# World Logistics Center 

Draft Recirculated Revised Sections of the Final Environmental Impact Report Appendix

Moreno Valley, California



Prepared for:

City of Moreno Valley

## Appendix A Air Quality, Greenhouse Gas, and Health Risk Analyses

# Appendix A. 1 Air Quality/Greenhouse Gas/Health Risk Assessment Technical Report 

# WORLD LOGISTICS CENTER 

Air Quality, Greenhouse Gas Emissions, and Health Risk Assessment Report

# WORLD LOGISTICS CENTER <br> Air Quality, Greenhouse Gas Emissions, and Health Risk Assessment Report 

Prepared for<br>November 2019<br>City of Moreno Valley<br>14177 Frederick Street<br>Moreno Valley, California 92552

80 South Lake Avenue
Suite 570
ESA
Pasadena, CA 91101
626.204.6170
uww.pcrnet.com

| Irvine | Sacramento |
| :--- | :--- |
| Los Angeles | San Diego |
| Oakland | San Francisco |
| Orlando | Santa Monica |
| Pasadena | Seattle |
| Petaluma | Tampa |
| Portland | Woodland Hills |

## TABLE OF CONTENTS

Page
Executive Summary ..... 1
Section 1 ..... 1
Introduction ..... 1
1.1 Existing Conditions ..... 1
1.2 Project Description ..... 1
1.3 Project Location ..... 2
1.4 Existing Air Quality Conditions ..... 4
Existing Setting ..... 4
1.5 Existing Greenhouse Gas Environment ..... 38
Global Climate Change ..... 38
Effects of Global Climate Change ..... 40
1.6 Greenhouse Gases ..... 44
Section 2 ..... 49
Regulatory Setting ..... 49
2.1 International Regulation of Climate Change ..... 49
Intergovernmental Panel on Climate Change ..... 49
United Nations Framework Convention on Climate Change ..... 49
Kyoto Protocol ..... 49
2.2 Federal ..... 50
Federal Clean Air Act ..... 50
Greenhouse Gas Endangerment ..... 51
Clean Vehicles ..... 52
Mandatory Reporting of GHG ..... 53
New Source Review Prevention of Significant Deterioration (GHG Tailoring Rule) ..... 54
Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units ..... 54
Cap and Trade ..... 55
Energy Policy and Conservation Act ..... 55
Energy Policy Act of 1992 ..... 55
Energy Policy Act of 2005 ..... 55
2.3 State of California ..... 56
Mulford-Carrell Act ..... 56
California Clean Air Act ..... 56
CARB Airborne Toxic Control Measure/Asbestos ..... 56
California Code of Regulations Title 24, Part 6 ..... 57
California Code of Regulations Title 24, Part 11 ..... 57
California Code of Regulations Titles 14 and 27 ..... 60
Pavley Regulations and Fuel Efficiency Standards ..... 60
Low Carbon Fuel Standard, Executive Order S-01-07 ..... 61
Senate Bill 1383 ..... 61
Senate Bill 1368 ..... 62
Senate Bill 97 and the CEQA Guidelines Update ..... 62
Executive Order S-3-05 ..... 63
Assembly Bill 32 ..... 64
Mobile Source Strategy ..... 70
Sustainable Freight Action Plan ..... 70
California Transportation Plan 2040 ..... 71
Executive Order B-16-2012 (Zero-Emission Vehicles) ..... 71
Greenhouse Gas Emissions Performance Standard for Power Plants ..... 72
Senate Bill 375 ..... 72
Renewable Electricity Standards ..... 72
Senate Bill 350 ..... 73
Senate Bill 100 ..... 73
SmartWay Partners ..... 73
2.4 Regional ..... 74
Lewis Air Quality Management Act ..... 74
Carl Moyer Memorial Air Quality Standards Attainment Program ..... 75
Regional Air Quality Management Plan ..... 75
South Coast Air Quality Management District Proposed Indirect Sources Rules for Warehouse ..... 79
Greenhouse Gases ..... 80
Diesel Regulations ..... 80
Toxic Air Contaminants ..... 82
Southern California Association of Governments ..... 91
2.5 Local ..... 94
City of Moreno Valley ..... 94
Section 3 ..... 97
Significance Thresholds ..... 97
3.1 State CEQA Guidelines, Appendix G ..... 97
Air Quality Thresholds ..... 98
Greenhouse Gas Thresholds ..... 101
Section 4 ..... 105
Methodology ..... 105
4.1 Construction ..... 105
Off-road Equipment ..... 106
4.2 Operation ..... 111
Motor Vehicle Emissions ..... 112
Other Emission Sources ..... 121
Black Carbon ..... 128
4.3 Localized Significance Threshold Analysis ..... 129
Localized Analysis Methodology ..... 129
Localized Significance Threshold Analysis ..... 133
4.4 Health Risk Assessment. ..... 137
About Health Risk Assessments ..... 137
Health Risk Impacts Assessed ..... 137
Risk Assessment Methodology ..... 138
Section 5 ..... 149
Environmental Impacts ..... 149
5.1 Compliance with Air Quality Plan ..... 149
Conflict with or obstruct the implementation of the applicable air quality plan (AIR-1) ..... 149
5.2 Regional Emissions ..... 152
Violate any air quality standard or contribute substantially to an existing or projected air quality violation (AIR-2) ..... 152
5.3 Cumulatively Considerable Air Quality Impacts ..... 162Result in a cumulatively considerable net increase of any criteria pollutantfor which the project region is nonattainment under an applicable
federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors) (AIR-3) ..... 162
5.4 Substantial Pollutant Concentrations ..... 162
Expose Sensitive Receptors to Substantial Pollutant Concentrations (AIR-4) ..... 162
5.5 Odors ..... 181
Create objectionable odors affecting a substantial number of people (AIR-5) ..... 181
5.6 Greenhouse Gas Emissions ..... 183
Generate GHG Emissions, either directly or indirectly, that may have a significant impact on the environment (GHG-1) ..... 183
5.7 Greenhouse Gas Plan, Policy, Regulation Consistency ..... 191
Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs (GHG-2) ..... 191
Section 6 ..... 198
Mitigation Measures ..... 198
6.1 Air Quality ..... 198
Compliance with AQMP ..... 198
Regional Emissions ..... 198
Substantial Pollutant Concentrations ..... 207
6.2 Greenhouse Gas Emissions ..... 216

## List of Figures

Figure 1 Regional Location ..... 3
Figure 2: Ozone Concentration Trends in the South Coast Air Basin ..... 5
Figure 3: Ozone Precursor Emissions (VOC and $\mathrm{NO}_{x}$ ) in the South Coast Air Basin ..... 6
Figure 4: $\mathrm{NO}_{\mathrm{x}}$ Emissions Forecast in the South Coast Air Basin ..... 6
Figure 5: $\mathrm{PM}_{2.5}$ Emissions Forecast in the South Coast Air Basin ..... 7
Figure 6: Particulate Matter Concentration Trends in the South Coast Air Basin ..... 8
Figure 7: $\mathrm{PM}_{2.5}$ Concentration Trends in the Inland Empire ..... 8
Figure 8: Changes in U.S. Heavy-Duty Diesel $\mathrm{NO}_{x}$ and PM Emission Standards Over Time ..... 9
Figure 9: NOx, VOC, CO, and Ozone Trends in the South Coast Air Basin ..... 31
Figure 10: Particulate Matter Trends in the South Coast Air Basin ..... 32
11 Air Quality Monitoring Station ..... 36
Figure 12 Existing Sensitive Receptors ..... 37
Figure 13: Observed and Projected Temperatures ..... 43
Figure 14: Wildfire Risk in Moreno Valley ..... 43
Figure 15: Summary of MATES IV Cancer Risks ..... 84
Figure 16 MATES IV Cancer Risk in Area ..... 89
Figure 17 Change in Air Toxics Simulated Risk from 2005-2012 ..... 90
Figure 18 Local Roadway Network Analyzed in the Local Air Quality and Health Risk Assessment ..... 116
Figure 19 Surface Street Network Analyzed in the Health Risk Assessment ..... 117
Figure 20 Freeway network Analyzed in the Health Risk Assessment. ..... 118
Figure 21 Localized Analysis Operational Emission Sources ..... 135
Figure 22 Air Disperson Model Receptors for the Localized Analysis ..... 136
Figure 23 Incremental Project Cancer Risk - No Mitigation (Construction and Operation) ..... 177
Figure 24 Incremental Project Cancer Risk - No Mitigation (30 Years of Full Operation) ..... 178
Figure 25 Incremental Project Cancer Risk - With Mitigation (Construction and Operation) ..... 214
Figure 26 Incremental Project Cancer Risk - With Mitigation (30 Years of Full Operation) ..... 215
List of Tables
Table 1 Ambient Air Quality Standards ..... 11
Table 2 Summary of Health Effects of the Major Criteria Air Pollutants ..... 14
Table 3 Air Quality Index Descriptions ..... 15
Table 4 Attainment Status of Criteria Pollutants in the South Coast Air Basin ..... 29
Table 5 Ambient Air Quality Monitored in the Project Vicinity ..... 35
Table 6 Toxic Air Contaminant Concentration Levels and Associated Health Effects (Riverside, California) ..... 84
Table 7 SCAG Assumptions for Moreno Valley ..... 92
Table 8 Select 2012 Regional Transportation Plan Strategies ..... 92
Table 9 Conceptual Operational Occupancy Schedule ..... 111
Table 10 Trip Generation Rates ..... 112
Table 11 Land Use Change ..... 125
Table 12 Estimated Tree Inventory ..... 126
Table 13 Tree Carbon Sequestration Rates (Age of Tree) ..... 127
Table 14 Tree Carbon Sequestration Rates (Height of Tree) ..... 127
Table 15 Tree Carbon Sequestration Estimates ..... 127
Table 16 General Air Dispersion Modeling Assumptions - Localized Air Quality Assessment ..... 131
Table 17 Project Localized Analysis Construction Emission Source Assumptions ..... 132
Table 18 Project Localized Analysis Operational Emission Source Assumptions ..... 133
Table 19 Toxicity Values ..... 139
Table 20 Exposure Assumptions for Cancer Risk ..... 143
Table 21 Speciation Profiles for Diesel and Gas Fuel Combustion Sources ..... 147
Table 22 Short-Term Regional Construction Emissions-Without Mitigation ..... 153
Table 23 Short-Term Regional 24-Hour Concrete Pour Emissions-Without Mitigation ..... 154
Table 24 Operational Regional Air Pollutant Emissions (Worst-Case Scenario) ..... 156
Table 25 Operational Regional Air Pollutant Emissions (Detail, Unmitigated) ..... 158
Table 26 Operational Regional Air Pollutant Emissions (Year by Year, pounds per day, unmitigated) ..... 159
Table 27 Combined Construction and Operational Regional Air Pollutant Emissions (Year by Year, Pounds per Day, Unmitigated) ..... 160
Table 28 Operational Regional Air Pollutant Emissions (Detail, Unmitigated) - No Net Effect (For Informational Purposes Only) ..... 161
Table 29 Localized Assessment of Project Phase 1 and Phase 2 Full Build Out (2018) Emissions Maximum Impacts Within the Project Boundaries (Without Mitigation) ..... 163
Table 30 Localized Assessment of Project Phase 1 and Phase 2 Full Build Out (2018) Emissions Maximum Impacts Outside the Project Boundaries (Without Mitigation) ..... 164
Table 31 Localized Assessment - Construction and Operation, Year 2025 Maximum Impacts Within the Project Boundaries (Without Mitigation) ..... 166
Table 38 Localized Assessment - Construction and Operation, Year 2025 Maximum Impacts Outside the Project Boundaries (without Mitigation) ..... 167
Table 33 Localized Assessment - Construction and Operation, Year 2032 Maximum Impacts Within the Project Boundaries (Without Mitigation) ..... 168
Table 34 Localized Assessment - Construction and Operation, Year 2032 Maximum Impacts Outside the Project Boundaries (without Mitigation) ..... 169
Table 35 Localized Assessment - Project Operation Full Build Out, Year 2035 Maximum Impacts Within the Project Boundaries (Without Mitigation) ..... 170
Table 36 Localized Assessment - Project Operation, Year 2035 Maximum Impacts Outside of the Project Boundaries (Without Mitigation) ..... 170
Table 37 Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Receptors Starting from Beginning of Project Construction (Construction and Operation HRA), Without Mitigation ..... 175
Table 38 Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Receptors Starting from Beginning of Project Full Operation in 2035, Without Mitigation. ..... 176
Table 39 Carbon Monoxide Concentrations at Intersections, 2025 ..... 181
Table 40 Carbon Monoxide Concentrations at Intersections, 2035 ..... 181
Table 41 Construction Greenhouse Gas Emissions (Without Mitigation) ..... 184
Table 42 Project Operational GHG Emissions (Worst-Case 2020 Analysis at Buildout) ..... 185
Table 43 Project GHG Emissions at Buildout by GHG (Unmitigated) ..... 186
Table 44a Project GHG Emissions (Year by Year without Mitigation) ..... 188
Table 45 Project Compliance with Federal/State Greenhouse Gas Reduction Strategies ..... 191
Table 46 Analysis of Additional Measures in the 2017 Scoping Plan Update ..... 194
Table 47 Consistency with City General Plan Air Quality Policies ..... 195
Table 48 Consistency with City Climate Action Strategy ..... 196
Table 49 Mitigated Short-Term Regional Construction Emissions ..... 201
Table 50 Operational Regional Air Pollutant Emissions (Mitigated) ..... 205
Table 51 Combined Construction and Operational Regional Air Pollutant Emissions (Year by Year, Pounds per Day) - Mitigated ..... 206
Table 52 Operational Regional Air Pollutant Emissions (Mitigated) - No Net Effect (For Informational Purposes Only) ..... 207
Table 53 Comparison of Local Project Air Quality Impacts Before and After Mitigation ..... 208
Table 54 Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Receptors Starting from Beginning of Project Construction (Construction and Operation HRA), With Mitigation ..... 212
Table 55 Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Receptors Starting from Beginning of Project Full Operation in 2035, With Mitigation ..... 213
Table 56 Greenhouse Gas Emissions Reduction Analysis ..... 221
Table 57 GHG Reductions at Buildout (with Mitigation) ..... 224
Table 58a Project GHG Emissions (Year by Year With Mitigation) ..... 225
Table 59 California and SCAQMD Electric Vehicle (EV) Penetration Estimates ..... 228
Table 60a Project GHG Emissions (Year by Year with Mitigation and Medium EV Penetration) - Scoping Plan Scenario, For Informational Purposes Only ..... 229
Appendices (electronic)

| Appendix A | Construction Emissions |
| ---: | :--- |
| A. 1 | Unmitigated Air Quality Emissions |
| A. 2 | Mitigated Air Quality Emissions |
| A. 3 | Architectural Coating and Paving |
| A. 4 | Greenhouse Gas Emissions Unmitigated |
| A. 5 | Greenhouse Gas Emissions Mitigated |
| A. 6 | 24-hour Concrete Pour Air Quality Emissions |
| Appendix B | Operational Emissions |
| B. 1 | Operational Summary (2020) |
| B. 2 | Operational Summary (Net) |
| B. 3 | Operational Summary (Project) |
| B. 4 | Mobile Source Emissions (Net) Unmitigated |
| B. 5 | Mobile Source Emissions (Net) Mitigated |
| B. 6 | Mobile Source Emissions (Project) Unmitigated |
| B. 7 | Mobile Source Emissions (Project) Mitigated |
| B. 8 | Mobile Source Emissions Medium EV Penetration Scenario |
| B. 9 | Emission Factor Interpolation |
| B. 10 | CalEEMod Output |
| Appendix C | CO Hot Spot Output |
| Appendix D | Localized Significance Calculations |
| D. 1 | Localized Backround Concentrations |
| D. 2 | Operations AERMOD Unitized Concentrations Outputs |
| D. 3 | Unmitigated Localized Operations Emissions 2035 |
| D. 4 | Mitigated Localized Operations Emissions 2035 |
| D. 5 | Unmitigated Localized Operations Phase 1 2025 |
| D. 6 | Mitigated Localized Operations Phase 1 2025 |
| D. 7 | Unmitigated Localized Worst-Case Construction + Operations 2022 |
| D. 8 | Mitigated Localized Worst-Case Construction + Operations 2022 |
| D. 9 | Unmitigated Localized Operations 2020 |
| D. 10 | Unmitigated LST Calculations (Construction) |

D. 11 Mitigated LST Calculations (Construction)<br>Appendix E Health Risk Assessment<br>E. 1 Speed Bins<br>E. 2 Fleet Mix by Year by Fuel Type<br>E. 3 Occupancy Schedule<br>E. 4 Emissions Speciation Profiles and Cancer Risk Factor Calculations<br>E. 5 Construction Emissions for Health Risk Assessment<br>E. 6 Operations Emissions for Health Risk Assessment<br>E. 7 Construction + Operations 30-Year Health Risk Assessment, Unmitigated<br>E. 8 Full Buildout Operations 30-Year Health Risk Assessment, Unmitigated<br>E. 9 Construction + Operations 30-Year Health Risk Assessment, Mitigated<br>E. 10 Full Buildout Operations 30-Year Health Risk Assessment, Mitigated<br>E. 11 Maximum Chronic Hazard Index from Project<br>E. 12 Maximum Acute Hazard Index from Project<br>E. 13 Health Risk Assessment Results Summary

## Acronyms and Abbreviations

| AB 32 | California Global Warming Solutions Act of 2006 |
| :--- | :--- |
| AQMP | Air Quality Management Plan |
| ATCM | Air Toxics Control Measure |
| BACT | Best Available Control Technology |
| Basin | South Coast Air Basin |
| Basin | South Coast Air Basin |
| BAU | Business as Usual |
| CAA | Clean Air Act |
| CAAQS | California Ambient Air Quality Standards |
| CalEEMod | California Emissions Estimator Model |
| CalEPA | California Environmental Protection Agency |
| CALGreen Code | California Green Building Standards Code |
| CAFE | Corporate Average Fuel Economy |
| CAPCOA | California Air Pollution Control Officer's Association |
| CARB | California Air Resources Board |
| CBSC | California Building Standards Commission |
| CCAT | California Climate Action Team |
| CEC | California Energy Commission |
| CEQA | California Environmental Quality Act |
| CEUS | Commercial End-Use Survey |
| CH | Methane |
| City | City of Los Angeles |
| CO | carbon monoxide |
| CO | Cos Angeles Green Building Code |
| CO | Carbon Dioxide |
| CPUC | Carbon Dioxide Equivalents |
| DPM | California Public Utilities Commission |
| EMFAC | Diesel Particulate Matter |
| GHG | on-road vehicle emissions factor model |
| GWP | Greenhouse Gas |
| HFCs | Global Warming Potential |
| hp | hydrofluorocarbons |
| HVAC | LPCC |


| LCFS | Low Carbon Fuel Standard |
| :---: | :---: |
| LOS | Level of Service |
| LST | localized significance threshold |
| MATES IV | Multiple Air Toxics Exposure Study, May 2015 |
| MPO | Metropolitan Planning Organization |
| $\mathrm{MTCO}_{2} \mathrm{e}$ | Metric ton of carbon dioxide equivalent |
| MMTCO2e | Million metric tons of carbon dioxide equivalent |
| NO | nitric oxide |
| $\mathrm{NO}_{2}$ | nitrogen dioxide |
| $\mathrm{NO}_{\mathrm{x}}$ | nitrogen oxides |
| $\mathrm{N}_{2} \mathrm{O}$ | Nitrous Oxide |
| OPR | California Office of Planning and Research |
| Pb | lead |
| PM ${ }_{2}$. 5 | fine particulate matter |
| PM 10 | respirable particulate matter |
| ppm | parts per million |
| PFCs | Perfluorocarbons |
| RTIP | Regional Transportation Improvement Program |
| RTP/SCS | Regional Transportation Plan/Sustainable Communities Strategy |
| RPS | Renewable Portfolio Standard |
| SCAG | Southern California Association of Governments |
| SCAQMD | South Coast Air Quality Management District |
| SIP | State Implementation Plan |
| $\mathrm{SO}_{2}$ | sulfur dioxide |
| $\mathrm{SF}_{6}$ | Sulfur Hexafluoride |
| TAC | toxic air contaminant |
| USDOT | United States Department of Transportation |
| USEPA | United States Environmental Protection Agency |
| USGBC | United States Green Building Code |
| VDECS | Verified Diesel Emission Control Strategies |
| VMT | Vehicle miles travelled |
| VOC | volatile organic compounds |
| WLCSP | World Logistics Center Specific Plan |
| $\mu \mathrm{g} / \mathrm{m}^{3}$ | micrograms per cubic meter |
| $\mu \mathrm{m}$ | micrometers |

## EXECUTIVE SUMMARY

The World Logistics Center Specific Plan (project) proposes 40.6 million square feet of logistics warehouse uses. These uses comprise a maximum of 40.4 million square feet of "high-cube logistics" warehouse distribution uses classified as "Logistics Development" (LD) and 200,000 square feet (approximately $0.5 \%$ ) of warehousing-related uses classified as "Light Logistics" (LL). In addition, the LD designation includes land for two special use areas; a fire station and a "logistics support" facility for vehicle fueling and sale of convenience goods ( 3,000 square feet is assumed for planning purposes for the "logistics support").

In accordance with the requirements under the California Environmental Quality Act (CEQA), this Technical Report provides an estimate of air quality and GHG emissions for the project and predicts the potential impacts from construction and operation activities. The report includes the categories and types of emission sources resulting from the Project, the calculation procedures used in the analysis, and any assumptions or limitations.

This report summarizes the potential for the project to conflict with an applicable air quality plan, to violate an air quality standard or threshold, to result in a cumulatively net increase of criteria pollutant emissions, or to expose sensitive receptors to substantial pollutant concentrations, and to generate GHG emissions that may have a significant impact on the environment and its potential to conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of GHGs. The findings of the analyses are as follows:

- The incremental increase in emissions from construction and operation of the project would exceed the regional daily emission thresholds set forth by the South Coast Air Quality Management District (SCAQMD) for VOC, $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$ even with the implementation of mitigation.
- The incremental increase in onsite emissions from construction and operation of the project would exceed the localized significance thresholds for $\mathrm{PM}_{10}$ set forth by the SCAQMD even with implementation of mitigation.
- Emissions from the increase in traffic due to operation of the project would not have a significant impact upon 1-hour or 8 -hour local carbon monoxide (CO) concentrations due to mobile source emissions.
- Project construction and operations would not expose off- or on-site receptors to significant levels of toxic air contaminants causing significant health risk with implementation of mitigation.
- The project would result in significant cumulative air quality impacts during construction and operations of the Project even with implementation of mitigation.
- Greenhouse gas emissions associated with the project would not exceed applicable thresholds and the project would be consistent with greenhouse gas reduction plans, policies, and regulations.


## SECTION 1

## Introduction

### 1.1 Existing Conditions

The project area is largely vacant undeveloped marginal agricultural land, with six occupied single-family homes and associated ranch/farm buildings in various locations on the property. In the 1920s, several farm buildings and related houses were constructed on the property and, in the 1940s, a stock farm operated on a portion of the site that was later expanded into a commercial horse farm and training facility that operated until the mid-1990s. The overall project site has been farmed by a variety of owners since the early 1900s and has supported dry (non-irrigated) farming, livestock grazing, and limited citrus groves. Much of the site continues to be used for dry farming today.

San Diego Gas \& Electric (SDG\&E) operates a natural gas compressor plant, known as the Moreno Compressor Station, on 19 acres south of the site. The Southern California Gas Company (SCGC) operates a metering and pipe cleaning station on two separate parcels (totaling 1.5 acres) south of the site south of Alessandro Boulevard along existing Virginia Street. The site contains a variety of overhead and underground utility lines associated with oil, natural gas, and electrical service.

Metropolitan Water District owns property and owns and operates facilities within the World Logistics Center Specific Plan (WLCSP) area. As shown on the attached map, Metropolitan's irregularly shaped fee-owned property (APN 422-040-009 and 422-040-015), Inland Feeder Tunnel, and appurtenant tunnel access structure are located within the WLCSP area. In addition, Metropolitan's Inland Feeder pipeline and appurtenant structures extend through the specific plan area in the street rights-of-way for Eucalyptus Avenue, World Logistics Center Parkway, and Davis Road. Metropolitan also has a 110 -foot-wide easement along Davis Road.

At present, the project site contains a number of unimproved drainage features, but it does not contain any improved flood control facilities. The project area is largely vacant marginal agricultural land with six rural residential properties.

### 1.2 Project Description

The project proposes a maximum of 40.4 million square feet of "high-cube logistics" warehouse distribution uses classified as "Logistics Development" (LD) and 200,000 square feet (approximately $0.5 \%$ ) of warehousing-related uses classified as "Light Logistics" (LL). In addition, the LD designation includes land for two special use areas; a fire station and a "logistics support"
facility for vehicle fueling and sale of convenience goods ( 3,000 square feet is assumed for planning purposes for the "logistics support").

### 1.3 Project Location

The project is located in "Rancho Belago," the eastern portion of the City of Moreno Valley, in northwestern Riverside County. The project site is immediately south of SR-60, between Redlands Boulevard and Gilman Springs Road (the easterly city limit), extending to the southerly city limit. Figure 1 depicts the location of the project within the region and the City of Moreno Valley. The major roads that currently provide access to the project site are Redlands Boulevard, Theodore Street, World Logistics Center Parkway, Alessandro Boulevard, and Gilman Springs Road.

The World Logistics Center (WLC) project area is located in portions of Sections 1, 12, and 13 of Township 3 South, Range 3 West; and portions of Sections 6, 7, 8, 9, 16, 17, 18, 19, 20, and 21 of Township 3 South, Range 2 West, as depicted on the U.S. Geological Survey (USGS) 7.5-minute series Sunnymead and El Casco, California quadrangles.


Figure 1

### 1.4 Existing Air Quality Conditions

## Existing Setting

The project site is located in the South Coast Air Basin (Basin), a geographic area that encompasses the coastal plain and connecting broad inland valleys and low hills. The Pacific Ocean forms the southwestern border of the Basin, with mountain ranges forming the remainder of the border. The Basin includes Orange County and the non-desert portions of Los Angeles County, Riverside County, and San Bernardino County. The Basin is under the jurisdiction of the South Coast Air Quality Management District (SCAQMD).

The air quality in the air basin has been steadily improving over the last couple of decades as measured in air pollutant concentrations by the SCAQMD. A concentration of a pollutant is a measure of the amount of a pollutant in the air. Some pollutants are measured in parts per million (ppm) and some are measured in micrograms per cubic meter $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$.

When sensitive people, such as children, pregnant women, and the elderly, breathe in air pollutants, they can experience health effects. These health effects differ based on the type of pollutant, the length of time someone is exposed, pre-existing health conditions, and the concentration of the pollutant. In general, health effects can include coughing, sore throat, chest pain, difficulty breathing, eye irritation, reduced lung function, asthma aggravation, chronic lung diseases, cancer, and lung damage.

Federal, state, and local agencies enact rules and regulations to reduce air pollutant emissions to protect the health of sensitive individuals. The EPA sets federal ambient air quality standards and the CARB sets state ambient air quality standards. When concentrations of pollutants exceed the standards, sensitive individuals may experience health effects.

Ozone is a pollutant formed in the air when emissions of volatile organic compounds (VOC) and nitrogen oxides $\left(\mathrm{NO}_{\mathrm{x}}\right)$ combine in the presence of sunlight. Ozone is a pollutant of concern in the Basin because ozone levels exceed the ozone standards.

As shown in Figure 2, Ozone Concentration Trends in the South Coast Air Basin, ozone concentrations in the basin have generally decreased over the past twenty years for 1-hour and 8hour averaging time periods as defined by the State and/or federal ambient air quality standards. The 1 -hour and 8 -hour concentration refers to the average of the concentration over a 1 -hour and 8 -hour time period, respectively.

