Appendices

Appendix F

Site Hydrology and Hydraulics Report for Wildomar Medical Office Building

Appendices

This page intentionally left blank.

SITE HYDROLOGY AND HYDRAULICS REPORT

FOR

WILDOMAR MEDICAL OFFICE BUILDING

Tract 34301 NWC Baxter Road and I-15 Wildomar, California

March 16, 2020

Prepared For:

CANNONDESIGN Project No. T2540-22-02 Wildomar, California

Prepared by:

VIRGIL C. AOANAN, P.E. S.E., QSD

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 • Fax: 323-729-6043 e-mail: vca@vcaeng.com

CANNONDESIGN Tract 34301 NWC Baxter Road and I-15 Wildomar, California

Subject: MEDICAL OFFICE BUILDING Wildomar, California

To Whom It May Concern,

We are pleased to submit this letter report regarding the Hydrology and Hydraulics Report for the Wildomar – Medical Office Building.

This report is comprised of three sections:

Narrative Report and Results •

This includes Introduction and Scope, Project Site Hydrology, Project Site Hydraulics, Stormwater Mitigation, Best Management Practices, and Project Conclusions and Recommendations

Calculations

This includes modeling and calculation results of the hydrology and hydraulics analysis and BMP calculations and sizing.

Appendix

This includes rainfall information, utility plans, operation and maintenance guidelines for BMPs used in this project.

Table of Contents

INTROD	UCTION	4
SCOPE		4
STANDA	RDS	4
SITE DES	SCRIPTION	4
PROJECT	LOCATION AND DESCRIPTION	4
EXISTIN	G SITE CONDITIONS AND STORM DRAINAGE SYSTEM	8
2.2.1 2.2.2 GEOLOG	EXISTING SITE IMPROVEMENTS EXISTING DRAINAGE PATTERN ICAL CONDITIONS	9
2.4.1	DEVELOPMENT AREA	10 11 11 12 13 11 12 13 14 14
3.1.1 3.1.2 3.1.3 3.1.4	ISOHYETAL MAP DESIGN FREQUENCY RAINFALL DEPTH SOIL TYPE	15 19 20 20 20
	SCOPE STANDA SITE DES PROJECT EXISTING 2.2.1 2.2.2 GEOLOG 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 PROPOSE 2.4.1 2.4.2 SITE HY HYDROL 3.1.1 3.1.2 3.1.3 3.1.4 STORMW	2.2.2EXISTING DRAINAGE PATTERNGEOLOGICAL CONDITIONS2.3.1GEOTECHNICAL REPORT2.3.2SOIL TYPE2.3.3GROUNDWATER LEVEL2.3.4FAULTING2.3.5SEISMICITY2.3.6LIQUEFACTION POTENTIAL2.3.7LANDSLIDES2.3.8EARTHQUAKE-INDUCED FLOODING2.3.9SUBSIDENCEPROPOSED STORM DRAINAGE SYSTEM2.4.1DEVELOPMENT AREA2.4.2PROPOSED RUNOFF CONVEYANCE & DISCHARGE SYSTEMSITE HYDROLOGYMYDROLOGY DATA3.1.1ISOHYETAL MAP3.1.2DESIGN FREQUENCY3.1.3RAINFALL DEPTH3.1.4SOIL TYPESTORMWATER DISCHARGE FOR THE PROPOSED SITE

		3.2.2	TRIBUTARY AREAS	20
4.0		PROJEC	T SITE HYDRAULICS	20
			FDESIGN	
			ED HYDRAULICS SYSTEM	
		-	R PIPE DESIGN	
4	.4	DRAINA	GE INLET DESIGN	21
4	.5	INFILTRA	ATRATION BASIN	21
5.0		STORMV	VATER MITIGATION	21
5	.1	LOW IMI	PACT DEVELOPMENT (LID) PLAN	21
6.0		BEST MA	ANAGEMENT PRACTICES	22
			GE INLET FILTERS	
			OUS DEFLECTIVE SEPARATION (CDS)	
6	5.3	OPERATI	ON AND MAINTENANCE	23
7.0		PROJEC	T CONCLUSIONS AND RECOMMENDATIONS	23
			BUTARY AREAS	
			DROLOGY CALCULATIONS	
			ORM DRAIN UTILITY PLANS	
		X D – PIPE		
			CH BASIN SIZING	
APPEN	DD	X F – INFI	LTRATION BASIN CALCULATIONS	
APPEN	DĽ	X G - CDS	S CALCULATIONS AND DETAILS	
APPEN	DD	X H – SUR	RVEY PLAN	
APPEN	DĽ	X I – SITE	PLANS	

APPENDIX J – OPERATIONS AND MAINTENANCE

1.0 INTRODUCTION

1.1 SCOPE

This Hydrology and Hydraulics Report summarizes the stormwater management for the Wildomar Medical Office Building.

This Report calculates the stormwater runoff generated by the site, the conveyance and discharge system of the runoff, and the stormwater mitigation system using approved Best Management Practices.

1.2 STANDARDS

The standards below used in the design of the site's stormwater management:

- 1. Riverside County Santa Margarita River Watershed Region Design Handbook for Low Impact Development Best Management Practices
- 2. Water Quality Management Plan for the City of Wildomar
- 3. Riverside County Flood Control and Water Conservation District Hydrology Manual
- 4. Santa Margarita Region Hydrology Model Guidance Document

2.0 SITE DESCRIPTION

2.1 PROJECT LOCATION AND DESCRIPTION

The property is bounded by the Baxter Road, the east bound by I-15, the north by rural residential housing and the west by White Road, a horse ranch, and rural residential housing. The site is currently vacant with the exception of a former residence and an agricultural observation tower in the southern portion of the site. Both structures have been raised for relocation. Large trees are present in the southeastern and south-central areas of the site, and within a main drainage, which meanders in a south-southwesterly direction across the western portion of the site. Topographically the site consists of a dissected alluvial fan, which descends gently to the southwest from granitic hills to the northeast. Site elevations range from approximately 1,365 feet above mean sea level (MSL) in the northeastern area to approximately 1,335 feet (MSL) at the southwest corner. A main drainage is present within the western portion of the site and consists of a gently sloping valley approximately ten feet below the adjacent alluvial plain with a smaller stream incised about two to three feet into the valley. Several smaller southwest trending drainages cut the alluvial plain in the eastern area of the site. A drainage channel

is also present along the southern corner where it is approximately five feet below the surrounding elevations.

Its approximate coordinates as obtained from Google Earth is Longitude: 33°36'46.63"N and Latitude: 117°15'46.79"W. Figure 1 shows the aerial view of the site. The site in relation to local topographic features as shown on Figure 2 and Figure 3. Refer to Appendix H for detailed information regarding the site location and description.

It is understood that proposed development will consist of construction of medical office building (MOB) and supporting facilities.

The proposed site is part of Track 34301, Assessor's Parcel numbers 376-180-015 and 316-180-043. The approximate location of the site is shown on the Site Location Map, Figure 3.

Figure 1: Aerial View of the Proposed Wildomar Medical Office Building

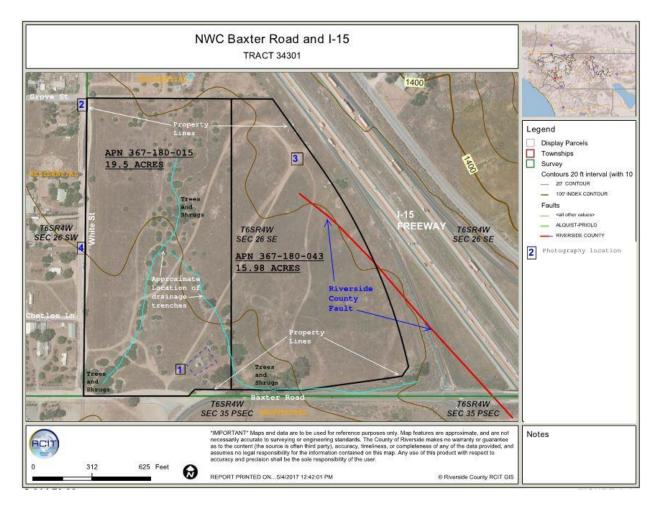


Figure 2: Site Vicinity Map

CIVIL STRUCTURAL MBE BE

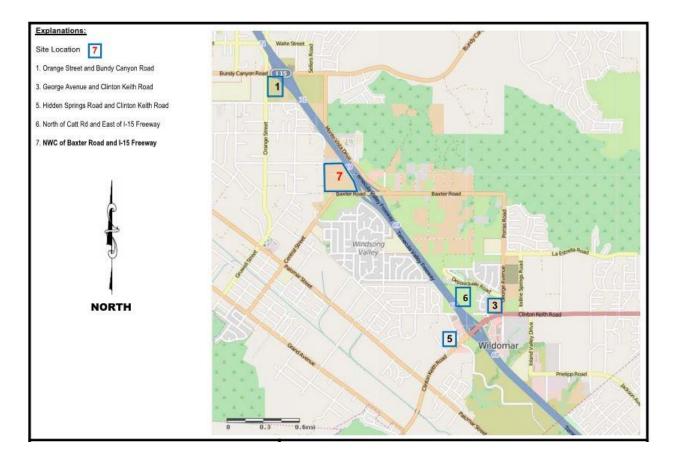


Figure 3: Site Location Map

2.2 EXISTING SITE CONDITIONS AND STORM DRAINAGE SYSTEM

2.2.1 EXISTING SITE IMPROVEMENTS

The site history was determined based on review of aerial photographs and obtained at the Riverside County Flood Control and water Conservation District and geotechnical research at the County and local level. Based on the aerial photographs from soils report, an olive grove occupied the western half of the site between 1962 and 1974. A former residence was observed in the 1983 and later aerial photos. The existing raised house and tower were transported to and now stored on the site. The remainder of the site appears to have been unimproved. Partial plowing of the site and dirt trails were observed on the aerial photos since 1974.

2.2.2 EXISTING DRAINAGE PATTERN

The property is relatively flat to rolling hills with elevations ranging from approximately 1324 to 1372 feet above mean-sea-level (amsl). The majority of the land is covered with medium dense weeds and scattered trees. Drainage appears directed towards the southeast end of the property.

The property features can be observed from the Site Map and Site Photographs, Figures 2 and 4, respectively.

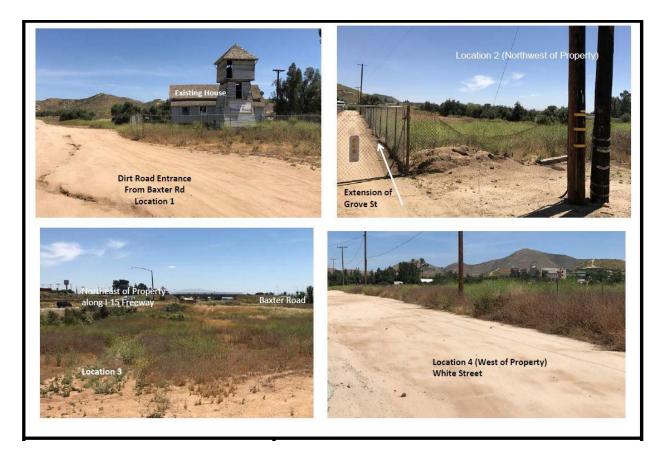


Figure 4: Site Photographs

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 = Fax: 323-729-6043 e-mail: vca@vcaeng.com

2.3 **GEOLOGICAL CONDITIONS**

2.3.1 GEOTECHNICAL REPORT

This section presents information and recommendations from the geotechnical reports prepared by the GEOBASE, INC entitled "Geotechnical Review of Purchase Ten (10) Acres-Wildomar Replacement Northwest Corner of Baxter Road and Interstate 15 (I-15)" dated May 2017, and "Geotechnical Investigation for Proposed Wildomar MOB Campus" prepared by the RMA Group dated December 12, 2019.

2.3.2 SOIL TYPE

Based on the Geotechnical Report dated on December 12, 2012 and revised on March 26, 2015 subsoils at the site include:

- Younger alluvium encountered primarily within the drainage areas consisting of loose to medium dense inter-layered silty sands, sands and clays. At the locations observed, the younger alluvium ranged in thickness from two (2) to eight (8) feet.
- Colluvium overlying granitic bedrock consisting of red-brown clayey sands with abundant carbonate nodules and stringers. Where encountered, in borings and trenches, the colluvium ranges in thickness from one (1) to eight (8) feet.
- Pauba formation sandstone consisting of brown to reddish-brown silty sand.
- Granitic bedrock encountered at depths of three (3) to thirty-nine (39) feet with the borings and trenches.

Geologic mapping by Kennedy (1977) identifies the geologic units at the site as primarily Pauba Sandstone with granitic bedrock occurring along the eastern site boundary. The granite bedrock underlies the site at depth. In general, periodic plowing has disturbed the upper foot of existing site soils.

The additional investigation performed by the RMA Group reaffirm the subsoil at the site indicating in their investigation that they "encountered alluvium, older alluvium, Pauba Formation sandstone and granitic bedrock".

2.3.3 GROUNDWATER LEVEL

Soils report stated that groundwater depths observed primarily in drainage areas range from thirteen an half (13.5) to twenty-nine (29) feet below ground surface. Additionally, groundwater seepage is common at soil/bedrock contact. Therefore, groundwater may be encountered during grading and appropriate drainage measure should be implemented.

The additional investigation conducted by the RMA Group indicated that groundwater was encountered at depths ranging from 10 to 21 feet below ground based on the variations of surface topography.

2.3.4 FAULTING

The fault classification system adopted by the California Geological Survey (CGS), relative to the State legislation, delineates Earthquake Fault Zones along active or potentially active faults. Such earthquake Fault Zones are in turn used in CGS as a "sufficiently active and well defined fault" that has exhibited surface displacement within Holocene time (approximately the last 11,000 years). A potentially active fault was defined by the State as a fault with a history of movement within Pleistocene time (between 11,000 and 1.6 million years ago). Any fault proven not to have moved within the last 1.6 million years is considered inactive.

Although not zoned by the State of California, geologic mapping by Morton and Webber indicates that a branch of the Elsinore Fault Zone (Glen Ivy segment) is believed to traverse the eastern portion of Site 7, as shown on the County of Riverside Fault Map, Figure 5.

Figure 5: County of Riverside Fault Map

2.3.5 SEISMICITY

As with all of Southern California, the site has experienced historic earthquakes from various regional faults. The seismicity of the region surrounding the site was formulated based on research of an electronic database of earthquake date. Dynamic compaction of dry and loose sands may occur during major earthquake. Typically, settlements occur in thick beds of such soils. Based on the dense and well consolidated nature of the soils underlying the site, appreciable seismically-induced settlements are not anticipated.

2.3.6 LIQUEFACTION POTENTIAL

Liquefaction is a phenomenon in which loose, saturated, relatively cohesion less soil deposits lose shear strength during strong ground motions. Primary factors controlling liquefaction include intensity and duration of ground motion, gradation characteristics of the subsurface soils, in-situ stress conditions, and the depth to groundwater. Liquefaction

is typified by a loss of shear strength in the liquefied layers due to rapid increases in pore water pressure generated by earthquake accelerations.

The current standard of practice, as outlined in the "Recommendation Procedures for Implementation of DMG Special Publication 117 A, Guidelines for Analyzing and Mitigating Liquefaction in California" requires liquefaction analysis to a depth of 50 feet below the lowest portion of the proposed structure. Liquefaction typically occurs in areas where the soils below the water table are composed of poorly consolidated, fine to medium-grained, primarily sandy soil. In addition to the requisite soil conditions, the ground acceleration and duration of the earthquake must also be a sufficient level to induce liquefaction.

According to the Riverside County Land Information System, the site is located within an area of moderate liquefaction potential based on the underlying soil deposits. The younger alluvium present in the drainages at the site may be subject to liquefaction during strong ground motion. However, the Pauba Sandstone and the granite bedrock are well-consolidated and are not considered to be susceptible to liquefaction. Further, no surface manifestations of liquefaction are expected at site.

Based on the findings of the RMA Group indicate that the soil has potential for liquefactions above the Pauba formation and below the design ground water table.

2.3.7 LANDSLIDES

The gently sloping topography at the site precludes slope stability hazards. There are no known landslides near the site, nor is the site in the path of any known or potential landslides.

EARTHQUAKE-INDUCED FLOODING 2.3.8

Earthquake-induced flooding is inundation caused by failure of dams or other waterretaining structures due to earthquakes. There are no water-retaining structures up gradient from the site. Therefore, the probability of earthquake-induced flooding is not a design consideration.

2.3.9 SUBSIDENCE

The Site is within an area that is considered susceptible to subsidence per Riverside County. The site conditions include Pauba Sandstone and alluvium over lying granitic bedrock which was a factor in subsidence in the Murrieta area to the south in the late 1980s and 1990s. After remedial

grading at the site the subsurface conditions which make the site vulnerable to subsidence will no longer be present and the possibly of subsidence will not be a design consideration.

PROPOSED STORM DRAINAGE SYSTEM 2.4

2.4.1 DEVELOPMENT AREA

For the proposed site, 75.73% or 5.03 acres is impervious. The rest is pervious. A comparison of existing conditions and proposed conditions is presented in Table 1. Refer to Appendix I for Site Plans.

Site Condition	Pervious Area (acres)	Impervious Area (acres)	% Pervious	% Impervious
Existing	8.69	0	100	0
Proposed	8.69	5.28	39.28	60.72

Table 1 - Proposed Site Pervious and Impervious Areas

2.4.2 PROPOSED RUNOFF CONVEYANCE AND DISCHARGE SYSTEM

Grading will be designed to facilitate staking and construction, plane grades shall be uniform to avoid warped surfaces and grade changes minimized. All areas will be graded for drainage. Walks, parking, ramps, and other surfaces will slope away from buildings. Planes shall be sloped for drainage, typically between 1% and 1.8%, with 1.5% considered optimum. Entrance walks and ramps will not be designed to maximum allowable slope requirements, to minimize potential non-compliant as-built conditions. If the space allows, slopes will be reduced as much as possible, or grading will be designed to avoid the need for ramps. Door landings and similar areas will be graded between 0.5% to 1.8% maximum slopes. Asphalt paving flow lines will be 1% minimum to accommodate construction tolerances. If less, concrete gutter will be used with a flow line minimum slope of 0.5% to accommodate construction tolerances.

Sheet flow will be directed from paved areas onto planted areas. Roof downspouts will be hard connected to the underground storm drain network. Flow lines will be located to avoid concentration on pedestrian walks. Flow lines will be located to avoid tree wells and other objects that might obstruct drainage flow and cause ponding. Drainage from planting areas across paved areas will be avoided. Drainage over public sidewalks will be avoided. Concentrated flow over driveways and pedestrian walkways will be avoided.

Some of the site's tributary areas directly enter the site's storm drain system via drainage inlets. Other tributary areas sheet flow into planter areas with sub-drains (French drains) which connect to the main on-site system. All downspouts of the new Medical Office Building will be hard-piped to the proposed storm drain systems. All runoff that enters the site storm drain system will go through one or more BMPs. These BMPs includes continuous deflective separation (CDS) units, filters installed in catch basins and planters. The proposed storm drain system and BMPs are further explained in detail in following section for each design concept.

3.0 SITE HYDROLOGY

3.1 HYDROLOGY DATA

3.1.1 ISOHYETAL MAP

The hydrology data and design criteria described in this section were used in the calculations. They were obtained from Riverside County Flood Control and Water Conservation District Manual (Refer to Figure 6, Figure 7, Figure 8 and Figure 9).

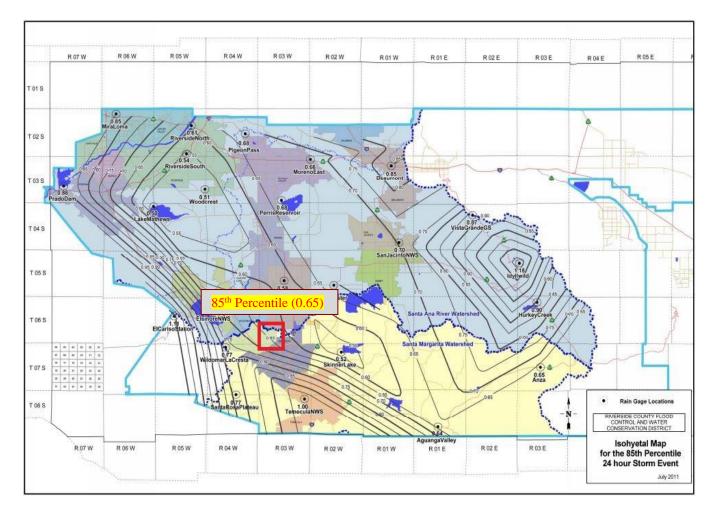


Figure 6: Isohyetal Map for the 85th Percentile 24 hour Storm Event

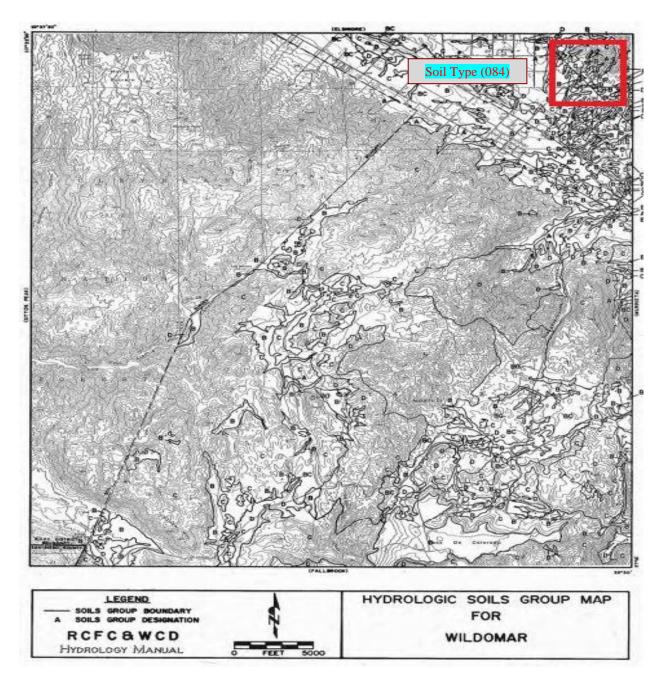
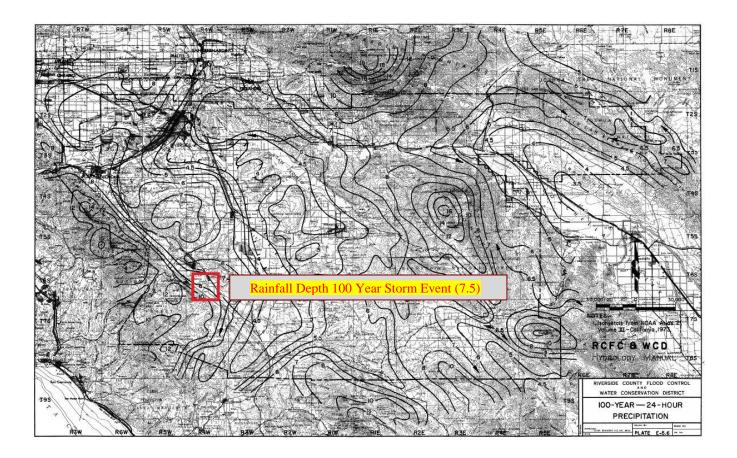


Figure 7: Hydrologic Soils Group Map for Wildomar



RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COV	ER COMPLEXE	S FOR PERVI	JUS	AREA	S-AM	C II
Cover Type (3)		Quality of		_	Gro	
		Cover (2)	A	в	С	D
NATURAL COVERS -						
Barren (Rockland, eroded and graded land)			78	86	91	93
Chaparrel, Broadleaf		Poor	53	70	80	85
(Manzonita, ceanothus and scrub oak)		Fair	40	63	75	81
		Good	31	57	71	78
Chaparrel, Narrowleaf		Poor	71	82	88	91
(Chamise and redshank)		Fair	55	72	81	86
Grass, Annual or Perennial		Poor	67	78	86	89
		Fair	50	69	79	84
		Good	38	61	74	80
Meadows or Cienegas		Poor	63	77	85	88
(Areas with seasonally high water ta	ble,	Fair	51	70	80	84
principal vegetation is sod forming		Good	30	58	72	78
Open Brush		Poor	62	76	84	88
(Soft wood shrubs - buckwheat, sage,	etc.)	Fair	46 41	66	77 75	83 81
		Good	41	63	/5	81 81
Woodland		Poor	45	66	77	83
(Coniferous or broadleaf trees predo	minate.	Fair	36	60	73	79
Canopy density is at least 50 perce	nt)	Good	28	55	70	77
Woodland, Grass		Poor	57	73	82	86
(Coniferous or broadleaf trees with	canopy	Fair	44	65	77	82
density from 20 to 50 percent)	ounop)	Good	33	58	72	79
URBAN COVERS -						
Residential or Commercial Landscaping		Good	32	56	69	75
(Lawn, shrubs, etc.)						
Turf		Poor	58	74	83	87
(Irrigated and mowed grass)		Fair	44	65	77	82
·		Good	33	58	72	79
AGRICULTURAL COVERS -						
Fallow			76	85	90	92
(Land plowed but not tilled or seede	d)		/0	05	50	52
	-					L
RCFC & WCD	RUNOFF	INDEX	NI	MB	ERS	;
HYDROLOGY MANUAL		FOR				
	PE	ERVIOUS	AR	ΕA		

PLATE D-5.5 (1 of 2)

Figure 8: Soil Type Chart

3.1.2 DESIGN FREOUENCY

Drainage design calculations are based on the 100-year isohyetal as required by the Riverside County Flood Control and Water Conservation District.

