Appendix G Hydraulic Report and Stormwater Control Plan

PRELIMINARY HYDRAULIC REPORT

FOR

NORTH WILLOW SPRINGS APN: 073-060-031, 032, 033, 034, 035, 036, 037, 038, 039, 040, 041, 042 & 043

CLIENT: The Towbes Group, Inc. 21 East Victoria Street, Suite 200 Santa Barbara, CA 93101 (805) 962-2121

PREPARED BY:Dale W. WeberMAC Design AssociatesDALE W. WEBER1933 Cliff Drive, Suite 6RCE 53753Santa Barbara, CA 93109EXPIRES 6/30/15(805) 957-4748EXPIRES 6/30/15

W.O. 0343

DATE: August 27, 2014

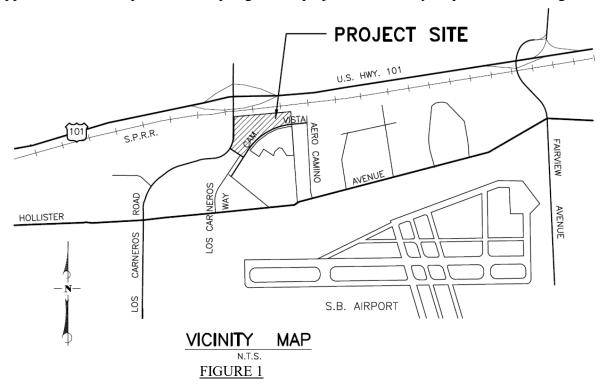
INDEX

- Preliminary Hydraulic Report for North Willow Springs
- Appendix A Preliminary Drainage Plan for North Willow Springs
- Appendix B Final Hydraulic Report for Willow Springs II, dated October 24, 2012 Final Hydraulic Report for Willow Springs I, dated January 2, 2002

PURPOSE OF REPORT

The purpose of this report is to summarize the stormwater runoff from the North Willow Springs project site and to describe how the project design will meet the flood control standards of the City of Goleta.

EXISTING CONDITIONS


The project site is currently thirteen (13) undeveloped lots adjacent to currently under construction Willow Springs II development, and previously developed Willow Springs I development.

PROPOSED DEVELOPMENT

North Willow Springs is a voluntary merger of thirteen (13) existing lots into a two (2) lot residential subdivision and a one (1) lot public park of two acres in size. North Willow Springs is a 360 unit residential apartment project consisting of eight (8) buildings containing the units and two (2) recreation buildings. The western portion of the project will designated as Senior Housing and is comprised two (2) residential buildings with a total of 132 units, and one (1) recreation building. The eastern portion of the project will be designated as Work Force Housing and is comprised of six (6) residential buildings with a total of 228 units, and one (1) recreation building.

LOCATION OF SITE

North Willow Springs is the northern portion (approximately 16.2 acres) of Tract 13,646, and is located on APN's 073-060-031 through 043, in Goleta, California. The tract is located near the intersection of Los Carneros Road and Calle Koral, and is immediately adjacent to the previously approved and developed Willow Springs I & II projects. A vicinity map is shown on Figure 1.

I. HYDROLOGY/HYDRAULICS

Drainage from the proposed North Willow Springs development is tributary to the previously constructed Willow Springs I & II developments. Therefore, storm drains that are constructed as a part of North Willow Springs will tie to the existing storm drains within Willow Springs I & II and ultimately drain to the existing retention basin located along the southwest boundary of Willow Springs I. The Willow Springs I & II projects accounted for the future phased development of North Willow Springs in the design of its storm drains and retention basin. The Willow Springs I & II hydraulic reports have been attached to this report for reference.

In the attached Willow Springs I & II hydraulic reports, the anticipated storm water runoff from North Willow Springs was calculated assuming commercial development would take place. However, since North Willow Springs is now proposed to be a residential development with a 2 acre public park, it can rightly be assumed that the Willow Springs I & II hydraulic reports overestimated the runoff that North Willow Springs would contribute to the Willow Springs I & II storm drains and detention basin. Therefore, the Willow Springs I & II storm drains and retention basin have more than adequate capacity to accept drainage from Willow Springs II.

As mentioned, the on-site retention basin is located southwest of the Willow Springs I development. This area will be maintained in perpetuity as a wetland in accordance with the Army Corps of Engineers (ACOE) 404 permit. The wetland mitigation plan which was approved by the ACOE recommended that this area be used to retain storm water runoff to improve wetland hydrology.

Retention Basin calculations were performed as part of the approved Final Willow Springs I Hydraulic Report and accounted for developed runoff from North Willow Springs and Willow Springs II. The Willow Springs I Hydraulic Report has been attached. The outflow from the retention basin is controlled through use of a Cipolletti (trapezoidal) weir.

Post-development hydrographs for the 10, 25, 50 and 100 year rainfall events were routed through the retention basin using the Santa Barbara County Flood Control Urban Hydrograph method (SBUH) and compared with the Pre-development hydrographs. Results of the pre. vs post development calculations routed through the retention basin are summarized in Table 1.

Return Period	Pre-Development	Post-Development	Difference, cfs
	Runoff, cfs	Runoff, cfs	
100	95.3	90	-5.3
50	83.0	80	-3.0
25	70.8	69	-1.8
10	56.3	56	0

Table 1

CONCLUSIONS

The construction of the drainage improvements outlined in this report will result in postdevelopment peak runoff rates equal or less than the expected runoff rates for the same return periods from the pre-development peak runoff rates.

STORMDRAIN CALCULATIONS

The anticipated storm water runoff was calculated using Santa Barbara County Flood Control District (SBCFCD) computer programs and design charts assuming a 25 year return period. Coefficients of runoff were determined for apartments. A time of concentration of 12 minutes (minimum) was established for the various drainage areas to determine runoff intensity. Outlines of the drainage areas are shown on the Preliminary Drainage Plan which is attached as Appendix A.

Roadway and parking lot catch basins are standard Santa Barbara County Public Works (SBCPW) Type "A" Drop Inlets. Other catch basins consist of standard precast concrete catch basins and Caltrans standard grated concrete pipes (GCP).

All input parameters are in accordance with the City of Goleta and Santa Barbara County Flood Control District (SBCFCD) standards.

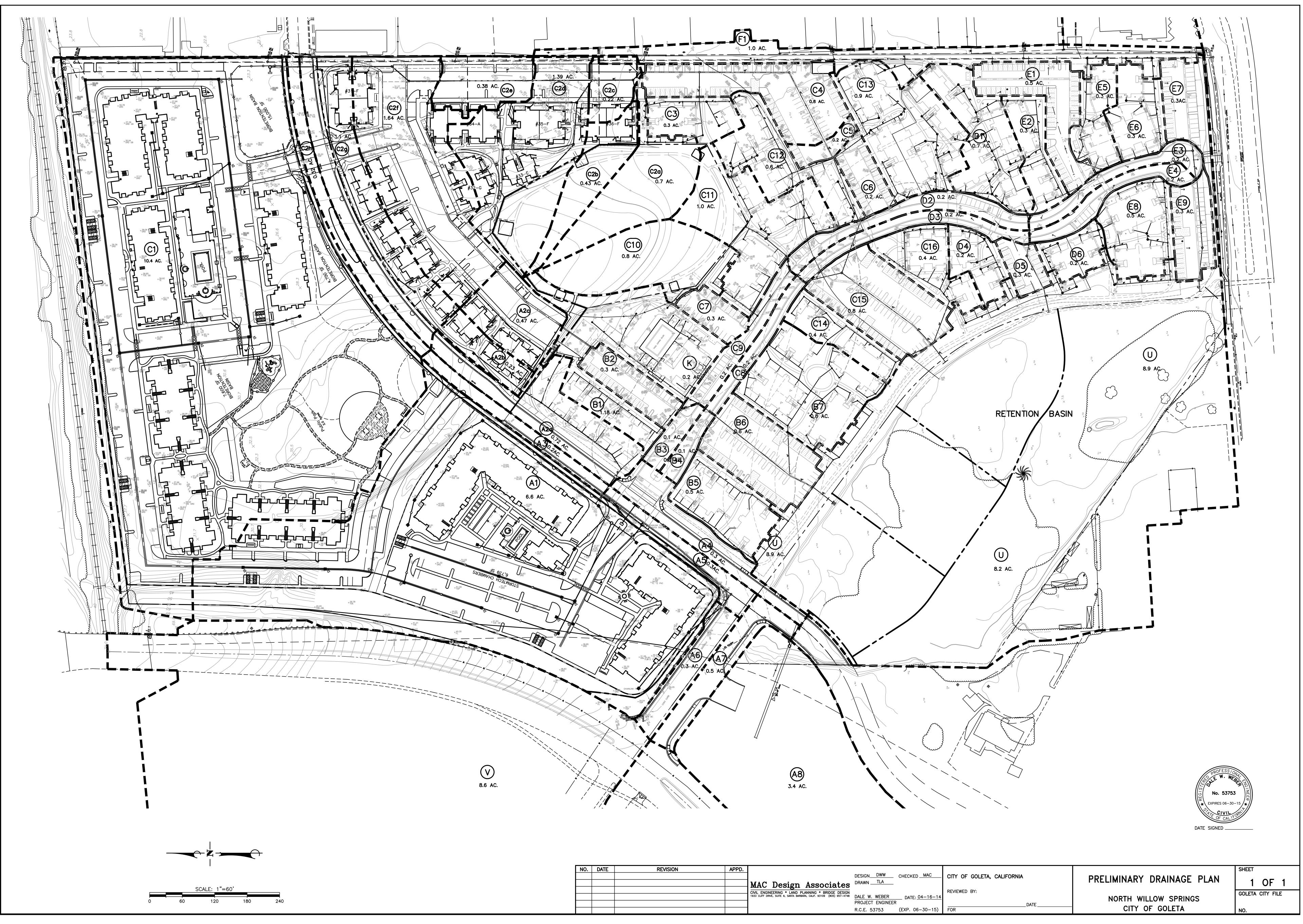
North Willow Springs will tie to and extend existing Willow Springs I & II storm drain lines "A" and "C". Hydraulic calculations have been updated to reflect these tie in's and extensions and are provided below.

Drainage	Area,	Land				
Area	Ac	Use	Q10, cfs	Q25, cfs	Q50, cfs	Q100, cfs
A1	6.6	Apt.	12	15.5	18.7	21
			Tc=12 min	Tc=12 min	Tc=12 min	Tc=12 min
			CApt=0.70	CApt=0.74	CApt=0.77	CApt=0.79
			i=2.61	i=3.18	i=3.68	i=4.03
WILLOW SP	PRINGS					
<u>I & II</u>						
A2a	0.72	Apt.	1.3	1.7	2.1	2.3
A2b	0.23	Apt.	0.4	0.5	0.7	0.7
A2c	0.47	Apt.	0.9	1.1	1.3	1.5
A3	0.2	Comm.	0.3	0.4	0.4	0.5
A4	0.3	Comm.	0.3	0.6	0.7	0.8
A5	0.3	Comm.	0.3	0.6	0.4	0.5
A6	0.3	Comm.	0.3	0.6	0.7	0.8
A7	0.5	Comm.	0.8	1.0	1.1	1.3
A8	3.4	Comm.	5.2	6.5	7.6	8.6
Ao		Comm.	13.1	16.5	19.3	21.9

HYDROLOGY TABLE Storm Drain "A"

HYDROLOGY TABLE Storm Drain "C"

Drainage Area	Area, Ac	Land Use	Q10, cfs	Q25, cfs	Q50, cfs	Q100, cfs
C1	10.4	Apt.	19	24.5	29.5	33
			Tc=12 min CApt=0.70	Tc=12 min CApt=0.74	Tc=12 min CApt=0.77	Tc=12 min CApt=0.79
			i=2.61	i=3.18	i=3.68	i=4.03


WILLOW SPRINGS I & II						
C2a	0.70	Apt.	1	2	2	2
C2b	0.43	Apt.	1	1	1	1
C2c	0.22	Apt.	0	1	1	1
C2d	1.39	Apt.	3	3	4	4
C2e	0.38	Apt.	1	1	1	1
C2f	1.64	Apt.	3	4	5	5
C2g	1.10	Apt.	2	3	3	4
C2h	0.32	Apt.	1	1	1	1
C11	1.0	Ag.	1.7	2.1	2.5	2.8
C12	0.6	Apt.	1.0	1.3	1.5	1.7
C13	0.9	Apt.	1.5	1.9	2.2	2.6
C14	0.4	Apt.	0.7	0.8	1.0	1.1
C15	0.7	Apt.	1.2	1.5	1.7	2.0
C16	0.4	Apt.	0.7	0.8	1.0	1.1

20.6

48.9

APPENDIX A

PRELIMINARY DRAINAGE PLAN FOR NORTH WILLOW SPRINGS

Design Associates	DESIGN <u>DWW</u> CHECKED <u>MAC</u> DRAWN <u>TLA</u>	CITY OF GOLETA, CALIFORNIA	PRELIMINARY DRAINA
CINEERING * LAND PLANNING * BRIDGE DESIGN DRIVE, SUITE 6, SANTA BARBARA, CALIF. 93109 (805) 957-4748	DALE W. WEBER DATE: 04-16-14 PROJECT ENGINEER R.C.E. 53753 (EXP. 06-30-15)	REVIEWED BY: DATE FOR	NORTH WILLOW SP CITY OF GOLET

APPENDIX B

WILLOW SPRINGS I & II FINAL HYDRAULIC REPORTS OCTOBER 24, 2012 AND JANUARY 2, 2002

FINAL HYDRAULIC REPORT

FOR

WILLOW SPRINGS II APN: 073-060-44, -45, -46, -47, -48

CLIENT: The Towbes Group, Inc. 21 East Victoria Street, Suite 200 Santa Barbara, CA 93101 (805) 962-2121

PREPARED BY: Dale W. Weber MAC Design Associates 1933 Cliff Drive, Suite 6 Santa Barbara, CA 93109 (805) 957-4748

DALE W. WEBER RCE 53753 EXPIRES 6/30/13

W.O. 0219

DATE: October 24, 2012

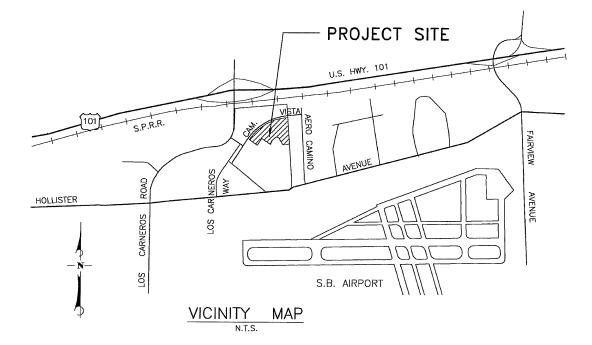
INDEX

- Final Hydraulic Report for Willow Springs II
 - I. Hydrology/Hydraulics
 - II. Hydromodification
 - III. Water Quality
- Appendix A Final Drainage Plan for Willow Springs II Final Storm Drain Plan & Profile for Willow Springs II
- Appendix B Final Hydraulic Report for Willow Springs I, dated January 2, 2002

PURPOSE OF REPORT

The purpose of this report is to summarize the runoff from the Willow Springs II project site and to describe how the project design will meet the flood control and water quality standards of the City of Goleta.

EXISTING CONDITIONS


The project site is currently five (5) undeveloped lots adjacent to previously developed Willow Springs development.

PROPOSED DEVELOPMENT

Willow Springs II is a voluntary merger of five (5) lots and a subsequent one (1) lot residential subdivision for condominium purposes. Willow Springs II is a 100 unit residential apartment project consisting of ten (10) buildings containing the units.

LOCATION OF SITE

Willow Springs II is the center portion (approximately 5 acres) of Tract 13,646, and is located on APN's 073-060-044 through 048, in Goleta, California. The tract is located near the intersection of Hollister Avenue and Los Carneros Road, and is immediately adjacent to the previously approved and developed Willow Springs project. A vicinity map is shown on Figure 1.

I. HYDROLOGY/HYDRAULICS

Drainage from the proposed Willow Springs II development is tributary to the previously constructed Willow Springs development. Therefore, storm drains that are constructed as a part of Willow Springs II will tie to the existing storm drains within Willow Springs and ultimately drain to the existing detention basin located along the southern boundary of Willow Springs. The Willow Springs project accounted for the future phased development of Willow Springs II in the design of its storm drains and detention basin. The Willow Springs hydraulic report has been attached to this report for reference.

In the attached Willow Springs hydraulic report, the anticipated storm water runoff from Willow Springs II was calculated assuming commercial development would take place. However, since Willow Springs II is now proposed to be a residential development, it can rightly be assumed that the Willow Springs hydraulic report over-estimated the runoff that Willow Springs II would contribute to the Willow Springs storm drains and detention basin. Therefore, the Willow Springs storm drains and detention basin have more than adequate capacity to accept drainage from Willow Springs II.

The anticipated storm water runoff was calculated using Santa Barbara County Flood Control District (SBCFCD) computer programs and design charts assuming a 25 year return period. Coefficients of runoff were determined for apartments. A time of concentration of 12 minutes (minimum) was established for the various drainage areas to determine runoff intensity. Outlines of the drainage areas are shown on the Preliminary Drainage Plan which is attached as Appendix A.

Roadway and parking lot catch basins are standard Santa Barbara County Public Works (SBCPW) Type "A" Drop Inlets. Other catch basins consist of standard precast concrete catch basins and Caltrans standard grated concrete pipes (GCP).

All input parameters are in accordance with the City of Goleta and Santa Barbara County Flood Control District (SBCFCD) standards. Water quality calculations are in accordance with the City of Goleta Draft Hydromodification Control Standards.

Willow Springs II will tie to and extend existing Willow Springs storm drain lines "A" and "C". Hydraulic calculations have been updated to reflect these tie in's and extentions and are provided below. The new section of Camino Vista will include two type"A" curbside drainage inlets. The areas tributary to these new inlets will be areas C2h and a 0.53 acre portion of area C2g. The 10-year storm event will result in a gutter flow of approximately 1cfs to these inlets. The calculation below indicates that 100% of this flow will be intercepted by the 8' and 9' windows proposed, and the spread will be 5.2 feet.

Retention Basin calculations were performed as part of the Willow Springs Hydraulic Report and accounted for developed runoff from Willow Springs II. The Willow Springs Hydraulic Report has been attached.

HYDROLOGY TABLE Storm Drain "A"

Drainage	Area,	Land				
Area	Ac	Use	Q10, cfs	Q25, cfs	Q50, cfs	Q100, cfs
A2a	0.72	Apt.	1	2	2	2
A2b	0.23	Apt.	0	1	1	1
A2c	0.47	Apt.	1	1	1	1
			Tc=12 min	Tc=12 min	Tc=12 min	Tc=12 min
			CApt=0.70	CApt=0.74	CApt=0.77	CApt=0.79
			i=2.61	i=3.18	i=3.68	i=4.03
WILLOW						
SPRINGS I	0.4	C	10.0	16.0	10.0	01.0
A 1	8.4	Comm.	12.8	16.2	18.9	21.3
A3	0.2	Comm.	0.3	0.4	0.4	0.5
A4	0.3	Comm.	0.3	0.6	0.7	0.8
A5	0.2	Comm.	0.3	0.4	0.4	0.5
A6	0.3	Comm.	0.3	0.6	0.7	0.8
A7	0.5	Comm.	0.8	1.0	1.1	1.3
	3.4	Comm.	5.2	6.5	7.6	8.6
A8			13.1	16.5	19.3	21.9

HYDROLOGY TABLE Storm Drain "C"

89 A 70 A 43 A 22 A 39 A 38 A 64 A 10 A	Use Apt. Apt. Apt. Apt. Apt. Apt. Apt. Apt.	Q10, cfs 16 1 0 3 1 3 2 1 Tc=12 min CApt=0.70 i=2.61	Q25, cfs 21 2 1 1 3 1 4 3 1 Tc=12 min CApt=0.74 i=3.18	Q50, cfs 25 2 1 1 4 1 5 3 1 Tc=12 min CApt=0.77 i=3.68	Q100, cfs 28 2 1 1 4 1 5 4 1 Tc=12 min CApt=0.79 i=4.03
70 A 43 A 22 A 39 A 38 A 64 A 10 A	Apt. Apt. Apt. Apt. Apt. Apt. Apt.	1 1 0 3 1 3 2 1 Tc=12 min CApt=0.70	2 1 1 3 1 4 3 1 Tc=12 min CApt=0.74	2 1 1 4 1 5 3 1 Tc=12 min CApt=0.77	2 1 1 4 1 5 4 1 Tc=12 min CApt=0.79
43 A 22 A 39 A 38 A 64 A 10 A	Apt. Apt. Apt. Apt. Apt. Apt.	1 0 3 1 3 2 1 Tc=12 min CApt=0.70	1 1 3 1 4 3 1 Tc=12 min CApt=0.74	1 1 4 1 5 3 1 Tc=12 min CApt=0.77	1 1 4 1 5 4 1 Tc=12 min CApt=0.79
22 A 39 A 38 A 64 A 10 A	Apt. Apt. Apt. Apt. Apt.	0 3 1 3 2 1 Tc=12 min CApt=0.70	1 3 1 4 3 1 Tc=12 min CApt=0.74	1 4 1 5 3 1 Tc=12 min CApt=0.77	1 4 1 5 4 1 Tc=12 min CApt=0.79
39 A 38 A 64 A 10 A	Apt. Apt. Apt. Apt.	3 1 3 2 1 Tc=12 min CApt=0.70	3 1 4 3 1 Tc=12 min CApt=0.74	4 1 5 3 1 Tc=12 min CApt=0.77	4 1 5 4 1 Tc=12 min CApt=0.79
38 A 64 A 10 A	Apt. Apt. Apt.	1 3 2 1 Tc=12 min CApt=0.70	1 4 3 1 Tc=12 min CApt=0.74	1 5 3 1 Tc=12 min CApt=0.77	1 5 4 1 Tc=12 min CApt=0.79
64 A 10 A	Apt. Apt.	3 2 1 Tc=12 min CApt=0.70	4 3 1 Tc=12 min CApt=0.74	5 3 1 Tc=12 min CApt=0.77	5 4 1 Tc=12 min CApt=0.79
10 A	Apt.	2 1 Tc=12 min CApt=0.70	3 1 Tc=12 min CApt=0.74	3 1 Tc=12 min CApt=0.77	4 1 Tc=12 min CApt=0.79
		1 Tc=12 min CApt=0.70	1 Tc=12 min CApt=0.74	1 Tc=12 min CApt=0.77	1 Tc=12 min CApt=0.79
32 A	Apt.	Tc=12 min CApt=0.70	Tc=12 min CApt=0.74	Tc=12 min CApt=0.77	Tc=12 min CApt=0.79
		CApt=0.70	CApt=0.74	CApt=0.77	CApt=0.79
		CApt=0.70	CApt=0.74	CApt=0.77	CApt=0.79
		*	-	^	ŕ
		*	-	^	ŕ
		i=2.61	i=3.18	i=3.68	i=4.03
.3 A	Apt.	0.5	0.6	0.7	0.9
.8 A	Apt.	1.3	1.7	2.0	2.3
.1 A	Apt.	0.2	0.2	0.2	0.3
.2 A	Apt.	0.3	0.4	0.5	0.6
.5 A	Apt.	0.8	1.1	1.2	1.4
	-	0.5	0.6	0.7	0.9
		0.2	0.2	0.2	0.3
		1.3	1.7	2.0	2.3
	-	1.7	2.1	2.5	2.8
		1.0	1.3	1.5	1.7
		1.5	1.9	2.2	2.6
	-	0.7	0.8	1.0	1.1
	-	1.2	1.5	1.7	2.0
		0.7	0.8	1.0	1.1
					-
			51.9]	
	.1 2 .8 4 .0 .6 4 .9 4 .4 4 .7 4 .4 4	.1 Apt. .8 Apt. .0 Ag. .6 Apt. .9 Apt. .4 Apt. .7 Apt. .4 Apt.	.1 Apt. 0.2 .8 Apt. 1.3 .0 Ag. 1.7 .6 Apt. 1.0 .9 Apt. 1.5 .4 Apt. 0.7 .7 Apt. 1.2 .4 Apt. 0.7	.1 Apt. 0.2 0.2 .8 Apt. 1.3 1.7 .0 Ag. 1.7 2.1 .6 Apt. 1.0 1.3 .9 Apt. 1.5 1.9 .4 Apt. 0.7 0.8 .7 Apt. 1.2 1.5 .4 Apt. 0.7 0.8	.1 Apt. 0.2 0.2 0.2 .8 Apt. 1.3 1.7 2.0 .0 Ag. 1.7 2.1 2.5 .6 Apt. 1.0 1.3 1.5 .9 Apt. 1.5 1.9 2.2 .4 Apt. 0.7 0.8 1.0 .7 Apt. 1.2 1.5 1.7

Hydraulic properties of a Street Half-Section

n = .015 Street X-section Properties Z(0)=99.00/ Gutter= 1.5 Z(1)=0.050/ L(2)=23.5 Z(2)=0.020/ L(3)= 0.0 Z(3)=0.020 Street half-width from gutter flow line to center line is 25 ft Crown height is .545 ft Inlet Capacities Based on 3 inch Local Depression. Slope = 0.040000

					ITTE		City o	fLА
D	0	v	v	Spread	Curb Ope	ening In	let Leng	ths
ft	cfs	Avg	Gutter	- ft	100%	75%	for % I	ntercep
0.15	1.00	3.35	4.28	5.2	8.0	5.5		

 $Q_{10} = (0.70)(2.61)(0.53)$ = 0.17 cfs= | CFS

		Pr	oqram Rati	onal - XL		
User Data:	 					
Project Name:	Willow Spr	ings II		Proj	ect Number:	0219
Date of Run:	10/24/201	2		Run	By:	DW
Notes:	A2a					
Input Data)}			•		
_ocation:	South Co	ast	Land	d Use Type:	Condo - Apartme	nts
Area (Acres):	.72		Time	e of Concentral	tion (Min.):	12
		Q10:	Q25:	Q50:	Q100:	
Calculated Runn	off Coefficient:	0.70	0.74	0.77	0.79	
Jser Selected Ru Coefficient (Opti					le l	Calculate
For Large	Lot Subdivisi	ons (>10,00	00 sq. ft.):			
	w Value:	High Value:	User Sele	ected:		
210:						
225:						
250:					Enter Selection	
Q100:						
Results:						
Rai	infall Intensity:	Runoff Coef:	Q (cfs):			
Q10: 2	2.61	0.70	1			
225:	3.18	0.74	<u> </u>		View RI Curves	Print
Q50: S	3.68	0.77	2			
2100: 4	1.03	0.79	2		View RC Curves	Exit
					and a second	I and a second

		Pr	ogram Rat	tional - XL		
User Data:						
Project Name:	Willow Spr	ings II		Pro	ject Number:	0219
Date of Run:	e of Run: 10/24/2012			Rur	ו By:	DW
Notes:	A2b					
Input Data:		•				
Location:	South Co	oast	I la	nd Use Type:	Condo - Apartme	nts
Area (Acres):	.23		Tir	ne of Concentr	ation (Min.):	12
		Q10;	Q25:	Q50:	Q100:	
Calculated Runno	ff Coefficient:	0.70	0.74	0.77	0.79	
Jser Selected Rui Coefficient (Optio						Calculate
For Large L	ot Subdivisi	ions (>10,0	00 sq. ft.):			
Low 210:	Value:	High Value:	User Se	lected:		
210.)25:						
					Enter Selection	
Q50:						
Q100:						
Results:						
	fall Intensity:	Runoff Coef:	Q (cfs):	-		
	61	0.70	0		View RI Curves	Print
225: 3.	18	0.74	1			
250: 3 .	68	0.77	1			
2100: 4 ,	03	0.79	1		View RC Curves	Exit
		60 .	the second s		the second rest of the second s	

			Pro	ogram Rati	ional - XL		
User Da	ita:						
Project Na	ime: V	Villow Spri	ngs II		Pro	ject Number:	0219
Date of Run: 10/24/2012		2		Run	By:	DW	
lotes:		.2c					
Input D	ata:						
ocation:		South Co	ast	-	nd Use Type:	Condo - Apartme	ents
Area (Acres	»: Г	.47		Tim	e of Concentra	ation (Min.):	12
			Q10:	Q25:	Q50:	Q100:	
alculated F	Runnoff Coe	fficient:	0.70	0.74	0.77	0.79	
lser Selecte Coefficient (Γ.		' Calculate
For Lar	ge Lot Si	ubdivisi	ons (>10,00)0 sq. ft.):			
	Low Value:		High Value:	User Sel	ected:		
210:							
25:						Enter Selection	
250:				The second s		Litter Selection	
2100:							
Results	-						
	Rainfall Int	ensity:	Runoff Coef:	Q (cfs):			
210:	2.61		0.70	1		View DI Comune	
25:	3.18		0.74	· · [1		View RI Curves	Print .
250:	3.68		0.77	1			
2100:	4.03		0.79	1		View RC Curves	Exit

8" PVC Pipe @ 0.5%

	jec			

Friction Method Solve For Manning Formula

Normal Depth

Input Data

Roughness Coefficient	0.010	
Channel Slope	0.00500	ft/ft
Diameter	0.67	ft
Discharge	1.00	ft³/s
Results		

Normal Depth		0.49 ft
Flow Area		0.28 ft ²
Wetted Perimeter		1.38 ft
Top Width		0.59 ft
Critical Depth		0.47 ft
Percent Full		73.3 %
Critical Slope		0.00548 ft/ft
Velocity		3.61 ft/s
Velocity Head		0.20 ft
Specific Energy		0.69 ft
Froude Number		0.93
Maximum Discharge		1.21 ft³/s
Discharge Full		1.13 ft³/s
Slope Full		0.00395 ft/ft
Flow Type	SubCritical	• •

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft		
Profile Description		,		
Profile Headloss	0.00	ft		
Average End Depth Over Rise	0.00	%		
Normal Depth Over Rise	73.35	%		
Downstream Velocity	Infinity	ft/s		
Upstream Velocity	Infinity	ft/s		

9/25/2012 2:00:07 PM

Bentley Systems, Inc. Haestad Methods Solution Center

Bentley FlowMaster [08.01.071.00] 5-1666 Page 1 of 2

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

8" PVC Pipe @ 0.5%						
GVF Output Data						
Normal Depth	0.49 ft					
Critical Depth	0.47 ft					
Channel Slope	0.00500 ft/ft					
Critical Slope	0.00548 ft/ft					

9/25/2012 2:00:07 PM

Bentley Systems, Inc. Haestad Methods Solution Center Bentley 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley FlowMaster [08.01.071.00] 5-1666 Page 2 of 2

	8" PVC P	ipe @ 1.	0%
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.010	
Channel Slope		0.01000	ft/ft
Diameter		0.67	ft
Discharge		1.50	ft³/s
Results			
Normal Depth		0.52	ft
Flow Area		0.29	
Wetted Perimeter		1.44	ft
Top Width		0.56	ft
Critical Depth		0.57	ft
Percent Full	· · · · ·	77.2	%
Critical Slope		0.00829	ft/ft
Velocity		5.13	ft/s
Velocity Head	• •	0.41	ft
Specific Energy		0.93	ft
Froude Number		1.26	
Maximum Discharge		1.71	ft³/s
Discharge Full		1.59	ft³/s
Slope Full		0.00888	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		77.22	%
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s

9/25/2012 5:08:53 PM

 Bentley Systems, Inc. Haestad Methods Solution Center
 Bentle

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 1

 Bentley FlowMaster
 [08.01.071.00]

 5-1666
 Page
 1 of
 2

8" PVC Pipe @ 1.0%						
GVF Output Data						
Normal Depth	. 0.52	ft				
Critical Depth	0.57	ft				
Channel Slope	0.01000	ft/ft				
Critical Slope	0.00829	ft/ft				
Critical Slope	0.00829	ft/ft				

9/25/2012 5:08:53 PM

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley FlowMaster [08.01.071.00] Page 2 of 2

·	8" PVC P	Pipe @ 6.	0%	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.010		
Channel Slope		0.06000	ft/ft	
Diameter		0.67	ft	
Discharge		1.50	ft³/s	
Results				
Normal Depth		0.29	ft	
Flow Area		0.15	ft ²	
Wetted Perimeter	•	0.96	ft	
Top Width		0.66	ft	
Critical Depth		0.57	ft	
Percent Full		43.0	%	
Critical Slope		0.00829	ft/ft	
Velocity		10.34	ft/s	
Velocity Head	· · ·	1.66	ft	
Specific Energy		1.95	ft	
Froude Number		3.90	·	
Maximum Discharge		4.19	ft³/s	
Discharge Full		3.90	ft³/s	
Slope Full		0.00888	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth	· ·	0.00	ft	
Length		0.00	ft	
Number Of Steps		. 0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		43.02	%	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	

10/24/2012 12:31:03 PM

 Bentley Systems, Inc.
 Haestad Methods Solution Center
 Bentle

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Bentley FlowMaster [08.01.071.00] 5-1666 Page 1 of 2

8" PVC Pipe @ 6.0%						
GVF Output Data						
Normal Depth	Q.29	ft				
Critical Depth	0.57	ft				
Channel Slope	0.06000	ft/ft				
Critical Slope	0.00829	ft/ft				

 Bentley Systems, Inc. Haestad Methods Solution Center
 Bentley FlowMaster
 [08.01.071.00]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 2 of 2

HYDROLOGY TABLE Storm Drain "C"