Figure 2: Ozone Concentration Trends in the South Coast Air Basin


Sources of air pollution are typically categorized into one of three groups: area, mobile, or point. Area sources include small pollution sources like dry cleaners, gas stations, commercial buildings (heating and cooling units; surface coatings), and residential buildings (fire places; surface coatings). Mobile sources include both on-road vehicles (such as cars, trucks and buses) and offroad equipment (such as ships, airplanes, agricultural and construction equipment). Point sources include major industrial facilities like chemical plants, steel mills, oil refineries, power plants, and hazardous waste incinerators. As shown in Figure 3, Ozone Precursor Emissions (VOC and $\mathrm{NO}_{x}$ ) in the South Coast Air Basin, the main source of $\mathrm{NO}_{\mathrm{x}}$ and VOC emissions in the basin are from on-road motor vehicles, not from the operation of buildings. Although vehicle miles traveled in the basin continue to increase, ozone concentrations are decreasing because of the mandated controls on motor vehicles and the replacement of older polluting vehicles with cleaner and lower-emitting vehicles. VOC and $\mathrm{NO}_{\mathrm{x}}$ are ozone precursors; therefore, if those emissions decrease, it follows that ozone concentrations would also decrease.

Emissions of $\mathrm{NO}_{\mathrm{x}}$ in the air basin are expected to decrease in the future despite future growth in population, and vehicle miles traveled, as shown in Figure 4, $N O_{X}$ Emissions Forecast in the South Coast Air Basin.

Figure 3: Ozone Precursor Emissions (VOC and NOx) in the South Coast Air Basin


NOX $_{\mathrm{x}}$ Emissions Sources in South Coast Air Basin


VOC Emissions Sources in South Coast Air Basin

Figure 4: $\mathrm{NO}_{\mathrm{x}}$ Emissions Forecast in the South Coast Air Basin


Another pollutant of concern is particulate matter (PM). PM is a mixture of small particles and liquid droplets suspended in the air. It is made up of components such as chemicals, metals, soil, or dust particles. The size of these particulates is linked to their potential for causing health problems. Ultrafine particles are less than 0.1 in micron in diameter, fine particles are less than 2.5 microns in diameter $\left(\mathrm{PM}_{2.5}\right)$, and coarse particles are larger than 2.5 microns and smaller than 10 microns in diameter $\left(\mathrm{PM}_{10}\right)$. The CARB and EPA have established standards for $\mathrm{PM}_{2.5}$ and $\mathrm{PM}_{10}$ but not for ultrafine particles. $\mathrm{PM}_{2.5}$ and $\mathrm{PM}_{10}$ are a concern in the air basin because sometimes the concentrations exceed the standards. $\mathrm{PM}_{2.5}$ is often used as a marker for toxic air pollutants such as diesel PM.

As shown in Figure 5, $P M_{2.5}$ Emissions Forecast in the South Coast Air Basin, $\mathrm{PM}_{2.5}$ emissions are expected to decrease in the Basin and then level out after the year 2014.

As shown in Figure 6, Particulate Matter Concentration Trends in the South Coast Air Basin, $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ annual concentrations have continued to decrease since 1990 within the air basin as a whole.

Figure 7, $P M_{2.5}$ Concentration Trends in the Inland Empire, provides an additional view of $\mathrm{PM}_{2.5}$ trends specifically in the Inland Empire. As shown, there is a marked decreasing trend in $\mathrm{PM}_{2.5}$ concentrations in Riverside-Rubidoux, Fontana, and San Bernardino from 2001 to 2016 and at Mira Loma from 2006 to 2016. This decreasing trend in the Inland Empire $\mathrm{PM}_{10}$ concentration continues despite simultaneous increases in urban development including the development of large warehouse complexes since 2001.

Figure 5: $\mathbf{P M}_{2.5}$ Emissions Forecast in the South Coast Air Basin


Figure 6: Particulate Matter Concentration Trends in the South Coast Air Basin


Figure 7: $\mathbf{P M}_{\mathbf{2 . 5}}$ Concentration Trends in the Inland Empire


Part of the success in the decreasing $\mathrm{NO}_{\mathrm{x}}$ and PM emissions are increasingly stringent standards placed on motor vehicles. Figure 8, Changes in U.S. Heavy-Duty Diesel NO $X_{X}$ and PM Emission Standards Over Time, demonstrates the changes in U.S. heavy duty diesel emission standards for $\mathrm{NO}_{\mathrm{x}}$ and PM over the last twenty-five years. The project would incorporate mitigation that would require that all diesel trucks accessing the project be model 2010 or younger. As shown below, emissions from 2010 trucks are only a fraction of emissions from an older vehicle, at 0.2 grams per horsepower hour (g/HP-hr) of $\mathrm{NO}_{\mathrm{x}}$ and $0.01 \mathrm{~g} / \mathrm{HP}-\mathrm{hr}$ of PM. The text in blue represents the off-road construction standards; 2011 model vehicles incorporate Tier 4 Interim standards and 2014 models incorporate Tier 4 Final standards. The project will incorporate mitigation that requires use of only Tier 4 models of equipment.

Figure 8: Changes in U.S. Heavy-Duty Diesel $\mathrm{NO}_{\mathrm{x}}$ and PM Emission Standards Over Time


## Climate and Meteorology

Air quality in the project area is not only affected by various emission sources (mobile, industry, etc.), but also by atmospheric conditions such as wind speed, wind direction, temperature, rainfall, and amount of sunshine. The combination of topography, low atmospheric mixing height, abundant sunshine, and emissions from the second largest urban area in the United States combine to give the Basin one of the worst air pollution problems in the nation.

Winds in the Basin are predominantly of relatively low velocities, averaging about 4.0 miles per hour (mph). These low average wind speeds, together with a persistent temperature inversion, limit the vertical dispersion of air pollutants throughout the Basin. Strong, dry, north or northeasterly winds, known as Santa Ana winds, occur during the fall and winter months, dispersing air contaminants. These conditions tend to last for several days at a time.

During periods of low inversions and low wind speeds, air pollutants generated in urbanized areas of Los Angeles County are transported predominantly inland into Riverside and San Bernardino Counties. In the winter, the greatest pollution problems are increased concentrations of carbon monoxide $(\mathrm{CO})$ and oxides of nitrogen $\left(\mathrm{NO}_{\mathrm{x}}\right)$, due to extremely low inversions and air stagnation during the night and early morning hours that trap emissions principally from mobile sources at ground level. In the summer, the longer daylight hours and the brighter sunshine combine to cause a reaction between hydrocarbons and $\mathrm{NO}_{\mathrm{x}}$ to form photochemical smog.

## Regional Air Quality

Both the State of California and the Federal government have established health-based ambient air quality standards (AAQS) for six air pollutants. These pollutants are known as "criteria pollutants."

- Carbon monoxide (CO) - Ozone (O3)
- Lead (Pb)


## - Nitrogen Dioxide (NO2) <br> - Particulate matter with a diameter of 10 microns or less $\left(\mathrm{PM}_{10}\right)$ <br> - Sulfur dioxide $\left(\mathrm{SO}_{2}\right)$

Federal standards for 8-hour ozone and for fine particulate matter less than 2.5 microns in diameter $\left(\mathrm{PM}_{2.5}\right)$ have also been adopted. In addition, the State has set standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles. These standards are designed to protect the health and welfare of the populace with a reasonable margin of safety and are listed in Table 1, Ambient Air Quality Standards. Table 2, Summary of Health Effects of the Major Criteria Air Pollutants, lists the health effects of these criteria pollutants and their potential sources.

The Air Quality Index is metric index developed by the United States EPA for reporting daily air quality. It indicates how clean or polluted the air is and what associated health effects might be a concern. The Air Quality Index focuses on health effects that may be experienced within a few hours or days after breathing polluted air. Descriptions for the various pollutant levels in the Air Quality Index are shown in Table 3, Air Quality Index Descriptions.

The federal and California 8-hour ambient air quality standard for ozone is 70 ppb . The California 1-hour standard for ozone is 90 ppb (there is no federal 1-hour standard). As shown in the table, in order to achieve the federal ambient air quality standard for ozone, the Air Quality Index would need to be below 101. In order to achieve the state 8 -hour ambient air quality standard for ozone, the Air Quality Index would need to be below 84.

In the Moreno Valley area during 2016 and 2017, the air quality index was greater than 150 one day each year. That means the air was unhealthy for one day in 2016 and one day in 2017. Although the main source of $\mathrm{NO}_{\mathrm{x}}$ and VOC emissions are from on-road motor vehicles, $\mathrm{NO}_{\mathrm{x}}$ and VOC emissions during project construction could contribute to unhealthy air days. Therefore, the project will incorporate mitigation that prohibits grading on days when an Air Quality Index is greater than 150 for particulates or ozone. If future years follow that trend, there would one day during each of the construction years when construction activities would need to be suspended.

Table 1
Ambient Air Quality Standards

| Pollutant | Averaging Time | California Standards ${ }^{1}$ |  | Federal Standards ${ }^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Concentratio } \\ \mathbf{n}^{3} \end{gathered}$ | Method ${ }^{4}$ | Primary ${ }^{3,5}$ | $\text { Secondary }^{3}$ | Method ${ }^{7}$ |
| $\begin{aligned} & \text { Ozone } \\ & \left(\mathrm{O}_{3}\right)^{8} \end{aligned}$ | 1-Hour | $\begin{gathered} 0.09 \mathrm{ppm} \\ \left(180 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$ | Ultraviolet Photometry | - | Same as Primary Standard | Ultraviolet <br> Photometry |
|  | 8-Hour | 0.070 ppm ( $137 \mu \mathrm{~g} / \mathrm{m}^{3}$ ) |  | $\begin{aligned} & \hline 0.070 \mathrm{ppm} \\ & (137 \mathrm{\mu g} / \mathrm{m} \\ & \left.{ }_{3}\right) \end{aligned}$ |  |  |
| $\begin{gathered} \hline \text { Respirabl } \\ \text { e } \\ \text { Particulat } \\ \text { e Matter } \\ \left(\mathrm{PM}_{10}\right)^{9} \\ \hline \end{gathered}$ | 24-Hour | $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ | Gravimetric or Beta Attenuation | $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ | Same as Primary Standard | Inertial Separation and Gravimetric Analysis |
|  | Annual Arithmetic Mean | $20 \mu \mathrm{~g} / \mathrm{m}^{3}$ |  | - |  |  |
| Fine Particulat e Matter $\left(\mathrm{PM}_{2.5}\right)^{9}$ | 24-Hour | No Separate State Standard |  | $35 \mu \mathrm{~g} / \mathrm{m}^{3}$ | Same as Primary Standard | Inertial Separation and Gravimetric Analysis |
|  | Annual Arithmetic Mean | $12 \mu \mathrm{~g} / \mathrm{m}^{3}$ | Gravimetric or Beta Attenuation | 12.0 gg/m ${ }^{3}$ | 15.0 g $/ \mathrm{m}^{3}$ |  |
| Carbon Monoxide (CO) | 8-Hour | $\begin{gathered} 9.0 \mathrm{ppm}(10 \\ \left.\mathrm{mg} / \mathrm{m}^{3}\right) \end{gathered}$ | Non-Dispersive Infrared Photometry (NDIR) | $\begin{gathered} 9 \mathrm{ppm}(10 \\ \left.\mathrm{mg} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$ | None | Non-Dispersive Infrared Photometry (NDIR) |
|  | 1-Hour | $\begin{gathered} 20 \mathrm{ppm}(23 \\ \left.\mathrm{mg} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$ |  | $\begin{gathered} 35 \mathrm{ppm}(40 \\ \left.\mathrm{mg} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$ |  |  |
|  | 8-Hour (Lake Taho e) <br> e) | 6 ppm (7 $\mathrm{mg} / \mathrm{m}^{3}$ ) |  | - | - | - |
| Nitrogen Dioxide $\left(\mathrm{NO}_{2}\right)^{10}$ | Annual <br> Arithmetic <br> Mean | 0.030 ppm <br> $\left(57 \mu \mathrm{~g} / \mathrm{m}^{3}\right.$ ) | Gas Phase Chemiluminescen ce | $\begin{gathered} 53 \mathrm{ppb} \\ (100 \mu \mathrm{~g} / \mathrm{m} \\ \left.{ }_{3}\right) \end{gathered}$ | Same as Primary Standard | Gas Phase Chemiluminescen ce |
|  | 1-Hour | $\begin{gathered} 0.18 \mathrm{ppm} \\ \left(339 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ |  | $\begin{gathered} 100 \mathrm{ppb} \\ (188 \mu \mathrm{~g} / \mathrm{m} \\ \left.{ }^{3}\right) \end{gathered}$ | None |  |
| Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)^{11}$ | Annual Arithmetic Mean | - | Ultraviolet Fluorescence | 0.030 ppm (for certain areas) ${ }^{11}$ | - | Ultraviolet <br> Fluorescence; Spectrophotometr y (Pararosaniline Method) |
|  | 24-Hour | $\begin{gathered} 0.04 \mathrm{ppm} \\ \left(105 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ |  | 0.14 ppm (for certain areas) ${ }^{11}$ | - |  |
|  | 3-Hour | - |  | - | $\left.\begin{array}{c} 0.5 \mathrm{ppm} \\ \left(1300 \mu \mathrm{~g} / \mathrm{m}^{3}\right. \\ \mathrm{f} \end{array}\right)$ |  |
|  | 1-Hour | $\begin{gathered} 0.25 \mathrm{ppm} \\ \left(655 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ |  | $\begin{gathered} 75 \mathrm{ppb} \\ (196 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$ | - |  |
| Lead ${ }^{12,13}$ | 30 Day Average | $1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$ | Atomic Absorption | - | - | High-Volume Sampler and Atomic Absorption |
|  | Calendar Quarter | - |  | $1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$ (for certain areas) ${ }^{12}$ | Same as Primary Standard |  |
|  | Rolling 3Month Average ${ }^{11}$ | - |  | $0.15 \mu \mathrm{~g} / \mathrm{m}^{3}$ |  |  |

Table 1
Ambient Air Quality Standards

| Pollutant | Averaging Time | California Standards ${ }^{1}$ |  | Federal Standards ${ }^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Concentratio $\mathbf{n}^{3}$ | Method ${ }^{4}$ | Primary ${ }^{3,5}$ | $\text { Secondary }_{, 6}^{3}$ | Method ${ }^{7}$ |
| VisibilityReducing Particles ${ }^{1}$ 4 | 8-Hour | Extinction coefficient of 0.23 per kilometer visibility of ten miles or more (0.07-30 miles or more for Lake <br> Tahoe) due to particles when relative humidity is less than 70 percent. <br> Method: Beta Attenuation and <br> Transmittance through Filter Tape. | Beta Attenuation and Transmittance through Filter Tape | No Federal Standards |  |  |
| Sulfates | 24-Hour | $25 \mu \mathrm{~g} / \mathrm{m}^{3}$ | Ion Chromatography |  |  |  |
| Hydrogen Sulfide | 1-Hour | $\begin{gathered} 0.03 \mathrm{ppm}(42 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$ | Ultraviolet Fluorescence |  |  |  |
| $\begin{gathered} \text { Vinyl } \\ \text { Chloride }^{1} \end{gathered}$ | 24-Hour | $\begin{gathered} 0.01 \mathrm{ppm}(26 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$ | Gas Chromatography |  |  |  |

Table 1

## Ambient Air Quality Standards

| Pollutant | Averaging <br> Time | California Standards $^{1}$ |  | Federal Standards $^{2}$ |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Method $^{4}$ | Primary $^{3,5}$ | Secondary $_{6}{ }^{3}$ | Method $^{7}$ |  |

California standards for ozone; carbon monoxide (except 8-hour Lake Tahoe); sulfur dioxide (1- and 24-hour); nitrogen dioxide; particulate matter ( $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ and visibility-reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.
2 National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth-highest eight-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For $\mathrm{PM}_{10}$, the 24hour standard is attained when the expected number of days per calendar year with a 24 -hour average concentration above $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ is equal to or less than one. For $\mathrm{PM}_{2.5}$, the 24 -hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current federal policies.
3 Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of $25^{\circ} \mathrm{C}$ and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of $25^{\circ} \mathrm{C}$ and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
4 Any equivalent measurement method which can be shown to the satisfaction of the CARB to give equivalent results at or near the level of the air quality standard may be used.
5 National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
6 National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
7 Reference method as described by the EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the EPA.
8 On October 1, 2015, the natural eight-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
9 On December 14, 2012, the national annual $\mathrm{PM}_{2.5}$ primary standard was lowered from $15 \mu \mathrm{~g} / \mathrm{m}^{3}$ to $12.0 \mu \mathrm{~g} / \mathrm{m}^{3}$. The existing national 24-hour $\mathrm{PM}_{2.5}$ standards (primary and secondary) were retained at $35 \mu \mathrm{~g} / \mathrm{m}^{3}$, as was the annual secondary standard of $15 \mu \mathrm{~g} / \mathrm{m}^{3}$. The existing 24-hour $\mathrm{PM}_{10}$ standards (primary and secondary) of $150 \mu \mathrm{~g} / \mathrm{m}^{3}$ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
10 To attain the 1 -hour national standard, the 3 -year average of the $98^{\text {th }}$ percentile of the daily maximum concentrations at each site must not exceed 0.100 ppm . Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm .
11 On June 2, 2010, a new 1-hour $\mathrm{SO}_{2}$ standard was established and the existing 24 -hour and annual primary standards were revoked. To attain the 1 -hour national standard, the 3 -year average of the annual $99^{\text {th }}$ percentile of the 1 -hour daily maximum concentrations at each site must not exceed 0.75 ppb . The $1971 \mathrm{SO}_{2}$ national standards ( 24 -hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm).
${ }^{12}$ The CARB has identified lead and vinyl chloride as "toxic air contaminants" with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
${ }^{13}$ The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
${ }^{\circ} \mathrm{C}=$ degrees Celsius
EPA = United States Environmental Protection Agency
$\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubic meter
$\mathrm{mg} / \mathrm{m}^{3}=$ milligrams per cubic meter
$\mathrm{ppm}=$ parts per million
$\mathrm{ppb}=$ parts per billion
Source: California Air Resources Board, 2016 (https://www.arb.ca.gov/research/aaqs/aaqs2.pdf).

Table 2
Summary of Health Effects of the Major Criteria Air Pollutants

| Pollutants | Sources | Primary Effects |
| :---: | :---: | :---: |
| Ozone ( $\mathrm{O}_{3}$ ) | - Atmospheric reaction of organic gases (ROG or VOC) with nitrogen oxides in the presence of sunlight. | - Breathing difficulty. <br> - Lung tissue damage. <br> - Damage to rubber and some plastics. |
| Nitrogen Dioxide $\left(\mathrm{NO}_{2}\right)$ | - Motor vehicle exhaust. <br> - Heavy construction equipment exhaust. <br> - Farming equipment exhaust. <br> - Residential heating. | - Lung irritation and damage. <br> - Formation of acid rain. |
| Carbon Monoxide (CO) | - Motor vehicle exhaust. <br> - Heavy construction equipment exhaust. <br> - Farming equipment exhaust. <br> - Residential heating. | - Reduced tolerance for exercise. <br> Impairment of mental function. <br> Impairment of fetal development. <br> Death at high levels of exposure. <br> Aggravation of some heart diseases (angina). |
| Suspended Particulate Matter $\left(\mathrm{PM}_{2.5}\right.$ and $\left.\mathrm{PM}_{10}\right)$ | - Motor vehicle exhaust $\left(\mathrm{PM}_{2.5}\right)$. <br> - Equipment and industrial sources $\left(\mathrm{PM}_{2.5}\right)$. <br> - Residential and agricultural burning $\left(\mathrm{PM}_{2.5}\right.$ and $\mathrm{PM}_{10}$ ). <br> - Atmospheric chemical reactions $\left(\mathrm{PM}_{2.5}\right.$ and $\mathrm{PM}_{10}$ ). <br> - Road dust $\left(\mathrm{PM}_{10}\right)$. <br> - Windblown dust (Agriculture [PM ${ }_{10}$ ]) <br> - Construction (Fireplaces [PM ${ }_{10}$ ]) | - Reduced lung function. <br> - Aggravation of the effects of gaseous pollutants. <br> - Aggravation of respiratory and cardiorespiratory diseases. <br> - Increased cough and chest discomfort. <br> - Soiling. <br> - Reduced visibility. |
| Sulfur Dioxide ( $\mathrm{SO}_{2}$ ) | - Coal/oil- burning power plants. <br> - Industries, refineries, and diesel engines. | - Increased lung disease. <br> - Breathing problems for asthmatics. <br> - Formation of acid rain. |
| Lead (Pb) | - Metal smelters. <br> - Resource recovery. <br> - Leaded gasoline. <br> - Deterioration of lead paint. | - Learning disabilities. <br> - Brain and kidney damage. |

Source: California Air Resources Board 2009 (http://www.arb.ca.gov/research/health/fs/fs2/fs2.htm).

Table 3
Air Quality Index Descriptions

| Air Quality Index Levels of Health Concern | Air Quality Index Numerical Range | Ozone Concentration for Air Quality Index (ppb) |  | Meaning |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 8-Hour | 1-Hour |  |
| Good | Low: 0 <br> High: 50 | - | - | Air quality is considered satisfactory, and air pollution poses little or no risk. |
| Moderate | Low: 51 <br> Std: 84* <br> High: 100 | Low: 59 <br> Std: 70* | Low: 85 | Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution. |
| Unhealthy for Sensitive Groups | Low: 101 <br> High: 150 | Low: 75 (also the federal standard) | Low: 125 | Members of sensitive groups may experience health effects. The general public is not likely to be affected. People with heart or lung disease, children, and older adults are considered sensitive and are at greater risk. For ozone, people who are active outdoors are also considered sensitive. |
| Unhealthy | Low: 151 <br> High: 200 | Low: 95 | Low: 165 | Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects. |
| Very Unhealthy | Low: 201 <br> High: 300 | Low: 115 | Low: 205 | Health alert: everyone may experience more serious health effects |
| Hazardous | Low: 301 <br> High: 500 | Low: 374 | Low: 405 | Health warnings of emergency conditions. The entire population is more likely to be affected. |

$\mathrm{ppb}=$ parts per billion (a measure of concentration) * Std $=8$-hour California ozone ambient air quality standard

Source: Environmental Protection Agency (https://airnow.gov/index.cfm?action=aqibasics.aqi); MBA-FCS 2015

Indirect sources of pollution are generated when minor sources collectively emit a substantial amount of pollution. An example of indirect source contribution would be the motor vehicles at intersections, malls, and on highways. The California Clean Air Act (CCAA) provides the SCAQMD with the authority to manage transportation activities at indirect sources. The SCAQMD also regulates stationary sources of pollution throughout its jurisdictional area. Direct emissions from motor vehicles are regulated by the CARB.

The narrative below describes the pollutant characteristics, mechanisms of pollutant origination, and health effects each of the criteria pollutants (i.e., pollutants specifically regulated under the Federal Clean Air Act [CAA] and/or the California Clean Air Act [CCAA]) and other pollutants of concern. Because the concentration levels of the AAQS were set with an adequate margin to protect public health and safety, these health effects will not occur unless the standards are exceeded by a large margin or for a prolonged period of time. State AAQS are more stringent than Federal AAQS.

- Carbon Monoxide
- Description and Properties: CO is colorless, odorless toxic gas produce by incomplete combustion of carbon-containing fuels (e.g., gasoline, diesel fuel, and
biomass). CO is a primary pollutant, meaning it is emitted directly into the air (unlike secondary pollutants such as ozone that are formed by the reactions of other pollutants). CO levels tend to be highest during the winter months when the meteorological conditions support the accumulation of the pollutants. This occurs when relatively low inversion levels trap pollutants near the ground and concentrated the CO . Because CO is somewhat soluble in water, normal winter conditions of rainfall and fog can suppress CO conditions.
- Health Effects: CO is essentially inert to plants and materials but can have significant effects on human health. CO gas enters the body through the lungs, dissolves in the blood, and replaces oxygen as an attached hemoglobin. This binding reduces available oxygen in the blood and; therefore, reduces oxygen delivery to the body's organs and tissues. Effects on humans range from slight headaches to nausea to death. Elevated levels of CO can also cause visual impairments, reduced manual dexterity, poor learning ability, reduced work capacity, and trouble performing complex tasks.
- Sources: The major sources of CO are on-road vehicles, aircraft, and off-road equipment, or any source that burns fuel including residential heaters and stoves. Since most of the CO sources are the indirect result of urban development, most emissions and unhealthy CO levels occur in major urban areas.
- Ozone
- Description and Physical Properties: $\mathrm{O}_{3}$ is known as a photochemical pollutant. Ozone is not emitted directly into the atmosphere, but is formed by a complex series of chemical reactions between reactive organic gases (ROG) or volatile organic compounds (VOC), $\mathrm{NO}_{x}$, and sunlight. ROG and $\mathrm{NO}_{x}$ are emitted from automobiles, solvents and fuel combustion, the sources of which are widespread throughout the SCAQMD. Significant ozone formation generally requires an adequate amount of precursors in the atmosphere and several hours in a stable atmosphere with strong sunlight. The conditions conducive to the formation of ozone include extended periods of daylight (solar radiation) and hot temperatures. These conditions are prevalent during the summer when thermal inversions are most likely to occur. As a result, summertime conditions of long periods of daylight and hot temperatures form ozone in the greatest qualities. During the summer, thermal inversions trap ozone from dispersing vertically, high concentrations of this pollutant are prevalent.
- Health Effects: Health effects of ozone can include respiratory system irritation, reduction of lung capacity, asthma aggravation, inflammation and damage to lung cells, aggravated cardiovascular disease, and permanent lung damage. The greatest health risk is to those who are more active outdoors during smoggy periods, such as children, athletes, and outdoor workers. Ozone also damages natural ecosystems such as forests, foothill communities, and damages
agricultural crops and some man-made materials such as rubber, paint, and plastics.
- Sources: Ozone is a secondary pollutant, thus is not emitted directly in the lower level of the atmosphere. The sources of ozone precursors (ROG and $\mathrm{NO}_{\mathrm{x}}$ ) are discussed above in the description of ozone.
- Oxides of Nitrogen
- Description and Physical Properties: During combustion of fossil fuels, oxygen reacts with nitrogen to produce $\mathrm{NO}_{\mathrm{x}}\left(\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{NO}_{3}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{4}\right.$, and $\mathrm{N}_{2} \mathrm{O}_{5}$ ). Atmospheric deposition of $\mathrm{NO}_{\mathrm{x}}$ occurs when atmospheric or airborne nitrogen is transferred to water, vegetation, soil, or other materials. Acid deposition involves the deposition of nitrogen and/or sulfur acidic compounds that can harm natural resources and materials. $\mathrm{NO}_{\mathrm{x}}$ is also an ozone precursor. When $\mathrm{NO}_{\mathrm{x}}$ and ROG are released in the atmosphere, they can also be a precursor to $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$.
- Health Effects: The EPA has concluded that the only form of $\mathrm{NO}_{\mathrm{x}}$ that exists at a level high enough to cause public health concerns is nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$. Nitrogen dioxide is a brown gas with a strong odor. $\mathrm{NO}_{\mathrm{X}}$ can react with moisture, ammonia, and other compounds to form nitric acid and related particles. The main human health concerns of nitrogen dioxide include lung damage, increased incidence of chronic bronchitis, eye and mucus membrane damage, negative effects on the respiratory system, pulmonary dysfunction, and premature death. Small particles can penetrate deeply into the sensitive tissue of the lungs and can cause or worsen respiratory disease such as emphysema, asthma, and bronchitis, and can also aggravate existing heart disease. Because $\mathrm{NO}_{\mathrm{x}}$ is an ozone precursor, the health effects associated with ozone are also indirect health effects associated with unhealthful levels of $\mathrm{NO}_{\mathrm{x}}$ emissions.
- Sources: A major source of $\mathrm{NO}_{\mathrm{x}}$ includes stationary source fuel combustion (i.e. manufacturing and industrial, food and agricultural processing, and service commercial uses). Additionally, $\mathrm{NO}_{\mathrm{x}}$ emission sources include motor vehicles internal combustion engines and electric utility and industrial boilers powered by fossil fuel combustion. Natural sources of $\mathrm{NO}_{\mathrm{x}}$ include lightning, soils, wildfires, stratospheric intrusion, and the oceans. Natural sources accounted for approximately seven percent of 1990 emissions of $\mathrm{NO}_{\mathrm{x}}$ for the United States. On-road vehicles also contribute to $\mathrm{NO}_{\mathrm{x}}$ emissions.


