}$	$\mathbf{4 2}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Mateo St Minor Street		
	Sesse St	Scenario			EX PM
:---					

Turn Movement Volumes				
	NB	SB	EB	WB
Left	8	29	2	13
Through	161	388	1	1
Right	18	7	3	28
Total	187	424	6	42

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

11.1
$W B$
42

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX PM	0.1	42	659	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met				

FEHRケPEERS

| | | Project
 Major Street | E 8th St |
| :--- | :--- | :--- | :--- | | Scenario Mesquit |
| :--- |
| Minor Street | | I-10 Westbound ramps | Peak Hour AM |
| :--- | :--- |
| | |

Turn Movement Volumes

	NB	SB	EB	WB
Left	282	0	0	549
Through	0	0	15	14
Right	367	0	266	0
Total	649	0	281	563

Major Street Direction

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{8 4 4}$	$\mathbf{6 4 9}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

| | | Project
 Major Street | E 8th St |
| :--- | :--- | :--- | :--- | | Scenario Mesquit |
| :--- |
| Minor Street | | I-10 Westbound ramps | Peak Hour | |
| :--- | :--- | :--- |
| | | AM |

Turn Movement Volumes				
	NB	SB	EB	WB
Left	282	0	0	549
Through	0	0	15	14
Right	367	0	266	0
Total	649	0	281	563

Major Street Direction

	North/South
x	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

570.3
WB
563

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX AM	89.2	649	1,493	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	E 8th St
Minor Street	I-10 Westbound ramps

Project	670 Mesquit
Scenario	EX PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	341	0	0	338
Through	0	0	9	37
Right	424	0	207	0
Total	765	0	216	375

Major Street Direction

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	NO
Traffic Volume (VPH) *	$\mathbf{7 6 5}$	$\mathbf{3 7 5}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

| | | Project
 Major Street | E 8th St |
| :--- | :--- | :--- | :--- | | Scenario Mesquit |
| :--- |
| Minor Street | | I-10 Westbound ramps | Peak Hour | |
| :--- | :--- | :--- |
| | | |

Turn Movement Volumes

	NB	SB	EB	WB
Left	341	0	0	338
Through	0	0	9	37
Right	424	0	207	0
Total	765	0	216	375

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

165.3
WB
375

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
EX PM	17.2	375	1,356
Limiting Value	5	150	650
Condition Satisfied?	Met	Met	Met
Warrant Met	\underline{y}		

FEHRやPEERS

		Project Major Street	Porter St Sinor Stresquit
	I-10 Eastbound ramps	Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	2	570	99	1
Through	0	1	49	21
Right	0	204	0	344
Total	2	775	148	366

Major Street Direction

$\mathrm{x} \quad$ North/South	
	East/West

	Major Street	Minor Street	Warrant Met
	Porter St	I-10 Eastbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	NO
Traffic Volume (VPH) *	$\mathbf{7 7 7}$	$\mathbf{3 6 6}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Porter St	Scenario	EX AM
Minor Street	I-10 Eastbound ramps	Peak Hour	AM

Turn Movement Volumes				
	NB	SB	EB	WB
Left	2	570	99	1
Through	0	1	49	21
Right	0	204	0	344
Total	2	775	148	366

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

17.6
WB
366

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX AM	1.8	366	1,291	
Limiting Value	5	150	800	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met				

FEHRやPEERS

		Project	670 Mesquit
Major Street	Porter St	Scenario	EX PM
Minor Street	I-10 Eastbound ramps	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	231	173	1
Through	0	0	157	39
Right	5	67	2	532
Total	5	298	332	572

Major Street Direction

	North/South
	East/West

	Major Street	Minor Street	Warrant Met
	Porter St	I-10 Eastbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	NO
Traffic Volume (VPH) *	$\mathbf{9 0 4}$	$\mathbf{2 9 8}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Porter St Minor Street		
	I-10 Eastbound ramps		Scenario		
Peak Hour					EX PM
:---	:---				

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	231	173	1
Through	0	0	157	39
Right	5	67	2	532
Total	5	298	332	572

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

18.3
$W B$
572

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX PM	2.9	298	1,207	
Limiting Value	5	150	800	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street		
	Willow St	Peak Hour			EX AM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	33	0	0	0
Through	535	177	0	0
Right	0	7	15	0
Total	568	184	15	0

Major Street Direction
\qquad North/South East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{7 5 2}$	$\mathbf{1 5}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street		
	Willow St	Scenario			
Meak Hour					AM AM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	33	0	0	0
Through	535	177	0	0
Right	0	7	15	0
Total	568	184	15	0

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

9.3
$W B$
0

Major Street Direction

x	North/South
	East/West

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX AM	0	15	767	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street
	Willow St	Peak Hourit	
		PX PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	17	1	12	0
Through	426	294	0	0
Right	0	8	13	0
Total	443	303	25	0

Major Street Direction

$\mathrm{x} \quad$ North/South	
	East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{7 4 6}$	$\mathbf{2 5}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street
	Willow St	Scenario	
		Peak Hour PM	

Turn Movement Volumes
Major Street Direction

	NB	SB	EB	WB
Left	17	1	12	0
Through	426	294	0	0
Right	0	8	13	0
Total	443	303	25	0

$\mathrm{x} \quad$ North/South	
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

13
$W B$
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX PM	0	25	771	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	S Santa Fe Ave	Scenario	EX AM
Minor Street	Mesquit St	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	7	7	1
Through	566	192	1	0
Right	0	0	13	9
Total	566	199	21	10

Major Street Direction

$\mathrm{x} \quad$ North/South	
	East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Mesquit St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{7 6 5}$	$\mathbf{2 1}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.$.$			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street		
	Mesquit St	Scenario			
Peak Hour					EX AM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	7	7	1
Through	566	192	1	0
Right	0	0	13	9
Total	566	199	21	10

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

15.4
WB
10

Major Street Direction

x	North/South
	East/West

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX AM	0	21	796	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street
	Mesquit St	Peak Hourit	
		PX PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	2	0	1
Through	432	299	0	0
Right	0	2	0	2
Total	432	303	0	3

Major Street Direction
$\mathrm{x} \quad$ North/South
East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Mesquit St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{7 3 5}$	$\mathbf{3}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street		
	Mesquit St	Scenario			
Meak Hour					EX PM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	2	0	1
Through	432	299	0	0
Right	0	2	0	2
Total	432	303	0	3

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

11.5
$W B$
3

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX PM	0	3	738	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	S Santa Fe Ave	Scenario	EX AM
Minor Street	Jesse St	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	74	4	2	17
Through	564	191	2	5
Right	15	9	12	3
Total	653	204	16	25

Major Street Direction
\qquad North/South
\qquad East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{8 5 7}$	$\mathbf{2 5}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Mesquit Minor Street		
	Sesse St	Pearario Hour			EX AM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	74	4	2	17
Through	564	191	2	5
Right	15	9	12	3
Total	653	204	16	25

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

24.1
WB
25

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX AM	0.2	25	898	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

| | | Project
 Major Street
 Minor Street | S Santa Fe Ave |
| :--- | :--- | :--- | :--- |\quad| Scenario Mesquit |
| :--- |

Turn Movement Volumes

	NB	SB	EB	WB
Left	30	3	18	9
Through	418	283	3	3
Right	5	15	70	3
Total	453	301	91	15

Major Street Direction

x	North/South
East/West	

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{7 5 4}$	$\mathbf{9 1}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	S Santa Fe Ave	Scenario	EX PM
Minor Street	Jesse St	Peak Hour	PM

Turn Movement Volumes				
	NB	SB	EB	WB
Left	30	3	18	9
Through	418	283	3	3
Right	5	15	70	3
Total	453	301	91	15

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

19
$W B$
15

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX PM	0.1	91	860	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	Mesquit St Minor Street
	Sesse St	Peak Hourit	
		AM AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	23	0	8	0
Through	3	1	0	0
Right	0	7	28	0
Total	26	8	36	0

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{3 6}$	$\mathbf{2 6}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.$.$			

FEHRケPEERS

		Project Major Street	Mesquit St Minor Street		
	Sesse St	Scenario			
Meak Hour					EX AM
:---					

Turn Movement Volumes
Major Street Direction

	NB	SB	EB	WB
Left	23	0	8	0
Through	3	1	0	0
Right	0	7	28	0
Total	26	8	36	0

	North/South
x	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

8.6
$W B$
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX AM	0	26	70	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	Mesquit St Minor Street		
	Sesse St	Pearait Hour			EX PM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	24	0	4	0
Through	1	0	0	0
Right	0	14	6	0
Total	25	14	10	0

Major Street Direction

x	North/South
\ldots	East/West

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{3 9}$	$\mathbf{1 0}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.$.$			

FEHRケPEERS

		Project Major Street	Mesquit St Minor Street		
	Sesse St	Scenario			EX PM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	24	0	4	0
Through	1	0	0	0
Right	0	14	6	0
Total	25	14	10	0

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

8.5
$W B$
0

Major Street Direction

x	North/South
	East/West

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX PM	0	10	49	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	7th St
Minor Street	US-101 Southbound ramps		Scenario Peak Hour
		AM AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	14	0	2
Through	0	0	260	2,243
Right	0	146	144	0
Total	0	160	404	2,245

Major Street Direction

	Major Street	Minor Street	Warrant Met
	7th St	US-101 Southbound ramps	
Number of Approach Lanes	$\mathbf{2}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{2 , 6 4 9}$	$\mathbf{1 6 0}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	7th St		
Minor Street	US-101 Southbound ramps		Scenario		
		Peak Hour			EX AM
:---	:---				

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	14	0	2
Through	0	0	260	2,243
Right	0	146	144	0
Total	0	160	404	2,245

Major Street Direction

	North/South
x	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

125.8
WB
2,245

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX AM	78.5	160	2,809	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	7th St	Scenario	EX PM
Minor Street	US-101 Southbound ramps	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	69	0	1
Through	0	0	1,005	686
Right	0	90	139	0
Total	0	159	1,144	687

Major Street Direction

	North/South
	East/West

	Major Street	Minor Street	Warrant Met
	7th St	US-101 Southbound ramps	
Number of Approach Lanes	$\mathbf{2}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 8 3 1}$	$\mathbf{1 5 9}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

| | | Project
 Major Street | 7th St |
| :--- | :--- | :--- | :--- | | Scenario Mesquit |
| :--- |
| Minor Street | US-101 Southbound ramps \quad Peak Hour PM | PM |
| :--- |

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	69	0	1
Through	0	0	1,005	686
Right	0	90	139	0
Total	0	159	1,144	687

Intersection Geometry

Number of Approach Lanes for Minor Street Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

27.9
$W B$
687

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
EX PM	5.3	159	1,990	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

CUMULATIVE BASE (2026)
SIGNAL WARRANT WORKSHEETS

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	Mateo St	4th PI	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 1 4 7}$	$\mathbf{2 6}$	
Note: \quad Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Mateo St Scenario
Minor Street	4th Pl	Peak Hour 2026 AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	21	0	1
Through	468	569	0	0
Right	88	0	0	25
Total	557	590	0	26

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

12.7
WB
26

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 AM	0.1	26	1,173	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	Mateo St	4th PI	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 4 7 9}$	$\mathbf{4 7}$	
Note: \quad Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	CB 2026 PM
Minor Street	4th Pl	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	38	0	27
Through	702	689	0	0
Right	50	0	0	20
Total	752	727	0	47

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

40.9
WB
47

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 PM	0.5	47	1,526	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

					Project	670 Me	
Major Street	Mateo St				Scenario	CB 2026	
Minor Street	Willow St				Peak Hour	AM	
Turn Moveme	Volumes					Major St	Direction
	NB	SB	EB	WB			
Left	1	39	0	32		x	North/South
Through	655	601	0	0			East/West
Right	93	0	0	42			
Total	749	640	0	74			

	Major Street	Minor Street	Warrant Met
	Mateo St	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 3 8 9}$	$\mathbf{7 4}$	
Note: \quad Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Mateo St Scenario
Minor Street	Willow St	Peak Hour 2026 AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	39	0	32
Through	655	601	0	0
Right	93	0	0	42
Total	749	640	0	74

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

33.9
WB
74

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 AM	0.7	74	1,463	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

					Project	670 Me	
Major Street	Mateo St				Scenario	CB 2026	
Minor Street	Willow St				Peak Hour	PM	
Turn Moveme	Volumes					Major St	Direction
	NB	SB	EB	WB			
Left	0	22	0	44		X	North/South
Through	809	826	0	0			East/West
Right	33	0	0	29			
Total	842	848	0	73			

	Major Street	Minor Street	Warrant Met
	Mateo St	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 6 9 0}$	$\mathbf{7 3}$	
Note: \quad Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Mateo St Scenario
Minor Street	Willow St	Peak Hour 2026 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	22	0	44
Through	809	826	0	0
Right	33	0	0	29
Total	842	848	0	73

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

93.8
WB
73

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 PM	1.9	73	1,763	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 6 2 2}$	$\mathbf{1 1 4}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	CB 2026 AM
Minor Street	Jesse St	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	210	6	20
Through	489	898	0	0
Right	24	1	3	94
Total	513	1,109	9	114

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

46.6
WB
114

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 AM	1.5	114	1,745	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met				

FEHRケPEERS

					Project	670 Me	
Major Street	Mateo St				Scenario	CB 2026	
Minor Street	Jesse St				Peak Hour	PM	
Turn Moveme	t Volumes					Major S	t Direction
	NB	SB	EB	WB			
Left	8	62	2	13		x	North/South
Through	600	615	1	1			East/West
Right	18	7	3	71			
Total	626	684	6	85			

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 3 1 0}$	$\mathbf{8 5}$	
Note: \quad Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Mateo St Scenario Mesquit
Minor Street	Jesse St	Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	62	2	13
Through	600	615	1	1
Right	18	7	3	71
Total	626	684	6	85

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

19.9
WB
85

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 PM	0.5	85	1,401	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	E 8th St				Project Scenario Peak Hour	670 Mesquit	
						02	
Minor Street	I-10 West	ram					
Turn Movement Volumes					Major Street Direction		
	NB	SB	EB	WB			
Left	281	0	0	595			North/South
Through	0	0	23	15		x	East/West
Right	524	0	442	0			
Total	805	0	465	610			

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 0 7 5}$	$\mathbf{8 0 5}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	E 8th St
Minor Street	Scenario Mesquit		
I-10 Westbound ramps		CB 2026 AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	281	0	0	595
Through	0	0	23	15
Right	524	0	442	0
Total	805	0	465	610

Major Street Direction

	North/South
x	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

965.9
WB
610

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 AM	163.7	805	1,880	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	E 8th St				Project Scenario Peak Hour	670 Mesquit	
						226	
Minor Street	I-10 West	d ram					
Turn Movement Volumes					Major Street Direction		
	NB	SB	EB	WB			
Left	0	0	241	0			North/South
Through	996	570	0	0		x	East/West
Right	0	0	114	0			
Total	996	570	355	0			

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{3 5 5}$	$\mathbf{9 9 6}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

| | | Project
 Major Street | E 8th St |
| :--- | :--- | :--- | :--- | | Scenario |
| :--- |
| Minor Street | | Peak Hour |
| :--- | :--- | | CB 2026 PM |
| :--- |

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	0	241	0
Through	996	570	0	0
Right	0	0	114	0
Total	996	570	355	0

Major Street Direction

	North/South
x	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1031.2
WB
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 PM	0	996	1,921	
Limiting Value	5	150	650	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	Porter St
Minor Street	$\underline{1-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	CB 2026 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	773	168	0
Through	0	0	91	20
Right	1	253	3	425
Total	1	1,026	262	445

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	Porter St	$\mathrm{I}-10$ Eastbound ramps	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{2}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{4 4 5}$		

FEHRケPEERS

		Project Major Street	Porter St Scenario Mesquit
Minor Street	CB 2026 AM		
			Peak Hour

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	773	168	0
Through	0	0	91	20
Right	1	253	3	425
Total	1	1,026	262	445

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

99.1
WB
445

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 AM	12.2	445	1,734	
Limiting Value	5	150	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	Porter St	I-10 Eastbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 4 1 9}$	$\mathbf{1 , 5 8 7}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Porter St	Scenario	CB 2026 PM
Minor Street	I-10 Eastbound ramps	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	127	61	263	19
Through	1,460	1,075	409	178
Right	0	281	476	74
Total	1,587	1,417	1,148	271

Major Street Direction

	North/South
x	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

103.3
WB
271

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 PM	7.8	1,587	4,423	
Limiting Value	5	150	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	S Santa Fe Ave				Project Scenario Peak Hour	670 Mesquit	
Minor Street	Willow St						
Turn Movement Volumes					Major Street Direction		
	NB	SB	EB	WB			
Left	34	0	45	0		x	North/South
Through	702	412	0	0			East/West
Right	0	12	47	0			
Total	736	424	92	0			

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 1 6 0}$	$\mathbf{9 2}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Sinor Senario
	Willow St	Peak Hour 2026 AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	34	0	45	0
Through	702	412	0	0
Right	0	12	47	0
Total	736	424	92	0

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

22.8
WB
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 AM	0	92	1,252	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street Minor Street	S Santa Fe Ave				Project Scenario Peak Hour	670 Mesquit	
	Willow St						
Turn Movement Volumes					Major Street Direction		
	NB	SB	EB	WB			
Left	2	474	251	0		x	North/South
Through	3	0	109	21			East/West
Right	0	148	4	672			
Total	5	622	364	693			

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	YES
Traffic Volume (VPH) *	$\mathbf{6 2 7}$	$\mathbf{6 9 3}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Sinor Strenario
	Willow St	Peak Hour 2026 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	2	474	251	0
Through	3	0	109	21
Right	0	148	4	672
Total	5	622	364	693

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

23.9
WB
693

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 PM	4.6	693	1,684	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRやPEERS

Major Street					Project Scenario Peak Hour	670 Mesquit	
	S Santa Fe Ave					CB 2026 AM	
Minor Street	Mesquit S						
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	0	7	7	1		x	North/South
Through	733	459	1	0			East/West
Right	0	0	13	9			
Total	733	466	21	10			

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Mesquit St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 1 9 9}$	$\mathbf{2 1}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	S Santa Fe Ave	Scenario	CB 2026 AM
Minor Street	Mesquit St	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	7	7	1
Through	733	459	1	0
Right	0	0	13	9
Total	733	466	21	10

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

41.6
WB
10

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 AM	0.1	21	1,230	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street					Project Scenario Peak Hour	670 Mesquit	
	S Santa Fe Ave					CB 2026	
Minor Street	Mesquit S					PM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	0	2	0	1		x	North/South
Through	712	494	0	0			East/West
Right	0	2	0	2			
Total	712	498	0	3			

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Mesquit St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 2 1 0}$	$\mathbf{3}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Sinor Street		
	Mesquit St	Peak Hour			CB 2026 PM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	2	0	1
Through	712	494	0	0
Right	0	2	0	2
Total	712	498	0	3

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

34.7
WB
3

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 PM	0	3	1,213	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

					Project	670 Me	
Major Street	S Santa Fe				Scenario	CB 2026	
Minor Street	Jesse St				Peak Hour	AM	
Turn Moveme	t Volumes					Major S	t Direction
	NB	SB	EB	WB			
Left	79	4	13	17		x	North/South
Through	720	447	2	5			East/West
Right	15	20	67	3			
Total	814	471	82	25			

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 2 8 5}$	$\mathbf{8 2}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	S Santa Fe Ave	Scenario	CB 2026 AM
Minor Street	Jesse St	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	79	4	13	17
Through	720	447	2	5
Right	15	20	67	3
Total	814	471	82	25

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

62.3
WB
25

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 AM	0.4	82	1,392	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street					Project Scenario Peak Hour	670 Mesquit	
	S Santa Fe Ave					CB 202	
Minor Street	Jesse St						
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	12	3	31	9		x	North/South
Through	685	464	3	3			East/West
Right	5	29	74	3			
Total	702	496	108	15			

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 1 9 8}$	$\mathbf{1 0 8}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Sajor Street	S Santa Fe Ave Scenario Mesquit
Minor Street	Jesse St	Peak Hour 2026 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	12	3	31	9
Through	685	464	3	3
Right	5	29	74	3
Total	702	496	108	15