Drainage	Area,	Land			•	
Area	Ac	Use	Q10, cfs	Q25, cfs	Q50, cfs	Q100, cfs
C1	8.89	Apt.	16	21	25	28
C2a	0.70	Apt.	1	2	2	2
C2b	0.43	Apt.	1	1	1	1
C2c	0.22	Apt.	0	1	1	1
C2d	1.39	Apt.	3	3	4	4
C2e	0.38	Apt.	1 .	1	1	1
C2f	1.64	Apt.	3	4	5	5
C2g	1.10	Apt.	2	3	3	4
C2h	0.32	Apt.	· 1	1	1	1
			Tc=12 min	Tc=12 min	Tc=12 min	Tc=12 min
			CApt=0.70	CApt=0.74	CApt=0.77	CApt=0.79
			:2 (1	:2 10	:	-4.02
			i=2.61	i=3.18	i=3.68	i=4.03
WILLOW SPRIN	IGS I					······································
C3	0.3	Apt.	0.5	0.6	0.7	0.9
C4	0.8	Apt.	1.3	1.7	2.0	2.3
, C4	0.8	Apt.	1.J	1,./	2.0	
C4 C5	0.8	Apt.	0.2	0.2	0.2	0.3
				· · · · · · · · · · · · · · · · · · ·		0.3 0.6
C5	0.1	Apt.	0.2	0.2	0.2	
C5 C6	0.1 0.2	Apt. Apt.	0.2 0.3	0.2 0.4	0.2 0.5	0.6
C5 C6 C7	0.1 0.2 0.5	Apt. Apt. Apt.	0.2 0.3 0.8	0.2 0.4 1.1	0.2 0.5 1.2	0.6 1.4
C5 C6 C7 C8	0.1 0.2 0.5 0.3	Apt. Apt. Apt. Apt.	0.2 0.3 0.8 0.5	0.2 0.4 1.1 0.6	0.2 0.5 1.2 0.7	0.6 1.4 0.9
C5 C6 C7 C8 C9	0.1 0.2 0.5 0.3 0.1	Apt. Apt. Apt. Apt. Apt.	0.2 0.3 0.8 0.5 0.2	0.2 0.4 1.1 0.6 0.2	0.2 0.5 1.2 0.7 0.2	0.6 1.4 0.9 0.3
C5 C6 C7 C8 C9 C10	0.1 0.2 0.5 0.3 0.1 0.8	Apt. Apt. Apt. Apt. Apt. Apt.	0.2 0.3 0.8 0.5 0.2 1.3	0.2 0.4 1.1 0.6 0.2 1.7	0.2 0.5 1.2 0.7 0.2 2.0	0.6 1.4 0.9 0.3 2.3
C5 C6 C7 C8 C9 C10 C11	0.1 0.2 0.5 0.3 0.1 0.8 1.0	Apt. Apt. Apt. Apt. Apt. Apt. Ag.	0.2 0.3 0.8 0.5 0.2 1.3 1.7	0.2 0.4 1.1 0.6 0.2 1.7 2.1	0.2 0.5 1.2 0.7 0.2 2.0 2.5	0.6 1.4 0.9 0.3 2.3 2.8
C5 C6 C7 C8 C9 C10 C11 C12	0.1 0.2 0.5 0.3 0.1 0.8 1.0 0.6	Apt. Apt. Apt. Apt. Apt. Apt. Ag. Apt.	0.2 0.3 0.8 0.5 0.2 1.3 1.7 1.0	0.2 0.4 1.1 0.6 0.2 1.7 2.1 1.3	0.2 0.5 1.2 0.7 0.2 2.0 2.5 1.5	0.6 1.4 0.9 0.3 2.3 2.8 1.7
C5 C6 C7 C8 C9 C10 C11 C12 C13	0.1 0.2 0.5 0.3 0.1 0.8 1.0 0.6 0.9	Apt. Apt. Apt. Apt. Apt. Apt. Ag. Apt. Apt.	0.2 0.3 0.8 0.5 0.2 1.3 1.7 1.0 1.5	$\begin{array}{c} 0.2 \\ 0.4 \\ 1.1 \\ 0.6 \\ 0.2 \\ 1.7 \\ 2.1 \\ 1.3 \\ 1.9 \end{array}$	$\begin{array}{c} 0.2 \\ 0.5 \\ 1.2 \\ 0.7 \\ 0.2 \\ 2.0 \\ 2.5 \\ 1.5 \\ 2.2 \end{array}$	0.6 1.4 0.9 0.3 2.3 2.8 1.7 2.6

22.17

51.9

Program	-	STO	RΜ	DRA	. E X	XE	1
---------	---	-----	----	-----	-------	----	---

10-04-2012

Project: Willow Springs II - Storm Drain "C" by <u>DW</u>

SANTA BARBARA COUNTY FLOOD CONTROL DISTRICT FULL FLOW STORMDRAIN PIPE HYDRAULICS

Licensed to MAC Design Associates

Station Pipe (ft) Length		n	Flow (cfs)	Vel (ft/sec)	H(v) S(f) (ft) (ft/ft)	
Tailwater	[Downs	tream HGL]			12.00
0	Í					12.00 12.45
40	42	0.010	51.9	5.39	0.45 0.00157	
40		1		1		12.06 12.51
Junction			I .	1 . 1	•	Loss by Energy
40		0.010	-1 0	0.07	0 01 0 00000	12.56 12.58
3	99	0.010	51.9	0.97	0.01 0.00002	12.56 12.58
43 Junctic		l de Inflow	\mathbf{I}	 21 in @	pob deg	Loss by Momentum
- 43			l bibe =	24 111 @	so deg,	12.35 12.78
50	42	0.010	50.3	5.23	0.42 0.00148	
93		0.010	30.5	J.2.5	0.12 0.00110	12.43 12.85
Junction		i.	1	1		Loss by Energy
93		1	1	1		12.89 12.91
3	99	0.010	50.3	0.94	0.01 0.00002	
96						12.89 12.91
Junctio	n' Sid	de Inflow	Pipe =	24 in @	90 deg,	Loss by Momentum
96	Ī			1		12.70 13.10
158	42	0.010	48.8	5.07	0.40 0.00139	
254	· -				· · ·	12.92 13.32
Junction		•	•	•		Loss by Energy
254	I.		· .		а.	13.36 13.37
3	99	0.010	48.8	0.91	0.01 0.00001	
257						13.36 13.37
Junctic	n _. Sie	de Inflow	Pipe =	. 24 in @	90 deg,	Loss by Momentum
257						13.21 13.52
95	42	0.010	43.3	4.50	0.31 0.00110	
352						13.31 13.63
Junction		1	i	1		Loss by Energy
352		0.010	43.3	0.01	0.01 0.00001	13.66 13.67
3	99	0.010	43.3	0.81	0.01 0.00001	13.66 13.67
355 Tungtio	n 91	de Inflow	Dine -	! 2/ ຳກ @	90 deg,	Loss by Momentum
355	1 310		ripe -		so deg,	13.50 13.82
124	42	0.010	43.1	4.48	0.31 0.00109	
479	74	0.010	-1 J .1		0.51 0.0010J	13.64 13.95
Junction			1	I		Loss by Energy
479	1	1				13.98 13.99
3	99	0.010	43.1	0.81	0.01 0.00001	
482						13.98 13.99
Junctio	n' Sid	le Inflow	Pipe =	24 in @	90 deg,	Loss by Momentum
482	1		. <u>*</u>	_	بر این	13.83 14.14
35	42	0.010	42.7	4.44	0.31 0.00107	
517						13.87 14.17
Junction		-		•		Loss by Energy
517				<u>.</u>		14.20 14.21
						•

3.	99	0.010	42.7	0.80	0.01 0.00001	
Junction	Side	e Inflow	Pipe =	24 in @	90 deg,	Loss by Momentum
520 137	42	0.010	42.5	4.42	0.30 0.00106	14.05 14.36 5
657 Junction						14.20 14.50 Loss by Energy
657		0.070		0.00	0 01 0 00001	14.53 14.54
6603	99	0.010	42.5	·	0.01 0.00001	14.53 14.54
Junction 660	Sid	e Inflow	Pipe =		90 deg,	Loss by Momentum 14.42 14.66
162 822	42	0.010	37.6	3.91	0.24 0.00083	3 14.55 14.79
Junction		4 	l	ŧ		Loss by Energy 14.81 14.82
822 3	99	0.010	37.6	0.70	0.01 0.00001	L
825 Junction	Side	e Inflow	Pipe =	12 in @	90 deg,	14.81 14.82 Loss by Momentum
825 105	36	0.010	35.0	4.95	0.38 0.0016	14.66 15.04
930 Junction	30	0.010				14.84 15.22 Loss by Energy
930			Í			15.27 15.27
3 933	99	0.010	35.0	0.65	0.01 0.0000	15.27 15.27
Junction 933	Sid	e Inflow	Pipe =	12 in @	90 deg,	Loss by Momentum 15.12 15.48
18	36	0.010	34.0	4.81	0.36 0.0015	1
	36	0.010	34.0	4.81	0.36 0.00154	
18 951 Junction 951						1 15.15 15.51 Loss by Energy 15.56 15.56
18 951 Junction 951 3 954	99	0.010	34.0	0.64	0.01 0.0000	15.15 15.51 Loss by Energy 15.56 15.56 1 15.56 15.56
18 951 Junction 951 3	99 Sid	0.010 e Inflow	34.0 Pipe =	0.64 12 in @	0.01 0.0000 90 deg,	15.15 15.51 Loss by Energy 15.56 15.56 1 15.56 15.56 Loss by Momentum 15.42 15.76
18 951 Junction 951 3 954 Junction 954 73	99	0.010 e Inflow	34.0	0.64 12 in @	0.01 0.0000 90 deg,	15.15 15.51 Loss by Energy 15.56 15.56 15.56 15.56 Loss by Momentum 15.42 15.76
18 951 Junction 951 3 954 Junction 954 73 1,027 Junction	99 Sid	0.010 e Inflow	34.0 Pipe =	0.64 12 in @	0.01 0.0000 90 deg,	4 15.15 15.51 Loss by Energy 15.56 15.56 1 15.56 15.56 Loss by Momentum 15.42 15.76 5 15.53 15.87 Loss by Energy
18 951 Junction 951 3 954 Junction 954 73 1,027 Junction 1,027 3	99 Sid	0.010 e Inflow	34.0 Pipe =	0.64 12 in @ 4.67	0.01 0.0000 90 deg,	15.15 15.51 Loss by Energy 15.56 15.56 15.56 Loss by Momentum 15.42 15.53 15.87 Loss by Energy 15.91
18 951 Junction 951 3 954 Junction 954 73 1,027 Junction 1,027	99 Sid 36	0.010 e Inflow 0.010	34.0 Pipe = 33.0 33.0	0.64 12 in @ 4.67 0.62	0.01 0.0000 90 deg, 0.34 0.0014	4 15.15 15.51 Loss by Energy 15.56 15.56 15.56 15.56 Loss by Momentum 15.42 15.76 5 15.53 15.87 Loss by Energy 15.91 15.92 Loss by Momentum
18 951 Junction 951 3 954 73 1,027 Junction 1,027 3 1,030 Junction 1,030	99 Sid 36 99 Sid	0.010 e Inflow 0.010 0.010 e Inflow	34.0 Pipe = 33.0 33.0 Pipe =	0.64 12 in @ 4.67 0.62 12 in @	0.01 0.0000 90 deg, 0.34 0.0014 0.01 0.0000 90 deg,	4 15.15 15.51 Loss by Energy 15.56 15.56 15.56 15.56 Loss by Momentum 15.42 15.76 5 15.53 15.87 Loss by Energy 15.91 15.92 Loss by Momentum 15.80 16.08
18 951 Junction 951 3 954 Junction 954 73 1,027 Junction 1,027 3 1,030 Junction 1,030 105 1,136	99 Sid 36	0.010 e Inflow 0.010 0.010	34.0 Pipe = 33.0 33.0	0.64 12 in @ 4.67 0.62	0.01 0.0000 90 deg, 0.34 0.0014 0.01 0.0000	15.15 15.51 Loss by Energy 15.56 15.56 15.56 15.56 15.56 Loss by Momentum 15.42 15.53 15.87 Loss by Energy 15.91 15.91 15.92 Loss by Momentum 15.91 15.92 Loss by Momentum 15.93 16.21
18 951 Junction 951 3 954 Junction 954 73 1,027 Junction 1,027 3 1,030 Junction 1,030 106 1,136 Junction 1,136	99 Sid 36 36	0.010 e Inflow 0.010 0.010 e Inflow 0.010	34.0 Pipe = 33.0 33.0 Pipe = 30.0	0.64 12 in @ 4.67 0.62 12 in @ 4.24	0.01 0.0000 90 deg, 0.34 0.0014 0.01 0.0000 90 deg, 0.28 0.0012	15.15 15.51 Loss by Energy 15.56 15.56 15.56 15.56 15.56 Loss by Momentum 15.42 15.53 15.87 Loss by Energy 15.91 15.91 15.92 Loss by Momentum 15.91 15.92 Loss by Momentum 15.93 16.21 Loss by Energy 16.24
18 951 Junction 951 3 954 Junction 954 73 1,027 Junction 1,027 3 1,030 Junction 1,030 106 1,136 Junction 1,136 3 1,139	99 Sid 36 36 36	0.010 e Inflow 0.010 0.010 e Inflow 0.010 0.010	34.0 Pipe = 33.0 33.0 Pipe = 30.0 30.0	0.64 12 in @ 4.67 0.62 12 in @ 4.24 0.56	0.01 0.00000 90 deg, 0.34 0.0014 0.01 0.0000 90 deg, 0.28 0.0012 0.00 0.0000	15.15 15.51 Loss by Energy 15.56 15.56 15.56 15.56 15.56 Loss by Momentum 15.42 15.53 15.87 Loss by Energy 15.91 15.91 15.92 Loss by Momentum 15.91 15.92 Loss by Momentum 15.93 16.21 Loss by Energy 16.24 16.24 16.25
18 951 Junction 951 3 954 73 1,027 Junction 1,027 3 1,030 Junction 1,030 105 1,136 Junction 1,135 3	99 Sid 36 36 36	0.010 e Inflow 0.010 0.010 e Inflow 0.010	34.0 Pipe = 33.0 33.0 Pipe = 30.0 30.0	0.64 12 in @ 4.67 0.62 12 in @ 4.24 0.56 12 in @	0.01 0.00000 90 deg, 0.34 0.0014 0.01 0.0000 90 deg, 0.28 0.0012 0.00 0.0000	15.15 15.51 Loss by Energy 15.56 15.56 15.56 15.56 15.56 Loss by Momentum 15.42 15.53 15.87 Loss by Energy 15.91 15.91 15.92 Loss by Momentum 15.91 15.92 Loss by Momentum 15.93 16.21 Loss by Energy 16.24 15.93 16.25 Loss by Energy 16.24 16.24 16.25 Loss by Momentum 16.14
18 951 Junction 951 3 954 Junction 954 73 1,027 Junction 1,027 3 1,030 Junction 1,136 Junction 1,139 Junction 1,139 Junction	99 Sid 36 36 36	0.010 e Inflow 0.010 0.010 e Inflow 0.010 0.010	34.0 Pipe = 33.0 33.0 Pipe = 30.0 30.0	0.64 12 in @ 4.67 0.62 12 in @ 4.24 0.56	0.01 0.00000 90 deg, 0.34 0.0014 0.01 0.0000 90 deg, 0.28 0.0012 0.00 0.0000	15.15 15.51 Loss by Energy 15.56 15.56 15.56 15.56 15.56 Loss by Momentum 15.42 15.53 15.87 Loss by Energy 15.91 15.91 15.92 Loss by Momentum 15.92 Loss by Momentum 15.93 15.93 16.21 Loss by Energy 16.24 Loss by Energy 16.25 Loss by Energy 16.24 16.24 16.25 Loss by Momentum 16.14
18 951 Junction 951 3 954 Junction 954 73 1,027 Junction 1,027 3 1,030 Junction 1,030 105 1,136 Junction 1,139 Junction 1,139	99 Sid 36 99 Sid 36 99 Sid	0.010 e Inflow 0.010 e Inflow 0.010 0.010 e Inflow	34.0 Pipe = 33.0 33.0 Pipe = 30.0 30.0 Pipe =	0.64 12 in @ 4.67 0.62 12 in @ 4.24 0.56 12 in @	0.01 0.00000 90 deg, 0.34 0.0014 0.01 0.0000 90 deg, 0.28 0.0012 0.00 0.0000	15.15 15.51 Loss by Energy 15.56 15.56 15.56 15.56 15.56 Loss by Momentum 15.42 15.53 15.87 Loss by Energy 15.91 15.91 15.92 Loss by Momentum 15.91 15.92 Loss by Momentum 15.93 16.21 Loss by Energy 16.24 15.93 16.25 Loss by Energy 16.24 16.24 16.25 Loss by Momentum 16.14

Project:Wil	llow Sp	orings II	- Storm I	Drain "C"	(Cont.)	by _DW
EFC)600.						
SANTA BARBARA	COUNTY	Y FLOOD CO	NTROL DIS	STRICT FU	LL FLOW STORM	DRAIN PIPE HYDRAULICS
Licensed to MA	AC Des:	ıgn Assocı	lates			
Station Pipe ((It) Length	(11) (11) (11)		FLOW	Vei (IT/SeC)	H(V) S(I) (II) (II/II)	HGL EL (IC) (IC)
Taiiwater 1,139	[[Downs]	tream HGL		L 		Ì6.⊥4 16.14 16.40
168 1,307	36 	0.010 	29.0	4.10	0.26 0.00112	16.33 16.59 Loss by Energy
Junction 1,307 3	[99	[0.010	29.0	[0.54	0.00 0.00001	16.62 16.63
1,310 Junction	i Si	de Inflow	Pipe =	 12 in @ 1	90 deg,	16.62 16.63 Loss by Momentum 16.55 16.74
1,310 54 1,364	 36 	0.010	25.0] 3.54 	0.19 0.00083	16.59 16.79
Junction 1,364	j] 0.47	0.00 0.00000	Loss by Energy 16.81 16.82
3 1,367 Manhole,	(99 	(0.010 	[25.0 	[0.47		16.81 16.82 Loss by Momentum
1,367 38	[] 36	[] 0.010	25.0	[] 3.54	0.19 0.00083	16.74 16.93 3 16.77 16.96
1,405 Junction 1,405	1 j.	l I		1 1		Loss by Energy 16.99 16.99
3 1,408) 99 	j 0.010 l] 25.0 [] 0.47 [0.00 0.00000) 16.99 16.99 Loss by Momentum
Manhole, 1,408 139] 36	j 0.010] 25.0] 3.54	0.19 0.00083	16.91 17.10 3
1,547 Junction	- -	1) í	1		17.02 17.22 Loss by Energy 17.24 17.25
1,547 3 1,550	99] 0.010	25.0	0.47	0.00 0.00000) 17.24 17.25
Junction 1,550	Ī	de Inflow 0.010	Pipe = 22.0	12 in @ 3.11	180 deg, 0.15 0.00064	Loss by Momentum 17.20 17.35
52 1,602 Junction] 36] 22.0		0.15 0.0000	17.23 17.38 Loss by Energy
1,602 3] [99] [0.010) [22.0) [0.41	0.00 0.00000	17.40 17.40) 17.40 17.40
1,605 Junction 1,605	 	de Inflow	Pipe =	Í		Loss by Momentum 17.35 17.48
14 1,619	36) 0.010) 21.0	j 2.97	0.14 0.00059	9 17.36 17.49 17.52 17.52
End of Run	@ неа	uwater	• • • • • • • • •	• • • • • • • • •		

10 01-2012

		Pro	ogram Rati	onal - XL		
User Data:						
Project Name:	Willow Spr	ings II		Proj	ect Number:	0219
Date of Run:	9/27/2012			Run	By:	DW
Notes:						-
Input Data:				·		
Location:	South Co	ast	- Lan	d Use Type:	Condo - Apartme	nts
Area (Acres):	8.89		Tim	e of Concentra	tion (Min.):	12
		Q10:	Q25:	Q50:	Q100:	
Calculated Runnof	f Coefficient:	0.70	0.74	0.77	0.79	
User Selected Run Coefficient (Optior				la la companya de la companya	in an	
For Large Lo	ot Subdivisi	ons (>10,00	0 sq. ft.):			
	Value:	High Value:	User Sele	ected:		
Q10:						
Q25:					Entor Coloction	
Q50:					Enter Selection	
Q100:						
Results:		a transmissione summerican an and the			<u>n na na dukila na na sikaka n</u>	
Banadara and Banadara and Banadara and Banadara and Banadara	all Intensity:	Runoff Coef:	Q (cfs):			
Q10: 2.6	51	0.70	16			Duist
Q25: 3.1	L 8	0.74	21		View RI Curves	Print
Q50: 3. 6	58	0.77	25	Control of the second secon		
Q100: 4. ()3	0.79	28		View RC Curves	Exit

			Pr	ogram R	ational - XL			
User Dat	:a:			4-979-112-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				
Project Nan	ne:	Willow Spri	0219					
Date of Rur	r: 🗌	9/27/2012			Run	DW		
Notes:		Area C2a		ing talifi si sha a daga				
Input Da	ita:							
Location:		South Co	ast		Land Use Type:	Condo - Apartme	nts	
Area (Acres):		0.70			Time of Concentration (Min.):		12	
			Q10:	Q25:	Q50:	Q100:		
Calculated Ru	unnoff Co	efficient:	0.70	0.74	0.77	0.79		
Jser Selectec Coefficient (C				Í	ſ	Í.	Calculate	
For Larg	je Lot S	Subdivisi	ons (>10,00	00 sq. ft.)	1			
	Low Value	<u>.</u>	High Value:	User	Selected:			
Q10:								
Q25:		1.1.1. Control March 2010, and the formation of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strengt			 Approximation of the second sec	Enter Selection		
250:				Г		LILLEI SEIECLIOIT		
Q100:		-						
Results:				2				
	Rainfall Ir	tensity:	Runoff Coef:	Q (cf	s):			
Q10:	2.61 0.70		0.70					
) 25:	3.18	Constator 	0.74	2		View RI Curves	Print	
Q50:	3.68		0.77	2				
Q100:	4.03		0.79	2		View RC Curves	Exit	

		Pro	ogram Rati	onal - XL		
User Data:						499. <u>(19.), 1997</u> , 19.00, 19.0
Project Name:	Willow Spr	ings II		Proj	ect Number:	0219
Date of Run:	9/25/2012			Run	By:	DW
Notes:					944 (C. H. M. WILLIGHT, U. L. 1927).	
Input Data:						
Location:	South Co	oast	Lan	d Use Type:	Condo - Apartme	nts
Area (Acres):	0.43			e of Concentra	ition (Min.):	12
		Q10:	Q25:	Q50:	Q100:	
Calculated Runno	ff Coefficient:	0.70	0.74	0.77	0.79	
Jser Selected Rui Coefficient (Optic					len	Calculate
For Large L	ot Subdivis	ions (>10,00	00 sq. ft.):			
	Value:	High Value:	User Sele	ected:		
Q10:						
Q25:					Enter Selection	
Q50:					Enter Selection	
Q100:						
Results:		18. 1				
Rain	fall Intensity:	Runoff Coef:	Q (cfs):			
Q10: 2	.61	0.70	1		View RI Curves	Print
Q25: 3	.18	0.74	1			
Q50: 3	.68	0.77	1			
Q100: 4	.03	0.79	1		View RC Curves	Exit

	eren an	Pr	ogram R	ational - XL			
User Data:							
Project Name:	Willow Spri	Willow Springs II 0219					
Date of Run:	9/25/2012		Run By: DW				
Notes:	Area C2c						
Input Data:					· .		
ocation:	South Co	ast		Land Use Type:	Condo - Apartme	nts	
Area (Acres):	0.22			Time of Concentra	ation (Min.):	12	
		Q10:	Q25:	Q50:	Q100:		
alculated Runnof	f Coefficient:	0.70	0.74	0.77	0.79		
lser Selected Rur Coefficient (Option			T.		J	Calculate	
For Large L	ot Subdivisi	ons (>10,0	00 sq. ft.)	1		· ·	
The instance of the second second	Value:	High Value:	User	Selected:			
210:							
25:					Enter Selection		
250:					LITEL SELECTION		
2100:							
Results:							
Sector and the sector of the s	all Intensity:	Runoff Coef:	Q (ɗ	s):			
210: 2.0	61	0.70	jo		View RI Curves	Print	
225: 3.	18	0.74	1				
250: 3.4	58	0.77	1				
2100: 4.0	03	0.79	1		View RC Curves	Exit	

		Pr	ogram Rati	ional - XL		
User Data:						
Project Name	: Willow Spr	Willow Springs II 02				0219
Date of Run:	9/25/2012			DW		
Notes:	Area C2d					1999 - Carlos Carlos - Carlos
Input Data						
Location:	South Co	oast	- Lan	d Use Type:	Condo - Apartme	ents
Area (Acres):	1.39		Tim	e of Concentr	ation (Min.):	12
		Q10:	Q25:	Q50:	Q100:	
Calculated Runn	off Coefficient:	0.70	0.74	0.77	0.79	
User Selected Ri Coefficient (Opt						Calculate
For Large	Lot Subdivisi	ions (>10,00	00 sq. ft.):			
Lo\ Q10:	w Value:	High Value:	User Selé	ected:		
Q10. Q25: [
Q50:					Enter Selection	
Q100:						
Results:						
~/~ T-	infall Intensity:	Runoff Coef:	Q (cfs):			
	2.61	0.70	3		View RI Curves	Print
Q25:	3.18	0.74	3			
Q50: :	3.68	0.77	4		Mente DC Current	
Q100:	4.03	0.79	4		View RC Curves	Exit

																	1		

User Data:						enermanen in 1990, 1990, <u>1997</u> , 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997
Project Name:	Willow Spr	ings II		Proj	ject Number:	0219
Date of Run:	9/25/2012			Run	DW	
Notes:	Area C2e					
Input Data:	·					
Location:	South Co	oast	T Lar	nd Use Type:	Condo - Apartme	nts
Area (Acres):	0.38			e of Concentra	ation (Min.):	12
		Q10:	Q25:	Q50:	Q100:	
Calculated Runnol	ff Coefficient:	0.70	0.74	0.77	0.79	
User Selected Rur Coefficient (Optio				<u> </u>	ſ	Calculate
For Large L	ot Subdivisi	ons (>10,00)0 sq. ft.):			
Construction of the second secon	Value:	High Value:	User Sel	ected:		
Q10:				 Control State Sta		
Q25:						
Q50:					Enter Selection	
Q100;						
Results:						
, Raint	fall Intensity:	Runoff Coef:	Q (cfs):			
Q10: 2.	61	0.70	1		View DI Como	
Q25: 3.	18	0.74	1		View RI Curves	Print
Q50: 3.	68	0.77	1			
Q100: 4.	03	0.79	1		View RC Curves	Exit

		Program R	ational - XL		
User Data:					
Project Name:	Willow Springs II		Project Number:	0219	
Date of Run:	9/25/2012		Run By:	DW	
Notes:	Area C2f	a ana an an tao na san an ann an Anna Anna Anna			
Input Data:					
Location:	South Coast		Land Use Type: Condo - Apart	ments	
Area (Acres):	1.64		Time of Concentration (Min.):	12	

		Q10:	Q25:	Q50:	Q100:	
Calculate	d Runnoff Coefficient:	0.70	0.74	0.77	0.79	
	cted Runoff nt (Optional):					Calculate
For L	arge Lot Subdivisi	ions (>10,000) sq. ft.):			
	Low Value:	High Value:	User Sele	ected:		
Q10:						
Q25:						
Q50:					er Selection	
Q100:						
Resul	ts:					
	Rainfall Intensity:	Runoff Coef:	Q (cfs):			
Q10:	2.61	0.70	3			
Q25:	3.18	0.74	4		w RI Curves	Print
Q50:	3.68	0.77	5			
Q100:	4.03	0.79	5	Viev	v RC Curves	Exit

		Pr	ogram Rati	ional - XL		
User Data:						
Project Name:	Willow Spr	ings II		Proj	ject Number:	0219
Date of Run:	9/25/2012			Run	By:	DW
Notes:	Area C2g					
Input Data:						
Location:	South Co	past	Lan	nd Use Type:	Condo - Apartme	nts
Area (Acres):	1.1			e of Concentra	ation (Min.):	12
Calculated Runnof	f Coefficient:	Q10: 0.70	Q25: 0.74	Q50: 0.77	Q100: 0.79	
User Selected Run Coefficient (Option	nal):					Calculate
For Large Lo	ot Subdivisi	ons (>10,0	00 sq. ft.):			
Low \ Q10:	Value:	High Value:	User Sel	ected:		
Q25:						
Q23.					Enter Selection	
Q100:						
Results:						
Rainf Q10: 2,0	all Intensity:	Runoff Coef:	Q (cfs):			
		0.70	2 		View RI Curves	Print
	18	0.74	·3			
	68	0.77	3		View RC Curves	Exit
Q100: 4.6	03	0.79	4			

		Pro	ogram Ratio	nal - XL		
User Data:						
Project Name:	Willow Spr	ings II		0219		
Date of Run:	9/25/2012			Run	ı By:	DW
Notes:	Area C2h	<u> </u>			i na serie de la companie de la comp	
Input Data:	NG Balancia da Angela	·				
ocation:	South Co	oast	- Land	Use Type:	Condo - Apartme	ents
Area (Acres):	0.32			of Concentra	ation (Min.):	12
		Q10:	Q25:	Q50:	Q100	
Calculated Runno	ff Coefficient:	0.70	0.74	0.77	0.79	
Jser Selected Rur Coefficient (Optio			Γ	ſ		Calculate
For Large L	ot Subdivisi	ions (>10,00	0 sq. ft.):			ningerennen anderen offense energy (1999) warde fan de service anderen de service anderen de service anderen de
Low 210:	Value:	High Value:	User Select	ed:		
Q25:						1
250:				.	Enter Selection	
Q100:						
Results:						
Rain	fall Intensity:	Runoff Coef:	Q (cfs):			
210: 2.	61	0.70	1		New DI Co	
)25: 3 .	18	0.74	1		View RI Curves	Print
250: 3 .	68	0.77	1			
Q100: 4.	03	0.79	1		View RC Curves	Exit

II. HYDROMODIFICATION

The City of Goleta requires that projects hold back the increase in runoff volume due to development for the 1"-24 hour storm event.

The entire Willow Springs II project will drain to the existing on-site vegetated open space wetland basin. Runoff from this basin is controlled by a Cipoletti weir structure with an existing weir elevation of 7.1 feet above sea level.

The calculations which follow, indicate that the increased volume due to development of Willow Springs II during the 1"-24 hour storm event is approximately 0.25 acre-feet.

Therefore, as supported by the calculations which follow, this project will raise the elevation of the weir from 7.10' to 7.35' (3 inches) to completely store the increased runoff from development during the 1"-24 hour storm event in the basin, and satisfy the City of Goleta Hydromodification Standards.