## - Sulfur Dioxide

- Description and Physical Properties: Sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ is a colorless, pungent gas. At levels greater than 0.5 ppm , the gas has a strong odor, similar to rotten eggs. Sulfuric acid is formed from sulfur dioxide, which is an aerosol particle component that affects acid deposition. Sulfur oxides ( $\mathrm{SO}_{\mathrm{x}}$ ) include sulfur
dioxide and sulfur trioxide $\left(\mathrm{SO}_{3}\right)$. The gas can also be produced in the air by dimethylsulfide and hydrogen sulfide. Sulfur dioxide is removed from the air by dissolution in water, chemical reactions, and transfer to soils and ice caps. Historically, sulfur dioxide was a pollutant of concern. However, with the successful application of regulations at the State and local level, the levels of sulfur dioxide have been reduced dramatically in the past several decades. The CARB, the State regulatory agency charged with regulating air pollution in the State, demonstrates that sulfur dioxide levels in the State are well below the maximum standards. Although sulfur dioxide concentrations have been reduced to levels well below State and Federal standards, further reductions are desirable because sulfur dioxide is a precursor to sulfate and $\mathrm{PM}_{10}$. Sulfates are a particulate formed through the photochemical oxidation of sulfur dioxide.
- Health Effects: Sulfur dioxide is a soluble gas; therefore, it can be absorbed in the mucous membranes of the respiratory tract and nose. Long-term exposure of high levels of sulfur dioxide can cause irritation of existing cardiovascular disease, respiratory illness, and changes in the defenses in the lungs. When people with asthma are exposed to high levels of sulfur dioxide for short periods of time during moderate activity, effects may include wheezing, chest tightness, or shortness of breath.
- Sources: Anthropogenic, or human caused, sources include fossil-fuel combustion, mineral ore processing, and chemical manufacturing. Volcanic emissions are a natural source of sulfur dioxide.
- Lead
- Description and Physical Properties: Lead $(\mathrm{Pb})$ is a solid heavy metal that can exist in air pollution as an aerosol particle component. An aerosol is a collection of solid, liquid, or mixed-phase particles suspended in the air. Lead was first regulated as an air pollutant in 1976. Leaded gasoline was first marketed in 1923 and was used in motor vehicles until around 1970. The exclusion of lead from gasoline helped to decrease emissions of lead in the United States from 219,000 to 4,000 short tons per year between 1970 and 1997. Even though leaded gasoline has been phased out in most countries, some still use leaded gasoline. The mechanisms by which lead can be removed from the atmosphere (sinks) include deposition to soils, ice caps, and oceans, and inhalation.
- Health Effects: Lead accumulates in bones, soft tissue, and blood and can affect the kidneys, liver, and nervous system. The more serious effects of lead poisoning include behavior disorders, mental retardation, and neurological impairment. Low levels of lead in fetuses and young children can result in nervous system damage, which can cause learning deficiencies and low IQs. Lead may also contribute to high blood pressure and heart disease.
- Sources: Lead-ore crushing, lead-ore smelting, and battery manufacturing are currently the largest sources of lead in the atmosphere in the United States. Other sources include dust from soils contaminated with lead-based paint, soil waste disposal, and crustal physical weathering.
- Particulate Matter ( $P M_{10}$ and $P M_{2.5}$ )
- Description and Physical Properties: Particulate matter is a generic term that defines a broad group of chemically and physically different particles (either liquid droplets or solids) that can exist over a wide range of sizes. Examples of atmosphere particles include those produced from combustion (diesel soot or fly ash), light produced (urban haze), sea spray produced (salt particles), and soillike particles from re-suspended dust. In discussions of air pollution, particulate matter is typically divided up into two size categories: $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ because of the adverse health effects associated with the smaller-sized particles. $\mathrm{PM}_{10}$ refers to particulate matter that is 10 microns or less in diameter ( 1 micron is onemillionth of a meter, also known as a micrometer $[\mu \mathrm{m}]$ ). $\mathrm{PM}_{2.5}$ refers to particulate matter that is 2.5 microns or less in a diameter. Soil dust consists of the minerals and organic material found in soil being lifted up into the air by winds (e.g., fugitive dust).
- Health Effects: Particulate matter can be inhaled directly into the lungs where it can be absorbed into the bloodstream. It is a respiratory irritant and can cause direct pulmonary effects such as coughing, bronchitis, lung disease, respiratory illnesses, increased airway reactivity, and exacerbation of asthma. Relatively recent mortality studies have shown a statistically significant direct association between mortality and daily concentrations of particulate matter in the air. Nonhealth related effects include reduced visibility and soiling of property.
- Sources: Particulate matter originates from a variety of stationary and mobile sources. Stationary sources include fuel combustion for electrical utilities, residential space heating, and industrial processes; construction and demolition; metals, minerals, and petrochemicals; wood products processing; mills and elevators used in agriculture; erosion from tilled lands; waste disposal and recycling. Mobile or transportation-related sources include particulate matter from highway vehicles and non-road vehicles and fugitive dust from paved and unpaved roads. Secondary particulate matter is formed in the atmosphere through chemical reactions that can involve ROG, $\mathrm{SO}_{\mathrm{x}}, \mathrm{NO}_{\mathrm{x}}$, and ammonia.


## - Diesel Particulate Matter

- Description and Physical Properties: Diesel particulate matter (DPM) is a source of $\mathrm{PM}_{2.5}$ as the size of diesel particles are typically 2.5 microns and smaller. In 1998, DPM made up about 6 percent of the total $\mathrm{PM}_{2.5}$ inventory nationwide. Diesel exhaust is a complex mixture of thousands of particles and gases that is produced when an engine burns diesel fuel. DPM includes the particles-phase
constituents in diesel exhaust. Organic compounds account for 80 percent of the total particulate matter mass, which is composed of compounds such as hydrocarbons and their derivatives, and polycyclic aromatic hydrocarbons (PAHs) and their derivatives. Fifteen PAHs have been confirmed for carcinogenicity, a number of which are found in diesel exhaust. The chemical composition and particle sizes of diesel PM vary between different engine types (heavy-duty, light-duty), engine operating conditions (idle, accelerate, decelerate), expected load, engine emission controls, fuel formulations (high/low sulfur fuel), and the year of the engine.
- Cancer Health Effects: Human studies on the carcinogenicity of diesel particulate matter demonstrate an increased risk of lung cancer, although the increased risk cannot be clearly attributed to diesel exhaust exposure. Several occupational and ambient studies have documented the health effects due to exposure to diesel PM. The California Office of Environmental Health Hazards Assessment (OEHHA), in its role in assessing risk from environmental factors reviews such studies and makes recommendations on how environmental risk should be evaluated through programs like the AB2588 Hot Spots Program. In its comprehensive assessment of diesel exhaust, OEHHA analyzed more than 30 studies of people who worked around diesel equipment, including truck drivers, 1950's era railroad workers, and equipment operators. The studies showed these workers were more likely to develop lung cancer than workers who were not exposed to diesel emissions. These studies provided strong evidence that longterm occupational exposure to diesel exhaust increases the risk of lung cancer. However, all of these studies were based on exposure to exhaust from traditional diesel engines and prior to the advent of highly efficient emissions controls like the diesel particulate filter. Based on these studies, CARB identified diesel exhaust a toxic air contaminant in 1998.
- Non-Cancer Health Effects: Some short-term (acute) effects of diesel exhaust include eye, nose, throat, and lung irritation, and can cause coughs, headaches, light-headedness, and nausea. Diesel exhaust is a major source of ambient particulate matter pollution as well, and numerous studies have linked elevated particle levels in the air to increase hospital admission, emergency room visits, asthma attacks, and premature deaths among those suffering from respiratory problems.
- Sources: Diesel exhaust.
- Visibility-Reducing Particles
- Description and Physical Properties: Visibility-reducing particles (VRP) are suspended particulate matter that reduces visibility. Visibility is the distance through the air that can be seen without the use of instrumental assistance. The distance that can be seen is limited by the amount of gases and aerosol particles
in the way. The EPA implemented a Regional Haze Rule in 1999 to attempt to protect visibility in 156 national parks and wilderness areas in the United States. The regulation requires states to establish goals for improving their areas and to work together with other states as the pollution is often transported over long distances.
- Health Effects: The human health effects of VRP are those of pollution (particulate matter, oxides of nitrogen, and sulfur dioxide) discussed above.
- Sources: The sources are other pollutants (particulate matter, oxides of nitrogen, and sulfur dioxide) as discussed above.
- Vinyl Chloride
- Description and Physical Properties: Vinyl chloride, or chloroethene, is a chlorinated hydrocarbon and colorless gas with a mild, sweet odor. Most vinyl chloride is used to make polyvinyl chloride (PVC) plastic and vinyl products, including pipes, wire and cable coatings, and packaging materials. Vinyl chloride is formed when other substances such as trichloroethylene and tetrachloroethylene are broken down. This can occur when plastics containing these substances are left to decompose in solid waste landfills. Vinyl chloride has been detected near landfills, sewage plants, and hazardous waste sites due to microbial breakdown of chlorinated solvents. In 1978, the CARB established a State ambient air quality standard for vinyl chloride. The standard was set at 0.01 ppm for a 24-hour duration because that was the lowest level that could be detected at that time. In 1990, the CARB identified vinyl chloride as a toxic air contaminant and estimated a cancer unit risk factor.
- Health Effects: Short-term exposure to high levels of vinyl chloride in air causes central nervous system effects, such as dizziness, drowsiness, and headaches. Epidemiological studies of occupationally exposed workers have linked vinyl chloride exposure to development of a rare cancer, liver angiosarcoma, and have suggested a relationship between exposure and lung and brain cancers.
- Sources: Manufacturing of PVC plastic and vinyl products.


## - Hydrogen Sulfide

- Description and Physical Properties: Hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ is a flammable, colorless, poisonous gas that smells like rotten eggs.
- Health Effects: High levels of hydrogen sulfide can cause immediate respiratory arrest. It can irritate the eyes and respiratory tract and cause symptoms like headache, nausea, vomiting, and cough. Long exposure to hydrogen sulfide can cause pulmonary edema.
- Sources: Hydrogen sulfide and other reduced sulfur compounds form by the anaerobic decomposition of manure some types of bacteria found in animal and human by-products produce hydrogen sulfide during reduction of sulfurcontaining compounds, such as proteins. Manure, storage tanks, ponds, anaerobic lagoons, and land application sites are the primary sources of hydrogen sulfide emissions. Anthropogenic sources include the combustion of sulfur containing fuels (oil and coal) and organic matter that undergoes putrefaction. It is used in the production of heavy water for nuclear reactors, the manufacture of chemicals, in metallurgy, and as an analytical reagent.


## - Reactive Organic Gases and Volatile Organic Compounds

- Description and Physical Properties: Reactive organic gases (ROG), or volatile organic compounds (VOC), are defined as any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions. ROG consist of nonmethane hydrocarbons and oxygenated hydrocarbons. Hydrocarbons are organic compounds that contain only hydrogen and carbon atoms. Nonmethane hydrocarbons are hydrocarbons that do not contain the unreactive hydrocarbon, methane. Oxygenated hydrocarbons are hydrocarbons with oxygenated functional groups attached.
- It should be noted that there are no State or Federal ambient air quality standard for ROG because they are not classified as criteria pollutants. They are regulated, however, because a reduction in ROG emissions reduces certain chemicals reactions that contribute to the formulation of ozone. ROG are also transformed into organic aerosols in the atmosphere, which contribute to higher $\mathrm{PM}_{10}$ and lower visibility.
- Health Effects: Although health-based standards have not been established for ROG, health effects can occur from exposures to high concentrations because of interference with oxygen uptake. In general, concentrations of ROG are suspected to cause eye, nose, and throat irritation; headaches, loss of coordination, nausea, damage to liver, kidney, and the central nervous system. There are many ROG that have been classified as toxic air contaminates. A particular ROG of concern is benzene, which is described in more detail below. The EPA maintains a list of all air substances that have been classified as hazardous to humans and/or animals, and includes ROG, pesticides, herbicides, and radionuclides.
- Sources: The major sources of ROG are on-road motor vehicles and solvent evaporation.
- Benzene
- Description and Physical Properties: Benzene is an ROG. It is a clear or colorless light-yellow, volatile, highly flammable liquid with a gasoline-like odor. The EPA has classified benzene as a "Group A" (human) carcinogen.
- Health Effects: Short-term (acute) exposure of high doses from inhalation of benzene may cause dizziness, drowsiness, headaches, eye irritation, skin irritation, and respiratory tract irritation, and at higher levels, unconsciousness can occur. Long-term (chronic) occupational exposure of high dose by inhalation has caused blood disorders, including aplastic anemia and lower levels or red blood cells. Occupational exposure to benzene has been shown to cause leukemia (mainly acute myelogenous leukemia). Studies have also found that benzene exposure increased the risks of lymphatic and hematopoietic cancer (cancers of lymphatic system and of organs and tissues involved in the production of blood), total leukemia, and specific histologic types of leukemia.
- Sources: Benzene is emitted into the air from gasoline services station (fuel evaporation), motor vehicle exhaust, tobacco smoke, and from burning oil and coal. Benzene is also used as a solvent for paints, inks, oils, waxes, plastic, and rubber. It is used in the extraction of oils from seeds and nuts. It is also used in manufacturing detergents, explosives, dyestuffs, and pharmaceuticals.

Ultrafine Particles. Ultrafine particles are particulate matter (PM) that exists in the ambient air and are less than 0.1 micrometer ( $\mu \mathrm{m}$ or microns) in diameter. Ultrafine particles (UFP or PM0.1) are included in the group called $\mathrm{PM}_{2.5}$, particulate matter less than 2.5 micrometers in diameter.

The picture to the right displays the relative size of the particles compared with a human hair, with $\mathrm{PM}_{10}$ (particulate matter less than 10 micrometers in diameter) indicated as yellow circles, $\mathrm{PM}_{2.5}$ shown as blue circles, and ultrafine particles shown as red circles.

The CARB or the EPA have not set an ambient air quality standard for ultrafine particles because health effect evidence and measurements are currently limited. In its recent revisions to the national ambient air quality standards for particulate matter, the EPA states, "In considering both the currently available health effects
 evidence and the air quality data, the Policy Assessment concluded that this information was still too limited to provide support for consideration of a distinct PM standard for ultrafine particles". ${ }^{1}$

The EPA indicates that evidence and research regarding health effects from short-term and longterm exposure to ultrafine particles are still too limited to establish a standard for ultrafine particles. In addition, the EPA reports that the studies that do exist have reported inconsistent and mixed results. The following is an excerpt from the Federal Register illustrating this point:

[^0]"New evidence, primarily from controlled human exposure and toxicological studies, expands our understanding of cardiovascular and respiratory effects related to short-term ultrafine particle exposures. However, the Policy Assessment concluded that this evidence was still very limited and largely focused on exposure to diesel exhaust, for which the Integrated Science Assessment concluded it was unclear whether the effects observed are due to ultrafine particles, larger particles within the $P M_{2.5}$ mixture, or the gaseous components of diesel exhaust. In addition, the Integrated Science Assessment noted uncertainties associated with the controlled human exposure studies using concentrated ambient particle systems, which have been shown to modify the composition of ultrafine particles.

The Policy Assessment recognized that there are relatively few epidemiological studies that have examined potential cardiovascular and respiratory effects associated with short-term exposures to ultrafine particles. These studies have reported inconsistent and mixed results.

Collectively, in considering the body of scientific evidence available in this review, the Integrated Science Assessment concluded that the currently available evidence was suggestive of a causal relationship between short-term exposures to ultrafine particles and cardiovascular and respiratory effects. Furthermore, the Integrated Science Assessment concluded that evidence was inadequate to infer a causal relationship between short-term exposure to ultrafine particles and mortality as well as long-term exposure to ultrafine particles and all outcomes evaluated". ${ }^{2}$

The Integrated Science Assessment for Particulate Matter concluded that evidence is inadequate to determine a causal relationship between short-term exposures of ultrafine particles to mortality or central nervous system effects, but that the evidence suggests short-term (24-hour) exposures cause cardiovascular and respiratory effects. The assessment also concluded that there is inadequate evidence linking long-term exposure (typically measured in terms of an annual concentration) of ultrafine particles to health effects, including respiratory, developmental, cancer, and mortality. Overall, epidemiological studies of atmospheric PM suggest that cardiovascular effects are associated with smaller particles, but there are few reports that make a clear link between ultrafine particle exposures and increased mortality. In January 2015, a new study ${ }^{3}$ on the relationship of mortality to long-term exposure to fine and ultra-fine particles was released. The study found there was a relationship between mortality and both fine and ultra-fine particles exposure.

In its Quantitative Health Risk Assessment for Particulate Matter, the EPA did not assess ultrafine particles, stating "that there was insufficient data to support a quantitative risk assessment for other size fractions (e.g., ultrafine particles)." ${ }^{4}$

[^1]The availability of measurements of ultrafine particles to support health studies is also limited:

> With respect to our understanding of ambient ultrafine particle concentrations, at present, there is no national network of ultrafine particle samplers; thus, only episodic and/or site-specific data sets exist. Therefore, the Policy Assessment recognized a national characterization of concentrations, temporal and spatial patterns, and trends was not possible at this time, and the availability of ambient ultrafine measurements to support health studies was extremely limited. In general, measurements of ultrafine particles are highly dependent on monitor location and, therefore, more subject to exposure error than accumulation mode particles. Furthermore, the number of ultrafine particles generally decreases sharply downwind from sources, as ultrafine particles may grow into the accumulation mode by coagulation or condensation. Limited studies of ambient ultrafine particle measurements have suggested that these particles exhibit a high degree of spatial and temporal heterogeneity driven primarily by differences in nearby source characteristics. Internal combustion engines and, therefore, roadways are a notable source of ultrafine particles, so concentrations of these particles near roadways are generally expected to be elevated. Concentrations of ultrafine particles have been reported to drop off much more quickly with distance from roadways than fine particles.

In addition, it was hypothesized that chemical composition of PM may be a better predictor of health effects than particle size:

> In addressing the issue of particle composition, the Integrated Science Assessment concluded that, '[ffrom a mechanistic perspective, it is highly plausible that the chemical composition of PM would be a better predictor of health effects than particle size.' Heterogeneity of ambient concentrations of $P M_{2.5}$ constituents (e.g., elemental carbon, organic carbon, sulfates, nitrates) observed in different geographical regions as well as regional heterogeneity in $P M_{2.5}$-related health effects reported in a number of epidemiological studies are consistent with this hypothesis. ${ }^{6}$

The SCAQMD's Multiple Air Toxics Exposure Study (MATES-IV) states, "the health impact caused by exposure to UFPs [ultrafine particles] is still not well-understood." MATES-IV presents measurements of black carbon and ultrafine particles at 10 fixed sites within the Basin. The results indicate that the highest black carbon levels were at more urban sites located near major roadways. Black carbon was not measured in the previous MATES-III; however, elemental carbon levels decreased about 35 percent during from 2005 to 2012. Black carbon is a term used for elemental and graphitic components of soot.

The SCAQMD's 2016 Air Quality Management Plan (AQMP), discusses its progress in implementing the 2012 AQMP which contains a detailed chapter on near roadway exposure and ultrafine particles. The 2012 AQMP summarizes current health effect research on ultrafine particles. The potential health effects from ultrafine particle exposure are similar to those of $\mathrm{PM}_{2.5}$

[^2]and $\mathrm{PM}_{10}$ : such as adverse cardio-respiratory responses including elevated blood pressure, and mild inflammatory and prothrombotic (obstruction of circulation) responses. The AQMP indicated that future research and assessment is needed in the following areas:

- Chemical Composition. Chemical composition of ultrafine particles depends on many factors, including vehicle technology, fuel, and atmospheric chemical reactions after being emitted. Particle composition may be a factor determining particle toxicity; therefore, knowledge regarding the chemistry is important.
- Formation. More research is needed regarding the processes leading to ultrafine particle formation.
- Standardized Measurement Methods and Procedures. Currently, there is no standard method for conducting size-classified or particle-number measurements. Characteristics measured in ambient and emission-testing studies are highly dependent on the measurement instrument/protocol used and its setting.
- Measurements at Hot Spot Locations. More measurements should be taken at "hot spots" where large numbers of vehicles are operated.
- Emissions Inventories. Vehicle emission factors for different particle size ranges and for particle numbers are highly uncertain, and there are no emission inventories for ultrafine particles from motor vehicles. New estimations of ultrafine particle levels should not be derived solely from vehicle emission factors (i.e., EMFAC), but have to include predictions for formation near the tailpipe and in the atmosphere.
- Air Quality Modeling. Modeling tools will need to be developed to simulate the formation and transport over a wide range of atmospheric conditions and emissions scenarios. The dispersion near the first few hundred meters of the roadway needs to be better understood.
- Health Effects. New toxicological and epidemiological studies targeting exposure to controlled and uncontrolled emissions from gasoline and diesel vehicles are needed to better characterize the exposure-response relationships to ultrafine particles and to help develop health guidelines and potential regulations. The health effects of inorganic ultrafine particle emissions from vehicles are only now starting to receive significant attention.
- Other Sources. More work is needed to better understand size, composition, and health impact of particles near stationary sources and other processes (rather than just motor vehicles).

Children and Air Pollution. Numerous studies have shown strong links between air pollution exposures and a range of health outcomes. One particular study was carried out over a 10 -year experimental time period by the University of Southern California, the Children's Health Study. ${ }^{7}$ The Children's Health Study, which began in 1992, is a large, long-term, study of the effects of chronic air pollution exposures on the health of children living in Southern California. Children

[^3]may be more strongly affected by air pollution because their lungs and their bodies are still developing. Children are also exposed to more air pollution than adults since they breathe faster and spend more time outdoors in strenuous activities. About 5,500 children in twelve communities were enrolled in the study; two-thirds of them were enrolled as fourth-graders. Data on the children's health, their exposures to air pollution, and many factors that affected their responses to air pollution were gathered annually until they graduated from high school. The major conclusions reached in the University of Southern California's Children's Health Study are shown below. Note however, that the conclusions provided below were developed based on measurements made in the 1990's when levels of air pollution in the Basin were substantially higher than current levels.

- Children exposed to higher levels of particulate matter, nitrogen dioxide, acid vapor and elemental carbon, had significantly lower lung function at age 18 , an age when the lungs are nearly mature and lung function deficits are unlikely to be reversed.
- Children who were exposed to current levels of air pollution had significantly reduced lung growth and development when exposed to higher levels of acid vapor, ozone, nitrogen dioxide, and particulate matter, which is made up of very small particles that can be breathed deeply into the lungs.
- Children living in communities with higher concentrations of nitrogen dioxide, particulate matter, and acid vapor had lungs that both developed and grew more slowly and were less able to move air through them. This decreased lung development may have permanent adverse effects in adulthood.
- Children who moved away from study communities had increased lung development if the new communities had lower particulate matter levels, and had decreased lung development if the new communities had higher particulate matter levels.
- Days with higher ozone levels resulted in significantly higher school absences due to respiratory illness. Children with asthma who were exposed to higher concentrations of particulate matter were much more likely to develop bronchitis.
- In the most recent update to the Children's Health Study, researchers discovered that improvements in regional air quality contributed to improved children's lung function. Specifically, combined exposure to two harmful pollutants, nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ and fine particulate matter, fell approximately 40 percent for children in the third study group (2007-2011) compared to the first study group (1994-98). The study followed children from Long Beach, Mira Loma, Riverside, San Dimas and Upland.
- Children's lungs grew faster as air quality improved. Lung growth from age 11 to 15 was more than 10 percent greater for children breathing the lower levels of $\mathrm{NO}_{2}$ from 2007 to 2011 compared to those breathing higher levels from 1994 to 1998.
- The percentage of children in the study with abnormally low lung function at age 15 dropped from nearly 8 percent for the 1994-98 group, to 6.3 percent in 1997-2001, to just 3.6 percent for children followed between 2007 and 2011.


## Air Pollution Constituents and Attainment Status

The CARB has many responsibilities with respect to air quality, including the following:

- Coordination and oversight of State and Federal air pollution control programs in California;
- Oversight activities of local air quality management agencies (e.g., the SCAQMD);
- Responsibility for incorporating air quality management plans for local air basins into a State Implementation Plan (SIP) for EPA approval; and
- Maintaining air quality monitoring stations throughout the State in conjunction with local air districts.

The CARB has divided the State into 15 air basins based on meteorological and topographical factors that affect air pollution. An air basin generally has similar meteorological and geographic conditions throughout. The CARB and EPA use the data collected at monitoring stations to classify air basins as attainment, nonattainment, nonattainment transitional, or unclassified, based on air quality data for the most recent three calendar years compared with the AAQS. Nonattainment areas are imposed with additional restrictions, as required by the EPA to attain and maintain air quality standards. The air quality data are also used to monitor progress in attaining and maintaining air quality standards.

Significant authority for air quality control within the various air basins has been given to local air districts that regulate stationary source emissions and develop local nonattainment plans.
Table 4, Attainment Status of Criteria Pollutants in the South Coast Air Basin, identifies the attainment status for the criteria pollutants in the Basin. The State AAQS are more stringent than the Federal AAQS.

Table 4
Attainment Status of Criteria Pollutants in the South Coast Air Basin

| Pollutant | State | Federal |
| :---: | :---: | :---: |
| $\mathrm{O}_{3}$ 1-hour | Nonattainment | N/A |
| $\mathrm{O}_{3}$ 8-hour | Nonattainment | Extreme Nonattainment |
| $\mathrm{PM}_{10}$ | Nonattainment | Maintenance - serious (San Bernardino <br> County is in nonattainment) |
| $\mathrm{PM}_{2.5}$ | Nonattainment | Moderate Nonattainment |
| CO | Attainment | Serious Maintenance |
| $\mathrm{NO}_{2}$ | Attainment | Attainment/Maintenance |
| $\mathrm{SO}_{2}$ | Attainment | Attainment |
| Pb | Attainment | Attainment |
| All others | Attainment/Unclassified | Attainment/Unclassified |

Unclassified designation: a pollutant that is designated unclassified if the data are incomplete and do not support a designation of attainment or nonattainment.
Attainment designation: a pollutant is designated attainment if the State standard for that pollutant was not violated at any site in the area during a 3 -year period.
Nonattainment: a pollutant is designated nonattainment if there was at least one violation at any site in the area during a 3 -year period.
Source: California Air Resources Board (https://www.arb.ca.gov/desig/adm/adm.htm), 2018; Environmental Protection Agency (https://www.epa.gov/green-book), 2018

## Regional Air Quality Improvements

The SCAQMD website (aqmd.gov) contains historical air quality data dating back to 1994; the year after air pollution emissions thresholds were established. As described on the SCAQMD website, ${ }^{8}$ in 1994 pollutant concentrations in the Basin exceeded three of the six Federal ambient air quality standards. The state sulfate standard was exceeded in some Basin areas. The state lead standard was exceeded in one localized area immediately adjacent to a source of lead emissions. No areas of the Basin exceeded standards for nitrogen dioxide or sulfur dioxide. The Los Angeles and Riverside County areas of the Southeast Desert Air Basin (SEDAB) served by the District exceeded standards for ozone and $\mathrm{PM}_{10}$. No other standards were exceeded in the District SEDAB areas. The Federal standards were exceeded at one or more locations in the Basin during 142 days in 1994.

The American Lung Association website (lung.org) includes data collected from State air quality monitors that are used to compile an annual State of the Air report. These reports have been published over the last 13 years. The latest State of the Air Report compiled for the Basin was in 2017. ${ }^{9}$ As noted in this report, air quality in the Basin has significantly improved in terms of both pollution levels and high pollution days over the past three decades. Riverside County's average number of unhealthy ozone days dropped from 203 days per year in the initial 2000 State of the Air report to 122 in 2017 report and San Bernardino County's number of unhealthy ozone days dropped from 230 in 2000 to 142 in 2017. Both Counties has seen dramatic reduction in particle pollution since the initial State of the Air report (2000). While the 2017 State of the Air Report shows a slight uptick in the number of days of unhealthy particle pollution for both counties since

[^4]the 2016 report, it is important to note that pollution levels measured in this latter report were affected by fluctuations in weather conditions.