3.1.3 RAINFALL DEPTH

Based on the Isohyetal Map, the rainfall for the project site is 7.5 inches for a 100-year, 24-hour storm event.

3.1.4 SOIL TYPE

The Isohyetal Map indicates a numerical soil classification of 84 for the site based on soil classification D as the soil was determined to not be conductive for infiltration. This approximates the soil classification provided by the chart in Figure 8.

3.2 STORMWATER DISCHARGE FOR THE PROPOSED SITE

The stormwater runoff currently produced by the pre-development site was calculated using the software HydroCalc provided by the LA County Department of Public Works.

3.2.1. RUNOFF FLOW AND VOLUME

Based on a 100-year, 24-hour storm event, the proposed site will produce a total of peak flow rate of 36.35 cfs. See Appendix B.

3.2.2 TRIBUTARY AREAS

Tributary areas divided into 13 catchment areas, based on uniformity in drainage conditions for the new site improvements. See Appendix A.

PROJECT SITE HYDRAULICS 4.0

4.1 **BASIS OF DESIGN**

The recommended storm drain capacity design for Medical Office Building is a 100-year storm event. The analysis of the hydraulic characteristic of the storm drain system is performed using HydroCalc. Manning's Equation is used to determine the velocity and flow capacities. Hydrology Calculations for a 100-year event was shown on Appendix B.

4.2 **PROPOSED HYDRAULICS SYSTEM**

Stormwater is conveyed using an underground pipe network, which collects surface stormwater through catch basins. Stormwater from the building roofs will be connected directly via hard pipe into the storm drain system.

Most stormwater will enter a Continuous Deflective System (CDS) unit, which captures pollutants such as debris, sediment and oil. Stormwater then enters a detention basin, designed to capture the designed volume, V_{BMP} . The detention basin will be sized based on the requirements of hydromodification utilizing the Santa Margarita Region Hydrology Model program.

4.3 **CARRIER PIPE DESIGN**

New pipes are Annular High Density Polyethylene Pipe (HDPEP). The preliminary pipe design was based on a Manning's roughness coefficient of 0.009, minimum slope of 0.50%, and flowing 75% full to be conservative. Appendix D shows the pipe size analysis for all proposed storm drain lines. The proposed drainage lines are sized to a 100-year, 24-hour storm frequency.

4.4 **DRAINAGE INLET DESIGN**

Proposed drainage inlet structures include 36"x36" and 48"x48" catch basins. The flow capacity of the drainage inlets are sufficient to capture the sheet flow in its tributary area. Refer to Appendix E for catch basin design calculations.

DETENTION BASIN 4.5

The Detention Basin designed to capture volume, V_{BMP} along with the volume required for hydromodification. Storm water will be mitigated utilizing the LID principle of biofiltration. through the bottom of the basin into the underlying soil. Flows exceeding the design volume must discharge to a downstream conveyance system. Trash and sediment accumulate within the forebay as stormwater passes into the basin. Biofiltration is highly effective in removing all targeted pollutants from stormwater runoff. Refer to Appendix F for Detention Basin Calculations.

5.0 **STORMWATER MITIGATION**

5.1 LOW IMPACT DEVELOPMENT (LID) PLAN

Per the Riverside County Design Handbook for Low impact Development Best Management Practices when LID be implemented correctly on a site, LID provides two primary benefits: 1) The post-construction site hydrology will more closely mimic the pre-development hydrology, thus reducing the downstream erosion that may occur due to increased runoff from pervious surfaces; 2) Pollutants in runoff from the site will be significantly reduced.

Low Impact Development (LID) is a stormwater management strategy that mitigates the impacts of runoff and stormwater pollution using BMPs that remove or treat runoff pollution at the source. LID practices are designed to protect surface and groundwater quality, maintain the

integrity of ecosystems, and preserve the physical integrity of receiving waters by controlling rainfall and stormwater runoff at or close to the source. LID is implemented in the following hierarchy:

- 1. Infiltration and/or Bioretention
- 2. High-efficiency Bio-Filtration/Retention System BMP
- 3. Flow Through Treatment BMPs

The Stormwater Quality Design Volume is calculated from the 85th percentile, 24-hour rain event as determined from the Riverside County Flood Control and Water Conservation District 85th percentile precipitation isohyetal map (Refer to Figure 6).

6.0 BEST MANAGEMENT PRACTICES

6.1 DRAINAGE INLET FILTERS

All catch basins will have a debris catch with sediment filter bag. These filters direct the stormwater runoff to filtration media which will capture solid waste particles and other pollutants from entering the storm drain network. The filters are designed to treat the flow from the 85th percentile rainfall event. Additionally, all storm drain inlets will have stencils marked "NO DUMPING – DRAINS TO OCEAN" with a graphical icon to discourage illegal dumping.

6.2 CONTINOUS DEFLECTIVE SEPARATION (CDS)

The Contech CDS system is a mechanical device which uses continuous deflective separation to screen, separate and trap pollutants in stormwater runoff. The CDS units are placed near the end of the site stormwater network so that the stormwater runoff from the project site goes through the CDS. The CDS 1 has a treatment capacity of 0.51 CFS and a maximum hydraulic internal bypass of 13.17 CFS and CDS 2 has a treatment capacity of 0.36 CFS and a maximum hydraulic internal bypass of 11.94 CFS. Refer to Appendix G for CDS calculations and details.

6.3 **BIOFILTRATION WITH UNDERDRAINS**

Based on the geotechnical report, the site is not conductive for infiltration, in some cases having an infiltration rate of 0.08 in/hr. Additionally the groundwater table was observed to be within 10 feet of the existing ground. Based on LID guidelines and Wildomar's WQMP requirements, this makes infiltration or partial infiltration unfeasible. The detention basin will act as biofiltration, treating the volume required based on proposed site conditions. Refer to Appendix F for calculations.

6.4 **OPERATION AND MAINTENANCE**

The Operation and Maintenance (O&M) Plan for the site's BMPs is included in Appendix J.

7.0 PROJECT CONCLUSIONS AND RECOMMENDATIONS

After reviewing the results of the hydrology study, VCA Engineers concludes and recommends that:

- 1. The proposed storm drain system will be designed to convey the peak flow due to a 100year, 24- hour rainfall event.
- 2. LID compliance will be attained by treating all stormwater runoff generated by the 85th percentile 24-hour rain event before it is discharge. Runoff will be treated through a CDS unit and it will be discharged to the biofiltration basin.
- 3. The detention basin will be designed to comply with hydromodification requirements.

APPENDIX A TRIBUTARY AREAS

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 = Fax: 323-729-6043 e-mail: vca@vcaeng.com

VCA Engineers, Inc.							Subarea Information		
Client:	CANNON DESIGN						Job No. 2092-219		
Project:	Medical Office Buildir	g					Date: 8/21/2019		
							Engineer: VCA		
Wildomar Site Data									
Catchment Area	Area (sf)	Area (acre)	Flow Path Length (ft)	Slope	Impervious	Pervious	% Impervious		
1	6,069.98	0.14	146.47	2.00%	5,956.55	113.43	0.98		
2	21,470.15	0.49	212.32	2.00%	17,716.71	3,753.44	0.83		
3	6,471.59	0.15	189.93	2.00%	6,349.63	121.96	0.98		
4	38,821.24	0.89	244.42	2.00%	33,937.52	4,883.72	0.87		
5	18,539.37	0.43	189.90	2.00%	15,071.86	3,467.51	0.81		
6	39,173.61	0.90	203.04	2.00%	0.00	39,173.61	0.00		
7	13,675.53	0.31	219.71	2.00%	10,324.42	3,351.11	0.75		

147.49

244.40

161.46

179.55

282.18

251.22

2.00%

2.00%

2.00%

2.00%

2.00%

2.00%

7,577.66

42,538.50

5,425.11

11,849.95

31,813.17

30,701.26

219,262.34

2,018.99

5,372.91

292.06

1,610.96

6,117.24

0.00

70,276.94

0.79

0.89

0.95

0.88

0.84

1.00

8

9

10

11

12

13

Total

9,596.65

47,911.41

5,717.17

13,460.91

37,930.41

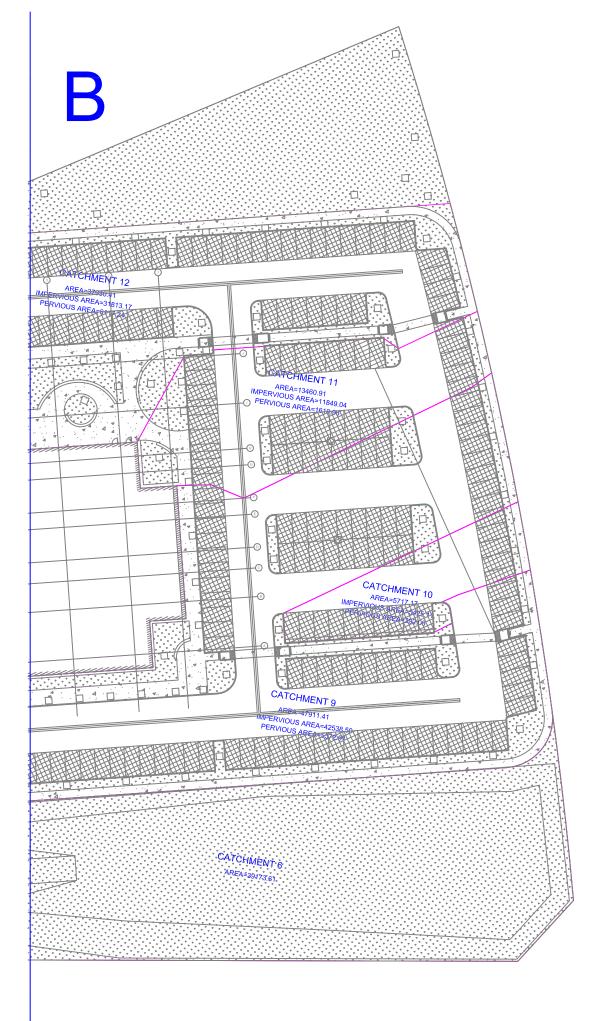
30,701.26

289,539.28

0.22

1.10

0.13


0.31

0.87

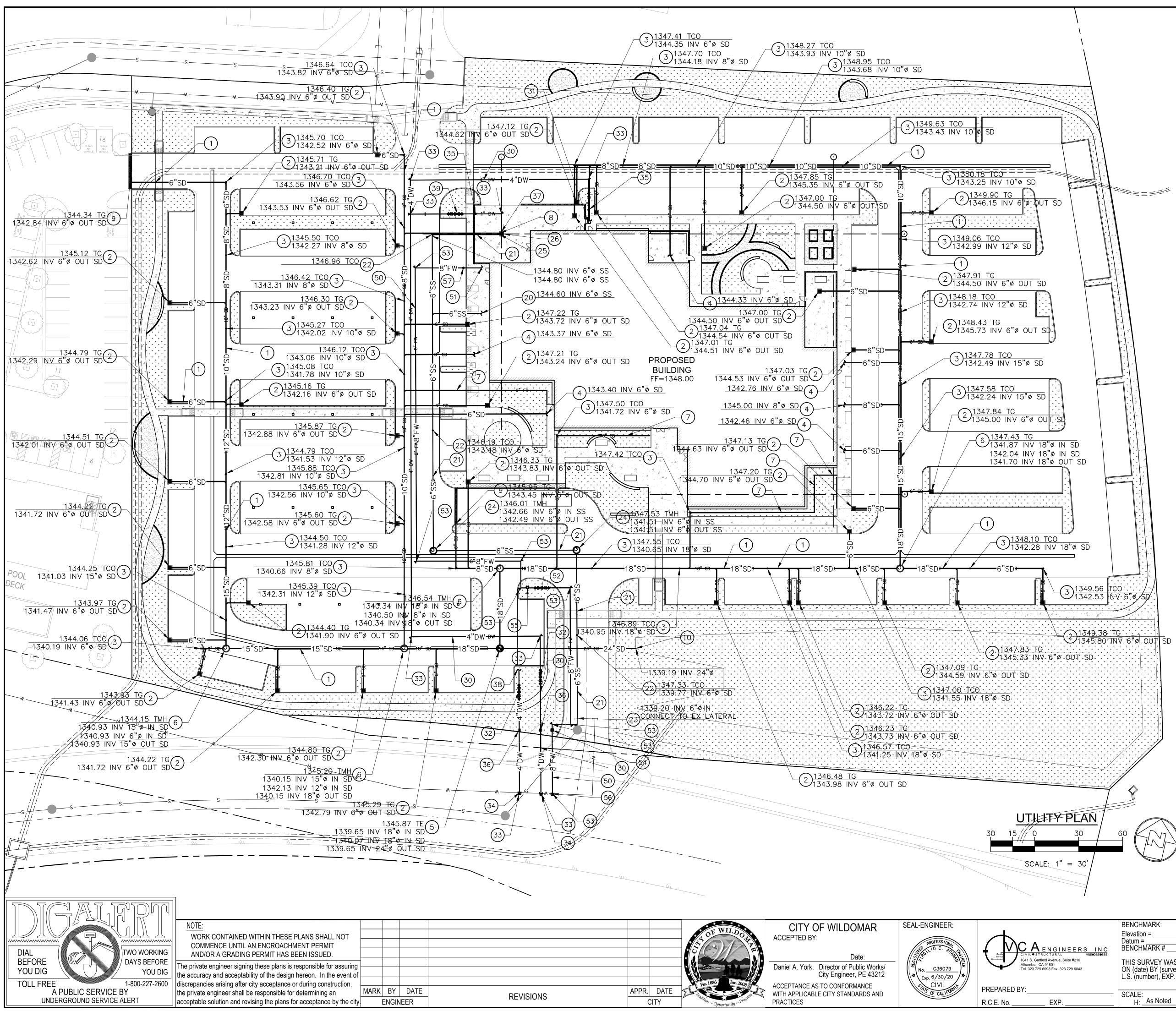
0.70

6.65

CALCULATION B HYDROLOGY CALCULATIONS

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 = Fax: 323-729-6043 e-mail: vca@vcaeng.com

Peak Flow Hydrologic Analysis


File location: Z:/VCA Projects 5/2013 to XXX/Reports/New Hydrology Report/Wildomar Medical Office Building - Total Site.pdf Version: HydroCalc 1.0.2

Input Parameters					
Project Name	Wildomar Medical Office Building				
Subarea ID	Total Site				
Area (ac)	8.7				
Flow Path Length (ft)	50.0				
Flow Path Slope (vft/hft)	0.01				
50-yr Rainfall Depth (in)	7.5				
Percent Impervious	0.6072				
Soil Type	84				
Design Storm Frequency	100-yr				
Fire Factor	0				
LID	False				
Output Results					
Modeled (100-yr) Rainfall Depth (in)	8.415				
Peak Intensity (in/hr)	5.0206				
Peak Intensity (in/hr) Undeveloped Runoff Coefficient (Cu)	0.7276				
Developed Runoff Coefficient (Cd)	0.8323				
Time of Concentration (min)	5.0				
Clear Peak Flow Rate (cfs)	36.3537				
Burned Peak Flow Rate (cfs)	36.3537				
24-Hr Clear Runoff Volume (ac-ft)	3.6884				
24-Hr Clear Runoff Volume (cu-ft)	160667.942				
40 Hydrograph (Wildomar Medic	cal Office Building: Total Site)				
35 -					
30 -	-				
25 -					
– 00 (cts)					
8 20 -	1				
Ē					
15 -					
10 -					
	1				
5 -					
0					
0 200 400 600 80 Time (m					

CALCULATION C STORM DRAIN UTILITY PLANS

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 • Fax: 323-729-6043 e-mail: vca@vcaeng.com

CONSTRUCTION NOTES: STORM DRAIN:

- (1) INSTALL PVC SCH 40 PIPE FOR STORM DRAIN LINE.
- (2) CONSTRUCT CATCH BASIN.
- (3) INSTALL CLEANOUT.
- CONNECT TO BUILDING DOWN SPOUT. COORDINATE AND MATCH LOCATION WITH PLUMBING DRAWINGS. PROVIDE REDUCER AND FITTINGS AS REQUIRED TO MATCH SIZE OF BUILDING DOWN SPOUT.
- (5) INSTALL CDS UNIT.
- (6) CONSTRUCT SD MANHOLE PER APWA STD PLAN 321-2.
- (7) INSTALL 6" FRENCH DRAIN.
- (8) CONNECT STORM DRAIN LINE TO FOX DRAIN SYSTEM AND VALVE.
- (9) INSTALL TRENCH DRAIN.
- (10) POINT OF DISCHARGE TO BIOINFILTRATION DETENTION POND. SANITARY SEWER:
- (20) CONNECT TO BUILDING SANITARY SEWER CONNECTION. PROVIDE REDUCING FITTINGS AND COUPLINGS AS NEEDED. FOR CONTINUATION SEE PLUMBING PLANS.
- (21) INSTALL ABS SCH 40 SANITARY SEWER PIPE.
- (22) INSTALL CLEANOUT.
- (23)CONNECT TO THE EXISTING SEWER LINE. PROVIDE REDUCING FITTINGS AND COUPLINGS AND CONTRACTOR SHALL POTHOLE AND FIELD VERIFY EXACT SIZE, DEPTH AND LOCATION OF EX LATERAL PRIOR TO THE TRENCHING OF NEW SYSTEM.
- (24)CONSTRUCT SS MANHOLE PER APWA STD PLAN 200-3.
- 25 CONNECT SANITARY LINE TO FOX DRAIN SYSTEM AND VALVE.
- (26) CONSTRUCT FOX DRAIN SYSTEM.

DOMESTIC WATER:

- 30 INSTALL COPPER PIPE TYPE K TUBING FOR DOMESTIC WATER LINE.
- CONNECT TO BUILDING DOMESTIC WATER CONNECTION. PROVIDE REDUCING FITTINGS AND COUPLINGS AS NEEDED. FOR CONTINUATION SEE PLUMBING PLANS.
- INSTALL DOMESTIC/IRRIGATION WATER REDUCED PRESSURE BACKFLOW PREVENTER. COORDINATE AND VERIFY POINT OF CONNECTION.
- (33) INSTALL CONCRETE THRUST BLOCK AND TIES FOR WATERLINE.
- (34) CONNECT TO EXISTING WATER LINE. PROVIDE REDUCING FITTINGS AND COUPLINGS AS NEEDED. VERIFY LOCATION IN FIELD BY POT HOLING PRIOR TO CONSTRUCTION / INSTALLATION OF NEW WATER SYSTEM.
- (35) INSTALL GATE VALVE.
- (36) PROPOSED WATER METER TO BE USED FOR DOMESTIC/IRRIGATION WATER SERVICE.
- 37 CONNECT DOMESTIC WATER LINE TO FOX DRAIN SYSTEM AND VALVE.
- (38) POINT OF CONNECTION FOR PROPOSED IRRIGATION LINE.
- (39) FOX DRAIN SYSTEM AND VALVE.

FIRE WATER:

- 50 INSTALL 8" AWWA C900 PVC PRESSURE CLASS DR14, FIRE WATER LINE.
- CONNECT TO BUILDING FIRE WATER CONNECTION. PROVIDE REDUCING FITTINGS AND COUPLINGS AS (51)NEEDED. FOR CONTINUATION SEE PLUMBING PLANS.
- (52) INSTALL DOUBLE CHECK DETECTOR ASSEMBLY.
- (53) INSTALL CONCRETE THRUST BLOCK AND TIES.
- 54 PROPOSED WATER METER TO BE USED FOR FIRE WATER.
- (55) INSTALL FIRE DEPARTMENT CONNECTION.
- (56) CONNECT TO EXISTING WATER LINE. PROVIDE REDUCING FITTINGS AND COUPLINGS AS NEEDED. VERIFY LOCATION IN FIELD BY POT HOLING PRIOR TO CONSTRUCTION/INSTALLATION OF NEW WATER SYSTEM.
- (57) INSTALL GATE VALVE.