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

35.6
WB
15

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 PM	0.1	108	1,321	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met				

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{3 6}$	$\mathbf{2 6}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Mesquit St Scenario Mesquit
Minor Street	Jesse St	Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	23	0	8	0
Through	3	1	0	0
Right	0	7	28	0
Total	26	8	36	0

Major Street Direction

	North/South
x	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

8.6
WB
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 AM	0	26	70	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met				

FEHRケPEERS

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{3 9}$	$\mathbf{1 0}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Mesquit St Scenario
Minor Street	Jesse St	Peak Hour 2026 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	24	0	4	0
Through	1	0	0	0
Right	0	14	6	0
Total	25	14	10	0

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

8.5
WB
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 PM	0	10	49	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met				

FEHRケPEERS

Major Street	7 th St
Minor Street	US-101 Southbound ramps

Project	670 Mesquit
Scenario	CB 2026 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	14	0	2
Through	0	0	396	2,059
Right	0	281	342	0
Total	0	295	738	2,061

Major Street Direction

Warrant 3B, Peak Hour

* Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	7th St	US-101 Southbound ramps	
Number of Approach Lanes	2	2	YES
Traffic Volume (VPH) *	2,799	295	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street Minor Street					Project Scenario Peak Hour	$\frac{\frac{670 \text { Mesquit }}{\text { CB } 2026 \text { AM }}}{\text { AM }}$	
	$\frac{7 \text { th } \mathrm{St}}{\text { US-101 Southbound ramps }}$						
Turn Movement Volumes					Major Street Direction		
	NB	SB	EB	WB			
Left	0	14	0	2			North/South
Through	0	0	396	2,059		X	East/West
Right	0	281	342	0			
Total	0	295	738	2,061			

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

305.2
WB
2,061

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 AM	174.7	295	3,094	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	7th St				Project Scenario Peak Hour	670 Mesquit	
						02	
Minor Street	US-101 S	ound					
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	0	70	0	1			North/South
Through	0	0	1,068	1,043		x	East/West
Right	0	178	387	0			
Total	0	248	1,455	1,044			

	Major Street	Minor Street	Warrant Met
	7 th St	US-101 Southbound ramps	
Number of Approach Lanes	$\mathbf{2}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{2 , 4 9 9}$	$\mathbf{2 4 8}$	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	7th St Scenario Mesquit
Minor Street	US-101 Southbound ramps		Peak Hour

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	70	0	1
Through	0	0	1,068	1,043
Right	0	178	387	0
Total	0	248	1,455	1,044

Major Street Direction

	North/South
x	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

63.1
WB
1,044

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2026 PM	18.3	248	2,747	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

CUMULATIVE PLUS PROJECT (2026) - OPTION 1 SIGNAL WARRANT WORKSHEETS

FEHR欠PEERS

					Project	670 Me	
Major Street	Mateo St				Scenario	CP 2026	pt1 AM
Minor Street	4th PI				Peak Hour	AM	
Turn Moveme	Volumes					Major S	t Direction
	NB	SB	EB	WB			
Left	1	21	0	1		x	North/South
Through	496	621	0	0			East/West
Right	102	0	0	25			
Total	599	642	0	26			

	Major Street	Minor Street	Warrant Met
	Mateo St	4th Pl	
Number of Approach Lanes	1	1	NO
Traffic Volume (VPH) *	1,241	26	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
Minor Street	4th Pl St

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	21	0	1
Through	496	621	0	0
Right	102	0	0	25
Total	599	642	0	26

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

13.3
WB
26

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2026 - Opt1 AM	0.1	26	1,267
Limiting Value	4	100	650
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met			

FEHRケPEERS

					Project	670 Me	
Major Street	Mateo St				Scenario	CP 2026	pt1 PM
Minor Street	4th PI				Peak Hour	PM	
Turn Moveme	t Volumes					Major S	t Direction
	NB	SB	EB	WB			
Left	0	38	0	27		x	North/South
Through	753	733	0	0			East/West
Right	83	0	0	20			
Total	836	771	0	47			

	Major Street	Minor Street	Warrant Met
	Mateo St	4th PI	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 6 0 7}$	$\mathbf{4 7}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
Minor Street	4th Pl St

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	38	0	27
Through	753	733	0	0
Right	83	0	0	20
Total	836	771	0	47

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

53.6
WB
47

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2026 - Opt1 PM	0.7	47	1,654
Limiting Value	4	100	650
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met			

FEHRケPEERS

Major Street					Project Scenario Peak Hour	670 Mesquit	
	Mateo St					CP 2026	pt1 AM
Minor Street	Willow St					AM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	1	39	0	46		x	North/South
Through	662	653	0	0			East/West
Right	93	0	0	77			
Total	756	692	0	123			

	Major Street	Minor Street	Warrant Met
	Mateo St	Willow St	
Number of Approach Lanes	1	1	YES
Traffic Volume (VPH) *	1,448	123	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Mateo St
Minor Street	

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 AM
Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	39	0	46
Through	662	653	0	0
Right	93	0	0	77
Total	756	692	0	123

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

47.2
$W B$
123

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 AM	1.6	123	1,571	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street					Project Scenario Peak Hour	670 Mesquit	
	Mateo St					CP 2026	pt1 PM
Minor Street	Willow St					PM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	0	22	0	66		x	North/South
Through	826	870	0	0			East/West
Right	33	0	0	96			
Total	859	892	0	162			

	Major Street	Minor Street	Warrant Met
	Mateo St	Willow St	Warrant Met
Number of Approach Lanes	1	1	YES
Traffic Volume (VPH) *	1,751	162	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
Minor Street	Willow St

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	22	0	66
Through	826	870	0	0
Right	33	0	0	96
Total	859	892	0	162

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

241.6
WB
162

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 PM	10.9	162	1,913	
Limiting Value	4	100	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	Y
Traffic Volume (VPH) *	$\mathbf{1 , 9 0 6}$	$\mathbf{2 1 8}$	
* Note:: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Mateo St

Project	670 Mesquit
Scenario	CP 2026-Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	339	6	76
Through	507	898	0	0
Right	161	1	3	142
Total	668	1,238	9	218

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
218

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 AM	102.9	218	2,133	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	CP 2026 - Opt1 PM
Minor Street	Jesse St	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	170	2	136
Through	654	615	1	1
Right	122	7	3	157
Total	784	792	6	294

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
$W B$
294

Major Street Direction

x	North/South
	East/West

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026-Opt1 PM	138.8	294	1,876	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	CP 2026 - Opt1 PM
Minor Street	Jesse St	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	170	2	136
Through	654	615	1	1
Right	122	7	3	157
Total	784	792	6	294

Major Street Direction
\qquad North/South East/West

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 5 7 6}$	$\mathbf{2 9 4}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.$\$.$			

FEHRケPEERS

Major Street	E 8th St
Street	$\underline{I-10 \text { Westbound ramps }}$

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 AM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	281	0	0	599
Through	0	0	23	15
Right	538	0	447	0
Total	819	0	470	614

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	E 8th St	I-10 Westbound ramps	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{2}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{8 1 9}$		

FEHRケPEERS

Major Street	E 8th St
Minor Street	$\underline{1-10 \text { Westbound ramps }}$

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	281	0	0	599
Through	0	0	23	15
Right	538	0	447	0
Total	819	0	470	614

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

996.6
WB
614

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 AM	170	819	1,903	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	E 8th St
Street	$\underline{I-10 \text { Westbound ramps }}$

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	302	0	0	608
Through	0	0	22	46
Right	443	0	368	0
Total	745	0	390	654

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	1	2	YES
Traffic Volume (VPH) *	1,044	745	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	E 8th St
Minor Street	10 Westbound ramps

Project	670 Mesquit
Scenario	CP 2026-Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	302	0	0	608
Through	0	0	22	46
Right	443	0	368	0
Total	745	0	390	654

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1196.6
WB
654

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2026 - Opt1 PM	217.4	745	1,789
Limiting Value	5	150	650
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y}$		

FEHRケPEERS

Major Street	Porter St
Minor Street	$\underline{1-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 AM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	806	175	0
Through	0	0	91	20
Right	1	253	3	433
Total	1	1,059	269	453

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	Porter St	I-10 Eastbound ramps	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{2}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{4 5 3}$		

FEHRケPEERS

Major Street	Porter St
Minor Street	10 Eastbound ramps

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	806	175	0
Through	0	0	91	20
Right	1	253	3	433
Total	1	1,059	269	453

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

125.3
WB
453

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 AM	15.8	453	1,782	
Limiting Value	5	150	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	Porter St
Minor Street	$\underline{1-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	2	497	274	0
Through	3	0	109	21
Right	0	148	4	701
Total	5	645	387	722

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	Porter St	I-10 Eastbound ramps	
Number of Approach Lanes	1	2	YES
Traffic Volume (VPH) *	1,109	645	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Porter St
Minor Street	10 Eastbound ramps

Project	670 Mesquit
Scenario	CP 2026-Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	2	497	274	0
Through	3	0	109	21
Right	0	148	4	701
Total	5	645	387	722

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

172.8
WB
722

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 PM	34.7	645	1,759	
Limiting Value	5	150	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street Minor Street	S Santa Fe Ave				Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CP } 2026 \text { - Opt1 AM }}$	
	Willow St						
Turn Movement Volumes					Major Street Direction		
	NB	SB	EB	WB			
Left	83	0	45	0		x	North/South
Through	761	486	0	0			East/West
Right	0	12	47	0			
Total	844	498	92	0			

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 3 4 2}$	$\mathbf{9 2}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.${ }^{2}$No			

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Willow St

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 AM
Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	83	0	45	0
Through	761	486	0	0
Right	0	12	47	0
Total	844	498	92	0

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

41.9
WB
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 AM	0	92	1,434	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Willow St

Project	670 Mesquit
Scenario	
Peak Hour $2026-$ Opt1 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	107	1	21	0
Through	790	568	0	0
Right	0	40	13	0
Total	897	609	34	0

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Willow St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	NO
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{3 4}$		

FEHRケPEERS

Major Street	
Sinor Street	Willow St Ave

Project	670 Mesquit
Scenario	CP 2026-Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	107	1	21	0
Through	790	568	0	0
Right	0	40	13	0
Total	897	609	34	0

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

58.1
$W B$
0

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 PM	0	34	1,540	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Mesquit St

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 AM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	63	7	29
Through	753	487	99	0
Right	4	0	34	114
Total	757	550	140	143

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Mesquit St	
Traffic Volume (VPH) *	1	1	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
Minor Street	

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 AM
Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	63	7	29
Through	753	487	99	0
Right	4	0	34	114
Total	757	550	140	143

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

138.3
$W B$
143

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2026 - Opt1 AM	5.5	143	1,590
Limiting Value	4	100	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Mesquit St

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	58	0	36
Through	737	529	86	0
Right	5	2	18	177
Total	742	589	104	213

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Mesquit St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{2 1 3}$		

FEHRケPEERS

Major Street	
Minor Street	

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	58	0	36
Through	737	529	86	0
Right	5	2	18	177
Total	742	589	104	213

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

140.5
WB
213

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2026 - Opt1 PM	8.3	213	1,648
Limiting Value	4	100	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y}$		

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Jesse St

Project	670 Mesquit
Scenario	
Peak Hour $2026-$ Opt1 AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	79	59	13	73
Through	732	451	329	131
Right	340	45	67	19
Total	1,151	555	409	223

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Jesse St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{4 0 9}$		

FEHRケPEERS

		Project Sajor Street	S Santa Fe Ave Minor Street
	Jesse St	Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	79	59	13	73
Through	732	451	329	131
Right	340	45	67	19
Total	1,151	555	409	223

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
$W B$
223

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2026 - Opt1 AM	105.3	409	2,338
Limiting Value	4	100	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Mesquit Minor Street
	Sesse St		Scenario Peak Hour
		PM 2026-Opt1 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	12	64	31	169
Through	703	467	292	252
Right	245	60	74	20
Total	960	591	397	441

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
441

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 PM	208.3	441	2,389	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRやPEERS

		Project	670 Mesquit
Major Street	S Santa Fe Ave	Scenario	CP 2026 - Opt1 PM
Minor Street	Jesse St	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	12	64	31	169
Through	703	467	292	252
Right	245	60	74	20
Total	960	591	397	441

Major Street Direction
\qquad North/South East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 5 5 1}$	$\mathbf{4 4 1}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.$\$.$			

FEHRケPEERS

Major Street Minor Street	Mesquit St				Project Scenario Peak Hour	670 Mesquit	
							pt1 AM
	Jesse St						
Turn Movement Volumes					Major Street Direction		
	NB	SB	EB	WB			
Left	0	56	94	0			North/South
Through	0	0	610	175		x	East/West
Right	0	12	0	14			
Total	0	68	704	189			

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{8 9 3}$	$\mathbf{6 8}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRやPEERS

Major Street	
Mesquit St	
Jesse St	

Project	670 Mesquit
Scenario	CP 2026-Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	56	94	0
Through	0	0	610	175
Right	0	12	0	14
Total	0	68	704	189

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

71.9
WB
189

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2026 - Opt1 AM	3.8	68	961
Limiting Value	4	100	650
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met			

FEHRケPEERS

Major Street Minor Street					Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CP } 2026 \text { - Opt1 PM }}$	
	Mesquit St						
	Jesse St					PM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	0	50	95	0		x	North/South
Through	0	0	486	390			East/West
Right	0	21	0	26			
Total	0	71	581	416			

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{7 1}$	$\mathbf{5 8 1}$	
* Note:: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
Mesquit St	
Jesse St	

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	50	95	0
Through	0	0	486	390
Right	0	21	0	26
Total	0	71	581	416

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

88.6
$W B$
416

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 PM	10.2	581	1,068	
Limiting Value	4	100	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	7th St
Minor Street	US-101 Southbound ramps

Project	670 Mesquit
Scenario	
Peak Hour $2026-$ Opt1 AM	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	14	0	2
Through	0	0	426	2,179
Right	0	304	348	0
Total	0	318	774	2,181

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	7 th St	US-101 Southbound ramps	
Number of Approach Lanes	$\mathbf{2}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{2 , 9 5 5}$	$\mathbf{3 1 8}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	7 th St
Minor Street	$\underline{\text { US-101 Southbound ramps }}$

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 AM
Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	14	0	2
Through	0	0	426	2,179
Right	0	304	348	0
Total	0	318	774	2,181

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

458.9
WB
2,181

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 AM	278	318	3,273	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	7 th St
Minor Street	US-101 Southbound ramps

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	70	0	1
Through	0	0	1,158	1,127
Right	0	194	410	0
Total	0	264	1,568	1,128

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	7th St	US-101 Southbound ramps	et
Number of Approach Lanes	2	2	YES
Traffic Volume (VPH) *	2,696	264	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	7 th St
Street	$\underline{\text { US-101 Southbound ramps }}$

Project	670 Mesquit
Scenario	CP $2026-$ Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	70	0	1
Through	0	0	1,158	1,127
Right	0	194	410	0
Total	0	264	1,568	1,128

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

92.2
$W B$
1,128

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt1 PM	28.9	264	2,960	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

CUMULATIVE PLUS PROJECT (2026) - OPTION 2 SIGNAL WARRANT WORKSHEETS

FEHR欠PEERS

					Project	670 Me	
Major Street	Mateo St				Scenario	CP 2026	pt2 AM
Minor Street	4th PI				Peak Hour	AM	
Turn Moveme	Volumes					Major S	t Direction
	NB	SB	EB	WB			
Left	1	21	0	1		x	North/South
Through	501	626	0	0			East/West
Right	104	0	0	25			
Total	606	647	0	26			

	Major Street	Minor Street	Warrant Met
	Mateo St	4th PI	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 2 5 3}$	$\mathbf{2 6}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Mateo St
Minor Street	4 th PI

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	21	0	1
Through	501	626	0	0
Right	104	0	0	25
Total	606	647	0	26

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

13.3
WB
26

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2026 - Opt2 AM	0.1	26	1,279
Limiting Value	4	100	650
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met			

FEHRケPEERS

					Project	670 Me	
Major Street	Mateo St				Scenario	CP 2026	pt2 AM
Minor Street	Willow St				Peak Hour	AM	
Turn Moveme	t Volumes					Major	t Direction
	NB	SB	EB	WB			
Left	1	39	0	48		x	North/South
Through	664	658	0	0			East/West
Right	93	0	0	82			
Total	758	697	0	130			

	Major Street	Minor Street	Warrant Met
	Mateo St	Willow St	Warrant Met
Number of Approach Lanes	1	1	YES
Traffic Volume (VPH) *	1,455	130	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Mateo St
Minor Street	

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	39	0	48
Through	664	658	0	0
Right	93	0	0	82
Total	758	697	0	130

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

47.2
$W B$
130

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 AM	1.7	130	1,585	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Major Street Minor Street					Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CP } 2026 \text { - Opt2 PM }}$	
	Mateo St						
	Willow St					PM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	0	22	0	67		x	North/South
Through	828	875	0	0			East/West
Right	33	0	0	101			
Total	861	897	0	168			

	Major Street	Minor Street	Warrant Met
	Mateo St	Willow St	Warrant Met
Number of Approach Lanes	1	1	YES
Traffic Volume (VPH) *	1,758	168	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
Minor Street	Willow St

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	22	0	67
Through	828	875	0	0
Right	33	0	0	101
Total	861	897	0	168

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

241.6
WB
168

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 PM	11.3	168	1,926	
Limiting Value	4	100	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Major Street Minor Street	Mateo St				Project Scenario Peak Hour	670 Mesquit	
						CP 2026	pt2 AM
	Jesse St					AM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	0	350	6	84		x	North/South
Through	510	898	0	0			East/West
Right	168	1	3	151			
Total	678	1,249	9	235			

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	
Number of Approach Lanes	1	1	YES
Traffic Volume (VPH) *	1,927	235	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Mateo St
Minor Street	

Project	670 Mesquit
Scenario	CP 2026-Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	350	6	84
Through	510	898	0	0
Right	168	1	3	151
Total	678	1,249	9	235

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
235

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 AM	111	235	2,171	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Major Street Minor Street					Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CP } 2026 \text { - Opt2 PM }}$	
	Mateo St						
	Jesse St					PM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	8	181	2	143		x	North/South
Through	657	615	1	1			East/West
Right	127	7	3	167			
Total	792	803	6	311			

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 5 9 5}$	$\mathbf{3 1 1}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Mateo St
Minor Street	

Project	670 Mesquit
Scenario	CP 2026-Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	181	2	143
Through	657	615	1	1
Right	127	7	3	167
Total	792	803	6	311

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
311

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 PM	146.9	311	1,912	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	E 8th St
Minor Street	

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 AM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	281	0	0	599
Through	0	0	23	15
Right	538	0	447	0
Total	819	0	470	614

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	E 8th St	I-10 Westbound ramps	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{2}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{8 1 9}$		

FEHRケPEERS

Major Street	E 8th St
Minor Street	10 Westbound ramps

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	281	0	0	599
Through	0	0	23	15
Right	538	0	447	0
Total	819	0	470	614

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

996.6
WB
614

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 AM	170	819	1,903	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	E 8th St
Minor Street	

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	302	0	0	608
Through	0	0	22	46
Right	443	0	368	0
Total	745	0	390	654

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	1	2	YES
Traffic Volume (VPH) *	1,044	745	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	E 8th St
Minor Street	10 Westbound ramps

Project	670 Mesquit
Scenario	CP 2026-Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	302	0	0	608
Through	0	0	22	46
Right	443	0	368	0
Total	745	0	390	654

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1196.6
WB
654

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2026 - Opt2 PM	217.4	745	1,789
Limiting Value	5	150	650
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y}$		

FEHRケPEERS

Major Street	Porter St
Minor Street	

Project	670 Mesquit
Scenario	
Peak Hour $2026-$ Opt2 AM	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	806	175	0
Through	0	0	91	20
Right	1	253	3	433
Total	1	1,059	269	453

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	Porter St	I-10 Eastbound ramps	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{2}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{4 5 3}$		

FEHRケPEERS

Major Street	Porter St
Minor Street	10 Eastbound ramps

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	806	175	0
Through	0	0	91	20
Right	1	253	3	433
Total	1	1,059	269	453