The 2016 Air Quality Management Plan 2016 AQMP outlines a comprehensive control strategy that meets the requirement for expeditious progress towards an attainment date for the five National Ambient Air Quality Standards (NAAQS) being analyzed. As stated in the 2016 AQMP, "The ozone and PM levels continue to trend downward as the economy and population increase, demonstrating that it is possible to maintain a healthy economy while improving public health through air quality improvements" (South Coast Air Quality Management District 2016). As shown in Figure 9, $N O_{X}, V O C, C O$, and Ozone Trends in the South Coast Air Basin, $\mathrm{NO}_{\mathrm{X}}, ~ \mathrm{VOC}$, $\mathrm{PM}, \mathrm{NH}_{3}$, have been decreasing in the Basin since 2000 and are projected to continue to decrease through 2035. ${ }^{10}$ These decreases result primarily from motor vehicle controls and reductions in evaporative emissions. Although vehicle miles traveled in the Basin continue to increase, $\mathrm{NO}_{\mathrm{x}}$ and VOC levels are decreasing because of the mandated controls on motor vehicles and the replacement of older polluting vehicles with lower-emitting vehicles. NOx emissions from electric utilities have also decreased due to use of cleaner fuels and renewable energy.

[^5]Figure 9: NOx, VOC, CO, and Ozone Trends in the South Coast Air Basin



Ozone Contour Maps - 3 year Average of National 8-hour Exceedance Days




Figure 9 also displays ozone contour maps, which show that the number of days exceeding the national 8-hour standard has decreased between 1992 and 2011. During the 1992 time period, nearly all of the South Coast had more than 50 exceedance days, with more than 100 days in nearly one-third of the Basin. This is equivalent to more than three months during a year with ozone concentrations above the level of the standard. The 2011 map now shows a large area with less than ten exceedance days. Much of this area currently meets the national standard, including about two-thirds of Orange County and one-third of Los Angeles County, where the majority of the Basin population lives and works. ${ }^{11}$

As shown in the top portion of Figure 10, Particulate Matter Trends in the South Coast Air Basin, the overall trends of $\mathrm{PM}_{2.5}$ in the air (not emissions) show an overall improvement since 2001. Area-wide sources (fugitive dust from roads, dust from construction and demolition, and other sources) contribute the greatest amount of direct particulate matter emissions.

Figure 10: Particulate Matter Trends in the South Coast Air Basin


Source: CARB, California Almanac of Emissions and Air Quality, 2013 Edition.

The reduction in air pollution levels experienced in the Basin is attributable to multiple factors. First, Federal and State regulatory strategies requiring the use of cleaner fuels and use of emissions control technology in the transportation and energy production industries have proven to greatly reduce the amount of tailpipe emission (vehicles) and point source (power plants) pollutants (e.g., $\mathrm{NO}_{\mathrm{x}}$ and ROG). Second, the SCAQMD's rules and regulatory programs have proven to be instrumental in improving the air quality in the Basin. As an example, the SCAQMD has adopted multiple rules regarding fugitive dust $\left(\mathrm{PM}_{10}\right.$ and $\left.\mathrm{PM}_{2.5}\right)$ and construction emissions that have resulted in reduced emission levels. Third, the SCAQMD's creation of the 1993 CEQA review handbook has resulted in lead agencies throughout the air basin employing uniform

[^6]CEQA analyses and methodologies. The use of uniform CEQA review has allowed the SCAQMD and lead agencies that rely on the 1993 SCAQMD Air Quality Handbook to perform CEQA analysis to better track progress and to employ uniform mitigation and design feature strategies. Fourth, the use of the SCAQMD thresholds of significance to determine a project's direct and cumulative impact has allowed the SCAQMD to make tremendous progress toward achieving air quality attainment. The discussion above (pertaining to the air quality improvements achieved over the past 20 years) demonstrates that the SCAQMD's rules and procedures, including the uniform utilization of the thresholds of significance recommended in the SCAQMD CEQA Air Quality Handbook are contributing toward the achievement of improved air quality in the Basin.

It is for this reason the City have chosen to rely on the thresholds of significance established by the SCAQMD in its 1993 CEQA Handbook and subsequent additions to the Handbook. These thresholds of significance (which serve as both direct and cumulative thresholds) have been uniformly utilized by lead agencies throughout the Basin for the past 20 years and the improvement of air quality within the Basin throughout this time period has demonstrated the efficacy of these thresholds, along with the other regional and statewide regional programs discussed above, in improving air quality throughout the Basin.

## Local Air Quality

The SCAQMD, together with the CARB, maintains ambient air quality monitoring stations in the Basin. The air quality monitoring station most representative of the project site is the RiversideRubidoux station. This station monitors $\mathrm{CO}, \mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{O}_{3}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$. Some monitoring data for $\mathrm{SO}_{2}$ has been omitted as attainment is regularly met for this pollutant within the Basin. This station characterizes the air quality representative of the ambient air quality in the project area. The ambient air quality data in Table 5, Ambient Air Quality Monitored in the Project Vicinity, identify that CO and $\mathrm{NO}_{2}$ levels are consistently below the relevant State and Federal standards in the project vicinity. $\mathrm{O}_{3}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$ levels all exceed State and/or Federal standards regularly. Figure 11, Air Quality Monitoring Station, identifies the location of the monitoring station relative to the project site.

## Sensitive Land Uses in the Project Vicinity

Sensitive receptors include residences, schools, medical offices, convalescent facilities, and similar uses where people sensitive to air pollutants may be located (i.e., the ill, elderly, pregnant women, and children). There are currently six occupied single-family homes and associated ranch/farm buildings in various locations on the project site. These residences are existing on-site sensitive receptors. The nearest off-site existing sensitive receptors in the vicinity of the project site are the residences located along Bay Avenue, Merwin Street, west of Redlands Boulevard, and scattered residences along Gilman Springs Road north of Alessandro Boulevard. Nearby sensitive land uses are depicted in Figure 12, Existing Sensitive Receptors.

## Existing Project Area Emissions

The project area is largely vacant undeveloped marginal agricultural land, with six occupied single-family homes and associated ranch/farm buildings in various locations on the property.

Much of the site is currently used for dry farming generating criteria pollutant and dust emissions. San Diego Gas \& Electric (SDG\&E) operates a natural gas compressor plant, known as the Moreno Compressor Station, on 19 acres south of the site. The Southern California Gas Company (SCGC) also operates a metering and pipe cleaning station on two separate parcels (totaling 1.5 acres) south of the site south of Alessandro Boulevard along existing Virginia Street. Existing air quality conditions at the project site reflect ambient ${ }^{12}$ monitored conditions as presented in Table 5.

[^7]Table 5
Ambient Air Quality Monitored in the Project Vicinity

| Pollutant | Standard | 2014 | 2015 | 2016 | 2017 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Carbon Monoxide (CO) |  |  |  |  |  |
| Maximum 1-hr concentration (ppm) |  | 2.4 | 2.5 | 1.6 | 2.4 |
| Number of days exceeded: | State: > 20 ppm | 0 | 0 | 0 | 0 |
|  | Federal: > 35 ppm | 0 | 0 | 0 | 0 |
| Maximum 8-hr concentration (ppm) |  | 1.9 | 1.7 | 1.3 | 1.8 |
| Number of days exceeded: | State: $\geq 9.0 \mathrm{ppm}$ | 0 | 0 | 0 | 0 |
|  | Federal: $\geq 9 \mathrm{ppm}$ | 0 | 0 | 0 | 0 |
| Ozone ( $\mathrm{O}_{3}$ ) |  |  |  |  |  |
| Maximum 1-hr concentration (ppm) |  | 0.141 | 0.132 | 0.142 | 0.145 |
| Number of days exceeded: | State: > 0.09 ppm | 29 | 31 | 33 | ND |
| Maximum 8-hr concentration (ppm) |  | 0.105 | 0.106 | 0.105 | 0.118 |
| Number of days exceeded: | State: > 0.070 ppm | 69 | 59 | 71 | ND |
|  | Federal: > 0.075 ppm | 41 | 39 | 47 | 84 |
| Coarse Particulates ( $\mathrm{PM}_{10}$ ) |  |  |  |  |  |
| Maximum 24-hr concentration ( $\mu \mathrm{g} / \mathrm{m}^{3}$ ) |  | 100 | 69 | 84 | 92 |
| Number of days exceeded: | State: $>50 \mu \mathrm{~g} / \mathrm{m}^{3}$ | 125 | 92 | ND | ND |
|  | Federal: $>150 \mu \mathrm{~g} / \mathrm{m}^{3}$ | 0 | 0 | 0 | 0 |
| Annual arithmetic mean concentration ( $\mu \mathrm{g} / \mathrm{m}^{3}$ ) |  | 44.8 | 40.0 | ND | ND |
| Exceeded for the year | State: $>20 \mu \mathrm{~g} / \mathrm{m}^{3}$ | Yes | Yes | ND | ND |
| Fine Particulates (PM ${ }_{2.5}$ ) |  |  |  |  |  |
| Maximum 24-hr concentration ( $\mu \mathrm{g} / \mathrm{m}^{3}$ ) |  | 50.6 | 61.1 | 60.8 | 50.3 |
| Number of days exceeded: | Federal: > $35 \mu \mathrm{~g} / \mathrm{m}^{3}$ | ND | 10 | 5 | ND |
| Annual arithmetic mean ( $\mu \mathrm{g} / \mathrm{m}^{3}$ ) |  | 16.8 | 15.3 | 12.6 | 12.2 |
| Exceeded for the year | State: $>12 \mu \mathrm{~g} / \mathrm{m}^{3}$ | Yes | Yes | Yes | Yes |
|  | Federal: > $12.0 \mu \mathrm{~g} / \mathrm{m}^{3}$ | Yes | Yes | Yes | Yes |
| Nitrogen Dioxide ( $\mathbf{N O}_{2}$ ) |  |  |  |  |  |
| Maximum 1-hr concentration (ppm) |  | 0.0600 | 0.057 | 0.073 | 0.063 |
| Number of days exceeded: | State: > 0.18 ppm | 0 | 0 | 0 | 0 |
| Annual arithmetic mean concentration (ppm) |  | 0.015 | 0.0144 | 0.015 | 0.015 |
| Exceeded for the year | $\begin{array}{r} \text { State: }>0.030 \mathrm{ppm} \\ \text { Federal: }>0.053 \mathrm{ppm} \end{array}$ | $\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$ | ND | ND |
| Sulfur Dioxide ( $\mathbf{S O}_{2}$ ) |  |  |  |  |  |
| Maximum 24-hr concentration (ppm) |  | 1.3 | 1.0 | 1.2 | 1.2 |
| Number of days exceeded: | State: > 0.04 ppm | ND | ND | ND | ND |
| Annual arithmetic average concentration (ppm) |  | 0.26 | 0.27 | 0.23 | 0.29 |
| Exceeded for the year: | Federal: > 0.030 ppm | No | No | No | No |
| $\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubi Agency <br> ID = Insufficient data <br> ppm = parts per million <br> Source: CARB, iADAM: Air <br> Rubidoux air monitoring sta | Data Statistics. Available |  | United <br> No data <br> .ca.gov/a | Environ <br> r the S | rotection <br> Riversi |




SOURCE: ESRI 2016; County of Riverside 2017

### 1.5 Existing Greenhouse Gas Environment

## Global Climate Change

Global climate change is the change in average meteorological conditions on the earth with respect to temperature, precipitation, and storms. The term "global climate change" is often used interchangeably with the term "global warming," but "global climate change" is preferred by some scientists and policy makers to "global warming" because it helps convey the notion that there are other changes in addition to rising temperatures.

Climate change refers to any significant change in measures of climate such as temperature, precipitation, or wind, lasting for decades or longer. Climate change may result from:

- Natural factors, such as changes in the sun's intensity or slow changes in the Earth's orbit around the sun;
- Natural processes within the climate system (e.g., changes in ocean circulation); and/or
- Human activities that change the atmosphere's composition (e.g., through burning fossil fuels) and the land surface (e.g., deforestation, reforestation, urbanization, and desertification).

The primary observed effect of global climate change has been a rise in the average global tropospheric ${ }^{13}$ temperature of 0.36 degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$ per decade, determined from meteorological measurements worldwide between 1990 and 2005. Climate change modeling shows that further warming could occur, which would induce additional changes in the global climate system during the current century. Changes to the global climate system, ecosystems, and the environment of California could include higher sea levels, drier or wetter weather, changes in ocean salinity, changes in wind patterns or more energetic aspects of extreme weather, including droughts, heavy precipitation, heat waves, extreme cold and increased intensity of tropical cyclones (hurricanes). Specific effects in California might include a decline in the Sierra Nevada snowpack, erosion of California's coastline, and seawater intrusion in the Delta.

Human activities, such as fossil fuel combustion and land use changes release carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and other compounds, cumulatively termed greenhouse gases (GHGs). GHGs are effective in trapping infrared radiation that otherwise would have escaped the atmosphere, thereby warming the atmosphere, the oceans, and earth's surface. ${ }^{14}$ Many scientists believe that "most of the warming observed over the last 50 years is attributable to human activities." ${ }^{15}$ The increased amounts of $\mathrm{CO}_{2}$ and other GHGs are alleged to be the primary causes of the human-induced component of warming.

[^8]GHGs are present in the atmosphere naturally, released by natural sources, or formed from secondary reactions taking place in the atmosphere. They include $\mathrm{CO}_{2}$, methane $\left(\mathrm{CH}_{4}\right)$, nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$, and ozone $\left(\mathrm{O}_{3}\right)$. In the last 200 years, substantial quantities of GHGs have been released into the atmosphere. These extra emissions are increasing GHG concentrations in the atmosphere, enhancing the natural greenhouse effect, which is believed to be causing global climate change. While human-made GHGs include $\mathrm{CO}_{2}, \mathrm{CH}_{4}$, and $\mathrm{N}_{2} \mathrm{O}$, some (like chlorofluorocarbons [CFCs]) are completely new to the atmosphere.

GHGs vary considerably in terms of Global Warming Potential (GWP), which is a concept developed to compare the ability of each GHG to trap heat in the atmosphere relative to another gas. The global warming potential is based on several factors, including the relative effectiveness of a gas to absorb infrared radiation and length of time that the gas remains in the atmosphere ("atmospheric lifetime"). The GWP of each gas is measured relative to $\mathrm{CO}_{2}$, the most abundant GHG. The definition of GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to the ratio of heat trapped by one unit mass of $\mathrm{CO}_{2}$ over a specified time period. GHG emissions are typically measured in terms of metric tons of " $\mathrm{CO}_{2}$ equivalents" ( $\mathrm{mt}_{\mathrm{CO}_{2} \mathrm{e} \text { or }}$ $\mathrm{MTCO}_{2} \mathrm{e}$ ).

Methane is produced when organic matter decomposes in environments lacking sufficient oxygen. Natural sources include wetlands, termites, and oceans. Human-made sources include the mining and burning of fossil fuels; digestive processes in ruminant animals such as cattle; rice paddies; and the burying of waste in landfills. As for $\mathrm{CO}_{2}$, the major removal process of atmospheric $\mathrm{CH}_{4}$-chemical breakdown in the atmosphere-cannot keep pace with source emissions, and $\mathrm{CH}_{4}$ concentrations in the atmosphere are increasing.

Worldwide emissions of GHGs in 2010 were approximately 47,351 million mt $\mathrm{CO}_{2} \mathrm{e}^{16}$ Emissions from the top five countries and the European Union accounted for approximately 57 percent of the total global GHG emissions, according to the most recently available data. The United States was the number two producer of GHG emissions, contributing 13 percent of the emissions. The primary GHG emitted by human activities in the United States was $\mathrm{CO}_{2}$, representing approximately 82 percent of total GHG emissions. $\mathrm{CO}_{2}$ from fossil fuel combustion, the largest source of GHG emissions, accounted for approximately 85 percent of the GHG emissions. ${ }^{17}$

In 2016, the United States emitted approximately 5.3 billion $\mathrm{mt}_{2} \mathrm{e}$ or approximately 16.5 tons per year (tpy) per person. Of the six major sectors nationwide (electric power industry, transportation, industry, agriculture, commercial, and residential), the electric power industry and transportation sectors combined account for approximately 72 percent of the GHG emissions; the majority of the electrical power industry and all of the transportation emissions are generated

[^9]from direct fossil fuel combustion. Between 1990 and 2016, total United States GHG emissions rose approximately 2.8 percent. ${ }^{18}$

World carbon dioxide emissions ${ }^{19}$ are expected to increase by 1.9 percent annually between 2001 and 2025. Much of the increase in these emissions is expected to occur in the developing world where emerging economies, such as China and India, fuel economic development with fossil energy. Developing countries' emissions are expected to grow above the world average at 2.7 percent annually between 2001 and 2025; and surpass emissions of industrialized countries near 2018.

The California Air Resources Board (CARB) is responsible for developing the California Greenhouse Gas Emission Inventory. This inventory estimates the amount of GHGs emitted into and removed from the atmosphere by human activities within the State of California and supports the Assembly Bill (AB) 32 Climate Change Program. The most recent inventory of GHG emissions in California estimated 440.4 million $\mathrm{mt} \mathrm{CO}_{2} \mathrm{e}$ in $2015 .{ }^{20}$ This is a 2.2 percent increase in GHG emissions from 1990. The top contributor of emissions in 2015 was transportation, which contributed 37 percent of the emissions. The second highest sector was industrial (21 percent), which includes sources from refineries, general fuel use, oil and gas extraction, and cement plants. According to CARB, California is on track to meet the 2020 GHG reduction target codified in California Health and Safety Code (HSC), Division 25.5, also known as The Global Warming Solutions Act of 2006 (AB 32). ${ }^{21}$

## Effects of Global Climate Change

Climate change is a change in the average weather of the earth that is measured by alterations in wind patterns, storms, precipitation, and temperature. These changes are assessed using historical records of temperature changes occurring in the past, such as during previous ice ages. Many of the concerns regarding climate change use these data to extrapolate a level of statistical significance specifically focusing on temperature records from the last 150 years (the Industrial Age) that differ from previous climate changes in rate and magnitude.

The International Panel on Climate Change (IPCC) constructed several emission trajectories of greenhouse gases needed to stabilize global temperatures and climate change impacts. In its Fourth Assessment Report, the IPCC predicted that the global mean surface temperature change for 2081-2100 relative to the period from 1986 to 2005, given six scenarios, could range from 0.3 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ to $4.8^{\circ} \mathrm{C}$. Regardless of analytical methodology, global average temperatures and sea levels are expected to rise under all scenarios (IPCC 2014). The IPCC concluded that global climate change was largely the result of human activity, mainly the burning

18 U.S. Environmental Protection Agency (EPA). 2018. Inventory of U.S. Greenhouse Gas Emissions And Sinks: 1990 - 2016. http://www.epa.gov/climatechange/emissions/usinventoryreport.html. Accessed April 6, 2018.
19 http://www.eia.gov/oiaf/1605/ggccebro/chapter1.html.
20 California Air Resources Board. California Greenhouse Gas Inventory: 2000-2015. 2017 edition. http://www.arb.ca.gov/cc/inventory/data/data.htm
21 California Air Resources Board, Frequently Asked Questions for the 2016 Edition California Greenhouse Gas Emission Inventory, (2016). Available at:
https://www.arb.ca.gov/cc/inventory/pubs/reports/2000_2014/ghg_inventory_faq_20160617.pdf. Accessed April 2018.
of fossil fuels. However, the scientific literature is not consistent regarding many of the aspects of global warming or climate change, including actual temperature changes during the $20^{\text {th }}$ century, the accuracy of the IPCC report, and contributions of human versus non-human activities.

Effects from global climate change may arise from temperature increases, climate-sensitive diseases, extreme weather events, and degradation of air quality. There may be direct temperature effects through increases in average temperature leading to more extreme heat waves and less extreme cold spells. Those living in warmer climates are likely to experience more stress and heat-related problems. Heat-related problems include heat rash and heat stroke. In addition, climate-sensitive diseases may increase, such as those spread by mosquitoes and other diseasecarrying insects. Such diseases include malaria, dengue fever, yellow fever, and encephalitis. Extreme events such as flooding and hurricanes can displace people and agriculture. Global warming may also contribute to air quality problems from increased frequency of smog and particulate air pollution.

Additionally, the following climate change effects, which are based on trends established by the IPCC, can be expected in California over the course of the next century:

- A diminishing Sierra snowpack declining by 70 percent to 90 percent, threatening the State's water supply. If GHG emissions continue unabated, more precipitation will fall as rain instead of snow, and the snow that does fall will melt earlier.
- A rise in sea levels resulting in the displacement of coastal businesses and residences. During the past century, sea levels along California's coast have risen about seven inches. If emissions continue unabated and temperatures rise into the higher anticipated warming range, sea level is expected to rise an additional 22 to 35 inches by the end of the century. Elevations of this magnitude would inundate coastal areas with salt water, accelerate coastal erosion, threaten vital levees and inland water systems, and disrupt wetlands and natural habitats. (Note: This condition would not affect the project area as it is a significant distance away from coastal areas.)
- An increase in temperature and extreme weather events. Climate change is expected to lead to increases in the frequency, intensity, and duration of extreme heat events and heat waves in California. More heat waves can exacerbate chronic disease or heat-related illness.
- Increased risk of large wildfires if rain increases as temperatures rise. Precipitation, winds, temperature, and vegetation influence wildfire risk; therefore, wildfire risk is not uniform throughout the state. Changes in current precipitation patterns could influence that risk. As an example, wildfires in the grasslands and chaparral ecosystems of southern California are estimated to increase by approximately 30 percent toward the end of the 21 st century because more winter rain will stimulate the growth of more plant fuel available to burn in the fall. In contrast, a hotter, drier climate could promote up to 90 percent more northern California fires by the end of the century by drying out and increasing the flammability of forest vegetation.
- Increasing temperatures from 8 to $10.4^{\circ} \mathrm{F}$ under the higher emission scenarios, leading to a 25 percent to 35 percent increase in the number of days ozone pollution levels are exceeded in most urban areas (see below).
- Increased vulnerability of forests due to forest fires, pest infestation, and increased temperatures.
- Reductions in the quality and quantity of certain agricultural products. The crops and products likely to be adversely affected include wine grapes, fruit, nuts, and milk.
- Exacerbation of air quality problems. If temperatures rise to the medium warming range, there could be 75 to 85 percent more days with weather conducive to ozone formation in Los Angeles and the San Joaquin Valley, relative to today's conditions. This is more than twice the increase expected if rising temperatures remain in the lower warming range. This increase in air quality problems could result in an increase in asthma and other health-related problems.
- A decrease in the health and productivity of California's forests. Climate change can cause an increase in wildfires, an enhanced insect population, and establishment of nonnative species.
- Increased electricity demand, particularly in the hot summer months.
- Increased ground-level ozone formation due to higher reaction rates of ozone precursors.


## Consequences of Climate Change in Moreno Valley

Figure 13, Observed and Projected Temperatures, below, displays a chart of measured historical and projected annual average temperatures in the Moreno Valley area. As shown in Figure 13, temperatures are expected to rise in the low and high GHG emissions scenarios.

Water for the project would be provided by the Eastern Municipal Water Department (EMWD). The EMWD 2015 Urban Water Management Plan considered the impact of climate change on water supplies as part of its long-term strategic planning. One of the outcomes of climate change could be more frequent limitations on imported supplies. To limit the impact of climate change, EMWD's long-term planning focuses on the development of reliable local resources and the implementation of water use efficiency. This includes the full utilization of recycled water and the recharge of local groundwater basins to increase supply reliability during periods of water shortage. EMWD is also focused on reducing demand for water supplies, especially outdoors. Increasing the use of local resource and reducing the need for imported water has the dual benefit of not only improving water quality reliability, but reducing the energy required to import water to EMWD's service area.

Figure 13: Observed and Projected Temperatures


Figure 14, Wildfire Risk in Moreno Valley, displays the fire risk in Moreno Valley relative to 2010 levels. Figure 14 displays the projected increase in potential area burned given three different 30-year averaging periods ending in 2020, 2050, and 2085 and two different scenarios (A2, B1). The data are modeled solely on climate projections and do not take landscape and fuel sources into account (there is very little combustible material in the project area). The data modeled the ratio of additional fire risk for an area as compared to the expected burned area. The data are shown in Figure 14 and indicate that under the low-emissions scenario, the additional wildfire risk is about 1 , which means that wildfire risk is expected to remain about the same. Under the high-emission scenario, additional risk is variable with a slight increase.

Figure 14: Wildfire Risk in Moreno Valley


### 1.6 Greenhouse Gases

The most common greenhouse gases include water vapor, carbon dioxide, methane, nitrous oxides, chlorofluorocarbons, hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, ozone, and aerosols. Greenhouse gases defined by AB 32 include carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride.

Natural processes and human activities emit greenhouse gases. The presence of greenhouse gases in the atmosphere affects the earth's temperature. Many scientists believe that emissions from human activities, such as electricity production and vehicle use, have led to elevated concentrations of these gases in the atmosphere beyond the level of naturally occurring concentrations. Greenhouse gases, the effects of each greenhouse gas, and some of the sources for each of the greenhouse gases are listed below.

- Water Vapor
- Description and Physical Properties: Water vapor $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is the most abundant, important, and variable greenhouse gas in the atmosphere. Water vapor is not considered a pollutant; in the atmosphere it maintains a climate necessary for life. Changes in its concentration are primarily considered to be a result of climate feedbacks related to the warming of the atmosphere rather than a direct result of industrialization.
- Health Effects: There are no health effects from water vapor. When some pollutants come in contact with water vapor, they can dissolve and then the water vapor can be a transport mechanism to enter the human body.
- Source: The main source of water vapor is evaporation from the oceans (approximately $85 \%$ ). Other sources include evaporation from other water bodies, sublimation (change from solid to gas) from sea ice and snow, and transpiration from plant leaves.
- Carbon Dioxide
- Description and Physical Properties: Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is an odorless, colorless natural greenhouse gas.
- Health Effects: Outdoor levels of carbon dioxide are not high enough to result in negative health effects.
- Sources: Carbon dioxide is emitted from natural and anthropocentric (human) sources. Natural sources include decomposition of dead organic matter; respiration of bacteria, plants, animals, and fungus; evaporation from oceans; and volcanic out gassing. Anthropogenic sources are from burning coal, oil, natural gas, and wood.
- Methane
- Description and Physical Properties: Methane $\left(\mathrm{CH}_{4}\right)$ is an extremely effective GHG with a global warming potential of 21, though its atmospheric concentration is less than carbon dioxide and its lifetime in the atmosphere is brief (10-12 years) compared to other greenhouse gases.
- Health Effects: There are no health effects from methane.
- Sources: Methane has both natural and anthropogenic sources. It is released as part of the biological processes in low oxygen environments, such as in swamplands or in rice production (at the roots of the plants). Over the last 50 years, human activities such as growing rice, raising cattle, using natural gas, and mining coal have added to the atmospheric concentration of methane. Other anthropocentric sources include fossil-fuel combustion and biomass burning.
- Nitrous Oxide
- Description and Physical Properties: Nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$, also known as laughing gas, is a colorless greenhouse gas. It has a lifetime of 114 years. Its global warming potential is 310 .
- Health Effects: Nitrous oxide can cause dizziness, euphoria, and sometimes slight hallucinations. In small doses it is harmless. In some cases, heavy and extended use can cause Olney's Lesions (brain damage).
- Sources: Concentrations of nitrous oxide also began to rise at the beginning of the Industrial Revolution. In 1998, the global concentration was 314 ppb . Nitrous oxide is produced by microbial processes in soil and water, including those reactions that occur in fertilizer containing nitrogen. In addition to agricultural sources, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid production, and vehicle emissions) also contribute to its atmospheric load. It is used as an aerosol spray propellant, e.g., in whipped cream bottles. It is also used in potato chip bags to keep chips fresh. It is used in rocket engines and in race cars.