	BENCHMARK:		SHEET	No.
	Elevation = Datum = BENCHMARK #	CITY OF WILDOMAR		
NGINEERS INC TURAL MBE®DBE®SBE				
Avenue, Suite #210 801 8 Fax. 323.729.6043	THIS SURVEY WAS PERFORMED	BAXTER VILLAGE - MEDICAL OFFICE BUILDING		
	ON (date) BY (surveyor) L.S. (number), EXP. (date)	ENTITLEMENT SUBMITTAL		
		UTILITY PLAN	OF	SHTS
EXP	SCALE: H: <u>As Noted</u> V: <u>As Noted</u>	UTILITY PLAN		

CALCULATION D PIPE SIZING

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 = Fax: 323-729-6043 e-mail: vca@vcaeng.com

Project:MedPipe IDRemSD1CatoSD2LanoSD3SD1SD4CatoSD5SD3SD6CatoSD7SD6SD10CatoSD11SD2SD12CatoSD13CatoSD14SD10SD15CatoSD16CatoSD17SD10SD18CatoSD15CatoSD16CatoSD17SD1SD18LanoSD19SD1SD20CatoSD21CatoSD22SD1SD23CatoSD24Lano	ANNONDESIGN edical Office Building emarks atchment 13 (1-9 Downspots) indscape Zone N D1 + SD2 atchment 13 (2-9 Downspots) D3 + SD4 atchment 2 (1-2 CB) D 5 + SD6 atchment 1 D7 + SD8 atchment 13 (3-9 Downspots) D 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	Tributary Area (acre) 0.078 0.064 0.142 0.078 0.220 0.245 0.465 0.140 0.605 0.078 0.078 0.245 0.465 0.140 0.605 0.078 0.682 0.245 0.078 0.682 0.245	Q₂ Peak Flow Rate 0.351 0.223 0.574 0.351 0.925 1.055 1.980 0.630 2.610 0.351 2.961 1.055	⊻ Total Runoff Volume (cu ft) 2120.58 506.30 2626.88 2120.58 4747.46 5758.84 10506.30 3760.78 14267.08 2120.58 16387.66	D Pipe Size (inches) 10 8 12 10 14 8 18 18 8 18 18 10	n Roughne ss Coefficie nt 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009	S Pipe Slope (ft/ft) 0.005 0.005 0.005 0.005 0.005 0.005 0.005	⊻ Design Velocity (f/s) 4.66 4.02 5.26 4.66 5.83 4.02	Test: v ≥ 2 f/s OK OK OK OK OK OK OK OK OK	a Area of Flow (ft²) 0.44 0.28 0.63 0.44 0.86 0.20	<u>Quax</u> Pipe Capacity (cfs) 2.045 1.128 3.325 2.045 5.016	Job No. 2 Date: 8/2 Engineer: Test: Q _{MAX} ≥ Q _P OK OK OK OK	VCA Pipe Size OK? YES YES YES
SD1 Cato SD2 Land SD3 SD1 SD4 Cato SD5 SD3 SD6 Cato SD7 SD3 SD6 Cato SD7 SD3 SD6 Cato SD7 SD6 SD8 Cato SD10 Cato SD11 SD9 SD12 Cato SD13 Cato SD14 SD1 SD15 Cato SD16 Cato SD17 SD1 SD18 Land SD19 SD11 SD18 Cato SD19 SD1 SD20 Cato SD21 Cato SD21 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Land	atchment 13 (1-9 Downspots) indscape Zone N D1 + SD2 atchment 13 (2-9 Downspots) D3 + SD4 atchment 2 (1-2 CB) D5 + SD6 atchment 1 D7 + SD8 atchment 13 (3-9 Downspots) D9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	Area (acre) 0.078 0.064 0.142 0.078 0.220 0.245 0.465 0.140 0.605 0.078 0.682 0.245	Peak Flow Rate 0.351 0.223 0.574 0.351 0.925 1.055 1.980 0.630 2.610 0.351 2.961 1.055	Cotal Runoff Volume (cu ft) 2120.58 506.30 2626.88 2120.58 4747.46 5758.84 10506.30 3760.78 14267.08 2120.58	Pipe Size (inches) 10 8 12 10 14 8 18 8 18 18 18 18	Roughne ss Coefficie nt 0.009 0.009 0.009 0.009 0.009 0.009	Pipe Slope (ft/ft) 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	Design Velocity (f/s) 4.66 4.02 5.26 4.66 5.83 4.02	v ≥ 2 f/s OK OK OK OK OK	Area of Flow (ft ²) 0.44 0.28 0.63 0.44 0.86	Pipe Capacity (cfs) 2.045 1.128 3.325 2.045	Q _{MAX} ≥ Q _P OK OK OK	OK? YES YES YES
SD2 Lanc SD3 SD1 SD4 Cato SD5 SD3 SD6 Cato SD7 SD6 SD8 Cato SD7 SD7 SD8 Cato SD9 SD7 SD10 Cato SD11 SD9 SD12 Cato SD13 Cato SD14 SD1 SD15 Cato SD16 Cato SD17 SD18 SD18 Cato SD19 SD11 SD15 Cato SD16 Cato SD17 SD18 Lano SD19 SD11 SD20 SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	Indscape Zone N D1 + SD2 atchment 13 (2-9 Downspots) D3 + SD4 atchment 2 (1-2 CB) D 5 + SD6 atchment 1 D7 + SD8 atchment 13 (3-9 Downspots) D 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.078 0.064 0.142 0.078 0.220 0.245 0.465 0.140 0.605 0.078 0.682 0.245 0.078	0.351 0.223 0.574 0.351 0.925 1.055 1.980 0.630 2.610 0.351 2.961 1.055	2120.58 506.30 2626.88 2120.58 4747.46 5758.84 10506.30 3760.78 14267.08 2120.58	10 8 12 10 14 8 18 8 18 8 18	0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009	0.005 0.005 0.005 0.005 0.005 0.005 0.005	4.66 4.02 5.26 4.66 5.83 4.02	OK OK OK OK	0.44 0.28 0.63 0.44 0.86	2.045 1.128 3.325 2.045	OK OK	YES YES
SD2 Lanc SD3 SD1 SD4 Cato SD5 SD3 SD6 Cato SD7 SD6 SD8 Cato SD7 SD7 SD8 Cato SD9 SD7 SD10 Cato SD11 SD9 SD12 Cato SD13 Cato SD14 SD1 SD15 Cato SD16 Cato SD17 SD18 SD18 Cato SD19 SD11 SD15 Cato SD16 Cato SD17 SD18 Lano SD19 SD11 SD20 SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	Indscape Zone N D1 + SD2 atchment 13 (2-9 Downspots) D3 + SD4 atchment 2 (1-2 CB) D 5 + SD6 atchment 1 D7 + SD8 atchment 13 (3-9 Downspots) D 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.064 0.142 0.078 0.220 0.245 0.465 0.140 0.605 0.078 0.682 0.245 0.078	0.223 0.574 0.351 0.925 1.055 1.980 0.630 2.610 0.351 2.961 1.055	506.30 2626.88 2120.58 4747.46 5758.84 10506.30 3760.78 14267.08 2120.58	8 12 10 14 8 18 8 18	0.009 0.009 0.009 0.009 0.009 0.009	0.005 0.005 0.005 0.005 0.005	4.02 5.26 4.66 5.83 4.02	OK OK OK OK	0.28 0.63 0.44 0.86	1.128 3.325 2.045	OK OK	YES YES
SD3 SD1 SD4 Cata SD5 SD3 SD6 Cata SD7 SD5 SD8 Cata SD7 SD5 SD8 Cata SD9 SD7 SD10 Cata SD11 SD5 SD12 Cata SD13 Cata SD14 SD1 SD15 Cata SD16 Cata SD17 SD1 SD18 Lana SD19 SD1 SD20 Cata SD21 Cata SD22 SD1 SD23 Cata SD24 Lana	01 + SD2 atchment 13 (2-9 Downspots) 03 + SD4 atchment 2 (1-2 CB) 0 5 + SD6 atchment 1 07 + SD8 atchment 13 (3-9 Downspots) 0 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) 011 + SD12 + SD13 atchment 3	0.142 0.078 0.220 0.245 0.465 0.140 0.605 0.078 0.682 0.245 0.078	0.574 0.351 0.925 1.055 1.980 0.630 2.610 0.351 2.961 1.055	2626.88 2120.58 4747.46 5758.84 10506.30 3760.78 14267.08 2120.58	12 10 14 8 18 8 18	0.009 0.009 0.009 0.009 0.009	0.005 0.005 0.005 0.005	5.26 4.66 5.83 4.02	OK OK OK	0.63 0.44 0.86	3.325 2.045	OK	YES
SD4 Cato SD5 SD3 SD6 Cato SD7 SD5 SD8 Cato SD7 SD5 SD8 Cato SD9 SD7 SD10 Cato SD11 SD5 SD12 Cato SD13 Cato SD14 SD1 SD15 Cato SD16 Cato SD17 SD1 SD18 Lano SD19 SD1 SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	atchment 13 (2-9 Downspots) D3 + SD4 atchment 2 (1-2 CB) D 5 + SD6 atchment 1 D7 + SD8 atchment 13 (3-9 Downspots) D 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.078 0.220 0.245 0.465 0.140 0.605 0.078 0.682 0.245 0.078	0.351 0.925 1.055 1.980 0.630 2.610 0.351 2.961 1.055	2120.58 4747.46 5758.84 10506.30 3760.78 14267.08 2120.58	10 14 8 18 8 18	0.009 0.009 0.009 0.009	0.005 0.005 0.005	4.66 5.83 4.02	OK OK	0.44 0.86	2.045		
SD5 SD3 SD6 Cata SD7 SD 5 SD8 Cata SD9 SD7 SD10 Cata SD9 SD7 SD10 Cata SD11 SD 5 SD12 Cata SD13 Cata SD14 SD1 SD15 Cata SD16 Cata SD17 SD1 SD16 Cata SD17 SD1 SD18 Lana SD19 SD1 SD20 Cata SD21 Cata SD22 SD1 SD23 Cata SD24 Lana	D3 + SD4 atchment 2 (1-2 CB) D 5 + SD6 atchment 1 D7 + SD8 atchment 13 (3-9 Downspots) D 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.220 0.245 0.465 0.140 0.605 0.078 0.682 0.245 0.078	0.925 1.055 1.980 0.630 2.610 0.351 2.961 1.055	4747.46 5758.84 10506.30 3760.78 14267.08 2120.58	14 8 18 8 18	0.009 0.009 0.009	0.005 0.005	5.83 4.02	OK	0.86		OK	
SD6 Cato SD7 SD 5 SD8 Cato SD9 SD7 SD10 Cato SD11 SD 5 SD12 Cato SD13 Cato SD14 SD1 SD15 Cato SD16 Cato SD17 SD1 SD18 Lano SD19 SD1 SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	atchment 2 (1-2 CB) D 5 + SD6 atchment 1 D7 + SD8 atchment 13 (3-9 Downspots) D 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.245 0.465 0.140 0.605 0.078 0.682 0.245 0.078	1.055 1.980 0.630 2.610 0.351 2.961 1.055	5758.84 10506.30 3760.78 14267.08 2120.58	8 18 8 18	0.009 0.009	0.005	4.02			5.016		YES
SD7 SD 5 SD8 Cata SD9 SD7 SD10 Cata SD11 SD 9 SD12 Cata SD13 Cata SD14 SD1 SD15 Cata SD16 Cata SD17 SD1 SD18 Land SD19 SD1 SD20 Cata SD21 Cata SD22 SD1 SD23 Cata SD24 Land	D 5 + SD6 atchment 1 D7 + SD8 atchment 13 (3-9 Downspots) D 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.465 0.140 0.605 0.078 0.682 0.245 0.078	1.980 0.630 2.610 0.351 2.961 1.055	10506.30 3760.78 14267.08 2120.58	8 18 8 18	0.009			OK	0.00	0.010	OK	YES
SD8 Cato SD9 SD7 SD10 Cato SD11 SD 9 SD12 Cato SD13 Cato SD14 SD1 SD15 Cato SD16 Cato SD17 SD1 SD18 Lano SD19 SD1 SD20 Cato SD21 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	atchment 1 D7 + SD8 atchment 13 (3-9 Downspots) D 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.465 0.140 0.605 0.078 0.682 0.245 0.078	0.630 2.610 0.351 2.961 1.055	10506.30 3760.78 14267.08 2120.58	8 18	0.009		0.00		0.28	1.128	OK	YES
SD9 SD7 SD10 Cata SD11 SD 9 SD12 Cata SD13 Cata SD14 SD1 SD15 Cata SD16 Cata SD17 SD1 SD18 Land SD19 SD1 SD20 Cata SD21 Cata SD18 Land SD20 Cata SD21 Cata SD22 SD1 SD23 Cata SD24 Land	D7 + SD8 atchment 13 (3-9 Downspots) D 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.605 0.078 0.682 0.245 0.078	2.610 0.351 2.961 1.055	14267.08 2120.58	18	0.009	0.005	6.90	OK	1.42	9.803	OK	YES
SD10 Cato SD11 SD 9 SD12 Cato SD13 Cato SD14 SD1 SD15 Cato SD16 Cato SD17 SD1 SD18 Lano SD19 SD1 SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	atchment 13 (3-9 Downspots) 0 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) 011 + SD12 + SD13 atchment 3	0.078 0.682 0.245 0.078	0.351 2.961 1.055	2120.58		-	0.005	4.02	OK	0.28	1.128	OK	YES
SD11 SD 9 SD12 Cato SD13 Cato SD14 SD1 SD15 Cato SD16 Cato SD17 SD1 SD18 Lano SD19 SD1 SD10 Cato SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	D 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.682 0.245 0.078	2.961 1.055		10	0.009	0.005	6.90	OK	1.42	9.803	OK	YES
SD11 SD 9 SD12 Cato SD13 Cato SD14 SD1 SD15 Cato SD16 Cato SD17 SD1 SD18 Lano SD19 SD1 SD10 Cato SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	D 9 + SD10 atchment 2 (2-2 CB) atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.245 0.078	1.055	16387.66	10	0.009	0.005	4.66	OK	0.44	2.045	OK	YES
SD12 Cato SD13 Cato SD14 SD1 SD15 Cato SD16 Cato SD17 SD1 SD18 Lano SD19 SD1 SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.245 0.078	1.055		18	0.009	0.005	6.90	OK	1.42	9.803	OK	YES
SD13 Cato SD14 SD1 SD15 Cato SD16 Cato SD17 SD1 SD18 Lano SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	atchment 13 (4-9 Downspots) D11 + SD12 + SD13 atchment 3	0.078		5758.84	8	0.009	0.005	4.02	OK	0.28	1.128	OK	YES
SD14 SD1 SD15 Cato SD16 Cato SD17 SD1 SD18 Lano SD19 SD1 SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	D11 + SD12 + SD13 atchment 3		0.351	2120.58	10	0.009	0.005	4.66	OK	0.44	2.045	OK	YES
SD15 Cato SD16 Cato SD17 SD1 SD18 Lano SD19 SD1 SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	atchment 3	1.005	4.367	24267.07	18	0.009	0.005	6.90	OK	1.42	9.803	OK	YES
SD16 Cato SD17 SD1 SD18 Lano SD19 SD1 SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano		0.150	0.670	4028.900	8	0.009	0.005	4.02	OK	0.28	1.128	OK	YES
SD17 SD1 SD18 Lanc SD19 SD1 SD20 Catc SD21 Catc SD22 SD1 SD23 Catc SD24 Lanc	atchment 13 (5-9 Downspots)	0.078	0.351	2120.581	10	0.009	0.005	4.66	OK	0.44	2.045	OK	YES
SD18 Land SD19 SD1 SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Land	D14 + SD15 + SD16	1.233	5.388	30416.56	24	0.009	0.005	8.35	OK	2.53	21.112	OK	YES
SD19 SD1 SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	indscape Zone W	0.179	0.622	1416.06	12	0.009	0.005	5.26	OK	0.63	3.325	OK	YES
SD20 Cato SD21 Cato SD22 SD1 SD23 Cato SD24 Lano	D17 + SD18	1.412	6.010	31832.62	24	0.009	0.005	8.35	OK	2.53	21.112	OK	YES
SD21 Cato SD22 SD1 SD23 Cato SD24 Land	atchment 4	0.890	3.890	21857.86	14	0.009	0.005	5.83	OK	0.86	5.016	OK	YES
SD22 SD1 SD23 Cato SD24 Land	atchment 5	0.430	1.850	9994.32	12	0.009	0.005	5.26	OK	0.63	3.325	OK	YES
SD23 Cato SD24 Land	D19 + SD20 + SD21	2.732	11.750	63684.80	24	0.009	0.005	8.35	OK	2.53	21.112	OK	YES
SD24 Land	atchment 7	0.310	1.310	6818.50	10	0.009	0.005	4.66	OK	0.44	2.045	OK	YES
	Indscape Zone S	0.071	0.247	561.68	8	0.009	0.005	4.02	OK	0.28	1.128	OK	YES
	D22 + SD23 + SD24	3.113	13.307	71064.97	24	0.009	0.005	8.35	OK	2.53	21.112	OK	YES
	D25 + Catchment 8	3.333	14.247	76067.88	24	0.009	0.005	8.35	OK	2.53	21.112	OK	YES
	atchment 12	0.870	3.770	20702.98	14	0.009	0.005	5.83	OK	0.86	5.016	OK	YES
	atchment 13 (6-9 Downspots)	0.078	0.351	2120.58	10	0.009	0.005	4.66	OK	0.44	2.045	OK	YES
	D27 + SD28	0.948	4.121	22823.56	10	0.009	0.005	5.83	OK	0.86	5.016	OK	YES
	atchment 11	0.340	1.360	7654.23	14	0.009	0.005	4.66	OK	0.00	2.045	OK	YES
	D29 + SD30	1.258	5.481	30477.79	18	0.009	0.005	6.90	OK	1.42	9.803	OK	YES
	atchment 13 (7-9 Downspots)	0.078	0.351	2120.58	10	0.009	0.005	4.66	OK	0.44	2.045	OK	YES
	D31 + SD32	1.336	5.832	32598.37	18	0.009	0.005	6.90	OK	1.42	9.803	OK	YES
	atchment 10	0.130	0.580	3401.59	10	0.009	0.005	4.66	OK	0.44	2.045	OK	YES
	033 + SD34	1.466	6.412	35999.96	10	0.009	0.005	6.90	OK	1.42	9.803	OK	YES
	atchment 9	1.100	4.830	27338.39	10	0.009	0.005	5.83	OK	0.86	5.016	OK	YES
	035 + SD36	2.566	11.242	63338.35	24	0.009	0.005	8.35	OK	2.53	21.112	OK	YES
	atchment 13 (8-9 Downspots)	0.078	0.351	2120.58	10	0.009	0.005	4.66	OK	0.44	2.045	OK	YES
		2.643	11.593	65458.93	24	0.009	0.005	8.35	OK	2.53	2.045	OK	YES
	, , ,	0.078	0.351		10	0.009	0.005		OK	0.44	21.112		YES
SD40 Cato SD41 SD3	D37 + SD38 atchment 13 (9-9 Downspots)		0.351	2120.58 67579.51	24	0.009	0.005	4.66 8.35	OK	0.44 2.53	2.045	OK OK	YES

VCA Engineers, Inc.

Pipe Sizing

Client: Project: CANNONDESIGN Medical Office Building Job No. 2092-219 Date: 8/21/2019 Engineer: VCA

SD 1 = Catchment	13 (1-9 Do	wnspot)			Q _{100-YR} =	0.35	
Calculations for V	elocity and	d Discharge					
D =	10		0.83 ft Diameter of Pipe				
n =	0.009		PVC Manning's Roughness Coeffici				
S =	0.005	ft/ft	t 0.50 % Slope of Pipe				
d =	8	inches	ches 0.63 ft Flow Depth				
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	0.44	sq.ft		Area of Flow			
p =	1.75	ft		Wetted Perimeter			
r =	0.25	ft		Hydraulic Radiu	S		
Using Manning's Ed	quation, for	pipe at flow	depth 'd'				
v =	4.66	fps		Flow Velocity	ОК	Therefore,	
Q =	2.045	cfs		Flow Rate	ОК	Pipe Size is OK	

SD 2 = Landscape	Zone N				Q _{100-YR} =	0.22	
Calculations for Ve	elocity and	d Discharge					
D =	8		0.67 ft Diameter of Pipe				
n =	0.009		PVC Manning's Roughness Coefficie				
S =	0.005	ft/ft	ft 0.50 % Slope of Pipe				
d =	6	inches	ches 0.50 ft Flow Depth				
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	0.28	sq.ft		Area of Flow			
p =	1.40	ft		Wetted Perimeter			
r =	0.20	ft		Hydraulic Radiu	S		
Using Manning's Eq	quation, for	pipe at flow	depth 'd'				
v =	4.02	fps		Flow Velocity	ОК	Therefore,	
Q =	1.128	cfs		Flow Rate	ОК	Pipe Size is OK	

SD 3 = SD1 + SD2					Q _{100-YR} =	0.57	
Calculations for V	elocity and	d Discharge					
D =	12		1.00 ft Diameter of Pipe				
n =	0.009		PVC Manning's Roughness Coefficient				
S =	0.005	ft/ft	t 0.50 % Slope of Pipe				
d =	9	inches	ches 0.75 ft Flow Depth				
d/D =	0.75		Proportional Depth of Flow				
theta =	4.1888	radians		Angle of Flow			
a =	0.63	sq.ft		Area of Flow			
p =	2.09	ft		Wetted Perimeter			
r =	0.30	ft		Hydraulic Radiu	S		
Using Manning's Ed	quation, for	pipe at flow o	depth 'd'				
v =	5.26	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	3.325	cfs		Flow Rate	ОК	Pipe Size is OK	

SD 4 = Catchment	13 (2-9 Do	wnspot)			Q _{100-YR} =	0.35
Calculations for V	elocity and	d Discharge				
D =	10		0.83 ft Diameter of Pipe			
n =	0.009		PVC Manning's Roughness Coefficien			
S =	0.005	ft/ft	ft 0.50 % Slope of Pipe			
d =	8	inches	ches 0.63 ft Flow Depth			
d/D =	0.75			Proportional Depth of Flow		
theta =	4.1888	radians		Angle of Flow		
a =	0.44	sq.ft		Area of Flow		
p =	1.75	ft		Wetted Perimeter		
r =	0.25	ft		Hydraulic Radiu	S	
Using Manning's Ed	quation, for	pipe at flow	depth 'd'			
v =	4.66	fps		Flow Velocity	ΟΚ	Therefore,
Q =	2.045	cfs		Flow Rate	ОК	Pipe Size is OK

SD 5 = SD4 + SD3					Q _{100-YR} =	0.93
Calculations for Ve	elocity and	d Discharge				
D =	14		1.17 ft Diameter of Pipe			
n =	0.009		PVC Manning's Roughness Coefficien			
S =	0.005	ft/ft	ft 0.50 % Slope of Pipe			
d =	11	inches	0.88 ft	Flow Depth		
d/D =	0.75			Proportional Depth of Flow		
theta =	4.1888	radians		Angle of Flow		
a =	0.86	sq.ft		Area of Flow		
p =	2.44	ft		Wetted Perimeter		
r =	0.35	ft		Hydraulic Radiu	S	
Using Manning's Eq	quation, for	pipe at flow	depth 'd'			
v =	5.83	fps		Flow Velocity	ΟΚ	Therefore,
Q =	5.016	cfs		Flow Rate	ок	Pipe Size is OK

SD 6 = Catchment	2 (1-2 CB)				Q _{100-YR} =	1.06	
Calculations for V	elocity and	d Discharge					
D =	8		0.67 ft Diameter of Pipe				
n =	0.009		PVC Manning's Roughness Coefficient				
S =	0.005	ft/ft	ft 0.50 % Slope of Pipe				
d =	6	inches	ches 0.50 ft Flow Depth				
d/D =	0.75			Proportional De	Proportional Depth of Flow		
theta =	4.1888	radians		Angle of Flow			
a =	0.28	sq.ft		Area of Flow			
p =	1.40	ft		Wetted Perimeter			
r =	0.20	ft		Hydraulic Radiu	S		
Using Manning's Ed	quation, for	pipe at flow	depth 'd'				
v =	4.02	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	1.128	cfs		Flow Rate	ок	Pipe Size is OK	

SD 7 = SD5 + SD6					Q _{100-YR} =	1.98
Calculations for Ve	elocity and	d Discharge				
D =	18		1.50 ft Diameter of Pipe			
n =	0.009		PVC	Manning's Roug	hness Co	efficient
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe			
d =	14	inches	1.13 ft	Flow Depth		
d/D =	0.75			Proportional Depth of Flow		
theta =	4.1888	radians		Angle of Flow		
a =	1.42	sq.ft		Area of Flow		
p =	3.14	ft		Wetted Perimeter		
r =	0.45	ft		Hydraulic Radiu	S	
Using Manning's Eq	uation, for	pipe at flow	depth 'd'			
v =	6.90	fps		Flow Velocity	ΟΚ	Therefore,
Q =	9.803	cfs		Flow Rate	ок	Pipe Size is OK

SD 8 = Catchment	1				Q _{100-YR} =	0.63
Calculations for Ve	elocity and	d Discharge				
D =	8		0.67 ft Diameter of Pipe			
n =	0.009		PVC Manning's Roughness Coefficient			
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe			
d =	6	inches	0.50 ft	Flow Depth		
d/D =	0.75			Proportional Depth of Flow		
theta =	4.1888	radians		Angle of Flow		
a =	0.28	sq.ft		Area of Flow		
p =	1.40	ft		Wetted Perimeter		
r =	0.20	ft		Hydraulic Radius		
Using Manning's Eq	quation, for	pipe at flow	depth 'd'			
v =	4.02	fps		Flow Velocity	OK	Therefore,
Q =	1.128	cfs		Flow Rate	ОК	Pipe Size is OK

SD 9 = SD7 + SD8					Q _{100-YR} =	2.61	
Calculations for V	elocity and	d Discharge					
D =	18		1.50 ft Diameter of Pipe				
n =	0.009		PVC Manning's Roughness Coefficier				
S =	0.005	ft/ft	ft 0.50 % Slope of Pipe				
d =	14	inches	ches 1.13 ft Flow Depth				
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	1.42	sq.ft		Area of Flow			
p =	3.14	ft		Wetted Perimeter			
r =	0.45	ft		Hydraulic Radiu	S		
Using Manning's Ec	quation, for	pipe at flow	depth 'd'				
v =	6.90	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	9.803	cfs		Flow Rate	ОК	Pipe Size is OK	

SD 10 = Catchmen	t 13 (3-9 C	ownspot)			Q _{100-YR} =	0.35	
Calculations for Ve	elocity an	d Discharge					
D =	10		0.83 ft	Diameter of Pipe	е		
n =	0.009		PVC	Manning's Roug	hness Co	efficient	
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe				
d =	8	inches	0.63 ft	Flow Depth	Flow Depth		
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	0.44	sq.ft		Area of Flow			
p =	1.75	ft		Wetted Perimeter			
r =	0.25	ft		Hydraulic Radiu	S		
Using Manning's Eq	quation, for	pipe at flow	depth 'd'				
v =	4.66	fps		Flow Velocity	ΟΚ	Therefore	
Q =	2.045	cfs		Flow Rate	ок	Pipe Size is OK	