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

125.3
WB
453

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 AM	15.8	453	1,782	
Limiting Value	5	150	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	Porter St
Minor Street	$\underline{1-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	2	497	274	0
Through	3	0	109	21
Right	0	148	4	701
Total	5	645	387	722

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	Porter St	I-10 Eastbound ramps	
Number of Approach Lanes	1	2	YES
Traffic Volume (VPH) *	1,109	645	
Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
Porter St	
Minor Street	$\underline{1-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	CP 2026-Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	2	497	274	0
Through	3	0	109	21
Right	0	148	4	701
Total	5	645	387	722

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

172.8
WB
722

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 PM	34.7	645	1,759	
Limiting Value	5	150	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street Minor Street	S Santa Fe Ave				Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CP } 2026 \text { - Opt2 AM }}$	
	Willow St					AM	
Turn Movement Volumes					Major Street Direction		
	NB	SB	EB	WB			
Left	89	0	45	0		x	North/South
Through	775	500	0	0			East/West
Right	0	12	47	0			
Total	864	512	92	0			

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 3 7 6}$	$\mathbf{9 2}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.${ }^{2}$No			

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Willow St

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	89	0	45	0
Through	775	500	0	0
Right	0	12	47	0
Total	864	512	92	0

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

41.9
WB
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 AM	0	92	1,468	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Willow St

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	113	1	21	0
Through	806	581	0	0
Right	0	40	13	0
Total	919	622	34	0

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Willow St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	NO
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{3 4}$		

FEHRケPEERS

Major Street	
Sinor Street	Willow St Ave

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	113	1	21	0
Through	806	581	0	0
Right	0	40	13	0
Total	919	622	34	0

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

58.1
$W B$
0

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 PM	0	34	1,575	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street Minor Street	S Santa Fe Ave				Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CP } 2026 \text { - Opt2 AM }}$	
	Mesquit						
Turn Movement Volumes					Major Street Direction		
	NB	SB	EB	WB			
Left	0	71	7	32		x	North/South
Through	761	493	107	0			East/West
Right	5	0	35	127			
Total	766	564	149	159			

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Mesquit St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	Y
Traffic Volume (VPH) *	$\mathbf{1 , 3 3 0}$	$\mathbf{1 5 9}$	
* Note:: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
Minor Street	

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	71	7	32
Through	761	493	107	0
Right	5	0	35	127
Total	766	564	149	159

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

138.3
WB
159

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 AM	6.1	159	1,638	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Mesquit St

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	67	0	39
Through	745	535	94	0
Right	6	2	19	190
Total	751	604	113	229

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Mesquit St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{2 2 9}$		

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Scenario Mesquit
		CP 2026-Opt2 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	67	0	39
Through	745	535	94	0
Right	6	2	19	190
Total	751	604	113	229

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

140.5
WB
229

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 PM	8.9	229	1,697	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Major Street Minor Street					Project Scenario Peak Hour	670 Mesquit	
	S Santa Fe Ave					CP 2026	pt2 AM
	Jesse St					AM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	79	65	13	75		x	North/South
Through	736	452	352	151			East/West
Right	349	47	67	24			
Total	1,164	564	432	250			

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Jesse St	
Number of Approach Lanes	1	1	YES
Traffic Volume (VPH) *	1,728	432	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Scenario Mesquit
Minor Street	Jesse St	Peak Hour 2026-Opt2 AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	79	65	13	75
Through	736	452	352	151
Right	349	47	67	24
Total	1,164	564	432	250

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
250

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026- Opt2 AM	118.1	432	2,410	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Jesse St

Project	670 Mesquit
Scenario	
Peak Hour $2026-$ Opt2 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	12	70	31	170
Through	707	468	316	270
Right	255	62	74	24
Total	974	600	421	464

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Jesse St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{4 6 4}$		

FEHRケPEERS

Major Street			
Minor Street	S Santa Fe Ave	Project Scenario Jesse St	670 Mesquit
		Peak Hour 2026-Opt2 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	12	70	31	170
Through	707	468	316	270
Right	255	62	74	24
Total	974	600	421	464

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
464

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026- Opt2 PM	219.1	464	2,459	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHR欠PEERS

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	1	1	NO
Traffic Volume (VPH) *	985	76	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRやPEERS

Major Street	
Mesquit St	
Jesse St	

Project	670 Mesquit
Scenario	CP 2026-Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	23	62	98	0
Through	3	1	644	200
Right	0	13	28	15
Total	26	76	770	215

Major Street Direction

	North/South
x	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

71.9
WB
215

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2026 - Opt2 AM	4.3	76	1,087
Limiting Value	4	100	800
Condition Satisfied?	Met	Not Met	Met
Warrant Met			

FEHRケPEERS

Major Street Minor Street					Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CP } 2026 \text { - Opt2 PM }}$	
	Mesquit St						
	Jesse St					PM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	24	55	100	0		x	North/South
Through	1	0	519	414			East/West
Right	0	21	6	28			
Total	25	76	625	442			

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 0 1}$	$\mathbf{6 2 5}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Mesquit St

Project	670 Mesquit
Scenario	CP 2026-Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	24	55	100	0
Through	1	0	519	414
Right	0	21	6	28
Total	25	76	625	442

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

88.6
$W B$
442

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 PM	10.9	625	1,168	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	7th St
Minor Street	US-101 Southbound ramps

Project	670 Mesquit
Scenario	
Peak Hour $2026-$ Opt2 AM	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	14	0	2
Through	0	0	428	2,182
Right	0	304	348	0
Total	0	318	776	2,184

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	7th St	US-101 Southbound ramps	et
Number of Approach Lanes	2	2	YES
Traffic Volume (VPH) *	2,960	318	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	7th St
Street	US-101 Southbound ramps

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	14	0	2
Through	0	0	428	2,182
Right	0	304	348	0
Total	0	318	776	2,184

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

458.9
WB
2,184

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 AM	278.4	318	3,278	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	7 th St
Minor Street	US-101 Southbound ramps

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	70	0	1
Through	0	0	1,161	1,129
Right	0	194	410	0
Total	0	264	1,571	1,130

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	7th St	US-101 Southbound ramps	et
Number of Approach Lanes	2	2	YES
Traffic Volume (VPH) *	2,701	264	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	7th St
Street	$\underline{U S}-101$ Southbound ramps

Project	670 Mesquit
Scenario	CP $2026-$ Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	70	0	1
Through	0	0	1,161	1,129
Right	0	194	410	0
Total	0	264	1,571	1,130

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

92.2
WB
1,130

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2026 - Opt2 PM	28.9	264	2,965	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

CUMULATIVE BASE (2040)

SIGNAL WARRANT WORKSHEETS

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	CB 2040 AM
Minor Street	4th Pl	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	22	0	1
Through	472	576	0	0
Right	90	0	0	26
Total	563	598	0	27

Major Street Direction
\qquad North/South
\qquad East/West

	Major Street	Minor Street	Warrant Met
	Mateo St	4th PI	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 1 6 1}$	$\mathbf{2 7}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	CB 2040 AM
Minor Street	4th Pl	Peak Hour	AM

Turn Movement Volumes								
	NB	SB	EB	WB				
Left	1	22	0	1				
Through	472	576	0	0				
Right	90	0	0	26				
Total	563	598	0	27				

Major Street Direction

x	North/South
	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street	1
Total Approaches	3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

12.8
WB
27

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 AM	0.1	27	1,188	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	Mateo St Minor Street
	Sth Pl		Peasquit

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	39	0	28
Through	709	697	0	0
Right	50	0	0	21
Total	759	736	0	49

Major Street Direction
\qquad North/South East/West

	Major Street	Minor Street	Warrant Met
	Mateo St	4th PI	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 4 9 5}$	$\mathbf{4 9}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	CB 2040 PM
Minor Street	4th Pl	Peak Hour	PM

Turn Movement Volumes								
	NB	SB	EB	WB				
Left	0	39	0	28				
Through	709	697	0	0				
Right	50	0	0	21				
Total	759	736	0	49				

Major Street Direction

x	North/South
	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street	1
Total Approaches	3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

42.8
$W B$
49

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 PM	0.6	49	1,544	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

| | | Project
 Major Street
 Minor Street | Mateo St |
| :--- | :--- | :--- | :--- | | Scenario Mesquit |
| :--- |
| |

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	40	0	33
Through	664	607	0	0
Right	94	0	0	43
Total	759	647	0	76

Major Street Direction
\qquad North/South
\qquad East/West

	Major Street	Minor Street	Warrant Met
	Mateo St	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 4 0 6}$	$\mathbf{7 6}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street Minor Street					Project	670 Mesquit	
	Mateo St				Scenario Peak Hour	CB 2040 AM	
	Willow St						
Turn Movement Volumes					Major Street Direction		
	NB	SB	EB	WB			
Left	1	40	0	33		X	North/South
Through	664	607	0	0			East/West
Right	94	0	0	43			
Total	759	647	0	76			

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

35.4
WB
76

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 AM	0.7	76	1,482	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	CB 2040 PM
Minor Street	Willow St	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	23	0	45
Through	816	837	0	0
Right	34	0	0	30
Total	850	860	0	75

Major Street Direction

$\mathrm{x} \quad$ North/South	
	East/West

	Major Street	Minor Street	Warrant Met
	Mateo St	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 7 1 0}$	$\mathbf{7 5}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Mateo St Minor Street		
	Willow St	Scenario			
Meak Hour					CB 2040 PM
:---					

Turn Movement Volumes								
	NB	SB	EB	WB				
Left	0	23	0	45				
Through	816	837	0	0				
Right	34	0	0	30				
Total	850	860	0	75				

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

101
WB
75

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 PM	2.1	75	1,785	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	Mateo St Sinor Street		
	Jesse St	Peak Hour			CB 2040 AM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	214	6	21
Through	496	916	0	0
Right	25	1	3	96
Total	521	1,131	9	117

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	(VPH) *
Traffic Volume (VPH	$\mathbf{1 , 6 5 2}$	$\mathbf{1 1 7}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	CB 2040 AM
Minor Street	Jesse St	Peak Hour	AM

Turn Movement Volumes								
	NB	SB	EB	WB				
Left	0	214	6	21				
Through	496	916	0	0				
Right	25	1	3	96				
Total	521	1,131	9	117				

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

53.9
WB
117

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 AM	1.8	117	1,778	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	Mateo St Minor Street
	Sesse St		Scenario Peak Hour
		PM 2040 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	63	2	14
Through	607	625	1	1
Right	19	7	3	71
Total	634	695	6	86

Major Street Direction

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 3 2 9}$	$\mathbf{8 6}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mateo St	Scenario	CB 2040 PM
Minor Street	Jesse St	Peak Hour	PM

Turn Movement Volumes								
	NB	SB	EB	WB				
Left	8	63	2	14				
Through	607	625	1	1				
Right	19	7	3	71				
Total	634	695	6	86				

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

20.7
WB
86

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 PM	0.5	86	1,421	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	E 8th St	Scenario	CB 2040 AM
Minor Street	I-10 Westbound ramps	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	287	0	0	609
Through	0	0	24	16
Right	533	0	453	0
Total	820	0	477	625

Major Street Direction

	North/South
	East/West

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 1 0 2}$	$\mathbf{8 2 0}$	
Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	E 8th St	Scenario	CB 2040 AM
Minor Street	I-10 Westbound ramps	Peak Hour	AM

Turn Movement Volumes				
	NB	SB	EB	WB
Left	287	0	0	609
Through	0	0	24	16
Right	533	0	453	0
Total	820	0	477	625

Major Street Direction

	North/South
x	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1092.4
WB
625

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 AM	189.7	820	1,922	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	E 8th St	Scenario	CB 2040 PM
Minor Street	I-10 Westbound ramps	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	308	0	0	605
Through	0	0	23	47
Right	443	0	354	0
Total	751	0	377	652

Major Street Direction

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 0 2 9}$	$\mathbf{7 5 1}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	E 8th St	Scenario	CB 2040 PM
Minor Street	I-10 Westbound ramps	Peak Hour	PM

Turn Movement Volumes				
	NB	SB	EB	WB
Left	308	0	0	605
Through	0	0	23	47
Right	443	0	354	0
Total	751	0	377	652

Major Street Direction

	North/South
x	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1151.8
$W B$
652

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 PM	208.6	751	1,780	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street
	Mesquit St	Peak Hourio	
		CB 2040 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	2	0	1
Through	724	502	0	0
Right	0	2	0	2
Total	724	506	0	3

Major Street Direction
\qquad North/South East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Mesquit St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 2 3 0}$	$\mathbf{3}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street		
	Mesquit St	Scenario			
Peak Hour					CB 2040 PM
:---					

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	2	0	1
Through	724	502	0	0
Right	0	2	0	2
Total	724	506	0	3

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

37.3
WB
3

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 PM	0	3	1,233	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRやPEERS

		Project	670 Mesquit
Major Street	Porter St	Scenario	CB 2040 PM
Minor Street	I-10 Eastbound ramps	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	2	480	257	0
Through	3	0	112	22
Right	0	150	4	685
Total	5	630	373	707

Major Street Direction

	North/South
x	East/West

	Major Street	Minor Street	Warrant Met
	Porter St	I-10 Eastbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 0 8 0}$	$\mathbf{6 3 0}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	Porter St Sinor Street		
	I-10 Eastbound ramps	Peak Hour			CB 2040 PM
:---					

Turn Movement Volumes				
	NB	SB	EB	WB
Left	2	480	257	0
Through	3	0	112	22
Right	0	150	4	685
Total	5	630	373	707

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

117.3
WB
707

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 PM	23	630	1,715	
Limiting Value	5	150	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Sinor Street		
	Willow St	Peak Hour			CB 2040 AM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	34	0	45	0
Through	717	417	0	0
Right	0	12	48	0
Total	751	429	93	0

Major Street Direction

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 1 8 0}$	$\mathbf{9 3}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

23.3
$W B$
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 AM	0	93	1,273	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	S Santa Fe Ave	Scenario	CB 2040 PM
Minor Street	Willow St	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	18	1	22	0
Through	718	497	0	0
Right	0	40	14	0
Total	736	538	36	0

Major Street Direction

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 2 7 4}$	$\mathbf{3 6}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street		
	Willow St	Scenario			
Peak Hour					CB 2040 PM
:---					

Turn Movement Volumes
Major Street Direction

	NB	SB	EB	WB
Left	18	1	22	0
Through	718	497	0	0
Right	0	40	14	0
Total	736	538	36	0

$\mathrm{x} \quad$ North/South	
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

24.7
WB
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 PM	0	36	1,310	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met	NO			

FEHRケPEERS

		Project	670 Mesquit
Major Street	S Santa Fe Ave	Scenario	CB 2040 AM
Minor Street	Mesquit St	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	7	7	1
Through	749	465	1	0
Right	0	0	14	9
Total	749	472	22	10

Major Street Direction

$\mathrm{x} \quad$ North/South	
	East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Mesquit St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 2 2 1}$	$\mathbf{2 2}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	S Santa Fe Ave	Scenario	CB 2040 AM
Minor Street	Mesquit St	Peak Hour	AM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	7	7	1
Through	749	465	1	0
Right	0	0	14	9
Total	749	472	22	10

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

46
$W B$
10

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 AM	0.1	22	1,253	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street
	Mesquit St	Peak Hourio	
		CB 2040 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	2	0	1
Through	724	502	0	0
Right	0	2	0	2
Total	724	506	0	3

Major Street Direction
\qquad North/South East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Mesquit St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 2 3 0}$	$\mathbf{3}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Minor Street		
	Mesquit St	Scenario			
Peak Hour					CB 2040 PM
:---					

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	2	0	1
Through	724	502	0	0
Right	0	2	0	2
Total	724	506	0	3

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

37.3
WB
3

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 PM	0	3	1,233	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Sinor Street
	Jesse St	Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	81	4	13	18
Through	736	453	2	5
Right	16	20	69	3
Total	833	477	84	26

Major Street Direction
\qquad North/South East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 3 1 0}$	$\mathbf{8 4}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street					Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CB } 2040 \text { AM }}$	
	S Santa Fe Ave						
	Jesse St						
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	81	4	13	18		X	North/South
Through	736	453	2	5			East/West
Right	16	20	69	3			
Total	833	477	84	26			

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

68.2
$W B$
26

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 AM	0.5	84	1,420	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met	NO			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Sinor Street
	Jesse St	Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	81	4	13	18
Through	736	453	2	5
Right	16	20	69	3
Total	833	477	84	26

Major Street Direction
\qquad North/South East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 3 1 0}$	$\mathbf{8 4}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street					Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CB } 2040 \text { AM }}$	
	S Santa Fe Ave						
	Jesse St						
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	81	4	13	18		X	North/South
Through	736	453	2	5			East/West
Right	16	20	69	3			
Total	833	477	84	26			

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

68.2
$W B$
26

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 AM	0.5	84	1,420	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met	NO			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Sinor Sesquit		
		Peak Hour			CB 2040 PM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	12	3	32	9
Through	696	471	3	3
Right	5	30	76	3
Total	713	504	111	15

Major Street Direction

$\mathrm{x} \quad$ North/South	
	East/West

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 2 1 7}$	$\mathbf{1 1 1}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project Major Street	S Santa Fe Ave Sinor Senario
	CB 2040 PM		

Turn Movement Volumes				
	NB	SB	EB	WB
Left	12	3	32	9
Through	696	471	3	3
Right	5	30	76	3
Total	713	504	111	15

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

36.6
WB
15

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 PM	0.2	111	1,343	
Limiting Value	4	100	800	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	Mesquit St Minor Street		
	Sesse St	Peak Hourio			CB 2040 AM
:---					

Turn Movement Volumes

	NB	SB	EB	WB
Left	24	0	8	0
Through	3	1	0	0
Right	0	7	29	0
Total	27	8	37	0

Major Street Direction

	North/South
	East/West

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{3 7}$	$\mathbf{2 7}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.$.$			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mesquit St	Scenario	CB 2040 AM
Minor Street	Jesse St	Peak Hour	AM

Turn Movement Volumes
Major Street Direction

	NB	SB	EB	WB
Left	24	0	8	0
Through	3	1	0	0
Right	0	7	29	0
Total	27	8	37	0

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

8.6
$W B$
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 AM	0	27	72	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	Mesquit St
Minor Street	Sesse St	Scenario Mesquit Peak Hour	CB 2040 PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	25	0	4	0
Through	1	0	0	0
Right	0	15	6	0
Total	26	15	10	0

Major Street Direction

$\mathrm{x} \quad$ North/South	
	East/West

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{4 1}$	$\mathbf{1 0}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	Mesquit St	Scenario	CB 2040 PM
Minor Street	Jesse St	Peak Hour	PM

Turn Movement Volumes				
	NB	SB	EB	WB
Left	25	0	4	0
Through	1	0	0	0
Right	0	15	6	0
Total	26	15	10	0

Major Street Direction

x	North/South
	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

8.5
$W B$
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 PM	0	10	51	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Not Met	
Warrant Met				

FEHRケPEERS

		Project Major Street	7th St
Minor Street	US-101 Southbound ramps		Scenario Peak Hour
		PB 2040 AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	15	0	2
Through	0	0	402	2,104
Right	0	285	346	0
Total	0	300	748	2,106

Major Street Direction

	North/South
	East/West

	Major Street	Minor Street	Warrant Met
	7th St	US-101 Southbound ramps	
Number of Approach Lanes	$\mathbf{2}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{2 , 8 5 4}$	$\mathbf{3 0 0}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

		Project	670 Mesquit
Major Street	7th St	Scenario	CB 2040 AM
Minor Street	US-101 Southbound ramps	Peak Hour	AM

Turn Movement Volumes								
	NB	SB	EB	WB				
Left	0	15	0	2				
Through	0	0	402	2,104				
Right	0	285	346	0				
Total	0	300	748	2,106				

Major Street Direction

	North/South
x	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

334.6
WB
2,106

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 AM	195.7	300	3,154	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

		Project	670 Mesquit
Major Street	7th St	Scenario	CB 2040 PM
Minor Street	US-101 Southbound ramps	Peak Hour	PM