## - Chlorofluorocarbons

- Description and Physical Properties: Chlorofluorocarbons (CFCs) are gases formed synthetically by replacing all hydrogen atoms in methane or ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ with chlorine and/or fluorine atoms. CFCs are nontoxic, nonflammable, insoluble, and chemically unreactive in the troposphere (the level of air at the earth's surface). Global warming potentials range from 3,800 to 8,100 .
- Health Effects: In confirmed indoor locations, working with CFC-113 or other CFCs is thought to have resulted in death by cardiac arrhythmia (heart frequency too high or too low) or asphyxiation.
- Sources: CFCs have no natural source, but were first synthesized in 1928. They were used for refrigerants, aerosol propellants, and cleaning solvents. Due to the discovery that they are able to destroy stratospheric ozone, a global effort to halt their production was undertaken and was extremely successful, so much so that levels of the major CFCs are now remaining level or declining. However, their long atmospheric lifetimes mean that some of the CFCs will remain in the atmosphere for over 100 years.
- Hydrofluorocarbons
- Description and Physical Properties: Hydrofluorocarbons (HFCs) are synthetic man-made chemicals that are used as a substitute for CFCs. Out of all the greenhouse gases, they are one of three groups with the highest global warming potential (depending on the gas, ranges from 140 to 11,700). Prior to 1990, the only significant emissions were HFC-23. HFC-134a use is increasing due to its use as a refrigerant.
- Health Effects: There are no health effects from HFCs.
- Sources: HFCs are man-made for applications such as automobile air conditioners and refrigerants.
- Perfluorocarbons
- Description and Physical Properties: Perfluorocarbons (PFCs) have stable molecular structures and do not break down through the chemical processes in the lower atmosphere. Because of this, PFCs have very long lifetimes, between 10,000 and 50,000 years. Two common PFCs are tetrafluoromethane $\left(\mathrm{CF}_{4}\right)$ and hexafluoroethane ( $\mathrm{C}_{2} \mathrm{~F}_{6}$ ). Global warming potentials range from 6,500 to 9,200.
- Health Effects: There are no health effects from PFCs.
- Sources: The two main sources of PFCs are primary aluminum production and semiconductor manufacture.
- Sulfur Hexafluoride
- Description and Physical Properties: Sulfur hexafluoride $\left(\mathrm{SF}_{6}\right)$ is an inorganic, odorless, colorless, nontoxic, nonflammable gas. It also has the highest GWP of any gas evaluated, 23,900. Concentrations in the 1990s were about 4 ppt . It has a lifetime of 3,200 years.
- Health Effects: In high concentrations in confined areas, the gas presents the hazard of suffocation because it displaces the oxygen needed for breathing.
- Sources: Sulfur hexafluoride is used for insulation in electric power transmission and distribution equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas for leak detection.
- Aerosols
- Description and Physical Properties: Aerosols are particles emitted into the air through burning biomass (plant material) and fossil fuels. Aerosols can warm the atmosphere by absorbing and emitting heat and can cool the atmosphere by reflecting light. Cloud formation can also be affected by aerosols.
- Health Effects: See health effects associated with particulate matter, above.
- Sources: Sulfate aerosols are emitted when fuel containing sulfur is burned. Another source of aerosols (in the form of black carbon or soot) is the result of incomplete combustion or the incomplete burning of fossil fuels. Although particulate matter regulation has been lowering aerosol concentrations in the United States, global concentrations are likely increasing as a result of other sources around the world.
- Black Carbon. A specific aerosol of concern is black carbon. Black carbon is a light absorbing component of particulate matter and is formed by the incomplete combustion of fossil fuels, biofuels, and biomass. The following is additional information on black carbon:
- Black carbon is emitted directly into the atmosphere in the form of fine particles $\left(\mathrm{PM}_{2.5}\right)$.
- Black carbon contributes to the adverse impacts on human health, ecosystems, and visibility associated with $\mathrm{PM}_{2.5}$.
- Black carbon influences climate by: 1) directly absorbing light, 2) reducing the reflectivity ("albedo") of snow and ice through deposition, and 3) interacting with clouds.

The direct and snow/ice albedo effects of black carbon are widely understood to lead to climate warming. However, the globally averaged net climate effect of black carbon also includes the effects associated with cloud interactions, which are not well quantified and may cause either warming or cooling. Therefore, though most estimates indicate that black carbon has a net warming influence, a net cooling effect cannot be ruled out.

- Sensitive regions such as the Arctic and the Himalayas are particularly vulnerable to the warming and melting effects of black carbon.
- Black carbon is emitted with other particles and gases, many of which exert a cooling influence on climate. Therefore, estimates of the net effect of black carbon emissions sources on climate should include the offsetting effects of these co-emitted pollutants. This is particularly important for evaluating mitigation options.
- Black carbon's short atmospheric lifetime (days to weeks), combined with its strong warming potential, means that targeted strategies to reduce black carbon emissions can be expected to provide climate benefits within the next several decades.
- The different climate attributes of black carbon and long-lived GHGs make it difficult to interpret comparisons of their relative climate impacts based on common metrics.
- Based on recent emissions inventories, the majority of global black carbon emissions come from Asia, Latin America, and Africa. Emissions patterns and trends across regions, countries and sources vary significantly.
- Control technologies are available to reduce black carbon emissions from a number of source categories.
- Black carbon mitigation strategies, which lead to reductions in $\mathrm{PM}_{2.5}$, can provide substantial public health and environmental benefits.

Climate change is driven by radiative forcings and feedbacks. Radiative forcing is the difference between the incoming energy and outgoing energy in the climate system. In other terms, radiative forcing is the energy absorbed by the greenhouse gas that would otherwise be lost to space. Positive forcing tends to warm the surface while negative forcing tends to cool it. A feedback is a climate process that can strengthen or weaken a forcing. For example, when ice or snow melts, it reveals darker land underneath, which absorbs more radiation and causes more warming.

In order to attempt to quantify the impact of greenhouse gases, the gases are assigned global warming potentials. Individual greenhouse gas compounds have varying global warming potential and atmospheric lifetimes. Carbon dioxide, the reference gas for global warming potential, has a global warming potential of one. The global warming potential of a greenhouse gas is a potential of a gas or aerosol to trap heat in the atmosphere compared to the reference gas, carbon dioxide, and is a measurement of the radiative forcing of a gas. There are positive (warming) and negative (cooling) forcings. To describe how much global warming a given type and amount of greenhouse gas may cause, the carbon dioxide equivalent is used. The calculation of the carbon dioxide equivalent is a consistent methodology for comparing greenhouse gas emissions since it normalizes various greenhouse gas emissions to a consistent reference gas, carbon dioxide. Carbon dioxide as a molecule has a certain potential for warming; other molecules have a different potential. For example, methane's warming potential of 21 indicates that methane has 21 times greater warming effect than carbon dioxide on a molecule per molecule basis. A carbon dioxide equivalent is the mass emissions of an individual greenhouse gas multiplied by its global warming potential.

## SECTION 2

## Regulatory Setting

### 2.1 International Regulation of Climate Change

## Intergovernmental Panel on Climate Change

In 1988, the United Nations created the IPCC to provide independent scientific information regarding climate change to policymakers. The IPCC does not conduct research itself, but rather compiles information from a variety of sources into reports regarding climate change and its impacts. The IPCC has thereafter periodically released reports on climate change, and in 2007 released its Fourth Assessment Report which concluded most global climate change was the result of human activity, mainly the burning of fossil fuels.

## United Nations Framework Convention on Climate Change

On March 21, 1994, the United States joined a number of countries around the world in signing the United Nations Framework Convention on Climate Change (Convention). Under the Convention, governments gather and share information on greenhouse gas emissions, national policies, and best practices; launch national strategies for addressing greenhouse gas emissions and adapting to expected impacts, including the provision of financial and technological support to developing countries; and cooperate in preparing for adaptation to the impacts of climate change.

## Kyoto Protocol

The Kyoto Protocol is an international agreement linked to the United Nations Framework Convention on Climate Change. The major feature of the Kyoto Protocol is that it sets binding targets for 37 industrialized countries and the European community for reducing greenhouse gas emissions at average of five percent against 1990 levels over the five-year period 2008-2012. The Convention (discussed above) encouraged industrialized countries to stabilize emissions; however, the Protocol commits them to do so. Developed countries have contributed more emissions over the last 150 years; therefore, the Protocol places a heavier burden on developed nations under the principle of "common but differentiated responsibilities." The United States has not entered into force of the Kyoto Protocol.

Moreover, since the United States declined to ratify the Kyoto Protocol in 1995, it has become increasingly clear that global climate change cannot be addressed without limiting GHG emissions from developing, as well as developed, countries. According to many sources, China has already surpassed the United States as the world's largest GHG emitter and is building new coal-fired power plants at a rate of approximately one per week. A recent study conducted by
economists at the UC Berkeley and UC San Diego estimated that China's $\mathrm{CO}_{2}$ emissions are growing by as much as 11 percent annually. In 2007, China released its first national plan on climate change, which includes goals related to increasing energy efficiency and increasing use of renewable resources. The plan, however, makes no commitments regarding reduction of GHG emissions.

Like China, India is already one of the top emitters of GHGs and continues to grow rapidly. India has recently pledged to take more action to fight global warming, for example, by pursuing solar energy, urging energy efficiency, and conservation, but it has not set any concrete goals in these areas, let alone pledged to reduce its carbon emissions. To the contrary, India's emissions are projected to increase fourfold by 2030 (see "Melting Asia," The Economist, June 5, 2008). Similarly, Brazil, the largest economy in South America, and another rapidly developing country, has no national policy requiring it to reduce carbon emissions. Brazil's carbon emissions increased by more than 60 percent between 1990 and 2004, and are projected to continue to rise at a similar pace (see International Energy Agency, World Energy Outlook 2006).

The Kyoto Protocol expired in 2012. Formal negotiations to replace the protocol officially began in December 2007 at the UNFCCC Climate Change Conference in Bali, Indonesia (http://unfccc.int/.php). Whether a workable agreement can be reached, however, remains to be seen, as the United States continues to press for an agreement that requires firm commitments from developing nations, and countries like China and India continue to oppose binding targets (see http://news.bbc.co.uk/////.stm).

In addition, it should be noted that most mitigation measures that address greenhouse gas reduction typically parallel those that reduce the consumption of energy (i.e., electricity and natural gas). Reducing energy use in a market economy typically reduces the cost of energy. However, a reduced cost of energy can release pent-up demand (latent demand) for energy use, particularly in less developed portions of the world, such as Africa and Asia. As such, it is not clear how much energy use reduction in California or the U.S. would actually reduce worldwide energy use. The same would apply to measures to reduce greenhouse gas emissions.

### 2.2 Federal

## Federal Clean Air Act

Pursuant to the Federal Clean Air Act (CAA) of 1970, the EPA established national ambient air quality standards (NAAQS). The NAAQS were established for six major pollutants, termed "criteria" pollutants. Criteria pollutants are defined as those pollutants for which the Federal and State governments have established ambient air quality standards, or criteria, for outdoor concentrations in order to protect public health.

The EPA established national air quality standards for ground-level $\mathrm{O}_{3}$ and $\mathrm{PM}_{2.5}$ in 1997. On May 14, 1999, the Court of Appeals for the District of Columbia Circuit issued a decision ruling that the CAA, as applied in setting the new public health standards for $\mathrm{O}_{3}$ and particulate matter, was unconstitutional as an improper delegation of legislative authority to the EPA. On February 27, 2001, the U.S. Supreme Court upheld the way that the government sets air quality standards
under the CAA. The Court unanimously rejected industry arguments that the EPA must consider financial cost as well as health benefits in writing standards. The Justices also rejected arguments that the EPA took too much lawmaking power from Congress when it set tougher standards for $\mathrm{O}_{3}$ and soot in 1997. Nevertheless, the Court threw out the EPA's policy for implementing new $\mathrm{O}_{3}$ rules, stating that the EPA ignored a section of the law that restricts its authority to enforce such rules.

In April 2003, the EPA was cleared by the White House Office of Management and Budget (OMB) to implement the eight-hour ground-level $\mathrm{O}_{3}$ standard. The EPA issued the proposed rule implementing the eight-hour $\mathrm{O}_{3}$ standard in April 2003. The EPA completed final eight-hour nonattainment status on April 15, 2004. The EPA issued the final PM $_{2.5}$ implementation rule in fall 2004. The EPA issued final designations on December 14, 2004.

Effective January 22, 2010, the EPA strengthened the standard for $\mathrm{NO}_{2}$ by setting a new 1-hour standard at the level of 100 parts per billion ( ppb ). This standard defines the maximum allowable concentration anywhere in an area and will protect against adverse health effects associated with short-term exposure to $\mathrm{NO}_{2}$. To attain this standard, the 3 -year average of the $98^{\text {th }}$ percentile of the daily maximum 1-hour average at each monitor within an area must not exceed 100 ppb . On January 25, 2010, the EPA issued the final rule setting the one-hour maximum standard for $\mathrm{NO}_{2}$ at 100 ppb . The agency retained the annual standard of 53 ppb .

Effective June 2, 2010, the EPA revised the primary standard for $\mathrm{SO}_{2}$ by establishing a new 1hour standard at a level of 75 ppb . The EPA revoked the two existing primary standards of 140 ppb evaluated over 24 hours and 30 ppb evaluated over an entire year as they would not provide additional public health protection given a 1 -hour standard at 75 ppb . To attain this standard, the 3 -year average of the $99^{\text {th }}$ percentile of the daily maximum 1-hour average at each monitor within an area must not exceed 75 ppb .

Effective December 14, 2012, the national annual $\mathrm{PM}_{2.5}$ standard was lowered from $15 \mu \mathrm{~g} / \mathrm{m}^{3}$ to $12 \mu \mathrm{~g} / \mathrm{m}^{3}$ but the existing 24 -hour and annual secondary standards were retained.

On October 1, 2015, the national eight-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm , respectively.

## Greenhouse Gas Endangerment

Massachusetts v. EPA (Supreme Court Case 05-1120) was argued before the United States Supreme Court on November 29, 2006, in which it was petitioned that the EPA regulate four greenhouse gases, including carbon dioxide, under Section 202(a)(1) of the Clean Air Act. A decision was made on April 2, 2007, in which the Supreme Court found that greenhouse gases are air pollutants covered by the Clean Air Act. The Court held that the EPA Administrator must determine whether emissions of greenhouse gases from new motor vehicles cause or contribute to air pollution, which may reasonably be anticipated to endanger public health or welfare, or whether the science is too uncertain to make a reasoned decision. On December 7, 2009, the EPA Administrator signed two distinct findings regarding greenhouse gases under section 202(a) of the Clean Air Act:

- Endangerment Finding: The Administrator finds that the current and projected concentrations of the six key well-mixed greenhouse gases-carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride-in the atmosphere threaten the public health and welfare of current and future generations.
- Cause or Contribution Finding: The Administrator finds that the combined emissions of these well-mixed greenhouse gases from new motor vehicles and new motor vehicle engines contribute to the greenhouse gas pollution, which threatens public health and welfare.
These findings do not impose requirements on industry or other entities. However, this was a prerequisite for implementing greenhouse gas emissions standards for vehicles, as discussed in the section "Clean Vehicles" below.

In September 2011, the EPA Office of Inspector General evaluated the EPA's compliance with established policy and procedures in the development of the endangerment finding, including processes for ensuring information quality. The evaluation concluded that the technical support document should have had more rigorous EPA peer review.

In June 2012, a Federal appeals court rejected a lawsuit against the EPA. The suit alleged that the EPA violated the law by relying almost exclusively on data from the United Nations IPCC rather than doing its own research or testing data according to Federal standards. The U.S. Chamber of Commerce and the National Association of Manufacturers (with others) filed petitions to the U.S. Court of Appeals - D.C. Circuit to rehear the case. The EPA and Department of Justice provided a response on October 12, 2012.

## Clean Vehicles

Congress first passed the Corporate Average Fuel Economy law in 1975 to increase the fuel economy of cars and light duty trucks. The law has become more stringent over time. On May 19, 2009, President Obama put in motion a new national policy to increase fuel economy for all new cars and trucks sold in the United States. On April 1, 2010, the EPA and the Department of Transportation's Highway Traffic and Safety Administration (NHTSA) announced a joint final rule establishing a national program that would reduce greenhouse gas emissions and improve fuel economy for new cars and trucks sold in the United States.

The first phase of the national program applied to passenger cars, light-duty trucks, and mediumduty passenger vehicles, covering model years 2012 through 2016. The vehicles had to meet an estimated combined average emissions level of 250 grams of carbon dioxide per mile, equivalent to 35.5 miles per gallon if the automobile industry were to meet this carbon dioxide level solely through fuel economy improvements. Together, these standards were designed to cut carbon dioxide emissions by an estimated 960 million metric tons and 1.8 billion barrels of oil over the lifetime of the vehicles sold under the program (model years 2012-2016). In August 2012, standards were adopted for model year 2017 through 2025 for passenger cars and light-duty trucks. By 2025, vehicles are required to achieve 54.5 mpg (if GHG reductions are achieved exclusively through fuel economy improvements) and 163 grams of $\mathrm{CO}_{2}$ per mile. According to
the USEPA, a model year 2025 vehicle would emit one-half of the GHG emissions from a model year 2010 vehicle. 22

On October 25, 2010, the EPA and the U.S. Department of Transportation proposed the first national standards to reduce greenhouse gas emissions and improve fuel efficiency of heavy-duty trucks and buses (also known as "Phase 1"). For combination tractors, the agencies are proposing engine and vehicle standards that begin in the 2014 model year and achieve up to a 20 percent reduction in carbon dioxide emissions and fuel consumption by the 2018 model year. For heavyduty pickup trucks and vans, the agencies are proposing separate gasoline and diesel truck standards, which phase in starting in the 2014 model year and achieve up to a 10 percent reduction for gasoline vehicles and up to a 15 percent reduction for diesel vehicles by 2018 model year ( $12 \%$ and $17 \%$ respectively if accounting for air conditioning leakage). Lastly, for vocational vehicles (includes other vehicles like buses, refuse trucks, concrete mixers; everything except for combination tractors and heavy-duty pickups and vans), the agencies are proposing engine and vehicle standards starting in the 2014 model year, which would achieve up to a 10 percent reduction in fuel consumption and carbon dioxide emissions by the 2018 model year. Building on the success of the standards, the EPA and U.S. Department of Transportation jointly finalized additional standards (called "Phase 2") for medium- and heavy-duty vehicles through model year 2027 that will improve fuel efficiency and cut carbon pollution. The final standards are expected to lower $\mathrm{CO}_{2}$ emissions by approximately 1.1 billion metric tons.

## Mandatory Reporting of GHG

The Consolidated Appropriations Act of 2008, passed in December 2007, requires the establishment of mandatory GHG reporting requirements. On September 22, 2009, the EPA issued the Final Mandatory Reporting of Greenhouse Gases rule. The rule requires reporting of GHG emissions from large sources and suppliers in the United States, and is intended to collect accurate and timely emissions data to inform future policy decisions. Under the rule, suppliers of fossil fuels or industrial GHGs, manufacturers of vehicles and engines, and facilities that emit 25,000 metric tons or more per year of GHG emissions, are required to submit annual reports to the EPA.

This rule does not apply to high cube logistics developers within the WLC Project because, although the project would emit more than $25,000 \mathrm{mt} \mathrm{CO} 2$ e per year of GHGs, the rule only applies to the following categories: fossil fuel suppliers and industrial gas suppliers, direct GHG emitters, and manufacturers of heavy-duty and off-road vehicles and engines. The EPA's Applicability Tool was used to determine if the project developer would need to report the GHG emissions. The source categories that are required to report GHG emissions (i.e., production, manufacturing, electricity generation, and industrial waste landfills) did not apply to the project.

[^10]
## New Source Review Prevention of Significant Deterioration (GHG Tailoring Rule)

The EPA issued a final rule on May 13, 2010, that establishes thresholds for greenhouse gases that define when permits under the New Source Review Prevention of Significant Deterioration and Title V Operating Permit programs are required for new and existing industrial facilities. Operating permits are legally enforceable documents that permitting authorities issue to air pollution sources after the source has begun to operate. Title V Operating Permits are required from Title V of the Clean Air Act. This final rule "tailors" the requirements of these Clean Air Act permitting programs to limit which facilities will be required to obtain Prevention of Significant Deterioration and Title V permits. In the preamble to the revisions to the Federal Code of Regulations, the EPA states:

This rulemaking is necessary because without it the Prevention of Significant Deterioration and Title V requirements would apply, as of January 2, 2011, at the 100 or 250 tons per year levels provided under the Clean Air Act, greatly increasing the number of required permits, imposing undue costs on small sources, overwhelming the resources of permitting authorities, and severely impairing the functioning of the programs. EPA is relieving these resource burdens by phasing in the applicability of these programs to greenhouse gas sources, starting with the largest greenhouse gas emitters. This rule establishes two initial steps of the phase-in. The rule also commits the agency to take certain actions on future steps addressing smaller sources, but excludes certain smaller sources from Prevention of Significant Deterioration and Title V permitting for greenhouse gas emissions until at least April 30, 2016.

EPA estimates that facilities responsible for nearly 70 percent of the national greenhouse gas emissions from stationary sources will be subject to permitting requirements under this rule. This includes the nation's largest greenhouse gas emitters - power plants, refineries, and cement production facilities.

On December 23, 2010, the EPA issued a series of rules that put the necessary regulatory framework in place to ensure that 1) industrial facilities can get Clean Air Act permits covering their GHG emissions when needed and 2) facilities emitting GHGs at levels below those established in the Tailoring Rule do not need to obtain Clean Air Act permits.

## Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units.

As required by a settlement agreement, the EPA proposed new performance standards for emissions of carbon dioxide for new affected fossil fuel-fired electric utility generating units on March 27, 2012. New sources greater than 25 megawatt would be required to meet an output based standard of 1,000 pounds of carbon dioxide per megawatt-hour.

## Cap and Trade

Cap and trade refers to a policy tool where emissions are limited to a certain amount and can be traded, or provides flexibility on how the emitter can comply. Successful examples in the United States include the Acid Rain Program and the $\mathrm{NO}_{\mathrm{x}}$ Budget Trading Program in the northeast. There is no Federal cap and trade program currently and no pending legislation exists to establish a national cap and trade program.

## Energy Policy and Conservation Act

The Energy Policy and Conservation Act of 1975 sought to ensure that all vehicles sold in the U.S. would meet certain fuel economy goals. Through this Act, Congress established the first fuel economy standards for on-road motor vehicles in the U.S. Pursuant to the Act, the National Highway Traffic and Safety Administration (NHTSA), which is part of the U.S. Department of Transportation (USDOT), is responsible for establishing additional vehicle standards and for revising existing standards. Since 1990, the fuel economy standard for new passenger cars has been 27.5 miles per gallon (mpg). Since 1996, the fuel economy standard for new light trucks (gross vehicle weight of 8,500 pounds or less) has been 20.7 mpg . The Corporate Average Fuel Economy (CAFE) program, administered by the EPA, was created to determine vehicle manufacturers' compliance with the fuel economy standards. The EPA calculates a CAFE value for each manufacturer based on city and highway fuel economy test results and vehicle sales. Based on the information generated under the CAFE program, the USDOT is authorized to assess penalties for noncompliance. Please also refer to the subsection, "Clean Vehicles," above.

## Energy Policy Act of 1992

The Energy Policy Act (EPAct) of 1992 was passed to reduce the country's dependence on foreign petroleum and improve air quality. EPAct includes several parts intended to build an inventory of alternative fuel vehicles (AFVs) in large, centrally fueled fleets in metropolitan areas. EPAct requires certain Federal, State, and local governments and private fleets to purchase a percentage of light-duty AFVs capable of running on alternative fuels each year. In addition, financial incentives are also included in EPAct. Federal tax deductions will be allowed for businesses and individuals to cover the incremental cost of AFVs. States are also required by the Act to consider a variety of incentive programs to help promote AFVs.

## Energy Policy Act of 2005

The Energy Policy Act of 2005 includes provisions for renewed and expanded tax credits for electricity generated by qualified energy sources, such as landfill gas; provides bond financing, tax incentives, grants, and loan guarantees for clean renewable energy and rural community electrification; and establishes a Federal purchase requirement for renewable energy.

### 2.3 State of California

## Mulford-Carrell Act

The State began to set California Ambient Air Quality Standards (CAAQS) in 1969 under the mandate of the Mulford-Carrell Act. The CAAQS are generally more stringent than the NAAQS. In addition to the six criteria pollutants covered by the NAAQS, there are CAAQS for sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles.

Originally, there were no attainment deadlines for CAAQS; however, the CCAA of 1988 provided a time frame and a planning structure to promote their attainment. The CCAA required nonattainment areas in the State to prepare attainment plans and proposed to classify each such area on the basis of the submitted plan, as follows: moderate, if CAAQS attainment could not occur before December 31, 1994; serious, if CAAQS attainment could not occur before December 31, 1997; and severe, if CAAQS attainment could not be conclusively demonstrated at all. The attainment plans are required to achieve a minimum 5 percent annual reduction in the emissions of nonattainment pollutants unless all feasible measures have been implemented. The EPA has designated the Southern California Association of Governments (SCAG) as the Metropolitan Planning Organization (MPO) responsible for ensuring compliance with the requirements of the CAA for the Basin.

## California Clean Air Act

The CCAA was passed into law in 1988. The CCAA provides the basis for air quality planning and regulation independent of federal regulations. A major element of the CCAA is the requirement that local air districts in violation of the CAAQS must prepare attainment plans that identify air quality problems, causes, trends and actions to be taken to attain and maintain California's air quality standards by the earliest practicable date. The CCAA provides air districts with the authority to manage transportation activities at indirect sources that individually are minor but collectively emit a substantial amount of pollution such as motor vehicles at intersections, malls, and on highways. The SCAQMD also regulates stationary sources of pollution throughout its jurisdictional area. Direct emissions from motor vehicles are regulated by the CARB.

## CARB Airborne Toxic Control Measure/Asbestos

Asbestos is listed as a toxic air contaminant by CARB and as a Hazardous Air Pollutant by the EPA. Asbestos occurs naturally in surface deposits of several types of rock formations. Asbestos most commonly occurs in ultramafic rock that has undergone partial or complete alteration to serpentine rock (serpentinite) and often contains chrysotile asbestos. In addition, another form of asbestos, tremolite, can be found associated with ultramafic rock, particularly near faults. Crushing or breaking these rocks, through construction or other means, can release asbestoform fibers into the air. Asbestos emissions can result from the sale or use of asbestos-containing materials, road surfacing with such materials, grading activities, and surface mining. The risk of disease is dependent upon the intensity and duration of exposure. When inhaled, asbestos fibers may remain in the lungs and with time may be linked to such diseases as asbestosis, lung cancer,
and mesothelioma. In July 2001, the CARB approved an Air Toxic Control Measure for construction, grading, quarrying and surface mining operations to minimize emissions of naturally occurring asbestos. The regulation requires application of best management practices (BMPs) to control fugitive dust in areas known to have naturally occurring asbestos and requires notification to the local air district prior to commencement of ground-disturbing activities. The measure establishes specific testing, notification and engineering controls prior to grading, quarrying or surface mining in construction zones where naturally occurring asbestos is located on projects of any size. There are additional notification and engineering controls at work sites larger than one acre in size. These projects require the submittal of a "Dust Mitigation Plan" and approval by the air district prior to the start of a project. There is no asbestos in the project area. ${ }^{23}$

## California Code of Regulations Title 24, Part 6

The California Energy Code (Title 24, Section 6) was created as part of the California Building Standards Code (Title 24 of the California Code of Regulations) by the California Building Standards Commission in 1978 to establish statewide building energy efficiency standards to reduce California's energy consumption. These standards include provisions applicable to all buildings, residential and nonresidential, which describe requirements for documentation and certificates that the building meets the standards. These provisions include mandatory requirements for efficiency and design of energy systems, including space conditioning (cooling and heating), water heating, and indoor and outdoor lighting systems and equipment, and appliances. California's Building Energy Efficiency Standards are updated on an approximately three-year cycle as technology and methods have evolved. The 2016 Standards, effective January 1,2017 , focus on several key areas to improve the energy efficiency of newly constructed buildings and additions and alterations to existing buildings, and include requirements that will enable both demand reductions during critical peak periods and future solar electric and thermal system installations.