WILLOW SPRINGS II – UNDEVELOPED

1"-24HOUR STORM EVENT

Summary for Subcatchment 18S: WSII undeveloped

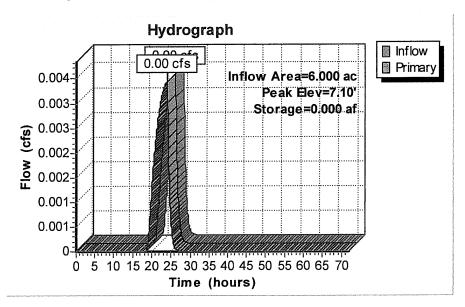
Runoff = 0.00 cfs @ 24.00 hrs, Volume=

0.001 af, Depth= 0.00"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type I 24-hr 1inch Rainfall=1.00"

Area (ac) CN Description	
6.000 69 Pasture/grassland/range, Fair, HSG B	
6.000 69 Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
30.0 Direct Entry,	
Hydrograph	
0.004	
0.003-	
Runoff Area=6.000 ac	
€ 0.003- © 0.003- Bunoff Volume=0.001 af	
(s) 0.003- 0.002- 0.002- 0.002- CN=69/0	
<u>≥ 0.002</u> CN=69/0	
0.001-	
0.001	
o Santinainain se santinainainainainainainainainainainaina inainainainainainainainainainainainainai	
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70	
Time (hours)	

Summary for Pond 21P: Wetland/Basin

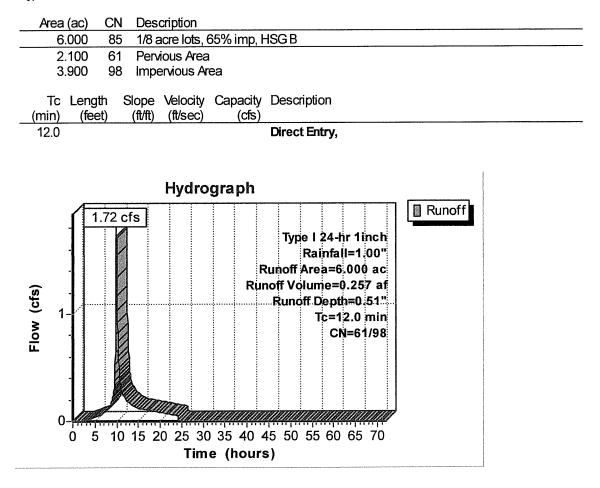

Inflow Area	=	6.000 ac,	0.00% Impervious, Inflow D	Depth = 0.00" for 1inch event
Inflow =	=	0.00 cfs @	24.00 hrs, Volume=	0.001 af
Outflow =	=	0.00 cfs @	24.00 hrs, Volume=	0.001 af, Atten= 0%, Lag= 0.0 min
Primary =		0.00 cfs @	24.00 hrs, Volume=	0.001 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 7.10' @24.00 hrs Surf.Area= 0.001 ac Storage= 0.000 af

Plug-Flow detention time= 4.3 min calculated for 0.001 af (100% of inflow) Center-of-Mass det. time= 4.3 min (1,348.1 - 1,343.9)

Volume	Invert	Avail.Stora	ge St	Storage Description
#1	7.10'	8.365	af C	Custom Stage Data (Prismatic) Listed below (Recalc)
<i>.</i> .			0	
Elevatio	n Surf.Area	a Inc	Store	e Cum.Store
(fee	t) (acres) (acre	e-feet)	i) (acre-feet)
7.1	0 0.000)	0.000	0.000
8.0	0 2.000)	0.900	0.900
9.0	0 4.310	כ	3.155	5 4.055
10.0	0 4.310)	4.310	D 8.365
Device	Routing	Invert	Outlet	et Devices
#1	Primary		28.0 d C= 2.6	deg x 10.0' long x 3.00' rise Sharp-Crested Vee/Trap Weir .62

Primary OutFlow Max=0.00 cfs @24.00 hrs HW=7.10' (Free Discharge) 1=Sharp-Crested Vee/Trap Weir (Weir Controls 0.00 cfs @0.08 fps)


WILLOW SPRINGS II – DEVELOPED

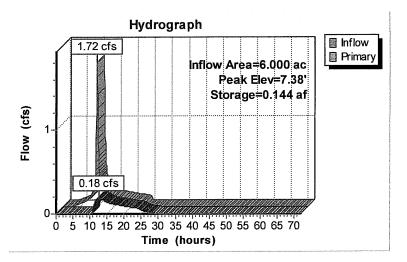
1"-24HOUR STORM EVENT

Summary for Subcatchment 19S: WSII developed

Runoff = 1.72 cfs @ 9.98 hrs, Volume= 0.257 af, Depth= 0.51"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type I 24-hr 1inch Rainfall=1.00"

Summary for Pond 20P: Wetland/Basin


Inflow Area =	6.000 ac, 65.00% Impervious, Inflow D	epth = 0.51" for 1inch event
Inflow =	1.72 cfs @ 9.98 hrs, Volume=	0.257 af
Outflow =	0.18 cfs @ 12.68 hrs, Volume=	0.135 af, Atten= 90%, Lag= 161.9 min
Primary =	0.18 cfs @ 12.68 hrs, Volume=	0.135 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 7.38' @ 12.68 hrs Surf.Area= 0.758 ac Storage= 0.144 af

Plug-Flow detention time= 471.2 min calculated for 0.135 af (52% of inflow) Center-of-Mass det. time= 281.8 min (1,033.7 - 752.0)

Volume	Invert	Avail.Storage	Storage Description
#1	7.00'	8.465 af	Custom Stage Data (Prismatic) Listed below (Recalc)
Elevatio			
(fee	t) (acres) (acre-fe	eet) (acre-feet)
7.0	0.000) 0.0	000 0.000
8.0	0 2.000) 1.0	000 1.000
9.0	0 4.310) 3.1	155 4.155
10.0	0 4.310) 4.3	310 8.465
Device	Routing	Invert Ou	itlet Devices
#1	Primary		.0 deg x 10.0' long x 3.00' rise Sharp-Crested Vee/Trap Weir = 2.62

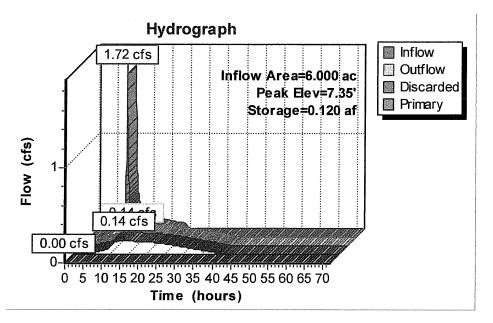
Primary OutFlow Max=0.16 cfs @ 12.68 hrs HW=7.38' (Free Discharge) 1=Sharp-Crested Vee/Trap Weir (Weir Controls 0.16 cfs @ 0.56 fps)

WILLOW SPRINGS II – DEVELOPED

1"-24HOUR STORM EVENT W/ EXFILTRATION

Summary for Pond 20P: Wetland/Basin

Inflow Area =	6.000 ac, 65.00% Impervious, Inflow De	epth = 0.51" for 1inch event
Inflow =	1.72 cfs @ 9.98 hrs, Volume=	0.257 af
Outflow =	0.14 cfs @ 13.78 hrs, Volume=	0.257 af, Atten= 92%, Lag= 227.8 min
Discarded =	0.14 cfs @ 13.78 hrs, Volume=	0.257 af
Primary =	0.00 cfs $@$ 0.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 7.35' @ 13.78 hrs Surf.Area= 0.694 ac Storage= 0.120 af

Plug-Flow detention time= 483.6 min calculated for 0.257 af (100% of inflow) Center-of-Mass det. time= 484.1 min (1,236.0 - 752.0)

Volume	Invert	Avail.Stora	ge Stor	age Description	
#1	7.00'	8.465	af Cus	tom Stage Data	(Prismatic) Listed below (Recalc)
Elevatio (fee			:Store e-feet)	Cum.Store (acre-feet)	
7.0	0.00	000	0.000	0.000	
8.0	00 2.0	000	1.000	1.000	
9.0	0 4.3	310	3.155	4.155	
10.0	00 4.3	310	4.310	8.465	
Device	Routing	Invert	Outlet De	evices	
#1	Primary	7.35'	28.0 deg C= 2.62	x 10.0' long x 3.	00' rise Sharp-Crested Vee/Trap Weir
#2	Discarded		••-	hr Exfiltration ov	er Surface area

Discarded OutFlow Max=0.14 cfs @ 13.78 hrs HW=7.35' (Free Discharge) **1−2=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=7.00' (Free Discharge) 1=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs)

III. WATER QUALITY

The Willow Springs project site includes a vegetated open space of approximately 7.25 acres, which serves as an on-site retention basin and bio-filter. All project storm drains ultimately drain to this vegetated open space. Runoff exiting storm drain line "A" will drain through over 500' of vegetated open space, and runoff exiting storm drain line "C" will drain through over 950' of vegetated open space. Therefore, since all site runoff will be drained and treated through the vegetated open space before leaving the property, there is 0% Effective Impervious Area.

The primary potential pollutant source that may affect the quality of storm water discharges is considered to be oil and grease from vehicles. With this in mind, the proposed treatment measures will be primarily focused at mitigating for vehicle impacts.

The Willow Springs II project is designed with low-impact development (LID) design components. These design components include the following:

- Fossil Filters will be installed on the drainage inlets.
- Runoff from a portion of the parking lots will be drained through an on-site vegetated bio-swale located along the east property line.
- Storm drains will outlet to bio-swales that drain to and from the on-site vegetated open space. Therefore, runoff will flow across vegetated bio-swales for more than the City of Goleta minimum of 100' before leaving the property. As mentioned above, runoff will flow across vegetated bio-swales for over 500' feet and over 950' feet before leaving the property.
- Runoff from the on-site vegetated open space is metered off-site with a Cipoletti Weir so that post-development flows are at or below pre-development flows.

The required flow rate for flow-through based storm water quality treatment facilities was calculated using the guidelines in the City of Goleta's Draft Hydromodification Control Standards for New Development Projects.

For Flow-Through Facilities: $WQFR = (0.05 + 0.9 \times IMP) \times 0.3 \times A$

This flow rate is based upon the occurrence of a storm event with a rainfall intensity of 0.33 inches per hour over a 4 hour time period (BMP storm).

Through the use of these LID design components, contact times that exceed the minimum requirement of 10 minutes during the occurrence of the BMP storm will be easily achieved.

Drainage area "A"

Area = 23.3 Acres IMP = 0.70

Flow-Through Based: WQFR = 4.75 cfs

As shown in the calculation below, the contact time for a WQFR of 4.75 cfs through a bio-swale 10 feet wide by 1 foot deep by 950 feet long at an average slope of 0.58%, is 86.3 minutes. This exceeds the minimum requirement of 10 minutes. The on-site vegetated open space provides a flow area much wider than the 10 feet used in this calculation, and thus will provide a greater contact time than that calculated.

Summary for Reach 5R: (new Reach)

23.320 ac. 70.00% Impervious, Inflow Depth = 0.17" for BMP event Inflow Area = Inflow = 4.78 cfs @ 1.75 hrs, Volume= 0.329 af 2.90 cfs @ 1.98 hrs, Volume= 0.329 af, Atten= 39%, Lag= 14.1 min Outflow = Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max Velocity= 0.91 fps. Min. Travel Time= 17.3 min Avg. Velocity = 0.18 fps, Avg. Travel Time= 86.3 min Peak Storage= 3,012 cf @ 1.98 hrs, Average Depth at Peak Storage= 0.28' Bank-Full Depth= 1.00', Capacity at Bank-Full= 26.53 cfs 10.00' x 1.00' deep channel, n= 0.050 Scattered brush, heavy weeds Side Slope Z-value= 4.0 1/ Top Width= 18.00' Length= 950.0' Slope= 0.0058 '/' Inlet Invert= 12.50', Outlet Invert= 7.00' ‡

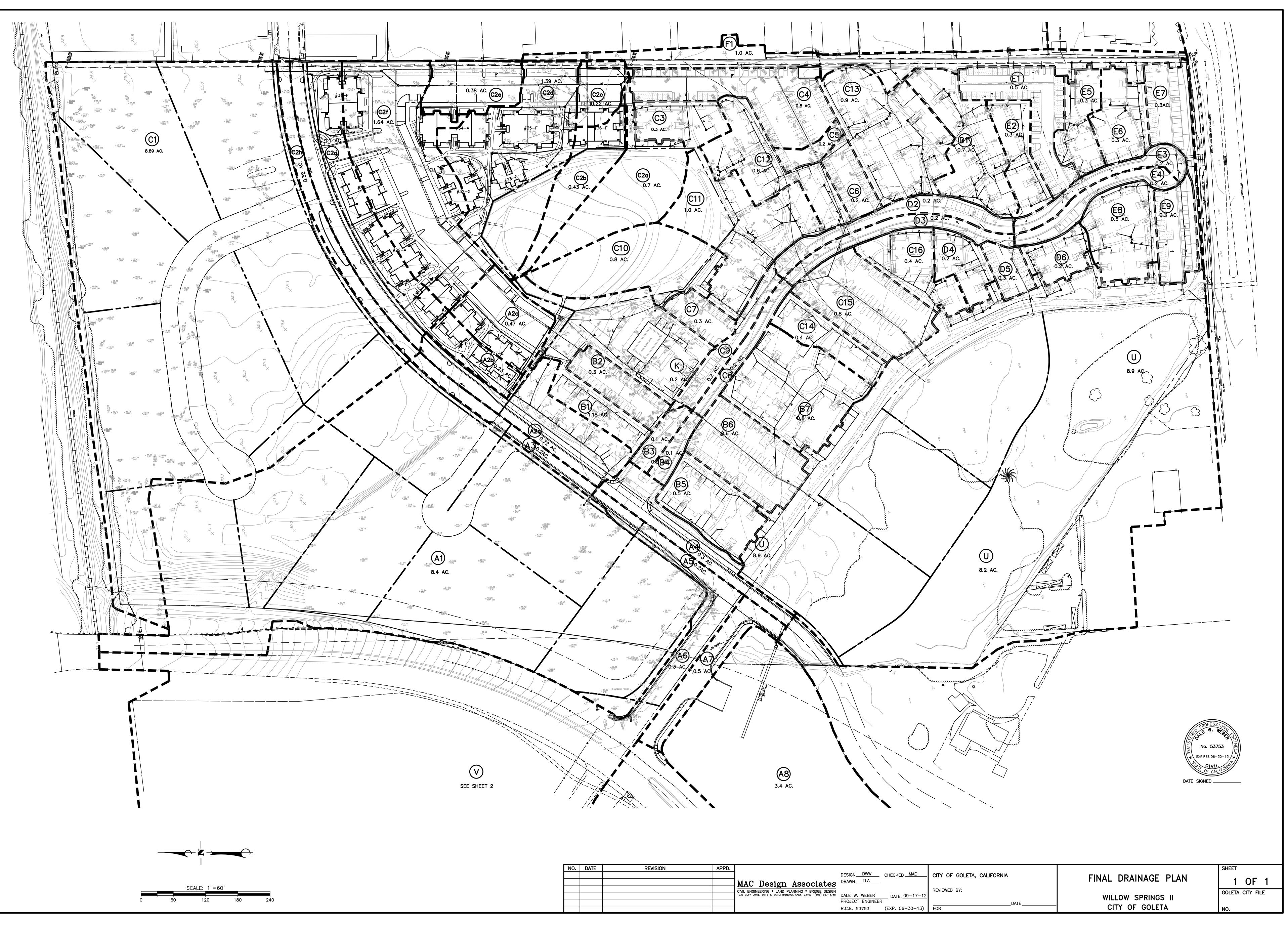
Drainage area "C"

Area = 22 Acres IMP = 0.70

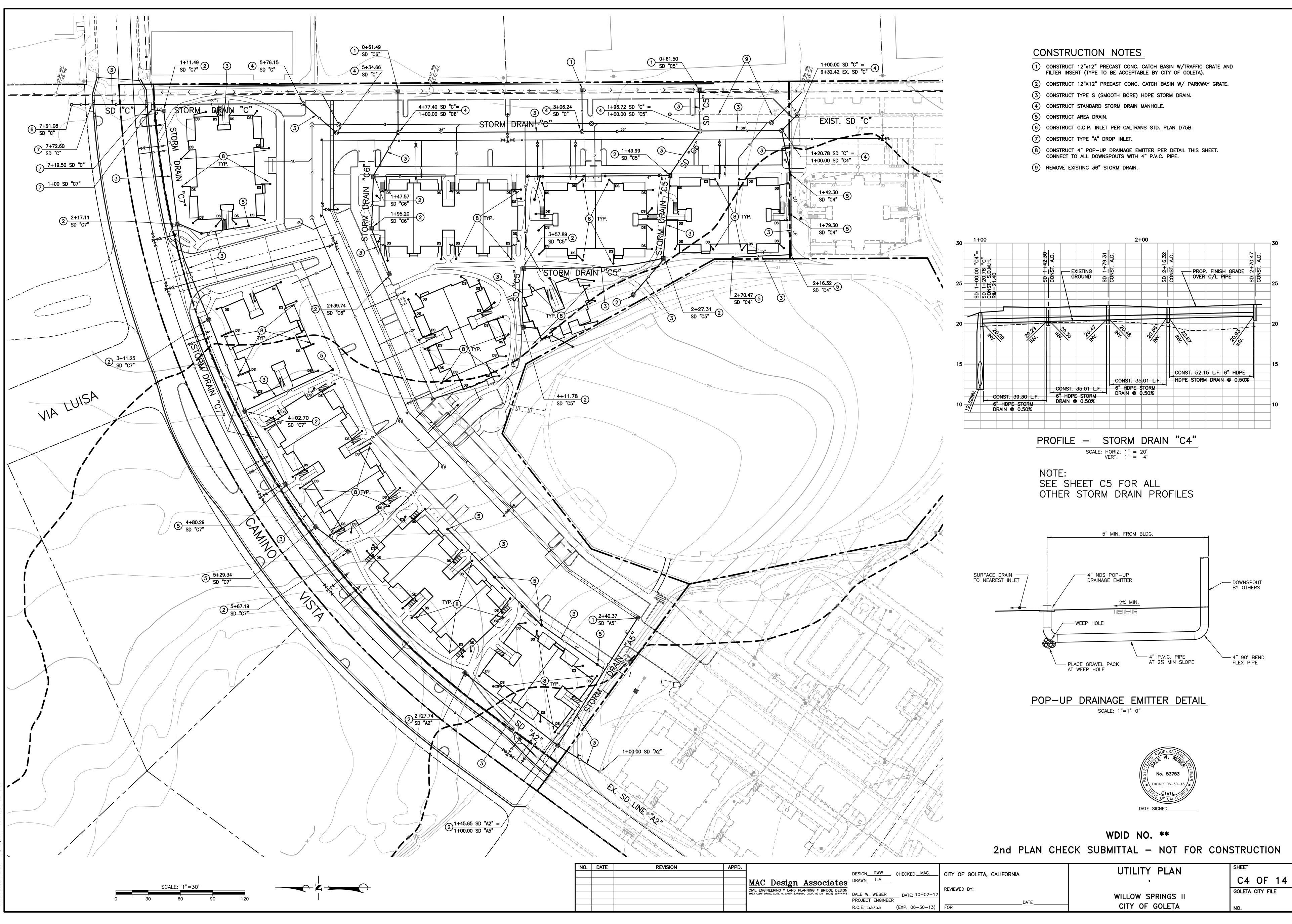
Flow-Through Based: WQFR = 4.49 cfs

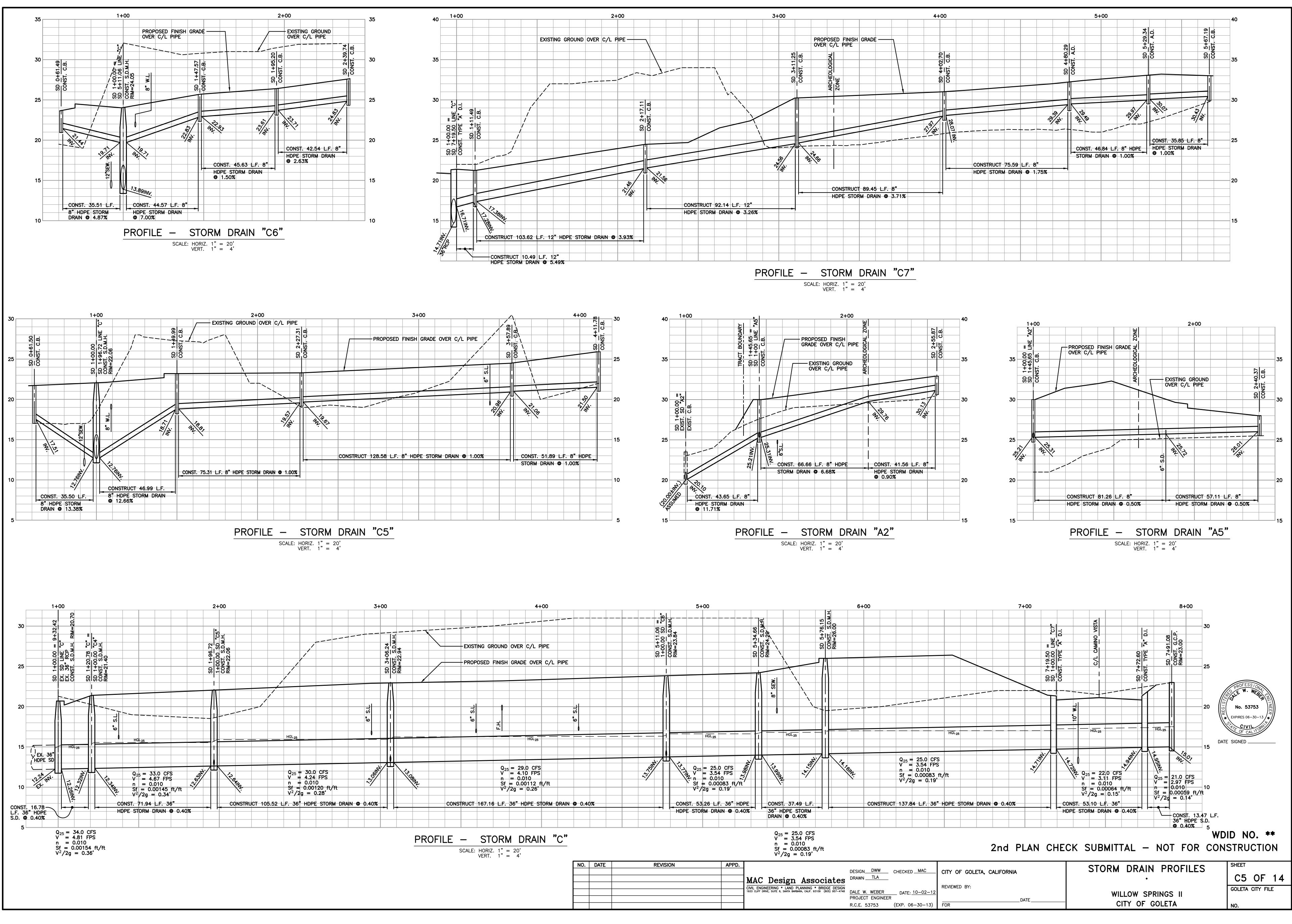
As shown in the calculation below, the contact time for a WQFR of 4.49 cfs through a bio-swale 10 feet wide by 1 foot deep by 527 feet long at an average slope of 0.19%, is 75.3 minutes. This exceeds the minimum requirement of 10 minutes. The on-site vegetated open space provides a flow area much wider than the 10 feet used in this calculation, and thus will provide a greater contact time than that calculated.

Summary for Reach 3R: (new Reach)

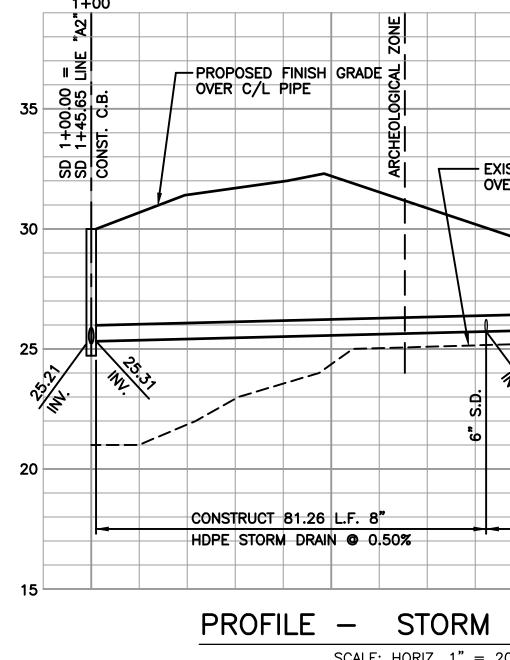

22.000 ac, 70.00% Impervious, Inflow Depth = 0.17" for BMP event Inflow Area = 1.75 hrs, Volume= 0.311 af Inflow Ξ 4.51 cfs @ 0.311 af, Atten= 34%, Lag= 11.6 min 3.00 cfs @ 1.94 hrs, Volume= Outflow = Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max Velocity= 0.64 fps, Min. Travel Time= 13.7 min Avg. Velocity = 0.12 fps, Avg. Travel Time= 75.3 min Peak Storage= 2,455 cf @ 1.94 hrs, Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.00', Capacity at Bank-Full= 15.19 cfs 10.00' x 1.00' deep channel, n= 0.050 Scattered brush, heavy weeds Side Slope Z-value= 4.0 '/' Top Width= 18.00' Length= 527.0' Slope= 0.0019 '/' Inlet Invert= 8.00', Outlet Invert= 7.00' ‡

APPENDIX A


FINAL DRAINAGE PLAN & STORM DRAIN PLAN & PROFILE


FOR

WILLOW SPRINGS II



NO.	DATE	REVISION	APPD.				
						CITY OF GOLETA, CALIFORNIA	FINAL DRAINAGE P
				MAC Design Associates	DRAWNTLA		
						REVIEWED BY:	
				CIVIL ENGINEERING * LAND PLANNING * BRIDGE DESIGN 1933 CLIFF DRIVE, SUITE 6, SANTA BARBARA, CALIF. 93109 (805) 957-4748			WILLOW SPRINGS I
					PROJECT ENGINEER	DATE	
				1	R.C.E. 53753 (EXP. 06-30-13)	FOR	CITY OF GOLETA
		·					

3+00							4+0	0						5+	-00				
	SD 3+11.25 CONST. C.B.			FINISH PIPE	GRADE		SD 4+02.70	CONST. C.B.				SD 4+80.29	CONST. A.D.				SD 5+29.34	CONST. A.D.	
		111					100. UL	28.07 INV.		75 50		25.74	 			. 8" HD 1.00%	PE	CONST HDPE O 1.0	
				STRUCT		8" 3.71%				75.59 DRAIN									

APPENDIX B

WILLOW SPRINGS I FINAL HYDRAULIC REPORT JANUARY 2, 2002

FINAL HYDRAULIC REPORT

FOR

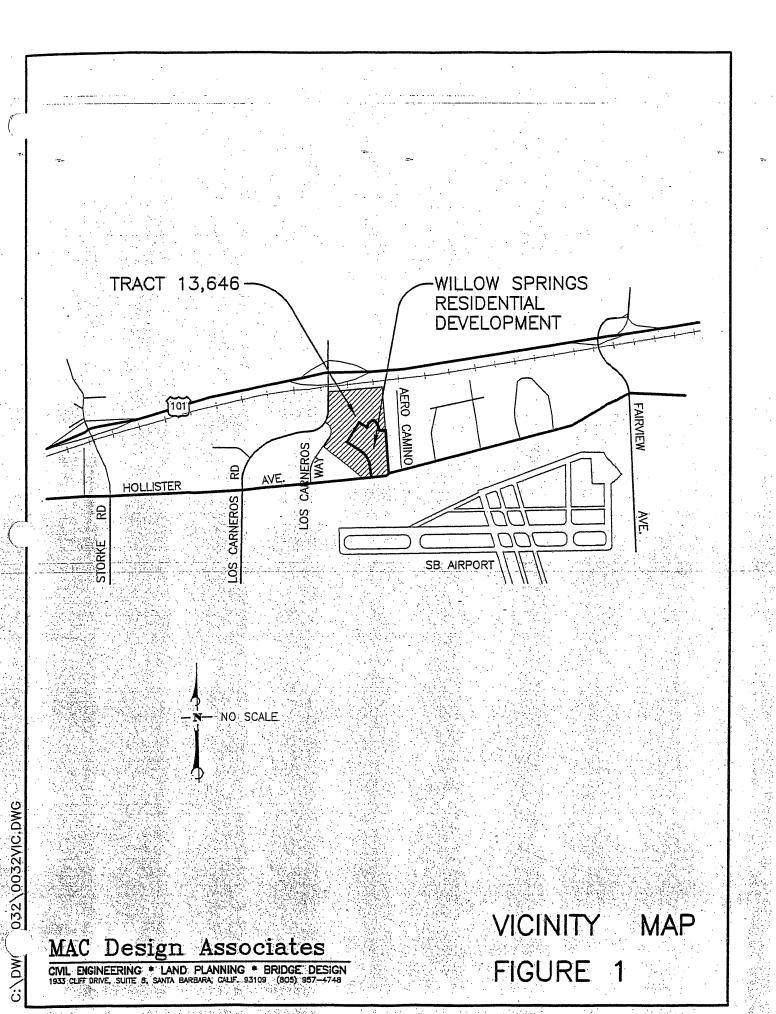
WILLOW SPRINGS APN 73-070-42

CLIENT: The Towbes Group, Inc. 21 East Victoria Street, Suite 200 Santa Barbara, CA 93101 (805) 962-2121

PREPARED BY: Michael A. Caccese MAC Design Associates 1933 Cliff Drive, Suite 6 Santa Barbara, CA 93109 (805) 957-4748

MICHAEL A. CACCESE RCE 26887 EXPIRES 3/31/01

W.O. 0032


DATE: January 2, 2002

PURPOSE OF REPORT

The purpose of this report is twofold. The first being to calculate the size of storm drain pipes, storm drain inlets and catch basins for the Willow Springs development in accordance with the standards of the Santa Barbara County Flood Control District and the Santa Barbara County Public Works Department. In addition, this report will determine the increase in storm water runoff caused by the proposed Willow Springs development and determine the size of detention basin required to maintain pre-development runoff levels after the Willow Springs development is completed.

LOCATION OF SITE

Willow Springs is the southerly portion (approximately 20 acres) of Tract 13,646. The tract is located in the Goleta Valley of Santa Barbara County near the intersection of Hollister Avenue and Los Carneros Road. A vicinity map is shown on Figure 1.

I. HYDROLOGY/HYDRAULICS

METHODOLOGY

The anticipated storm water runoff was calculated using Santa Barbara County Flood Control (SBCFD) computer programs and design charts assuming a 25 year return period. Coefficients of runoff were determined for commercial, apartment and open space (agriculture). A time of concentration was established for the various drainage areas to determine runoff intensity. For the most part, the time of concentration was at the minimum (12 minutes). Outlines of the drainage areas are shown on the Final Drainage Plan which is attached as Appendix A.

Roadway and parking lot catch basins are standard Santa Barbara County Public Works (SBCPW) Type "A" Drop Inlets. Other catch basins consist of standard precast concrete catch basins and Caltrans standard grated concrete pipes (GCP).

HYDROLOGY

The following tables contain the hydrology calculations for the proposed residential development. As stated previously, the time of concentration for the most part was at the minimum (12 minutes). The only exceptions to this were the time of concentration for the existing 8' x 2' reinforced concrete box culvert (RCB) which was determined to be 30 minutes and the time of concentration for the pipe system on the southerly portion of Camino Vista (Storm Drain "A") which drains water from the easterly portion of the Raytheon property, which was determined to be 15 minutes.

Drainage	Area,	Land				1
Area	Ac	Use	Q10, cfs	Q25, cfs	Q50, cfs	Q100, cfs
A1	8.4	Comm.	12.8	16.2	18.9	21.3
A2	0.2	Comm.	0.3	0.4	0.4	0.5
A3	0.2	Comm.	0.3	0.4	0.4	0.5
A4	0.3	Comm.	0.3	0.6	0.7	0.8
A5 .	0.2	Comm.	0.3	0.4	0.4	0.5
A6	0.3	Comm.	0.3	0.6	0.7	0.8
A7	0.5	Comm.	0.8	1.0	1.1	1.3
A8	3.4	Comm.	5.2	6.5	7.6	8.6
V	8.6	Comm.	13.1	16.5	19.3	21.9
			1			
		1 A				
		•				
			Tc=15 min	Tc=15 min	Tc=15 min	Tc=15 min
			CComm=0.71	CComm=0.74	CComm=0.76	CComm=0.77
			i=2.14	i=2.6	i=2.96	i=3.30

.

HYDROLOGY TABLE Storm Drain "A"

ĺ

(

HYDROLOGY TABLE Storm Drain "B"

Drainage	Area,	Land			<u></u>	
Area	Ac	Use	Q10, cfs	Q25, cfs	Q50, cfs	Q100, cfs
B1	2.3	Apt.	3.8	4.9 0.6	5.7 0.7	6.6 0.9
B2	0.3	Apt.	0.5 0.2	0.0	0.2	0.3
B3 B4	0.1 0.1	Apt. Apt.	0.2	0.2	0.2	0.3
B4 B5	0.1	Apt.	0.8	1.1	1.2	1.4
B5 B6	0.6	Apt.	1.0	1.3	1.5	1.7
B0 B7	0.8	Apt.	1.3	1.7	2.0	2.3
		-				
					. · ·	
:			Tc=12 min	Tc=12 min	Tc=12 min	Tc=12 min
				CApt=0.73	CApt=0.75	CApt=0.77
			CApt=0.69	CApi-0.73	CApt-0.75	CAPI-0.77
			i=2.40	i=2.9	i=3.3	i=3.70
		· ·				
ŧ						
		1				

.

Ę

Ĺ

.

.

.

Drainage	Area,	Land				
Area	Ac	Use	Q10, cfs	Q25, cfs	Q50, cfs	Q100, cfs
C1	9.0	Comm.	15.6	19.6	22.9	26.3
C2	5.8	Comm.	10.0	12.6	14.7	17.0
C3	0.3	Apt.	0.5	0.6	0.7	0.9
C4	0.8	Apt.	1.3	1.7	2.0	2.3
C5	0.1	Apt.	0.2	0.2	0.2	0.3
C6	0.2	Apt.	0.3	0.4	0.5	0.6
C7.	0.5	Apt.	0.8	1.1	1.2	1.4
C8	0.3	Apt.	0.5	0.6	0.7	0.9
C9	0.1	Apt.	0.2	0.2	0.2	0.3
C10	0.8	Apt.	1.3	1.7	2.0	2.3
C11	1.0	Ag.	1.7	2.1	2.5	2.8
C12	0.6	Apt.	1.0	1.3	1.5	1.7
C13	0.9	Apt.	1.5	1.9	2.2	2.6
C14	0.4	Apt.	0.7	0.8	1.0	1.1
C15	0.7	Apt.	1.2	1.5	1.7	2.0
C16	0.4	Apt.	0.7	0.8	1.0	1.1
		· ·			1 · · · · ·	
			Tc=12 min	Tc=12 min	Tc=12 min	Tc=12 min
	· .		Ccomm=0.72	Ccomm=0.75	Ccomm=0.77	Ccomm=0.79
			CApt=0.69	CApt=0.73	CApt=0.75	CApt=0.77
				Chipt 0.75	Cript 0.75	Cript 0.77
			i=2.40	i=2.9	i=3.3	i=3.70
			· · · ·			
4						
			<i>*</i>			
				· ·		
			·			
				i		

HYDROLOGY TABLE Storm Drain "C"

.

(

.