SD 11 = SD9 +SD1	0				Q _{100-YR} =	2.96
Calculations for Ve	elocity and	d Discharge)			
D =	18		1.50 ft Diameter of Pipe			
n =	0.009		PVC Manning's Roughness Coeffi			
S =	0.005	ft/ft	ft 0.50 % Slope of Pipe			
d =	14	inches	1.13 ft	Flow Depth		
d/D =	0.75]		Proportional Depth of Flow		
theta =	4.1888	radians		Angle of Flow		
a =	1.42	sq.ft		Area of Flow		
p =	3.14	ft		Wetted Perimeter		
r =	0.45	ft		Hydraulic Radiu	S	
Using Manning's Eq	uation, for	pipe at flow	depth 'd'			
v =	6.90	fps		Flow Velocity	ОК	Therefore,
Q =	9.803	cfs		Flow Rate	ОК	Pipe Size is OK

SD 12 = Catchmer	nt 2 (2-2 CE	3)			Q _{100-YR} =	1.06
Calculations for V	elocity and	d Discharg	e			
D =	8		0.67 ft	Diameter of Pipe	е	
n =	0.009		PVC Manning's Roughness Coefficient			
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe			
d =	6	inches	ches 0.50 ft Flow Depth			
d/D =	0.75		Proportional Depth of Flow			
theta =	4.1888	radians	adians Angle of Flow			
a =	0.28	sq.ft		Area of Flow		
p =	1.40	ft		Wetted Perimeter		
r =	0.20	ft		Hydraulic Radiu	S	
Using Manning's E	quation, for	pipe at flow	∕ depth 'd'			Therefore,
v =	4.02	fps		Flow Velocity	ок	Pipe Size is OK
Q =	1.128	cfs		Flow Rate	OK	

SD 13 = Catchmen	t 13 (4-7 C	ownspot)			Q _{100-YR} =	0.35		
Calculations for Velocity and Discharge								
D =	10		0.83 ft	Diameter of Pipe	e			
n =	0.009		PVC	Manning's Roug	hness Co	efficient		
S =	0.005	ft/ft	ft 0.50 % Slope of Pipe					
d =	8	inches	0.63 ft	Flow Depth				
d/D =	0.75			Proportional Depth of Flow				
theta =	4.1888	radians		Angle of Flow				
a =	0.44	sq.ft		Area of Flow				
p =	1.75	ft		Wetted Perimeter				
r =	0.25	ft		Hydraulic Radiu	S			
Using Manning's Eq	uation, for	pipe at flow	depth 'd'					
v =	4.66	fps		Flow Velocity	ΟΚ	Therefore,		
Q =	2.045	cfs		Flow Rate	ОК	Pipe Size is OK		

SD 14 = SD11 + SD	012 +SD13				Q _{100-YR} =	4.37		
Calculations for Velocity and Discharge								
D =	18		1.50 ft Diameter of Pipe					
n =	0.009		PVC	Manning's Roug	hness Co	oefficient		
S =	0.005	ft/ft	ft 0.50 % Slope of Pipe					
d =	14	inches	1.13 ft	Flow Depth				
d/D =	0.75			Proportional Depth of Flow				
theta =	4.1888	radians		Angle of Flow				
a =	1.42	sq.ft		Area of Flow				
p =	3.14	ft		Wetted Perimeter				
r =	0.45	ft		Hydraulic Radiu	S			
Using Manning's Eq	Using Manning's Equation, for pipe at flow depth 'd'							
v =	6.90	fps		Flow Velocity	ОК	Therefore,		
Q =	9.803	cfs		Flow Rate	ОК	Pipe Size is OK		

SD 15 = Catchmen	t 3				Q _{100-YR} =	0.67		
Calculations for Velocity and Discharge								
D =	8		0.67 ft Diameter of Pipe					
n =	0.009		PVC	Manning's Roug	hness Co	efficient		
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe					
d =	6	inches	nches 0.50 ft Flow Depth					
d/D =	0.75			Proportional Depth of Flow				
theta =	4.1888	radians		Angle of Flow				
a =	0.28	sq.ft		Area of Flow				
p =	1.40	ft		Wetted Perimeter				
r =	0.20	ft		Hydraulic Radiu	s			
Using Manning's Equation, for pipe at flow depth 'd'								
v =	4.02	fps		Flow Velocity	ОК	Therefore		
Q =	1.128	cfs		Flow Rate	ОК	Pipe Size is OK		

SD 16 = Catchmen	t 13 (5-9 C)ownspot)			Q _{100-YR} =	0.35
Calculations for Ve	elocity an	d Discharge				
D =	10		0.83 ft	Diameter of Pipe		
n =	0.009		PVC	Manning's Roug	hness Co	efficient
S =	0.005	ft/ft	0.50 %	Slope of Pipe		
d =	8	inches	0.63 ft	Flow Depth		
d/D =	0.75			Proportional Depth of Flow		
theta =	4.1888	radians		Angle of Flow		
a =	0.44	sq.ft		Area of Flow		
p =	1.75	ft		Wetted Perimete	er	
r =	0.25	ft		Hydraulic Radiu	S	
Using Manning's Eq	uation, for	pipe at flow	depth 'd'			
v =	4.66	fps		Flow Velocity	ΟΚ	Therefore,
Q =	2.045	cfs		Flow Rate	ок	Pipe Size is OK

SD 17 = SD14 + SD	015 + SD1	6			Q _{100-YR} =	5.39		
Calculations for Velocity and Discharge								
D =	24		2.00 ft Diameter of Pipe					
n =	0.009		PVC Manning's Roughness Coefficier					
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe					
d =	18	inches	ches 1.50 ft Flow Depth					
d/D =	0.75	Proportional Depth of Flow				w		
theta =	4.1888	radians		Angle of Flow				
a =	2.53	sq.ft		Area of Flow				
p =	4.19	ft		Wetted Perimeter	er			
r =	0.60	ft		Hydraulic Radiu	S			
Using Manning's Eq	quation, for	pipe at flow	depth 'd'					
v =	8.35	fps		Flow Velocity	ΟΚ	Therefore,		
Q =	21.112	cfs		Flow Rate	ок	Pipe Size is OK		

SD 18 = Landscap	e Zone W				Q _{100-YR} =	0.62	
Calculations for V	elocity and	d Discharge					
D =	12		1.00 ft Diameter of Pipe				
n =	0.009		PVC	Manning's Roug	hness Co	oefficient	
S =	0.005	ft/ft	0.50 %	Slope of Pipe			
d =	9	inches	nches 0.75 ft Flow Depth				
d/D =	0.75	Proportional Depth of Flow				w	
theta =	4.1888	radians		Angle of Flow			
a =	0.63	sq.ft		Area of Flow			
p =	2.09	ft		Wetted Perimeter	Vetted Perimeter		
r =	0.30	ft		Hydraulic Radiu	S		
Using Manning's Equation, for pipe at flow depth 'd'							
v =	5.26	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	3.325	cfs		Flow Rate	ОК	Pipe Size is OK	

SD 19 = SD17 + SD	18				Q _{100-YR} =	6.01		
Calculations for Velocity and Discharge								
D =	24		2.00 ft Diameter of Pipe					
n =	0.009		PVC Manning's Roughness Coeffic			pefficient		
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe					
d =	18	inches	1.50 ft	Flow Depth				
d/D =	0.75			Proportional Depth of Flow				
theta =	4.1888	radians		Angle of Flow				
a =	2.53	sq.ft		Area of Flow				
p =	4.19	ft		Wetted Perimeter				
r =	0.60	ft		Hydraulic Radiu	IS			
Using Manning's Eq	uation, for	pipe at flow	depth 'd'					
v =	8.35	fps		Flow Velocity	ΟΚ	Therefore,		
Q =	21.112	cfs		Flow Rate	ОК	Pipe Size is OK		

SD 20 = Catchmen	nt 4				Q _{100-YR} =	3.89		
Calculations for V	elocity and	d Discharge						
D =	8		0.67 ft Diameter of Pipe					
n =	0.009		PVC Manning's Roughness Coefficier			efficient		
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe					
d =	6	inches	nches 0.50 ft Flow Depth					
d/D =	0.75			Proportional Depth of Flow				
theta =	4.1888	radians		Angle of Flow				
a =	0.28	sq.ft		Area of Flow				
p =	1.40	ft		Wetted Perimete	er			
r =	0.20	ft		Hydraulic Radiu	S			
Using Manning's Ed	Using Manning's Equation, for pipe at flow depth 'd'							
v =	4.02	fps		Flow Velocity	ΟΚ	Therefore,		
Q =	1.128	cfs		Flow Rate	NG	Pipe Size is OK		

SD 21 = Catchmen	it 5				Q _{100-YR} =	1.85	
Calculations for V	elocity and	d Discharge					
D =	12		1.00 ft	Diameter of Pipe	е		
n =	0.009		PVC	Manning's Roug	hness Co	efficient	
S =	0.005	ft/ft	ft 0.50 % Slope of Pipe				
d =	9	inches	ches 0.75 ft Flow Depth				
d/D =	0.75			Proportional De	Proportional Depth of Flow		
theta =	4.1888	radians		Angle of Flow			
a =	0.63	sq.ft		Area of Flow			
p =	2.09	ft		Wetted Perimeter			
r =	0.30	ft		Hydraulic Radiu	S		
Using Manning's Ed	quation, for	pipe at flow	depth 'd'				
v =	5.26	fps		Flow Velocity	ΟΚ	Therefore	
Q =	3.325	cfs		Flow Rate	ОК	Pipe Size is OK	

SD 22 = SD19+ SD	20 + SD21				Q _{100-YR} =	11.75	
Calculations for Ve	elocity and	d Discharge					
D =	24		2.00 ft Diameter of Pipe				
n =	0.009		PVC	Manning's Roug	hness Co	efficient	
S =	0.005	ft/ft	0.50 %	Slope of Pipe			
d =	18	inches	1.50 ft	Flow Depth			
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	2.53	sq.ft		Area of Flow			
p =	4.19	ft		Wetted Perimeter			
r =	0.60	ft		Hydraulic Radiu	S		
Using Manning's Eq	uation, for	pipe at flow	depth 'd'				
v =	8.35	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	21.112	cfs		Flow Rate	ОК	Pipe Size is OK	

SD 23 = Catchmen	t 7				Q _{100-YR} =	1.31		
Calculations for V	elocity and	d Discharge						
D =	8		0.67 ft Diameter of Pipe					
n =	0.009		PVC	Manning's Roug	hness Co	efficient		
S =	0.005	ft/ft	0.50 %	Slope of Pipe				
d =	6	inches	0.50 ft	Flow Depth				
d/D =	0.75			Proportional Depth of Flow				
theta =	4.1888	radians		Angle of Flow				
a =	0.28	sq.ft		Area of Flow				
p =	1.40	ft		Wetted Perimeter				
r =	0.20	ft		Hydraulic Radiu	S			
Using Manning's Ec	Using Manning's Equation, for pipe at flow depth 'd'							
v =	4.02	fps		Flow Velocity	ΟΚ	Therefore,		
Q =	1.128	cfs		Flow Rate	NG	Pipe Size is OK		

SD 24 = Landscap	e Zone S				Q _{100-YR} =	0.25	
Calculations for V	elocity and	d Discharge					
D =	8		0.67 ft Diameter of Pipe				
n =	0.009		PVC	Manning's Roug	hness Co	efficient	
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe				
d =	6	inches	ches 0.50 ft Flow Depth				
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	0.28	sq.ft		Area of Flow			
p =	1.40	ft		Wetted Perimeter			
r =	0.20	ft		Hydraulic Radiu	S		
Using Manning's Equation, for pipe at flow depth 'd'							
v =	4.02	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	1.128	cfs		Flow Rate	ОК	Pipe Size is OK	

SD 25 = SD22 + SD	023 + SD24	4			Q _{100-YR} =	13.81	
Calculations for Ve	elocity an	d Discharge					
D =	24		2.00 ft Diameter of Pipe				
n =	0.009		PVC Manning's Roughness Coefficier				
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe				
d =	18	inches	1.50 ft	Flow Depth			
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	2.53	sq.ft		Area of Flow			
p =	4.19	ft		Wetted Perimeter			
r =	0.60	ft		Hydraulic Radiu	S		
Using Manning's Eq	uation, for	pipe at flow	depth 'd'				
v =	8.35	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	21.112	cfs		Flow Rate	ок	Pipe Size is OK	

SD 26 = SD25 + Ca	tchment 8	8			Q _{100-YR} =	14.25	
Calculations for V	elocity and	d Discharge	i				
D =	24		2.00 ft Diameter of Pipe				
n =	0.009		PVC	Manning's Roug	hness Co	efficient	
S =	0.005	ft/ft	0.50 %	Slope of Pipe			
d =	18	inches	1.50 ft	Flow Depth			
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	2.53	sq.ft		Area of Flow			
p =	4.19	ft		Wetted Perimete	er		
r =	0.60	ft		Hydraulic Radiu	S		
Using Manning's Ec	quation, for	pipe at flow	depth 'd'				
v =	8.35	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	21.112	cfs		Flow Rate	ОК	Pipe Size is OK	

SD 27 = Catchmen	it 12				Q _{100-YR} =	3.77		
Calculations for Velocity and Discharge								
D =	12		1.00 ft Diameter of Pipe					
n =	0.009		PVC	Manning's Roug	hness Co	efficient		
S =	0.005	ft/ft	0.50 %	Slope of Pipe				
d =	9	inches	ches 0.75 ft Flow Depth					
d/D =	0.75			Proportional Depth of Flow				
theta =	4.1888	radians		Angle of Flow				
a =	0.63	sq.ft		Area of Flow				
p =	2.09	ft		Wetted Perimeter				
r =	0.30	ft		Hydraulic Radiu	S			
Using Manning's Ed	quation, for	pipe at flow	depth 'd'					
v =	5.26	fps		Flow Velocity	ΟΚ	Therefore,		
Q =	3.325	cfs		Flow Rate	NG	Pipe Size is OK		

SD 28 = Catchmen	t 13 (6-9 I	Downspots)			Q _{100-YR} =	0.35	
Calculations for Ve	elocity and	d Discharge					
D =	10		0.83 ft Diameter of Pipe				
n =	0.009		PVC	Manning's Roug	hness Co	efficient	
S =	0.005	ft/ft	0.50 %	Slope of Pipe			
d =	8	inches	0.63 ft	Flow Depth			
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	0.44	sq.ft		Area of Flow			
p =	1.75	ft		Wetted Perimeter	er		
r =	0.25	ft		Hydraulic Radiu	S		
Using Manning's Eq	uation, for	pipe at flow	depth 'd'				
v =	4.66	fps		Flow Velocity	ΟΚ	Therefore	
Q =	2.045	cfs		Flow Rate	ок	Pipe Size is OK	

SD 29 = SD27 + SE	028				Q _{100-YR} =	4.12
Calculations for V	elocity and	d Discharge				
D =	14		1.17 ft	Diameter of Pipe	е	
n =	0.009		PVC	Manning's Roug	hness Co	efficient
S =	0.005	ft/ft	0.50 %	Slope of Pipe		
d =	11	inches	0.88 ft	Flow Depth		
d/D =	0.75			Proportional Depth of Flow		
theta =	4.1888	radians		Angle of Flow		
a =	0.86	sq.ft		Area of Flow		
p =	2.44	ft		Wetted Perimeter		
r =	0.35	ft		Hydraulic Radiu	S	
Using Manning's Ec	quation, for	pipe at flow	depth 'd'			
v =	5.83	fps		Flow Velocity	ΟΚ	Therefore,
Q =	5.016	cfs		Flow Rate	ОК	Pipe Size is OK

SD 30 = Catchmen	it 11				Q _{100-YR} =	1.36
Calculations for V	elocity and	d Discharge				
D =	10		0.83 ft Diameter of Pipe			
n =	0.009		PVC	Manning's Roug	hness Co	oefficient
S =	0.005	ft/ft	0.50 %	Slope of Pipe		
d =	8	inches	ches 0.63 ft Flow Depth			
d/D =	0.75		Proportional Depth			W
theta =	4.1888	radians		Angle of Flow		
a =	0.44	sq.ft		Area of Flow		
p =	1.75	ft		Wetted Perimeter		
r =	0.25	ft		Hydraulic Radiu	S	
Using Manning's Ed	quation, for	pipe at flow	depth 'd'			
v =	4.66	fps		Flow Velocity	ΟΚ	Therefore
Q =	2.045	cfs		Flow Rate	ок	Pipe Size is OK

SD 31 = SD29 + SD	30				Q _{100-YR} =	5.48	
Calculations for Ve	elocity and	d Discharge					
D =	14		1.17 ft Diameter of Pipe				
n =	0.009		PVC Manning's Roughness Coefficient				
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe				
d =	11	inches	0.88 ft	Flow Depth			
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	0.86	sq.ft		Area of Flow			
p =	2.44	ft		Wetted Perimeter			
r =	0.35	ft		Hydraulic Radiu	S		
Using Manning's Eq	quation, for	pipe at flow	depth 'd'				
v =	5.83	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	5.016	cfs		Flow Rate	NG	Pipe Size is OK	

SD 32 = Catchmen	nt 13 (7 -9 I	Downspots)			Q _{100-YR} =	0.35		
Calculations for V	elocity and	d Discharge						
D =	10		0.83 ft Diameter of Pipe					
n =	0.009		PVC	Manning's Roug	hness Co	efficient		
S =	0.005	ft/ft	0.50 %	Slope of Pipe				
d =	8	inches	0.63 ft	Flow Depth				
d/D =	0.75			Proportional Depth of Flow				
theta =	4.1888	radians		Angle of Flow				
a =	0.44	sq.ft		Area of Flow				
p =	1.75	ft		Wetted Perimeter				
r =	0.25	ft		Hydraulic Radiu	S			
Using Manning's Ed	Using Manning's Equation, for pipe at flow depth 'd'							
v =	4.66	fps		Flow Velocity	ΟΚ	Therefore,		
Q =	2.045	cfs		Flow Rate	ОК	Pipe Size is OK		

SD 33 = SD31 +SD	32				Q _{100-YR} =	5.83	
Calculations for V	elocity and	d Discharge					
D =	18		1.50 ft Diameter of Pipe				
n =	0.009		PVC	Manning's Roug	hness Co	efficient	
S =	0.005	ft/ft	0.50 %	Slope of Pipe			
d =	14	inches	ches 1.13 ft Flow Depth				
d/D =	0.75		Proportional Dept			N	
theta =	4.1888	radians		Angle of Flow			
a =	1.42	sq.ft		Area of Flow			
p =	3.14	ft		Wetted Perimeter			
r =	0.45	ft		Hydraulic Radiu	S		
Using Manning's Ed	quation, for	pipe at flow	depth 'd'				
v =	6.90	fps		Flow Velocity	ОК	Therefore,	
Q =	9.803	cfs		Flow Rate	ок	Pipe Size is OK	

SD 34 = Catchmen	t 10				Q _{100-YR} =	0.58	
Calculations for Ve	elocity and	d Discharge					
D =	10		0.83 ft Diameter of Pipe				
n =	0.009		PVC Manning's Roughness Coefficien				
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe				
d =	8	inches	iches 0.63 ft Flow Depth				
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	0.44	sq.ft		Area of Flow			
p =	1.75	ft		Wetted Perimeter			
r =	0.25	ft		Hydraulic Radiu	S		
Using Manning's Eq	uation, for	pipe at flow	depth 'd'				
v =	4.66	fps		Flow Velocity	ОК	Therefore,	
Q =	2.045	cfs		Flow Rate	ОК	Pipe Size is OK	

SD 35 = SD33 + SI	034				Q _{100-YR} =	6.41	
Calculations for V	elocity and	d Discharge)				
D =	18		1.50 ft Diameter of Pipe				
n =	0.009		PVC	Manning's Roug	hness Co	efficient	
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe				
d =	14	inches	nches 1.13 ft Flow Depth				
d/D =	0.75	Proportional Depth of Flow			V		
theta =	4.1888	radians		Angle of Flow			
a =	1.42	sq.ft		Area of Flow			
p =	3.14	ft		Wetted Perimete	neter		
r =	0.45	ft		Hydraulic Radiu	S		
Using Manning's Ed	quation, for	pipe at flow	depth 'd'				
v =	6.90	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	9.803	cfs		Flow Rate	OK	Pipe Size is OK	

SD 36 = Catchmen	it 9				Q _{100-YR} =	4.83	
Calculations for V	elocity and	d Discharge					
D =	12		1.00 ft Diameter of Pipe				
n =	0.009		PVC	Manning's Roug	hness Co	oefficient	
S =	0.005	ft/ft	0.50 %	Slope of Pipe			
d =	9	inches	ches 0.75 ft Flow Depth				
d/D =	0.75			Proportional De	Proportional Depth of Flow		
theta =	4.1888	radians		Angle of Flow			
a =	0.63	sq.ft		Area of Flow			
p =	2.09	ft		Wetted Perimeter			
r =	0.30	ft		Hydraulic Radiu	S		
Using Manning's Ec	quation, for	pipe at flow	depth 'd'				
v =	5.26	fps		Flow Velocity	ОК	Therefore,	
Q =	3.325	cfs		Flow Rate	NG	Pipe Size is OK	

SD 37 = SD35 +SD3	36				Q _{100-YR} =	11.24
Calculations for Velocity and Discharge						
D =	18		1.50 ft	Diameter of Pip	е	
n =	0.009		PVC	Manning's Roug	hness Co	efficient
S =	0.005	ft/ft	t 0.50 % Slope of Pipe			
d =	14	inches	hes 1.13 ft Flow Depth			
d/D =	0.75		Proportional Depth of Flow			N
theta =	4.1888	radians		Angle of Flow		
a =	1.42	sq.ft		Area of Flow		
p =	3.14	ft		Wetted Perimet	er	
r =	0.45	ft		Hydraulic Radiu	S	
Using Manning's Eq	uation, for	pipe at flow	depth 'd'			
v =	6.90	fps		Flow Velocity	ОК	Therefore,
Q =	9.803	cfs		Flow Rate	NG	Pipe Size is OK

SD 38 = Catchmen	SD 38 = Catchment 13 (8 -9 Downspots) Q _{100-YR} =						
Calculations for V	elocity and	d Discharge					
D =	10		0.83 ft	Diameter of Pipe	е		
n =	0.009		PVC Manning's Roughness Coefficie				
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe				
d =	8	inches	ches 0.63 ft Flow Depth				
d/D =	0.75		Proportional Depth of Flow			N	
theta =	4.1888	radians		Angle of Flow			
a =	0.44	sq.ft		Area of Flow			
p =	1.75	ft		Wetted Perimete	er		
r =	0.25	ft		Hydraulic Radiu	S		
Using Manning's Ec	quation, for	pipe at flow	depth 'd'				
v =	4.66	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	2.045	cfs		Flow Rate	ОК	Pipe Size is OK	

SD 39 =SD37 + SD	38				Q _{100-YR} =	11.59
Calculations for V	elocity and	d Discharge				
D =	18		1.50 ft	Diameter of Pipe	е	
n =	0.009		PVC	Manning's Roug	hness Co	efficient
S =	0.005	ft/ft	t 0.50 % Slope of Pipe			
d =	14	inches	es 1.13 ft Flow Depth			
d/D =	0.75			Proportional Depth of Flow		
theta =	4.1888	radians		Angle of Flow		
a =	1.42	sq.ft		Area of Flow		
p =	3.14	ft		Wetted Perimeter		
r =	0.45	ft		Hydraulic Radiu	S	
Using Manning's Ec	quation, for	pipe at flow	depth 'd'			
v =	6.90	fps		Flow Velocity	ΟΚ	Therefore,
Q =	9.803	cfs		Flow Rate	NG	Pipe Size is OK

SD 40 = Catchmen	t 13 (<mark>9 -9 I</mark>	Downspots)			Q _{100-YR} =	0.35
Calculations for Ve	elocity and	d Discharge				
D =	10		0.83 ft	Diameter of Pipe	е	
n =	0.009		PVC Manning's Roughness Coefficie			
S =	0.005	ft/ft	ft 0.50 % Slope of Pipe			
d =	8	inches	hes 0.63 ft Flow Depth			
d/D =	0.75		Proportional Depth of Flo			N
theta =	4.1888	radians		Angle of Flow		
a =	0.44	sq.ft		Area of Flow		
p =	1.75	ft		Wetted Perimeter	er	
r =	0.25	ft		Hydraulic Radiu	S	
Using Manning's Eq	uation, for	pipe at flow	depth 'd'			
v =	4.66	fps		Flow Velocity	ΟΚ	Therefore
Q =	2.045	cfs		Flow Rate	ОК	Pipe Size is OK

SD 41 = SD39 +SD	40				Q _{100-YR} =	11.94	
Calculations for Ve	Calculations for Velocity and Discharge						
D =	24		2.00 ft	Diameter of Pipe	е		
n =	0.009		PVC	Manning's Roug	hness Co	efficient	
S =	0.005	ft/ft	/ft 0.50 % Slope of Pipe				
d =	18	inches	ches 1.50 ft Flow Dept				
d/D =	0.75			Proportional Depth of Flow			
theta =	4.1888	radians		Angle of Flow			
a =	2.53	sq.ft		Area of Flow			
p =	4.19	ft		Wetted Perimete	er		
r =	0.60	ft		Hydraulic Radiu	S		
Using Manning's Eq	quation, for	pipe at flow	depth 'd'				
v =	8.35	fps		Flow Velocity	ΟΚ	Therefore,	
Q =	21.112	cfs		Flow Rate	ОК	Pipe Size is OK	

APPENDIX E CATCH BASIN SIZING

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 = Fax: 323-729-6043 e-mail: vca@vcaeng.com Orange County 2151 Michelson Dr. # 242, Irvine, CA 92612 Tel: 949-679-0870 = Fax: 949-679-9370 www.vcaeng.com

VCA Engin	A Engineers, Inc.	
Client:	CANNONDESIGN	Job No. 2092-219
Project:	Medical Office Building	Date: 8/21/2019
		Engineer: VCA

			Head		Orific	e Flow	Weir Fl	ow		-
CB / TD	Subarea	Q _{100-year}	h	Catch Basin	Sq Ft Open	Q _{orifice}	Perimeter Lineal Feet	Q _{weir}	CB Design OK?	Type of Flow
No.		(cfs)	(ft)		(ft²)	(cfs)	(ft)	(cfs)	Q _{orifice} > Q _{100-year} Q _{weir} > Q100 _{-year}	
CB1	1	0.63	0.08	36" x 36"	7.0	14.14	12.0	0.90	OK	WEIR
CB2	2	1.06	0.16	36" x 36"	7.0	20.00	12.0	2.53	OK	WEIR
CB3	2	1.06	0.16	36" x 36"	7.0	14.14	12.0	2.53	OK	WEIR
CB4	3	0.67	0.08	36" x 36"	7.0	14.14	12.0	0.90	OK	WEIR
CB5	4	3.89	0.20	48" x 48"	16.0	51.11	16.0	4.72	OK	WEIR
CB6	5	1.85	0.16	36" x 36"	7.0	20.00	12.0	2.53	OK	WEIR
CB7	7	1.31	0.16	36" x 36"	7.0	20.00	12.0	2.53	OK	WEIR
CB8	8	0.94	0.16	36" x 36"	7.0	20.00	12.0	2.53	OK	WEIR
CB9	12	3.77	0.20	48" x 48"	16.0	51.11	16.0	4.72	OK	WEIR
CB10	11	1.36	0.16	36" x 36"	7.0	20.00	12.0	2.53	OK	WEIR
CB11	10	0.58	0.16	36" x 36"	7.0	20.00	12.0	2.53	OK	WEIR
CB12	9	4.83	0.23	48" x 48"	16.0	54.80	16.0	5.82	OK	WEIR

Orifice Equation

Using the equation: Q =	$C\times A_{O}\times (2gh)^{1/2},$	
Runoff coefficient (C) =	0.89	
Gravitational Constant (g) =	32.2	ft/s ²

<u>Notes</u>

- 1. R-xxxx models refer to Neenah Catalog for square feet open and weir perimeter lineal feet values.
- $\ensuremath{\mathbf{2}}.$ Existing Catch Basin sizes approximate and based on survey.
- 3. Existing Catch Basins are assumed to have 50% opening.