## California Code of Regulations Title 24, Part 11

The California Green Building Standards Code (California Code of Regulations, Title 24, Part 11), commonly referred to as the CALGreen Code, is a statewide mandatory construction code that was developed and adopted by the California Building Standards Commission and the California Department of Housing and Community Development in 2008. CALGreen standards require new residential and commercial buildings to comply with mandatory measures under five topical areas: planning and design; energy efficiency; water efficiency and conservation; material conservation and resource efficiency; and environmental quality. CALGreen also provides voluntary tiers and measures that local governments may adopt which encourage or require additional measures in the five green building topics. The most recent update to the CALGreen Code went into effect January 1, 2017.

The CALGreen Code is not intended to substitute for or be identified as meeting the certification requirements of any green building program that is not established and adopted by the California

[^11]Building Standards Commission (CBSC). Key provisions of the CALGreen Code that apply to the type of new non-residential development proposed for the project site are as follows:

Division 5.1—Planning and Design
Section 5.106 Site Development

### 5.106.4 Bicycle Parking and Changing Rooms:

Short-term bicycle parking. If the new project or an addition or alteration is anticipated to generate visitor traffic, provide permanently anchored bicycle racks within 200 feet of the visitors' entrance, readily visible to passers-by, for 5 percent of new visitor motorized vehicle parking spaces being added, with a minimum of one two-bike capacity rack (5.106.4.1).

Long-term bicycle parking. For buildings with over 10 tenant-occupants or alterations that add 10 or more tenant vehicular parking spaces, provide secure bicycle parking for 5 percent of tenant vehicular parking spaces being added, with a minimum of one space. Acceptable parking facilities shall be convenient from the street and shall meet the following: 1 . Covered, lockable enclosures with permanently anchored racks for bicycles; 2 . Lockable bicycle rooms with permanently anchored racks; or 3. Lockable, permanently anchored bicycle lockers (5.106.4.2).
5.106.5 Clean Air Vehicle Parking: For new projects or additions or alterations that add 10 or more vehicular parking spaces, provide designated parking for any combination of low-emitting, fuel-efficient and carpool/van pool vehicles [201 spaces and over require at least 8 percent] (5.106.5.2).
5.106.8 Light Pollution Reduction (specific backlight, uplight, and glare ratings)
5.106.10 Grading and Paving: Construction plans shall indicate how site grading or a drainage system will manage all surface water flows to keep water from entering buildings.

Division 5.2—Energy Efficiency
Section 5.201.1 Energy Efficiency (Mandatory energy efficiency standards through California Code of Regulations, Title 24, Part 6)

Division 5.3-Water Efficiency and Conservation
Section 5.303 Indoor Water Use
5.303.1 Meters: Separate water meters for buildings in excess of $50,000 \mathrm{sq}$. ft or buildings projected to consume more than 1,000 gallons per day.
5.303.2 Twenty Percent Savings: Use of plumbing fixtures and fittings that will reduce the overall use of potable water within the building by 20 percent, based on the maximum allowable water use per fixture and fitting as required by the California Building Code (California Code of Regulations, Title 24, Part 2)
5.304.3 Irrigation design: Automatic irrigation system controllers installed at the time of final inspection shall be weather- or soil moisture-based controllers that adjust irrigation in response to changes in plant needs; weather-based controllers.
5.303.4 Wastewater Reduction: Each building shall reduce by 20 percent wastewater by one of the following methods: 1 . The installation of water-conserving fixtures or 2 . Use of non-potable water systems (5.303.4).
5.303.6 Plumbing Fixtures and Fittings

Section 5.304 Outdoor Water Use
5.304.1 Water Budget: A water budget shall be developed for landscape irrigation use that conforms to the local water efficient landscape ordinance or to the California Department of Water Resources Model Water Efficient Landscape Ordinance where no local ordinance is applicable.
5.304.2 Outdoor Water Use (separate submeters or metering devices)
5.304.3 Irrigation Design (irrigation controllers and sensors)

Division 5.4-Material Conservation and Resource Efficiency
Section 5.407 Water Resistance and Moisture Management
Section 5.408 Construction Waste Reduction, Disposal and Recycling
5.408.1 and 5.408.3 Construction Waste Diversion: Recycle and/or salvage for reuse a minimum 50 percent of the nonhazardous construction and demolition waste. 100 percent of trees, stumps, rocks and associated vegetation and soils resulting from land clearing shall be reused or recycled.
5.408.2 Construction Waste Management Plan

Section 5.410 Building Maintenance and Operation
5.410.1 and 5.713.10 Recycling by Occupants: Provide readily accessible areas that serve the entire building and are identified for the depositing, storage and collection of nonhazardous materials for recycling.

Division 5.5-Environmental Quality

Section 5.504 Pollutant Control
5.504.3 Covering of Duct Openings and Protection of Mechanical Equipment During Construction
5.504.4 Finish Material Pollutant Control: Low-pollutant emitting interior finish materials such as adhesives, paints, carpet, and flooring
5.404.5.3 Filters: Minimum Efficiency Reporting Value (MERV) of 8 or higher in mechanically ventilated buildings.

## California Code of Regulations Titles 14 and 27

These parts of the California Code require energy-efficient practices as part of solid and hazardous waste handling and disposal.

## Pavley Regulations and Fuel Efficiency Standards

California AB 1493, enacted on July 22, 2002, required the CARB to develop and adopt regulations that reduce greenhouse gases emitted by passenger vehicles and light duty trucks. The regulation was stalled by automaker lawsuits and by the EPA's denial of an implementation waiver. On January 21, 2009, the CARB requested that the EPA reconsider its previous waiver denial. On January 26, 2009, President Obama directed that the EPA assess whether the denial of the waiver was appropriate. On June 30, 2009, the EPA granted the waiver request. On September 8, 2009, the U.S. Chamber of Commerce and the National Automobile Dealers Association sued the EPA to challenge its granting of the waiver to California for its standards. California assisted the EPA in defending the waiver decision. The U.S. District Court for the District of Columbia denied the Chamber's petition on April 29, 2011.

The standards phased in during the 2009 through 2016 model years. The near term (2009-2012) standards were expected to result in about a 22 percent reduction compared with the 2002 fleet, and the mid-term (2013-2016) standards were expected to result in about a 30 percent reduction. Several technologies stand out as providing significant reductions in emissions at favorable costs. These include discrete variable valve lift or camless valve actuation to optimize valve operation rather than relying on fixed valve timing and lift as has historically been done; turbocharging to boost power and allow for engine downsizing; improved multi-speed transmissions; and improved air conditioning systems that operate optimally, leak less, and/or use an alternative refrigerant.

In January 2012, CARB approved the Advanced Clean Cars program, a new emissions-control program for model years 2015 through 2025. The program includes components to reduce smogforming pollution, reduce GHG emissions, promote clean cars, and provide the fuels for clean cars. The zero emissions vehicle (ZEV) program will act as the focused technology of the

Advanced Clean Cars program by requiring manufacturers to produce increasing numbers of ZEVs and plug-in hybrid electric vehicles (PHEV) in the 2018 to 2025 model years. ${ }^{24}$

In May 2016, CARB released the updated Mobile Source Strategy that demonstrates how the State can simultaneously meet air quality standards, achieve GHG emission reduction targets, decrease health risk from transportation emissions, and reduce petroleum consumption over the next fifteen years, through a transition to zero-emission vehicles (ZEVs), cleaner transit systems and reduction of vehicle miles traveled. The Mobile Source Strategy calls for 1.5 million ZEVs (including plug-in hybrid electric, battery-electric, and hydrogen fuel cell vehicles) by 2025 and 4.2 million ZEVs by 2030. It also calls for more stringent GHG requirements for light-duty vehicles beyond 2025 as well as GHG reductions from medium-duty and heavy-duty vehicles and increased deployment of zero-emission trucks primarily for class $3-7$ "last mile" delivery trucks in California. Statewide, the Mobile Source Strategy would result in a 45 percent reduction in GHG emissions, and a 50 percent reduction in the consumption of petroleum-based fuels. ${ }^{25}$

## Low Carbon Fuel Standard, Executive Order S-01-07

The Governor signed Executive Order S-01-07 on January 18, 2007. The order mandates that a statewide goal shall be established to reduce the carbon intensity of California's transportation fuels by at least 10 percent by 2020. In particular, the executive order established a Low Carbon Fuel Standard and directed the Secretary for Environmental Protection to coordinate the actions of the California Energy Commission (CEC), the CARB, the University of California, and other agencies to develop and propose protocols for measuring the "life-cycle carbon intensity" of transportation fuels. The CARB adopted the Low Carbon Fuel Standard on April 23, 2009. The Low Carbon Fuel Standard requires producers of petroleum based fuels to reduce the carbon intensity of their products, beginning with a quarter of a percent in 2011, ending in a 10 percent total reduction in 2020. Petroleum importers, refiners and wholesalers can either develop their own low carbon fuel products, or buy LCFS Credits from other companies that develop and sell low carbon alternative fuels, such as biofuels, electricity, natural gas or hydrogen. The Low Carbon Fuel Standard was challenged in the United States District Court in Fresno in 2011. The court's ruling issued on December 29, 2011, included a preliminary injunction against the CARB's implementation of the rule. The Ninth Circuit Court of Appeals stayed the injunction on April 23, 2012 pending final ruling on appeal, allowing the CARB to continue to implement and enforce the regulation and vacated the injunction on September 18, 2013, and remanded the case to the district court for further consideration.

## Senate Bill 1383

This bill creates goals for short-lived climate pollutant (SLCP) reductions in various industry sectors. The SLCPs included under this bill - including methane, fluorinated gases, and black carbon - are GHGs that are much more potent than carbon dioxide and can have detrimental effects on human health and climate change. SB 1383 requires the CARB to adopt a strategy to

[^12]reduce methane by $40 \%$, hydrofluorocarbon gases by $40 \%$, and anthropogenic black carbon by $50 \%$ below 2013 levels by 2030. The methane emission reduction goals include a $75 \%$ reduction in the level of statewide disposal of organic waste from 2014 levels by 2025.

## Senate Bill 1368

In 2006, the State Legislature adopted SB 1368, which was subsequently signed into law by the Governor. SB 1368 directs the California Public Utilities Commission (CPUC) to adopt a performance standard for greenhouse gas emissions for the future power purchases of California utilities. SB 1368 seeks to limit carbon emissions associated with electrical energy consumed in California by forbidding procurement arrangements for energy longer than 5 years from resources that exceed the emissions of a relatively clean, combined cycle natural gas power plant. Because of the carbon content of its fuel source, a coal-fired plant cannot meet this standard because such plants emit roughly twice as much carbon as combined cycle natural gas power plants. Accordingly, the new law will effectively prevent California's utilities from investing in, financially supporting, or purchasing power from new coal plants located in or out of the State. Thus, SB 1368 will lead to dramatically lower greenhouse gas emissions associated with California's energy demand, as SB 1368 will effectively prohibit California utilities from purchasing power from out-of-state producers that cannot satisfy the performance standard for greenhouse gas emissions required by SB 1368. The CPUC adopted the regulations required by SB 1368 on August 29, 2007.

## Senate Bill 97 and the CEQA Guidelines Update

Passed in August 2007, SB 97 added Section 21083.05 to the Public Resources Code. The code states "(a) On or before July 1, 2009, the Office of Planning and Research shall prepare, develop, and transmit to the Resources Agency guidelines for the mitigation of greenhouse gas emissions or the effects of greenhouse gas emissions as required by this division, including, but not limited to, effects associated with transportation or energy consumption. (b) On or before January 1, 2010, the Resources Agency shall certify and adopt guidelines prepared and developed by the California Governor's Office of Planning and Research (OPR) pursuant to subdivision (a)." Section 21097 was also added to the Public Resources Code. It provided CEQA protection until January 1, 2010, for transportation projects funded by the Highway Safety, Traffic Reduction, Air Quality, and Port Security Bond Act of 2006 or projects funded by the Disaster Preparedness and Flood Prevention Bond Act of 2006, in stating that the failure to analyze adequately the effects of greenhouse gases would not violate CEQA.

On April 13, 2009, the OPR submitted to the Secretary for Natural Resources its recommended amendments to the CEQA Guidelines for addressing greenhouse gas emissions. On July 3, 2009, the Natural Resources Agency commenced the Administrative Procedure Act rulemaking process for certifying and adopting these amendments pursuant to Public Resources Code section 21083.05. Following a 55 -day public comment period and two public hearings, the Natural Resources Agency proposed revisions to the text of the CEQA Guidelines amendments. The Natural Resources Agency transmitted the adopted amendments and the entire rulemaking file to the Office of Administrative Law on December 31, 2009. On February 16, 2010, the Office of Administrative Law approved the Amendments, and filed them with the Secretary of State for
inclusion in the California Code of Regulations. The Amendments became effective on March 18, 2010.

The CEQA Amendments provide guidance to public agencies regarding the analysis and mitigation of the effects of greenhouse gas emissions in CEQA documents. The CEQA Amendments fit within the existing CEQA framework by amending existing CEQA Guidelines to reference climate change.

A new section, CEQA Guidelines Section 15064.4, was added to assist agencies in determining the significance of GHG emissions. The new section allows agencies the discretion to determine whether a quantitative or qualitative analysis is best for a particular project. However, the CEQA Guidelines offer little guidance on the crucial next step in this assessment process-how to determine whether the project's estimated greenhouse gas emissions are significant or cumulatively considerable.

Also amended were CEQA Guidelines Sections 15126.4 and 15130, which address mitigation measures and cumulative impacts respectively. Greenhouse gas mitigation measures are referenced in general terms, but no specific measures are championed. The revision to the cumulative impact discussion requirement (Section 15130) simply directs agencies to analyze greenhouse gas emissions in an EIR when a project's incremental contribution of emissions may be cumulatively considerable; however, it does not answer the question of how to determine whether emissions are cumulatively considerable.

Section 15183.5 permits programmatic greenhouse gas analysis and later project-specific tiering. A tiered project is a project that was addressed in a certified program document, such as an EIR or Mitigated Negative Declaration. The CEQA Guidelines state the following:

> Lead agencies may analyze and mitigate the significant effects of greenhouse gas emissions at a programmatic level, such as in a general plan, a long range development plan, or a separate plan to reduce greenhouse gas emissions. Later project-specific environmental documents may tier from and/or incorporate by reference that existing programmatic review. Project-specific environmental documents may rely on an EIR containing a programmatic analysis of greenhouse gas emissions (Section 15183.5(a)).

Compliance with plans for the reduction of GHG emissions can support a determination that a project's cumulative effect is not cumulatively considerable, according to proposed Section 15183.5(b).

In addition, the amendments revised Appendix F of the CEQA Guidelines, which focuses on energy conservation. The sample environmental checklist in the CEQA Guidelines’ Appendix G was amended to include greenhouse gas impact questions, which are used in this analysis.

## Executive Order S-3-05

Executive Order S-3-05 was signed by Governor Schwarzenegger in 2005 proclaiming California is vulnerable to the impacts of climate change. It states that increased temperatures could reduce
the Sierra Nevada's snowpack, worsen California's air quality problems, and potentially cause a rise in sea levels. The Executive Order establishes total GHG emission targets including emissions reductions to the 2000 level by 2010, and the 1990 level by 2020, and to 80 percent below the 1990 level by 2050. The 2050 reduction goal represents what scientists believe is necessary to reach levels that will stabilize the climate. The 2020 goal was established to be an aggressive, but achievable, mid-term target.

## Assembly Bill 32

California's major initiative for reducing GHG emissions is outlined in AB 32, the "Global Warming Solutions Act," passed by the California State legislature on August 31, 2006. This effort aims at reducing GHG emissions to 1990 levels by 2020. The original 2020 GHG emissions limit was 427 million mt CO2e. The current 2020 GHG emissions limit is 431 million mt CO 2 e e AB 32 requires the CARB to prepare a Scoping Plan that outlines the main State strategies for meeting the 2020 deadline and to reduce GHGs that contribute to global climate change.

The Scoping Plan was approved by the CARB on December 11, 2008, and includes measures to address GHG emission reduction strategies related to energy efficiency, water use, and recycling and solid waste, among other measures. ${ }^{26}$ The Scoping Plan includes a range of GHG reduction actions that may include direct regulations, alternative compliance mechanisms, monetary and non-monetary incentives, voluntary actions, and market-based mechanisms such as a cap-andtrade system. The Scoping Plan, even after Board approval, remains a recommendation. The measures in the Scoping Plan will not be binding until after they are adopted through the normal rulemaking process. The CARB rule-making process includes preparation and release of each of the draft measures, public input through workshops and a public comment period, followed by a CARB hearing and rule adoption.

Pursuant to AB 32, the CARB and the Climate Action Team (CAT) ${ }^{27}$ did the following:

- Adopted a list of discrete early action measures;
- Established a statewide GHG emissions cap for 2020 based on 1990 emissions and adopted mandatory reporting rules for significant sources of GHG;
- Indicated how emission reductions will be achieved from significant GHG sources via regulations, market mechanisms and other actions; and
- Adopted regulations to achieve the maximum technologically feasible and cost-effective reductions in GHG, including provisions for using both market mechanisms and alternative compliance mechanisms.

In June 2007, the CARB approved a list of 37 early action measures, including three discrete early action measures (Low Carbon Fuel Standard, Restrictions on High Global Warming

[^13]Potential Refrigerants, and Landfill Methane Capture). Discrete early action measures are measures that were required to be adopted as regulations and made effective no later than January 1, 2010, the date established by Health and Safety Code (HSC) Section 38560.5. The CARB adopted additional early action measures in October $2007^{28}$ that tripled the number of discrete early action measures. These measures relate to truck efficiency, port electrification, reduction of perfluorocarbons from the semiconductor industry, reduction of propellants in consumer products, proper tire inflation, and sulfur hexafluoride $\left(\mathrm{SF}_{6}\right)$ reductions from the non-electricity sector. The combination of early action measures was estimated to reduce statewide GHG emissions by nearly 16 million $\mathrm{mt} \mathrm{CO}_{2} \mathrm{e} .{ }^{29}$

AB 32 codifies Executive Order S-3-05's ${ }^{30}$ year 2020 goal by requiring that statewide GHG emissions be reduced to 1990 levels by the year 2020 .

The first AB 32 Scoping Plan, published in 2008, identified a future cap-and-trade program covering refineries, power plants, industrial facilities, and transportation fuels as a central element of California's overall strategy to reduce GHG emissions to 1990 levels. More information on the Scoping Plan and California's Cap and Trade program is provided below.

## Amendments to California Global Warming Solutions Act of 2006: Emission Limit (SB 32)

Signed into law on September 8, 2016, Senate Bill (SB) 32 (Amendments to California Global Warming Solutions Act of 2006: Emission Limit) amends HSC Division 25.5 and codifies the 2030 target in the recent Executive Order B-30-15 (40 percent below 1990 levels by 2030). The 2030 target is intended to ensure that California remains on track to achieve the goal set forth by Executive Order B-30-15 to reduce statewide GHG emissions by 2050 to 80 percent below 1990 levels. SB 32 states the intent of the legislature to continue to reduce GHGs for the protection of all areas of the state and especially the state's most disadvantaged communities, which are disproportionately impacted by the deleterious effects of climate change on public health (California Legislative Information Website 2017). SB 32 was passed with companion legislation AB 197, which provides additional direction for developing the Scoping Plan. In 2016, the California State Legislature adopted SB 32 and its companion bill AB 197, and both were signed by Governor Brown. SB 32 amends HSC Division 25.5 and establishes a new climate pollution reduction target of 40 percent below 1990 levels by 2030, while AB 197 includes provisions to ensure the benefits of state climate policies reach into disadvantaged communities.

## California Cap and Trade Program

Authorized by the California Global Warming Solutions Act of 2006 (AB 32), the cap-and-trade program is a core strategy that California is using to meet its statewide GHG reduction targets for 2020 and 2030, and ultimately achieve an 80 percent reduction from 1990 levels by 2050.

[^14]Pursuant to its authority under AB 32, CARB has designed and adopted a California Cap-andTrade Program to reduce GHG emissions from major sources (deemed "covered entities") by setting a firm cap on statewide GHG emissions and employing market mechanisms to achieve AB 32's emission-reduction mandate of returning to 1990 levels of emissions by 2020. ${ }^{31}$ Under the Cap-and-Trade program, an overall limit is established for GHG emissions from capped sectors (e.g., electricity generation, petroleum refining, cement production, fuel suppliers, and large industrial facilities that emit more than 25,000 metric tons $\mathrm{CO}_{2} \mathrm{e}$ per year) and declines over time, and facilities subject to the cap can trade permits to emit GHGs. The statewide cap for GHG emissions from the capped sectors commenced in 2013 and declines over time, achieving GHG emission reductions throughout the Program's duration. ${ }^{32}$ On July 17, 2017 the California legislature passed Assembly Bill 398, extending the Cap-and-Trade program through 2030.

The Cap-and-Trade Regulation provides a firm cap, ensuring that the 2020 and 2030 statewide emission limits will not be exceeded. An inherent feature of the Cap-and-Trade Program is that it does not direct GHG emissions reductions in any discrete location or by any particular source. Rather, GHG emissions reductions are assured on a State-wide basis.

Since 2015, fuels, such as gasoline, diesel, and natural gas, have been covered under the Cap-andTrade Program. Fuel suppliers are required to reduce GHG emissions by supplying low carbon fuels or purchasing pollution permits, called "allowances," to cover the GHGs produced when the conventional petroleum-based fuel they supply is combusted.

## 2008 Scoping Plan

The California State Legislature adopted AB 32 in 2006 which focuses on reducing greenhouse gases (carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride) to 1990 levels by the year 2020. Pursuant to the requirements in AB 32 , the CARB adopted the Climate Change Scoping Plan (Scoping Plan) in 2008, which outlines actions recommended to obtain that goal. The Scoping Plan calls for an "ambitious but achievable" reduction in California's greenhouse gas emissions, cutting approximately 30 percent from BAU emission levels projected for 2020 , or about 10 percent from today's levels. On a per-capita basis, that means reducing annual emissions of 14 tons of carbon dioxide for every man, woman, and child in California down to about 10 tons per person by 2020.

The Scoping Plan ${ }^{33}$ contains the following 18 strategies to reduce the State's emissions:

1. California Cap-and-Trade Program Linked to Western Climate Initiative. Implement a broad-based California Cap-and-Trade program to provide a firm limit on emissions. Link the California cap-and-trade program with other Western Climate Initiative Partner programs to create a regional market system to achieve greater environmental and economic benefits for California. Ensure California's program meets all applicable AB 32 requirements for market-based mechanisms.

[^15]2. California Light-Duty Vehicle Greenhouse Gas Standards. Implement adopted standards and planned second phase of the program. Align zero-emission vehicle, alternative and renewable fuel and vehicle technology programs with long-term climate change goals.
3. Energy Efficiency. Maximize energy efficiency building and appliance standards; pursue additional efficiency including new technologies, policy, and implementation mechanisms. Pursue comparable investment in energy efficiency from all retail providers of electricity in California.
4. Renewable Portfolio Standard. Achieve 33 percent renewable energy mix statewide. Renewable energy sources include (but are not limited to) wind, solar, geothermal, small hydroelectric, biomass, anaerobic digestion, and landfill gas.
5. Low Carbon Fuel Standard. Develop and adopt the Low Carbon Fuel Standard.
6. Regional Transportation-Related Greenhouse Gas Targets. Develop regional greenhouse gas emissions reduction targets for passenger vehicles. This measure refers to SB 375.
7. Vehicle Efficiency Measures. Implement light-duty vehicle efficiency measures.
8. Goods Movement. Implement adopted regulations for the use of shore power for ships at berth. Improve efficiency in goods movement activities.
9. Million Solar Roofs Program. Install 3,000 MW of solar-electric capacity under California's existing solar programs.
10. Medium/Heavy-Duty Vehicles. Adopt medium and heavy-duty vehicle efficiency measures.
11. Industrial Emissions. Require assessment of large industrial sources to determine whether individual sources within a facility can cost-effectively reduce greenhouse gas emissions and provide other pollution reduction co-benefits. Reduce greenhouse gas emissions from fugitive emissions from oil and gas extraction and gas transmission. Adopt and implement regulations to control fugitive methane emissions and reduce flaring at refineries.
12. High Speed Rail. Support implementation of a high-speed rail system.
13. Green Building Strategy. Expand the use of green building practices to reduce the carbon footprint of California's new and existing inventory of buildings.
14. High Global Warming Potential Gases. Adopt measures to reduce high global warming potential gases.
15. Recycling and Waste. Reduce methane emissions at landfills. Increase waste diversion, composting, and commercial recycling. Move toward zero-waste.
16. Sustainable Forests. Preserve forest sequestration and encourage the use of forest biomass for sustainable energy generation.
17. Water. Continue efficiency programs and use cleaner energy sources to move and treat water.
18. Agriculture. In the near-term, encourage investment in manure digesters and at the fiveyear Scoping Plan update determine if the program should be made mandatory by 2020.

## 2014 Scoping Plan Update

This First Update to California's Climate Change Scoping Plan (2014 Scoping Plan Update) was developed by the CARB in collaboration with the Climate Action Team and reflects the input and expertise of a range of state and local government agencies. The Update reflects public input and recommendations from business, environmental, environmental justice, utilities and communitybased organizations provided in response to the release of prior drafts of the Update, a Discussion Draft in October 2013, and a draft Proposed Update in February 2014.

This report highlights California's success to date in reducing its GHG emissions and lays the foundation for establishing a broad framework for continued emission reductions beyond 2020, on the path to 80 percent below 1990 levels by 2050. The First Update includes recommendations for establishing a mid-term emissions limit that aligns with the State's longterm goal of an emissions limit 80 percent below 1990 levels by 2050 and sector-specific discussions covering issues, technologies, needs, and ongoing State activities to significantly reduce emissions throughout California's economy through 2050. The focus areas include energy, transportation, agriculture, water, waste management, and natural and working lands. ${ }^{34}$ With respect to the transportation sector, California has outlined several steps in the State's zero emission vehicle (ZEV) Action Plan to further support the market and accelerate its growth. Committed implementation of the actions described in the plan will help meet Governor Brown's 2012 Executive Order (EO) B-16-2012, which-in addition to establishing a more specific 2050 GHG target for the transportation sector of 80 percent from 1990 levels-called for 1.5 million ZEVs on California's roadways by 2025.

Achieving such an aggressive 2050 target will require innovation and unprecedented advancements in energy demand and supply. ${ }^{35}$ Emissions from 2020 to 2050 will have to decline at more than twice the rate of that which is needed to reach the 2020 statewide emissions limit. In addition to our climate objectives, California also must meet federal clean air standards.
Emissions of criteria air pollutants, including ozone precursors (primarily oxides of nitrogen, or $\mathrm{NO}_{\mathrm{x}}$ ) and particulate matter, must be reduced by an estimated 90 percent by 2032 to comply with federal air quality standards. The scope and scale of emission reductions necessary to improve air quality is similar to that needed to meet long-term climate targets. Achieving both objectives will align programs and investments to leverage limited resources for maximum benefit.

## 2017 Scoping Plan Update

On December 14, 2017, CARB approved the final version of California's 2017 Climate Change Scoping Plan (2017 Scoping Plan Update), which outlines the proposed framework of action for achieving the 2030 GHG target of 40 percent reduction in GHG emissions relative to 1990

[^16]levels. ${ }^{36}$ The 2017 Scoping Plan Update identifies key sectors of the implementation strategy, which includes improvements in low carbon energy, industry, transportation sustainability, natural and working lands, waste management, and water. Through a combination of data synthesis and modeling, CARB determined that the target Statewide 2030 emissions limit is 260 $\mathrm{MMTCO}_{2} \mathrm{e}$, and that further commitments will need to be made to achieve an additional reduction of $50 \mathrm{MMTCO}_{2} \mathrm{e}$ beyond current policies and programs. The cornerstone of the 2017 Scoping Plan Update is an expansion of the Cap-and-Trade program to meet the aggressive 2030 GHG emissions goal and ensure achievement of the 2050 limit set forth by E.O. B-30-15.