Drainage	Area,	Land		T		
Area	Ac	Use	Q10, cfs	Q25, cfs	Q50, cfs	Q100, cfs
D1	0.7	Apt.	1.2	1.5	1.7	2.0
D2	0.2	Apt.	0.3	0.4	0.5	0.6
D3	0.3	Apt.	0.5	0.6	0.7	0.9
D4	0.2	Apt.	0.3	0.4	0.5	0.6
D5	0.3	Apt.	0.5	0.6	0.7	0.9
D6	0.2	Apt.	0.3	0.4	0.5	0.6
20						
			Tc=12 min	Tc=12 min	Tc=12 min	Tc=12 min
			CApt=0.69	CApt=0.73	CApt=0.75	CApt=0.77
			i=2.40	i=2.9	i=3.3	i=3.70
· · ·					•	
			,			
		·				

(

HYDROLOGY TABLE Storm Drain "D"

Drainage	Area,	Land	······································			
Area	Ac	Use	Q10, cfs	Q25, cfs	Q50, cfs	Q100, cfs
E1	0.5	Apt.	0.8	1.1	1.2	1.4
E2	0.3	Apt.	0.5	0.6	0.7	0.9
E3	0.2	Apt.	0.3	0.4	0.5	0.6
E4	0.2	Apt.	0.3	0.4	0.5	0.6
E5	0.3	Apt.	0.5	0.6	0.7	0.9
E6	0.3	Apt.	0.5	0.6	0.7	0.9
E7	0.3	Apt.	0.5	0.6	0.7	0.9
E8	0.5	Apt.	0.8	1.1	1.2	1.4
E9	0.3	Apt.	0.5	0.6	0.7	0.9
	0.5	1.12.				0.5
					4	
			Tc=12 min	Tc=12 min	Tc=12 min	Tc=12 min
			10-12 1111	10-12 mm		10-12 mm
					C	C+ + 0.77
			CApt=0.69	CApt=0.73	CApt=0.75	CApt=0.77
			i=2.40	; ;	i=3.3	:2 70
	• • •		1=2.40	i=2.9	1-3.5	i=3.70
· [· · · · · · · · · · · · · · · · · · ·		
		· ·				·
		-				
	•					
1				}		

ĺ

HYDROLOGY TABLE Storm Drain "E"

HYDROLOGY TABLE Drainage Ditch "A"

(

(

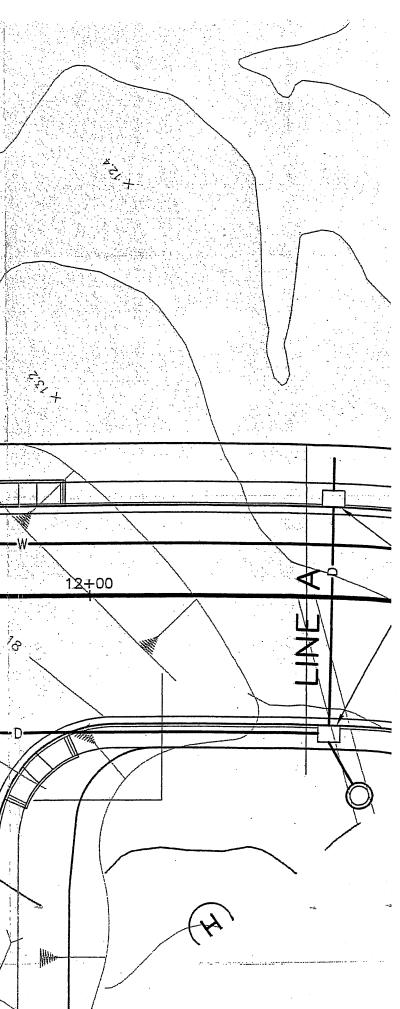
Drainage	Area,	Land				
Area	Ac	Use	Q10, cfs	Q25, cfs	Q50, cfs	Q100, cfs
F1	1.0	Comm.	1.7	2.2	2.5	2.8
F2	0.9	Comm.	1.6	2.0	2.3	2.6
			Tc=12 min	Tc=12 min	Tc=12 min	Tc=12 min
			Ccomm=0.72	Ccomm=0.72	Ccomm=0.72	Ccomm=0.72
			i=2.40	i=2.9	i=3.3	i=3.70
					· ·	
		N.				
		•				
•						

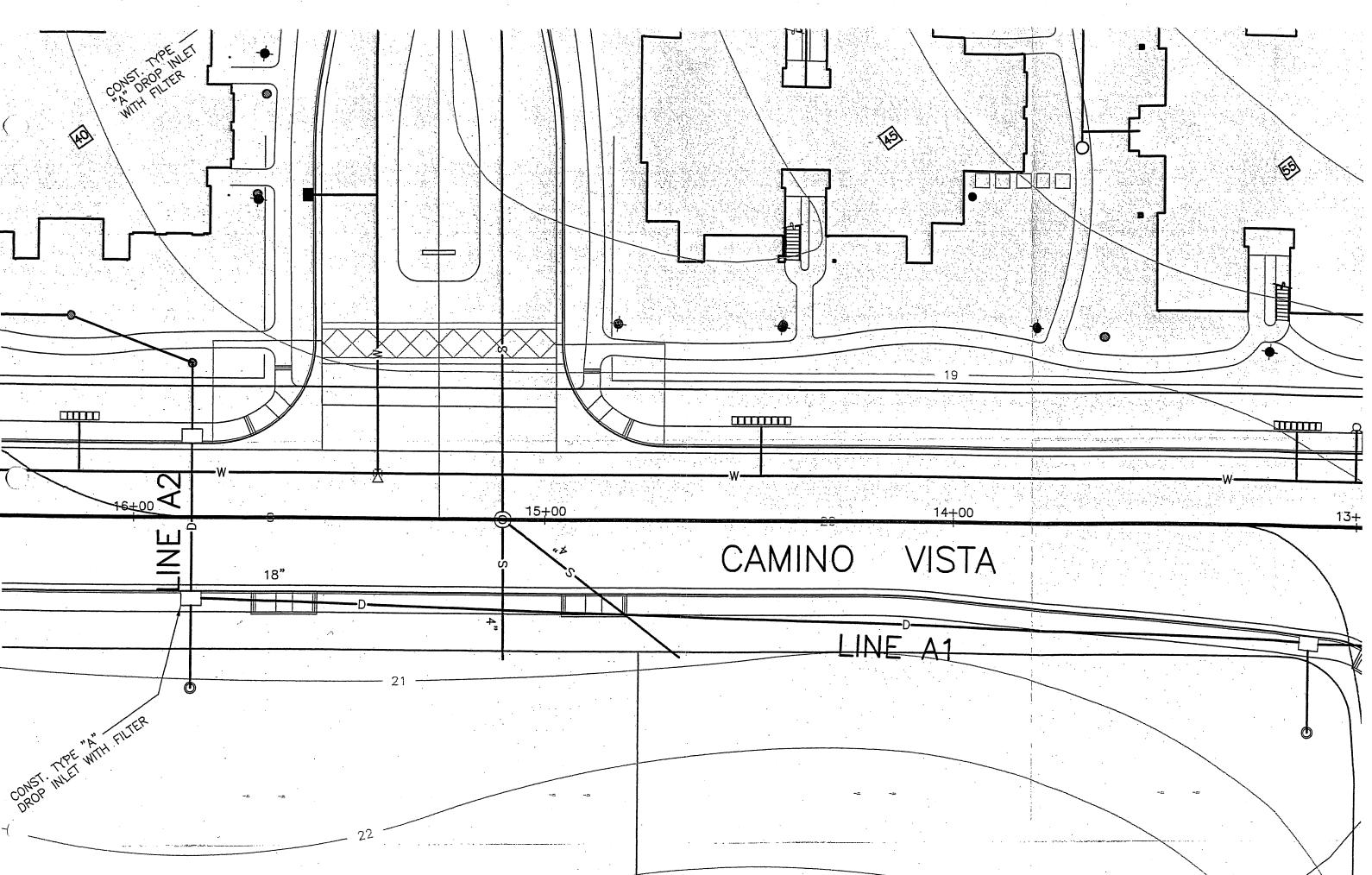
.

HYDRAULICS Storm Drain System "A"

(

This facility will convey the storm runoff from Drainage Area "A1" through "A8" and "V" to the wetland site. A area located southeast of the Camino Vista / Calle Koral intersection. This storm drain system will be public as it lies within the public rights - of - way of Camino Vista and Calle Koral cast-in-place concrete endwall will be used at the outlet end of this HDPE pipe. The attached SBCFCD full flow storm drain pipe hydraulics printout indicates the various sizes of smooth bore HDPE pipe required to carry the Q25.


Program - S	TORM	IDRA.	ЕХЕ		12	-31-2001		
Project: <u>Wi</u>	llow Spi	ringsS	Storm Dra	in "A"		by	MAC	
SANTA BARBARA	COUNTY	FLOOD CC	NTROL DIS	STRICT FUI	LL FLOW STORM	DRAIN PIPE	HYDRAULI	CS
Licensed to MA	AC Desig	n Associ	ates		e Na an an an An an an an an	. • •		
Station Pipe (ft) Length	PipeD (in)	n	Flow (cfs)	Vel (ft/sec)	H(v) S(f) (ft) (ft/ft)	HGL (ft)	EL (ft)	
Tailwater 0 8					0.18 0.00088	14.50 14.50 14.51		•
8						14.51	14.09	
Junction 8 11	99	0.013	42.6	0.80	0.01 0.00002	Loss by 1 14.70 14.70	14.71	
Junction 11 58			42.0	3.34	90 deg, 0.17 0.00085	14.60	14.77	
Junction 58 3	99	0.013	42.0	0.79	0.01 0.00002	Loss by E 14.82	nergy 14.83	
61 Junction 61	Side	e Inflow	Pipe =	24 in @	90 deg,	Loss by Mc 14.81	14.83 omentum 14.86	
25 86 End of Run	48 @ Headw	0.013 ater	23.0	1.83	0.05 0.00026	14.82 14.88	14.87 14.88	



Program - S	TOR	MDRA	. E X E			12	-31-2001		
Project:W	illow a	Springs -	Storm Dr	ain "A1"		· · ·	by	MAC	··· · · · · · ·
SANTA BARBARA	COUNT	Y F <u>L</u> OOD CO	ONTROL DI	STRICT FU	LL FLC	W STORM	DRAIN PI	PE HYDRAU	LICS
Licensed to MA	AC Des	ign Assoc	iates	-					
Station Pipe (ft) Length		n	Flow (cfs)	Vel (ft/sec)	H(v) (ft)	S(f) (ft/ft)	HGL (ft)	EL (ft)	
Tailwater	[Downst	ream HGL]		• • • • • • • • •	••••	••••	14.82		
				· . · ·					
0 133	24	0.013	19.6	6.24	0.60	0.00750	14.82	15.42	
133 Junction 133 4	99	0.013	19.6			0.00000	15.82 Loss by 16.53	Energy	
137 Junction 137		le Inflow				· · ·	16.53 Loss by N 16.41		
22 159 Junction 159	24	0.013	19.0	6.05	0.57		16.56 Loss by 17.23	17.13 Energy	
4 163	99	0.013	19.0	0.36	0.00	0.00000	17.23		
Tunction	c - A		Dine	10 4- 0	00 7-				

Junction	Side Inflow Pipe	= 18 in @ 90 d	leq, Loss	by Momentum
163	가는 삶은 것은 가장 같이 되었다.		17.	12 17.66
	24 0.013 18	.6 5.92 0.54	0.00676	
433			18.	94 19.49
End of Run @	Headwater	1999 - 1999 -	19.	60 19.60

(FA) (F) • • **F** . 19 ∇Z 13+00 14+00 VISTA CAMINO SOMH LINE A1 LINE A1 A3 LINE KORAL

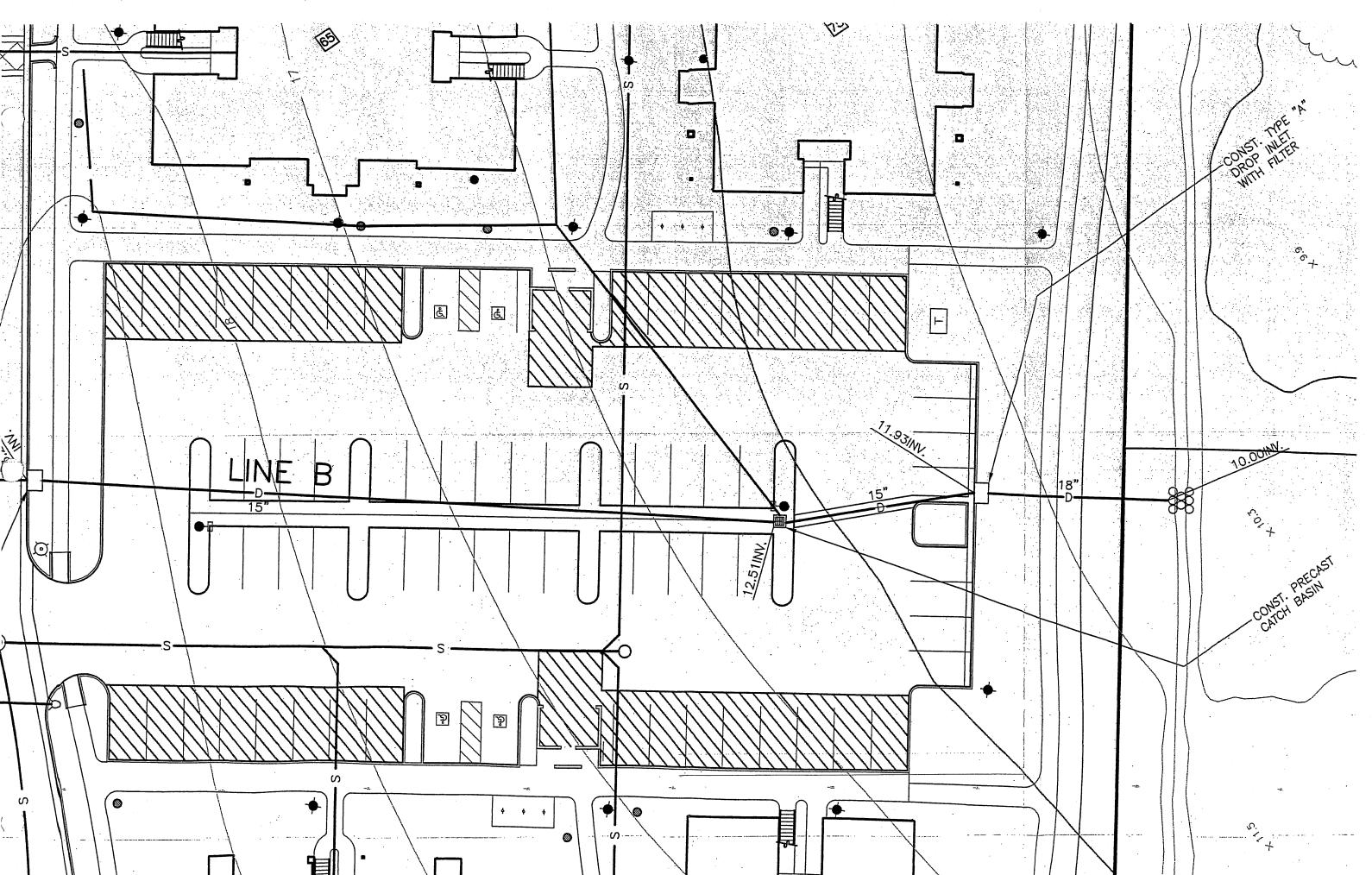
Storm Drain System "B"

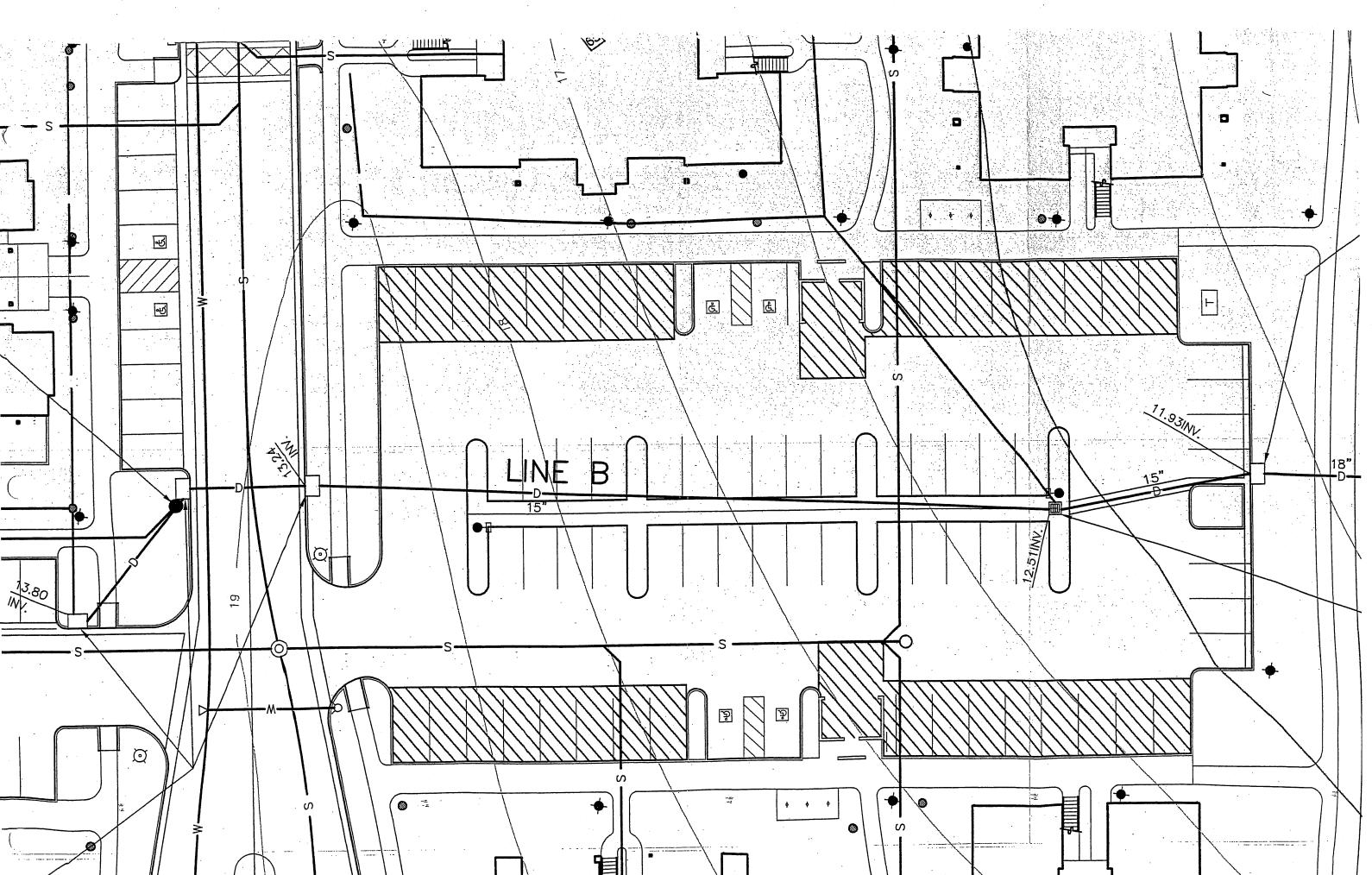
This facility will convey the storm runoff from Drainage Areas "B1" through "B7" to the wetland area located southeast of the Camino Vista / Calle Koral intersection. This storm drain system will be private as it lies within the development area. A cast-in-place concrete endwall will be used at the outlet end of this HDPE pipe. The attached SBCFCD full flow storm drain pipe hydraulics printout indicates the various size of smooth bore HDPE pipe required to carry the Q25.

đ

Program - STORMDRA.EXI	Program -	- S	Т	0	R	Μ	D	R	Α		Ε	Х	E
------------------------	-----------	-----	---	---	---	---	---	---	---	--	---	---	---

12-31-2001


Project:	Willow	Springs -	- Storm Drain "B"	 by	MAC
				-	······································


SANTA BARBARA COUNTY FLOOD CONTROL DISTRICT FULL FLOW STORMDRAIN PIPE HYDRAULICS

Licensed to MAC Design Associates

	ation Pipe t) Length		n	Flow (cfs)	Vel (ft/sec)			HGL (ft)	EL (ft)
							· ·		
	Tailwater	[Downst	ream HGL					12.00	
	0							12.00	12.50
	46	18	0.013	10.0	5.66	0.50	0.00906		
	46							12.42	12.91
	Junction	1 1		1	1	•		Loss by	
•	46		0 01 0	10.0				13.01	13.01
	3	99	0.013		0.19	0.00	0.00000	13.01	10 01
	49 Junction		lo Inflow	Dino -	 12 in @	00 de	20	Loss by M	
	49		le IIIIIOw	I		90 ae	-9,		13.35
	±J 47	18	0.013	8.9	5.04	0.39	0.00718		±3.33
	96		0.010		5.01		0100720	13.30	13.69
۶. <u>۱</u>	Junction							Loss by	
1	96								13.76
	3	99	0.013	8.9	0.17	0.00	0.00000		
	99							13.76	13.76
	Junction	Sic	le Inflow	Pipe =	12 in @	90 de	≥g,		
• •	99	1.2							14.09
•	179	15	0.013	5.9	4.81	0.36	0.00834	1- 00	15 50
	278							15.22	
2. ¹	Junction	1			1			Loss by	15.65
	278	99	0.013	5.9	0.11				10.00
•	281	99	0.013	5.5	0.11	0.00	0.00000		15.65
•	Junction	I I Sid	le Inflow	Pipe =	 12 in @	90 de	ν		
	281]					- 3 /	15.62	15.96
	30	15	0.013	5.7	4.64	0.33	0.00778		
· · ·	311							15.86	16.19
	Junction						요즘 것 한 문문	Loss by	Energy
•.	311							16.25	16.26
· .	3	99.	0.013	5.7	0.11	0.00	0.0000		
······································	314			a a constanta a A constanta a co		n ann an tha tha ann. Tha tha tha tha tha tha tha tha tha tha t		16.25	16.26
	and the second								

Junction Side Inflow Pipe = 12 in @ 90 deg, Loss by Momentum 16.23 16.54 314 0.31 0.00725 15 0.013 5,5 4.48 24 16.40 16.71 338 16.78 16.78 End of Run @ Headwater

Storm Drain System "C"

This facility will convey the storm runoff from Drainage Areas "C" through "C16" to the wetland area located southeast of the Camino Vista / Calle Koral intersection. This storm drain system will be private as it lies within the development area. A cast-in-place concrete endwall will be used at the outlet end of this HDPE pipe. The attached SBCFCD full flow storm drain pipe hydraulics printout indicates the various size of smooth bore HDPE pipe required to carry the Q25.

, P., L. T	411								
Project :- <u>W</u>	1110W S	Springs -	Storm Dr	ain "C"-			by	MAC	
ANTA BARBARA	. COUNTY	FLOOD C	ONTROL DI	STRICT F	ULL FLOW	I STORM	DRAIN PI	PE HYDRAU	LICS
· ·				;				· .	
icensed to M	AC Desi	lgn Assoc:	iates						
tation Pipe	 PipeD	n	Flow	Vel	H(v)	S(f)	HGL	EL	
ft) Length			(cfs)				(ft)	(ft)	• .
			••••						ан -
	a. 		•		· · · ·		•	• •	•
Tailwater	[Downst	ream HGL		•••••			12.00		
0	42	0.013		1 00	· · ·	00010	12.00	12.37	÷.,
40	44	0.013	47.1	4.90	0.37 0	.00219	12 09	12.46	
	•		una. A set tan tan ayang	1				<u>-</u> 2.40	
						¹ .	···	· • •	
Junction							Loss by	Enerav	
40 3	1 1			1. · · ·	, · · ·		12.50		
.3	99	0.013	47.1	0.88	0.01 0	.00002			
43 Junction	l l Sic	le Inflow	Pine = ·	24 in	@ 90 dea		12.50	12.51	
43					e Ju deg			12.67	
50	42	0.013	45.5	4.73	0.35 0	.00204			
93 Junction				1			12.43		
93				1			Loss by 12.81		
3	99 -	0.013	45.5	0.85	0.01 0	.00002			
96							12.81	12.82	
Junction	Sid	e Inflow	Pipe =	24 in (@ 90 deg	, I	loss by M	lomentum	
96	40	0 012	44 0		0.32 0	00101	12.65	12.98	
158 254	42	0.013	44.0	4.5/	U.32 0	N 2 .	12.95	13 28	
Junction							Loss by		
254							13.31		
3 257	99	0.013	44.0	0.82	0.01 0	.00002	13.31	13.32	
Junction	C+A	e Inflow	Pine -	24 in 6		Т	oss hv M	omentum	
257					N 11 N 1	4 g	10.00		
95	42	0.013	38.5	4.00	0.25 0	.00146			ena. Na de
352							13.33 Loss by		
Junction 352							13.61		
3	99	0.013	38.5	0.72	0.01 0	.00002			
355		- Tr=	Dine	01 in 1			13.61		
Junction 355	sia 	e Inflow		· · · ·			12 /0	13.73	• • •
124	42	0.013	38.3	3.98	0.25 0	.00145			

12-31-2001 ·

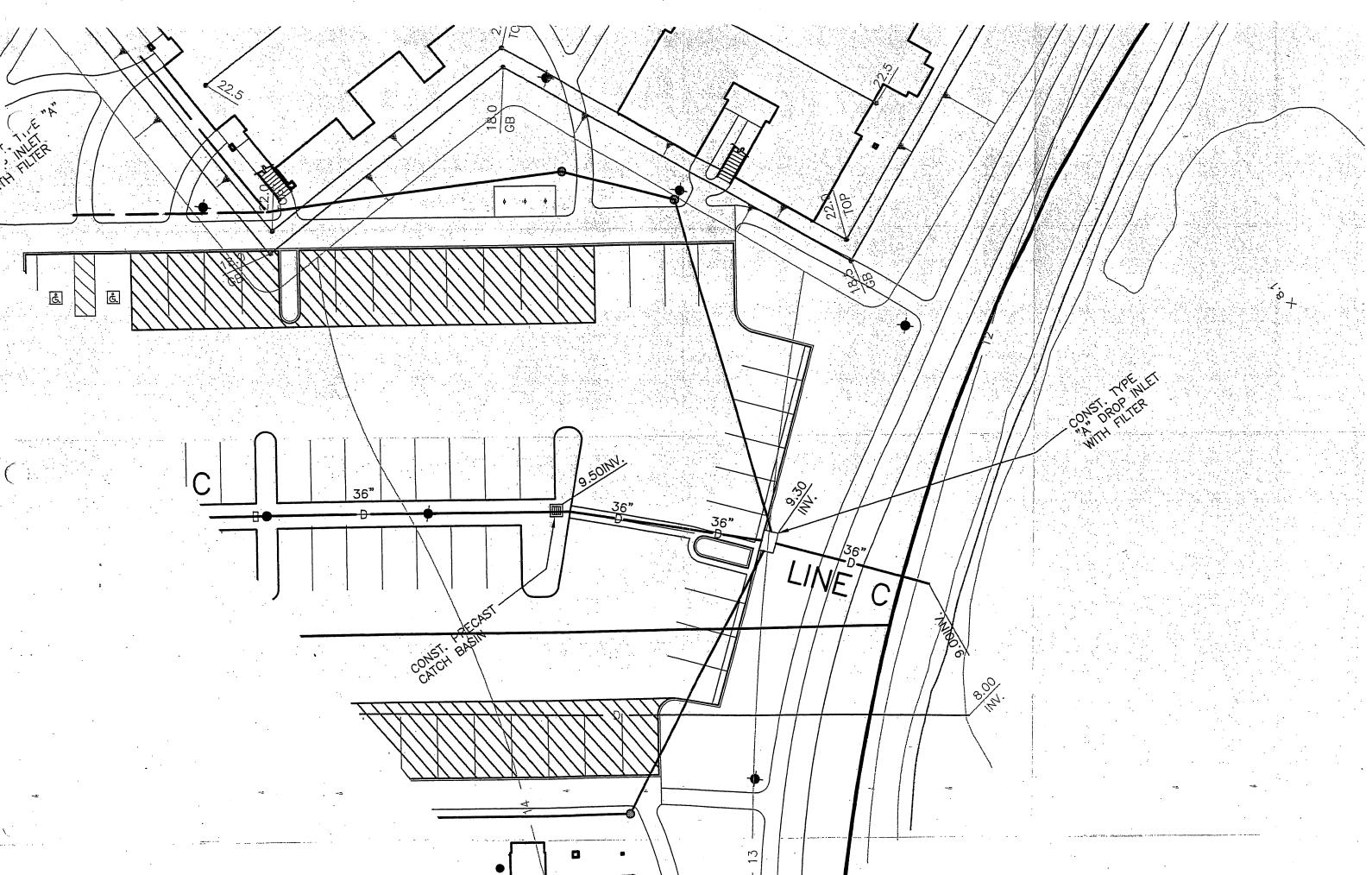
Program - STORMDRA.EXE

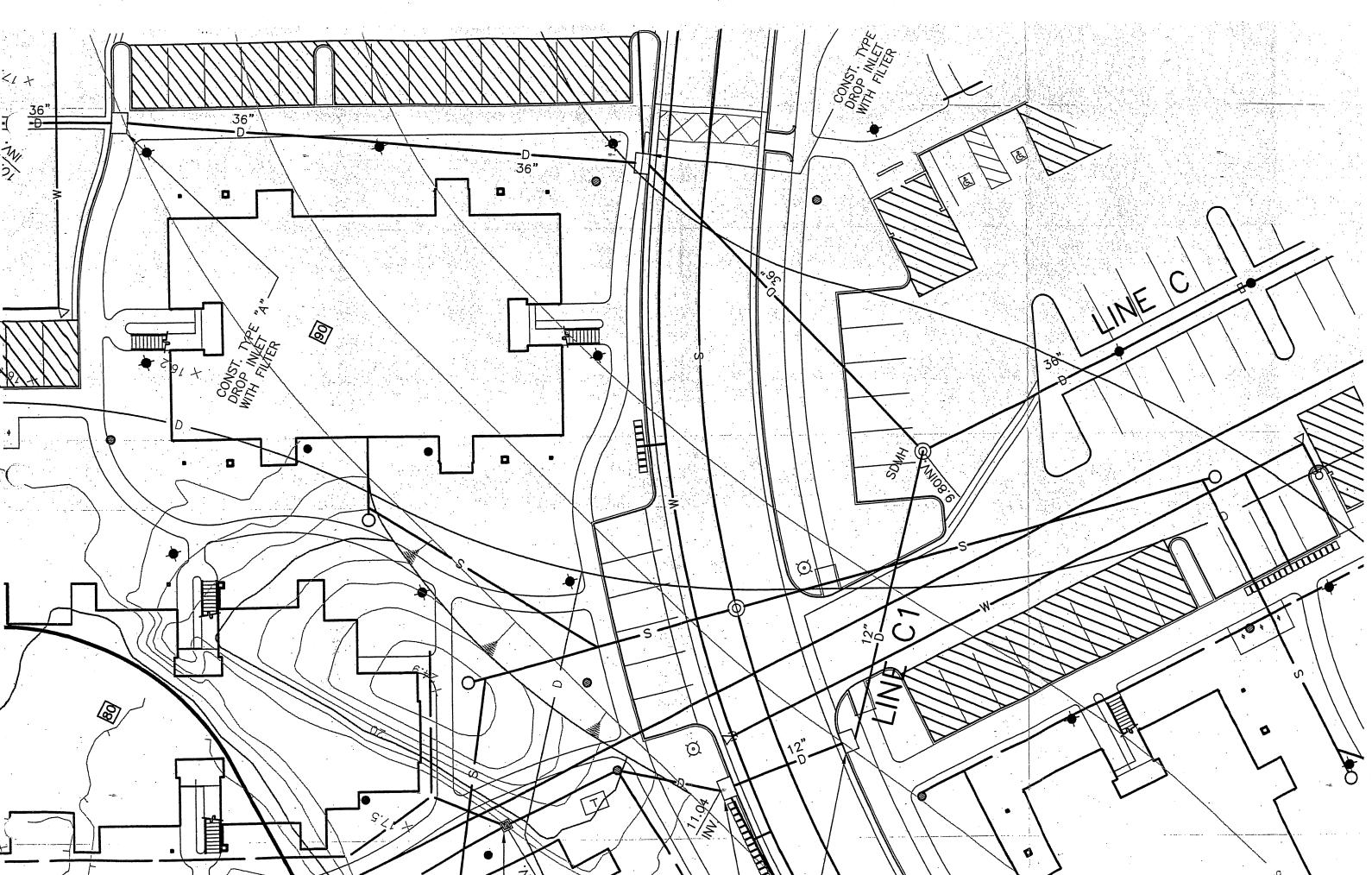
Junction						Loss by	Energy	
479	99	0 01 0				13.94	13.94	
	99	0.013	38.3	0.72	0.01 0.00001		13.95	
102	l	-	I .	I .	·	13.94	13.95	
,		· · ·						
	<u></u>	· ~ ~ ~ ~					· .	
Junction 482	S10	le Initow	Pipe =	24 in (@ 90 deg,		Momentum 14.06	
35	42	0.013	37.9	3.94	0.24 0.00142		14.06	
517						13.87	14.11	
Junction				· · :			v Energy	
517 3	99	0 012	27.0	: 0 71	0 01 0 00001	14.13	14.14	
520 520	99	0.013	37.9	0.71	0.01 0.00001	•	14.14	
520	на, ₁₉₁ 1					J	T. T	
	•••							
_		· _ ~ ~			_		••	
Junction	Sid	le Inflow	Pipe =	24 in (@ 90 deg,			
520 137	42	0.013	37.7	3.92	0.24 0.00140		14.25	
657	74	0.015	57.7	5.52	0.24 0.00140	, 14.21	14.44	
Junction			1				/ Energy	
657						14.47	14.48	
3	99	0.013	37.7	0.71	0.01 0.00001			
660						14.4/	14.48	
								2
Junction	Sid	le Inflow	Pipe =	24 in (@ 90 deg,			
660	36	0 01 0				14.34	14.67	
822	30	0.013	3⊿.8	4.64	0.33 0.00242		15.07	
Junction							v Energy	7
822						15.11	15.12	
	99	0.013	32.8	0.61	0.01 0.00001			1
825						15.11	15.12	
Junction	Sid	e Inflow	Pipe =	24 in @	90 deg,	Loss bv	Momentum	
825						14.98	15.30	
223	36	0.013	32.2	4.56	0.32 0.00233			
1,048						15.50	15.82	tina. An Ali
Junction						LOSS DY	Energy	
1,048	99	0.013	32.2	0.60	0.01 0.00001	T).00	10.01	na th Air a
1,051					0.32 0.00233 0.01 0.00001	15.86	15.87	
					n ranna annanairte bainn ann an tha ann an tha ann an tha ann ann ann ann ann ann ann ann ann a			
Junction	Side	e Inflow	Pipe =	24 in @	90 deg,	Loss hv 1	Momentum	
			二次可能 ていかい かんし			LODD DY I		$(g_{i}^{+})\in \mathbb{R}^{n}$