Weir Equation

Using the equation: $Q = 3.3 \times P \times (h)^{1.5}$

APPENDIX F BMP DESIGN CALCULATION

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 = Fax: 323-729-6043 e-mail: vca@vcaeng.com Orange County 2151 Michelson Dr. # 242, Irvine, CA 92612 Tel: 949-679-0870 = Fax: 949-679-9370 www.vcaeng.com

	Effective	Wildomar MOB Effective Impervious Fraction Calculation								
DMA	Effective Effective Impervious Impervious Surface Type Area (acres) Fraction. I F									
1	Roof	0.653	1	0.653						
2	Roads	2.378	1	2.378						
3	Sidewalks	0.684	1	0.684						
4	Parking	1.566	1	1.566						
5	Landscape	0.9	0.1	0.09						
6	Detention Pond	0.887	0.1	0.0887						
7	Soil D	0.84	0.4	0.336						
8	Soil D	0.79	0.4	0.316						
	$A_{T} =$	8.70								
$I_F =$	$\frac{\sum_{n=1}^{7} \left((I_{Fn}) * A_n \right)}{A_T} =$	0.70								

	largarita W		Legend:		_ *	aired Entries
	Volume, V _{BMP}					ulated Cells
		e used in conjunction with	BMP designs from		-	<u>00k</u>)
Company Name	VCA Engineers				/14/2020	
Designed by	VCA Engineers		-	ty Case No		
Company Project Nur		Medical Office Build	ing			
Drainage Area Numb	er/Name	All DMAs				
Enter the Area Tribut	ary to this Featur	e	$A_{\rm T} = 8$	acres		
85 th Per	centile, 24-hour	Rainfall Depth, from t	ne Isohyetal Ma	ap in Handbo	ok Appendix	E
Site Location				Township	Wildomar	
				Range		
				Section		
Enter the 85 th Pe	rcentile, 24-hour	Rainfall Depth		D ₈₅ =	0.70	
	D	etermine the Effective	Impervious Fra	action		
Trans of most lar	- 1		Mixed Surfac	o Tunos		
Type of post-dev (use pull down n	-	e cover	WIIXed Sullac	e Types		
Effective Imperv				T —	0.70	
	Tous Machon			$I_f =$	0.70	
	Calculate the con	posite Runoff Coeffic	cient, C for the	BMP Tributa	ry Area	
Use the followin	g equation based	on the WEF/ASCE M	lethod			
$C = 0.858 I_f^3 - 0.7$	$78I_{\rm f}^2 + 0.774I_{\rm f} + 0.774I_{\rm f}$).04		C =	0.50	
]	Determine Design Stor	age Volume, V	V _{BMP}		
Calculate V _U , the	e 85% Unit Stora	ge Volume $V_U = D_{85}$	x C	$V_u =$	0.35	(in*ac)/ac
Calculate the des	sign storage volu	me of the BMP, V _{BMP} .				
V_{BMP} (ft ³)=	V _U (in-ac/ac)	$X A_{T}$ (ac) x 43,560 (f	t²/ac)	$V_{BMP} =$	11,053	ft ³
		12 (in/ft)				
Notes:						

Sa	nta Margarita	a Watershed		Legend:	Required Entries		
		Q _{BMP} (Rev. 03-2012)		Legend.	Calculated Cells		
Company Name	VCA Engineers, I	nc.		Date	2/14/2020		
Designed by	VCA Engineers, Inc. County/City Case No						
Company Project	t Number/Name	Medical Office Buildin	g				
Drainage Area N	umber/Name	All DMAs					
Enter the Area T	ributary to this Fea	ture $A_T =$	8.7	acres			
		Determine the Effective	e Impe	rvious Fraction			
	f post-developmen Il down menu)	t surface cover		Mixed	l Surface Types		
Effecti	ve Impervious Frac	tion			$I_f = $ 0.70		
	Calculate the	composite Runoff Coeff	icient,	C for the BMP Tr	ributary Area		
Use the	e following equation	n based on the WEF/AS	CE Me	ethod			
	$358I_{f}^{3} - 0.78I_{f}^{2} + 0.7$				C = 0.49		
		BMP Design	Flow	Rate			
Q _{BMP} =	C x I x A _T			$Q_{BMP} =$	$0.9 ftheta^3/s$		
Notes:							

Biofiltration with	No Infiltration Facility -	BMP ID	Lacard	Required	Entries		
Desig	n Procedure		Legend:	Calculate	ed Cells		
Company Name:	VCA Engineer	rs, Inc.		Date:	2/14/2020		
Designed by:	VCA Engineer		County/Cit	y Case No.:			
		Design Volume					
Enter the area	tributary to this feature			$A_T =$	8.7	acres	
Enter V_{BMP} determined from Section 2.1 of this Handbook $V_{BMP} = 11,053$ ft ³							
Estimated foo	tprint of BMP, Area _{BMP} (ava	ailable space or 3%	imp. area)	Area _{BMP} =	5,700	ft^2	
should be the cor ponding elevation	Note: This area shall be measured at the mid-ponding depth of the BMP. For systems with side-slopes, this should be the contour that is midway between the floor of the basin and the maximum water quality ponding elevation of the basin. The underlying gravel layer for drain pipes should extend to this contour. For systems with vertical walls, the effective area is the full footprint.						
	Biofiltration with	No Infiltration Fact	ility Surface Are	a			
1	ace Ponding Layer (6" minin	-	,	$d_{\rm P} =$	12.0	inches	
	neered Soil Media (24" to 3	50; 18 II vertically	(constrained)	$d_s =$	36.0	inches	
	Filtration Rate (2.5 in/hr)			I _{design} =	2.5	in/hr	
Allowable Ko	uting Period, T _{routing} (5 hrs)			$T_{routing} =$	5.0	hr	
Effective Biof	iltration Depth, $d_{E bio}$						
	$(d_P + (0.3 \text{ x } d_S) + (I_{\text{design}} *)$	$T_{routing}))(ft)$		$d_{E_{bio}} =$	2.9	ft	
Effective Stati	c Depth, d _{E bio static}						
	$= (d_{\rm P} + (0.3 \ \bar{*} \ d_{\rm S}))$ (ft)			$d_{E_bio_static} =$	1.9	ft	
V _{biofiltered} =	$d_{E_bio} * Area_{BMP}$			$V_{biofiltered} =$	16767.5	ft ³	
Vbiofiltered_sta	$a_{tic} = d_{E_bio_static} * Area_{BMP}$		V_{bic}	ofiltered_static =	10830.0	ft ³	
	Si	zing Option 1 Resu	lt				
Criteria 1:	$V_{\text{biofiltered (with routing)}} \ge 150\% \text{ of}$	V _{BMP}		Results:	PASS		
	Si	zing Option 2 Resu	lt				
Criteria 2:	$\mathrm{V}_{biofiltered_static} \geq 0.75~x~\mathrm{V}_{BMP}$			Results:	PASS		
		Note					
If neither of th inherently iter	iese criteria are met increase ative.	the footprint and re	erun calculations	s. This calcul	lation is		

Riverside County-SMR LID BMP Design Handbook April 2018

Biofiltration with No Retention Facility Properties			
Side Slopes in Partial Retention with Biofiltration Facility	z =	4	:1
Diameter of Underdrain		6	inches
Longitudinal Slope of Site (3% maximum)		0	%
Check Dam Spacing		0	feet
Describe Vegetation: Natural Grasses			
Notes:			

General Model Information

Project Name:	Wildomar MOB
Site Name:	Medical Office Building
Site Address:	Baxter Rd and the 15 Interstate Freeqay
City:	Wildomar
Report Date:	2/13/2020
Gage:	Wildomar / North Murrieta
Data Start:	1949/10/01
Data End:	2011/09/30
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2019/12/01

POC Thresholds

Low Flow Threshold for POC1:	10 Percent of the 2 Year
High Flow Threshold for POC1:	10 Year

Landuse Basin Data Predeveloped Land Use

DMA 1

Bypass:	No
GroundWater:	No
Pervious Land Use C D,Grass,Mod(5-10 C D,Grass,Very(>20%	
Pervious Total	8.7
Impervious Land Use	acre
Impervious Total	0
Basin Total	8.7
Element Flows To: Surface	Interflow

Groundwater

Mitigated Land Use

DMA 1

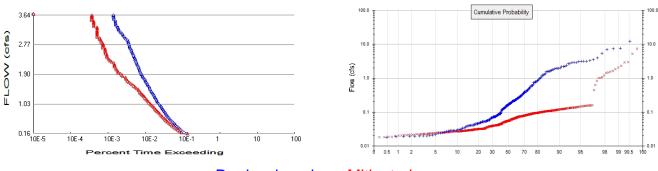
Bypass:	No
GroundWater:	No
Pervious Land Use A,Grass,Flat(0-5%) C D,Grass,Mod(5-10%) C D,Grass,Very(>20%)	acre 1.789 0.84 0.79
Pervious Total	3.419
Impervious Land Use Roads,Flat(0-5%) Roof Area Sidewalks,Flat(0-5%) Parking,Flat(0-5%)	acre 2.378 0.653 0.684 1.566
Impervious Total	5.281
Basin Total	8.7
Element Flows To:	

Element Flows TO.		
Surface	Interflow	Groundwater
Trapezoidal Pond 1	Trapezoidal Pond 1	

Routing Elements Predeveloped Routing

Mitigated Routing

Trapezoidal Pond 1


Bottom Length: Bottom Width: Depth: Volume at riser head: Side slope 1:	260.00 ft. 70.00 ft. 4.5 ft. 1.7526 acre-feet. 3 <u>T</u> o 1
Side slope 2:	3 To 1
Side slope 3:	3 To 1
Side slope 4:	3 To 1
Discharge Structure	
Riser Height:	3.5 ft.
Riser Diameter:	36 in.
Notch Type:	Rectangular
Notch Width:	1.500 ft.
Notch Height:	0.500 ft.
Orifice 1 Diameter:	1.842 in. Elevation:0 ft.
Element Flows To:	
Outlet 1 C	Dutlet 2

Pond Hydraulic Table

Stage(feet) 0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5500 0.6000 0.6500 0.7000 0.7500 0.8000 0.8500 0.9000 0.9500 1.0000 1.0500	Area(ac.) 0.417 0.420 0.422 0.424 0.426 0.429 0.431 0.433 0.436 0.438 0.440 0.438 0.440 0.443 0.445 0.445 0.447 0.450 0.452 0.454 0.457 0.459 0.461 0.466	Volume(ac-ft.) 0.000 0.020 0.042 0.063 0.084 0.105 0.127 0.149 0.170 0.192 0.214 0.236 0.258 0.281 0.303 0.326 0.348 0.371 0.394 0.417 0.440 0.464	Discharge(cfs) 0.000 0.020 0.029 0.035 0.041 0.046 0.050 0.054 0.058 0.061 0.065 0.068 0.071 0.074 0.077 0.079 0.082 0.084 0.087 0.089 0.092 0.094	<pre>Infilt(cfs) 0.000 0</pre>
0.8500 0.9000 0.9500	0.457 0.459 0.461	0.371 0.394 0.417	0.084 0.087 0.089	0.000 0.000 0.000
1.4000 1.4500 1.5000 1.5500	0.480 0.483 0.485 0.487 0.490	0.630 0.654 0.678 0.703	0.107 0.108 0.110 0.112 0.114	0.000 0.000 0.000 0.000 0.000

4.5000	0.639	2.365	28.20	0.000
4.5500	0.641	2.397	29.43	0.000

Analysis Results POC 1

+ Predeveloped

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	8.7
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 3.419 Total Impervious Area: 5.281

Flow Frequency Method: Cunnane

Flow Frequency Return Periods for Predeveloped. POC #1 **Return Period** Flow(cfs) 1.582068 2 year 2.964769 5 year 10 year 3.642447 25 year 7.464015

Flow Frequency Return Periods for Mitigated. POC #1 **Return Period** Flow(cfs) 2 year 0.143008 1.108705 5 year 10 year 1.89563 25 year 3.141289

Duration Flows

The Facility PASSED

Flow(cfs) 0.1582	Predev 2665	Mit 2950	Percentage	Pass/Fail Pass
0.1934 0.2286	2346 2111	2029 1762	86 83	Pass Pass
0.2638	1925	1594	82	Pass
0.2990	1760	1445	82	Pass
0.3342	1631	1321	80	Pass
0.3694	1523	1213	79	Pass
0.4046	1410	1099	77	Pass
0.4398 0.4750	1319 1218	1006 928	76 76	Pass Pass
0.5102	1139	850	74	Pass
0.5453	1053	787	74	Pass
0.5805	988	737	74	Pass
0.6157	917	686	74	Pass
0.6509	853	628	73	Pass
0.6861	813	582	71	Pass
0.7213 0.7565	777 735	547 508	70 69	Pass Pass
0.7917	696	477	68	Pass
0.8269	664	438	65	Pass
0.8621	630	408	64	Pass
0.8973	610	387	63	Pass
0.9325	576	367	63	Pass
0.9677 1.0029	543 521	340 315	62 60	Pass
1.0381	486	292	60	Pass Pass
1.0733	460	272	59	Pass
1.1085	440	254	57	Pass
1.1436	428	241	56	Pass
1.1788	410	226	55	Pass
1.2140	393	213	54 52	Pass
1.2492 1.2844	374 361	199 185	53 51	Pass Pass
1.3196	345	173	50	Pass
1.3548	328	161	49	Pass
1.3900	312	153	49	Pass
1.4252	296	146	49	Pass
1.4604	288	138	47	Pass
1.4956 1.5308	279 269	125 115	44 42	Pass Pass
1.5660	256	106	42	Pass
1.6012	244	95	38	Pass
1.6364	233	88	37	Pass
1.6716	224	79	35	Pass
1.7068	217	72	33	Pass
1.7420 1.7771	207	68 65	32	Pass
1.8123	195 184	65 64	33 34	Pass Pass
1.8475	179	54	30	Pass
1.8827	170	51	30	Pass
1.9179	163	47	28	Pass
1.9531	157	40	25	Pass
1.9883	153	40	26	Pass

3.572130826Pass3.607330826Pass	2.0235 2.0587 2.0939 2.1291 2.1643 2.1995 2.2347 2.2699 2.3051 2.3403 2.3755 2.4106 2.4458 2.4458 2.6570 2.6570 2.6922 2.7274 2.7626 2.7274 2.7626 2.7978 2.8330 2.8682 2.9034 2.9034 2.9034 2.9738 3.0089 3.0441 3.0793 3.1145 3.1497 3.1849 3.2553 3.2905 3.3257 3.3609 3.3961 3.4313 3.4665 3.5017 3.5369	$\begin{array}{c} 151\\ 146\\ 143\\ 137\\ 122\\ 127\\ 123\\ 116\\ 115\\ 107\\ 101\\ 99\\ 93\\ 90\\ 83\\ 81\\ 78\\ 75\\ 74\\ 72\\ 51\\ 54\\ 53\\ 86\\ 43\\ 40\\ 36\\ 35\\ 34\\ 34\\ 31\\ 31\\ \end{array}$	38 36 35 32 32 31 27 25 32 20 20 20 20 20 20 20 20 20 20 20 20 20	25 24 24 25 25 25 21 20 19 19 20 20 19 20 20 19 20 20 21 9 20 21 9 20 22 23 25 26 7 8 25 26 26 26 25 25 25 25 25 25 25 25 25 25 25 25 25	Pass Pass Pass Pass Pass Pass Pass Pass
3.6424 30 8 26 Pass	3.4665	34	9	26	Pass
	3.5017	31	8	25	Pass
	3.5369	31	8	25	Pass
	3.5721	30	8	26	Pass
	3.6073	30	8	26	Pass

Water Quality

Rational Method

Data for Rational Method is not available.

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

DMA 1 18.70ac		

Mitigated Schematic

DMA 1 8.70ac		
\$1		
Trapezoidal		

Predeveloped UCI File

Mitigated UCI File

Predeveloped HSPF Message File

Mitigated HSPF Message File

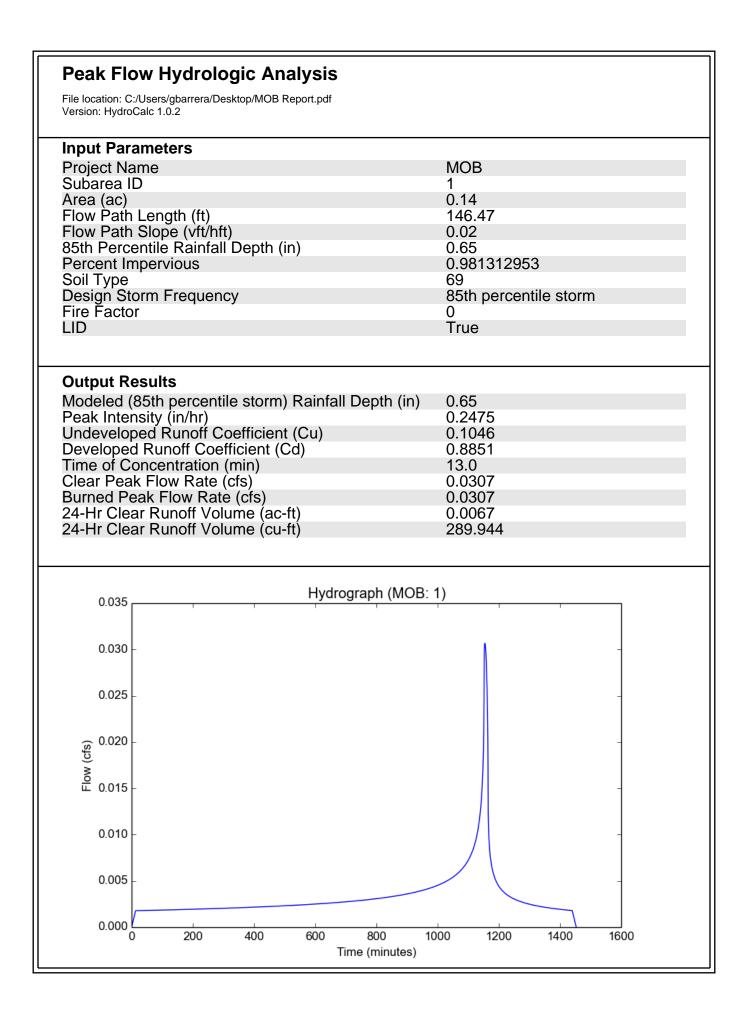
Disclaimer

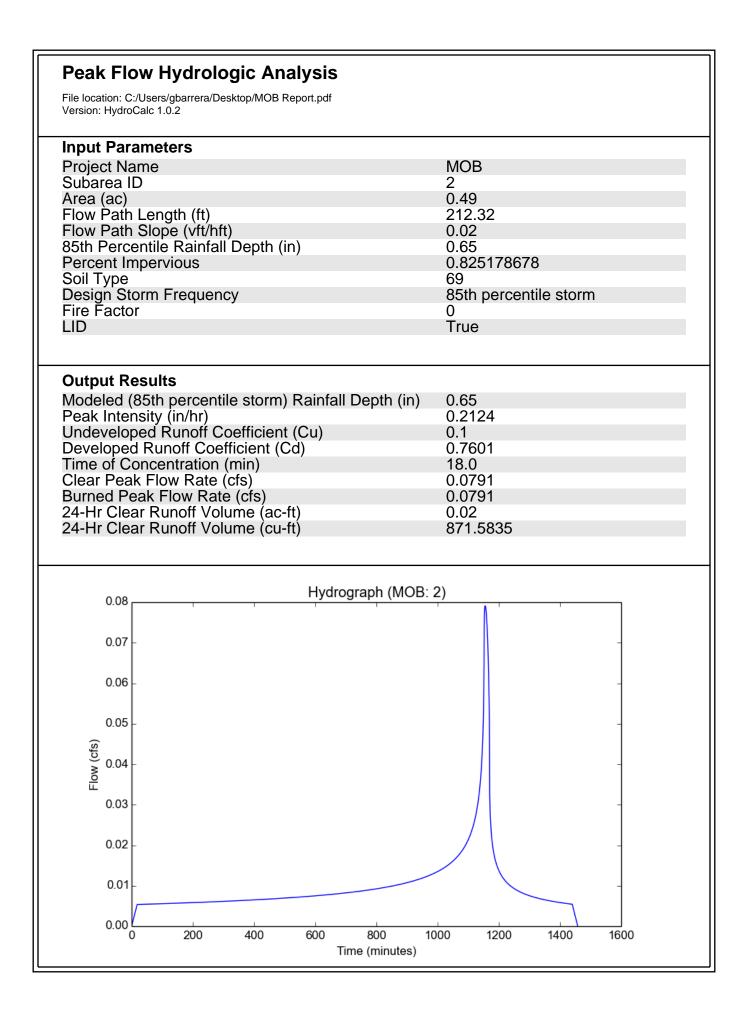
Legal Notice

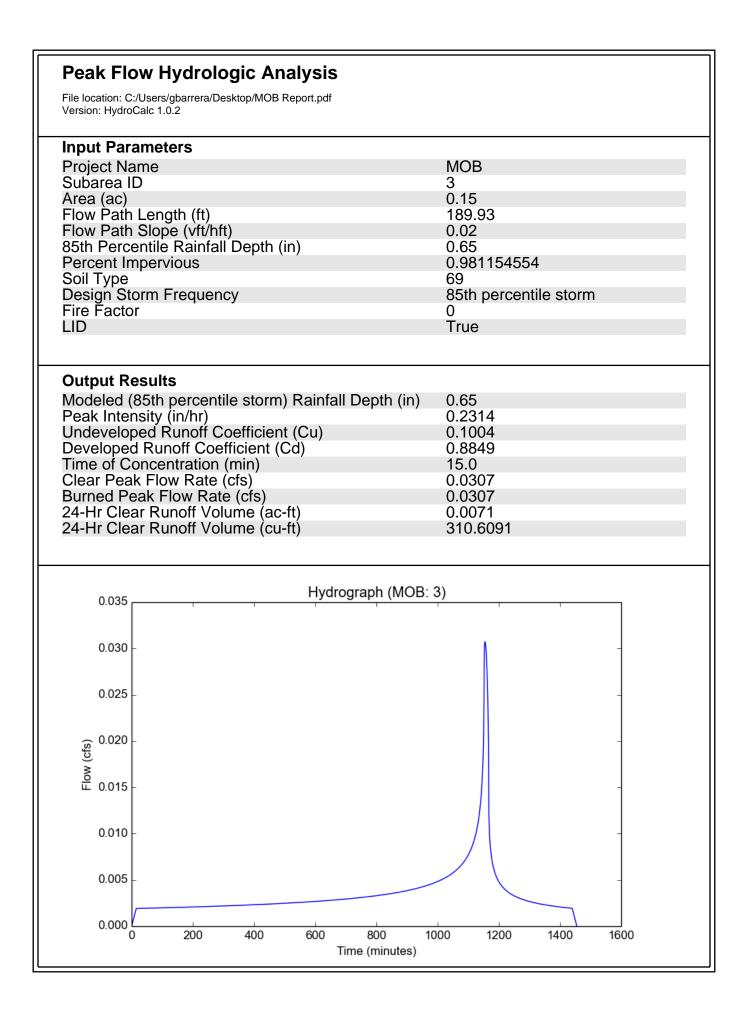
This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2020; All Rights Reserved.