The 2017 Scoping Plan Update's strategy for meeting the 2030 GHG target incorporates the full range of legislative actions and state-developed plans that have relevance to the year 2030. These include:

- Extending the low carbon fuel standard (LCFS) beyond 2020 and increasing the carbon intensity reduction requirement to 18 percent by 2030;
- SB 350, which increase renewables portfolio standard (RPS) to 50 percent and requires a doubling of energy efficiency for existing buildings by 2030;
- The 2016 Mobile Source Strategy is estimated to reduce emissions from mobile sources including an 80 percent reduction in smog-forming emissions and a 45 percent reduction in diesel particulate matter from 2016 level in the South Coast Air Basin, a 45 percent reduction in GHG emissions, and a 50 percent reduction in the consumption of petroleum-based fuels;
- The Sustainable Freight Action Plan to improve freight efficiency and transition to zero emission freight handling technologies (described in more detail below);
- SB 1383, which requires a 50 percent reduction in anthropogenic black carbon and a 40 percent reduction in hydrofluorocarbon and methane emissions below 2013 levels by 2030; and
- Assembly Bill 398, which extends the state Cap-and-Trade Program through 2030.

With respect to project-level GHG reduction actions and thresholds for individual development projects, the 2017 Scoping Plan Update Indicates,

Beyond plan-level goals and actions, local governments can also support climate action when considering discretionary approvals and entitlements of individual projects through CEQA. Absent conformity with an adequate geographicallyspecific GHG reduction plan as described in the preceding section above, CARB recommends that projects incorporate design features and GHG reduction measures, to the degree feasible, to minimize GHG emissions. Achieving no net

[^17]additional increase in GHG emissions, resulting in no contribution to GHG impacts, is an appropriate overall objective for new development. ${ }^{37}$

## Mobile Source Strategy

Implementing CARB's Mobile Source Strategy includes measures to reduce total light-duty VMT by 15 percent from the business-as-usual in 2050. The Mobile Source Strategy includes an expansion of the Advanced Clean Cars program (which further increases the stringency of GHG emissions for all light-duty vehicles, and 4.2 million zero-emission and plug-in hybrid light-duty vehicles by 2030). It also calls for more stringent GHG requirements for light-duty vehicles beyond 2025 as well as GHG reductions from medium-duty and heavy-duty vehicles and increased deployment of zero-emission trucks primarily for class 3-7 "last mile" delivery trucks in California. Statewide, the Mobile Source Strategy would result in a 45 percent reduction in GHG emissions, and a 50 percent reduction in the consumption of petroleum-based fuels. ${ }^{38}$

## Sustainable Freight Action Plan

Executive Order B-32-15 directed the State to establish targets to improve freight efficiency, transition to zero emission technologies, and increase the competitiveness of California's freight transport system. The targets are not mandates, but rather aspirational measures of progress towards sustainability for the State to meet and try to exceed. The targets include:

- System Efficiency Target: Improve freight system efficiency by 25 percent by increasing the value of goods and services produced from the freight sector, relative to the amount of carbon that it produces by 2030.
- Transition to Zero Emission Technology Target: Deploy over 100,000 freight vehicles and equipment capable of zero emission operation and maximize near-zero emission freight vehicles and equipment powered by renewable energy by 2030.
- Increased Competitiveness and Economic Growth Targets: Establish a target or targets for increased State competitiveness and future economic growth within the freight and goods movement industry based on a suite of common-sense economic competitiveness and growth metrics and models developed by a working group comprised of economists, experts, and industry. These targets and tools will support flexibility, efficiency, investment, and best business practices through State policies and programs that create a positive environment for growing freight volumes and jobs, while working with industry to mitigate potential negative economic impacts. The targets and tools will also help evaluate the strategies proposed under the Action Plan to ensure consideration of the impacts of actions on economic growth and competitiveness throughout the development and implementation process.

[^18]
## California Transportation Plan 2040

The California Transportation Plan (CTP) 2040 provides a long-range policy framework to meet future mobility needs and reduce GHG emissions. The CTP defines goals, performance-based policies, and strategies to achieve maximum feasible emission reductions in order to attain a statewide reduction in GHG emissions.

The CTP 2040 recognizes that the Governor is committed to reduce by one-half current petroleum use in cars and trucks; increase from one-third to one-half the electricity derived from renewable sources; double the efficiency savings of existing buildings and make heating fuels cleaner; reduce the release of methane, black carbon, and other short-lived climate pollutants; and manage farm and rangelands, forests, and wetlands to store more carbon.

Transportation GHG reduction strategies within the CTP 2040 include demand management (including telecommuting/working at home, increased carpoolers, and increase car sharing), mode shift (including transit service improvements, high-speed rail, bus rapid transit, expanded bike and pedestrian facilities, carpool land occupancy requirements, and increased HOV lanes), travel cost (implement expanded pricing policies), and operational efficiency (incident/emergency management, Caltrans' Master Plan, ITS/TSM, and eco-driving).

## Executive Order B-16-2012 (Zero-Emission Vehicles)

This executive order indicates that all State entities under the Governor's control support and facilitate the rapid commercialization of zero-emission vehicles. The order contains a target similar to Executive Order S-3-05, but for the transportation sector instead of all sectors: that California target for 2050 a reduction of GHG emissions from the transportation sector equaling 80 percent less than 1990 levels. Executive order B-16-2012 also indicates that the CARB, the California Energy Commission, the Public Utilities Commission and other relevant agencies are ordered to work with the Plug-in Electric Vehicle Collaborative and the California Fuel Cell Partnership to establish benchmarks to help achieve the following:

- By 2015: The State's major metropolitan areas able to accommodate zero-emission vehicles, each with infrastructure plans and streamlined permitting; the State's manufacturing sector expend zero-emission vehicle and component manufacturing; an increase in the private sector's investment in zero-emission vehicle infrastructure; and the State's academic and research institutions contributing to zero-emission vehicle research, innovation and education.
- By 2020: The State's zero-emission vehicle infrastructure ability to support up to one million vehicles; the costs of zero-emission vehicles competitive with conventional combustion vehicles; zero-emission vehicles accessible to mainstream consumers; widespread use of zero-emission vehicles for public transportation and freight transport; and a decrease in transportation sector GHG emissions as a result of the switch to zeroemission vehicles; electric vehicle charging integrated into the electricity grid.
- By 2025: over 1.5 million zero-emission vehicles on California roads; easy access to zero-emission vehicle infrastructure in California; the zero-emission vehicle industry
strong and sustainable part of California's economy; and California's vehicles displace at least 1.5 billion gallons of petroleum fuels per year.


## Greenhouse Gas Emissions Performance Standard for Power Plants

On January 25, 2007, the CPUC adopted an interim GHG emissions performance standard. This standard is a facility-based emissions standard requiring all new long-term commitments for baseload generation to serve California consumers with power plants that have emissions no greater than a combined cycle gas turbine plant. The established level is 1,100 pounds of $\mathrm{CO}_{2}$ per megawatt-hour.

## Senate Bill 375

SB 375 was signed into law on October 1, 2008. SB 375 provides emissions-reduction goals around which regions can plan, integrates disjointed planning activities, and provides incentives for local governments and developers to implement "smart growth" planning and development strategies, including reducing the average VMT to reduce commuting distances and reduce criteria and greenhouse gas air pollutant emissions. SB 375 has three major components:

- Using the regional transportation planning process to achieve reductions in GHG emissions consistent with AB 32's goals;
- Offering CEQA incentives to encourage projects that are consistent with a regional plan that achieves GHG emission reductions; and
- Coordinating the regional housing needs allocation process with the regional transportation process while maintaining local authority over land use decisions.

SB 375 requires each Metropolitan Planning Organization (MPO) to include a Sustainable Communities Strategy (SCS) in the regional transportation plan that demonstrates how the region will meet the greenhouse gas emission targets and creates CEQA streamlining incentives for projects that are consistent with the regional SCS. The focus of SB 375 is on placement of new residential projects and coordinated transportation planning.

## Renewable Electricity Standards

There have been several renewable electricity senate bills in California. On September 12, 2002, Governor Gray Davis signed SB 1078 requiring California to generate 20 percent of its electricity from renewable energy by 2017. SB 107 changed the due date to 2010 instead of 2017. On November 17, 2008, Governor Arnold Schwarzenegger signed Executive Order S-14-08, which established a Renewables Portfolio Standard (RPS) target for California requiring that all retail sellers of electricity serve 33 percent of their load with renewable energy by 2020. Governor Schwarzenegger also directed the CARB (Executive Order S-21-09) to adopt a regulation by July 31,2010 , requiring the state's load serving entities to meet a 33 percent renewable energy target by 2020. The CARB approved the Renewable Electricity Standard on September 23, 2010, by Resolution 10-23. Senate Bill X1-2 (2011) codifies the Renewable Electricity Standard into law.

## Senate Bill 350

The Clean Energy and Pollution Reduction Act of 2015 (Chapter 547, Statutes of 2015) was approved by Governor Brown on October 7, 2015. SB 350 (1) increases the standards of the California RPS program by requiring that the amount of electricity generated and sold to retail customers per year from eligible renewable energy resources be increased to 50 percent by December 31, 2030; (2) requires the State Energy Resources Conservation and Development Commission to establish annual targets for statewide energy efficiency savings and demand reduction that will achieve a cumulative doubling of statewide energy efficiency savings in electricity and natural gas final end uses of retail customers by January 1, 2030; (3) provides for the evolution of the Independent System Operator (ISO) into a regional organization; and (4) requires the state to reimburse local agencies and school districts for certain costs mandated by the state through procedures established by statutory provisions. Among other objectives, the Legislature intends to double the energy efficiency savings in electricity and natural gas final end uses of retail customers through energy efficiency and conservation.

## Senate Bill 100

On September 10, 2018, Governor Brown signed SB 100, establishing that 100 percent of all electricity in California must be obtained from renewable and zero-carbon energy resources by December 31, 2045. SB 100 also creates new standards for the RPS, increasing required energy from renewable sources for both investor-owned utilities and publicly owned utilities from 50 percent to 60 percent by December 31, 2030. Incrementally, these energy providers must also have a renewable energy supply of 44 percent by December 31, 2024, and 52 percent by December 31, 2027. The updated RPS goals are considered achievable, since many California energy providers are already meeting or exceeding the RPS goals established by SB 350.

## SmartWay Partners

SmartWay effectively refers to aerodynamic and rolling resistance requirements geared toward reducing fuel consumption. Most large trucking fleets driving newer vehicles are compliant with SmartWay design requirements. CARB's Tractor-Trailer Greenhouse Gas Regulation requires that all 2010 and older model year tractors that pull 53-foot or longer box type trailers must use SmartWay verified low rolling resistance tires beginning January 1, 2013.

The EPA has evaluated the fuel saving benefits of various devices through emissions and fuel economy testing, demonstration projects and technical literature review. As a result, EPA has determined the following types of technologies provide fuel saving and/or emission reducing benefits when used properly in their designed applications:

- Idle Reduction Technologies allow engine operators to refrain from long-duration idling of the main propulsion engine by using an alternative technology. An idle reduction technology is generally defined as the installation of a technology or device that:
- Reduces unnecessary main engine idling of the vehicle or equipment; and/or
- Is designed to provide services (e.g., heat, air conditioning, and/or electricity) to the vehicle or equipment that would otherwise require the operation of the main drive engine while the vehicle or equipment is temporarily parked or remains stationary.
- Aerodynamic Technologies minimize drag and improve airflow over the entire tractortrailer vehicle. Aerodynamic technologies include gap fairings that reduce turbulence between the tractor and trailer, side skirts that minimize wind under the trailer, and rear fairings that reduce turbulence and pressure drop at the rear of the trailer.
- Low Rolling Resistance Tires: Certain tire models can reduce $\mathrm{NO}_{\mathrm{x}}$ emissions and fuel use by 3 percent or more, relative to the best-selling new tires for line haul class 8 tractor trailers. These improvements are achieved under the following conditions:
- Tires are used on the axle positions stated on the list below.
- Verified low rolling resistance tires are installed on all of the axle positions of the tractor and trailer.
- All tires must be properly inflated according to the manufacturer's specifications.
- Retrofit Technologies: Diesel retrofit technologies that the EPA has approved or conditionally approved, such as:
- Diesel Particulate Filter (DPF);
- CMX Catalyst Muffler;
- Selective Catalytic Reduction (SCR) System;
- Diesel Oxidation Catalyst (DOC); and
- Diesel Oxidation Catalyst (DOC) plus CDTi Closed Crankcase Ventilation (CCV) System.

Within each of these categories, the EPA has verified specific products and continues to evaluate and verify new products. Although the EPA has verified the fuel saving and/or emission reducing benefits of the listed products, it does not endorse the purchase of products or services from any specific vendor.

### 2.4 Regional

## Lewis Air Quality Management Act

The 1976 Lewis Air Quality Management Act established the SCAQMD and other air districts throughout the State. The Federal CAA Amendments of 1977 required that each state adopt an
implementation plan outlining pollution control measures to attain the Federal standards in nonattainment areas of the State.

The CARB is responsible for incorporating air quality management plans for local air basins into an SIP for EPA approval. Significant authority for air quality control within them has been given to local air districts that regulate stationary source emissions and develop local nonattainment plans.

## Carl Moyer Memorial Air Quality Standards Attainment Program

Since 1998, the Carl Moyer Memorial Air Quality Standards Attainment Program (Carl Moyer Program) has provided funding to encourage the voluntary purchase of cleaner engines, equipment, and emission reduction technologies. The Carl Moyer Program plays a complementary role to California's regulatory program by funding emission reductions that are surplus, i.e., early and/or in excess of what is required by regulation. The Carl Moyer Program accelerates the turnover of old highly-polluting engines, speeds the commercialization of advanced emission controls, and reduces air pollution impacts on environmental justice communities. Emission reductions achieved through the Carl Moyer Program are an important component of the California State Implementation Plan.

## Regional Air Quality Management Plan

The SCAQMD and the SCAG are responsible for formulating and implementing the Air Quality Management Plan (AQMP), which has a 20 -year horizon for the Basin. An AQMP is a plan prepared and implemented by an air pollution district for a county or region designated as nonattainment of the Federal and/or California ambient air quality standards. The SCAQMD and SCAG must update the AQMP every three years.

## 2012 AQMP

The 2012 AQMP was adopted December 7, 2012. ${ }^{39}$ The purpose of the 2012 AQMP for the Basin was to set forth a program that would lead the Basin into compliance with the Federal 24hour $\mathrm{PM}_{2.5}$ air quality standard, and to provide an update of the Basin's projections in meeting the Federal 8-hour ozone standards. The AQMP was adopted by the SCAQMD Board; therefore, it was submitted to the EPA as the State Implementation Plan (SIP). Specifically, the AQMP served as the official SIP submittal for the Federal 2006 24-hour $\mathrm{PM}_{2.5}$ standard. In addition, the AQMP updated specific elements of the previously approved 8 -hour ozone SIP: 1) an updated emissions inventory, and 2) new control measures and commitments for emissions reductions to help fulfill the Section 182(e)(5) portion of the 8-hour ozone SIP.

[^19]The 2012 AQMP states, "The remarkable historical improvement in air quality since the 1970's is the direct result of Southern California's comprehensive, multiyear strategy of reducing air pollution from all sources as outlined in its AQMPs."

The 2012 AQMP proposed Basin-wide $\mathrm{PM}_{2.5}$ measures that would be implemented by the 2014 attainment date, episodic control measures to achieve air quality improvements (would only apply during high $\mathrm{PM}_{2.5}$ days), Section 182(e)(5) implementation measures (to maintain progress toward meeting the 2023 8-hour ozone national standard), and transportation control measures. Most of the control measures focused on incentives, outreach, and education.

Proposed $\mathrm{PM}_{2.5}$ reduction measures in the 2012 AQMP included the following:

- Further $\mathrm{NO}_{\mathrm{x}}$ reductions from the SCAQMD's Regional Clean Air Incentives Market (RECLAIM) program. The RECLAIM program was adopted by the SCAQMD in October 1993 and set an emissions cap and declining balance for many of the largest facilities emitting $\mathrm{NO}_{\mathrm{x}}$ and $\mathrm{SO}_{\mathrm{x}}$ in the South Coast Air Basin. RECLAIM includes over 350 participants in its $\mathrm{NO}_{\mathrm{x}}$ market and about 40 participants in its $\mathrm{SO}_{\mathrm{x}}$ market.
RECLAIM has the longest history and practical experience of any locally designed and implemented air emissions cap and trade program. RECLAIM allows participating facilities to trade air pollution while meeting clean air goals.
- Further reductions from residential wood-burning devices.
- Further reductions from open burning.
- Emission reductions from under-fired char broilers.
- Further ammonia reductions from livestock waste.
- Backstop measures for indirect sources of emissions from ports and port-related sources.
- Further criteria pollutant reductions from education, outreach, and incentives.

There were multiple VOC and $\mathrm{NO}_{\mathrm{X}}$ reductions in the 2012 AQMP to attempt to reduce ozone formation, including further VOC reductions from architectural coatings, miscellaneous coatings, adhesives, solvents, lubricants, and mold release products.

The 2012 AQMP also contained proposed mobile source implementation measures for the deployment of zero and near-zero emission on-road heavy-duty vehicles, locomotives, and cargo handling equipment. There were measures for the deployment of cleaner commercial harbor craft, cleaner ocean-going marine vessels, cleaner off-road equipment, and cleaner aircraft engines.

The 2012 AQMP proposed the following mobile source implementation measures:

- On-road mobile sources:
- Accelerated penetration of partial zero-emission and zero-emission vehicles. This measure proposed to continue incentives for the purchase of zero-emission
vehicles and hybrid vehicles with a portion of their operation in an all-electric range mode. The state Clean Vehicle Rebate Pilot program was proposed to continue from 2015 to 2023 with a proposed funding for up to $\$ 5,000$ per vehicle. The measure seeks to provide funding assistance for up to 1,000 zeroemission or partial-zero emission vehicles per year.
- Accelerated penetration of partial zero-emission and zero-emission light-heavy and medium-heavy duty vehicles through funding assistance for purchasing the vehicles. The objective of the proposed action was to accelerate the introduction of advanced hybrid and zero-emission technologies for Class 4 through 6 heavyduty vehicles. The state is currently implementing a Hybrid Vehicle Incentives Project program to promote zero-emission and hybrid heavy-duty vehicles. The proposed measure aimed to continue the program from 2015 to 2023 to deploy up to 1,000 zero- and partial-zero emission vehicles per year with up to $\$ 25,000$ funding assistance per vehicle. Zero-emission vehicles and hybrid vehicles with a portion of their operation in an all-electric range mode would be given the highest priority.
- Accelerated retirement of older light-, medium-, and heavy-duty vehicles through funding incentives.
- Further emission reductions from heavy-duty vehicles serving near-dock rail yards This proposed control measure called for a requirement that any cargo container moved between the ports of Los Angeles and Long Beach to the nearby rail yards be with zero-emission technologies. The measure would be fully implemented by 2020 through the deployment of zero-emission trucks or any alternative zero-emission container movement system such as a fixed guideway system. The measure called for the CARB to either adopt a new regulation or amend an existing regulation to require such deployment by 2020.
- Off-road mobile sources:
- Extension of the Surplus Off-Road Opt-In for $\mathrm{NO}_{\mathrm{x}}(\mathrm{SOON})$ provision for construction/industrial equipment, which provides funding to repower or replace older Tier 0 and Tier 1 equipment.
- Further emission reductions from freight and passenger locomotives called for an accelerated use of Tier 4 locomotives in the Basin.
- Further emission reductions from ocean-going marine vessels while at berth.
- Emission reductions from ocean-going marine vessels.

The 2012 AQMP also relied upon the SCAG regional transportation strategy, which is in its adopted 2012-2035 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) and 2011 Federal Transportation Improvement Program, which contains the following sections:

1. Linking regional transportation planning to air quality planning and making sure that the regional transportation plan supports the goals and objectives of the AQMP/SIP.
2. Regional transportation strategy and transportation control measures: The RTP/SCS contains improvements to the regional multimodal transportation system including the following: active transportation (non-motorized transportation, e.g., biking and walking); transportation demand management; transportation system management; transit; passenger and high-speed rail; goods movement; aviation and airport ground access; highways; arterials; and operations and maintenance.
3. Reasonably available control measure analysis.

## 2016 AQMP

On March 3, 2017, SCAQMD approved the Final 2016 Air Quality Management Plan (AQMP) that demonstrates attainment of the $1-\mathrm{hr}$ and 8 -hr ozone NAAQS as well as the latest $24-\mathrm{hr}$ and annual $\mathrm{PM}_{2.5}$ standards. Currently, the 2016 AQMP is being reviewed by the U.S. EPA and CARB. Until the approval of the EPA and CARB, the current regional air quality plan is the Final 2012 Air Quality Management Plan (AQMP) adopted by the SCAQMD on December 7, 2012.The Final 2016 AQMP includes the integrated strategies and measures needed to meet the NAAQS.

The 2016 AQMP seeks to achieve multiple goals in partnership with other entities promoting reductions in criteria pollutant, greenhouse gases, and toxic risk, as well as efficiencies in energy use, transportation, and goods movement. The most effective way to reduce air pollution impacts on the health of our nearly 17 million residents, including those in disproportionally impacted and environmental justice communities that are concentrated along our transportation corridors and goods movement facilities, is to reduce emissions from mobile sources, the principal contributor to our air quality challenges. For that reason, the SCAQMD worked closely with CARB and the U.S. EPA who have primary responsibility for these sources. The Plan recognized the critical importance of working with other agencies to develop new regulations, as well as secure funding and other incentives that encourage the accelerated transition of vehicles, buildings, and industrial facilities to cleaner technologies in a manner that benefits not only air quality, but also local businesses and the regional economy. These "win-win" scenarios will be key to implementation of this Plan with broad support from a wide range of stakeholders. The 2016 AQMP also includes transportation control measures (TCMs) developed by SCAG from the 2016 RTP/SCS.

The RTP/SCS and Federal Transportation Improvement Program (FTIP) were developed in consultation with federal, state and local transportation and air quality planning agencies and other stakeholders. The four County Transportation Commissions (CTCs) in the South Coast Air Basin, namely Los Angeles County Metropolitan Transportation Authority, Riverside County Transportation Commission, Orange County Transportation Authority and the San Bernardino Associated Governments, were actively involved in the development of the regional transportation measures. In the South Coast Air Basin, TCMs include the following three main categories of transportation improvement projects and programs that have funding programmed for right-of-way and/or construction in the first two years of the 2015 FTIP:

- Transit, Intermodal Transfer, and Active Transportation Measures;
- High Occupancy Vehicle (HOV) Lanes, High Occupancy Toll (HOT) Lanes, and their pricing alternatives; and
- Information-based Transportation Strategies.


## South Coast Air Quality Management District Proposed Indirect Sources Rules for Warehouse

In order to obtain the 80 ppb and 75 ppb 8 -hour ozone standards by the 2023 and 2031 attainment dates, respectively, and in support of the 2016 AQMP, the SCAQMD is formulating Facility Based Mobile Sources Rules to reduce $\mathrm{NO}_{\mathrm{x}}$ emissions from indirect sources (e.g., mobile sources generated by, or attracted to facilities). This proposed rule or set of rules would reduce emissions associated with emissions sources operating in and out of warehouse and distribution centers, consistent with Control Measures MOB 03 from the 2016 AQMP, and is anticipated to be brought before the Board for consideration in the second quarter of 2020 (SCAQMD, 2019a). ${ }^{40}$ The SCAQMD is looking at a variety of options which could include voluntary reduction strategies, as well as, regulations to limit emissions. The voluntary emission reduction strategies for warehouses and distribution centers could include: (1) development of a SCAQMD administered CEQA air quality mitigation fund, for warehouse projects to opt into, which would be used to reduce project emissions by funding financial incentives for fleet owners to purchase cleaner trucks; (2) development of updated guidance for warehouse siting and operations; (3) development of the necessary fueling/charging infrastructure by working with utilities and regulatory agencies; and (4) development of "green delivery options" which could involve a small, voluntary, opt-in surcharge for consumers when purchasing goods online with the funds generated used towards reducing truck fleet emissions (SCAQMD, 2018). ${ }^{41}$ A regulatory approach is being proposed as well, since the recommended voluntary measures would only result in limited emissions reductions. The proposed Warehouse Indirect Source Rule is aimed at reducing trucking emissions and could provide several compliance options that facilities could choose including: (1) requirements for warehouses to ensure that construction fleets and truck fleets that serve their facility during operations are cleaner than required by CARB regulations (verified through a voluntary fleet certification program); (2) facility emission caps that would require warehouses to directly control the emissions associated with trucks visiting the facility; (3) mitigation fees if the facilities emissions exceed cap levels set in the Indirect Source Rule, (4) crediting options for other activities like installation of charging/fueling infrastructure for cleaner trucks and transportation refrigeration units, conversion of cargo handling equipment to zero emission technologies, etc.; (5) requiring facilities to utilize zero emission trucks and build the infrastructure to support them; and (6) a points based system for the warehouse Indirect

[^20]Source Rule (SCAQMD, 2019a, SCAQMD, 2019b, ${ }^{42}$ SJVAPCD, 201743). This proposed rule would further reduce air quality emissions, beyond those calculated in this analysis, as future operations of the WLC would be subject to this rule once it is proposed and approved.

## Greenhouse Gases

In April 2008, the SCAQMD, in order to provide guidance to local lead agencies on determining the significance of GHG emissions identified in CEQA documents, convened a "GHG CEQA Significance Threshold Working Group." ${ }^{44}$ The goal of the working group is to develop and reach consensus on an acceptable CEQA significance threshold for GHG emissions that would be utilized on an interim basis until the CARB (or some other State agency) develops statewide guidance on assessing the significance of GHG emissions under CEQA.

Initially, SCAQMD staff presented the working group with a significance threshold that could be applied to various types of projects - residential, non-residential, industrial, etc. However, the threshold is still under development. In December 2008, staff presented the SCAQMD Governing Board with a significance threshold for stationary source projects in which it is the lead agency. This threshold uses a tiered approach to determine a project's significance, with 10,000 metric tons (mt) of carbon dioxide equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$ as a screening numerical threshold.

In September 2010, the Working Group released additional revisions, which recommended a project-level efficiency target of $4.8 \mathrm{mt} \mathrm{CO}_{2}$ e per service population (SP) as a 2020 target and 3.0 mt CO 2 e e, per SP as a 2035 target. The recommended plan-level target for 2020 was 6.6 mt CO 2 e and the plan level target for 2035 was 4.1 mt CO 2 e . The SCAQMD has not announced when staff is expecting to present a finalized version of these thresholds to the Governing Board.

The SCAQMD has also adopted Rules 2700, 2701, and 2702 to establish a voluntary program to encourage, quantify, and certify voluntary GHG emission reductions in the SCAQMD's jurisdiction. The CARB adopted a resolution regarding the adoption of GHG accounting protocols that distinguishes between the offset certification programs that were developed for the voluntary market, and the program that must be developed to certify offsets to be used under CARB's cap-and-trade rule. This resolution withdrew CARB approval of voluntary protocols but would not impact the use of these protocols for voluntary purposes. Protocols in Rules 2701 and 2702 are voluntary protocols, which no longer have CARB's approval.