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	72	0	1
Through	0	0	1,088	1,059
Right	0	181	391	0
Total	0	253	1,479	1,060

	Major Street	Minor Street	Warrant Met
	7th St	US-101 Southbound ramps	
Number of Approach Lanes	$\mathbf{2}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{2 , 5 3 9}$	$\mathbf{2 5 3}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

| | | Project
 Major Street | 7th St |
| :--- | :--- | :--- | :--- | | Scenario Mesquit |
| :--- |
| Minor Street | US-101 Southbound ramps \quad| CB 2040 PM | |
| :--- | :--- |
| | |

Turn Movement Volumes								
	NB	SB	EB	WB				
Left	0	72	0	1				
Through	0	0	1,088	1,059				
Right	0	181	391	0				
Total	0	253	1,479	1,060				

Major Street Direction

	North/South
x	East/West

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

70.6
WB
1,060

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CB 2040 PM	20.8	253	2,792	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

CUMULATIVE PLUS PROJECT (2040) - OPTION 1 SIGNAL WARRANT WORKSHEETS

FEHR欠PEERS

					Project	670 Me	
Major Street	Mateo St				Scenario	CP 2040	t1 AM
Minor Street	4th PI				Peak Hour	AM	
Turn Moveme	Volumes					Major S	t Direction
	NB	SB	EB	WB			
Left	1	22	0	1		x	North/South
Through	500	628	0	0			East/West
Right	104	0	0	26			
Total	605	650	0	27			

	Major Street	Minor Street	Warrant Met
	Mateo St	4th PI	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 2 5 5}$	$\mathbf{2 7}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
Minor Street	4 th PI St

Project	670 Mesquit
Scenario	CP 2040 Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	22	0	1
Through	500	628	0	0
Right	104	0	0	26
Total	605	650	0	27

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

13.4
WB
27

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 AM	0.1	27	1,282	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	Mateo St
Minor Street	4th Pl

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	39	0	28
Through	760	741	0	0
Right	83	0	0	21
Total	843	780	0	49

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	Mateo St	4th PI	
Traffic Volume (VPH) *	1	$\mathbf{1}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches.			
Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Mateo St
Minor Street	4th Pl

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	39	0	28
Through	760	741	0	0
Right	83	0	0	21
Total	843	780	0	49

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

57
WB
49

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt1 PM	0.8	49	1,672
Limiting Value	4	100	650
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met			

FEHRケPEERS

Major Street					Project Scenario Peak Hour	670 Mesquit	
	Mateo St					CP 2040	t1 AM
Minor Street	Willow St					AM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	1	40	0	47		x	North/South
Through	671	659	0	0			East/West
Right	94	0	0	78			
Total	766	699	0	125			

	Major Street	Minor Street	Warrant Met
	Mateo St	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	Y
Traffic Volume (VPH) *	$\mathbf{1 , 4 6 5}$	$\mathbf{1 2 5}$	
* Note:: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Mateo St
Minor Street	

Project	670 Mesquit
Scenario	CP 2040 Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	40	0	47
Through	671	659	0	0
Right	94	0	0	78
Total	766	699	0	125

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

51
$W B$
125

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 AM	1.8	125	1,590	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Major Street	Mateo St
Minor Street	Willow St

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt1 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	23	0	67
Through	833	881	0	0
Right	34	0	0	97
Total	867	904	0	164

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	Mateo St	Willow St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{1 6 4}$		

FEHRケPEERS

Major Street	
Mateo St	
Minor Street	Willow St

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	23	0	67
Through	833	881	0	0
Right	34	0	0	97
Total	867	904	0	164

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

270.4
$W B$
164

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 PM	12.3	164	1,935	
Limiting Value	4	100	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHR欠PEERS

					Project	670 Me	
Major Street	Mateo St				Scenario	CP 2040	t1 AM
Minor Street	Jesse St				Peak Hour	AM	
Turn Moveme	Volumes					Major S	t Direction
	NB	SB	EB	WB			
Left	0	343	6	77		x	North/South
Through	514	916	0	0			East/West
Right	162	1	3	144			
Total	676	1,260	9	221			

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	Warrant Met
Number of Approach Lanes	1	1	YES
Traffic Volume (VPH) *	1,936	221	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRやPEERS

Major Street	Mateo St
Minor Street	

Project	670 Mesquit
Scenario	CP 2040 Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	343	6	77
Through	514	916	0	0
Right	162	1	3	144
Total	676	1,260	9	221

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
221

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 AM	104.4	221	2,166	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Major Street	Mateo St
Minor Street	

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt1 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	171	2	137
Through	661	625	1	1
Right	123	7	3	157
Total	792	803	6	295

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	Mateo St	Jesse St	
Traffic Volume (VPH) *	1	1	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Mateo St
Minor Street	Jesse St

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	171	2	137
Through	661	625	1	1
Right	123	7	3	157
Total	792	803	6	295

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
295

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 PM	139.3	295	1,896	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	E 8th St
Street	$\underline{I-10 \text { Westbound ramps }}$

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt1 AM	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	287	0	0	613
Through	0	0	24	16
Right	547	0	458	0
Total	834	0	482	629

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	1	2	YES
Traffic Volume (VPH) *	1,111	834	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	E 8th St
Minor Street	$\underline{1-10 \text { Westbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	287	0	0	613
Through	0	0	24	16
Right	547	0	458	0
Total	834	0	482	629

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1132
WB
629

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt1 AM	197.8	834	1,945
Limiting Value	5	150	650
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

Major Street	E 8th St
Minor Street	$\underline{\text { I-10 Westbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	308	0	0	620
Through	0	0	23	47
Right	453	0	375	0
Total	761	0	398	667

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	1	2	YES
Traffic Volume (VPH) *	1,065	761	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	E 8th St
Minor Street	$\underline{\text { I-10 Westbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	308	0	0	620
Through	0	0	23	47
Right	453	0	375	0
Total	761	0	398	667

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1352.7
WB
667

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt1 PM	250.6	761	1,826
Limiting Value	5	150	650
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y}$		

FEHRケPEERS

Major Street	Porter St
Minor Street	$\underline{1-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt1 AM	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	822	179	0
Through	0	0	94	21
Right	1	258	3	442
Total	1	1,080	276	463

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	Porter St	I-10 Eastbound ramps	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{2}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{4 6 3}$		

FEHRケPEERS

Major Street	Porter St
	$\underline{1-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	822	179	0
Through	0	0	94	21
Right	1	258	3	442
Total	1	1,080	276	463

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

142
$W B$
463

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt1 AM	18.3	463	1,820
Limiting Value	5	150	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

Major Street	Porter St
Minor Street	$\underline{I-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	2	503	280	0
Through	3	0	112	22
Right	0	150	4	714
Total	5	653	396	736

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	Porter St	I-10 Eastbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 1 3 2}$	$\mathbf{6 5 3}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Porter St
	$\underline{1-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	2	503	280	0
Through	3	0	112	22
Right	0	150	4	714
Total	5	653	396	736

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

195.9
WB
736

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt1 PM	40.1	653	1,790
Limiting Value	5	150	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Willow St

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt1 AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	83	0	45	0
Through	776	491	0	0
Right	0	12	48	0
Total	859	503	93	0

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Willow St	
Traffic Volume (VPH) *	1	1	NO
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
S Santa Fe Ave	
Street	Willow St

Project	670 Mesquit
Scenario	CP 2040 Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	83	0	45	0
Through	776	491	0	0
Right	0	12	48	0
Total	859	503	93	0

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

43.4
$W B$
0

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt1 AM	0	93	1,455
Limiting Value	4	100	650
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met			

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Willow St

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt1 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	108	1	22	0
Through	802	576	0	0
Right	0	40	14	0
Total	910	617	36	0

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Willow St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	NO
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{3 6}$		

FEHRケPEERS

Major Street	
S Santa Fe Ave	
Street	Willow St

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	108	1	22	0
Through	802	576	0	0
Right	0	40	14	0
Total	910	617	36	0

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

62.3
$W B$
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 PM	0	36	1,563	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Mesquit St

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt1 AM	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	63	7	29
Through	769	493	99	0
Right	4	0	35	114
Total	773	556	141	143

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Mesquit St	
Traffic Volume (VPH) *	1	1	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
S Santa Fe Ave	
Street	Mesquit St

Project	670 Mesquit
Scenario	CP 2040 Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	63	7	29
Through	769	493	99	0
Right	4	0	35	114
Total	773	556	141	143

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

142.4
$W B$
143

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 AM	5.7	143	1,613	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Mesquit St

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	58	0	36
Through	749	537	86	0
Right	5	2	18	177
Total	754	597	104	213

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Mesquit St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{2 1 3}$		

FEHRケPEERS

Major Street	S Santa Fe Ave
Street	Mesquit St

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	58	0	36
Through	749	537	86	0
Right	5	2	18	177
Total	754	597	104	213

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

147.2
WB
213

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 PM	8.7	213	1,668	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Jesse St

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt1 AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	81	59	13	74
Through	748	457	329	131
Right	341	45	69	19
Total	1,170	561	411	224

Major Street Direction

x	North/South
	East/West

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Jesse St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{4 1 1}$		

FEHRケPEERS

Major Street	
Sinor Street	Jesse St Fe Ave

Project	670 Mesquit
Scenario	CP 2040 Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	81	59	13	74
Through	748	457	329	131
Right	341	45	69	19
Total	1,170	561	411	224

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
224

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt1 AM	105.8	411	2,366
Limiting Value	4	100	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y}$		

FEHR欠PEERS

Major Street	S Santa Fe Ave
Minor Street	Jesse St

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt1 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	12	64	32	169
Through	714	474	292	252
Right	245	61	76	20
Total	971	599	400	441

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Jesse St	
Traffic Volume (VPH) *	1	1	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{4 4 1}$		

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Jesse St

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	12	64	32	169
Through	714	474	292	252
Right	245	61	76	20
Total	971	599	400	441

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
$W B$
441

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt1 PM	208.3	441	2,411
Limiting Value	4	100	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

Major Street					Project Scenario Peak Hour	670 Mesquit	
	Mesquit St					CP 2040 Opt1 AM	
Minor Street	Jesse St						
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	0	56	94	0			North/South
Through	0	0	610	175		x	East/West
Right	0	12	0	14			
Total	0	68	704	189			

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{8 9 3}$	$\mathbf{6 8}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRやPEERS

Major Street	Mesquit St
	Jesse St

Project	670 Mesquit
Scenario	CP 2040 Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	56	94	0
Through	0	0	610	175
Right	0	12	0	14
Total	0	68	704	189

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

72.9
WB
189

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 AM	3.8	68	961	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street Minor Street					Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CP } 2040 \text { Opt1 PM }}$	
	Mesquit St						
	Jesse St					PM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	0	50	95	0		x	North/South
Through	0	0	486	390			East/West
Right	0	22	0	26			
Total	0	72	581	416			

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{7 2}$	$\mathbf{5 8 1}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRやPEERS

Major Street	Mesquit St
Minor Street	Jesse St

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	50	95	0
Through	0	0	486	390
Right	0	22	0	26
Total	0	72	581	416

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

89.5
$W B$
416

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 PM	10.3	581	1,069	
Limiting Value	4	100	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Major Street	7th St
Minor Street	$\underline{\text { US-101 Southbound ramps }}$

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt1 AM	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	15	0	2
Through	0	0	432	2,224
Right	0	308	352	0
Total	0	323	784	2,226

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	7th St	US-101 Southbound ramps	
Traffic Volume (VPH) *	$\mathbf{2}$	$\mathbf{2}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	7 th St
Street	US-101 Southbound ramps

Project	670 Mesquit
Scenario	CP 2040 Opt1 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	15	0	2
Through	0	0	432	2,224
Right	0	308	352	0
Total	0	323	784	2,226

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

498.1
WB
2,226

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 AM	308	323	3,333	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	7th St
Minor Street	$\underline{\text { US-101 Southbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	72	0	1
Through	0	0	1,178	1,143
Right	0	197	414	0
Total	0	269	1,592	1,144

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	7th St	US-101 Southbound ramps	et
Number of Approach Lanes	2	2	YES
Traffic Volume (VPH) *	2,736	269	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	7th St
Minor Street	US-101 Southbound ramps

Project	670 Mesquit
Scenario	CP 2040 Opt1 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	72	0	1
Through	0	0	1,178	1,143
Right	0	197	414	0
Total	0	269	1,592	1,144

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

104.7
WB
1,144

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt1 PM	33.3	269	3,005	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

CUMULATIVE PLUS PROJECT (2040) - OPTION 2 SIGNAL WARRANT WORKSHEETS

FEHR欠PEERS

					Project	670 Me	
Major Street	Mateo St				Scenario	CP 2040	t2 AM
Minor Street	4th PI				Peak Hour	AM	
Turn Moveme	Volumes					Major S	t Direction
	NB	SB	EB	WB			
Left	1	22	0	1		x	North/South
Through	505	633	0	0			East/West
Right	106	0	0	26			
Total	612	655	0	27			

	Major Street	Minor Street	Warrant Met
	Mateo St	4th PI	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 2 6 7}$	$\mathbf{2 7}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
Minor Street	4 th PI St

Project	670 Mesquit
Scenario	CP 2040 Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	22	0	1
Through	505	633	0	0
Right	106	0	0	26
Total	612	655	0	27

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

13.4
WB
27

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt2 AM	0.1	27	1,294
Limiting Value	4	100	650
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met			

FEHRケPEERS

Major Street	Mateo St
Minor Street	4th Pl

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	39	0	28
Through	765	746	0	0
Right	86	0	0	21
Total	851	785	0	49

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	Mateo St	4 th PI	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	NO
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{4 9}$		

FEHRケPEERS

Major Street	
Minor Street	4 th PI St

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	39	0	28
Through	765	746	0	0
Right	86	0	0	21
Total	851	785	0	49

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

57
WB
49

Warrant 3A, Peak Hour			
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt2 PM	0.8	49	1,685
Limiting Value	4	100	650
Condition Satisfied?	Not Met	Not Met	Met
Warrant Met			

FEHRケPEERS

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

FEHRケPEERS

Major Street	Mateo St
Minor Street	

Project	670 Mesquit
Scenario	CP 2040 Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	1	40	0	49
Through	673	664	0	0
Right	94	0	0	83
Total	768	704	0	132

Major Street Direction

x	North/South
\ldots	East/West

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

51
$W B$
132

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt2 AM	1.9	132	1,604	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Major Street	Mateo St
Minor Street	Willow St

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	23	0	68
Through	835	886	0	0
Right	34	0	0	102
Total	869	909	0	170

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	Mateo St	Willow St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{1 7 0}$		

FEHRケPEERS

Major Street	
Mateo St	
Street	Willow St

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	23	0	68
Through	835	886	0	0
Right	34	0	0	102
Total	869	909	0	170

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

270.4
WB
170

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt2 PM	12.8	170	1,948	
Limiting Value	4	100	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Major Street					Project Scenario Peak Hour	670 Mesquit	
	Mateo St					CP 2040	t2 AM
Minor Street	Jesse St					AM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	0	354	6	85		x	North/South
Through	517	916	0	0			East/West
Right	169	1	3	153			
Total	686	1,271	9	238			

	Major Street	Minor Street	Warrant Met
	Mateo St	Jesse St	
Number of Approach Lanes	1	1	YES
Traffic Volume (VPH) *	1,957	238	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	Mateo St
Minor Street	

Project	670 Mesquit
Scenario	CP 2040 Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	354	6	85
Through	517	916	0	0
Right	169	1	3	153
Total	686	1,271	9	238

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
238

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt2 AM	112.4	238	2,204	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Major Street	Mateo St
Minor Street	

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	182	2	144
Through	664	625	1	1
Right	128	7	3	167
Total	800	814	6	312

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	Mateo St	Jesse St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{3 1 2}$		

FEHRケPEERS

Major Street	Mateo St
Minor Street	

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	8	182	2	144
Through	664	625	1	1
Right	128	7	3	167
Total	800	814	6	312

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
312

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt2 PM	147.3	312	1,932
Limiting Value	4	100	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

Major Street	E 8th St
Minor Street	$\underline{1-10 \text { Westbound ramps }}$

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt2 AM	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	287	0	0	613
Through	0	0	24	16
Right	547	0	458	0
Total	834	0	482	629

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	1	2	YES
Traffic Volume (VPH) *	1,111	834	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	E 8th St
Minor Street	$\underline{1-10 \text { Westbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	287	0	0	613
Through	0	0	24	16
Right	547	0	458	0
Total	834	0	482	629

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1132
WB
629

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt2 AM	197.8	834	1,945
Limiting Value	5	150	650
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

Major Street	E 8th St
Street	$\underline{I-10 \text { Westbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	308	0	0	620
Through	0	0	23	47
Right	453	0	375	0
Total	761	0	398	667

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	E 8th St	I-10 Westbound ramps	
Number of Approach Lanes	1	2	YES
Traffic Volume (VPH) *	1,065	761	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	E 8th St
Minor Street	$\underline{\text { I-10 Westbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	308	0	0	620
Through	0	0	23	47
Right	453	0	375	0
Total	761	0	398	667

Intersection Geometry
Number of Approach Lanes for Minor Street Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1352.7
WB
667

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt2 PM	250.6	761	1,826
Limiting Value	5	150	650
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

Major Street	Porter St
Minor Street	$\underline{1-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt2 AM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	822	179	0
Through	0	0	94	21
Right	1	258	3	442
Total	1	1,080	276	463

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	Porter St	I-10 Eastbound ramps	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{2}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{4 6 3}$		

FEHRケPEERS

Major Street	Porter St
Minor Street	

Project	670 Mesquit
Scenario	CP 2040 Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	822	179	0
Through	0	0	94	21
Right	1	258	3	442
Total	1	1,080	276	463

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

142
$W B$
463

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt2 AM	18.3	463	1,820
Limiting Value	5	150	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

Major Street	Porter St
Minor Street	$\underline{1-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	2	503	280	0
Through	3	0	112	22
Right	0	150	4	714
Total	5	653	396	736

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	Porter St	I-10 Eastbound ramps	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{2}$	YES
Traffic Volume (VPH) *	$\mathbf{1 , 1 3 2}$	$\mathbf{6 5 3}$	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.$\$.$			

FEHRケPEERS

Major Street	Porter St
Minor Street	$\underline{1-10 \text { Eastbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	2	503	280	0
Through	3	0	112	22
Right	0	150	4	714
Total	5	653	396	736

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

195.9
WB
736

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt2 PM	40.1	653	1,790
Limiting Value	5	150	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

Major Street					Project Scenario Peak Hour	670 Mesquit	
	S Santa Fe Ave					CP 2040	t2 AM
Minor Street	Willow St					AM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	89	0	45	0		x	North/South
Through	790	505	0	0			East/West
Right	0	12	48	0			
Total	879	517	93	0			

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Willow St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 , 3 9 6}$	$\mathbf{9 3}$	
* Note: \quadTraffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.${ }^{2}$No			

FEHRケPEERS

Major Street	
S Santa Fe Ave	
Street	Willow St

Project	670 Mesquit
Scenario	CP 2040 Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	89	0	45	0
Through	790	505	0	0
Right	0	12	48	0
Total	879	517	93	0

Major Street Direction

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

43.4
$W B$
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt2 AM	0	93	1,489	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Willow St

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	114	1	22	0
Through	818	589	0	0
Right	0	40	14	0
Total	932	630	36	0

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Willow St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	NO
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{3 6}$		

FEHRケPEERS

Major Street	
S Santa Fe Ave	
Street	Willow St

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	114	1	22	0
Through	818	589	0	0
Right	0	40	14	0
Total	932	630	36	0

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

62.3
$W B$
0

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt2 PM	0	36	1,598	
Limiting Value	4	100	650	
Condition Satisfied?	Not Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Mesquit St

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt2 AM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	71	7	32
Through	777	499	107	0
Right	5	0	36	127
Total	782	570	150	159

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Mesquit St	
Traffic Volume (VPH) *	1	1	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{1 5 9}$		

FEHRケPEERS

Major Street	
S Santa Fe Ave	
Street	Mesquit St

Project	670 Mesquit
Scenario	CP 2040 Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	71	7	32
Through	777	499	107	0
Right	5	0	36	127
Total	782	570	150	159