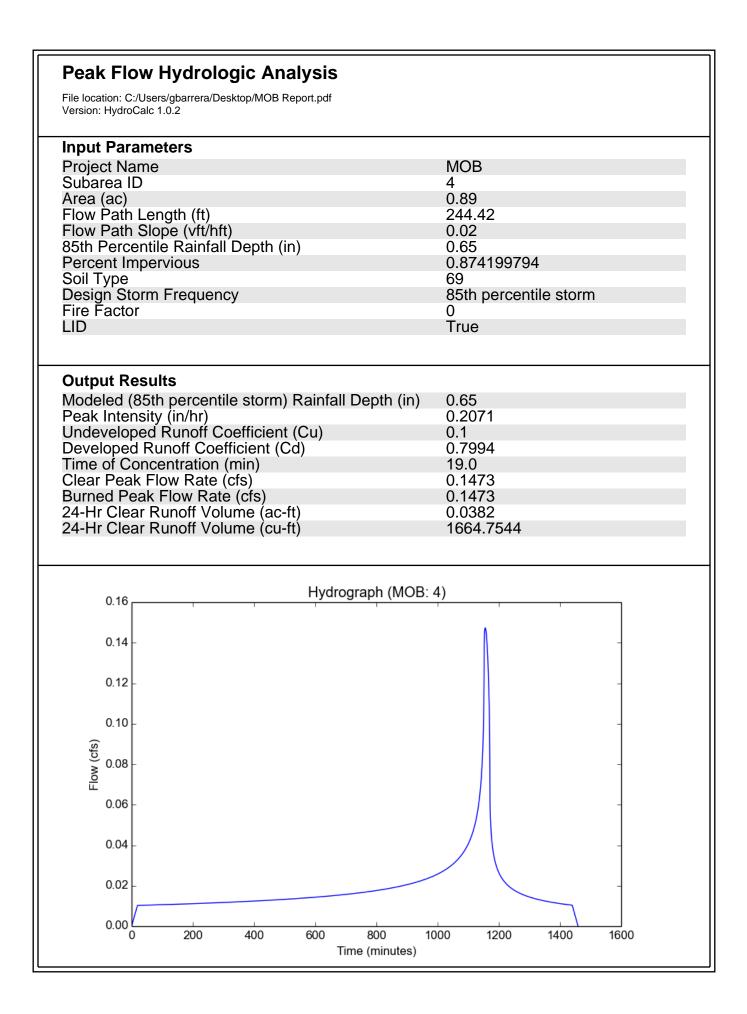
Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

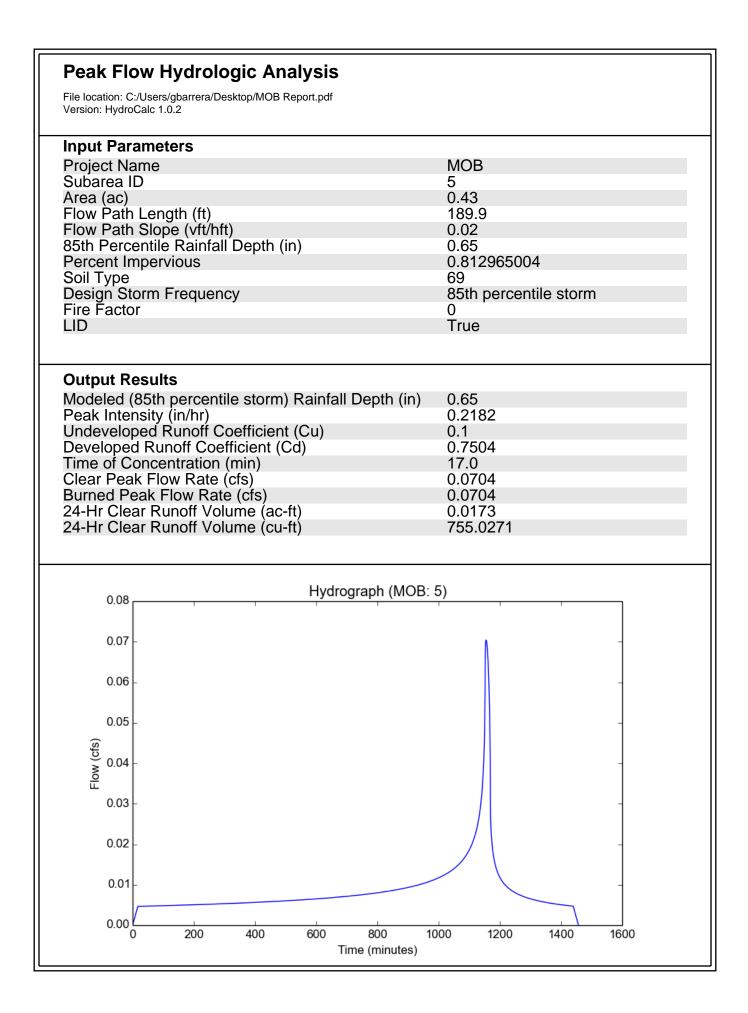
www.clearcreeksolutions.com

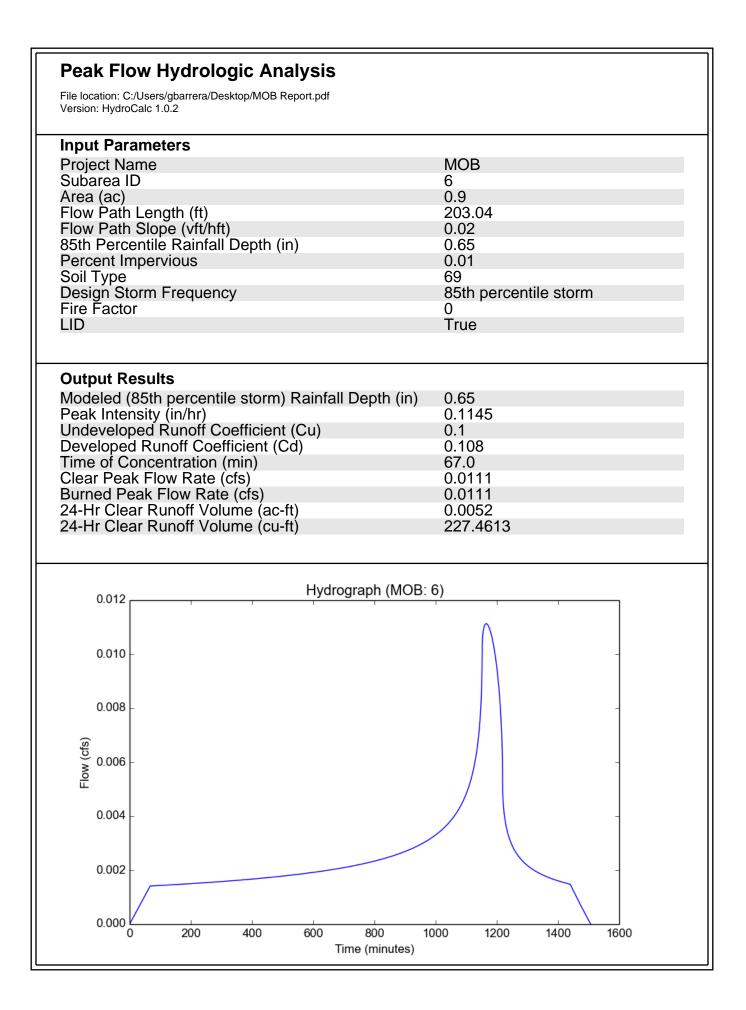


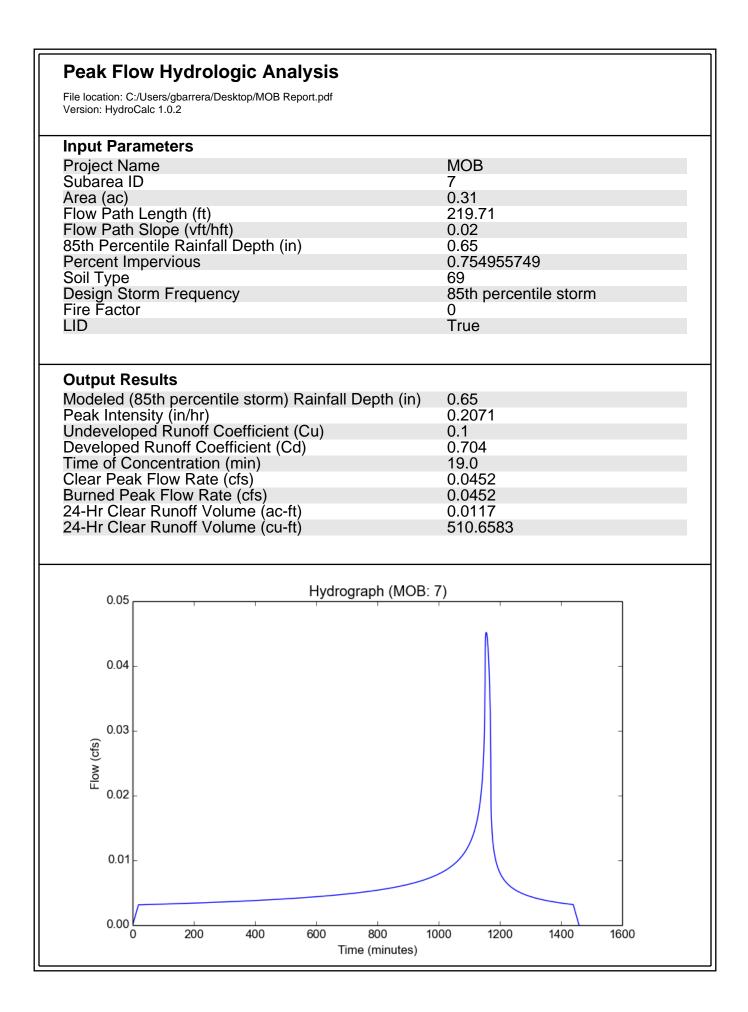

APPENDIX G CDS CALCULATIONS AND DETAILS

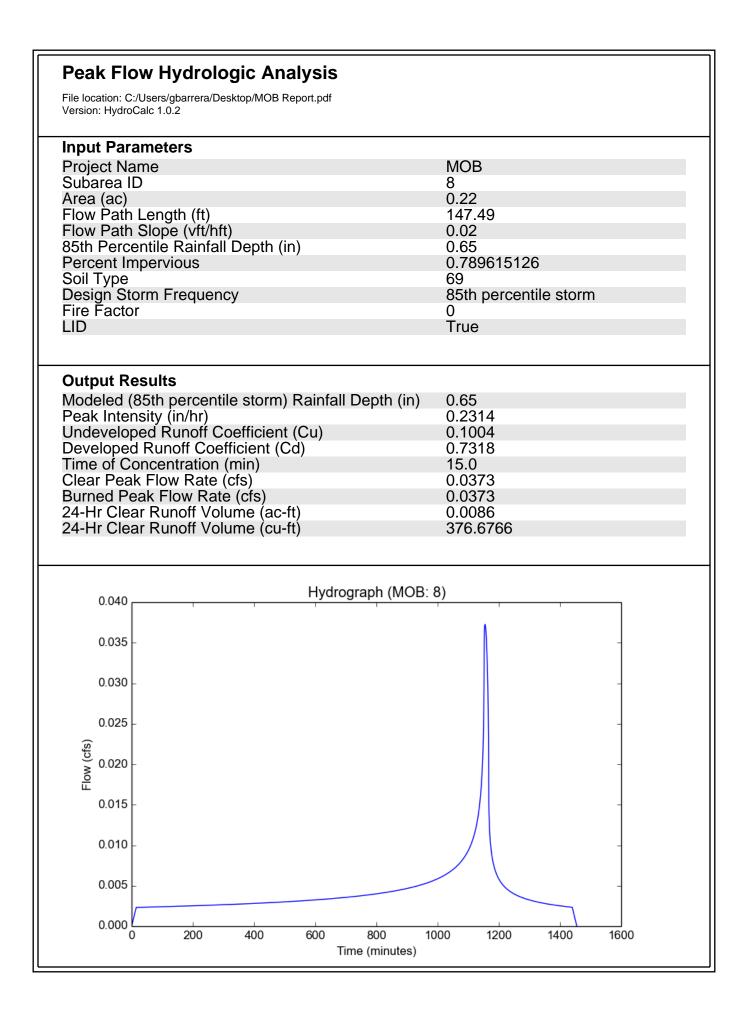

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 • Fax: 323-729-6043 e-mail: vca@vcaeng.com Orange County 2151 Michelson Dr. # 242, Irvine, CA 92612 Tel: 949-679-0870 • Fax: 949-679-9370 www.vcaeng.com

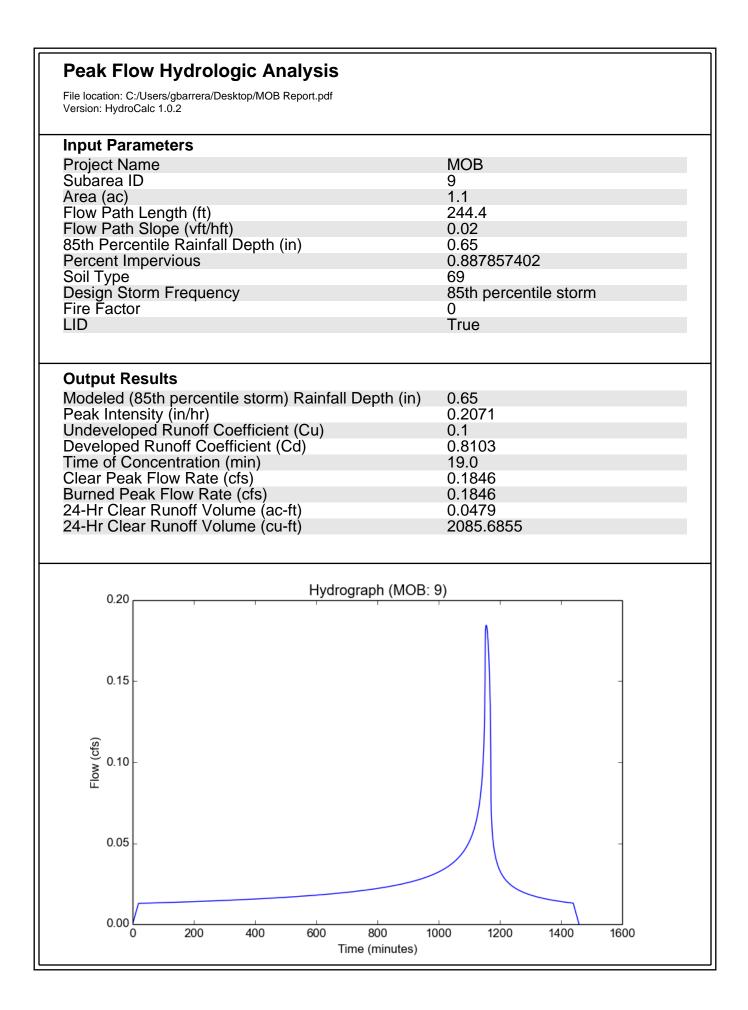

VCA Engineer	rs, Inc.	Subarea Information
Client:	CANNONDESIGN	Job No. 2092-219
Project:	Medical Office Building	Date: 8/21/2019
		Engineer: VCA
	Site Data - 85TH Percentile	

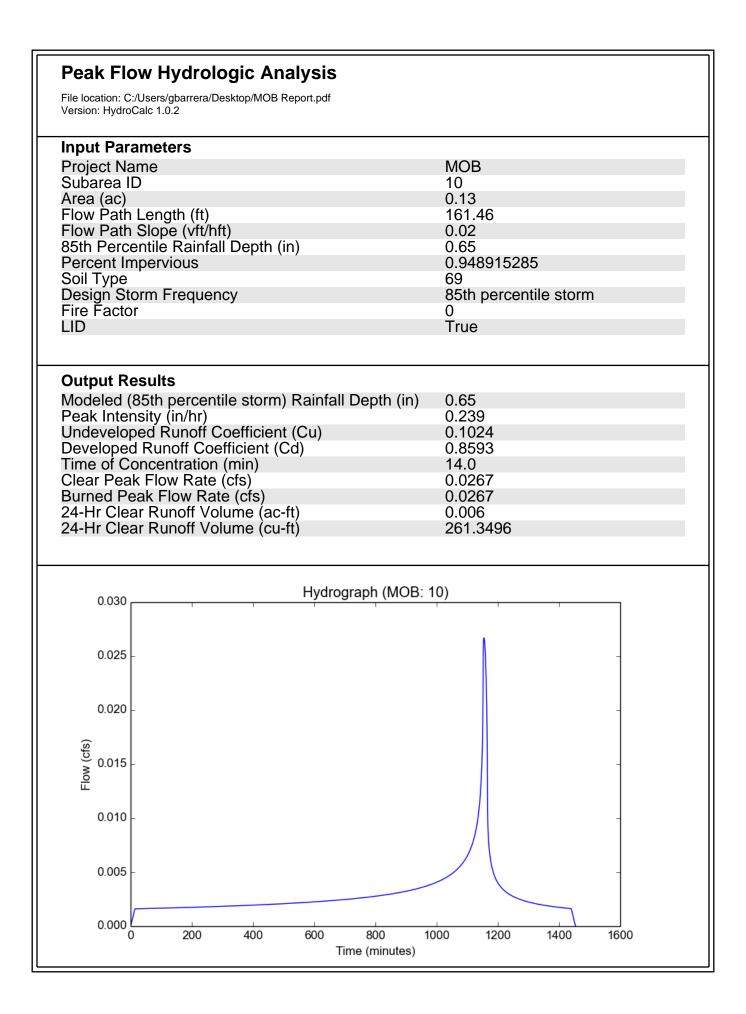

Site Data - 851H Percentile						
Catchment Area	Area (sf)	Area (acre)	Flow Path Length (ft)	Slope	Peak Flow Rate (cfs)	Runoff Volume (cf)
1	6,069.98	0.14	146.47	2.00%	0.03	289.94
2	21,470.15	0.49	212.32	2.00%	0.08	871.58
3	6,471.59	0.15	189.93	2.00%	0.03	310.61
4	38,821.24	0.89	244.42	2.00%	0.15	1664.75
5	18,539.37	0.43	189.90	2.00%	0.07	755.03
6	39,173.61	0.90	203.04	2.00%	0.01	227.46
7	13,675.53	0.31	219.71	2.00%	0.05	510.66
8	9,596.65	0.22	147.49	2.00%	0.04	376.68
9	47,911.41	1.10	244.40	2.00%	0.18	2085.69
10	5,717.17	0.13	161.46	2.00%	0.03	261.35
11	13,460.91	0.31	179.55	2.00%	0.06	583.41
12	37,930.41	0.87	282.18	2.00%	0.04	1569.57
13	30,701.26	0.70	251.22	2.00%	0.13	1474.21
Total	289,539.28	6.65			0.89	10,980.94