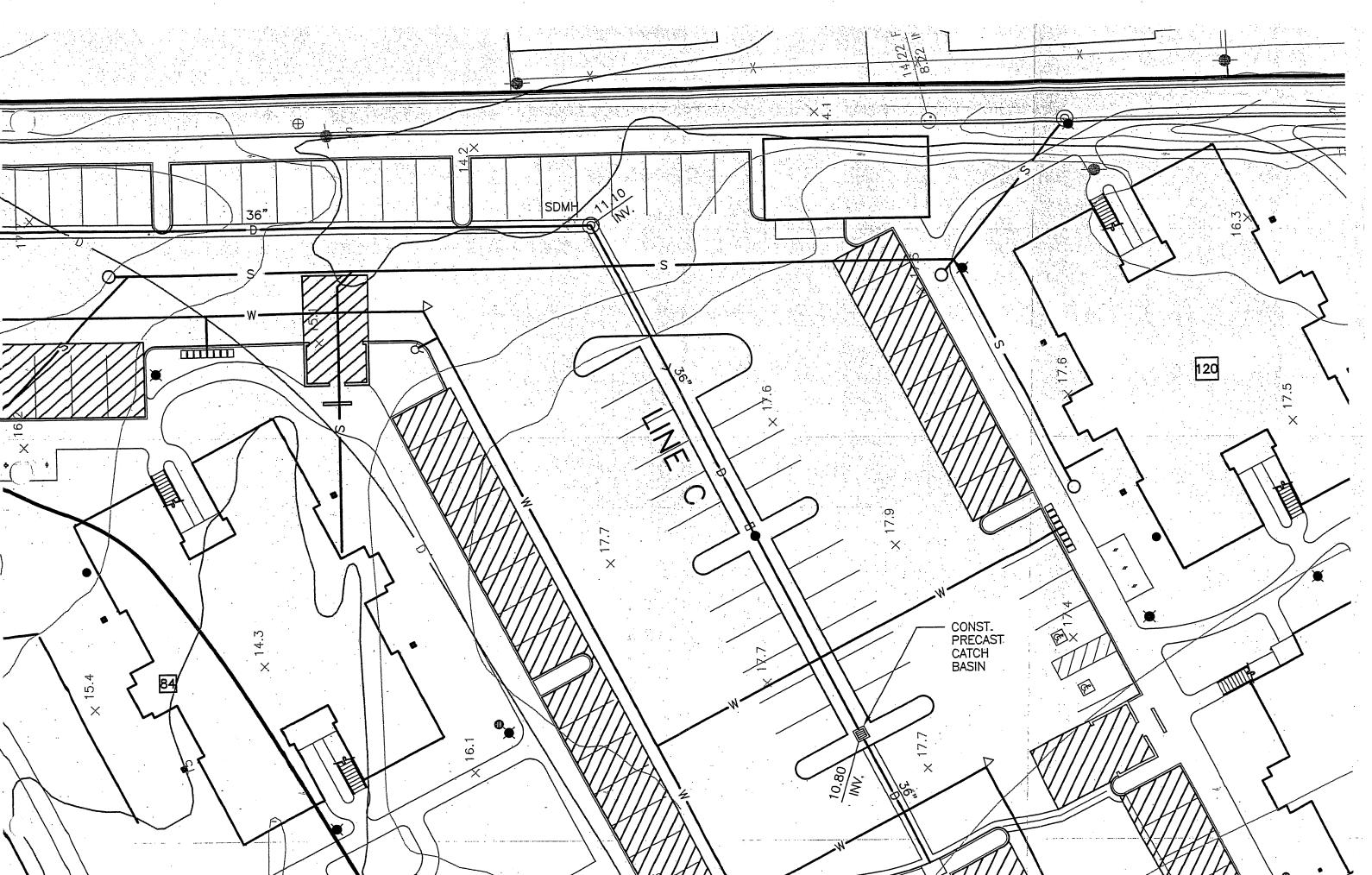
Loss by Momentum 15.80 16.05 0.013 1,051 0.25 0.00228 30 19.6 3.99 565 ÷., 1,616 17.09 17.34

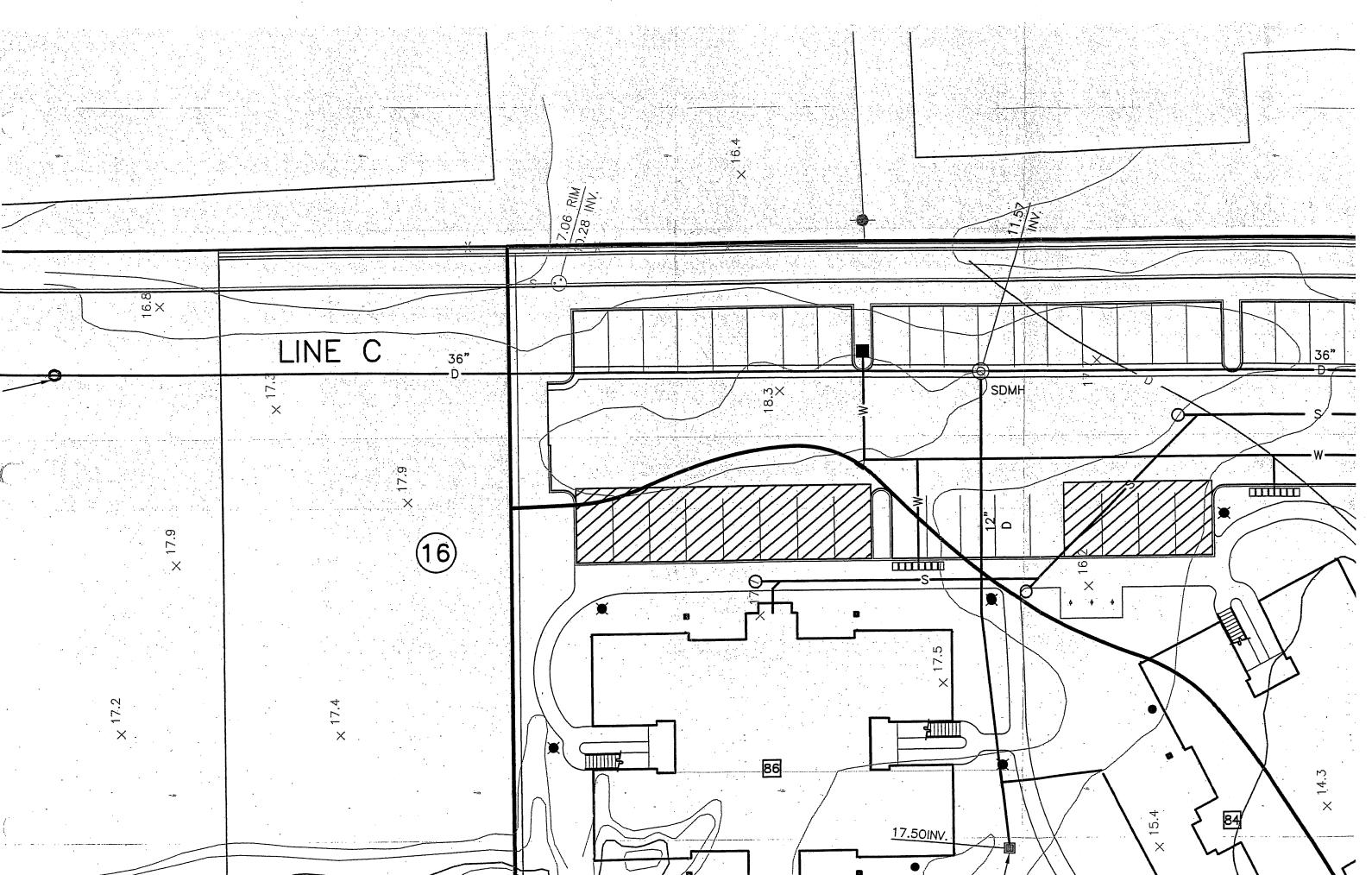
End of Run @ Headwater

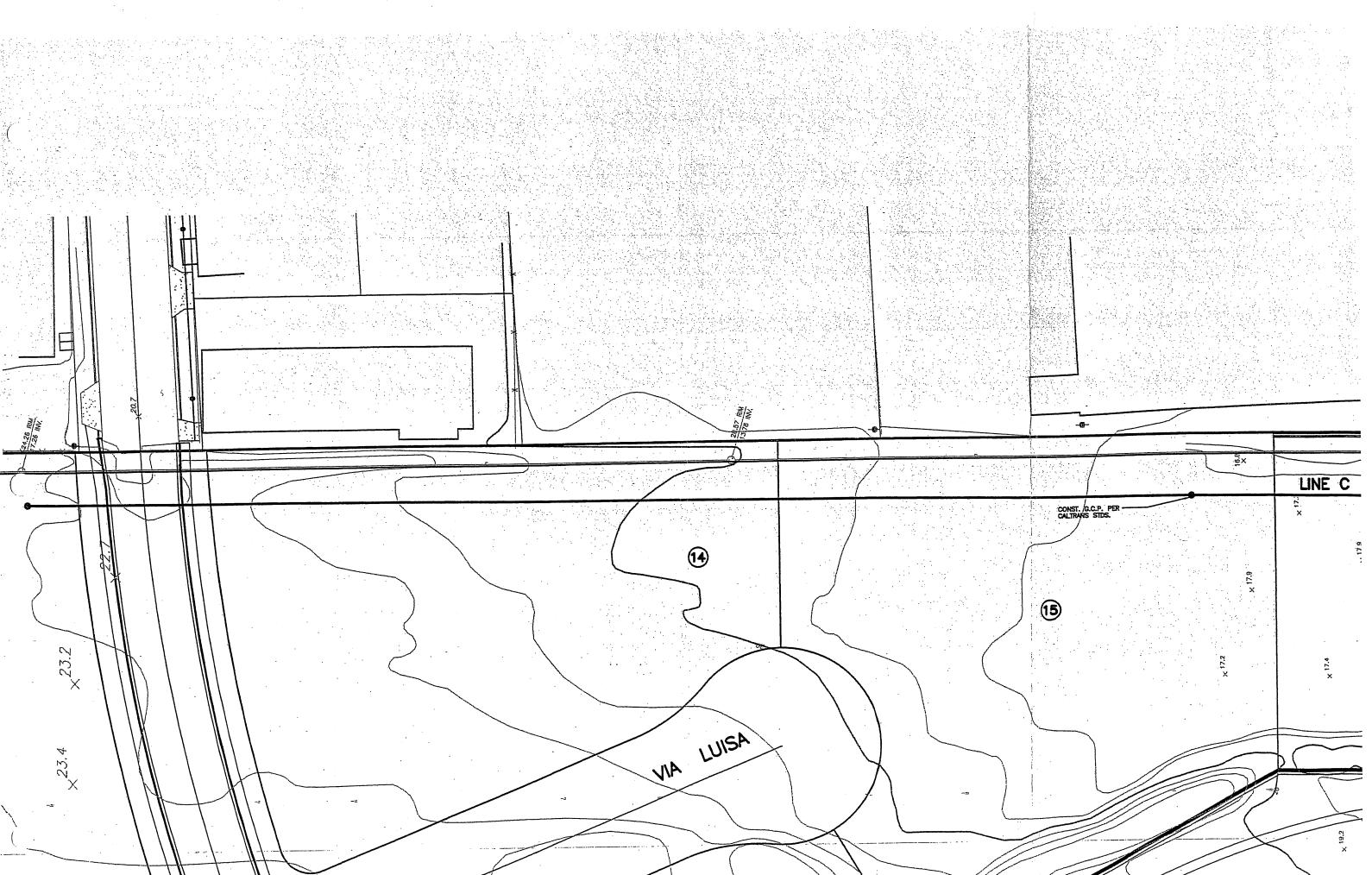
17.39 17.39


1


Program	-	S	Т	0	R	М	D	R	Δ	_	E	х	ਸ	
FLOGLam		-	-	~			~	-		•	<u> </u>	~~		


12-31-2001


			•						
Project:	<u>Will</u>	ow Spring:	s - Storm	Drain "C	21"		b	y <u>MAC</u>	
SANTA BARBARA	COUNTY	FLOOD CC	ONTROL DIS	STRICT FU	LL FLO	OW STORM	DRAIN P	IPE HYDRA	JLICS
Licensed to M	AC Desi	lgn Associ	ates		· .				
Station Pipe (ft) Length	PipeD (in)	n	Flow (cfs)	Vel (ft/sec)	H(v) (ft)	S(f) (ft/ft)	HGL (ft)	EL (ft)	
Tailwater 0	l [Downst	ream HGL]		 	••••	•••••	13.31 13.31	13.62	•
70 70	15	0.013	5.5	4.48	0.31	0.00725	13.82		
Junction 70				 				y Energy 14.19	
3 73	99	0.013	5.5		۰.	0.00000	14.19	14.19	
Junction 73	i 19.				• •		14.17	Momentum 14.41	
29 102 Junction	15	0.013	4.9	3.99	0.25	0.00575	14.33	14.58	
(102 3	99	0.013	4 9	0.09	0.00	0 00000		7 Energy 14.63	
105							14.63	14.63	
Junction 105		le Inflow 0.013					14.63	Momentum 14.66	


13U		L.40 0.03 0.00095	1.5
235		14.75 14.78	3
End of Run	@ Headwater	 14 79 14 70	<u>,</u> .
			5 e

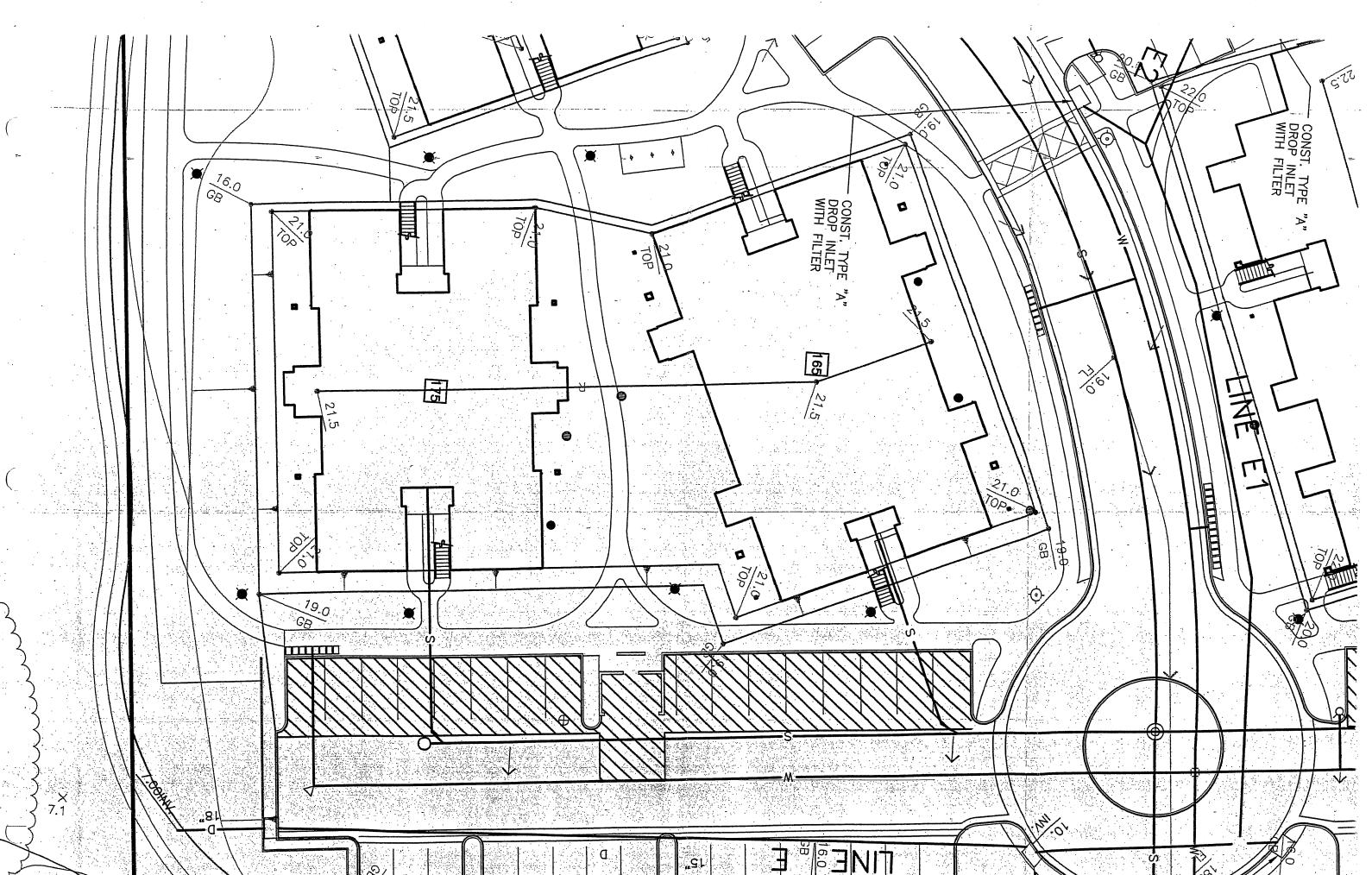
Storm Drain System "D"

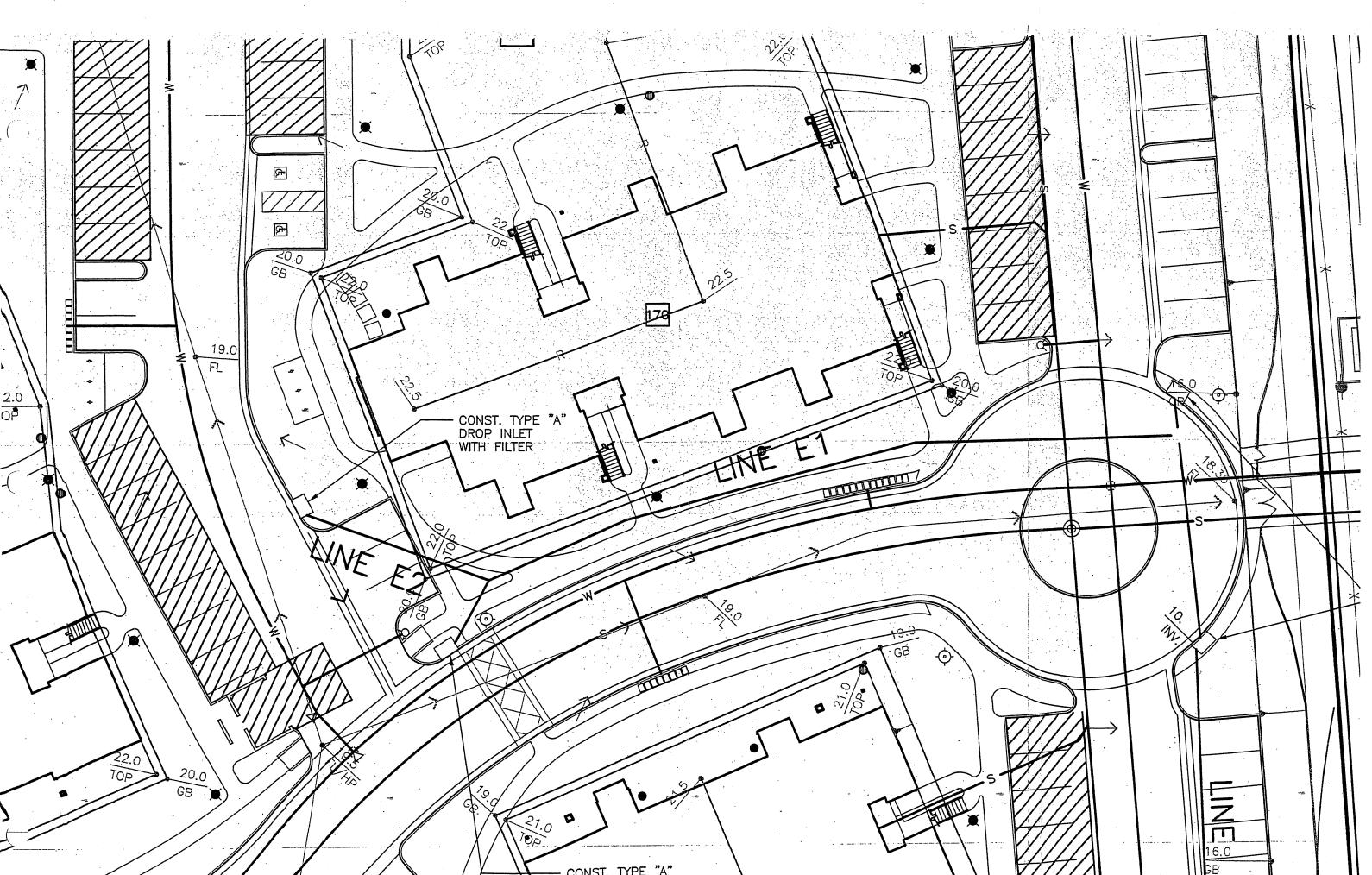
(

This facility will convey the storm runoff from Drainage Areas "D1" through "D6" to the wetland area located southeast of the Camino Vista / Calle Koral intersection. This storm drain system will be private as it lies within the development area. A cast-in-place concrete endwall will be used at the outlet end of this HDPE pipe. The attached SBCFCD full flow storm drain pipe hydraulics printout indicates the various size of smooth bore HDPE pipe required to carry the Q25.

Program - S	TOR	MDRA	. E X E	· · .		12	2-31-2001		•
Project:	Willow	v Springs	- Storm	Drain "I	D"		by	MAC	
SANTA BARBARA	_ COUNTY	(FLOOD CO	ONTROL DI	STRICT :	FULL FLO	DW STORM	IDRAIN PI	PE HYDRAU	JLICS
Licensed to M	AC Desi	ign Associ	iates		· · · · ·	• • • •	· · · · ·		•
Station Pipe (ft) Length Tailwater	(in)				H(v) c) (ft)	S(f) (ft/ft)	HGL (ft) 9.00	EL (ft)	
0 17 17 Junction 17	12	0.013	3.9	4.97	0.38	0.01198	9.20 Loss by	9.59 Energy	· · · ·
3 20		0.013					0 66		
20		le Inflow		· · · ·		· · ·	Loss by	9.66 Momentum 9.81	
95 115 Junction	12	0.013	2.5	3.18	0.16	0.00492		10.28	
(.15 	99	0.013	2.5	0.05	0.00	0.00000	10.31	10.31 10.31	

	Junction Side Inflow	Diana		
	Dunceron Proc TILTOM	Pipe =	12 in @ 90 deg, Loss by Momentum	
	118		la construction de la constructi	
			10.30 10.43	
	26 12 0.013	2.3	2.93 0.13 0.00417	
	144.《法院》为《法院》的《法院》的人			
<u>,</u> 4.	그는 승규가 이 가슴 가는 것을 가슴 방법을 내 가슴 가슴 가슴을 가셨다.		10.54	
•	Junction		이 것 같은 것 같	
2			Loss by Energy	
2	144		10.57 10.57	
	3 99 0 013		· 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	•
	3 99 0.013	2.3	0.04 0.00 0.00000	1
	147		그는 집에 가장 같은 것 같아요. 이 전 것 이 가장 이 가지 않는 것 것 같아요. 이 가 있는 것 같아요. 이 것 같아요. 이 가 있는 것 ? 이 가 있는 것 같아요. 이 가 있는 것 ? 이 가 있는 ? 이 가 있 ? 이 가 있는 ? 이 가 있는 ? 이 이 가 있는 ? 이 이 가 있는 ? 이 이 이 있는 ? 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	1
÷	(승규정 아이들) 방송에서 이 같은 것을 다 수 같은 것을 수 있었다.		10.57	
÷.,				
5	医尿道性 化脱氧化物 化分析 医白色的 化结构 机合理 化合金 化分子 化乙酮	Alter the second second		•

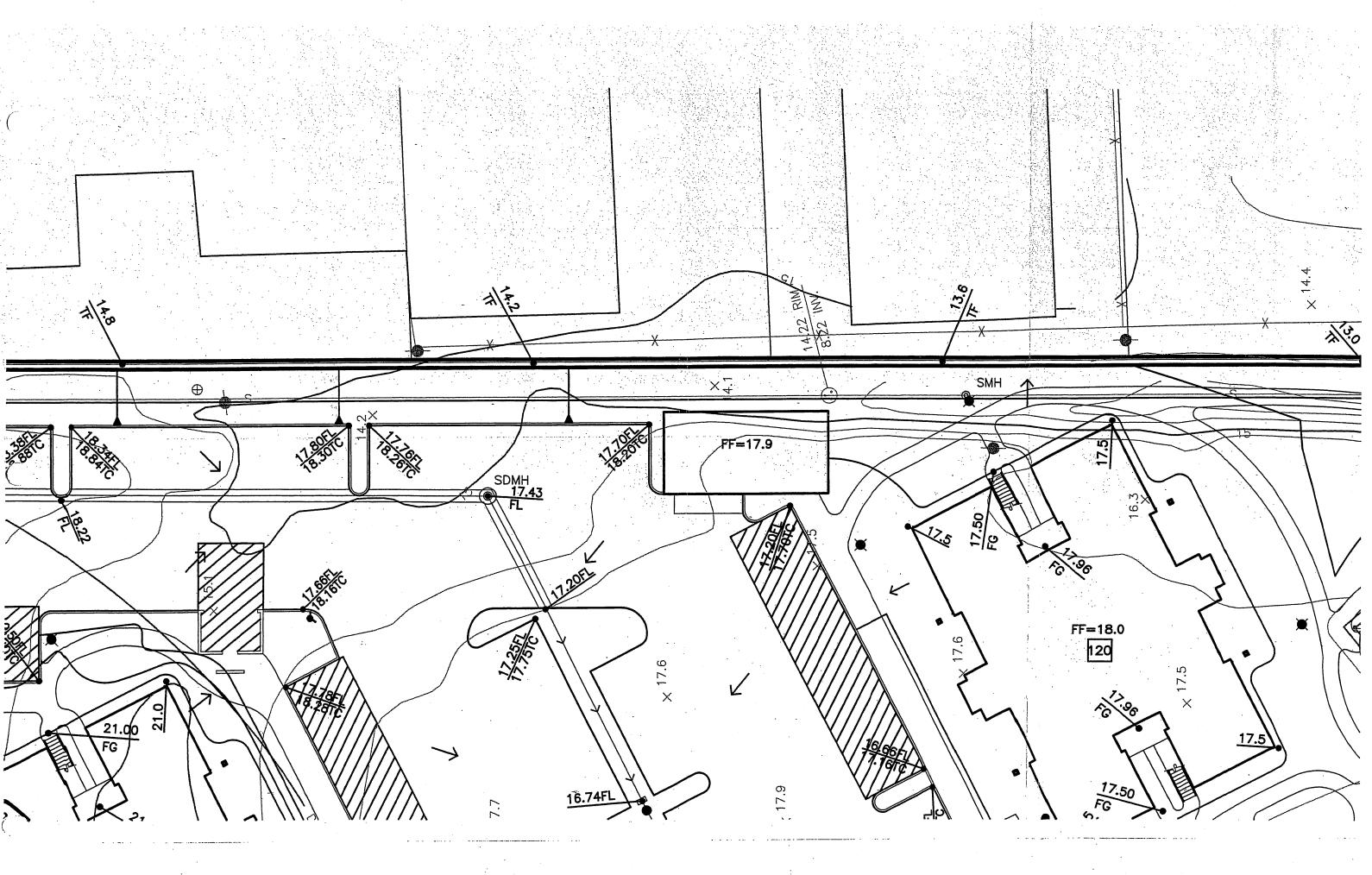

L. L	Junction	Sic	le Inflo	w Pipe	=	L2 in @	90 dec	a .	Loss by	Momentum
14'	7			- 1 - E - S		gegenne k.≣.		37		•
< 10.									-10.56	10.65
. • . ·	29	12	0.013	1	.9	2.42	0.09.0	00284		
176	5	1997 av						ALC 1 1 1 1 11 11 11		
									10.64	10.74
್ರಕಗರ	l of Run	@ Head	lwater .	ing ang big ng diang. Na Barbaran at					10 75	10.75
	いたな決議会社									±U./J

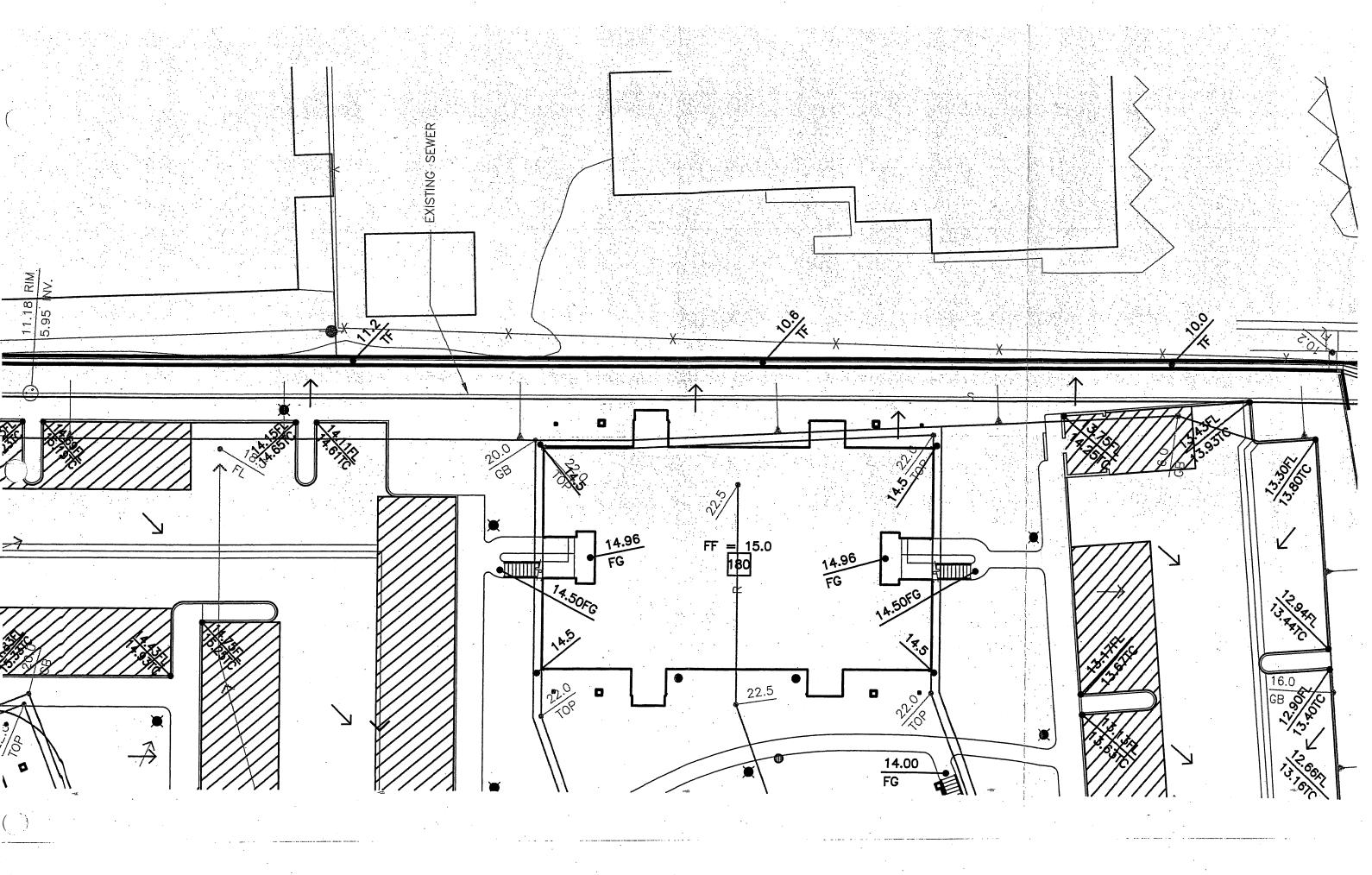


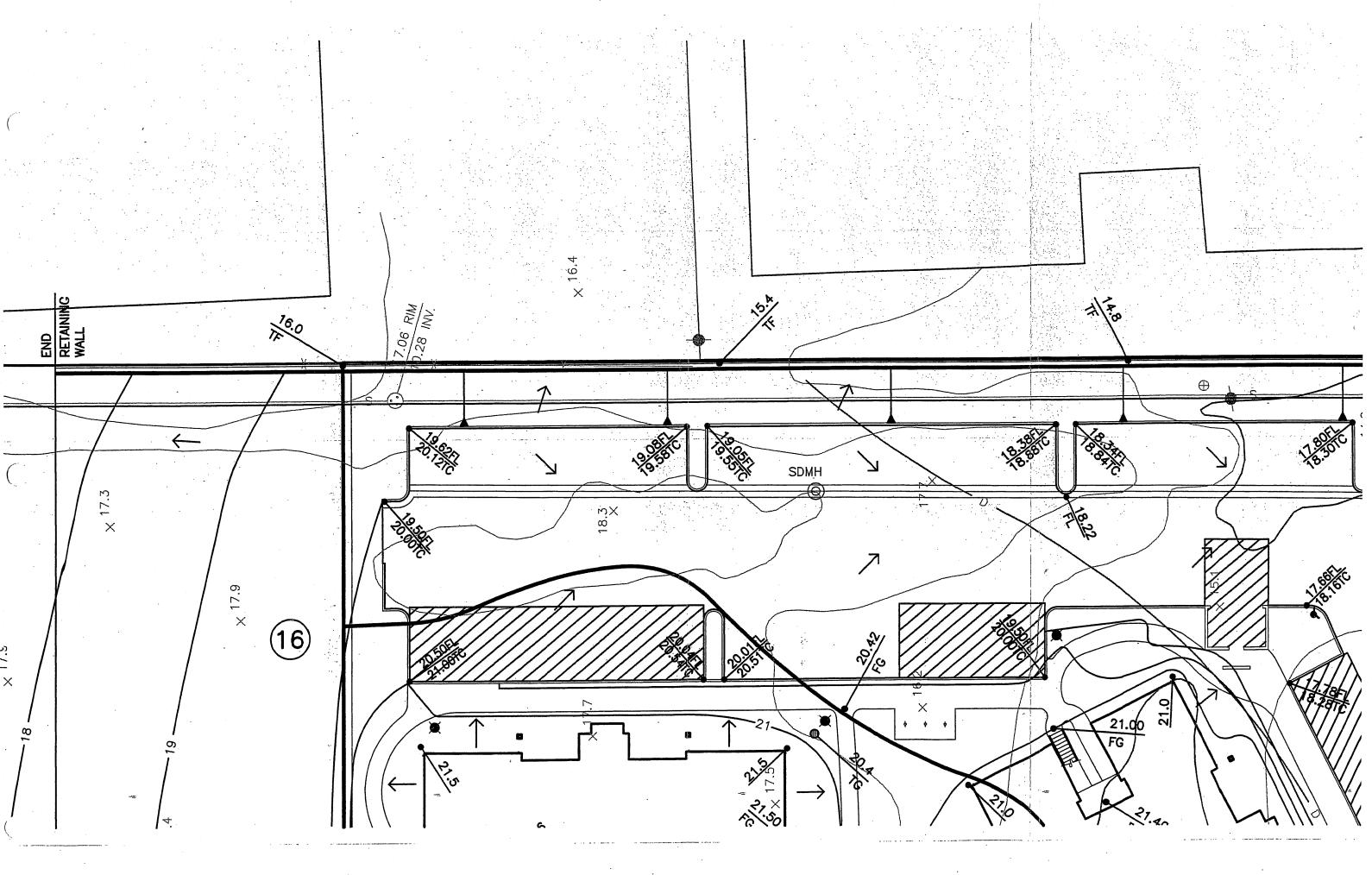
Storm Drain System "E"

This facility will convey the storm runoff from Drainage Areas "E1" through "E9" to the wetland area located southeast of the Camino Vista / Calle Koral intersection. This storm drain system will be private as it lies within the development area. A cast-in-place concrete endwall will be used at the outlet end of this HDPE pipe. The attached SBCFCD full flow storm drain pipe hydraulics printout indicates the various size of smooth bore HDPE pipe required to carry the Q25.