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

142.4
WB
159

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt2 AM	6.3	159	1,661
Limiting Value	4	100	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHRケPEERS

Major Street	S Santa Fe Ave
Minor Street	Mesquit St

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	67	0	39
Through	757	543	94	0
Right	6	2	19	190
Total	763	612	113	229

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Mesquit St	
Traffic Volume (VPH) *	$\mathbf{1}$	$\mathbf{1}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{2 2 9}$		

FEHRケPEERS

Major Street	
S Santa Fe Ave	
Minor Street	Mesquit St

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	67	0	39
Through	757	543	94	0
Right	6	2	19	190
Total	763	612	113	229

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

147.2
WB
229

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt2 PM	9.4	229	1,717
Limiting Value	4	100	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y E S}$		

FEHRケPEERS

Major Street					Project Scenario Peak Hour	670 Mesquit	
	S Santa Fe Ave					CP 204	t2 AM
Minor Street	Jesse St					AM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	81	65	13	76		x	North/South
Through	752	458	352	151			East/West
Right	350	47	69	24			
Total	1,183	570	434	251			

	Major Street	Minor Street	Warrant Met
	S Santa Fe Ave	Jesse St	
Number of Approach Lanes	1	1	YES
Traffic Volume (VPH) *	1,753	434	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	
Sinor Street	Jesse St Fe Ave

Project	670 Mesquit
Scenario	CP 2040 Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	81	65	13	76
Through	752	458	352	151
Right	350	47	69	24
Total	1,183	570	434	251

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
251

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt2 AM	118.5	434	2,438
Limiting Value	4	100	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHR欠PEERS

Major Street	S Santa Fe Ave
Minor Street	

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt2 PM	

Turn Movement Volumes

	NB	SB	EB	WB
Left	12	70	32	170
Through	718	475	316	270
Right	255	63	76	24
Total	985	608	424	464

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	S Santa Fe Ave	Jesse St	
Traffic Volume (VPH) *	1	1	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.	$\mathbf{4 6 4}$		

FEHRケPEERS

Major Street	
S Santa Fe Ave	
Minor Street	

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	12	70	32	170
Through	718	475	316	270
Right	255	63	76	24
Total	985	608	424	464

Intersection Geometry
Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

1700
WB
464

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)
CP 2040 Opt2 PM	219.1	464	2,481
Limiting Value	4	100	800
Condition Satisfied?	Met	Met	Met
Warrant Met	$\underline{y y y y y}$		

FEHR欠PEERS

Major Street					Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CP } 2040 \text { Opt2 AM }}$	
	Mesquit St						
Minor Street	Jesse St						
Turn Movement Volumes					Major Street Direction		
	NB	SB	EB	WB			
Left	24	62	98	0			North/South
Through	3	1	644	200		x	East/West
Right	0	13	29	15			
Total	27	76	771	215			

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	1	1	NO
Traffic Volume (VPH) *	986	76	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRやPEERS

Major Street	
Mesquit St	
Jesse St	

Project	670 Mesquit
Scenario	CP 2040 Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	24	62	98	0
Through	3	1	644	200
Right	0	13	29	15
Total	27	76	771	215

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

72.9
WB
215

Warrant 3A, Peak Hour

	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt2 AM	4.4	76	1,089	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Not Met	Met	
Warrant Met				

FEHRケPEERS

Major Street Minor Street					Project Scenario Peak Hour	$\frac{670 \text { Mesquit }}{\text { CP } 2040 \text { Opt2 PM }}$	
	Mesquit St						
	Jesse St					PM	
Turn Movement Volumes						Major Street Direction	
	NB	SB	EB	WB			
Left	25	55	100	0		x	North/South
Through	1	0	519	414			East/West
Right	0	22	6	28			
Total	26	77	625	442			

	Major Street	Minor Street	Warrant Met
	Mesquit St	Jesse St	
Number of Approach Lanes	$\mathbf{1}$	$\mathbf{1}$	NO
Traffic Volume (VPH) *	$\mathbf{1 0 3}$	$\mathbf{6 2 5}$	
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRやPEERS

Major Street	Mesquit St
	Jesse St

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	25	55	100	0
Through	1	0	519	414
Right	0	22	6	28
Total	26	77	625	442

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

1
4

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

89.5
$W B$
442

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt2 PM	11	625	1,170	
Limiting Value	4	100	800	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHR欠PEERS

Major Street	7 th St
Street	US-101 Southbound ramps

Project	670 Mesquit
Scenario	
Peak Hour 2040 Opt2 AM	

Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	15	0	2
Through	0	0	434	2,227
Right	0	308	352	0
Total	0	323	786	2,229

Major Street Direction

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	7th St	US-101 Southbound ramps	
Traffic Volume (VPH) *	$\mathbf{2}$	$\mathbf{2}$	YES
* Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	7 th St
Street	US-101 Southbound ramps

Project	670 Mesquit
Scenario	CP 2040 Opt2 AM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	15	0	2
Through	0	0	434	2,227
Right	0	308	352	0
Total	0	323	786	2,229

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

498.1
WB
2,229

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt2 AM	308.4	323	3,338	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

FEHRケPEERS

Major Street	7th St
Minor Street	$\underline{\text { US-101 Southbound ramps }}$

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	72	0	1
Through	0	0	1,181	1,145
Right	0	197	414	0
Total	0	269	1,595	1,146

Major Street Direction

Warrant 3B, Peak Hour

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

	Major Street	Minor Street	Warrant Met
	7th St	US-101 Southbound ramps	et
Number of Approach Lanes	2	2	YES
Traffic Volume (VPH) *	2,741	269	
* Note: Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FEHRケPEERS

Major Street	7 th St
Street	US-101 Southbound ramps

Project	670 Mesquit
Scenario	CP 2040 Opt2 PM
Peak Hour	

Turn Movement Volumes

	NB	SB	EB	WB
Left	0	72	0	1
Through	0	0	1,181	1,145
Right	0	197	414	0
Total	0	269	1,595	1,146

Major Street Direction

Intersection Geometry

Number of Approach Lanes for Minor Street
Total Approaches

2
3

Worst Case Delay for Minor Street
Stopped Delay (seconds per vehicle)
Approach with Worst Case Delay
Total Vehicles on Approach

104.7
WB
1,146

Warrant 3A, Peak Hour				
	Peak Hour Delay on Minor Approach (vehicle-hours)	Peak Hour Volume on Minor Approach (vph)	Peak Hour Entering Volume Serviced (vph)	
CP 2040 Opt2 PM	33.3	269	3,010	
Limiting Value	5	150	650	
Condition Satisfied?	Met	Met	Met	
Warrant Met				

M-2 LADOT
Correspondence Approving the Traffic Assessment

Date:	August 19, 2021
To:	Susan Jimenez, Administrative Clerk Department fity City Drang
From:	Wes Pringle, Transportation Engineer Department of Transportation

Subject: TRANSPORTATION ASSESSMENT FOR THE PROPOSED MIXED-USE DEVELOPMENT PROJECT AT 670 MESQUIT STREEET

The Department of Transportation (DOT) reviewed the traffic analysis, dated December 2018, prepared by Fehr \& Peers, for the proposed mixed-use project located at 670 Mesquit Street. However, on July 30, 2019, pursuant to Senate Bill (SB) 743 and the recent changes to Section 15064.3 of the State's California Environmental Quality Act (CEQA) Guidelines, the city of Los Angeles adopted vehicle miles traveled (VMT) as the criteria by which to determine transportation impacts for a new development. A VMT analysis is required to identify the project's ability to promote the reduction of greenhouse emissions, and access to diverse land-uses and the development of multi-modal networks. The applicant submitted a VMT analysis dated April 2021, that replaced the previous analysis submitted, dated December 2018. The significance of the project's in this regard is measured against the VMT threshold in DOT's Transportation Assessment Guidelines (TAG) as described below.

DISCUSSION AND FINDINGS

A. Project Description

The Project site is currently developed with existing one- to four-story cold storage facilities consisting of warehouse and wholesale commercial buildings and associated office space, loading docks, and seven surface parking spaces. The existing buildings total approximately 205,393 gross square feet (sf) of floor area. The Project would remove the existing on-site cold storage facilities and redevelop the Project site with a mix of uses totaling approximately $1,792,103$ sf of floor area on seven proposed ground lots. The development would include creative office space (approximately 944,055 sf); 308 multifamily residential housing units; a hotel (236 rooms); and a range of commercial uses including a grocery store (approximately $28,054 \mathrm{sf}$) and food hall (approximately 28,858 sf); restaurants (approximately $89,576 \mathrm{sf}$); studio/event/gallery space and a potential museum (approximately 93,617 sf); a gym (approximately $62,148 \mathrm{sf}$); and general retail (approximately $79,240 \mathrm{sf}$). The Project would also include at- and above-grade landscaped open space and would provide vehicle and bicycle parking spaces to support the proposed on-site uses in accordance with the proposed Mesquit Specific Plan. The Project would provide a minimum of 2,000 traditional vehicle parking spaces, with parking for up to 3,500 vehicles using a combination of automated parking systems, valet parking, or other efficiency parking methods. In addition, a minimum of 288 short-term and 519 long-term bicycle parking spaces would be provided. A rooftop heliport is also proposed for emergency and occasional residential and office uses, providing an amenity for the Project's residents, hotel guests, office workers, and visitors. The site plans are provided in Attachment A
\&B.
B. Freeway Safety Analysis

Per the Interim Guidance for Freeway Safety Analysis memorandum issued by LADOT on May 1, 2020 to address Caltrans safety concerns on freeways, the study addresses the project's effects on vehicle queuing on freeway off-ramps. Such an evaluation measures the project's potential to lengthen a forecasted off-ramp queue and create speed differentials between vehicles exiting the freeway off-ramps and vehicles operating on the freeway mainline.

Based on the Project's trip generation estimates, and traffic distribution pattern detailed later in this report, the Project would add 25 or more peak hour trips to three off-ramps during the morning and afternoon peak hours to the following off-ramps:

- I-10 Eastbound Off-ramp to Alameda Street (AM peak hour)
- US-101 Southbound Off-ramp to 7th Street (AM peak hour)
- I-10 Eastbound Off-ramp to Porter Street (AM peak hour)

As shown in Attachment C, the addition of traffic generated by the Project is projected to increase the overflow onto the mainline lanes by six cars in the AM peak hour and two cars in the PM peak hour (assuming an average queue storage length of 25 feet per car) for the US-101 Southbound Off-ramp to 7th in both Future Base (2026 and 2040) plus Project scenarios. The following mitigation measure was identified to address the impact:

- Project applicant shall work with the City of Los Angeles and Caltrans to signalize the intersection of the US-101 Southbound Off-ramp \& 7th Street.

The applicant should work with CALTRANS on implementing any proposed improvement measures.
C. CEQA Screening Threshold

Prior to accounting for trip reductions resulting from the application of Transportation Demand Management (TDM) Strategies, a trip generation analysis was conducted to determine if the project would exceed 250 daily vehicle trips screening threshold. Using the City of Los Angeles VMT Calculator tool, which draws upon trip rate estimates published in the Institute of Transportation Engineers (ITE) Trip Generation Manual, $9^{\text {th }}$ Edition as well as applying trip generation adjustments when applicable, based on sociodemographic data and the built environment factors of the project's surroundings, it was determined that the project does exceed the net 250 daily vehicle trips threshold.

Additionally, the analysis included further discussion of the transportation impact thresholds:
T-1 Conflicting with plans, programs, ordinances, or policies
T-2.1 Causing substantial vehicle miles traveled
T-3 Substantially increasing hazards due to a geometric design feature or incompatible use.

The assessment determined that the project would not have a significant transportation impact under Thresholds T-1 and T-3. However, the Project is projected to have significant and unavoidable VMT impacts for the retail land uses. Based on the Project's mix of land uses, location and other characteristics, it is projected to have less than significant VMT impacts for the residential and office land uses. The Project will implement transportation demand measures through compliance with regulatory requirements, site design elements and a transportation demand management plan to reduce and mitigate Project VMT; however, the
retail VMT impact will remain significant and unavoidable as there are no additional feasible mitigation measures that would further reduce the retail VMT impact to a less-than significant level. A copy of the VMT Calculator summary report is provided as Attachment \mathbf{D}.
D. Transportation Impacts

On July 30, 2019, pursuant to SB 743 and the recent changes to Section 15064.3 of the State's CEQA Guidelines, the City of Los Angeles adopted VMT as criteria in determining transportation impacts under CEQA. The new LADOT TAG provide instructions on preparing transportation assessments for land use proposals and defines the significant impact thresholds.

The LADOT VMT Calculator tool measures project impact in terms of Household VMT per Capita, and Work VMT per Employee. LADOT identified distinct thresholds for significant VMT impacts for each of the seven Area Planning Commission (APC) areas in the City. For the Central APC area, in which the project is located, the following thresholds have been established:

- Household VMT per Capita: 6.0
- Work VMT per Employee: 7.6

The project will include bike parking per LAMC, secured bike parking and showers, and pedestrian network improvements as project design features. For both options (Deck and Without Deck) and with the project design features applied, the proposed project is projected to have a Household VMT per capita of 4.0 and Work VMT per employee of 6.6. Therefore, it is concluded that implementation of the project would result in no significant VMT impact. Since the retail components of the Project are greater than 50,000 square feet, they were evaluated using the City's travel demand forecasting model. The Project with the Deck Concept would result in an estimated net increase of $32,000 \mathrm{VMT}$ daily miles. This increase in VMT is considered to be a significant impact, due to the significance criteria identifying an impact when any increase in VMT due to retail occurs. The Proposed mitigation measures are described below under CEQA (Corrective Measure) section. A copy of the VMT Calculator summary report is provided as Attachment \mathbf{D}.

E. Safety, Access and Circulation

During the preparation of the new CEQA guidelines, the State's Office of Planning and Research stressed that lead agencies can continue to apply traditional operational analysis requirements to inform land use decisions provided that such analyses were outside of the CEQA process. The authority for requiring non-CEQA transportation analysis and requiring improvements to address potential circulation deficiencies, lies in the City of Los Angeles' Site Plan Review authority as established in Section 16.05 of the LAMC. Therefore, LADOT continues to require and review a project's site access, circulation, and operational plan to determine if any access enhancements, transit amenities, intersection improvements, traffic signal upgrades, neighborhood traffic calming, or other improvements are needed. As illustrated in Attachment $\mathbf{A \& B}$, the Project was analyzed with the following driveways:

- A two-way full-access driveway on Mesquit Street at the northern end of the Project at ground level (Building 1).
- A two-way full-access driveway at the intersection of Mesquit Street \& Jesse Street at ground level (Building 2).
- A two-way signalized driveway connecting the 7th Street Bridge to the third level of

Building 4 near the southeastern corner of the Project site that allows for full access out and right-turns only in.

- A one-way right-turn-out-only driveway connecting the 7th Street Bridge to the second level of Building 5 near the southwestern corner of the Project site.

As shown in Attachment E, the study intersections are analyzed using the "level of service (LOS)" screening methodology to evaluate the operational characteristics intersections based on the delay being experienced by vehicles passing through an intersection in the peak hour, calculated using a ratio of its traffic volume and its intersection capacity and based on intersection geometrics peak-hour volumes, turning movements and signal phasing. The LOS analysis for the Future (2026) plus Project scenario determined that 14 signalized intersections and 10 unsignalized intersections are projected to perform at LOS E or worse during at least one of the peak periods for both Project options. The remaining signalized and unsignalized intersections are projected to operate at LOS D or better during both peak periods. The LOS analysis for the Future (2040) plus Project scenario determined that 15 signalized intersections and 10 unsignalized intersections are projected to perform at LOS E or worse during at least one of the peak periods for both Project options. The remaining signalized and unsignalized intersections are projected to operate at LOS D or better during both peak periods.

PROJECT REQUIREMENTS

A. CEQA-Related Requirements

The purpose of a Transportation Demand Management (TDM) plan is to reduce the use of single occupant vehicles (SOV) by increasing the number of trips by walking, bicycle, carpool, vanpool and transit. A TDM plan should include design features, transportation services, education, and incentives intended to reduce the amount of SOV during commute hours. Through strategic building design and orientation, this project can facilitate access to transit, can provide a pedestrian-friendly environment, can promote non-automobile travel and can support the goals of a trip-reduction program. A preliminary TDM program shall be prepared and provided for DOT review prior to the issuance of the first building permit for this project and a final TDM program approved by DOT is required prior to the issuance of the first certificate of occupancy for the project. The TDM program should include, but not be limited to, the following strategies:

- Site Design - The site will be designed to encourage walking, biking, and taking transit. Amenities would include:
- New sidewalks and street trees along the perimeter
- Improved street and pedestrian lighting
- Pedestrian network within the site and connecting to the surrounding pedestrian system
- Readily accessible drop-off/pick-up zones for shared mobility providers
- EV charging stations
- Unbundled parking and discounted transit passes
- Commute trip reduction program for office and commercial workers and residents. Also includes TDM marketing and promotion (website and possible mobile app for transportation information specific to the Project).
- Parking cost unbundled from leases for office and commercial tenants, coupled with employee parking cash-out and pricing workplace parking.
- Parking costs unbundled from rent for residential tenants.
- Tenants in the office and commercial uses and residents would be provided with the opportunity to obtain subsidized/discounted daily or monthly public transit passes to use locally/regionally.
- A ride-sharing program would be provided by designating a certain percentage of parking spaces for ride sharing vehicles, designing adequate passenger loading/unloading and waiting areas for ride-sharing vehicles, and providing a website or message board for coordinating rides.
- Enhancements/amenities, such as curb cuts and continental crosswalks, at bus stops nearest to Project site:
- Decatur Street \& 7th Street: Metro Rapid 720
- Alameda Street \& 7th Street: Metro Rapid 760
- Imperial Street \& 7th Street: Metro 18, 60, 62
- Molino Street \& Palmetto Street: LADOT DASH A
- Improved first-mile/last-mile connections to nearby bus stops
- Mobility hub (carshare, bikeshare, bike repair facilities, and real-time transit information)
B. Corrective Measure (Non-CEQA Analysis)

Per DOT's Transportation Assessment Guidelines, a non-CEQA analysis was conducted for the project. The Traffic Study non-CEQA access and circulation analysis included a review of current and potential future deficiencies that may result from the project. To address these non-CEQA deficiencies, the applicant should be required to implement the following corrective measures.

1. Transportation System Management (TSM) Improvements

LADOT's goal is to improve the efficiency of the study intersections, by optimally allocating green time to different modes and in different directions and provide the capability to remotely monitor and adjust signal timing in real-time to respond to specific traffic conditions or occurrences. The following Traffic Surveillance and Control system (ATSAC)improvements will maximize intersection throughput or manage queues and improve system performance:

- One 3" conduit, one 24SM fiber optic cable, one 25 pair interconnect on $7^{\text {th }}$ Street between Santa Fe Avenue and Alameda Street.
- A new CCTV camera at the intersection of Santa Fe and $7^{\text {th }}$ Street.

The applicant should be responsible for the cost and implementation of any necessary bus stop relocations and lost parking meter revenues associated with the proposed transportation improvement as necessary.
2. Transportation Management Organization (TMO)

The Applicant proposes to contribute to FASTLink, the Downtown TMO, or to the formation of a new Arts District TMO focused on the area around the project. The TMO services would be available to anyone within the general Arts District community, not just residents and tenants of the proposed Project, and in this way help to alleviate current and future traffic congestion throughout the area. The Applicant will agree to contribute to the Arts District TMO / Arts District portion of a Downtown TMO following issuance of a Certificate of Occupancy for the Project by becoming a member, participating in, and make a one-time contribution of $\mathbf{\$ 1 0 0 , 0 0 0}$ to TMO operations and marketing efforts. In addition, the applicant will encourage its office and hotel lessees
to become members of the TMO and maintain that membership on an ongoing basis.