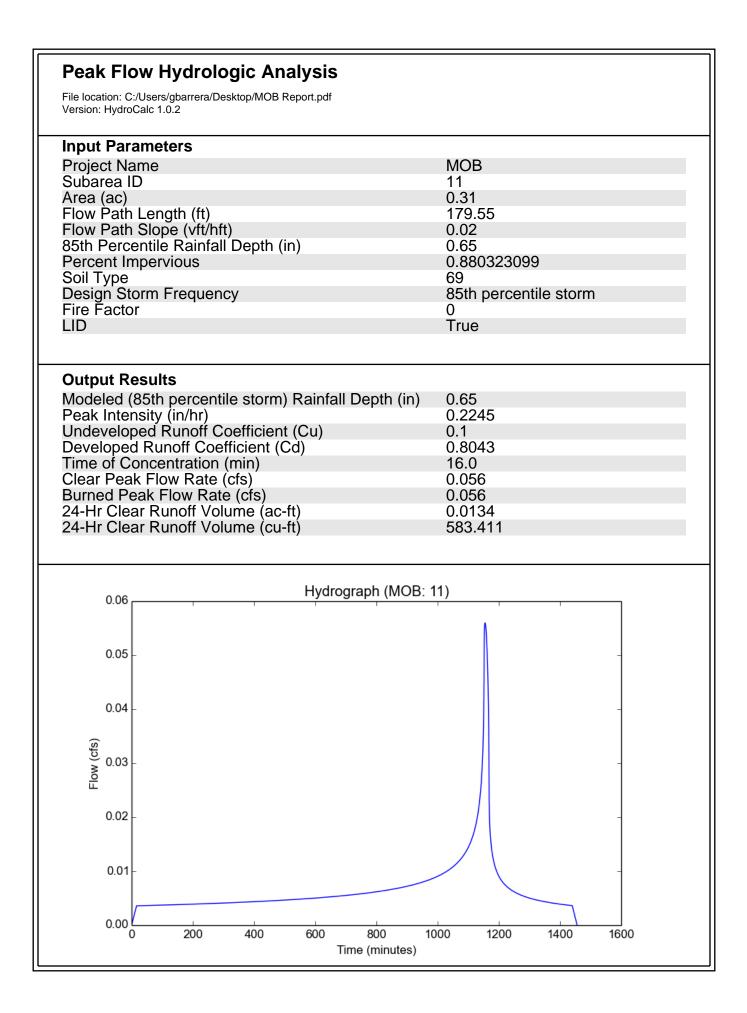


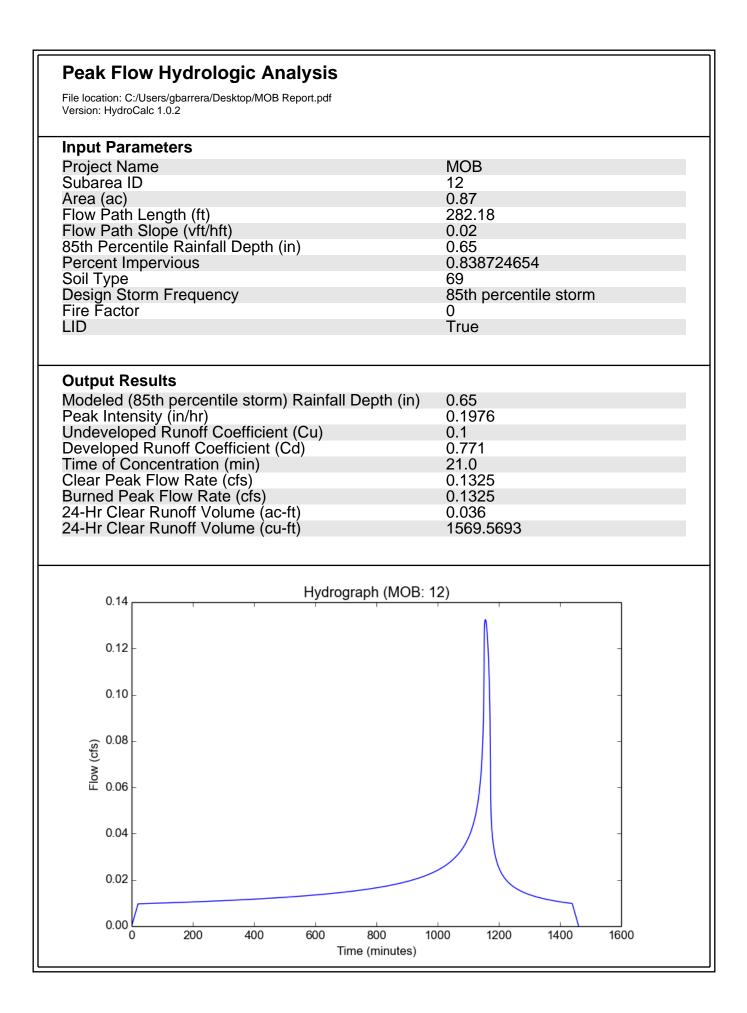


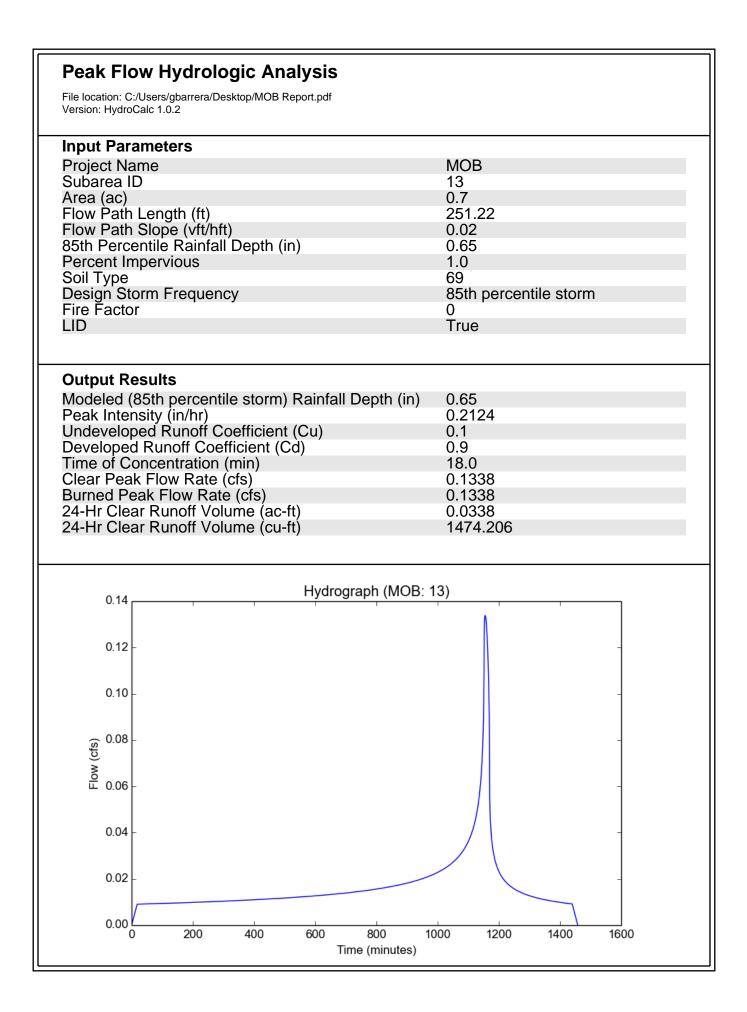


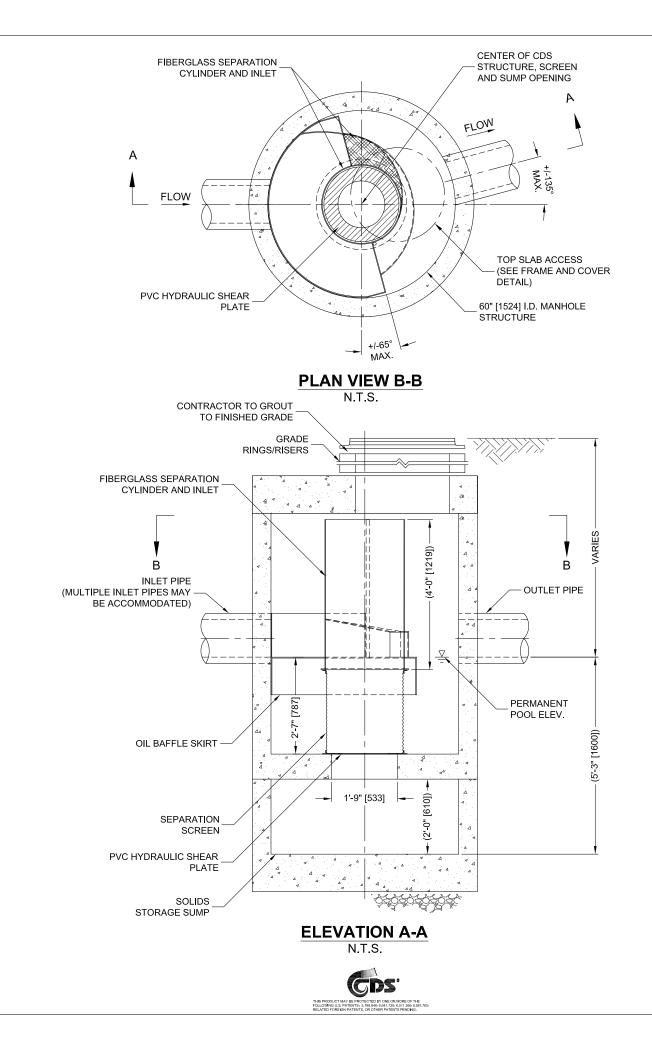


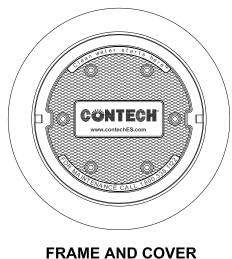












CDS2020-5-0
CDS2020-5-C RATED TREATMENT CAPACITY IS 1.1 CFS [31.2 L/s], OR PE 14.0 CFS [396 L/s]. IF THE SITE CONDITIONS EXCEED 14.0 CFS [396 L/s], /
THE STANDARD CDS2020-5-C CONFIGURATION IS SHOWN. ALTERNATE CONFIGURATIONS MAY BE COMBINED TO SUIT SITE REQUIREMENTS.
CONFIGURATION DESCRIPTION
GRATED INLET ONLY (NO INLET PIPE)
GRATED INLET ONLY (NO INLET PIPE) GRATED INLET WITH INLET PIPE OR PIPES
GRATED INLET WITH INLET PIPE OR PIPES
GRATED INLET WITH INLET PIPE OR PIPES CURB INLET ONLY (NO INLET PIPE)
GRATED INLET WITH INLET PIPE OR PIPES CURB INLET ONLY (NO INLET PIPE) CURB INLET WITH INLET PIPE OR PIPES

(DIAMETER VARIES)

N.T.S.

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- SOLUTIONS LLC REPRESENTATIVE. www.ContechES.com
- CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- AASHTO M306 AND BE CAST WITH THE CONTECH LOGO ..
- NECESSARY DURING MAINTENANCE CLEANING.

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- В.
- CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS AND ASSEMBLE STRUCTURE. С.
- CONTRACTOR TO PROVIDE, INSTALL, AND GROUT INLET AND OUTLET PIPE(S). MATCH PIPE INVERTS WITH ELEVATIONS SHOWN. ALL PIPE D. CENTERLINES TO MATCH PIPE OPENING CENTERLINES.
- E. SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

CH **ENGINEERED SOLUTIONS LLC** www.contechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX

CDS2020-5-C DESIGN NOTES

ER LOCAL REGULATIONS. MAXIMUM HYDRAULIC INTERNAL BYPASS CAPACITY IS AN UPSTREAM BYPASS STRUCTURE IS REQUIRED.

CONFIGURATIONS ARE AVAILABLE AND ARE LISTED BELOW. SOME

SITE SPECIFIC **DATA REQUIREMENTS**

STRUCTURE ID					
WATER QUALITY FLOW RATE (CFS OR L/s) *					*
PEAK FLOW RAT	E (CFS OR	L/s)			*
RETURN PERIOD	OF PEAK F	LO	W (YRS)		*
SCREEN APERTU	JRE (2400 C	DR 4	700)		*
PIPE DATA:	I.E.	1	MATERIAL	D	AMETER
INLET PIPE 1	*		*		*
INLET PIPE 2	*	* *		*	
OUTLET PIPE	*	* * *		*	
RIM ELEVATION *					
ANTI-FLOTATION BALLAST WIDTH HEIGHT		HEIGHT			
*		*		*	
NOTES/SPECIAL REQUIREMENTS:					

* PER ENGINEER OF RECORD

2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED

3. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.

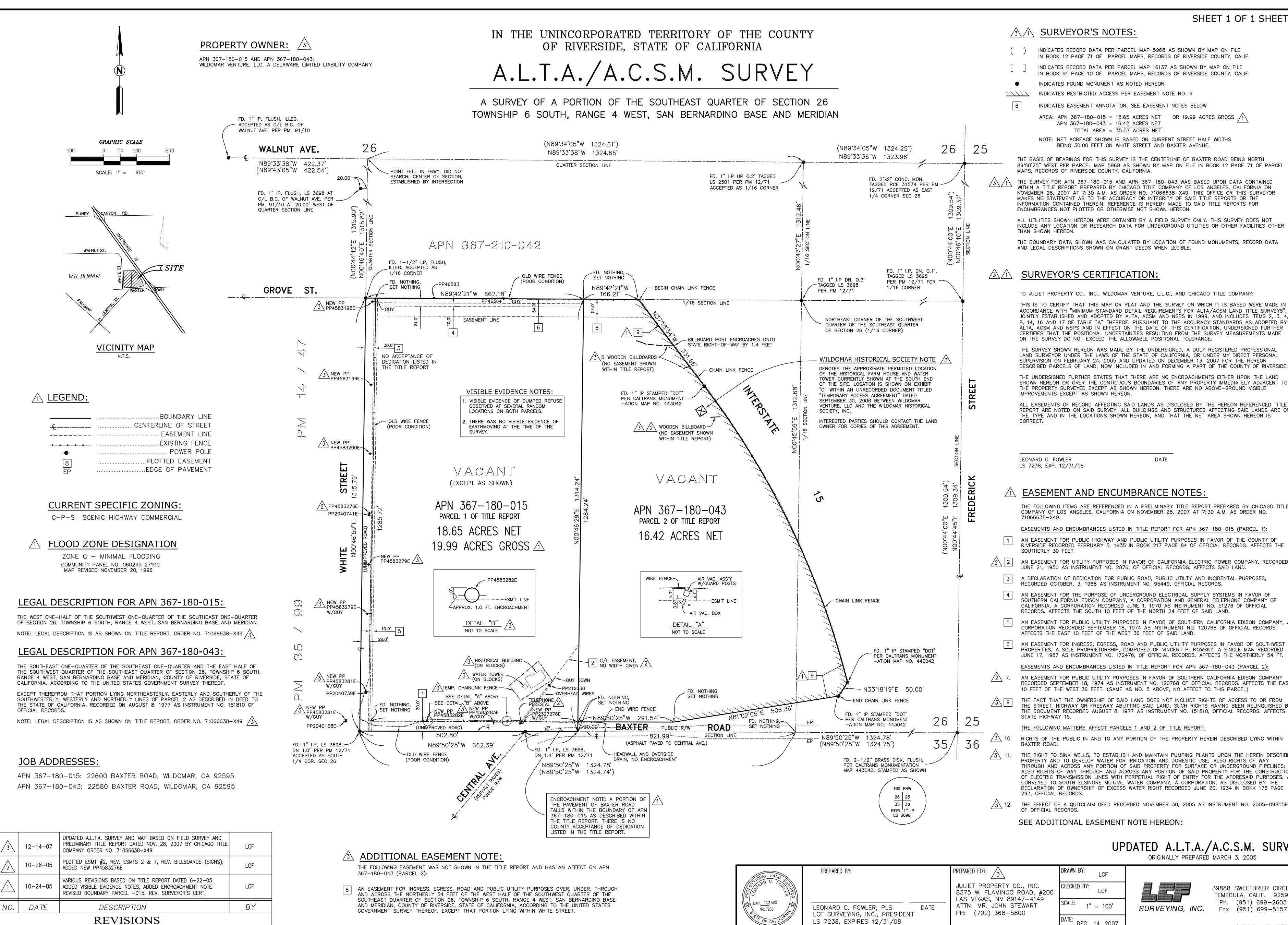
4. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' - 2', AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET

5. IF REQUIRED, PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS

6. CDS STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-478 AND AASHTO LOAD FACTOR DESIGN METHOD.

CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE.

CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS

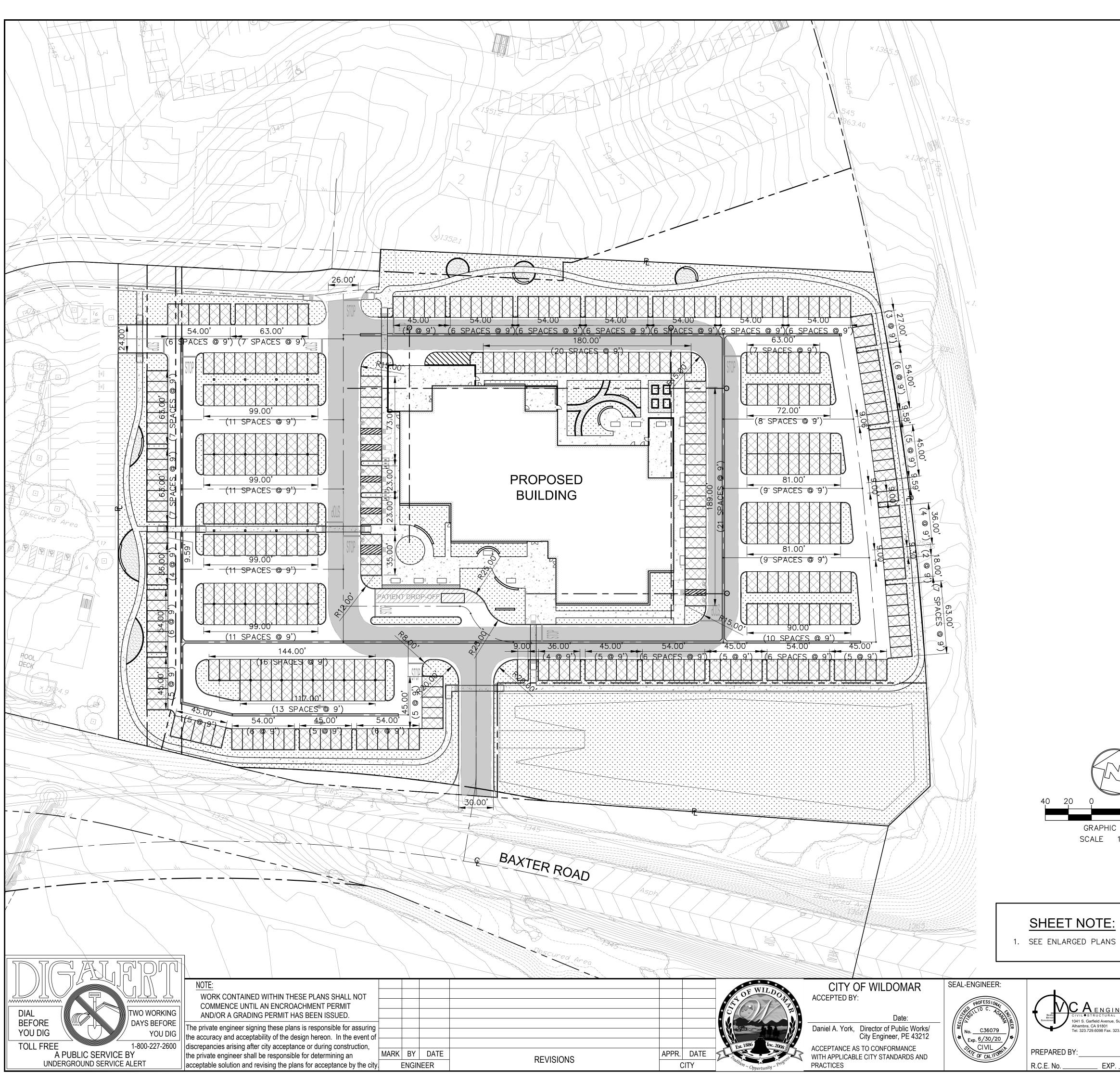

CDS2020-5-C **ONLINE CDS** STANDARD DETAIL

APPENDIX H SURVEY PLAN

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 • Fax: 323-729-6043 e-mail: vca@vcaeng.com

Orange County 2151 Michelson Dr. # 242, Irvine, CA 92612 Tel: 949-679-0870 • Fax: 949-679-9370 www.vcaeng.com

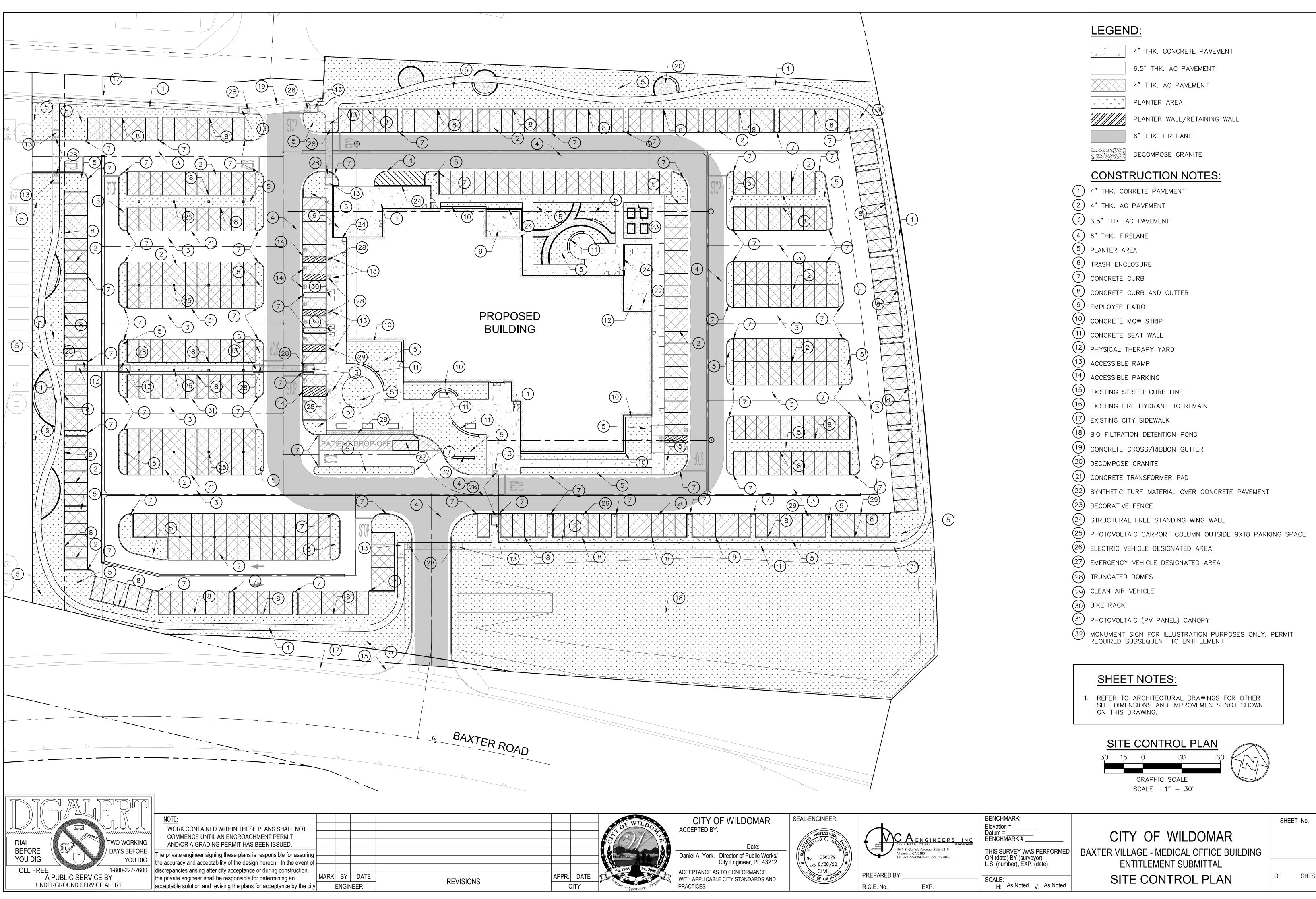
2	PREPARED BY:	PREPARED FOR: 3	DRAWN BY: LCF	
GURNEYOR CALLER		8375 W. FLAMINGO ROAD, #200	CHECKED BY: LCF	
/☆/	LEONARD C. FOWLER, PLS DATE	LAS VEGAS, NV 89147-4149 ATTN: MR. JOHN STEWART PH: (702) 368-5800	SCALE: 1" = 100'	SURVEYING, INC
AL AL	LCF SURVEYING, INC., PRESIDENT LS 7238, EXPIRES 12/31/08		DATE: DEC., 14, 2007	


N BY MAP ON FILE RSIDE COUNTY, CALIF. /N BY MAP ON FILE RSIDE COUNTY, CALIF.
ELOW 9 ACRES GROSS 1
T HALF WIDTHS VENUE.
BAXTER ROAD BEING NORTH E IN BOOK 12 PAGE 71 OF PARCEL
BASED UPON DATA CONTAINED LOS ANGELES, CALIFORNIA ON THIS OFFICE OR THIS SURVEYOR D TITLE REPORTS OR THE SAID TITLE REPORTS FOR
ONLY. THIS SURVEY DOES NOT ILITIES OR OTHER FACILITIES OTHER
DUND MONUMENTS, RECORD DATA
HICAGO TITLE COMPANY: I WHICH IT IS BASED WERE MADE IN R ALTA/ACSM LAND TITLE SURVEYS", 1999, AND INCLUDES ITEMS 2, 3, 4, SURACY STANDARDS AS ADOPTED BY RTIFICATION, UNDERSIGNED FURTHER THE SURVEY MEASUREMENTS MADE ERANCE.
DULY REGISTERED PROFESSIONAL OR UNDER MY DIRECT PERSONAL 13, 2007 FOR THE HEREON PART OF THE COUNTY OF RIVERSIDE.
CHMENTS EITHER UPON THE LAND ROPERTY IMMEDIATELY ADJACENT TO NO ABOVE-GROUND VISIBLE
BY THE HEREON REFERENCED TITLE URES AFFECTING SAID LANDS ARE OF NET AREA SHOWN HEREON IS
ES: REPORT PREPARED BY CHICAGO TITLE
AT 7:30 A.M. AS ORDER NO.
N 367–180–015 (PARCEL 1): IS IN FAVOR OF THE COUNTY OF
F OFFICIAL RECORDS. AFFECTS THE
LECTRIC POWER COMPANY, RECORDED AFFECTS SAID LAND. AND INCIDENTAL PURPOSES,
L RECORDS. SUPPLY SYSTEMS IN FAVOR OF NERAL TELEPHONE COMPANY OF MENT NO. 51276 OF OFFICIAL
IERN CALIFORNIA EDISON COMPANY, A 0. 120768 OF OFFICIAL RECORDS.
PURPOSES IN FAVOR OF SOUTHWEST KOWSKY, A SINGLE MAN RECORDED
S. AFFECTS THE NORTHERLY 54 FT. N 367–180–043 (PARCEL 2): IERN CALIFORNIA EDISON COMPANY
ERIGHTS OF ACCESS TO OR FROM
ORT:
TY HEREIN DESCRIBED LYING WITHIN
PLANTS UPON THE HEREIN DESCRIBED C USE; ALSO RIGHTS OF WAY FACE OR UNDERGROUND PIPELINES; AD PROPERTY FOR THE CONSTRUCTION RY FOR THE AFORESAID PURPOSES, AS PORATION, AS DISCLOSED BY THE JUNE 20, 1934 IN BOKK 176 PAGE
5 AS INSTRUMENT NO. 2005–0985597
A./A.C.S.M. SURVEY PARED MARCH 3, 2005
•