Program - S	TOR	M D R A .	. E X E			12	-31-2001		
₽∽ject:W	illow S	prings -	Storm Dra	in "E"			by	MAC	
SANTA BARBARA	COUNTY	FLOOD CO	ONTROL DIS	STRICT FU	LL FLC	W STORM	DRAIN PI	PE HYDRAU	LICS
Licensed to M	AC Desi	gn Associ	lates			·		•	
Station Pipe (ft) Length	PipeD (in)	n					HGL (ft)		• • • •
Tailwater 0 22	[Downst: 15		6.0			0.00862		8.62	•
22 Junction 22							8.44 Loss by 8.88	Energy	
3 25 Junction	99 Side		6.0 Pipe =		:	· · .	8.88	8.88 Momentum	
25 ٦ 183 208	15	0.013	4.3		• •		8.87	9.06	
Junction 208 3	99	0.013	4.3	0.08	0.00	0.0000		9.90	
211							9.90	9.90	
Junction 211			-		t e star		9.89	Momentum 10.05	
47 258 Junction	15	0.013	3.9	3.18		0.00364	10.06	Energy	
261		0.013		0.07	0.00	0.00000	10 25	10.25 10.25	
Junction 261 7	12	e inflow 0.013					10.24	10.36	
268 End of Run	@ Heady	water			•		10.27 10.41		

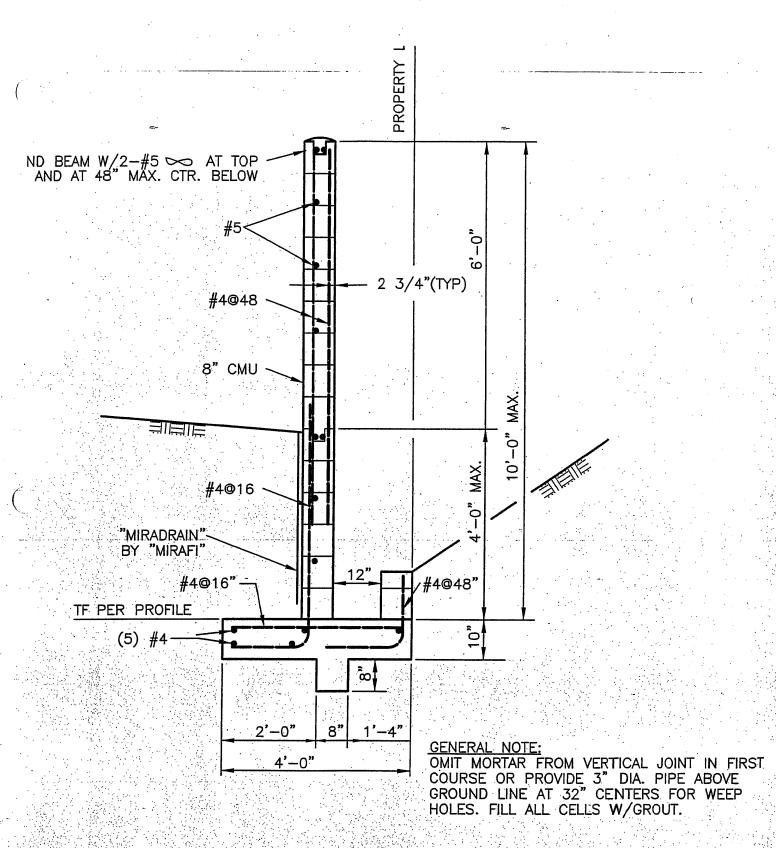





Drainage Ditch "A"


This feature runs along the easterly property line and drains Area F1. The attached SBCFCD open channel flow hydraulics printout indicates that a concrete channel with a one (1) foot bottom vertical sides and a slope of 0.006 feet/foot will carry the Q25 of 2.2 cfs and the Q100 of 2.8 cfs generated by Area F1.

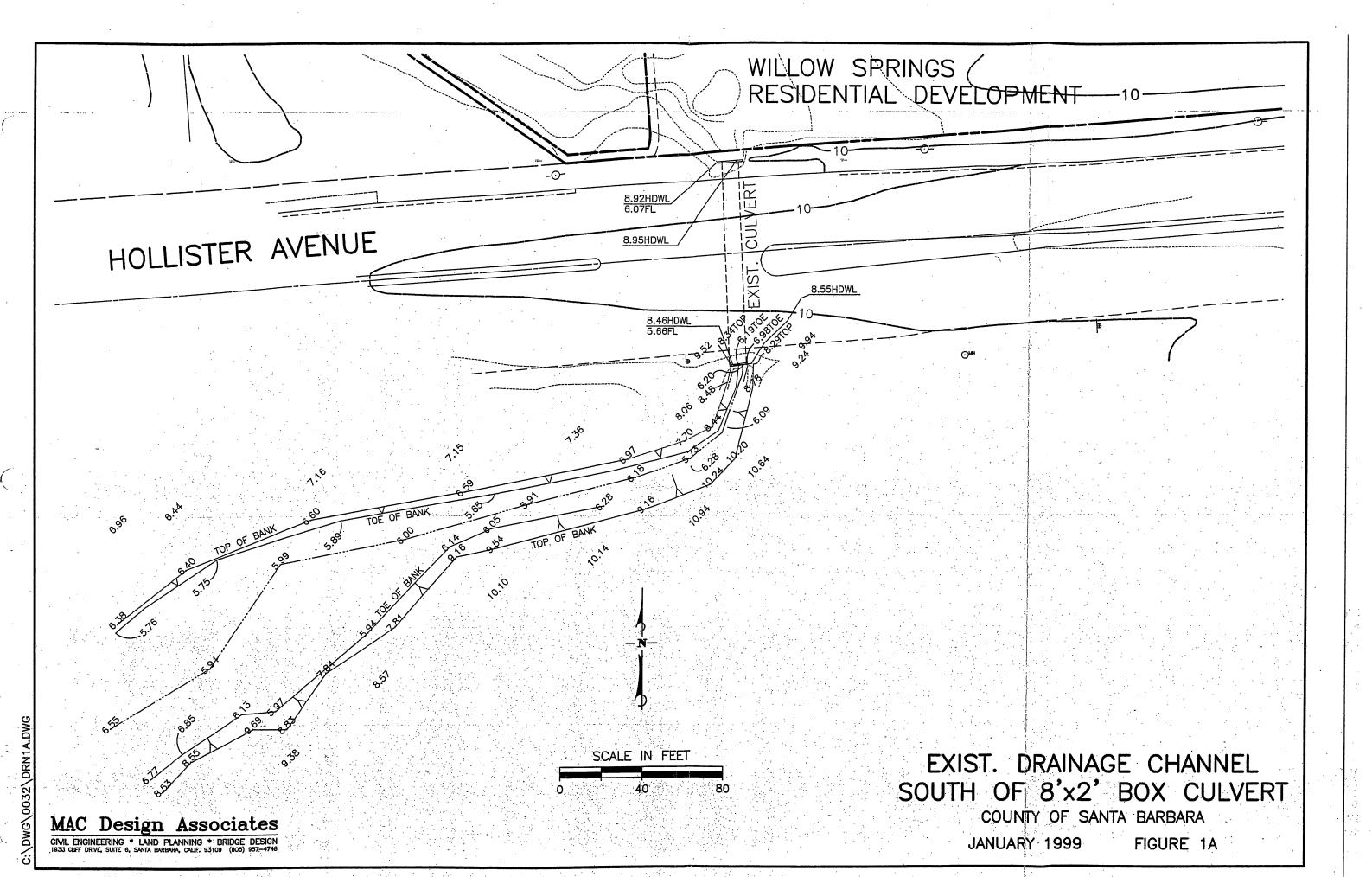
SANTA BARBARA COUNTY FLOOD CONTROL DISTRICT - OPEN CHANNEL FLOW HYDRAULICS Program: CHANNEL.BAS I insed to MAC Design Associates PROJECT: Willow Springs-Drainage Ditch"A" BY: MAC DATE: 01-03-2002 Flow in RECTANGULAR Channel 2 cfs, b = 1.0 ft, z = 0.00, n = 0.013 So = 0.00600Q = Normal Depth = 0.59 ft Normal Vel = 3.71 ft/sec V*V/2G = 0.21 ft V*V/2G+Depth = 0.81 ftP + M = 0Froude Nr. = 0.85 0 cu-ft Critical Depth = 0.53 ft Mild Slope, 'M' Profiles Flow is in Unstable Zone. S(0)/S(C) = 0.75Wave Height = 0.04 ft, D(n) + Wave = 0.63 ft 14 A. SANTA BARBARA COUNTY FLOOD CONTROL DISTRICT - OPEN CHANNEL FLOW HYDRAULICS Program: CHANNEL.BAS Licensed to MAC Design Associates BY:_____DATE: 01-03-2002 PROJECT: Flow in RECTANGULAR Channel Q = 3 cfs, b = 0.00600Normal Depth = 0.71 ft Normal Vel = 3.92 ft/sec V*V/2G = 0.24 ft V*V/2G+Depth = 0.95 ft P + M = 1 cu-ft Froude Nr. = 0.82 Critical Depth = 0.62 ft Iild Slope, 'M' Profiles Now is in Unstable Zone. S(O)/S(C) = 0.71Vave Height = 0.01 ft, D(n) + Wave = 0.72 ft



LOOKING NORTH

II. DETENTION BASIN

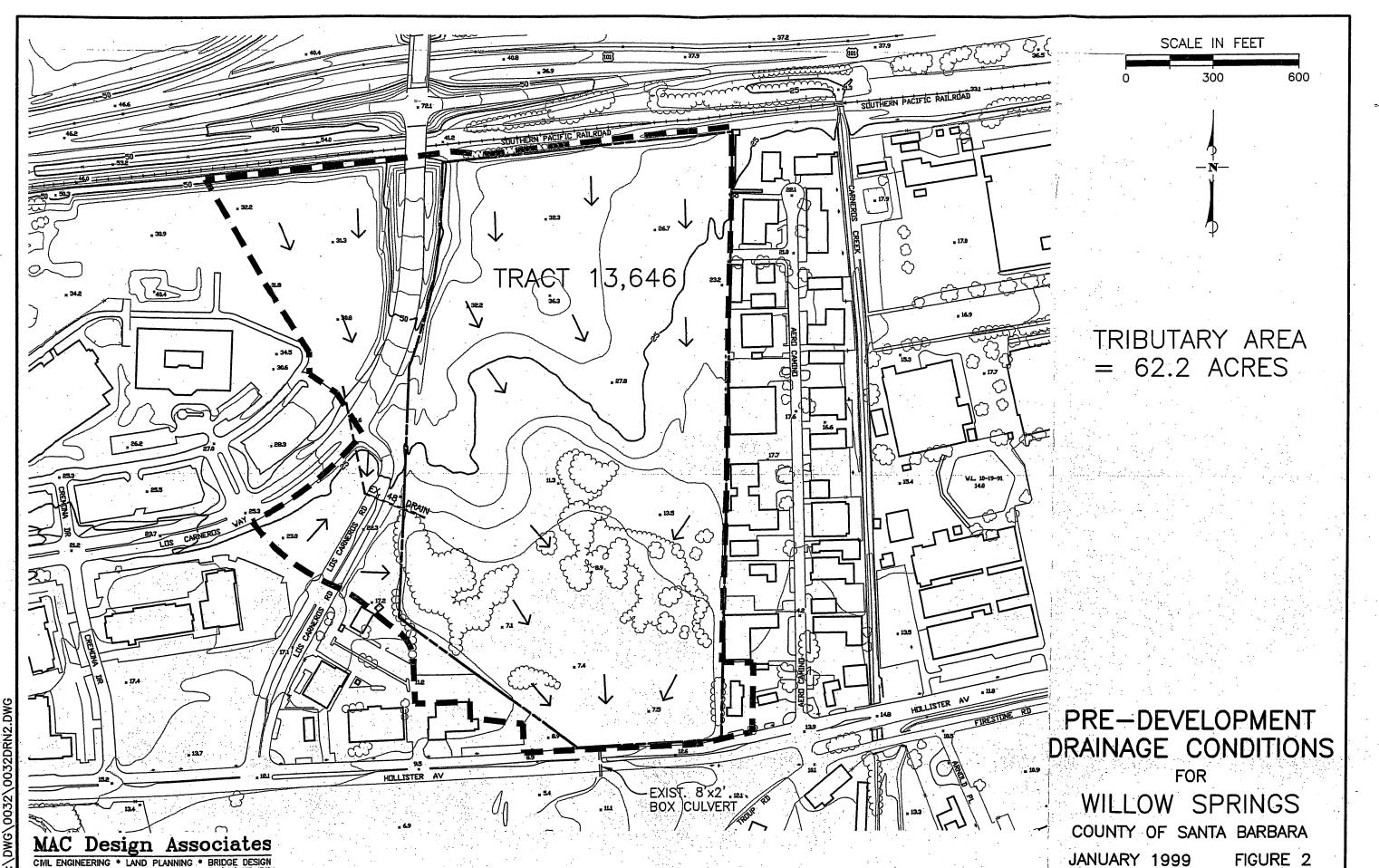
BACKGROUND


Willow Springs is the southerly portion of Tract 13,464 and comprises approximately 20 acres. (See Figure 1) This 235 unit residential project was approved in 1986 and improvement plans for mass grading, road construction and drainage were reviewed and approved by the County. The approved improvement plans included the construction of a storm drain system which carried a Q25 runoff of 74.0 cfs to the existing 8' x 2' reinforced concrete box culvert (RCB) under Hollister Avenue.

This RCB drains into an earth channel which carries the runoff to Carneros Creek across Santa Barbara Airport property. (See Figure 1A) The approved drainage plans do not include any improvement to the earth channel. The approved residential project was not constructed and the site has been undeveloped since that time.

The Airport has not and does not maintain the earth channel from the RCB to Carneros Creek. This lack of any maintenance has resulted in the following:

- 1. Deposition of silt in the channel flowline has eliminated positive drainage flow from the RCB to Carneros Creek. The flowline of the channel is actually higher than the RCB flowline which results in storm water runoff backing up through the RCB to the north side of Hollister Avenue.
- 2. Vegetation growing in the channel has clogged the waterway and significantly reduced the capacity of the channel.


If this channel had been properly maintained with an 8' bottom and 2:1 side slopes, its capacity would be sufficient to handle runoff from the drainage area tributary to the RCB.

PRE-DEVELOPMENT DRAINAGE CONDITIONS

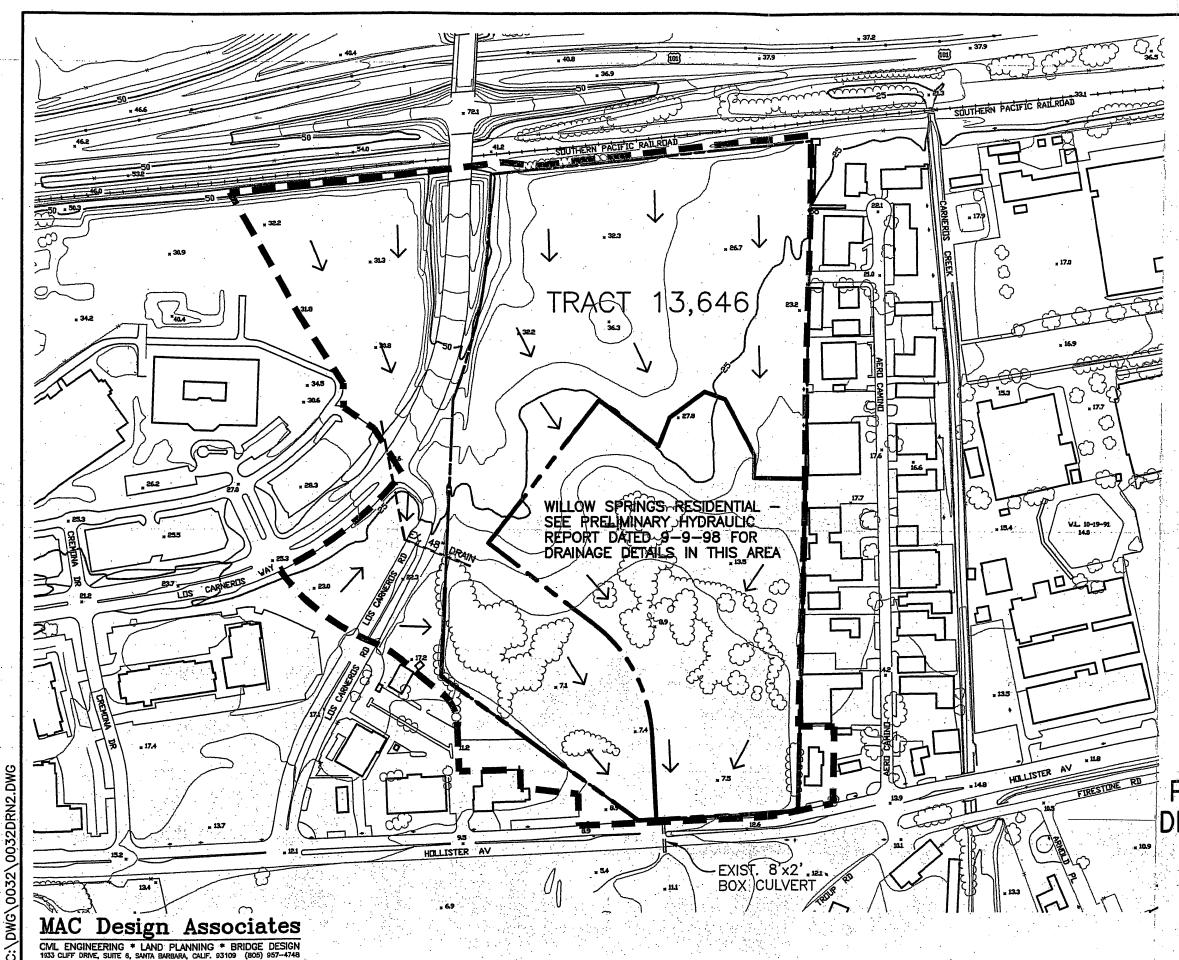
All of the storm water runoff from Tract 13,646 including the Willow Springs development currently drains to the RCB under Hollister Avenue. In addition, approximately 12.0 acres west of the site currently drain to the site through a 48" RCP under Los Carneros Road and Los Carneros Way. Figure 2 is a map delineating the

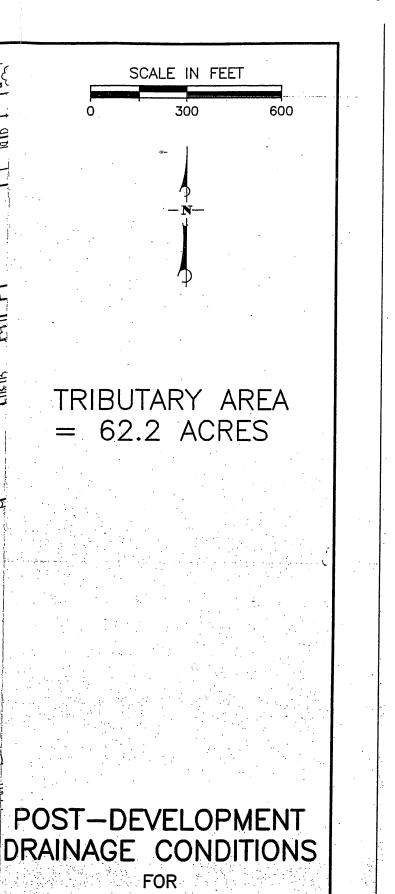
pre-development drainage conditions and indicates that an area of 62.2 acres drains to the RCB. The following copy of the Santa Barbara County Flood Control Urban Hydrograph (SBCUH) computer printout shows the 10, 25, 50 and 100 year runoff to the RCB. The time of concentration was determined to be 30 minutes (See Preliminary Hydraulic Report dated September 9,1 998) and 10% of the total area was considered impervious. These factors are indicative of the undeveloped nature of the tributary area.

(

JANUARY 1999 FIGURE 2

. ·	PRE	-DEVE	ELOPN	IENT	DRA	AINAGE		•	
SANTA BARBARA COUNI 12-29-1998			YDROGRA	APH, V	ersio	n 1.2.1		.*	
Licensed to MAC Des	sign Assoc	ciates				· · ·		••	
CQ TATION of a Ru	noff Hydr	rograph						•	
Hyd Return Drainage Num Period Area	e24 hr 100yr	Rain Used	Imper- vious	Loss in/hr	Ţ(c) min	Runoff Depth	Vol ac-ft	Peak U Flow	
1 100yrs 62.2ac	8.20in	8.20in	0.10	0.28	30.0	3.84in	19.9	95.3cfs	1.53
SANTA BARBARA COUNT 12-29-1998 Licensed to MAC Des	· ·		YDROGRA	APH, V	ersio	n 1.2.1			
COMPUTATION of a Ru	noff Hydi	ograph	. ·		· · ·			· .	
Hyd Return Drainage Num Period Area	e24 hr 100yr	Rain Used	Imper- vious	Loss in/hr	T(c) min	Runoff Depth	Vol 'ac-ft	Peak U Flow	
2 50yrs 62.2ac	8.20in	7.38in	0.10	0.30	30.0	3.12in	16.2	83.0cfs	1.34
SANTA BARBARA COUNT 12-29-1998 Licensed to MAC Des			YDROGRA	APH, Ve	ersion	n 1.2.1			
COMPUTATION of a Ru	noff Hydr	ograph							
Hyd Return Drainage Num Period Area	100yr	Used	vious	in/hr	min	Depth	ac-ft	Flow	q
25yrs 62.2ac	8.20in	6.56in	0.10	0.32	30.0	2.47in	12.8	70.8cfs	1.14
SANTA BARBARA COUNT 12-29-1998 Licensed to MAC Des			YDROGRA	PH, Ve	ersior	n 1.2.1			
COMPUTATION of a Ru									
			Tmnor-	Togg	ም(Puroff	Vol	Peak U	lini t-
Hyd Return Drainage Num Period Area	100yr	Used	vious	in/hr	min	Depth		Flow	
4 10yrs 62.2ac	8.20in	5.58in	0.10	0.34	30.0	1.74in	9.0	56.3cfs	0.91
							1		


POST-DEVELOPMENT DRAINAGE CONDITIONS


The development of Tract 13,646 and Willow Springs will not increase or decrease the tributary area which drains to the RCB, but it will increase the percent of impervious area. Figure 3 is a map delineating the post-development drainage condition and indicates that the pre-development area of 62.2 acres will still drain to Hollister Avenue. The following copy of the SBCUH computer printout shows the 10, 25, 50 and 100 year runoff to the RCB. The time of concentration was again determined to be 30 minutes and 50% of the total area was considered impervious. The 50% impervious figure was estimated by evaluating the open space (wetland area, resource conservation area, etc.) which will remain in perpetuity after development of the entire tributary area.

The following table illustrates the runoff increase due to development.

Return	Pre-Development	Post-Development	Increase,
Period	Runoff, cfs	Runoff, cfs	cfs
100	95.3	102.3	7.0
50	83.0	90.6	7.6
25	70.8	78.8	8.0
10	56.3	64.9	8.6

TABLE 1

WILLOW SPRINGS COUNTY OF SANTA BARBARA JANUARY 1999 FIGURE 3

ļ	POST-DE	VELO	PMEN	1 DI	RAINAG	iE .		
SANTA BARBARA COUNTY FC& 12-29-1998 Licensed to MAC Design A	•	.YDROGRI	lPH, V€	irsion	1 1.2.1			·
C (TATION of a Runoff	• • • • • • • • • • • • • • • • • • • •	•	1					<u>-</u>
Hyd Return Drainage24 Num Period Area 100y	hr Rain r Used	Imper- vious	Loss in/hr	T(c) min	Runoff_ Depth	Vol ac-ft	Peak U Flow	Jnit q
5 100yrs 62.2ac 8.2	0in 8.20in	. 0.50	0.28	30.0	5.78in	30.0 10	2.3cfs	1.64
SANTA BARBARA COUNTY FC& 12-29-1998 Licensed to MAC Design A		YDROGRA	_PH, Ve	rsion	1.2.1			
COMPUTATION of a Runoff	Hydrograph	•	· · ·			1. 1. 1. . 1. 1		
Hyd Return Drainage24 Num Period Area 100y	hr Rain r Used	Imper- vious	Loss in/hr	T(c) min	Runoff Depth	Vol ac-ft	Peak U Flow	Init q
6 50yrs 62.2ac 8.2	0in 7.38in	0.50	0.30	30.0	5.01in	26.0 9	0.6cfs	1.46
SANTA BARBARA COUNTY FC& 12-29-1998 Licensed to MAC Design A		YDROGRA	PH, Ve	rsion	1.2.1			
COMPUTATION of a Runoff 1	Hydrograph							· · · · · · · · · · · · · · · · · · ·
Hyd Return Drainage24 Num Period Area 100y	hr Rain : r Used	Imper- vious	Loss in/hr	T(c) min	Runoff Depth	Vol ac-ft	Peak Uı Flow	nit q
25yrs 62.2ac 8.2	0in 6.56in	0.50	0.32	30.0	4.29in	22.2 78	3.8cfs :	1.27
SANTA BARBARA COUNTY FC&V 12-29-1998 Licensed to MAC Design As		/DROGRA	PH, Ve	rsion	1.2.1			
COMPUTATION of a Runoff I	lydrograph							
Hyd Return Drainage24 Num Period Area 100yr	hr Rain I r Used	Imper- vious	Loss ' in/hr	I(c) J min	Runoff Depth	Vol ac-ft	Peak Ur Flow	iit q
8 10yrs 62.2ac 8.20)in 5.58in	0.50	0.34	30.0	3.45in	17.9 64	.9cfs 1	L.04

(

APPROVED PROJECT DRAINAGE CONDITIONS

The approved project consisted of a 235 unit residential development and construction of the following roads:

1. Calle Koral (formerly Road "A" and Via Las Flores) from Hollister Avenue to Los Carneros Road.

2. Camino Vista from the easterly tract boundary to the westerly tract boundary.

3. Via Maya, Via Luisa and Via Lilia to serve the parcels created as Tract 13,464.

The approved project would drain the same tributary area to the RCB but would increase the impervious surface due to the construction of Calle Koral from Hollister Avenue to Camino Vista. The following copy of the SBCUH computer printout shows the 10, 25, 50 and 100 year runoff to the RCB. The time of concentration was determined to be 30 minutes and 55% of the total area was considered impervious. Please note that the major difference between the post-development project and the approved project is the elimination of Calle Koral from Hollister Avenue to Camino Vista for the post-development project.

The following table illustrates the runoff relative to pre-development, post-development and approved project conditions.

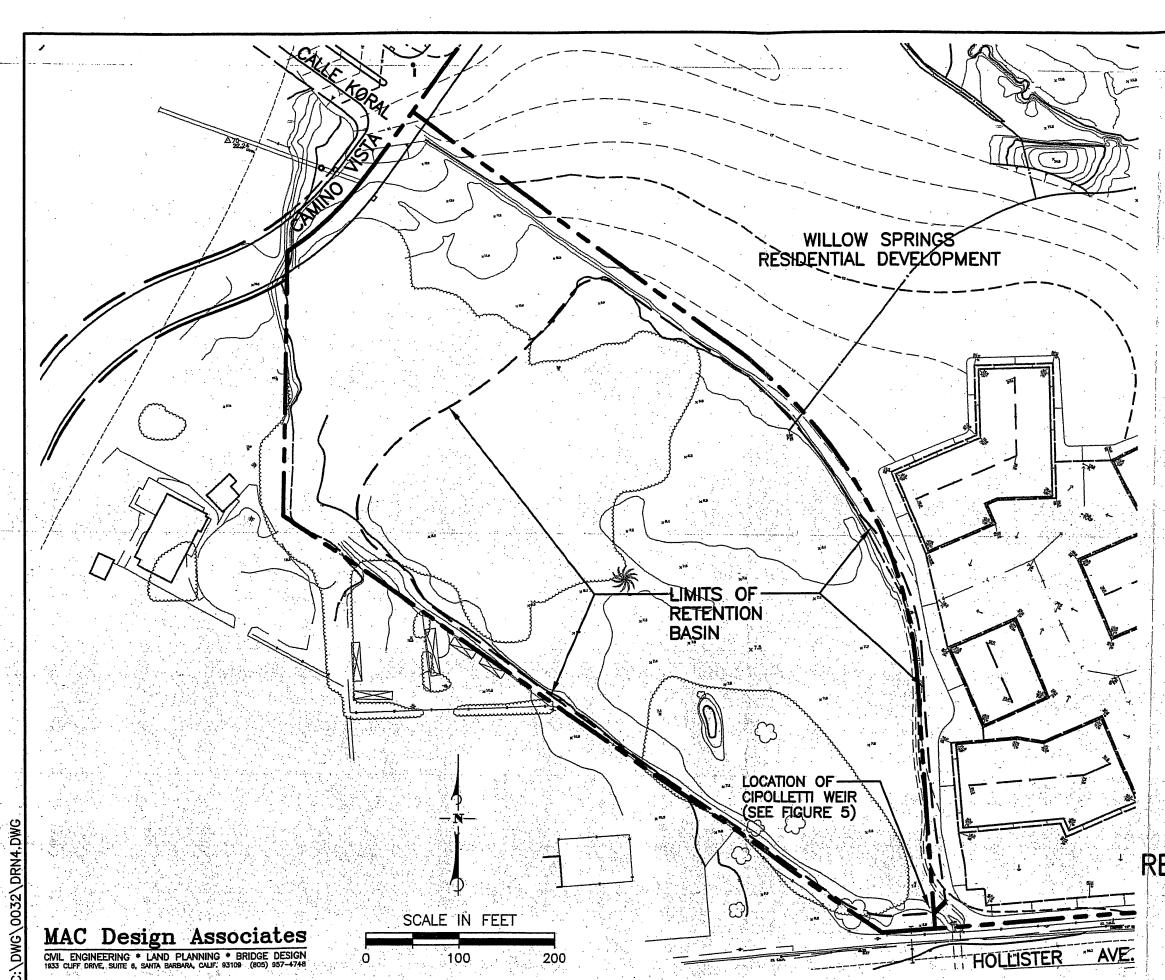
Return Period	Pre-Development Runoff, cfs	Post-Development Runoff, cfs	Approved Project, Runoff, cfs
100	95.3	102.3	103.2
50	83.0	90.6	91.5
25	70.8	78.8	79.8
10	56.3	64.9	65.9

ŀ

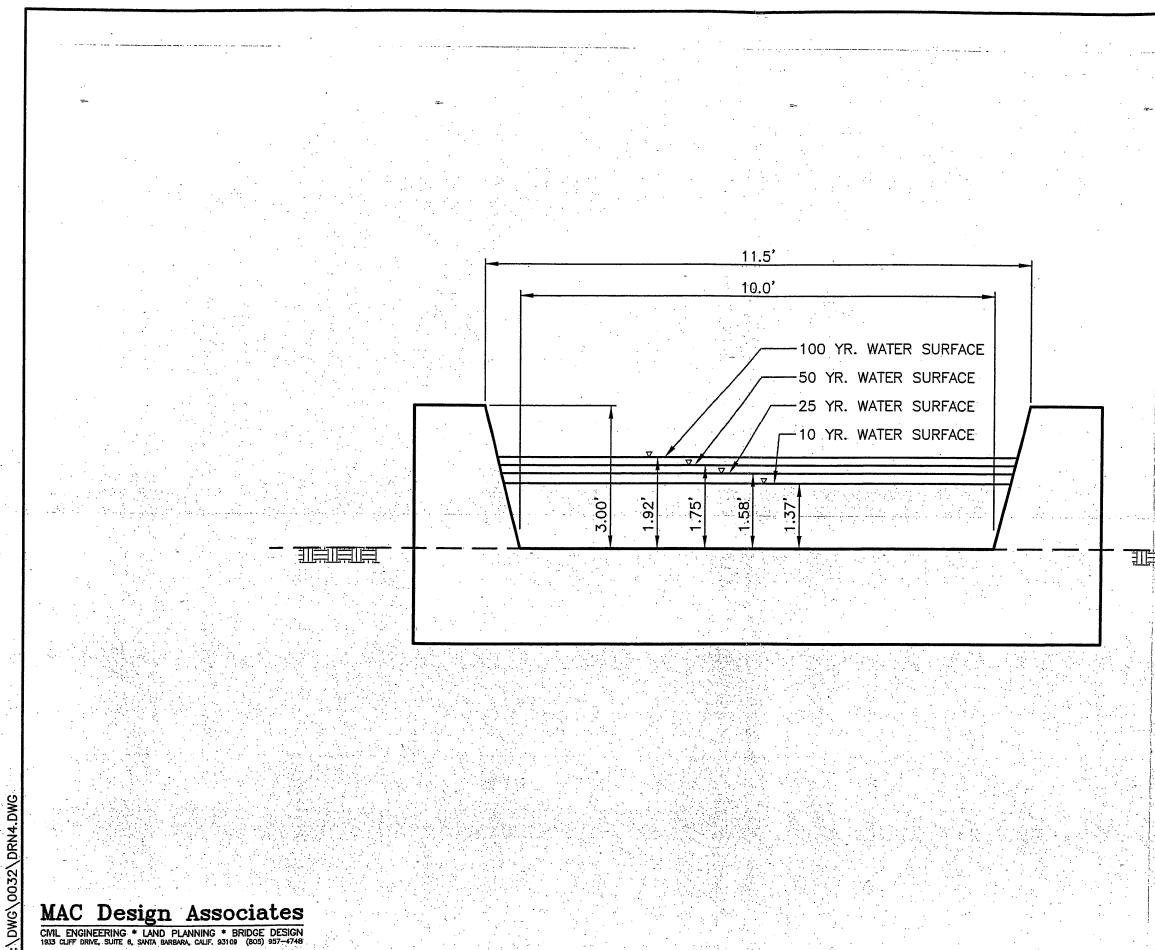
This table clearly indicates that the approved project will generate more peak flows from the 100, 50, 25 and 10 year rainfall events than the post-development project.