3. Physical intersection improvements

- Santa Fe Avenue \& Jesse Street: The Project proposes to modify the eastbound and westbound approaches along Jesse Street to provide a left-only turn lane. This Corrective Action would require restriping the eastbound and westbound approaches from one shared left-through-right to one left-only turn lane and one through-right lane. This Corrective Action would require the removal of up to three on-street parking spaces at the eastbound leg and removal of yellow curb space at the westbound leg. Attachment \mathbf{F} shows the conceptual design and striping plan for this Corrective Action.
- Santa Fe Avenue \& 7th Street: The Project proposes to modify the southbound approach along Santa Fe Avenue to provide a left-only lane. This Corrective Action would require restriping the southbound approach from a shared left-through-right lane to a shared through-right lane and one left-only turn lane. Improvements would also include upgrading curb ramps to include tactile warning strips and crosswalks to continental crosswalks. Attachment \mathbf{G} shows the conceptual design and striping plan for this improvement.

Should the project be approved, then a final determination on how to implement the ATSAC improvements listed above will be made by DOT prior to the issuance of the first building permit. These improvements will be implemented either by the applicant through the B-Permit process of the Bureau of Engineering (BOE), or through a direct payment to DOT to fund the cost of the upgrades and improvements. If the upgrades and improvements are implemented by the applicant through the B-Permit process, then these improvements must be guaranteed prior to the issuance of any building permit and completed prior to the issuance of any certificate of occupancy. Temporary certificates of occupancy may be granted in the event of any delay through no fault of the applicant, provided that, in each case, the applicant has demonstrated reasonable efforts and due diligence to the satisfaction of DOT.

All proposed street improvements within the City of Los Angeles must be guaranteed through BOE's B-Permit process, prior to the issuance of any building permit and completed prior to the issuance of any certificate of occupancy. Prior to setting the bond amount, BOE shall require that the developer's engineer or contractor contact LADOT's B-Permit Coordinator, ladot.planprocessing@lacity.org, to arrange a pre-design meeting to finalize the proposed design.

C. Traffic Signal Warrant Analysis

In the preparation of traffic study, DOT guidelines indicate that unsignalized intersections should be evaluated solely to determine the need for the installation of a traffic signal or other traffic control device. When choosing which unsignalized intersections to evaluate in the study, intersections that are adjacent to the project or that are integral to the project's site access and circulation plan should be identified. The signal warrant analysis determined that the projected volumes would meet standard signal warrants for installation of a signal at 8 unsignalized intersections. Out of the eight (8) intersections that met the peak hour signal warrant analysis, three (3) signal warrants would be triggered due to the trips generated by the Project (i.e., signals are only warranted when Project trips were added). Those three intersections are:

- South Santa Fe Avenue \& Mesquit Street
- South Santa Fe Avenue \& Jesse Street
- Mesquit Street \& Jesse Street

As mentioned under project description, the project is also proposing a two-way signalized driveway connecting the 7th Street Bridge to the third level of Building 4 near the southeastern corner of the Project site that allows for full access out and right-turns only in.

Any proposed signal installation is subject to final approval by LADOT. During the building permit approval process for this project, the applicant should work with DOT's Central District Office for a final determination on the need for a traffic signal at the location. The satisfaction of a traffic signal warrant does not in itself require the installation of a signal. Other factors relative to safety, traffic flow, signal spacing, coordination, etc. should be considered. If DOT makes the determination that a traffic signal is warranted and needed at the intersection, then the applicant would be responsible to cover all costs associated with the design and installation of the new signal.
D. Parking Requirements

The Project would provide a minimum of 2,000 traditional vehicle parking spaces, with parking for up to 3,500 vehicles using a combination of automated parking systems, valet parking, or other efficiency parking methods. In addition, a minimum of 288 short term and 519 long-term bicycle parking spaces would be provided. A rooftop heliport is also proposed for emergency and occasional residential and office uses, providing an amenity for the Project's residents, hotel guests, office workers, and visitors.
E. Highway Dedication and Street Widening Requirements

Per the new Mobility Element of the General Plan, $6^{\text {th }}$ Street and $7^{\text {th }}$ Street are designated as Modified Avenue II, would require a 28 -foot half-width roadway within a 43 -foot half-width right-of-way. Mesquit Street is designated as Collector Street which requires 20-foot half-width within a 33-foot half-width right-of-way. On the western side of the Project, the Project proposes a full-width vacation/merger of Mesquit Street from the northerly right-of-way of 7th Street to the southerly right-of way of Jesse Street in order to convert Mesquit Street from Jesse Street to 7th Street to a pedestrian paseo with limited vehicle access that connects to 7th Street. The project also proposes a half-width subsurface merger for the easterly half of Mesquit Street from the southerly right-of-way of Jesse Street to the southerly line of the LADWP property on the east side of Mesquit Street.

The applicant should check with BOE's Land Development Group to determine if there are any other applicable highway dedication, street widening and/or sidewalk requirements for this project.

F. Project Access and Circulation

As illustrated in Attachment A\&B under Safety, Access and Circulations, vehicular and bicycle access to the Project site is anticipated to be obtained via four driveways. Primary service access would be provided via loading docks located within the ground level of the Project's parking structure. Large truck deliveries would enter and exit the parking structure via the northern driveway on Mesquit Street and have turnaround capability provided within the Project site. A loading area accommodating cars or vans associated with residential and commercial uses
would also be accessible via the northern driveway on Mesquit Street. A passenger loading/unloading zone pull-out would be provided along the east side of Mesquit Street north of Jesse Street. The 7th Street driveway would also provide access to an internal passenger loading/unloading area in addition to access to the on-site parking structure.

The conceptual site plan is acceptable to LADOT; however, the review of this study does not constitute approval of the driveway dimensions, access, and circulation scheme. Any changes to the project's site access, circulation scheme, or loading/unloading area after issuance of this report would require separate review and approval and should be coordinated as soon as possible with LADOT's Citywide Planning Coordination Section (201 North Figueroa Street, 5th Floor, Room 550, at 213-482-7024 or email: ladot.onestop@lacity.org). Driveway placement and design shall be approved by the Department of City Planning (City Planning) in consultation with LADOT, prior to issuance of a Letter of Determination by City Planning.
G. Worksite Traffic Control Requirements

LADOT recommends that a construction work site traffic control plan be submitted to LADOT's Citywide Temporary Traffic Control Section or Permit Plan Review Section for review and approval prior to the start of any construction work. Refer to
http://ladot.lacity.org/businesses/temporary-traffic-control-plans to determine which section to coordinate review of the work site traffic control plan. The plan should show the location of any roadway or sidewalk closures, traffic detours, haul routes, hours of operation, protective devices, warning signs and access to abutting properties. LADOT also recommends that all construction related truck traffic be restricted to off-peak hours to the extent feasible.

H. Development Review Fees

Section 19.15 of the LAMC identifies specific fees for traffic study review, condition clearance, and permit issuance. The applicant shall comply with any applicable fees per this ordinance.

If you have any questions, please contact Russell Hasan of my staff at (213) 482-7024.

Attachments

J:\Letters\2021\CEN 16-45273_670 Mesquit St.docx

c: \quad Shawn Kuk, Council District 14
Matthew Masuda, Central District, BOE
Edward Yu, Central District, LADOT
Taimour Tanavoli, Case Management, LADOT
Netai Bashu, Fehr \& Peers

7TH STREET LEVEL PLAN - NO DECK

Figure 2A
Project Site Plan

Figure 2 B
Project with the Deck Concept Site Plan

TABLE 3

PEAK HOUR OFF-RAMP QUEUE ANALYSIS
UTURE BASE (2026) AND FUTURE BASE (2026) PLUS PROJECT WIT THE DECK CONCEPT
670 MESQUIT STREET PROJECT

ID	Ramp	Cross Street	$\begin{gathered} \text { Total } \\ \text { Capacity (ft) } \\ {[a]} \end{gathered}$	Turning Movements by Lanes at Intersection	Control	Future Base (2026) Conditions						Future Base (2026) + Project Option 2							
						AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Exceeds Storage?		AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Length Increase (car lengths) $[\mathrm{b}]$		Potential Safety Issue? [c]	
						Queue (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	Lane (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	AM	PM
22	I-10 EB Off-Ramp	Alameda Street	1,140	$\begin{aligned} & \hline \hline \text { Left } \\ & \text { Right } \\ & \hline \end{aligned}$	Signal	$\begin{aligned} & \hline 227 \\ & 186 \\ & \hline \end{aligned}$	413	$\begin{aligned} & \hline 149 \\ & 116 \\ & \hline \end{aligned}$	265	No	No	$\begin{aligned} & \hline 248 \\ & 178 \end{aligned}$	426	$\begin{aligned} & \hline 162 \\ & 116 \\ & \hline \end{aligned}$	278	1	1	No	No
H	US-101 SB Off-Ramp	7th Street	310	$\begin{array}{\|c} \hline \text { Left } \\ \text { Right } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Two-Way Stop } \\ \text { Controlled } \\ \hline \end{array}$	$\begin{aligned} & 48 \\ & 478 \end{aligned}$	526	$\begin{aligned} & 128 \\ & 50 \\ & \hline \end{aligned}$	178	Yes	No	$\begin{gathered} \hline 55 \\ 613 \\ \hline \end{gathered}$	668	$\begin{aligned} & 1555 \\ & 65 \\ & \hline \end{aligned}$	220	6	2	Yes	No
J	I-10 EB Off-Ramp	Porter Street	1,120	$\begin{aligned} & \text { Left } \\ & \text { Right } \\ & \hline \hline \end{aligned}$	Two-Way Stop Controlled	$\begin{aligned} & 577 \\ & 266 \\ & \hline \end{aligned}$	843	$\begin{aligned} & 397 \\ & 161 \end{aligned}$	558	No	No	$\begin{aligned} & 679 \\ & 309 \\ & 3 \end{aligned}$	988	$\begin{aligned} & 528 \\ & 227 \\ & \hline \hline \end{aligned}$	755	6	8	No	No

When an auxiliary lane is present, the maximum length includes one half of the length of the auxiliary lane to the gore point of the preceding on-ramp.
[b]: Assumes an average storage length per car of 25 feet.
[c]: If a proposed project adds two or more car lengths to a ramp queue that extends to the freeway mainline, then the location must be tested for safety issues.

TABLE 4PEAK HOUR OFF-RAMP QUEUE ANALYSISFUTURE BASE (2040) AND FUTURE BASE (2040) PLUS PROJECT WITH THE DECK CONCEPT670 MESQUIT STREET PROJECT																			
	Ramp	Cross Street	> Total Capacity (ft) [a]	Turning Movements by Lanes at Intersection	Control	Future Base (2040) Conditions						Future Base (2040) + Project with the Deck Concept							
ID						AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Exceeds Storage?		AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Length Increase (car lengths) [b]		Potential Safety Issue? [c]	
						Queue (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	Lane (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	AM	PM
22	I-10 EB Off-Ramp	Alameda Street	1,140	$\begin{aligned} & \hline \hline \text { Left } \\ & \text { Right } \\ & \hline \end{aligned}$	Signal	$\begin{aligned} & 229 \\ & 186 \end{aligned}$	415	$\begin{aligned} & \hline \hline 150 \\ & 121 \\ & \hline \end{aligned}$	271	No	No	$\begin{aligned} & 254 \\ & 186 \end{aligned}$	440	$\begin{aligned} & \hline 163 \\ & 121 \\ & \hline \end{aligned}$	284	1	1	No	No
H	US-101 SB Off-Ramp	7th Street	310	$\begin{array}{r} \text { Left } \\ \text { Right } \\ \hline \end{array}$	Two-Way Stop Controlled	$\begin{array}{r} \hline 53 \\ 508 \\ \hline \end{array}$	561	$\begin{aligned} & 140 \\ & 53 \\ & \hline \end{aligned}$	193	Yes	No	$\begin{aligned} & 60 \\ & 643 \\ & 643 \end{aligned}$	703	$\begin{aligned} & 168 \\ & 70 \\ & \hline \end{aligned}$	238	6	2	Yes	No
J	$1-10$ EB Off-Ramp	Porter Street	1,120	$\begin{aligned} & \text { Left } \\ & \text { Right } \\ & \hline \hline \end{aligned}$	Two-Way Stop Controlled	$\begin{aligned} & 631 \\ & 294 \\ & \hline \hline \end{aligned}$	925	$\begin{aligned} & 432 \\ & 178 \\ & \hline \end{aligned}$	610	No	No	$\begin{aligned} & 737 \\ & 343 \end{aligned}$	1,080	$\begin{aligned} & 568 \\ & 254 \\ & \hline \hline \end{aligned}$	822	7	9	No	No

[a]: Ramp lengths determined based on scaled distances from on-ine aerial photographs. Per LADOT guidance, max length is measured from the intersection to the gore point.
When an auxiliary lane is present, the maximum length includes one half of the length of the auxiliary lane to the gore point of the preceding on-ramp.
[b]: Assumes an average storage length per car of 25 feet.
[c]: If a proposed project adds two or more car lengths to a ramp queue that extends to the freeway mainline, then the location must be tested for safety issues.

TABLE 5

PEAK HOUR OFF-RAMP QUEUE ANALYSIS - WITH MITIGATION
FUTURE BASE (2026) AND FUTURE BASE (2026) PLUS PROJECT WITH THE DECK CONCEPT
670 MESQUIT STREET PROJECT

	Ramp	Cross Street	$\begin{gathered} \text { Total } \\ \text { Capacity }(\mathrm{ft}) \\ {[\mathrm{a}]} \end{gathered}$	TurningMovements byLanes atIntersection	Control	Future Base (2026) Conditions						Future Base (2026)+ Project Option 2 with Signal							
ID						AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Exceeds Storage?		AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Length Change (car lengths) [b]		Project Impact Mitigated?	
						Queue (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	Lane (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	AM	PM
H	US-101 SB Off-Ramp	7th Street	310	Left Right	Two-Way Stop Controlled	$\begin{gathered} \hline 53 \\ \hline 508 \end{gathered}$	561	$\begin{gathered} \hline \hline 140 \\ 53 \end{gathered}$	193	Yes	No	$\begin{aligned} & \hline 18 \\ & 266 \end{aligned}$	284	$\begin{aligned} & \hline 55 \\ & 97 \\ & \hline \end{aligned}$	152	-12	-2	Yes	N/A

[a]: Ramp lengths determined based on scaled distances from on-line aerial photographs. Per LADOT guidance, max length is measured from the intersection to the gore point.
When an auxiliary lane is present, the maximum length includes one half of the length of the auxiliary lane to the gore point of the preceding on-ramp.
[b]: Assumes an average storage length per car of 25 feet.

TABLE 6

PEAK HOUR OFF-RAMP QUEUE ANALYSIS - WITH MITIGATION
FUTURE BASE (2040) AND FUTURE BASE (2040) PLUS PROJECT WITH THE DECK CONCEPT 670 MESQUIT STREET PROJECT

ID	Ramp	Cross Street	$\begin{gathered} \text { Total } \\ \text { Capacity }(\mathrm{ft}) \\ {[\mathrm{a}]} \end{gathered}$	Turning Movements by Lanes at Intersection	Control	Future Base (2040) Conditions						Future Base (2040)+ Project Option 2 with Signal							
						AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Exceeds Storage?		AM 95th Percentile Queue		PM 95th Percentile Queue		Queue Length Change (car lengths) [b]		Project Impact Mitigated?	
						Queue (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	Lane (ft)	Total (ft)	Lane (ft)	Total (ft)	AM	PM	AM	PM
H	US-101 SB Off-Ramp	7th Street	310	Left Right	Two-Way Stop Controlled	$\begin{gathered} \hline 53 \\ 508 \end{gathered}$	561	$\begin{aligned} & \hline 140 \\ & 53 \\ & \hline \end{aligned}$	193	Yes	No	$\begin{aligned} & \hline 18 \\ & 270 \\ & \hline \end{aligned}$	288	$\begin{gathered} 56 \\ \hline 100 \end{gathered}$	156	-11	-2	Yes	N/A

[a]: Ramp lengths determined based on scaled distances from on-line aerial photographs. Per LADOT guidance, max length is measured from the intersection to the gore point.
When an auxiliary lane is present, the maximum length includes one half of the length of the auxiliary lane to the gore point of the preceding on-ramp.
[b]: Assumes an average storage length per car of 25 feet.

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

```
O Yes O No
```

Existing Land Use

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

| Land Use Type | Value | Unit |
| :--- | :--- | :--- | :--- |
| Housing \| Affordable Housing - Family | 50 | DU |
| Housing \| Multi-Family | 258 | DU |
| Housing \| Hotel | 236 | Rooms |
| Retail \| General Retail | 79.24 | ksf |
| Retail \| Supermarket | 32.737 | ksf |
| Retail \| Health Club | 155.765 | ksf |
| Retail \| High-Turnover Sit-Down Restaurant | 44.788 | ksf |
| Retail \| Quality Restaurant | 73.646 | ksf |
| Office \| General Office | 944.055 | ksf |
| Housing \| Affordable Housing - Family | 50 | DU |
| | | |
| | | |
| | | |

Click here to add a single custom land use type (will be included in the above list)

Project Screening Summary

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

Proposed Project Land Use Type Housing | Multi-Family Housing | Hotel Retail | General Retail Retail | Supermarket
Retail | Health Club
Retail | High-Turnover Sit-Down Restaurant Retail | Quality Restaurant
Office | General Office
Housing | Affordable Housing - Family

Value 258 236 79.24 32.737 155.765 44.788 73.646 944.055 50

TDM Strategies
Select each section to show individual strategies
Use $\bar{\square}$ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Analysis Results

Proposed Project	With Mitigation
27,040	24,484
Daily Vehicle Trips	Daily Vehicle Trips
195,304	176,517
Daily VMT	Daily VMT
4.0	3.3
Houseshold VMT per Capita	Houseshold VMT per Capita
6.6	5.4
Work VMT per Employee	Work VMT per Employee
Significant VMT Impact?	