APPENDIX I SITE PLANS

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 = Fax: 323-729-6043 e-mail: vca@vcaeng.com

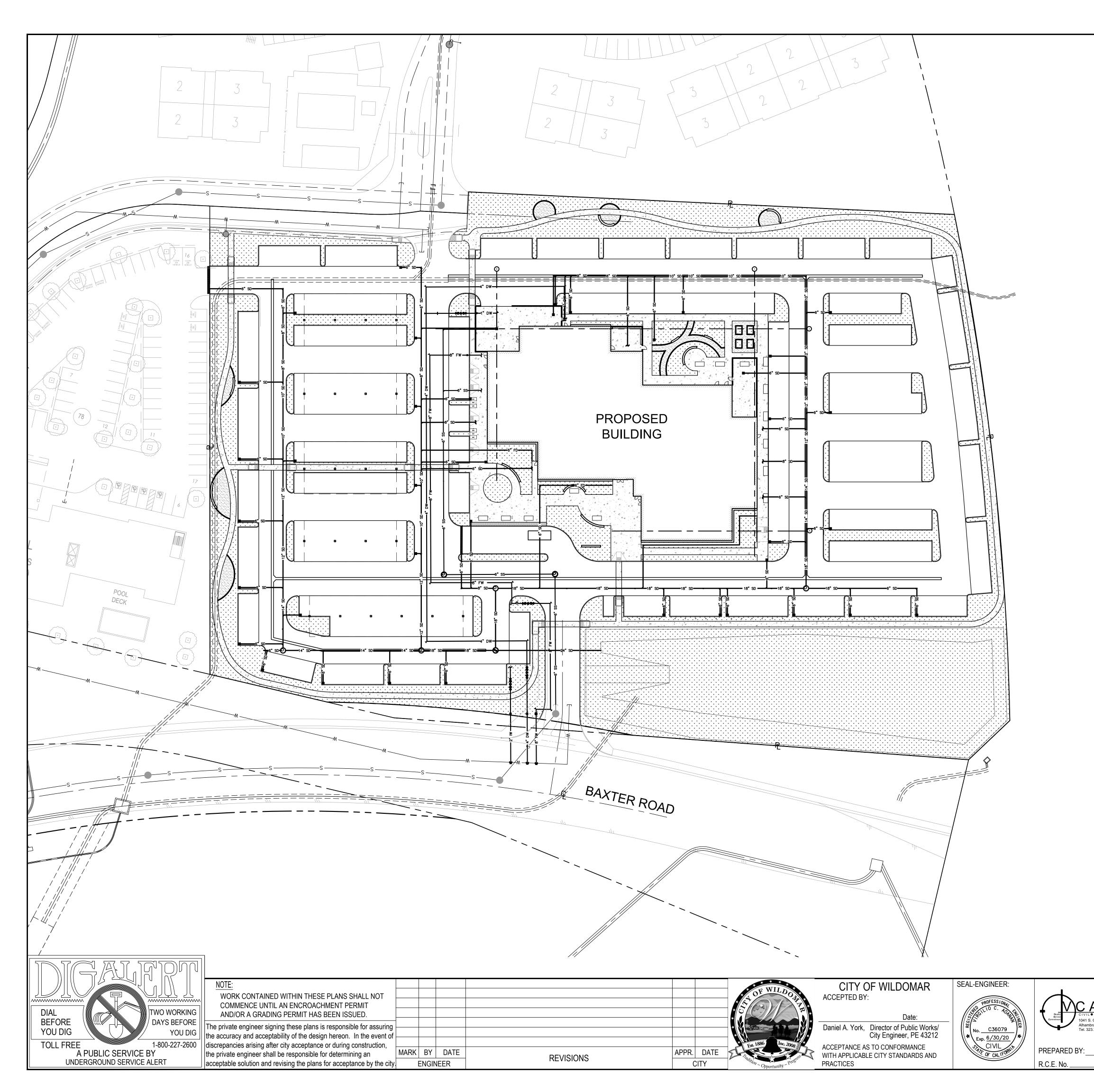
Orange County 2151 Michelson Dr. # 242, Irvine, CA 92612 Tel: 949-679-0870 = Fax: 949-679-9370 www.vcaeng.com



	Rodis By Raul My Garage/Advance Transmission , inc	Setura Cr	951
	Wat Ratanapanya Wernut S	Venur st Venur st Cornerstone Community Church	S mark
	R & S Dog Boarding & Day Care		dout some
	Grave St. Grave St.	Grow St.	Cli De Espanec
	d Anado La Carte de C	Restz Ln Rest	Cat-5 Audio Video 😜
	Goodwin Racing Engines	Classic Installs, Inc Batter Rd Bat	a II De Expansea Baxter Rd
	and the second s	Round-Up Feed (ABC Copiers (ABC Copiers (atples re
	Antermas P	Allever of the second s	Go Pretty to Eat 🤍
	Rancho Runners Courier Service Welch Field Q	California Lutheran High School Resolvery La	
	L & F Tire & Wheel Cemetery District	Cheris Day Care Pegy In	Peggy Ln MyCountryCottagesigns.com
	Aldomar Fire Port's Donuts Station # 51	Wildomar Serier Q Loid & Cupcakes Q Goog gight Start Daycare Q Wildomar Serier Q How Serier Q	
		VICINITY MAP	
		NTS	
	SITE STATUS		
	ZONING:	MEDICAL USES OVERLAY DISTRICT OF MIXED USE/RESIDENTIAL OVERLAY OF BUSINESS PARK-	-1 AND
	GENERAL PLAN DESIGNATION:	RESIDENTIAL VERY HIGH DENSITY. MIXED USE/RESIDENTIAL (MUIR) OVERLAY	
	BUILDING OCCUPANCY TYPE:		
	PARKING REQUIRED:		
	PARKING PROVIDED:	STD SPACES373ACCESSIBLE SPACES11EV STD SPACES03	
		EV STD SPACES23CLEAN AIR VEHICLES8TOTAL SPACES415	
		BICYCLE 6 SPACES	5
	FLOOR AREA RATIO:	FIRST FLOOR AREA XXXXX SF	-
		SECOND FLOOR AREA XXXXX SF TOTAL XXXXX SF	
	VACANT LOT AREA:	XXXXX ACRES +/- (XXXXX SF)	
	FAR	BP-1 BUILDING PARK. ZONING ALLOWS A	
		1.0 FAR. (BUILDING AREA / LOT AREA) XXXXX SF / XXXXX SF = XXXXX FAR	
	80		
511	ICTION NOTES.		
	BENCHMARK: Elevation =		SHEET No.
	Datum = BENCHMARK #	CITY OF WILDOMAR	
	THIS SURVEY WAS PERFORMED ON (date) BY (surveyor)	ER VILLAGE - MEDICAL OFFICE BUILDING	
	LL S (number) EVD (deta)	ニ ハ I I I I I L N / L N I I C I I I J N / I I I / I	

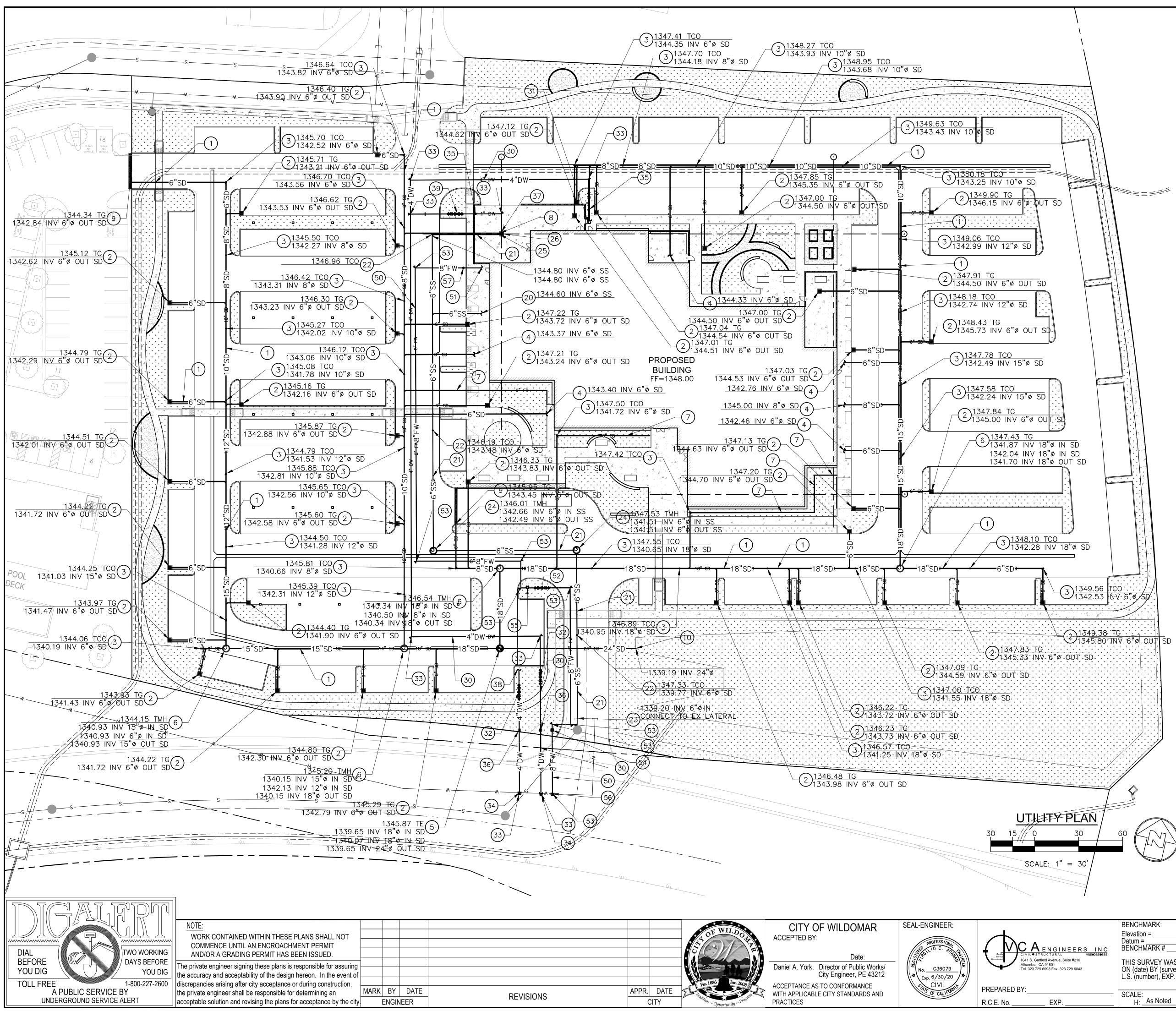
GRAPHIC SCALE SCALE 1" – 40'

1. SEE ENLARGED PLANS FOR CONSTR


	BENCHMARK:		SHEET No.
ENGINEERS INC	Elevation = Datum = BENCHMARK #	CITY OF WILDOMAR	
Sarfield Avenue, Suite #210 , CA 91801 /29.6098 Fax. 323.729.6043	THIS SURVEY WAS PERFORMED	BAXTER VILLAGE - MEDICAL OFFICE BUILDING	
	ON (date) BY (surveyor) L.S. (number), EXP. (date)	ENTITLEMENT SUBMITTAL	
EXP	SCALE: H: <u>As Noted</u> V: <u>As Noted</u>	OVERALL SITE CONTROL PLAN	OF SHTS

PREPARED BY	
R.C.E. No.	

ч А. А. Д. Д.	4" THK. CONCRETE PAVEMENT
	6.5" THK. AC PAVEMENT
	4" THK. AC PAVEMENT
* * * * * *	PLANTER AREA
	PLANTER WALL/RETAINING WAL
	6" THK. FIRELANE


4" THK. CONRETE PAVEMENT 4" THK. AC PAVEMENT 5.5" THK. AC PAVEMENT 5" THK. FIRELANE PLANTER AREA TRASH ENCLOSURE CONCRETE CURB CONCRETE CURB AND GUTTER
5.5" THK. AC PAVEMENT 5" THK. FIRELANE PLANTER AREA TRASH ENCLOSURE CONCRETE CURB CONCRETE CURB AND GUTTER
6" THK. FIRELANE PLANTER AREA TRASH ENCLOSURE CONCRETE CURB CONCRETE CURB AND GUTTER
PLANTER AREA TRASH ENCLOSURE CONCRETE CURB CONCRETE CURB AND GUTTER
TRASH ENCLOSURE CONCRETE CURB CONCRETE CURB AND GUTTER
CONCRETE CURB CONCRETE CURB AND GUTTER
CONCRETE CURB AND GUTTER
MPLOYEE PATIO
CONCRETE MOW STRIP
CONCRETE SEAT WALL
PHYSICAL THERAPY YARD
ACCESSIBLE RAMP
ACCESSIBLE PARKING
EXISTING STREET CURB LINE
EXISTING FIRE HYDRANT TO REMAIN
EXISTING CITY SIDEWALK
BIO FILTRATION DETENTION POND
CONCRETE CROSS/RIBBON GUTTER
DECOMPOSE GRANITE
CONCRETE TRANSFORMER PAD
SYNTHETIC TURF MATERIAL OVER CONCRETE PAVEMENT
DECORATIVE FENCE
STRUCTURAL FREE STANDING WING WALL
PHOTOVOLTAIC CARPORT COLUMN OUTSIDE 9X18 PARKING SPAC
ELECTRIC VEHICLE DESIGNATED AREA
EMERGENCY VEHICLE DESIGNATED AREA
RUNCATED DOMES
CLEAN AIR VEHICLE
BIKE RACK
PHOTOVOLTAIC (PV PANEL) CANOPY
MONUMENT SIGN FOR ILLUSTRATION PURPOSES ONLY. PERMIT REQUIRED SUBSEQUENT TO ENTITLEMENT
SHEET NOTES: REFER TO ARCHITECTURAL DRAWINGS FOR OTHER SITE DIMENSIONS AND IMPROVEMENTS NOT SHOWN ON THIS DRAWING.

	BENCHMARK:		SHEE
	Elevation =		
STRUCTURAL MEEDDE SEE	Datum = BENCHMARK #	CITY OF WILDOMAR	
Garfield Avenue, Suite #210 ra, CA 91801 3.729.6098 Fax. 323.729.6043	THIS SURVEY WAS PERFORMED ON (date) BY (surveyor)	BAXTER VILLAGE - MEDICAL OFFICE BUILDING	
	ON (date) BY (surveyor) L.S. (number), EXP. (date)	ENTITLEMENT SUBMITTAL	
	SCALE:	OVERALL UTILITY PLAN	OF
EXP	H: <u>As Noted</u> V: <u>As Noted</u>	OVERALL OTIENT FLAN	

EET No.

SHTS

CONSTRUCTION NOTES: STORM DRAIN:

- (1) INSTALL PVC SCH 40 PIPE FOR STORM DRAIN LINE.
- (2) CONSTRUCT CATCH BASIN.
- (3) INSTALL CLEANOUT.
- CONNECT TO BUILDING DOWN SPOUT. COORDINATE AND MATCH LOCATION WITH PLUMBING DRAWINGS. PROVIDE REDUCER AND FITTINGS AS REQUIRED TO MATCH SIZE OF BUILDING DOWN SPOUT.
- (5) INSTALL CDS UNIT.
- (6) CONSTRUCT SD MANHOLE PER APWA STD PLAN 321-2.
- (7) INSTALL 6" FRENCH DRAIN.
- (8) CONNECT STORM DRAIN LINE TO FOX DRAIN SYSTEM AND VALVE.
- (9) INSTALL TRENCH DRAIN.
- (10) POINT OF DISCHARGE TO BIOINFILTRATION DETENTION POND. SANITARY SEWER:
- (20) CONNECT TO BUILDING SANITARY SEWER CONNECTION. PROVIDE REDUCING FITTINGS AND COUPLINGS AS NEEDED. FOR CONTINUATION SEE PLUMBING PLANS.
- (21) INSTALL ABS SCH 40 SANITARY SEWER PIPE.
- (22) INSTALL CLEANOUT.
- (23)CONNECT TO THE EXISTING SEWER LINE. PROVIDE REDUCING FITTINGS AND COUPLINGS AND CONTRACTOR SHALL POTHOLE AND FIELD VERIFY EXACT SIZE, DEPTH AND LOCATION OF EX LATERAL PRIOR TO THE TRENCHING OF NEW SYSTEM.
- (24)CONSTRUCT SS MANHOLE PER APWA STD PLAN 200-3.
- 25 CONNECT SANITARY LINE TO FOX DRAIN SYSTEM AND VALVE.
- (26) CONSTRUCT FOX DRAIN SYSTEM.

DOMESTIC WATER:

- 30 INSTALL COPPER PIPE TYPE K TUBING FOR DOMESTIC WATER LINE.
- CONNECT TO BUILDING DOMESTIC WATER CONNECTION. PROVIDE REDUCING FITTINGS AND COUPLINGS AS NEEDED. FOR CONTINUATION SEE PLUMBING PLANS.
- INSTALL DOMESTIC/IRRIGATION WATER REDUCED PRESSURE BACKFLOW PREVENTER. COORDINATE AND VERIFY POINT OF CONNECTION.
- (33) INSTALL CONCRETE THRUST BLOCK AND TIES FOR WATERLINE.
- (34) CONNECT TO EXISTING WATER LINE. PROVIDE REDUCING FITTINGS AND COUPLINGS AS NEEDED. VERIFY LOCATION IN FIELD BY POT HOLING PRIOR TO CONSTRUCTION / INSTALLATION OF NEW WATER SYSTEM.
- (35) INSTALL GATE VALVE.
- (36) PROPOSED WATER METER TO BE USED FOR DOMESTIC/IRRIGATION WATER SERVICE.
- 37 CONNECT DOMESTIC WATER LINE TO FOX DRAIN SYSTEM AND VALVE.
- (38) POINT OF CONNECTION FOR PROPOSED IRRIGATION LINE.
- (39) FOX DRAIN SYSTEM AND VALVE.

FIRE WATER:

- 50 INSTALL 8" AWWA C900 PVC PRESSURE CLASS DR14, FIRE WATER LINE.
- CONNECT TO BUILDING FIRE WATER CONNECTION. PROVIDE REDUCING FITTINGS AND COUPLINGS AS (51)NEEDED. FOR CONTINUATION SEE PLUMBING PLANS.
- (52) INSTALL DOUBLE CHECK DETECTOR ASSEMBLY.
- (53) INSTALL CONCRETE THRUST BLOCK AND TIES.
- 54 PROPOSED WATER METER TO BE USED FOR FIRE WATER.
- (55) INSTALL FIRE DEPARTMENT CONNECTION.
- (56) CONNECT TO EXISTING WATER LINE. PROVIDE REDUCING FITTINGS AND COUPLINGS AS NEEDED. VERIFY LOCATION IN FIELD BY POT HOLING PRIOR TO CONSTRUCTION/INSTALLATION OF NEW WATER SYSTEM.
- (57) INSTALL GATE VALVE.

	BENCHMARK:		SHEET	No.
	Elevation = Datum = BENCHMARK #	CITY OF WILDOMAR		
NGINEERS INC				
Avenue, Suite #210 801 8 Fax. 323.729.6043	THIS SURVEY WAS PERFORMED	BAXTER VILLAGE - MEDICAL OFFICE BUILDING		
	ON (date) BY (surveyor) L.S. (number), EXP. (date)	ENTITLEMENT SUBMITTAL		
		UTILITY PLAN	OF	SHTS
EXP	SCALE: H: <u>As Noted</u> V: <u>As Noted</u>	UTILITY PLAN		

APPENDIX J OPERATIONS AND MAINTENANCE PLAN

Los Angeles County 1041 S. Garfield Ave. Suite #210, Los Angeles CA 91801 Tel: 323-729-6098 • Fax: 323-729-6043 e-mail: vca@vcaeng.com Orange County 2151 Michelson Dr. # 242, Irvine, CA 92612 Tel: 949-679-0870 • Fax: 949-679-9370 www.vcaeng.com

Catch Basin and Trench Drain Filter Inserts

The inspection and maintenance program will include the following key components:

1. Regular Sweeping and Removal of Debris:

Sediment and debris (litter, leaves, papers and cans, etc.) within the area, especially around the drainage inlet, will be collected and removed. The frequency of sweeping will be based on the amount of sediment and debris generated.

2. Regular Inspections:

The catch basin or trench drain filter insert will be inspected on a regular basis. The frequency of inspection will be based on pollutant loading, amount of debris, leaves, etc., and amount of runoff. At a minimum, there will be three inspections per year.

3. Conduct of The Visual Inspections:

a. Broom sweep around the inlet and remove the inlet grate.

b. Inspect the filter liner for serviceability. If called for, the filter body will be replaced. c. Check the condition of the adsorbent pouches and visually check the condition of the enclosed adsorbent. If the surface of the granules is more than 50% coated with a dark gray or black substance, the pouches will be replaced with new ones.

d. Check for loose or missing nuts (on some models) and gaps between the filter and the inlet wall, which would allow bypass of the filter during low flows.

e. The filter components will be replaced in the inlet and the grate replaced.

4. Cleaning Out The Filter Insert:

Regardless of the model of filter insert, the devices must be cleaned out on a recurring basis. It is recommended that there be at least three cleanings per year – more in high exposure areas. The filter should be cleaned when the solids level reaches close to the full tip.

a. The Standard Filter, in most cases, can be cleaned out by removing the device from the inlet and dumping the contents into a DOT approved drum for later disposal. If the oil-absorbent pouches need to be changed, the time to change them is immediately after dumping and before the filter is replaced in the inlet. b. Because of weight, method of installation and so forth, some filter inserts will be cleaned with the aid of a vector truck. If necessary, the oil-absorbent pouches will be changed after the pollutants have been removed and as the filter is being returned to service.

5. Stenciling

Legibility of stencils and/ or signs at all storm drain inlets and catch basins within the project area must be maintained at all time.

6. Maintenance Log

Keep a log of all inspection and maintenance performed on the catch basin and trench drain filter inserts. Keep this log on-site.

CDS® Inspection and Maintenance Guide

Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes.

CDS Model	Dian	neter		Water Surface ediment Pile	Sediment Sto	rage Capacity
	ft	m	ft	m	У³	m³
CDS1515	3	0.9	3.0	0.9	0.5	0.4
CDS2015	4	1.2	3.0	0.9	0.9	0.7
CDS2015	5	1.3	3.0	0.9	1.3	1.0
CDS2020	5	1.3	3.5	1.1	1.3	1.0
CDS2025	5	1.3	4.0	1.2	1.3	1.0
CDS3020	6	1.8	4.0	1.2	2.1	1.6
CDS3025	6	1.8	4.0	1.2	2.1	1.6
CDS3030	6	1.8	4.6	1.4	2.1	1.6
CDS3035	6	1.8	5.0	1.5	2.1	1.6
CDS4030	8	2.4	4.6	1.4	5.6	4.3
CDS4040	8	2.4	5.7	1.7	5.6	4.3
CDS4045	8	2.4	6.2	1.9	5.6	4.3
CDS5640	10	3.0	6.3	1.9	8.7	6.7
CDS5653	10	3.0	7.7	2.3	8.7	6.7
CDS5668	10	3.0	9.3	2.8	8.7	6.7
CDS5678	10	3.0	10.3	3.1	8.7	6.7

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities

Support

- Drawings and specifications are available at www.contechstormwater.com.
- Site-specific design support is available from our engineers.
- ©2017 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, earth stabilization and wastewater treament products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS AN EXPRESSED WARRANTY OR AN IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. SEE THE CONTECH STANDARD CONDITION OF SALES (VIEWABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; 7,517,450 related foreign patents or other patents pending.

CDS Inspection & Maintenance Log

CDS Model: Location:					
Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

1. The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.