APPROVED PROJEC	T DRAINAGE	Ξ
SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, V 01-12-1999 Licensed to MAC Design Associates	ersion 1.2.1	
('UTATION of a Runoff Hydrograph	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Hyd Return Drainage24 hr Rain Imper- Loss Num Period Area 100yr Used vious in/hr		
1 100yrs 62.2ac 8.20in 8.20in 0.55 0.28	30.0 6.02in	31.2 103.2cfs 1.66
SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, V 01-12-1999 Licensed to MAC Design Associates COMPUTATION of a Runoff Hydrograph	ersion 1.2.1	
Hyd Return Drainage24 hr Rain Imper- Loss Num Period Area 100yr Used vious in/hr		
2 50yrs 62.2ac 8.20in 7.38in 0.55 0.30	30.0 5.25in	27.2 91.5cfs 1.47
SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, V 01-12-1999 Licensed to MAC Design Associates COMPUTATION of a Runoff Hydrograph	ersion 1.2.1	
H. Return Drainage24 hr Rain Imper- Loss Num Period Area 100yr Used vious in/hr	T(c) Runoff min Depth	Vol Peak Unit ac-ft Flow q
3 25yrs 62.2ac 8.20in 6.56in 0.55 0.32		23.4 79.8cfs 1.28
SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, V 01-12-1999 Licensed to MAC Design Associates	ersion 1.2.1	
COMPUTATION of a Runoff Hydrograph		
Hyd Return Drainage24 hr Rain Imper- Loss Num Period Area 100yr Used vious in/hr		
4 10yrs 62.2ac 8.20in 5.58in 0.55 0.34	30.0 3.66in	19.0 65.9cfs 1.06

(


RETENTION BASIN DESIGN

The area available for use on-site as a retention basin is located southwest of the Willow Springs development. This area will be maintained in perpetuity as a wetland in accordance with the Army Corps of Engineers (ACOE) 404 permit. The wetland mitigation plan which was approved by the ACOE recommended that this area be used to retain storm water runoff to improve wetland hydrology.


Figure 4 shows the area available for retention and represents approximately 5.2 acres with a storage volume of approximately 7.6 acre feet.

Outflow from the retention basin will be controlled through use of a Cipolletti (trapezoidal) weir (See Figure 5). Design of the weir is shown on the following calculation sheets.

Post-development hydrographs for the 10, 25, 50 and 100 year rainfall events were routed through a basin using the Santa Barbara County Flood Control Urban Hydrograph computer program and the results are shown on the following sheets. A review of this data indicates that the proposed retention basin contains almost 400% more storage volume than required to detain the 100 year return period runoff event.

RETENTION BASIN AREA WILLOW SPRINGS COUNTY OF SANTA BARBARA FIGURE 4 JANUARY 1999

MAC Design Associates CMIL ENGINEERING * LAND PLANNING * BRIDGE DESIGN 1933 CLIFF DRIVE, SUITE 8, SANTA BARBARA, CALIF. 93109 (805) 957-4748

CIPOLLETTI WEIR WILLOW SPRINGS COUNTY OF SANTA BARBARA JANUARY 1999 FIGURE 5

WEIR DESIGN REFERENCES -1. HANDROOK OF HUDRAULICE, KING ! BRATER, FIFTH EDITION 2. CIVIL FENGINEERING HANDBOOK, URQUHART, FOURTH EDITION TYPE A TRAPEZOLDAL WEIR WITH 1: 4 SIDES IS CALLED A CIPOLLETTI WER AND WILL BE USED TO RETAIN STORM WATER RUNDEF FROM THE WILLOW

SPRINGS DEVELOPMENT

Discharge Q

Q = 3.367 LH^{3/2} Q=DISCHARGE CFS (EQ 106 PG 4-53 REF. Z) L= WEIRLEWLETH, FT

 $T_{RY} L = 10'$ H= HEAD, FT $Q_{e_1} = (3.367)(10)(1)^{3/2}$ $Q_{e_1} = 33.70 \text{ cfs}$

 $Q_{02'} = (3,367)(10)(2)^{3/2}$ = (33.67) (2.83) $Q_{e_2} = 95.3 cfs$ AT A HEAD OF Z THE PROPOSED CIPOLLETT WER WILL PASC THE STORM WATER RUNDEF FROM A PRE-DEVELOPMENT 100 YEAR EVENT (SEE HYDROGRAPH #1 RESULTS) 11.5 3.0 10.01

SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, Version 1.2.1 Licensed to MAC Design Associates ROUTING Hydrograph 5 [Hydqph] thru a Basin, Outflow Hydrograph is 9 Outflow data entered from keyboard HW Depth Total Q . (ft) (cfs) 0.0 0 1 33.7 2 · 95.3 Storage data entered from keyboard Depth Storage Volume (cu ft) (ft) (ac-ft) 47,189 1.08 1 96,301 2.21 . 2 <<< Summary of Results >>> 102 cfs Max INFLOW at 14.00 hrs = Max OUTFLOW 90 cfs _____ at 14.00 hrs = 2.12 ac-ft at 14.00 hrs Max STORAGE Max DEPTH **=** · · 1.92 ft at 14.00 hrs Total INFLOW Volume = 29.92 ac-ft Total OUTFLOW Volume = 29.88 ac-ft Storage at end of 24 hours = 0.05 ac-ft rograph # 9 Calced

SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, Version 1.2.1 12-29-1998 Licensed to MAC Design Associates

COMPUTATION of a Runoff Hydrograph

Hyd Return Drainage --24 hr Rain-- Imper- Loss T(c) Runoff Vol Peak Unit Num Period Area 100yr Used vious in/hr min Depth ac-ft Flow q 5 100yrs 62.2ac 8.20in 8.20in 0.50 0.28 30.0 5.78in 30.0 102.3cfs 1.64

SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, Version 1.2.1 Licensed to MAC Design Associates TING Hydrograph 6 [Hydgph] thru a Basin, Outflow Hydrograph is 10 Outflow data entered from keyboard - HW Depth Total Q (ft) (cfs) .0. 0.0 33.7 1. 2. 95.3 Storage data entered from keyboard Storage Volume Depth (ft) (cu ft) (ac-ft) 47,189 1.08 1. 96,301 2.21 2 <<< Summary of Results >>> Max INFLOW 91 cfs at 14.00 hrs = Max OUTFLOW = 80 cfs at 14.00 hrs Max STORAGE = 1.93 ac-ft at 14.00 hrs Max DEPTH = 1.75 ft at 14.00 hrs Total INFLOW Volume . **=** 25.95 ac-ft Total OUTFLOW Volume = 25.91 ac-ft Storage at end of 24 hours = 0.04 ac-ft Hyurograph # 10 Calced SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, Version 1.2.1 12-29-1998 Licensed to MAC Design Associates COMPUTATION of a Runoff Hydrograph

Hyd Return Drainage --24 hr Rain-- Imper- Loss T(c) Runoff Vol Peak Unit Num Period Area 100yr Used vious in/hr min Depth ac-ft Flow q 6 50yrs 62.2ac 8.20in 7.38in 0.50 0.30 30.0 5.01in 26.0 90.6cfs 1.46

SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, Version 1.2.1 Licensed to MAC Design Associates ReTING Hydrograph 7 [Hydgph] thru a Basin, Outflow Hydrograph is 11 Outflow data entered from keyboard HW Depth Total O (ft) (cfs) .0 0.0 1. 33.7 2 95.3 Storage data entered from keyboard Depth Storage Volume (ft) (cu ft) (ac-ft) 1.08 47,189 1 2.21 96,301 2 <<< Summary of Results >>> at 14.00 hrs Max INFLOW = 79 cfs 69 cfs Max OUTFLOW = at 14.00 hrs Max STORAGE = 1.74 ac-ft at 14.00 hrs Max DEPTH = 1.58 ft at 14.00 hrs Total INFLOW Volume = 22.20 ac-ft Total OUTFLOW Volume = 22.16 ac-ft Storage at end of 24 hours = 0.04 ac-ft H, rograph # 11 Calced

SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, Version 1.2.1 12-29-1998 Licensed to MAC Design Associates

COMPUTATION of a Runoff Hydrograph

Hyd	Return	Drainage	24 h	r Rain	Imper-	Loss '	Т(с).	Runoff	Vol	Peak	Unit	
		Area										
7	25vrs	62.2ac	8.20i	n 6.56i)	1 0.50	0.32	30.0	4.29in	22 2	78 8cfs	1 27	1

SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, Version 1.2.1 Licensed to MAC Design Associates ROUTING Hydrograph 8 [Hydgph] thru a Basin, Outflow Hydrograph is 12	
Outflow data entered from keyboard HW Depth -Total Q (ft) (cfs) 0 0.0 1 33.7 2 95.3	
Storage data entered from keyboard	
Storage data entered from keyboardDepthStorage Volume(ft)(cu ft)147,189296,30122.21	
<pre><<< Summary of Results >>> Max INFLOW = 65 cfs at 14.00 hrs Max OUTFLOW = 56 cfs at 14.00 hrs Max STORAGE = 1.50 ac-ft at 14.00 hrs Max DEPTH = 1.37 ft at 14.00 hrs Teatel INELOW Volume</pre>	
Total INFLOW Volume = 17.84 ac-ft Total OUTFLOW Volume = 17.81 ac-ft Storage at end of 24 hours = 0.03 ac-ft	
, <i>c</i> ograph # 12 Calced	
SANTA BARBARA COUNTY FC&WCD URBAN HYDROGRAPH, Version 1.2.1 L2-29-1998 Licensed to MAC Design Associates	
COMPUTATION of a Runoff Hydrograph	

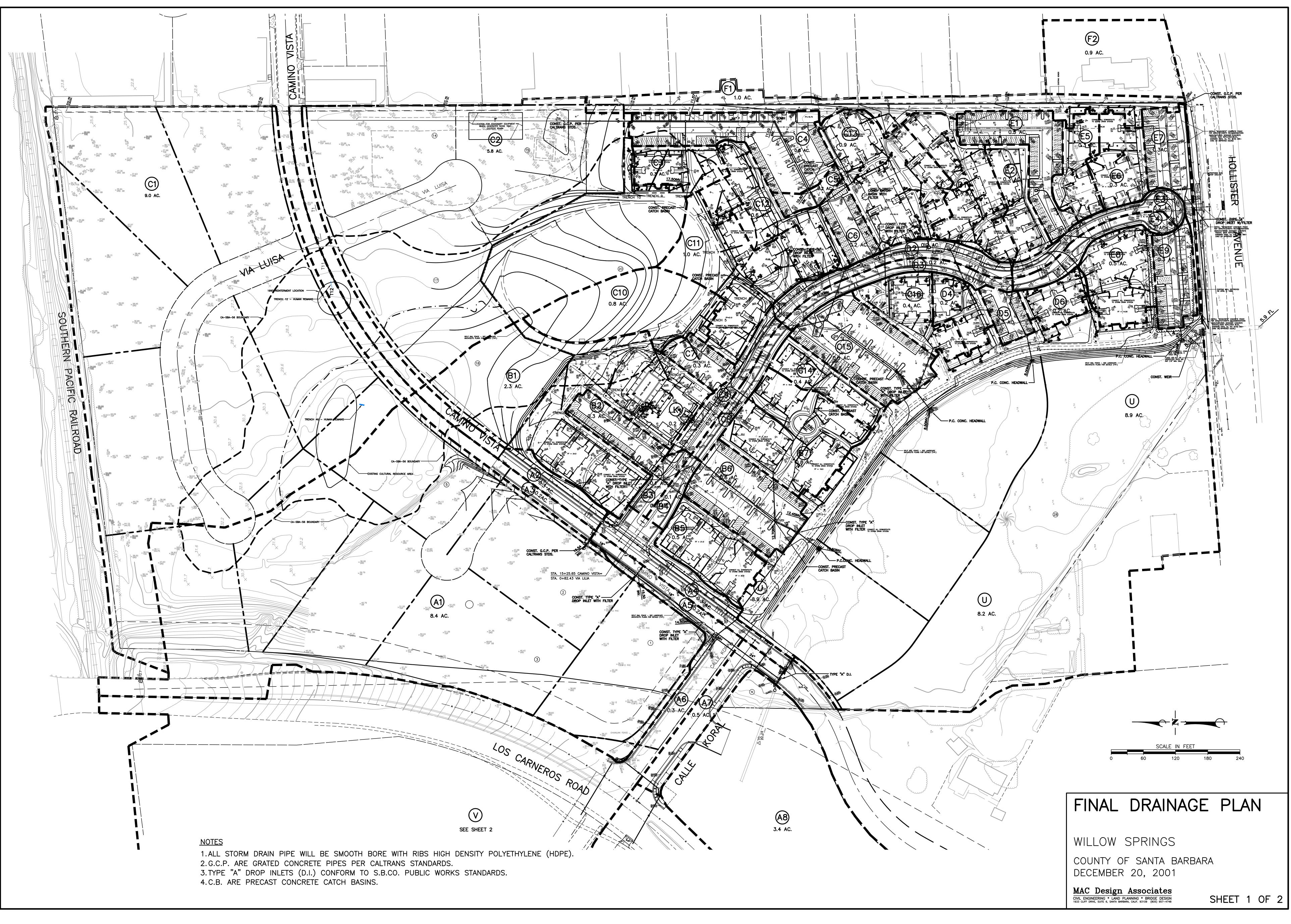
Hyd Return Drainage --24 hr Rain-- Imper- Loss T(c) RunoffVolPeak UnitNum PeriodArea100yrUsedvious in/hrminDepthac-ftFlowq810yrs62.2ac8.20in5.58in0.500.3430.03.45in17.964.9cfs1.04

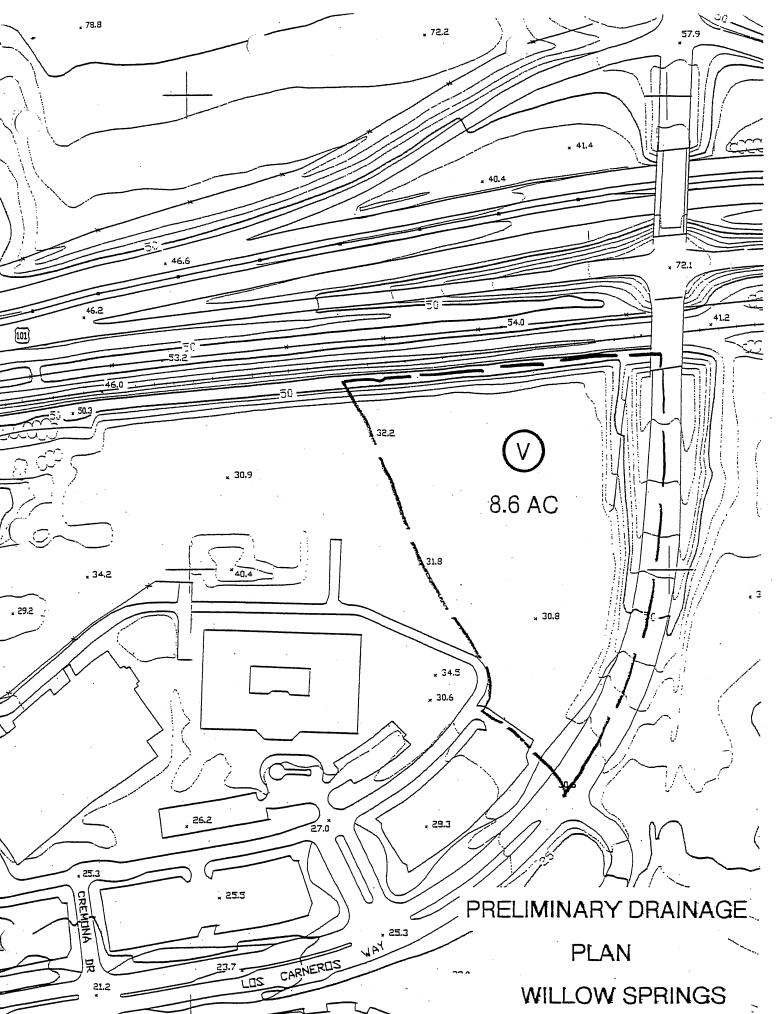
CONCLUSIONS

Construction of the drainage improvements outlined in this report will result in post-development peak runoff flow rates equal to or less than the expected runoff rates for the same return periods from the pre-development peak runoff rates. The following table is a summary of the peak flow rates for the various runoff events with the retention basin.

Return	Pre-Development	Post-Development	Difference,
Period	Runoff, cfs	Runoff, cfs	cfs
100	95.3	90	-5.3
50	83.0	80	-3.0
25	70.8	69	-1.8
10	56.3	56	0

TABLE	3
-------	---


Based on this information, it appears that the post-development runoff will not exceed pre-development runoff.


APPENDIX A

FINAL DRAINAGE PLAN

TRIBUTARY AREAS

ز

PRELIMINARY STORMWATER CONTROL PLAN FOR HERITAGE RIDGE

Prepared for:

The Towbes Group, Inc. 21 East Victoria Street, Suite 200 Santa Barbara, CA 93101 (805) 962-2121

Prepared by:

Dale W. Weber MAC Design Associates 1933 Cliff Drive, Suite 6 Santa Barbara, CA 93109

W.O. 0343

Date: February 2, 2016

Table of Contents

I.	Proje	ct Data	.1
II.	Settin	g	2
	II.A.	Project Location and Description	2
	II.B.	Existing Site Features and Conditions	
	II.C.	Opportunities and Constraints for Stormwater Control	.3
III.	Low l	mpact Development Design Strategies	.3
		Optimization of Site Layout	
		III.A.1. Limitation of development envelope	
		III.A.2. Preservation of natural drainage features	.3
		III.A.3. Setbacks from creeks, wetlands, and riparian habitats	.3
		III.A.4. Minimization of imperviousness	.3
		III.A.5. Use of drainage as a design element	.3
	III.B.	Use of Permeable Pavements	.3
	III.C.	Dispersal of Runoff to Pervious Areas	.4
	III.D.	Stormwater Control Measures	.4
IV.	Docu	mentation of Drainage Design	.4
	IV.A.	Descriptions of each Drainage Management Area	.4
		IV.A.1. Table of Drainage Management Areas	.4
		IV.A.2. Drainage Management Area Descriptions1	.0
V.	Sourc	e Control Measures1	10
	V.A.	Site activities and potential sources of pollutants	10
	V.B.	Source Control Table	
	V.C.	Features, Materials, and Methods of Construction of Source Control BMPs	11
VI.	Storn	water Facility Maintenance1	1
	VI.A.	Ownership and Responsibility for Maintenance in Perpetuity	11
		Summary of Maintenance Requirements for Each Stormwater Facility	
VII	. Cons	truction Checklist1	1
VII	I. Cert	ifications	2

Tables

Table 1. Project Data	1
Table 2. Drainage Management Areas	4
Table 3. Sources and Source Control Measures	10
Table 4. Construction Plan Checklist	11

Figures

Vicinity Map

Attachments

Central Coast Region Stormwater Control Measure Sizing Calculator Hydrocad Calculations for ADS Stormtech Chambers Stormwater Control Plan Preliminary Grading & Drainage Plan

Appendices

I. Project Data

	<u> </u>
Project Name/Number	Heritage Ridge
Application Submittal Date	
Project Location	APN: 073-060-031, 032, 033, 034, 035, 036, 037, 038, 039, 040, 041, 042 & 043
Project Phase No.	N/A
Project Type and Description	360 unit residential apartment project consisting of 8 buildings containing the units and 2 recreation buildings. Two of the buildings will be Senior Housing, containing 132 units. The remaining 6 buildings, containing 228 units, will be Work Force Housing.
Total Project Site Area (acres)	16.2 Acres
Total New Impervious Surface Area	303,578 Square Feet
Total Replaced Impervious Surface Area	N/A
Total Pre-Project Impervious Surface Area	0
Total Post-Project Impervious Surface Area	303,578 Square Feet
Net Impervious Area	303,578 Square Feet
Watershed Management Zone(s)	WMZ 1
Design Storm Frequency and Depth	95 th Percentile = 2.2 inches
Urban Sustainability Area	N/A

Table 1. Project Data

II. Setting

II.A. Project Location and Description

North Willow Springs is the northern portion of Tract 13,646, is located on APN's 073-060-031 through 043, in Goleta, California, and is approximately 16.2 acres. The Tract is located near the intersection of Los Carneros Road and Calle Koral, and is immediately adjacent to the previously approved and developed Willow Springs I & II projects. A vicinity map may is shown on Figure 1.

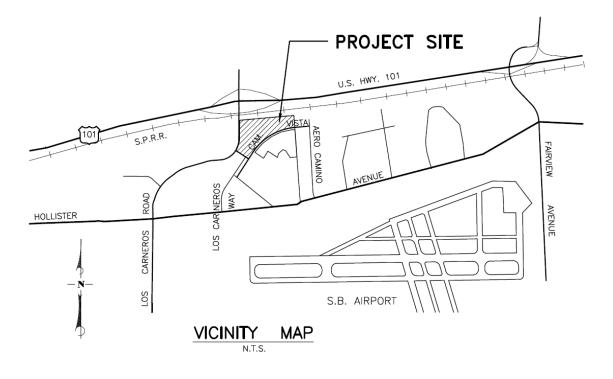


FIGURE 1

II.A.1. Existing Site Features and Conditions

The project site is currently thirteen (13) undeveloped lots adjacent to Willow Springs I and II. Currently there are 2 large soils stockpiles on-site with an unpaved access road. One stockpile is at the west side of the project near Calle Koral and another that runs along the north & east property lines. Currently the highest elevations occur at the top of the westerly stockpile. The center portion of the site is an archaeologically sensitive area and is currently fenced and undisturbed. Once the stockpiles are removed and the site is regraded this center portion of the site will have the highest elevations on the property and will form a ridge that divides the site drainage, with approximately half the site draining in a westerly direction and half the site draining in an easterly direction. Ultimately, all runoff from the property drains through existing storm drains and into a 7.25 acre treatment wetland located on the Willow Springs property. Runoff entering the treatment wetland

will drain across 500 feet (storm drain "A") and 950 feet (storm drain "C") of wetland vegetation before leaving the property at Hollister Avenue. Vegetative cover on the property is highly variable and dependent upon the activity of the stockpile. The hydrologic soils group is mapped as both soil type B and soil type D, as shown on the attached map included in the appendix.

II.A.2. Opportunities and Constraints for Stormwater Control

Opportunities for stormwater control exist along the perimeter of the 2 acre park, at the southeast corner of the project, under parking stall and drive aisles, and in landscaped areas throughout the project.

Constraints occur in the center park area due to higher elevations and underlying soils that are considered archaeologically sensitive. Drive aisle are constrained due to the proposed underground utility lines necessary to serve the project. Landscaped areas adjacent to the buildings are constrained due to seismic/liquefaction and settlement concerns expressed by the project Soils Engineer due to high ground water elevations.

III. Low Impact Development Design Strategies

III.A. Optimization of Site Layout

III.A.1. Limitation of development envelope

The project proposes multi-story buildings which will reduce the over building footprint.

III.A.2. Preservation of natural drainage features

No natural drainage features exist on-site, all drainage is currently sheet flow in nature.

III.A.3. Setbacks from creeks, wetlands, and riparian habitats

This is not applicable to this project site, no creeks, wetlands, or riparian habitats exist onsite.

III.A.4. Minimization of imperviousness

Preservation of the 2-acre park in the center of the project, the use of permeable pavements, and use of multistory buildings will serve to minimize the amount of imperviousness.

III.A.5. Use of drainage as a design element

Bioretention basins, vegetated swales, permeable pavements set on a gravel reservoir, and a subsurface ADS Stormtech Chamber system, will be used as Stormwater Control Measures.

III.B. Use of Permeable Pavements

Uncovered parking stalls throughout the project will be constructed with permeable pavements set on a gravel base. Some walkways and patio area will also be constructed with permeable pavements.

III.C. Dispersal of Runoff to Pervious Areas

Runoff from roof areas will be directed to landscape and pervious areas where possible.

III.D. Stormwater Control Measures

Biorention basins, vegetated swales, permeable pavements set on a gravel reservoir, and a subsurface ADS Stormtech Chamber system, will be used as Stormwater Control Measures.

IV. Documentation of Drainage Design

IV.A. Descriptions of each Drainage Management Area

IV.A.1. Table of Drainage Management Areas

DMA Name	Surface Type	Area (Square Feet)
DMA 1A	Roof	2704
DMA 1B	Roof	2241
DMA 1C	Roof	1050
DMA 1D	Roof	1600
DMA 1E	Roof	1888
DMA 1F	Roof	3914
DMA 1G	Roof	5021
DMA 3	Landscape	4,202
DMA 7	Sidewalk	1,315
DMA 9	Landscape	270
DMA 11	Landscape	776
DMA 13	Sidewalk	833
DMA 15	Landscape	735
DMA 17	Landscape	427
DMA 19	Landscape	587
DMA 21	Asphalt	270
DMA 23	Asphalt	1,148
DMA 25	Landscape	605

Table 2 – DMA's

DMA 27	Sidewalk	531
DMA 29	Landscape	922
DMA 31	Permeable Pavement	2,287
DMA 33	Roof	610
DMA 35	Asphalt	704
DMA 39	Roof	1,291
DMA 41	Landscape	182
DMA 43	Landscape	4,958
DMA 45	Roof	1,485
DMA 47	Permeable Pavement	2,201
DMA 49	Landscape	715
DMA 50	Permeable Pavement	438
DMA 51	Landscape	269
DMA 52	Permeable Pavement	461
DMA 53	Permeable Pavement	782
DMA 54	Sidewalk	918
DMA 55	Landscape	2,781
DMA 56	Sidewalk	221
DMA 57	Landscape	5,664
DMA 59	Roof	7,867
DMA 60	Roof	6,722
DMA 61	Roof	4,992
DMA 62	Roof	5,456
DMA 63	Sidewalk	739
DMA 65	Landscape	1,091
DMA 67	Landscape	1,410
DMA 69	Roof	2,766
DMA 71	Landscape	250
DMA 73	Landscape	838

DMA 74	Sidewalk	1,558
DMA 75	Pavers/Concrete	682
DMA 77	Permeable Pavement	2,076
DMA 79	Pavers/Concrete	226
DMA 80	Permeable Pavement	2,537
DMA 81	Landscape	348
DMA 82	Landscape	589
DMA 83	Permeable Pavement	2,542
DMA 85	Landscape	952
DMA 91	Permeable Pavement	783
DMA 92	Roof	891
DMA 93	Permeable Pavement	914
DMA 94	Roof	891
DMA 95	Permeable Pavement	1,044
DMA 96	Roof	1,188
DMA 97	Landscape	583
DMA 98	Roof	891
DMA 100	Roof	891
DMA 101	Asphalt/Roof	33,159
DMA 102	Roof	891
DMA 103	Landscape	34,606
DMA 104	Roof	1,188
DMA 105	Landscape	13,469
DMA 106	Roof	891
DMA 107	Sidewalk	493
DMA 109	Landscape	8,804
DMA 111	Landscape	8,168
DMA 113	Asphalt	1,078
DMA 115	Permeable Pavement	3,687

DMA 117	Permeable Pavement	596
DMA 119	Permeable Pavement	596
DMA 121	Permeable Pavement	744
DMA 123	Permeable Pavement	1,233
DMA 125	Asphalt/Roof	19,716
DMA 127	Permeable Pavement	1,507
DMA 129	Landscape	334
DMA 131	Permeable Pavement	522
DMA 133	Landscape	983
DMA 135	Landscape	1,300
DMA 137	Landscape	738
DMA 139	Landscape	635
DMA 141	Permeable Pavement	783
DMA 143	Permeable Pavement	783
DMA 145	Landscape	749
DMA 147	Landscape	634
DMA 149	Landscape	2,199
DMA 151	Roof	6,909
DMA 153	Roof	6,909
DMA 155	Permeable Pavement	522
DMA 157	Landscape	1,126
DMA 159	Landscape	589
DMA 161	Landscape	1,169
DMA 163	Roof	5,351
DMA 165	Roof	5,351
DMA 167	Landscape	9,456
DMA 169	Landscape	805
DMA 171	Landscape	392
DMA 173	Permeable Pavement	1,044

DMA 175	Landscape	575
DMA 177	Asphalt/Roof	24,841
DMA 179	Permeable Pavement	1,044
DMA 181	Landscape	1,103
DMA 183	Landscape	580
DMA 185	Landscape	1,394
DMA 187	Landscape	1,078
DMA 189	Landscape	1,128
DMA 191	Permeable Pavement	1,175
DMA 193	Landscape	575
DMA 195	Roof	5,351
DMA 197	Roof	5,351
DMA 199	Landscape	553
DMA 201	Permeable Pavement	1,044
DMA 203	Landscape	904
DMA 205	Landscape	650
DMA 207	Landscape	234
DMA 209	Landscape	390
DMA 211	Permeable Pavement	1,062
DMA 213	Asphalt/Roof	5,936
DMA 215	Landscape	196
DMA 221	Permeable Pavement	1,709
DMA 223	Landscape	893
DMA 225	Landscape	1,627
DMA 227	Permeable Pavement	1,044
DMA 229	Landscape	550
DMA 231	Permeable Pavement	522
DMA 233	Roof	13,953
DMA 235	Landscape	1,198

DMA 237	Landscape	355
DMA 239	Permeable Pavement	1,350
DMA 241	Landscape	1,142
DMA 243	Landscape	3,056
DMA 245	Asphalt/Roof	28,008
DMA 247	Roof	24,468
DMA 249	Landscape	2,721
DMA 251	Landscape	1,738
DMA 253	Landscape	3,331
DMA 255	Permeable Pavement	1,041
DMA 257	Permeable Pavement	653
DMA 258	Landscape	690
DMA 259	Roof	4,751
DMA 261	Landscape	2,666
DMA 263	Permeable Pavement	5,681
DMA 265	Pavers/Concrete	946
DMA 267	Landscape	1,768
DMA 269	Permeable Pavement	522
DMA 271	Permeable Pavement	1,044
DMA 273	Asphalt/Roof	26,042
DMA 275	Permeable Pavement	783
DMA 277	Sidewalk	1,385
DMA 278	Sidewalk	685
DMA 279	Landscape	395
DMA 281	Permeable Pavement	653
DMA 283	Roof	15,050
DMA 285	Landscape	529
DMA 287	Permeable Pavement	1,305
DMA 289	Sidewalk	1,371

DMA 291	Permeable Pavement	522
DMA 295	Landscape	883
DMA 300	Landscape	80,554

IV.A.2. Drainage Management Area Descriptions

DMA area and surface type are described in the previous Table.

IV.B. Tabulation and Sizing Calculations

DMA type and connection are described in the Project Clean Water SCM Sizing Calculator attached below.

V. Source Control Measures

V.A. Site activities and potential sources of pollutants

V.B. Source Control Table

Table 3

Potential source of runoff pollutants	Permanent source control BMPs	Operational source control BMPs
Inlets	Mark inlets with words "No Dumping"	Maintain and periodically replace inlet markings
Landscape Pesticide Use	Integrated Pest Management Plan	
Pools & Spas	Plumb to Sanitary Sewer	
Refuse Areas	Enclosed area with lids and roof structure	Service by local hauler
Sidewalks and Parking Lots		Sweep regularly

V.C. Features, Materials, and Methods of Construction of Source Control BMPs

See Grading & Drainage Plans, and Landscape Plans for details and methods of construction.

VI. Stormwater Facility Maintenance

VI.A. Ownership and Responsibility for Maintenance in Perpetuity

The Owner shall enter into Maintenance Agreement that runs with the land, with the City of Goleta, accepting responsibility for operation and maintenance of the on-site Post Construction Stormwater Facilities shown and referenced in the project plans and reports.

The applicant accepts responsibility for the operation and maintenance of stormwater treatment and flow-control facilities for the life of the project. Any future change or alteration, or the failure to maintain any feature described herein can result in penalties including but not limited to fines, property liens, and other actions for enforcement of a civil judgement.

VI.B. Summary of Maintenance Requirements for Each Stormwater Facility

An Operations and Maintenance Plan (O&M) will prepared and submitted for City of Goleta approval as a part of final project approval. The Owner shall designate the Person(s) responsible for maintenance of Stormwater Control Measures, keeping of inspection records, and correspondence with the City of Goleta. This person will manage all contractors and employees who will work on or maintain the Stormwater Control Measures, and will be the point of contact for problems such as clogged drains, broken irrigation lines, etc.

VII. Construction Checklist

Table 4 – Construction Checklist

Stormwater		
Control Plan		a b i ai "
<u>Page #</u>	BMP Description	See Plan Sheet #s
1	Self Treating Landscape Areas	C3
1	Self Retaining Landscape Areas	C3
1	Self Retaining Permeable Pavement Areas	C3
1	Bioretention/Bioswale Areas	C3
1	Stormtech Chambers	C3
1	Storm Drain Inlets	C3

VIII. Certifications

The preliminary design of stormwater treatment facilities and other stormwater pollution control measures in this plan are in accordance with the current edition of the Santa Barbara County Project Clean Water's Stormwater Technical Guide.