Household: No
Threshold $=6.0$
15\% Below APC

Work: No

Threshold $=7.6$ 15\% Below APC

Household: No
Threshold $=6.0$ 15\% Below APC

Work: No
Threshold $=7.6$ 15% Below APC

CITY OF LOS ANGELES VMT CALCULATOR

Date: June 30, 2020
Project Name: 670 Mesquit
Report 1: Project \& Analysis Overview
Project Scenario: Project Option 1
Project Address: 670 S MESQUIT ST, 90021

Project Information			
Land Use Type		Value	Units
Housing	Single Family	0	DU
	Multi Family	258	DU
	Townhouse	0	DU
	Hotel	236	Rooms
	Motel	0	Rooms
Affordable Housing	Family	50	DU
	Senior	0	DU
	Special Needs	0	DU
	Permanent Supportive	0	DU
Retail	General Retail	79.240	ksf
	Furniture Store	0.000	ksf
	Pharmacy/Drugstore	0.000	ksf
	Supermarket	32.737	ksf
	Bank	0.000	ksf
	Health Club	155.765	ksf
	High-Turnover Sit-Down Restaurant	44.788	ksf
	Fast-Food Restaurant	0.000	ksf
	Quality Restaurant	73.646	ksf
	Auto Repair	0.000	ksf
	Home Improvement	0.000	ksf
	Free-Standing Discount	0.000	ksf
	Movie Theater	0	Seats
Office	General Office	944.055	ksf
	Medical Office	0.000	ksf
Industrial	Light Industrial	0.000	ksf
	Manufacturing	0.000	ksf
	Warehousing/Self-Storage	0.000	ksf
School	University	0	Students
	High School	0	Students
	Middle School	0	Students
	Elementary	0	Students
	Private School (K-12)	0	Students
Other		0	Trips

Project and Analysis Overview
3 of 13

CITY OF LOS ANGELES VMT CALCULATOR

Analysis Results			
Total Employees: 4,813			
Total Population: 738			
Proposed Project		With Mitigation	
$\begin{gathered} 27,040 \\ 195,304 \end{gathered}$	Daily Vehicle Trips Daily VMT	$\begin{gathered} 24,484 \\ 176,517 \end{gathered}$	Daily Vehicle Trips Daily VMT
4 6.6	Household VMT per Capita Work VMT per Employee	3.3 5.4	Household VMT per Capita Work VMT per Employee
Significant VMT Impact?			
APC: Central			
Impact Threshold: 15\% Below APC Average $\text { Household = } 6.0$ Work $=7.6$			
Proposed Project		With Mitigation	
VMT Threshold	Impact	VMT Threshold	Impact
Household > 6.0 Work > 7.6	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	Household > 6.0 Work > 7.6	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$

TDM Strategy Inputs				
Strategy Type		Description	Proposed Project	Mitigations
Parking	Reduce parking sup	City code parking provision (spaces)	0	0
	duce parking supply	Actual parking provision (spaces)	0	0
	Unbundle parking	Monthly cost for parking (\$)	\$0	\$125
	Parking cash-out	Employees eligible (\%)	0\%	50\%
	rkpla	Daily parking charge (\$)	\$0.00	\$6.00
	parking	Employees subject to priced parking (\%)	0\%	50\%
	Residential area parking permits	Cost of annual permit (\$)	\$0	\$0
		cont. on following page		

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Transit	Reduce transit headways	Reduction in headways (increase in frequency) (\%)	0\%	0\%
		Existing transit mode share (as a percent of total daily trips) (\%)	0\%	0\%
		$\begin{aligned} & \text { Lines within project } \\ & \text { site improved (<50\%, } \\ & >=50 \%) \end{aligned}$	0	0
	Implement neighborhood shuttle	Degree of implementation (low, medium, high)	0	0
		Employees and residents eligible (\%)	0\%	0\%
	Transit subsidies	Employees and residents eligible (\%)	0\%	100\%
		Amount of transit subsidy per passenger (daily equivalent) (\$)	\$0.00	\$0.75
Education \& Encouragement	Voluntary travel behavior change program	Employees and residents participating (\%)	0\%	0\%
	Promotions and marketing	Employees and residents participating (\%)	0\%	100\%
(cont. on following page)				

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Commute Trip Reductions	Required commute trip reduction program	Employees participating (\%)	0\%	90\%
	Alternative Work Schedules and	Employees participating (\%)	0\%	0\%
	Telecommute	Type of program	0	0
	Employer sponsored vanpool or shuttle	Degree of implementation (low, medium, high)	0	0
		Employees eligible (\%)	0\%	0\%
		Employer size (small, medium, large)	0	0
	Ride-share program	Employees eligible (\%)	0\%	0\%
Shared Mobility	Car share	Car share project setting (Urban, Suburban, All Other)	0	Urban + Comprehensive Transit
	Bike share	Within 600 feet of existing bike share station - ORimplementing new bike share station (Yes/No)	0	Yes
	School carpool program	Level of implementation (Low, Medium, High)	0	0
(cont. on following page)				

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Bicycle Infrastructure	Implement/Improve on-street bicycle facility	Provide bicycle facility along site (Yes/No)	0	0
	Include Bike parking per LAMC	Meets City Bike Parking Code (Yes/No)	Yes	Yes
	Include secure bike parking and showers	Includes indoor bike parking/lockers, showers, \& repair station (Yes/No)	Yes	Yes
Neighborhood Enhancement	Traffic calming improvements	Streets with traffic calming improvements (\%)	0\%	0\%
		Intersections with traffic calming improvements (\%)	0\%	0\%
	Pedestrian network improvements	Included (within project and connecting offsite/within project onlv)	within project and connecting off-site	within project and connecting off-site

CITY OF LOS ANGELES VMT CALCULATOR
Report 3: TDM Outputs
Date: June 30, 2020
Project Name: 670 Mesquit
Project Scenario: Project Option 1
Project Address: 670 S MESQUIT ST, 90021

TDM Adjustments by Trip Purpose \& Strategy

Place type: Suburban Center

Place type: Suburban Center														
		Home Based Work Production		Home Based Work Attraction		Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction		Source
		Proposed	Mitigated											
Parking	Reduce parking supply	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Parking sections 1-5
	Unbundle parking	0\%	15\%	0\%	0\%	0\%	15\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Parking cash-out	0\%	0\%	0\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Price workplace parking	0\%	0\%	0\%	3\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Residential area parking permits	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	
Transit	Reduce transit headways	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Transit sections 1-3
	Implement neighborhood shuttle	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Transit subsidies	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	
Education \& Encouragement	Voluntary travel behavior change program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Encouragement sections 1-2
	Promotions and marketing	0\%	4\%	0\%	4\%	0\%	4\%	0\%	4\%	0\%	4\%	0\%	0\%	
Commute Trip Reductions	Required commute trip reduction program	0\%	0\%	0\%	19\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Commute Trip Reductions sections 1-4
	Alternative Work Schedules and Telecommute Program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Employer sponsored vanpool or shuttle	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Ride-share program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
Shared Mobility	Car-share	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	TDM Strategy Appendix, Shared Mobility sections $1-3$
	Bike share	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	
	School carpool program	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	

CITY OF LOS ANGELES VMT CALCULATOR
Report 3: TDM Outputs

TDM Adjustments by Trip Purpose \& Strategy, Cont.
Place type: Suburban Center

						Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production						
		Home Based Work Production		Home Based Work Attraction				Non-Home Based Other Attraction	Source							
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated				Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated
	Implement/ Improve on-street bicycle facility	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	TDM Strategy		
Bicycle Infrastructure	Include Bike parking per LAMC	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	Appendix, Bicycle Infrastructure		
	Include secure bike parking and showers	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	sections 1-3		
	Traffic calming improvements	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	TDM Strategy Appendix,		
Enhancement	Pedestrian network improvements	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	Neighborhood Enhancement sections 1 - 2		

Final Combined $\&$ Maximum TDM Effect

	Home Based Work Production		Home Based Work Attraction		Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction	
	Proposed	Mitigated										
COMBINED TOTAL	3\%	24\%	3\%	32\%	3\%	24\%	3\%	11\%	3\%	11\%	3\%	7\%
MAX. TDM EFFECT	3\%	20\%	3\%	20\%	3\%	20\%	3\%	11\%	3\%	11\%	3\%	11\%

\left.| = Minimum (X\%, 1-[(1-A)*(1-B)...]) | | |
| :---: | :---: | :---: |
| where X\%= | | |$\right]$

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,....). See the TDM Strategy Appendix (Transportation Assessment Guidelines Attachment G) for further discussion of dampening.

[^20]10 of 13

CITY OF LOS ANGELES VMT CALCULATOR

MXD Methodology - Project Without TDM						
	Unadjusted Trips	MXD Adjustment	MXD Trips	Average Trip Length	Unadjusted VMT	MXD VMT
Home Based Work Production	274	-67.5\%	89	7.4	2,028	659
Home Based Other Production	758	-40.9\%	448	5.3	4,017	2,374
Non-Home Based Other Production	6,706	-4.6\%	6,400	7.9	52,977	50,560
Home-Based Work Attraction	5,306	-26.6\%	3,893	8.4	44,570	32,701
Home-Based Other Attraction	15,689	-30.1\%	10,965	6.5	101,979	71,273
Non-Home Based Other Attraction	6,438	-4.6\%	6,144	7.2	46,354	44,237

MXD Methodology with TDM Measures

	Proposed Project			Project with Mitigation Measures		
	TDM Adjustment	Project Trips	Project VMT	TDM Adjustment	Mitigated Trips	Mitigated VMT
Home Based Work Production	-3.2\%	86	638	-20.0\%	71	527
Home Based Other Production	-3.2\%	434	2,298	-20.0\%	358	1,899
Non-Home Based Other Production	-3.2\%	6,194	48,931	-10.9\%	5,701	45,037
Home-Based Work Attraction	-3.2\%	3,768	31,648	-20.0\%	3,114	26,161
Home-Based Other Attraction	-3.2\%	10,612	68,977	-10.9\%	9,767	63,488
Non-Home Based Other Attraction	-3.2\%	5,946	42,812	-10.9\%	5,473	39,405

MXD VMT Methodology Per Capita \& Per Employee

Total Home Based Production VMT	Total Population: 738 Total Employees: 4,813 APC: Central	
	Proposed Project	Project with Mitigation Measures
	2,936	2,426
Total Home Based Work Attraction VMT	31,648	26,161
Total Home Based VMT Per Capita	4.0	3.3
Total Work Based VMT Per Employee	6.6	5.4

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

Existing Land Use

\square Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

Land Use Type	Value		Unit
Retail \| Health Club	173.378	ksf	
Housing \| Multi-Family	258	DU	
Housing \| Hotel	236	Rooms	
Retail \| General Retail	79.24	ksf	
Retail \| Supermarket	32.737	ksf	
Retail \| Health Club	173.378	ksf	
Retail \| High-Turnover Sit-Down Restaurant	44.788	ksf	
Retail \| Quality Restaurant	73.646	ksf	
Office \| General Office	944.055	ksf	
Housing \| Affordable Housing - Family	50	DU	

\square Click here to add a single custom land use type (will be included in the above list)

Project Screening Summary

Existing	
Land Use	Proposed Project
428	$\mathbf{2 8 , 4 0 8}$
Daily Vehicle Trips	
3,135	Daily Vehicle Trips
Daily VMT	205,148 Daily VMT

Tier 1 Screening Criteria

Project will have less residential units compared to existing residential units $\&$ is within one-half \square mile of a fixed-rail station.

Tier 2 Screening Criteria
The net increase in daily trips < 250 trips 27,980
Net Daily Trips

The net increase in daily VMT $\leq 0 \quad 202,013$
Net Daily VMT

The proposed project consists of only retail 403.789
land uses $\leq 50,000$ square feet total.
ksf

The proposed project is required to perform VMT analysis.

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

Proposed Project Land Use Type	Value	Unit
Housing \| Multi-Family	258	DU
Housing \| Hotel	236	Rooms
Retail \| General Retail	79.24	ksf
Retail \| Supermarket	32.737	ksf
Retail \| Health Club	173.378	ksf
Retail \| High-Turnover Sit-Down Restaurant	44.788	ksf
Retail \| Quality Restaurant	73.646	ksf
Office \| General Office	944.055	ksf
Housing \| Affordable Housing - Family	50	DU

TDM Strategies
Select each section to show individual strategies
Use $\bar{\square}$ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Analysis Results

$\left.\begin{array}{c|c}\hline \begin{array}{c}\text { Proposed } \\ \text { Project }\end{array} & \begin{array}{c}\text { With } \\ \text { Mitigation }\end{array} \\ \hline \begin{array}{c}27,493 \\ \text { Daily Vehicle Trips } \\ 198,540 \\ \text { Daily VMT }\end{array} & \begin{array}{c}24,901 \\ \text { Daily Vehicle Trips }\end{array} \\ \begin{array}{c}4.0 \\ \text { Houseshold VMT } \\ \text { per Capita }\end{array} & \begin{array}{c}179,481 \\ \text { Daily VMT }\end{array} \\ \begin{array}{c}3.3 \\ \text { Hork VMT } \\ \text { Heshold VMT } \\ \text { per Capita }\end{array} \\ \text { per Employee }\end{array} \quad \begin{array}{c}5.4 \\ \text { Work VMT } \\ \text { per Employee }\end{array}\right]$

Household: No
Threshold $=6.0$
15\% Below APC

Work: No

Threshold = 7.6
15\% Below APC

Household: No
Threshold $=6.0$ 15\% Below APC

Work: No
Threshold $=7.6$ 15\% Below APC

CITY OF LOS ANGELES VMT CALCULATOR

Date: June 30, 2020
Project Name: 670 Mesquit
Report 1: Project \& Analysis Overview
Project Scenario: Project Option 2
Project Address: 670 S MESQUIT ST, 90021

Project Information			
Land Use Type		Value	Units
Housing	Single Family	0	DU
	Multi Family	258	DU
	Townhouse	0	DU
	Hotel	236	Rooms
	Motel	0	Rooms
Affordable Housing	Family	50	DU
	Senior	0	DU
	Special Needs	0	DU
	Permanent Supportive	0	DU
Retail	General Retail	79.240	ksf
	Furniture Store	0.000	ksf
	Pharmacy/Drugstore	0.000	ksf
	Supermarket	32.737	ksf
	Bank	0.000	ksf
	Health Club	173.378	ksf
	High-Turnover Sit-Down Restaurant	44.788	ksf
	Fast-Food Restaurant	0.000	ksf
	Quality Restaurant	73.646	ksf
	Auto Repair	0.000	ksf
	Home Improvement	0.000	ksf
	Free-Standing Discount	0.000	ksf
	Movie Theater	0	Seats
Office	General Office	944.055	ksf
	Medical Office	0.000	ksf
Industrial	Light Industrial	0.000	ksf
	Manufacturing	0.000	ksf
	Warehousing/Self-Storage	0.000	ksf
School	University	0	Students
	High School	0	Students
	Middle School	0	Students
	Elementary	0	Students
	Private School (K-12)	0	Students
Other		0	Trips

Project and Analysis Overview
3 of 13

CITY OF LOS ANGELES VMT CALCULATOR

Analysis Results			
Total Employees: 4,831			
Total Population: 738			
Proposed Project		With Mitigation	
$\begin{gathered} \hline 27,493 \\ 198,540 \end{gathered}$	Daily Vehicle Trips Daily VMT	$\begin{gathered} 24,901 \\ 179,481 \end{gathered}$	Daily Vehicle Trips Daily VMT
	Household VMT per Capita	3.3	Household VMT per Capita
6.6	Work VMT per Employee	5.4	Work VMT per Employee
Significant VMT Impact?			
APC: Central			
Impact Threshold: 15\% Below APC Average Household $=6.0$ Work $=7.6$			
Proposed Project		With Mitigation	
VMT Threshold	Impact	VMT Threshold	Impact
Household > 6.0	No	Household > 6.0	No
Work > 7.6	No	Work > 7.6	No

TDM Strategy Inputs				
Strategy Type		Description	Proposed Project	Mitigations
Parking		City code parking provision (spaces)	0	0
		Actual parking provision (spaces)	0	0
	Unbundle parking	Monthly cost for parking (\$)	\$0	\$125
	Parking cash-out	Employees eligible (\%)	0\%	50\%
	rkpla	Daily parking charge (\$)	\$0.00	\$6.00
	parking	Employees subject to priced parking (\%)	0\%	50\%
	Residential area parking permits	Cost of annual permit (\$)	\$0	\$0
		cont. on following page		

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Transit	Reduce transit headways	Reduction in headways (increase in frequency) (\%) in frequency) (\%)	0\%	0\%
		Existing transit mode share (as a percent of total daily trips) (\%)	0\%	0\%
		Lines within project site improved (<50\%, >=50\%)	0	0
	Implement neighborhood shuttle	Degree of implementation (low, medium, high)	0	0
		Employees and residents eligible (\%)	0\%	0\%
	Transit subsidies	Employees and residents eligible (\%)	0\%	100\%
		Amount of transit subsidy per passenger (daily equivalent) (\$)	\$0.00	\$0.75
Education \& Encouragement	Voluntary travel behavior change program	$\begin{aligned} & \text { Employees and } \\ & \text { residents } \\ & \text { participating (\%) } \end{aligned}$	0\%	0\%
	Promotions and marketing	Employees and residents participating (\%)	0\%	100\%
(cont. on following page)				

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Commute Trip Reductions	Required commute trip reduction program	Employees participating (\%)	0\%	90\%
	Alternative Work Schedules and	Employees participating (\%)	0\%	0\%
	Telecommute	Type of program	0	0
	Employer sponsored vanpool or shuttle	Degree of implementation (low, medium, high)	0	0
		Employees eligible (\%)	0\%	0\%
		Employer size (small, medium, large)	0	0
	Ride-share program	Employees eligible (\%)	0\%	0\%
Shared Mobility	Car share	Car share project setting (Urban, Suburban, All Other)	0	Urban + Comprehensive Transit
	Bike share	Within 600 feet of existing bike share station - ORimplementing new bike share station (Yes/No)	0	Yes
	School carpool program	Level of implementation (Low, Medium, High)	0	0
(cont. on following page)				

TDM Strategy Inputs, Cont.				
Strategy Type		Description	Proposed Project	Mitigations
Bicycle Infrastructure	Implement/Improve on-street bicycle facility	Provide bicycle facility along site (Yes/No)	0	0
	Include Bike parking per LAMC	Meets City Bike Parking Code (Yes/No)	Yes	Yes
	Include secure bike parking and showers	Includes indoor bike parking/lockers, showers, \& repair station (Yes/No)	Yes	Yes
Neighborhood Enhancement	Traffic calming improvements	Streets with traffic calming improvements (\%)	0\%	0\%
		Intersections with traffic calming improvements (\%)	0\%	0\%
	Pedestrian network improvements	Included (within project and connecting offsite/within project onlv)	within project and connecting off-site	within project and connecting off-site

CITY OF LOS ANGELES VMT CALCULATOR

Report 3: TDM Outputs

TDM Adjustments by Trip Purpose \& Strategy

Place type: Suburban Center

Place type: Suburban Center														
		Home Based Work Production		Home Based Work Attraction		Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction		Source
		Proposed	Mitigated											
Parking	Reduce parking supply	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Parking sections 1-5
	Unbundle parking	0\%	15\%	0\%	0\%	0\%	15\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Parking cash-out	0\%	0\%	0\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	
	Price workplace parking	0\%	0\%	0\%	3\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Residential area parking permits	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	
Transit	Reduce transit headways	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Transit sections 1-3
	Implement neighborhood shuttle	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Transit subsidies	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	0\%	3\%	
Education \& Encouragement	Voluntary travel behavior change program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Education \& Encouragement sections 1-2
	Promotions and marketing	0\%	4\%	0\%	4\%	0\%	4\%	0\%	4\%	0\%	4\%	0\%	0\%	
Commute Trip Reductions	Required commute trip reduction program	0\%	0\%	0\%	19\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	TDM Strategy Appendix, Commute Trip Reductions sections 1-4
	Alternative Work Schedules and Telecommute Program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Employer sponsored vanpool or shuttle	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
	Ride-share program	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	
Shared Mobility	Car-share	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	0.0\%	0.5\%	TDM Strategy Appendix, Shared Mobility sections 1-3
	Bike share	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	0.00\%	0.25\%	
	School carpool program	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	

CITY OF LOS ANGELES VMT CALCULATOR

Report 3: TDM Outputs

TDM Adjustments by Trip Purpose \& Strategy, Cont.

Place type: Suburban Center

Place type: Suburban Center														
		Home Based Work Production		Home Based Work Attraction		Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction		Source
		Proposed	Mitigated											
Bicycle Infrastructure	Implement/ Improve on-street bicycle facility	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	TDM Strategy Appendix, Bicycle Infrastructure sections 1-3
	Include Bike parking per LAMC	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	
	Include secure bike parking and showers	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	0.6\%	
	Traffic calming improvements	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	TDM Strategy Appendix,
Enhancement	Pedestrian network improvements	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	2.0\%	Neighborhood Enhancement sections 1-2

Final Combined \& Maximum TDM Effect

	Home Based Work Production		Home Based Work Attraction		Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction	
	Proposed	Mitigated										
COMBINED TOTAL	3\%	24\%	3\%	32\%	3\%	24\%	3\%	11\%	3\%	11\%	3\%	7\%
MAX. TDM EFFECT	3\%	20\%	3\%	20\%	3\%	20\%	3\%	11\%	3\%	11\%	3\%	11\%

\left.| = Minimum (X\%, 1-[(1-A)*(1-B)...]) | | |
| :---: | :---: | :---: |
| where X\%= | | |$\right]$

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (Transportation Assessment Guidelines Attachment G) for further discussion of dampening.

[^21]10 of 13

Home Based Work Production	MXD Methodology - Project Without TDM				Unadjusted VMT	MXD VMT
	Unadjusted Trips	MXD Adjustment	MXD Trips	Average Trip Length		
	274	-67.5\%	89	7.4	2,028	659
Home Based Other Production	758	-41.0\%	447	5.3	4,017	2,369
Non-Home Based Other Production	6,835	-4.6\%	6,523	7.9	53,997	51,532
Home-Based Work Attraction	5,331	-26.6\%	3,912	8.4	44,780	32,861
Home-Based Other Attraction	15,985	-30.1\%	11,170	6.5	103,903	72,605
Non-Home Based Other Attraction	6,567	-4.6\%	6,267	7.2	47,282	45,122

MXD Methodology with TDM Measures

Home Based Work Production	Proposed Project			Project with Mitigation Measures		
	TDM Adjustment	Project Trips	Project VMT	TDM Adjustment	Mitigated Trips	Mitigated VMT
	-3.2\%	86	638	-20.0\%	71	527
Home Based Other Production	-3.2\%	433	2,293	-20.0\%	358	1,895
Non-Home Based Other Production	-3.2\%	6,313	49,872	-10.9\%	5,810	45,903
Home-Based Work Attraction	-3.2\%	3,786	31,802	-20.0\%	3,130	26,289
Home-Based Other Attraction	-3.2\%	10,810	70,266	-10.9\%	9,950	64,674
Non-Home Based Other Attraction	-3.2\%	6,065	43,669	-10.9\%	5,582	40,193

MXD VMT Methodology Per Capita \& Per Employee

Total Home Based Production VMT	Total Population: 738 Total Employees: 4,831 APC: Central	
	Proposed Project	Project with Mitigation Measures
	2,931	2,422
Total Home Based Work Attraction VMT	31,802	26,289
Total Home Based VMT Per Capita	4.0	3.3
Total Work Based VMT Per Employee	6.6	5.4

TABLE 3
670 Mesquit
Study Intersection Locations

No.	North-South Street	East-West Street	Control
1	S Central Avenue	7th Street	Signalized
2	N Alameda Street	E. Aliso Street/E. Commercial Street	Signalized
3	Alameda Street	Temple Street	Signalized
4	N Alameda Street	E 1st Street	Signalized
5	N Alameda Street	E 2nd Street	Signalized
6	S Alameda Street	3rd Street	Signalized
7	S Alameda Street	4th Street	Signalized
8	S Alameda Street	6th Street	Signalized
9	S Alameda Street	7th Street	Signalized
10	Molino Street/Merrick Street	4th Street	Signalized
11	Mateo Street	6th Street	Signalized
12	Mateo Street	7th Street	Signalized
13	S Santa Fe Avenue	7th Street	Signalized
14	S Santa Fe Avenue	8th Street	Signalized
15	S Santa Fe Avenue	Porter Street	Signalized
16	S Santa Fe Avenue	Olympic Boulevard	Signalized
17	S Santa Fe Avenue	E 15th Street	Signalized
18	S Rio Street	E 7th Street	Signalized
19	S Anderson Street	E 7th Street	Signalized
20	Boyle Avenue	Whittier Boulevard	Signalized
21	Boyle Avenue	7th Street	Signalized
22	S Alameda Street	I-10 Eastbound Ramps	Signalized
A	Mateo Street	4th Place	Unsignalized
B	Mateo Street	Willow Street	Unsignalized
C	Mateo Street	Jesse Street	Unsignalized
D	S Santa Fe Avenue	Willow Street	Unsignalized
E	S Santa Fe Avenue	Mesquit Street	Unsignalized
F	S Santa Fe Avenue	Jesse Street	Unsignalized
G	Mesquit Street	Jesse Street	Unsignalized
H	US-101 Southbound Off-Ramp	7th Street	Unsignalized
1	I-10 Westbound Ramps	E 8th Street	Unsignalized
J	I-10 Eastbound Ramps	Porter Street	Unsignalized

TABLE 15A 670 MESQUIT FUTURE BASE (2026) PLUS PROJECT WITH THE DECK CONCEPT SIGNALIZED INTERSECTIONS LEVELS OF SERVICE						
NO.	INTERSECTION	PEAK HOUR	FUTURE BASE (2026)		FUTURE BASE (2026) + PROJECT WITH THE DECK CONCEPT	
			V/C	LOS	V/C	LOS
1	S Central Avenue \& 7th Street	$\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.821 \\ & 1.039 \end{aligned}$	$\begin{aligned} & \hline D \\ & F \end{aligned}$	$\begin{aligned} & \hline 0.844 \\ & 1.088 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$
2	N Alameda Street \& E Aliso Street/E Commercial Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \hline 0.737 \\ & 1.019 \end{aligned}$	C	$\begin{aligned} & \hline 0.755 \\ & 1.040 \end{aligned}$	C
3	Alameda Street \& Temple Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.763 \\ & 0.789 \end{aligned}$	C	$\begin{aligned} & \hline 0.800 \\ & 0.812 \end{aligned}$	C
4	N Alameda Street \& E 1st Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.166 \\ & 1.201 \end{aligned}$	F	$\begin{aligned} & 1.199 \\ & 1.221 \end{aligned}$	F
5	N Alameda Street \& E 2nd Street	AM PM	$\begin{aligned} & 1.053 \\ & 0.960 \end{aligned}$	F	$\begin{aligned} & 1.060 \\ & 0.983 \end{aligned}$	F
6	S Alameda Street \& 3rd Street/4th Place	AM PM	$\begin{aligned} & 0.948 \\ & 0.871 \end{aligned}$	E	$\begin{aligned} & 0.987 \\ & 0.915 \end{aligned}$	E
7	S Alameda Street \& 4th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.591 \\ & 0.966 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & \hline 0.611 \\ & 1.005 \end{aligned}$	B
8	S Alameda Street \& 6th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.045 \\ & 1.055 \end{aligned}$	F	$\begin{aligned} & 1.069 \\ & 1.083 \end{aligned}$	F
9	S Alameda Street \& 7th Street	AM PM	$\begin{aligned} & 1.145 \\ & 1.162 \end{aligned}$	F	$\begin{aligned} & 1.165 \\ & 1.252 \end{aligned}$	F
10	Molino Street/Merrick Street \& 4th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.815 \\ & 0.800 \end{aligned}$	D	$\begin{aligned} & 0.840 \\ & 0.855 \end{aligned}$	D
11	 6th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.948 \\ & 0.875 \end{aligned}$	E	$\begin{aligned} & 1.013 \\ & 1.007 \end{aligned}$	F
12	Mateo Street \& 7th Street	AM PM	$\begin{aligned} & 0.881 \\ & 0.941 \end{aligned}$	D	$\begin{aligned} & \hline 0.946 \\ & 1.102 \end{aligned}$	E
13	S Santa Fe Avenue \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.229 \\ & 1.292 \end{aligned}$	F	$\begin{aligned} & 1.277 \\ & 1.451 \end{aligned}$	F
14	S Santa Fe Avenue \& 8th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.711 \\ & 0.554 \\ & \hline \end{aligned}$	C	$\begin{aligned} & 0.751 \\ & 0.605 \end{aligned}$	C
15	S Santa Fe Avenue \& Porter Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.599 \\ & 0.809 \end{aligned}$	A	$\begin{aligned} & 0.639 \\ & 0.868 \end{aligned}$	B
16	S Santa Fe Avenue \& Olympic Boulevard	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.998 \\ & 0.983 \end{aligned}$	E	$\begin{aligned} & 1.034 \\ & 1.016 \end{aligned}$	F
17	S Santa Fe Avenue \& E 15th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.889 \\ & 0.678 \end{aligned}$	D	$\begin{aligned} & 0.899 \\ & 0.702 \end{aligned}$	D
18	S Rio Street \& E 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.595 \\ & 0.418 \end{aligned}$	A	$\begin{aligned} & 0.650 \\ & 0.462 \end{aligned}$	B
19	S Anderson Street \& E 4th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.737 \\ & 0.433 \end{aligned}$	C	$\begin{aligned} & \hline 0.792 \\ & 0.469 \end{aligned}$	C
20	Boyle Avenue \& Whittier Boulevard	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.072 \\ & 1.049 \end{aligned}$	F	$\begin{aligned} & 1.112 \\ & 1.081 \end{aligned}$	F
21	Boyle Avenue \& 7th Street	AM PM	$\begin{aligned} & \hline 0.885 \\ & 0.806 \end{aligned}$	D	$\begin{aligned} & 0.941 \\ & 0.845 \end{aligned}$	E
22	S Alameda Street \& I-10 Eastbound ramps	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & \hline 0.739 \\ & 0.853 \end{aligned}$	$\begin{aligned} & C \\ & D \end{aligned}$	$\begin{aligned} & 0.759 \\ & 0.865 \end{aligned}$	C

TABLE 16A 670 MESQUIT FUTURE BASE (2040) PLUS PROJECT SIGNALIZED INTERSECTIONS LEVELS OF SERVICE						
NO.	INTERSECTION	PEAK HOUR	FUTURE	(2040)	FUTURE $+\mathbf{P}$	$\begin{aligned} & \text { C(2040) } \\ & \text { CT } \end{aligned}$
			V/C	LOS	V/C	LOS
1	S Central Avenue \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.838 \\ & 1.059 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.859 \\ & 1.107 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$
2	N Alameda Street \& E Aliso Street/E Commercial Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.752 \\ & 1.040 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 0.769 \\ & 1.061 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~F} \end{aligned}$
3	Alameda Street \& Temple Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.778 \\ & 0.804 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.813 \\ & 0.825 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \\ & \hline \end{aligned}$
4	N Alameda Street \& E 1st Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.189 \\ & 1.223 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.221 \\ & 1.242 \end{aligned}$	F
5	N Alameda Street \& E 2nd Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.069 \\ & 0.974 \end{aligned}$	\bar{F}	$\begin{aligned} & 1.076 \\ & 0.996 \end{aligned}$	\bar{F}
6	S Alameda Street \& 3rd Street/4th Place	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.969 \\ & 0.889 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 1.008 \\ & 0.930 \end{aligned}$	$\begin{aligned} & \hline F \\ & E \end{aligned}$
7	S Alameda Street \& 4th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.603 \\ & 0.987 \end{aligned}$	B	$\begin{aligned} & 0.621 \\ & 1.025 \end{aligned}$	B
8	S Alameda Street \& 6th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.069 \\ & 1.077 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.093 \\ & 1.103 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
9	S Alameda Street \& 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.169 \\ & 1.182 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.186 \\ & 1.269 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
10	Molino Street/Merrick Street \& 4th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.834 \\ & 0.814 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.854 \\ & 0.864 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$
11	Mateo Street \& 6th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.966 \\ & 0.884 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 1.024 \\ & 1.009 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
12	Mateo Street \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.898 \\ & 0.957 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.957 \\ & 1.107 \end{aligned}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{~F} \end{aligned}$
13	S Santa Fe Avenue \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 1.251 \\ & 1.315 \end{aligned}$	\bar{F}	$\begin{aligned} & 1.296 \\ & 1.472 \end{aligned}$	\bar{F}
14	S Santa Fe Avenue \& 8th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.729 \\ & 0.569 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.768 \\ & 0.620 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~B} \\ & \hline \end{aligned}$
15	 Porter Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.615 \\ & 0.831 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.654 \\ & 0.889 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$
16	S Santa Fe Avenue \& Olympic Boulevard	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.024 \\ & 1.003 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.055 \\ & 1.037 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
17	S Santa Fe Avenue \& E 15th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.915 \\ & 0.697 \end{aligned}$	$\begin{aligned} & \hline E \\ & B \end{aligned}$	$\begin{aligned} & \hline 0.923 \\ & 0.722 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \end{aligned}$
18	S Rio Street \& E 7th Street	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 0.610 \\ & 0.427 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.664 \\ & 0.471 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$
19	 E 4th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.755 \\ & 0.442 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.809 \\ & 0.477 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \end{aligned}$
20	Boyle Avenue \& Whittier Boulevard	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 1.098 \\ & 1.074 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$	$\begin{aligned} & 1.136 \\ & 1.104 \end{aligned}$	$\begin{aligned} & \hline F \\ & F \end{aligned}$
21	Boyle Avenue \& 7th Street	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.907 \\ & 0.827 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.961 \\ & 0.864 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{D} \end{aligned}$
22	 I-10 Eastbound ramps	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & 0.759 \\ & 0.874 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 0.779 \\ & 0.886 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$

Figure 10
Conceptual Corrective Action

ONCEPTUAL SIGNAL EQUIPMENT AND POLE TYPES:

(A) LADOT/CALTRANS TYPE 17-3-100 SIGNAL POLE WITH 20' SIGNA MAST ARM AND 4' STREET LIGHT MAST ARM. SEE SHEET 2 FOR ITY STD. DRAWING S-52.1.6 AND SHEET 3 FOR POTENTIAL POLE INSTALLATION OPTIONS.
(B) LADOT TYPE 7 PEDESTRIAN PUSH BUTTON POST. SEE SHEET 2 FOR CITY STD. DRAWING S-51.7.
(C) TYPE 351 SIGNAL CONTROLLER ON TYPE F-332 FOUNDATION SEE SHEET 2 FOR CITY STD. DRAWING S-52.1.3 FOR FOUNDATION DETAILS
(D) BUREAU OF STREET LIGHTING (BSL) CD953C SIGNAL/STREET LIGHT POLE WITH 4' STREET LIGHT MAST ARM. SEE SHEET 2 FOR STANDARD DRAWING B-3685 AND SHEET 3 FOR POTENTIAL POLE INSTALLATION OPTIONS.
(E) LADOT/CALTRANS TYPE 17-3-100 SIGNAL POLE WITH 20' SIGNAL MAST ARM AND A 4' STREET LIGHT MAST ARM. SEE SHEET 2 FOR ITY STD. DRAWING S-52.1.6 AND SHEET 3 FOR POTENTIAL POLE NSTALLATION OPTIONS.
F LADOT/CALTRANS TYPE 19-4-100 SIGNAL POLE WITH 30' SIGNAL MAST ARM AND A 4' STREET LIGHT MAST ARM. SEE SHEET 2 FOR CITY STD. DRAWING S-52.1.6 AND SHEET 3 FOR POTENTIAL POLE INSTALLATION OPTIONS
(G) PREFORMED TRAFFIC SIGNAL LOOP DETECTORS. SEE SHEET 2 FOR CITY STD. DRAWING S-70.1E.

LEGEND:
CONDUIT AND SIGNAL
EQUIPMENT INSTALLED WITHIN BUILDING STRUCTURE

CONDUIT AND SIGNAL EQUIPMENT INSTALLED BELOW BRIDGE IN GRADE
GALVANIZED RIDGE CONDUIT ATTACHED TO BRIDGE STRUCTURE TO CONNECT
 POLES TO CONTROLLER

GALVANIZED RIDGE CONDUIT RISER FROM IN GRADE PULL BOX TO CONTROLLER CABINET PULL BOX

- — - — - STREET LIGHT CONDUIT INSTALLED BELOW GRADE AND ON BRIDGE TO TIE INTO EXISTING STREET LIGHTING SYSTEM

[^0]: ${ }^{1}$ On July 30, 2019, the Los Angeles City Council adopted a resolution formally implementing the City's updated transportation thresholds of significance for CEQA analyses. The TAG is the document providing the guidance for conducting both CEQA and non-CEQA transportation analyses. LADOT released an updated TAG in July 2020.
 ${ }^{2}$ Los Angeles Department of Transportation, LADOT Transportation Assessments - Interim Guidance for Freeway Safety Analysis (May 2020).

[^1]: ${ }^{3}$ City of Los Angeles Department of City Planning, Complete Streets Design Guide, August 12, 2015.

[^2]: ${ }^{4}$ LADOT Transit, New Service Plan, https://www.ladottransit.com/newserviceplan/. ${ }^{5}$ Metro, Regional Connector Transit Project, https://www.metro.net/projects/connector/.

[^3]: ${ }^{6}$ The Notice of Preparation for the proposed Arts District/6th Street Station project was released on March 29, 2021. (https://media.metro.net/2020/NOP-FINAL.pdf).

[^4]: ${ }^{7}$ Los Angeles Department of Transportation, Transportation Assessment Guidelines, page 2-2 (July 2020).

[^5]: ${ }^{8}$ Office of the Assessor County of Los Angeles, Assessor Map Book 5164, Page 15.

[^6]: ${ }^{9}$ The LA VMT Calculator was under development prior to release of the $10^{\text {th }}$ Edition of ITE's trip generation manual in late 2017. The VMT Calculator was validated to LA conditions based on the empirical counts conducted at market rate residential, affordable housing, office, and mixed-use sites in the City, regardless of the source of the rates used as a starting point.

[^7]: ${ }^{10}$ Los Angeles Department of Transportation, LADOT Transportation Assessments - Interim Guidance for Freeway Safety Analysis (May 2020).

[^8]: Source: Transportation Research Circular No. 212, Interim Materials on Highway Capacity,

[^9]: ${ }^{11}$ A dense multi-use urban area is defined as, "a fully developed area (or nearly so), with diverse and interacting complementary land uses, good pedestrian connectivity, and convenient and frequent transit." Institute of Transportation Engineers, 2017

[^10]: ${ }^{12}$ Extension of the Metro Red/Purple lines to the Arts District is currently under study by Metro. If this extension occurs and a $6^{\text {th }}$ Street station is provided adjacent to the Project Site, additional Project transit usage would be anticipated, resulting in fewer vehicles expected to be generated by the Project.

[^11]: ${ }^{13}$ Mode share in the urban zones of San Francisco showed that TNC/Taxi/Carshare trip types made up 5\% of total trips in the five year average between 2013-2017. Source: Corey, Canapary \& Galanis Research, 2017; Fehr \& Peers, 2017. Although there is limited data, the use of TNCs is an increasing trend. To provide a conservative analysis, this analysis has incorporated an adjustment to the trip generation estimates to account for TNC activity. This study represents the most recent information available and is utilized for this analysis.

 - Schaller, Bruce. "The New Automobility: Lyft, Uber and the Future of American Cities." Schaller Consulting. (2018).
 ${ }^{14}$ A review of surveys conducted within the following studies indicate that the secondary mode choice of TNC users (what they would have taken if TNCs were not an option) is a fairly even 50/50 split between private vehicles and transit/bike/walk trips. This supports the assumption that TNCs replace 2.5\% of transit/bike/walk trips and 2.5% of vehicle trips at the Project Site:
 - Clewlow, Regina R., and Gouri Shankar Mishra. "Disruptive transportation: The adoption, utilization, and impacts of ridehailing in the United States." University of California, Davis, Institute of Transportation Studies, Davis, CA, Research Report UCD-ITS-RR-17-07 (2017).
 - Alemi, Farzad, Giovanni Circella, Susan Handy, and Patricia Mokhtarian. What Influences Travelers to Use Uber? Exploring the Factors Affecting the Adoption of On-Demand Ride Services. No. 17-05630. 2017.
 - Henao, Alejandro. "Impacts of Ridesourcing-Lyft and Uber-on Transportation Including VMT, Mode Replacement, Parking, and Travel Behavior." PhD diss., University of Colorado at Denver, 2017.
 - Rayle, Lisa, Danielle Dai, Nelson Chan, Robert Cervero, and Susan Shaheen. "Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco." Transport Policy 45: 168-178. 2016.
 - Circella, Giovanni, Farzad Alemi, Kate Tiedeman, Susan Handy, and Patricia Mokhtarian. The Adoption of Shared Mobility in California and Its Relationship with Other Components of Travel Behavior. No. NCST-RR-201802. 2018.
 - Schaller, Bruce. "Unsustainable? The Growth of App-Based Ride Services and Traffic, Travel and the Future of New York City." (2017).

[^12]: Note: * The HCM methodology produces a delay estimate that exceeds 5 minutes or is undefined based on the volume, lane configuration, and traffic control. Actual drivers are likely to change their route or accept smaller than usual gaps when faced with such long delays.

[^13]: 1 Project floor area is calculated in accordance with Los Angeles Municipal Code (LAMC) Section 12.03, unless otherwise noted.

[^14]: 2. Does the land use project include the construction, or addition of:
[^15]: Report 3: TDM Outputs

[^16]: Land Use Codes (LUCs) from Trip Generation Informational Report, published by the Institute of Transportation Engineers.
 ${ }^{2}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
 ${ }^{3}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

[^17]: Land Use Codes (LUCs) from Trip Generation Informational Report, published by the Institute of Transportation Engineers.
 ${ }^{2}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
 ${ }^{3}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

[^18]: ${ }^{1}$ Land Use Codes (LUCs) from Trip Generation Informational Report, published by the Institute of Transportation Engineers.
 ${ }^{2}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
 ${ }^{3}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

[^19]: Intersection Summary

[^20]: Report 3: TDM Outputs

[^21]: Report 3: TDM Outputs