CENTRAL COAST REGION STORMWATER CONTROL MEASURE SIZING CALCULATOR

Central Coast Region Stormwater Control Measure Sizing Calculator

Version: 2/26/2014

1. Project Information

Project name:	North Willow Springs		
Project location:	City of Goleta		
Tier 2/Tier 3:		Tier 3 - Retention	
Design rainfall depth ((in): 2.2		
Total project area (ft2):		705,672	
Total new impervious area (ft2):		303,578	
Total replaced impe	rvious in a USA (ft2):	N/A	
Total replaced impe	rvious not in a USA (ft2):	N/A	
Total pervious/lands	scape area (ft2):	402,094	

Name	DMA Type	Area (ft2)	Surface Type	New, Replaced?	Connection
DMA 1A	Drains to Self-Retaining	2704	Roof		DMA 3
DMA 1B	Drains to Self-Retaining	2241	Roof		DMA 3
DMA 1C	Drains to Self-Retaining	1050	Roof		DMA 11
DMA 1D	Drains to Self-Retaining	1600	Roof		DMA 15
DMA 1E	Drains to Self-Retaining	1888	Roof		DMA 29
DMA 3	Self-Retaining	4202			2
DMA 7	Drains to SCM	1315	Concrete or asphalt	New	SCM 1
DMA 9	Self-Treating	270			
DMA 11	Self-Retaining	776			
DMA 13	Drains to Self-Retaining	833	Concrete or asphalt		DMA 19
DMA 15	Self-Retaining	735			
DMA 17	Self-Retaining	427			
DMA 19	Self-Retaining	587			
DMA 21	Drains to SCM	270	Concrete or asphalt	New	SCM 1
DMA 23	Drains to Self-Retaining	1148	Concrete or asphalt		DMA 31
DMA 25	Self-Retaining	605			
DMA 27	Drains to Self-Retaining	531	Concrete or asphalt		DMA 25
DMA 29	Self-Retaining	922			
DMA 31	Self-Retaining	2287			
DMA 33	Drains to SCM	610	Roof	New	SCM 4
DMA 35	Drains to Self-Retaining	704	Concrete or asphalt		DMA 31
DMA 39	Drains to SCM	1291	Roof	New	SCM 4
DMA 41	Self-Retaining	182			
DMA 43	Self-Retaining	4958			
DMA 45	Drains to Self-Retaining	1485	Roof		DMA 47
DMA 47	Self-Retaining	2201			
DMA 49	Self-Retaining	715			
DMA 50	Self-Retaining	438			
DMA 51	Self-Retaining	269			<
DMA 52	Self-Retaining	461			
DMA 53	Self-Retaining	782			
DMA 54	Drains to Self-Retaining	918	Concrete or asphalt		DMA 53
DMA 55	Self-Retaining	2781			
DMA 56	Drains to Self-Retaining	221	Concrete or asphalt		DMA 52
DMA 57	Self-Retaining	5664			
DMA 59	Drains to SCM	7867	Roof	New	SCM 3
DMA 60	Drains to SCM	6722	Roof	New	SCM 6
DMA 61	Drains to SCM	4992	Roof	New	SCM 8

DMA 62	Drains to Self-Retaining	5456	Roof		DMA 109
DMA 63	Drains to Self-Retaining	739	Concrete or asphalt		DMA 67
DMA 65	Self-Retaining	1091			
DMA 67	Self-Retaining	1410			
DMA 69	Drains to Self-Retaining	2766	Roof		DMA 67
DMA 71	Self-Retaining	250			
DMA 73	Self-Retaining	838			
DMA 74	Drains to Self-Retaining	1558	Concrete or asphalt		DMA 93
DMA 75	Drains to Self-Retaining	682	Concrete or asphalt		DMA 77
DMA 77	Self-Retaining	2076			
DMA 79	Drains to Self-Retaining	226	Concrete or asphalt		DMA 77
DMA 80	Self-Retaining	2537			
DMA 81	Self-Retaining	348			
DMA 82	Self-Retaining	589			
DMA 83	Self-Retaining	2542			
DMA 85	Self-Retaining	952			
DMA 91	Self-Retaining	783			
DMA 92	Drains to SCM	891	Roof	New	SCM 7
DMA 93	Self-Retaining	914			
DMA 94	Drains to SCM	891	Roof	New	SCM 7
DMA 95	Self-Retaining	1044			
DMA 96	Drains to SCM	1188	Roof	New	SCM 7
DMA 97	Self-Retaining	583			
DMA 98	Drains to SCM	891	Roof	New	SCM 7
DMA 100	Drains to SCM	891	Roof	New	SCM 7
DMA 101	Drains to SCM	33159	Concrete or asphalt	New	SCM 5
DMA 102	Drains to SCM	891	Roof	New	SCM 7
DMA 103	Self-Treating	34606			
DMA 104	Drains to SCM	1188	Roof	New	SCM 7
DMA 105	Self-Retaining	13469			
DMA 106	Drains to SCM	891	Roof	New	SCM 7
DMA 107	Drains to Self-Retaining	493	Concrete or asphalt		DMA 97
DMA 109	Self-Retaining	8804			
DMA 111	Self-Retaining	8168			
DMA 113	Drains to Self-Retaining	1078	Concrete or asphalt		DMA 115
DMA 115	Self-Retaining	3687			
DMA 117	Self-Retaining	596			
DMA 119	Self-Retaining	596			
DMA 121	Self-Retaining	744	1		
DMA 123	Self-Retaining	1233	6		
DMA 125	Drains to SCM	19716	Concrete or asphalt	New	SCM 5
DMA 127	Self-Retaining	1507			
DMA 129	Self-Retaining	334			
DMA 131	Self-Retaining	522			
DMA 133	Self-Retaining	983			
DMA 135	Self-Retaining	1300			
DMA 137	Self-Retaining	738			
DMA 139	Self-Retaining	635			
DMA 141	Self-Retaining	783			
DMA 143	Self-Retaining	783			
DMA 145	Self-Retaining	749			1
DMA 147	Self-Retaining	634			
DMA 149	Self-Retaining	2199			
DMA 151	Drains to SCM	6909	Roof	New	SCM 9
DMA 153	Drains to SCM	6909	Roof	New	SCM 9
DMA 155	Self-Retaining	522			
DMA 157	Self-Retaining	1126			
DMA 159	Self-Retaining	589			
	Sen neturing	505			

DMA 163	Drains to SCM	5351	Roof	New	SCM 10
DMA 165	Drains to SCM	5351	Roof	New	SCM 10
DMA 167	Self-Treating	9456			
DMA 169	Self-Retaining	805			
DMA 171	Self-Retaining	392			
DMA 173	Self-Retaining	1044			4
DMA 175	Self-Retaining	575			
DMA 177	Drains to SCM	24841	Concrete or asphalt	New	SCM 11
DMA 179	Self-Retaining	1044			11
DMA 181	Self-Retaining	1103			
DMA 183	Self-Retaining	580	<u></u>		().
DMA 185	Self-Retaining	1394			
DMA 187	Self-Retaining	1078			
DMA 189	Self-Retaining	1128			4
DMA 191	Self-Retaining	1175			
DMA 193	Self-Retaining	575			-
DMA 195	Drains to SCM	5351	Roof	New	SCM 11
DMA 197	Drains to SCM	5351	Roof	New	SCM 11
DMA 199	Self-Retaining	553			
DMA 201	Self-Retaining	1044			
DMA 203	Self-Retaining	904			
DMA 205	Self-Retaining	650			
DMA 207	Self-Retaining	234	<u></u>		
DMA 209	Self-Retaining	390			
DMA 211	Self-Retaining	1062			-
DMA 213	Drains to SCM	5936	Concrete or asphalt	New	SCM 11
DMA 215	Self-Retaining	196			
DMA 221	Self-Retaining	1709			-
DMA 223	Self-Retaining	893			-
DMA 225	Self-Retaining	1627			
DMA 227	Self-Retaining	1044			
DMA 229	Self-Retaining	550			
DMA 231	Self-Retaining	522	Deaf	AL	COMAS
DMA 233	Drains to SCM	13953	Roof	New	SCM 15
DMA 235	Self-Retaining	1198			
DMA 237	Self-Retaining	355			-
DMA 239	Self-Retaining	1350			-
DMA 241	Self-Retaining	1142			
DMA 243	Self-Retaining	3056	Concerts on southalt	61	CCM 15
DMA 245	Drains to SCM	28008	Concrete or asphalt	New	SCM 15
DMA 247	Drains to SCM	24468	Roof	New	SCM 15
DMA 249	Self-Retaining	2721			
DMA 251	Self-Retaining	1738			
DMA 253	Self-Retaining	3331			-
DMA 255	Self-Retaining	1041			
DMA 257	Self-Retaining	653			-
DMA 258	Self-Retaining	690	Roof	Norr	CCM 15
DMA 259	Drains to SCM	4751	Roof	New	SCM 15
DMA 261	Self-Retaining	2666			
DMA 263	Self-Retaining	5681	Concrete or earbalt		DMA 202
DMA 265	Drains to Self-Retaining	946	Concrete or asphalt		DMA 263
DMA 267	Self-Retaining	1768			-
DMA 269	Self-Retaining	522			
DMA 271	Self-Retaining	1044	Commenter	N	001145
DMA 273	Drains to SCM	26042	Concrete or asphalt	New	SCM 15
DMA 275	Self-Retaining	783	Companya and the		Dista and
DMA 277	Drains to Self-Retaining	1385	Concrete or asphalt		DMA 275
DMA 278	Drains to SCM	685	Concrete or asphalt	New	SCM 15

DMA 281	Self-Retaining	653			
DMA 283	Drains to SCM	15050	Roof	New	SCM 13
DMA 285	Self-Retaining	529			
DMA 287	Self-Retaining	1305			
DMA 289	Drains to Self-Retaining	1371	Concrete or asphalt		DMA 287
DMA 291	Self-Retaining	522			
DMA 295	Self-Retaining	883			
DMA 300	Self-Treating	80554			1
DMA 1F	Drains to Self-Retaining	3914	Roof		DMA 43
DMA 1G	Drains to Self-Retaining	5021	Roof		DMA 43

DMA Summary Area

Total project impervious area (ft2):	303578
New impervious area (ft2):	262620
Replaced impervious within a USA (ft2):	0
Replaced impervious not in a USA (ft2):	0
Total pervious/landscape area (ft2):	0

Name	SCM Type	Safety Factor	SCM Soil Type	Infilt. Rate (in/hr)	Area (ft2)
SCM 1	Bioretention	1	HSG C/D	0.25	1248
SCM 3	Bioretention	1	HSG C/D	0.25	1147
SCM 5	Direct Infiltration	2	HSG C/D	0.25	6739
SCM 7	Bioretention	1	HSG C/D	0.25	2648
SCM 9	Bioretention	1	HSG C/D	0.25	2733
SCM 11	Bioretention	1	HSG C/D	0.25	8248
SCM 13	Bioretention	1	HSG C/D	0.25	4724
SCM 15	Bioretention	1	HSG C/D	0.25	14907
SCM 4	Bioretention	1	HSG C/D	0.25	714
SCM 6	Bioretention	1	HSG C/D	0.25	1004
SCM 8	Bioretention	1	HSG C/D	0.25	517
SCM 10	Bioretention	1	HSG C/D	0.25	6272

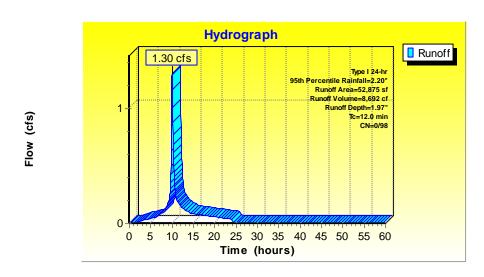
4. Run SBUH Model

	m Sizing Requirements		Burning Witness
SCM Name	Min. Required Storage Vol. (ft3)	Depth Below Underdrain (ft)	Drain Time (hours)
SCM 1	144	0.29	0.0
SCM 3	978	2.13	40.9
SCM 5	16356	6.07	48.5
SCM 7	745	0.70	11.4
SCM 9	1556	1.42	27.2
SCM 11	4662	1.41	27.0
SCM 13	1482	0.78	13.3
SCM 15	12012	2.01	38.7
SCM 4	180	0.63	9.5
SCM 6	829	2.07	39.7
SCM 8	809	3.91	62.6
SCM 10	965	0.38	2.9

6. Self-Retaining A	rea Sizing Checks	and the second		
Self-Retaining DMA Name	Self-Retaining DMA Area (ft2)	Tributary DMA Name	Tributary DMA Area (ft2)	Tributary / SRA Area Ratio
DMA 3	4202	DMA 1A; DMA 1B	4945	1.18

DMA 11	776	DMA 1C	1050	1.35
DMA 15	735	DMA 1D	1600	2.18
DMA 17	427		0	0.00
DMA 19	587	DMA 13	833	1.42
DMA 25	605	DMA 27	531	0.88
DMA 29	922	DMA 1E	1888	2.05
DMA 31	2287	DMA 23; DMA 35	1852	0.81
DMA 41	182		0	0.00
DMA 43	4958	DMA 1F; DMA 1G	8935	1.80
DMA 47	2201	DMA 45	1485	0.67
DMA 49	715		0	0.00
DMA 50	438		0	0.00
DMA 51	269		0	0.00
DMA 52	461	DMA 56	221	0.48
DMA 53	782	DMA 54	918	1.17
DMA 55	2781		0	0.00
DMA 57	5664		0	0.00
DMA 65	1091		0	0.00
DMA 67	1410	DMA 63; DMA 69	3505	2.49
DMA 71	250		0	0.00
DMA 73	838		0	0.00
DMA 77	2076	DMA 75; DMA 79	908	0.44
DMA 80	2537		0	0.00
DMA 81	348		0	0.00
DMA 82	589		0	0.00
DMA 83	2542		0	0.00
DMA 85	952		0	0.00
DMA 91	783		0	0.00
DMA 93	914	DMA 74	1558	1.70
DMA 95	1044		0	0.00
DMA 97	583	DMA 107	493	0.85
DMA 105	13469		0	0.00
DMA 109	8804	DMA 62	5456	0.62
DMA 111	8168		0	0.00
DMA 115	3687	DMA 113	1078	0.29
DMA 117	596		0	0.00
DMA 119	596		0	0.00
DMA 121	744		0	0.00
DMA 123	1233		0	0.00
DMA 127	1507		0	0.00
DMA 129	334		0	0.00
DMA 131	522		0	0.00
DMA 133	983		0	0.00
DMA 135	1300		0	0.00
DMA 137	738		0	0.00
DMA 139	635		0	0.00
DMA 141	783		0	0.00
DMA 141	783		0	0.00
DMA 145	749		0	0.00
DMA 145	634		0	0.00
DMA 149	2199		0	0.00
DMA 145	522		0	0.00
DMA 155	1126		0	0.00
DMA 157 DMA 159	589		0	0.00
			0	
DMA 161	1169			0.00
DMA 169	805		0	0.00
DMA 171	392		0	0.00
DMA 173	1044		0	0.00

DMA 179	1044		0	0.00
DMA 181	1103		0	0.00
DMA 183	580		0	0.00
DMA 185	1394		0	0.00
DMA 187	1078		0	0.00
DMA 189	1128		0	0.00
DMA 191	1175		0	0.00
DMA 193	575		0	0.00
DMA 199	553		0	0.00
DMA 201	1044		0	0.00
DMA 203	904		0	0.00
DMA 205	650		0	0.00
DMA 207	234		0	0.00
DMA 209	390		0	0.00
DMA 211	1062		0	0.00
DMA 215	196		0	0.00
DMA 221	1709		0	0.00
DMA 223	893		0	0.00
DMA 225	1627		0	0.00
DMA 227	1044		0	0.00
DMA 229	550	1	0	0.00
DMA 231	522		0	0.00
DMA 235	1198		0	0.00
DMA 237	355		0	0.00
DMA 239	1350		0	0.00
DMA 241	1142		0	0.00
DMA 243	3056		0	0.00
DMA 249	2721		0	0.00
DMA 251	1738		0	0.00
DMA 253	3331		0	0.00
DMA 255	1041		0	0.00
DMA 257	653		0	0.00
DMA 258	690		0	0.00
DMA 261	2666		0	0.00
DMA 263	5681	DMA 265	946	0.17
DMA 267	1768		0	0.00
DMA 269	522		0	0.00
DMA 271	1044		0	0.00
DMA 275	783	DMA 277	1385	1.77
DMA 279	395		0	0.00
DMA 281	653		0	0.00
DMA 281	529		0	0.00
DMA 287	1305	DMA 289	1371	1.05
DMA 291	522	2007203	0	0.00
DMA 295	883		0	0.00


HYDROCAD CALCULATIONS FOR ADS STORMTECH CHAMBERS

Summary for Subcatchment 22S: Area A (Post-Development)

Runoff = 1.30 cfs @ 9.98 hrs, Volume= 8,692 cf, Depth= 1.97"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Type I 24-hr 95th Percentile Rainfall=2.20"

Area	(sf) CN	Description	า	
52,8	875 98	Paved parl	king, HSG I	6 D
52,8	375	100.00% lı	npervious	s Area
Tc Ler _(min) (f	ngth Slop eet) (ft		Capacity (cfs)	y Description)
12.0				Direct Entry,

Events for Subcatchment 22S: Area A (Post-Development)

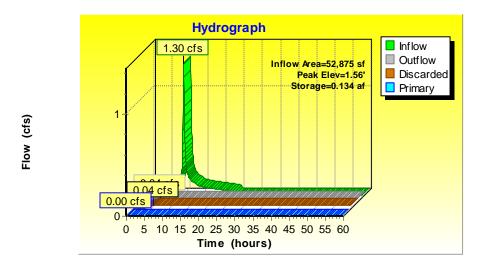
Event	Runoff	Volume	Depth
	(cfs)	(cubic-feet)	(inches)
1inch-24hr	0.54	3,485	0.79
2year	1.92	13,075	2.97
5year	2.80	19,272	4.37
10year	3.38	23,408	5.31
25year	4.09	28,514	6.47
50year	4.62	32,256	7.32
95th Percentile	1.30	8,692	1.97
100year	5.12	35,867	8.14

Summary for Pond 8P: StormTech Basin

Inflow Area =	52,875 sf,100.00% Impervious	s, Inflow Depth = 1.97" for 95th Percentile event
Inflow =	1.30 cfs @ 9.98 hrs, Volume=	= 8,692 cf
Outflow =	0.04 cfs @ 5.45 hrs, Volume=	7,822 cf, Atten= 97%, Lag= 0.0 min
Discarded =	0.04 cfs @ 5.45 hrs, Volume=	7,822 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	e 0 cf

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.05 hrs Peak Elev= 1.56' @ 23.52 hrs Surf.Area= 0.153 ac Storage= 0.134 af

Plug-Flow detention time= 1,249.7 min calculated for 7,822 cf (90% of inflow) Center-of-Mass det. time= 1,186.6 min (1,908.6 - 722.0)


Volume	Invert	Avail.Storage	Storage Description
#1A	0.00'	0.229 af	22.75'W x 292.57'L x 5.75'H Field A
			0.879 af Overall - 0.305 af Embedded = 0.574 af x 40.0% Voids
#2A	1.00'	0.305 af	ADS_StormTech MC-3500 c +Cap x 120 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			3 Rows of 40 Chambers
			Cap Storage= +15.6 cf x 2 x 3 rows = 93.6 cf
		0.534 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1 #2	Primary Discarded		18.0" Vert. Orifice/Grate C= 0.600 0.250 in/hr Exfiltration over Surface area
#2	Discarded	0.00	0.250 In/nr Exhitration over Surface area

Discarded OutFlow Max=0.04 cfs @ 5.45 hrs HW=0.06' (Free Discharge) **1**-2=Exfiltration (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge) 1=Orifice/Grate (Controls 0.00 cfs)

Events for Pond 8P: StormTech Basin

Event	Inflow	Outflow	Discarded	Primary	Elevation	Storage
	(cfs)	(cfs)	(cfs)	(cfs)	(feet)	(acre-feet)
1inch-24hr	0.54	0.04	0.04	0.00	0.57	0.035
2year	1.92	0.04	0.04	0.00	2.33	0.231
5year	2.80	0.10	0.04	0.06	3.36	0.350
10year	3.38	0.21	0.04	0.17	3.43	0.358
25year	4.09	0.46	0.04	0.42	3.53	0.369
50year	4.62	0.78	0.04	0.74	3.63	0.379
95th Percentile	1.30	0.04	0.04	0.00	1.56	0.134
100year	5.12	1.33	0.04	1.29	3.76	0.393

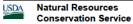
HYDROLOGIC SOIL GROUP

MAP LEGEND	END	MAP INFORMATION
Area of Interest (AOI)	C	The soil surveys that comprise your AOI were mapped at 1:24,000.
Area of Interest (AOI)	C/D	Warnino: Soil Man may not he valid at this scale
Soils	0	Enlargement of mans beyond the scale of manning can cause
Soll Raung Polygons	Not rated or not available	misunderstanding of the detail of mapping and accuracy of soil line
Wa	Water Features	placement. The maps do not show the small areas of contrasting
	Streams and Canals	
	Transportation	Please rely on the bar scale on each map sheet for map
+	+++ Rails	measurements.
0	Interstate Highways	
CD CD	US Routes	Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (FPSG:3857)
•	Mainr Roads	(1
Not rated or not available	ered boot	projection, which preserves direction and shape but distorts
Soil Rating Lines		distance and area. A projection that preserves area, such as the
	background Aerial Photography	Albers equal-area contro projection, strouto pe used in ritore accurate calculations of distance or area are required.
AD	6.400 Book and a	This product is generated from the USDA-NRCS certified data as of
		the version date(s) listed below.
SID SID		Soil Survey Area: Santa Barbara County, California, South
		Coastal Part Survey Area Data: Version 5, Jan 3, 2008
CID CID		
0		or larger.
		Date(s) aerial images were photographed: Aug 28, 2013—Sep
Soil Rating Points		14, 2013
× •		The orthophoto or other base map on which the soil lines were compiled and diditized probabily differe from the background
AD		comprised and ungluced probabily unless more background imagery displayed on these maps. As a result, some minor shifting
8		of map unit boundaries may be evident.
B/D		

Hydrologic Soil Group—Santa Barbara County, California, South Coastal Part (North Willow Soring)

MAC DESIGN ASSOCIATES

26


12/22/2013 Page 2 of 4

Web Soil Survey National Cooperative Soil Survey

USDA Natural Resources Conservation Service

Hydrologic Soil Group

Hydrologic Soil Group— Summary by Map Unit — Santa Barbara County, California, South Coastal Part (CA673)						
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI		
AC	AQUENTS, FILL AREAS	С	8.1	9.7%		
Са	CAMARILLO FINE SANDY LOAM	С	2.7	3.2%		
DaC	DIABLO CLAY, 2 TO 9 PERCENT SLOPES	D	0.1	0.2%		
GcA	GOLETA FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES	В	18.4	22.0%		
MeC	MILPITAS-POSITAS FINE SANDY LOAMS, 2 TO 9 PERCENT SLOPES	D	32.5	38.7%		
MeE2	MILPITAS-POSITAS FINE SANDY LOAMS, 15 TO 30 PERCENT SLOPES, ERODED	D	0.3	0.3%		
ХА	XERORTHENTS, CUT AND FILL AREAS		21.7	25.9%		
Totals for Area of Inte	rest		83.8	100.0%		

Web Soil Survey National Cooperative Soil Survey 12/22/2013 Page 3 of 4

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

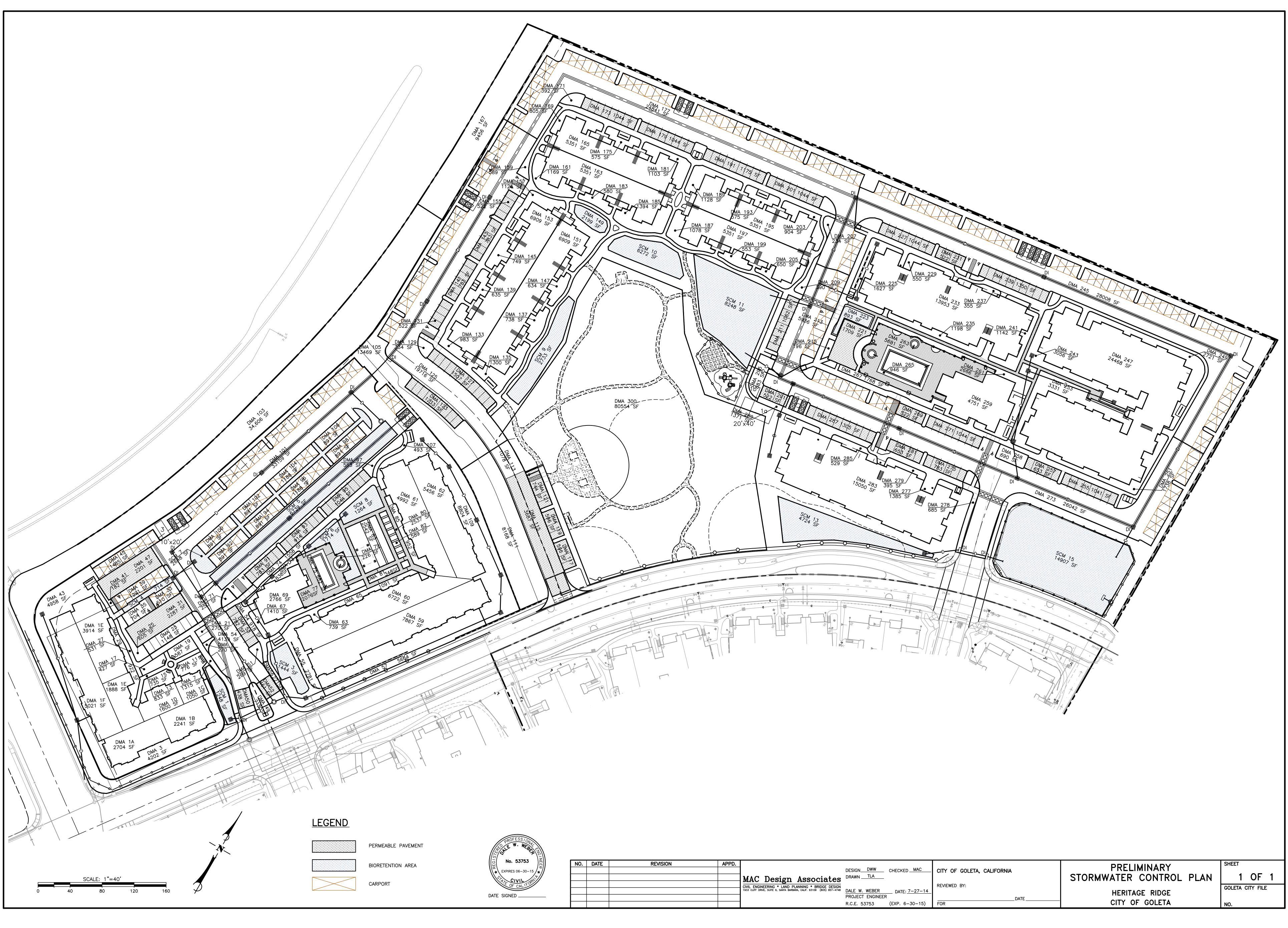
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Web Soil Survey National Cooperative Soil Survey 12/22/2013 Page 4 of 4

STORMWATER CONTROL PLAN & PRELIMINARY GRADING & DRAINAGE PLAN

20	RT	

EGIS	No. 53753	
E	XPIRES 06-30-15	-
	TE OF CALIFORN	,
DATE S		

•	DATE	REVISION	APPD.	
				MAC Desig
				CIVIL ENGINEERING * L/ 1933 CLIFF DRIVE, SUITE 6, SAN

sign Associates	DESIGN DWW CHECKED MAC	CITY OF GOLETA, CALIFORNIA	PRELIMINARY STORMWATER CONTROL
LAND PLANNING * BRIDGE DESIGN SANTA BARBARA, CALIF. 93109 (805) 957-4748	DALE W. WEBER DATE: 7-27-14 PROJECT ENGINEER R.C.E. 53753 (EXP. 6-30-15)	REVIEWED BY: DATE FOR	HERITAGE RIDGE CITY OF GOLETA

CONSTRUCTION NOTES

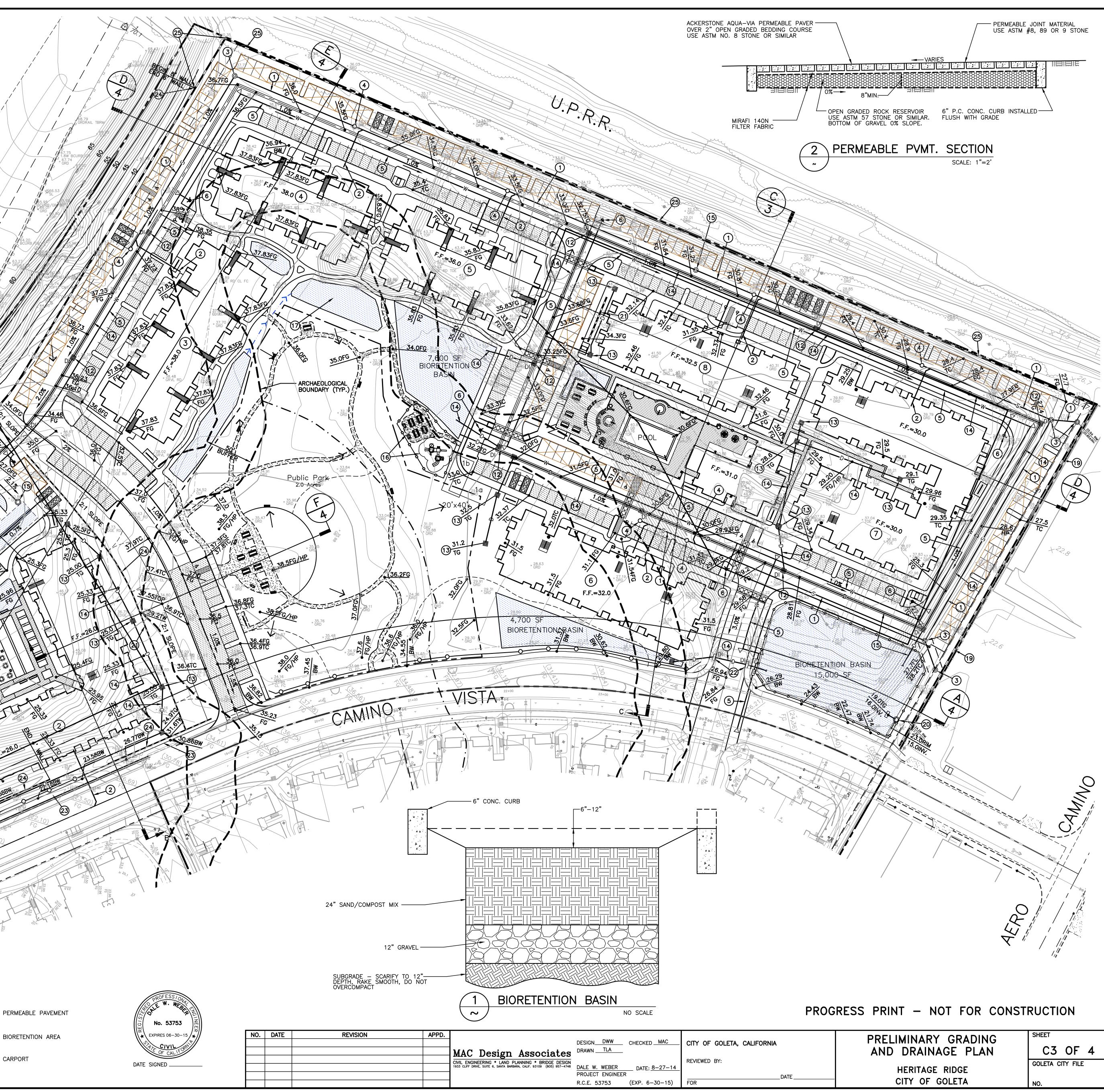
(1) CONSTRUCT 8" P.V.C. SEWER LINE. (2) CONSTRUCT 6" P.V.C. SEWER LATERAL. 3 CONSTRUCT STD. SEWER MANHOLE. (4) CONSTRUCT 8" SEWER CLEANOUT. 5 CONSTRUCT 8" P.V.C. WATER LINE. 6 CONSTRUCT FIRE HYDRANT. O CONSTRUCT 1" WATER SERVICE FOR RESIDENTIAL UNITS. (8) CONSTRUCT 1" WATER SERVICE W/DCDA FOR IRRIGATION PURPOSES. (9) CONSTRUCT 1" WATER SERVICE W/DCDA FOR COMMERCIAL LAUNDRY ROOM PURPOSES. (1) CONSTRUCT 4" FIRE LINE W/DCDA FOR BLDG. SPRINKLERS. (1) CONSTRUCT 2" COMBINATION AIR VACUUM VALVE. (2) CONSTRUCT 12"x12" PRECAST CONC. CATCH BASIN W/TRAFFIC GRATE AND FILTER INSERT (TYPE TO BE ACCEPTABLE BY CITY OF GOLETA). (13) CONSTRUCT 12"X12" PRECAST CONC. CATCH BASIN W/ PARKWAY GRATE. (14) CONSTRUCT TYPE S (SMOOTH BORE) HDPE STORM DRAIN. (15) CONSTRUCT STANDARD STORM DRAIN MANHOLE. (6) CONSTRUCT RUBBER PAVEMENT & TOT LOT PER LANDSCAPE PLANS (7) CONSTRUCT BIOSWALE. (18) CONSTRUCT AREA DRAIN. (19) CONSTRUCT PRIVACY WALL PER DTL. 3 SHEET C4. 20 CONSTRUCT O.C.P. INLET PER CALTRANS STD. PLAN D75B.


1 AD

ROAD

- (2) CONSTRUCT RETAINING WALL (MAX. HEIGHT = 3'-0'').
- 22 CONSTRUCT TYPE "A" DROP INLET.
- (23) CONSTRUCT 5' WIDE CONCRETE SIDEWALK.
- 24 CONSTRUCT RETAINING WALL PER DTL. 4 SHEET C4.


CARNEROS


(25) CONSTRUCT SOUND WALL PER DTL. 5 SHEET C4.

LOS

sign Associates * LAND PLANNING * BRIDGE DESIGN 5, SANTA BARBARA, CALIF. 93109 (805) 957-4748	DESIGN <u>DWW</u> DRAWN <u>TLA</u>	CHECKED <u>MAC</u>	CITY OF GOLETA, CALIFORNIA	PRELIMINARY GRADI AND DRAINAGE PLA
	DALE W. WEBER PROJECT ENGINEER R.C.E. 53753	DATE: <u>8–27–14_</u> (EXP. 6–30–15)	REVIEWED BY: DATE FOR	HERITAGE RIDGE CITY OF GOLETA