## Diesel Regulations

The Ports of Long Beach and Los Angeles and the CARB have adopted regulations aimed at reducing the amount of diesel particulate. These programs are the Ports of Los Angeles and Long

[^21]Beach "Clean Truck Program, ${ }^{45}$ the CARB Drayage Truck Regulation, ${ }^{46}$ and the CARB statewide On-road Truck and Bus Regulation. ${ }^{47}$ Each of these regulatory programs will require an accelerated introduction of "clean trucks" into the statewide truck fleet that will result in substantially lower diesel emissions during the 2008 to 2020 timeframe. Additionally, the Ports of Long Beach and Los Angeles updated the Clean Air Action Plan in 2017, providing new strategies and emission targets supporting zero-emissions and freight efficiency targets. ${ }^{48}$

- Airborne Toxic Control Measure for Diesel Particulate Matter from Portable Engines Rated at 50 horsepower and Greater. Effective February 19, 2011, each fleet shall comply with weighted reduced particulate matter emission fleet averages by compliance dates listed in the regulation.
- CARB Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling adopts new Section 2485 within Chapter 10, Article 1, Division 3, Title 13 in the California Code of Regulations. The measure limits the idling of diesel vehicles (i.e., commercial trucks over 10,000 pounds) to reduce emissions of toxics and criteria pollutants. The driver of any vehicle subject to this section: (1) shall not idle the vehicle's primary diesel engine for greater than five minutes at any location; and (2) shall not idle a diesel-fueled auxiliary power system for more than five minutes to power a heater, air conditioner, or any ancillary equipment on the vehicle if it has a sleeper berth and the truck is located within 100 feet of a restricted area (homes and schools).
- CARB Final Regulation Order, Requirements to Reduce Idling Emissions from New and In-Use Trucks, requires that new 2008 and subsequent model-year heavy-duty diesel engines be equipped with an engine shutdown system that automatically shuts down the engine after 300 seconds of continuous idling operation once the vehicle is stopped, the transmission is set to 'neutral' or 'park,' and the parking brake is engaged. If the parking brake is not engaged, then the engine shutdown system shall shut down the engine after 900 seconds of continuous idling operation once the vehicle is stopped and the transmission is set to neutral or park." There are a few conditions where the engine shutdown system can be overridden to prevent engine damage. Any project trucks manufactured after 2008 would be consistent with this rule, which would ultimately reduce air emissions.
- CARB Regulation for In-Use Off-Road Diesel Vehicles. On July 26, 2007, the CARB adopted a regulation to reduce diesel particulate matter and $\mathrm{NO}_{\mathrm{x}}$ emissions from in-use (existing) off-road heavy-duty diesel vehicles in California. All self-propelled off-road diesel vehicles over 25 horsepower (hp) used in California and most two-engine vehicles (except on-road two-engine sweepers) are subject to this regulation. This includes vehicles that are rented or leased (rental or leased fleets). Such vehicles are used in construction, mining, and industrial operations. The regulation:
- imposes limits on idling to no more than five consecutive minutes,

[^22]- restricts adding of older equipment (such as Tier 0 and Tier 1 ) into fleets,
- requires reporting and labeling, and
- requires disclosure of the regulation upon vehicle sale.

The CARB is enforcing that with fines up to $\$ 10,000$ per day for each vehicle in violation. Performance requirements of the rule are based on a fleet's average $\mathrm{NO}_{\mathrm{x}}$ emissions, which can be met by replacing older vehicles with newer, cleaner vehicles or by applying exhaust retrofits. The regulation was amended in 2010 to delay the original timeline of the performance requirements making the first compliance deadline January 1, 2014 for large fleets (over 5,000 horsepower), 2017 for medium fleets (2,501-5,000 horsepower), and 2019 for small fleets (2,500 horsepower or less).

## Toxic Air Contaminants

A toxic air contaminant (TAC) is defined as an air pollutant that may cause or contribute to an increase in mortality (death) or serious illness, or that may pose a hazard to human health. TACs are usually present in minute quantities in the ambient air, however, their high toxicity or health risk may pose a threat to public health even at low concentrations. Hazardous Air Pollutants (HAPs) and TACs are used interchangeably in this discussion. HAPs are regulated by the EPA under the Federal Clean Air Act. TAC is the term used under the California Clean Air Act to regulate the same hazardous pollutants. These contaminants tend to be localized and are found in relatively low concentrations in ambient air. However, they can result in adverse chronic health effects if exposure to low concentrations occurs for periods of several years. Many of these contaminants originate from human activities, such as fuel combustion and solvent use.

In general, for those TACs that may cause cancer, there is no concentration that does not present some risk. In other words, there is no threshold level below which adverse health impacts are not expected to occur. This contrasts with the criteria pollutants carbon dioxide, nitrogen dioxide, particulate matter, and ozone for which acceptable levels of exposure can be determined and for which the State and federal governments have set ambient air quality standards. For this reason, thresholds for TAC impacts for regulatory purposes and for CEQA thresholds have been set based on the increase in risk of cancer of a specific amount at sensitive receptors located near the source of TAC emissions.

The California Almanac of Emissions and Air Quality presents the relevant concentration and cancer risk data for the ten TACs that pose the most substantial health risk in California based on available data. These TACs are as follows: acetaldehyde, benzene, 1.3-butadiene, carbon tetrachloride, hexavalent chromium, paradichlorobenzene, formaldehyde, methylene chloride, perchloroethylene, and diesel particulate matter (diesel PM).

TAC measurements, available at the SCAQMD Riverside Rubidoux monitoring station (14 miles northwest of the project site) can be used to characterize the "background" health risks from regional TAC emission sources. Table 6, Toxic Air Contaminant Concentration Levels and Associated Health Effects, provides this summary of TAC levels in the project area and health risk information. This table lists the air concentration levels and associated health cancer risks for
eight of the nine TACs reported by the CARB in its Almanac as measured at the RiversideRubidoux air monitoring station. Note that since diesel PM cannot be measured directly, the table does not provide estimates of either measured diesel PM or the cancer risk associated with diesel PM.

Past studies have indicated that diesel PM poses the greatest health risk among the TACs listed in Table 6. The principal concern regarding exposures to diesel PM lies in its small size and thus its ability to penetrate deep into lung tissues when inhaled. Diesel exhaust has been found to cause health effects from short-term or acute exposures and from long-term chronic exposures, such as repeated occupational exposures. The type and severity of health effects depends upon several factors including the amount of chemical you are exposed to and the length of time you are exposed. Individuals also react differently to different levels of exposure. There is limited information on exposure to just diesel PM but there is enough evidence to indicate that inhalation exposure to diesel exhaust causes acute and chronic health effects.

Long-term (chronic) exposure to diesel exhaust is likely to occur when a person works in a field where diesel is used regularly or experiences repeated exposure to diesel fumes over a long period of time. Human health studies demonstrate a correlation between exposure to diesel exhaust and increased lung cancer rates in occupational settings. Experimental animal inhalation studies of chronic exposure to diesel exhaust have shown that a range of doses causes varying levels of inflammation and cellular changes in the lungs. Human and laboratory studies have also provided considerable evidence that diesel exhaust is a likely carcinogen.

Several occupational and ambient studies have documented the health effects due to exposure to diesel PM. The California Office of Environmental Health Hazards Assessment (OEHHA), in its role in assessing risk from environmental factors reviews such studies and makes recommendations on the way environmental risk should be evaluated through programs like the AB2588 Hot Spot Program. In its comprehensive assessment of diesel exhaust, OEHHA analyzed more than 30 studies of people who worked around diesel equipment, including truck drivers, 1950's era railroad workers, and equipment operators. The studies showed these workers were more likely to develop lung cancer than workers who were not exposed to diesel emissions. These studies provide strong evidence that long-term occupational exposure to diesel exhaust increases the risk of lung cancer. However, all of these studies were based on exposure to exhaust from traditional diesel engines and prior to the advent of highly efficient emissions controls like the diesel particulate filter. Based on these studies, CARB identified diesel exhaust a toxic air contaminant in 1998.

In 2008, the SCAQMD released the third iteration of the Multiple Air Toxics Exposure Study (MATES-III). The MATES-III report includes monitoring of various air toxic compounds in the Basin, establishes and updates existing baseline toxic air contaminants, and simulates cancer risk in the Basin. The study focuses on the carcinogenic risk from exposure to air toxics. It does not estimate mortality or other health effects from particulate exposures. The SCAQMD MATES-III report indicates that overall in the Basin, diesel PM contributes 83.6 percent of the risk.

In 2014, the SCAQMD released the fourth iteration of the Multiple Air Toxics Exposure Study (MATES-IV). The MATES-IV is a follow up to the previous MATES studies and included an updated toxics air emission inventory, new air toxics air dispersion modeling, and enhanced air toxics monitoring. A key conclusion reached in the MATES-IV study was that the population weighted cancer risk in the Basin decreased by 57 percent from the MATES-III period in 2005 to the MATES-IV period in 2012 indicating that overall, cancer risks are declining in the Basin as a result of the implementation of emission controls principally on large diesel trucks. The MATESIV study also concluded that diesel PM contributed 68 percent to the total cancer risk in the Basin with benzene and 1.3 Butadiene also making important contributions to cancer risk. Figure 15, Summary of MATES IV Cancer risks, summarizes the basin-wide cancer risks as derived from the MATES-IV study.

Figure 15: Summary of MATES IV Cancer Risks



Table 6
Toxic Air Contaminant Concentration Levels and Associated Health Effects (Riverside, California)

| TAC | Concentration <br> Health Risk $^{\mathbf{B}}$ | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ | Health Effects |
| :--- | :--- | :---: | :---: | :---: | :--- |
| Acetaldehyde | Mean | 1.48 | 1.44 | 1.08 | Acetaldehyde is a carcinogen that also causes chronic <br> non-cancer toxicity in the respiratory system. <br> Symptoms of chronic intoxication of acetaldehyde in <br> humans resemble those of alcoholism. <br> The primary acute effect of inhalation exposure to <br> acetaldehyde is irritation of the eyes, skin, and <br> respiratory tract in humans. At higher exposure levels, <br> erythema, coughing, pulmonary edema, and necrosis <br> may also occur. Acute inhalation of acetaldehyde <br> resulted in a depressed respiratory rate and elevated <br> blood pressure in experimental animals. |
|  | Health Risk | 22 | 21 | 16 |  |

Table 6
Toxic Air Contaminant Concentration Levels and Associated Health Effects (Riverside, California)

| TAC | Concentration ${ }^{\text {A }}$ Health Risk ${ }^{B}$ | 2015 | 2016 | 2017 | Health Effects |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Benzene | Mean | ID | 0.27 | 0.271 | Benzene is highly carcinogenic and occurs throughout California. Benzene also has non-cancer health effects. Brief inhalation exposure to high concentrations can cause central nervous system depression. Acute effects include central nervous system symptoms of nausea, tremors, drowsiness, dizziness, headache, intoxication, and unconsciousness. <br> Neurological symptoms of inhalation exposure to benzene include drowsiness, dizziness, headaches, and unconsciousness in humans. Ingestion of large amounts of benzene may result in vomiting, dizziness, and convulsions in humans. Exposure to liquid and vapor may irritate the skin, eyes, and upper respiratory tract in humans. Redness and blisters may result from dermal exposure to benzene. <br> Chronic inhalation of certain levels of benzene causes disorders in the blood in humans. Benzene specifically affects bone marrow (the tissues that produce blood cells). Aplastic anemia, excessive bleeding, and damage to the immune system (by changes in blood levels of antibodies and loss of white blood cells) may develop. Increased incidence of leukemia (cancer of the tissues that form white blood cells) has been observed in humans occupationally exposed to benzene. |
|  | Health Risk | ID | 85 | 70 |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Chromium Hex | Mean | 0.083 | 0.045 | ID | In California, hexavalent chromium has been identified as a carcinogen. There is epidemiological evidence that exposure to inhaled hexavalent chromium may result in lung cancer. The principal acute effects are renal toxicity, gastrointestinal hemorrhage, and intravascular hemolysis. <br> The respiratory tract is the major target organ for chromium (VI) following inhalation exposure in humans. Other effects noted from acute inhalation exposure to very high concentrations of chromium (VI) include gastrointestinal and neurological effects, while dermal exposure causes skin burns in humans. Chronic inhalation exposure to chromium ( VI ) in humans results in effects on the respiratory tract, with perforations and ulcerations of the septum, bronchitis, decreased pulmonary function, pneumonia, asthma, and nasal itching and soreness reported. Chronic human exposure to high levels of chromium ( VI ) by inhalation or oral exposure may produce effects on the liver, kidneys, gastrointestinal and immune systems, and possibly the blood. |
|  | Health Risk | 34 | 19 | ID |  |
|  |  |  |  |  |  |
| Para- <br> Dichlorobenzene | Mean | ID | ID | ID | In California, para-dichlorobenzene has been identified as a carcinogen. Acute exposure to 1,4dichlorobenzene via inhalation results in irritation to the eyes, skin, and throat in humans. In addition, long-term inhalation exposure may affect the liver, skin, and central nervous system in humans (e.g., cerebellar ataxia, dysarthria, weakness in limbs, and hyporeflexia). |
|  | Health Risk | ID | ID | ID |  |
| Formaldehyde | Mean | 3.52 | 3.64 | 3.35 | The major toxic effects caused by acute formaldehyde exposure via inhalation are eye, nose, and throat irritation and effects on the nasal cavity. Other effects seen from exposure to high levels of formaldehyde in humans are coughing, wheezing, chest pains, and bronchitis. Chronic exposure to formaldehyde by inhalation in humans has been associated with |
|  | Health Risk | 70 | 76 | 70 |  |

Table 6
Toxic Air Contaminant Concentration Levels and Associated Health Effects (Riverside, California)

| TAC | Concentration ${ }^{\text {A } / ~}$ Health Risk ${ }^{B}$ | 2015 | 2016 | 2017 | Health Effects |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | respiratory symptoms and eye, nose, and throat irritation. Animal studies have reported effects on the nasal respiratory epithelium and lesions in the respiratory system from chronic inhalation exposure to formaldehyde. Occupational studies have noted statistically significant associations between exposure to formaldehyde and increased incidence of lung and nasopharyngeal cancer. This evidence is considered "limited" rather than "sufficient" due to possible exposure to other agents that may have contributed to the excess cancers. EPA considers formaldehyde to be a probable human carcinogen (cancer-causing agent) and has ranked it in EPA's Group B1. In California, formaldehyde has been identified as a carcinogen. |
| Methylene Chloride | Mean | ID | 48.2 | 12.3 | Case studies of methylene chloride poisoning during paint-stripping operations have demonstrated that inhalation exposure to extremely high levels can be fatal to humans. Acute inhalation exposure to high levels of methylene chloride in humans has resulted in effects on the central nervous system, including decreased visual, auditory, and psychomotor functions, but these effects are reversible once exposure ceases. Methylene chloride also irritates the nose and throat at high concentrations. The major effects from chronic inhalation exposure to methylene chloride in humans are effects on the central nervous system, such as headaches, dizziness, nausea, and memory loss. In addition, chronic exposure can lead to bone marrow, hepatic, and renal toxicity. EPA considers methylene chloride to be a probable human carcinogen and has ranked it in EPA's Group B2. California considers methylene chloride to be carcinogenic. |
|  | Health Risk | ID | 477 | 122 |  |
| Perchloroethylene | Mean | ID | 0.018 | 0.013 | In California, perchloroethylene has been identified as a carcinogen. Perchloroethylene vapors are irritating to the eyes and respiratory tract. Following chronic exposure, workers have shown signs of liver toxicity, as well as kidney dysfunction and neurological disorders. |
|  | Health Risk | ID | 2 | 2 |  |
| Diesel PM | Mean | No Monitoring Data Available |  |  | In its comprehensive assessment of diesel exhaust, OEHHA analyzed more than 30 studies of people who worked around diesel equipment, including truck drivers, railroad workers, and equipment operators. The studies showed these workers were more likely to develop lung cancer than workers who were not exposed to diesel emissions. These studies provided strong evidence that long-term occupational exposure to diesel exhaust increases the risk of lung cancer. Exposure to diesel exhaust can have immediate health effects. Diesel exhaust can irritate the eyes, nose, throat, and lungs, and it can cause coughs, headaches, lightheadedness, and nausea. In studies with human volunteers, diesel exhaust particles made people with allergies more susceptible to the materials to which they are allergic, such as dust and pollen. Exposure to diesel exhaust also causes inflammation in the lungs, which may aggravate chronic respiratory symptoms and increase the frequency or intensity of asthma attacks. This research was based on studies prior to the advent of modern diesel engines with high efficiency emissions controls. |
|  | Health Risk |  |  |  |  |

Table 6
Toxic Air Contaminant Concentration Levels and Associated Health Effects (Riverside, California)

| TAC | Concentration ${ }^{\text {A } / ~}$ <br> Health Risk ${ }^{\text {B }}$ | 2015 | 2016 | 2017 | Health Effects |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A = Concentrations for Hexavalent Chromium are expressed as $\mu \mathrm{g} / \mathrm{m}^{3}$, and concentrations for Diesel PM are expressed as $\mu \mathrm{g} / \mathrm{m}^{3}$. Concentrations for all other TACs are expressed as ppb. <br> $B=$ Health Risk represents the number of excess cancer cases per million people based on a lifetime (70-year) exposure to the annual average concentration. Total Health Risk represents only those compounds listed in this table and only those with data for the year. There may be other significant compounds for which monitoring and/or health risk information are not available Source: CARB 2018 for the SCAQMD Riverside-Rubidoux air monitoring station. |  |  |  |  |  |

The basin-wide population weighted cancer risk is 367 per million based on averages at fixed monitoring sites estimated during the MATES-IV study. This level of risk means that on average an estimated 367 individuals in the basin could contract cancer out of a population of one million individuals exposed to all sources of toxic air contaminants over a lifetime of 70 years. A comprehensive air dispersion model and a detailed air toxics emission inventory were then used to estimate cancer risks at other locations where no monitoring sites were deployed. A 10-year research program ${ }^{49}$ demonstrated that diesel PM from diesel-fueled engines is a human carcinogen and that chronic (long-term) inhalation exposure to diesel PM poses a chronic health risk.

In addition to increasing the risk of lung cancer, exposure to diesel exhaust can have other health effects. Diesel exhaust can irritate the eyes, nose, throat, and lungs, and it can cause coughs, headaches, lightheadedness, and nausea. Diesel exhaust has been a major source of fine particulate pollution as well, and studies have linked elevated particle levels in the air to increased hospital admissions, emergency room visits, asthma attacks, and premature deaths among those suffering from respiratory problems.

Diesel PM differs from other TACs in that it is not a single substance but a complex mixture of hundreds of substances. Although diesel PM is emitted by diesel-fueled, internal combustion engines, the composition of the emissions varies, depending on engine type, operating conditions, fuel composition, lubricating oil, and whether an emission control system is present. Unlike the other TACs, however, no ambient monitoring data are available for diesel PM because no routine measurement method currently exists. The CARB has made preliminary concentration estimates based on a diesel PM exposure method. This method uses the CARB emissions inventory's $\mathrm{PM}_{10}$ database, ambient $\mathrm{PM}_{10}$ monitoring data, and the results from several studies to estimate concentrations of diesel PM. Within the Basin, in addition to diesel PM, there are emissions of benzene, formaldehyde, acetaldehyde, naphthalene, ethylbenzene, acrolein, toluene, hexane, propylene, and xylene from a variety of sources located within the Basin that contribute to health risks.

Figure 16, MATES IV Cancer Risk in Area, shoes the average cancer risk in the project area. As shown in Figure 17, Change in Air Toxics Simulated Risk from 2005 to 2012, nearly all areas of the Basin experienced decreases in cancer risk during the time period from MATES-III time

[^23]period of 2005 to the MATES-IV time period of 2012. The project area also experienced a decrease in cancer risk of between 100 and 400 in one million from the years 2005 to 2012.

Figure 20 depicts the cancer risk estimates as a "snapshot in time." That is, the cancer risks are derived from air dispersion models and are based on the emissions of various TACs during the years 2005 and 2012. The basic tenet used to estimate cancer risk assumes that the public will be exposed to these TAC emissions during an entire 70-year lifetime of continuous exposure. However, the SCAQMD, CARB, and the EPA have adopted numerous regulations that have



SOURCE: SCAQMD, MATES IV Final Report, May 2015
resi
resulted in significant reductions in pollutant emissions with the attendant reductions in prevailing air quality levels since 2012 as noted earlier. The benefits of substantial additional emission reductions derived from the adoption and application of SCAQMD, CARB, and EPA regulations are not reflected in the estimate of 70-year lifetime cancer risks referred to in Figure 17.

## Conservative Nature of Health Risk Assessments

Moreover, the current methodological protocols required by the SCAQMD and CARB when studying the health risk posed by diesel PM assume the following (from the California Air Pollution Control Officers Association 2009): (1) 24-hour constant exposure; (2) 350 days a year; (3) for a continuous period lasting 70 years. These are overly conservative assumptions that are not replicated in reality. Most people are indoors for 18-20 hours a day (at their place of employment or home) and most people do not live in the same location for a 70 -year period. In fact, less than 10 percent of the population has a continuous residency at the same location of greater than 30 years (American Community Survey 2011). Thus, the health risk assessments prepared pursuant to the current protocols overestimate the risk of cancer associated with diesel PM exposure.

## Alternative Views on Diesel PM Risk

Some researchers, such as Dr. James E. Enstrom (2008), believe that the risk from diesel PM is exaggerated. Enstrom calls into question some of the basic research on the declaration of diesel exhaust as a toxic air contaminant. In particular, the article states the following:

> There is substantial new epidemiologic evidence relevant to the health effects of diesel exhaust that was not considered when the 1998 toxic air contaminant declaration was made. For instance, the 2007 paper by Francine Laden et al. measured death rates during 1985-2000 among 54,000 members of the unionized U.S. trucking industry. ... This cohort, which included 36,000 diesel truck drivers, had death rates from all causes and all cancer that were substantially below the rates among US males. Furthermore, unlike earlier evidence that was used in the TAC declaration, this cohort did not have a substantially elevated lung cancer death rate.

Dr. Enstrom also indicates that the premature mortality calculation in the report, "Quantification of the Health Impacts and Economic Valuation of Air Pollution from Ports and Goods Movement in California," is exaggerated. Dr. Enstrom's analysis "found no relationship between $\mathrm{PM}_{2.5}$ and mortality in elderly Californians during 1983-2002."

## Southern California Association of Governments

Southern California Association of Governments (SCAG) Sustainable Communities Strategy (SCS) within Regional Transportation Plan (RTP) demonstrates the region's ability to attain and exceed the GHG emission reduction targets set by the CARB. The SCS outlines the plan for integrating the transportation network and related strategies with an overall land use pattern that responds to projected growth, housing needs, changing demographics, and transportation demands. The regional vision of the SCS maximizes current voluntary local efforts that support the goals of SB 375, as evidenced by several Compass Blueprint Demonstration Projects and
various county transportation improvements. The SCS focuses the majority of new housing and job growth in high-quality transit areas and other opportunity areas in existing main streets, downtowns, and commercial corridors, resulting in an improved jobs-housing balance and more opportunity for transit-oriented development. This overall land use development pattern supports and complements the proposed transportation network, which emphasizes system preservation, active transportation, and transportation demand management measures.

The RTP/SCS exceeds its greenhouse gas emission-reduction targets set by the CARB by achieving an 8 percent reduction by 2020, an 18 percent reduction by 2035, and a 21 percent reduction by 2040 compared to the 2005 level on a per capita basis. Table 7, SCAG Assumptions for Moreno Valley, shows the assumptions regarding Moreno Valley that SCAG used in its 2016 analysis.

Table 7
SCAG Assumptions for Moreno Valley

| Year | Population | Households | Employment |
| :---: | :---: | :---: | :---: |
| 2012 | 197,600 | 51,800 | 31,400 |
| 2040 | 256,600 | 73,000 | 83,200 |

Source: Southern California Association of Governments 2016
(http://scagrtpscs.net/Documents/2016/final/f2016RTPSCS_DemographicsGrowthForecast.pdf)

The RTP also includes an appendix on Goods Movement, which provides an overview of the regional goods movement and initiatives to facilitate it. The 2016 RTP does not include a list of proposed or recommend strategies. Proposed Strategies in the 2012 RTP (that are still relevant in the 2016 RTP) that include the Local Jurisdiction as a responsible party, that could be applicable to the project, and that pertain to air quality or greenhouse gases are shown in Table 8, Select 2012 Regional Transportation Plan Strategies. Many of the strategies are similar to the project's mitigation measures and project design features.

Table 8
Select 2012 Regional Transportation Plan Strategies

| Strategy | Responsible Party* | Project Consistency |
| :---: | :---: | :---: |
| Encourage the use of range-limited battery electric and other alternative fueled vehicles through policies and programs, such as, but not limited to, neighborhood oriented development, complete streets, and electric (and other alternative fuel) vehicle supply equipment in public parking lots. | Local Jurisdictions, COGs, SCAG, CTCs | Consistent with Mitigation Measures AIR-7 (nondiesel yard trucks), AIR-8 (alternative fuel station), and AIR-11 (electric vehicle charging stations). |
| Support projects, programs, and policies that support active and healthy community environments that encourage safe walking, bicycling, and physical activity by children, including, but not limited to development of complete streets, school siting policies, joint use agreements, and bicycle and pedestrian safety education. | Local Jurisdictions and CTCs | Consistent with Mitigation Measure AIR-11 (bicycle lanes, storage lockers, and pedestrian connections/pathways). |

Table 8
Select 2012 Regional Transportation Plan Strategies

| Strategy | Responsible Party* | Project Consistency |
| :---: | :---: | :---: |
| Engage in a strategic planning process to determine the critical components and implementation steps for identifying and addressing open space resources, including increasing and preserving park space, specifically in park-poor communities. | Local Jurisdictions and CTCs | The project is consistent with City's goal of conserving open space. As compared to the Moreno Highlands Specific Plan, theproject would change the zoning on 910 acres from residential to open space. In addition, the project preserves the zoning of 74 acres of open space in the southwest corner of the project site for passive open space and recreation uses. Finally, a network of trails has been proposed within the project site to provide public trail access to the Lake Perris Recreational Area and the San Jacinto Wildlife Area. |
| Develop first-mile/last-mile strategies on a local level to provide an incentive for making trips by transit, bicycling, walking, or neighborhood electric vehicle or other zero emission vehicle options. | Local Jurisdictions and CTCs | Consistent with Mitigation Measure AIR-11 (Riverside County's Rideshare Program), bicycle lanes, and pedestrian access. |
| Encourage transit fare discounts and local vendor product and service discounts for residents and employees of transit oriented development/high quality transit areas or for a jurisdiction's local residents in general who have fare media | Local Jurisdictions | Not applicable. This measure is for areas in transitoriented development. |
| Encourage the implementation of a Complete Streets policy that meets the needs of all users of the streets, roads and highwaysincluding bicyclists, children, persons with disabilities, motorists, neighborhood electric vehicle (NEVs) users, movers of commercial goods, pedestrians, users of public transportation and seniors-for safe and convenient travel in a manner that is suitable to the suburban and urban contexts within the region. | Local <br> Jurisdictions, COGs, SCAG, CTCs | Although the project is not implementing what is labeled as a "Complete Streets" policy, the project would include bicycle lanes and pedestrian access (Mitigation Measure AIR-11) and would implement handicapped access pursuant to current regulations. |
| Support work-based programs that encourage emission reduction strategies and incentivize active transportation commuting or ride-share modes. | SCAG, Local Jurisdictions | Consistent through Mitigation Measure AIR-11 (Riverside County's Rideshare Program; designated parking for carpool/van pools). |
| Develop infrastructure plans and educational programs to promote active transportation options and other alternative fueled vehicles, such as neighborhood electric vehicles, and consider collaboration with local public health departments, walking/biking coalitions, and/or Safe Routes to School initiatives, which may already have components of such educational programs in place. | Local Jurisdictions | Consistent with Mitigation Measures AIR-11 (bicycle lanes, pedestrian access, electric vehicle charging) and AIR-8 (alternative fueling infrastructure). |
| Encourage the development of telecommuting programs by employers through review and revision of policies that may discourage alternative work options. | Local Jurisdictions and CTCs | Not applicable. Tenants may choose to implement telecommuting if feasible. |
| Emphasize active transportation and alternative fueled vehicle projects as part of complying with the Complete Streets Act (AB 1358). | State, SCAG, <br> Local Jurisdictions | Consistent with Mitigation Measure AIR-8 (alternative fueling station) and Mitigation Measure AIR-11 (electric vehicle charging stations) |
| * Abbreviations: SCAG = Southern California Association of Governments |  |  |

Table 8
Select 2012 Regional Transportation Plan Strategies

| Strategy | Responsible <br> Party* | Project Consistency |
| :--- | :---: | :---: |
| CTCs = county transportation commissions |  |  |
| COGs = subregional councils of governments |  |  |
| Source: Southern California Association of Governments 2012 |  |  |

The Goods Movement appendix of the 2016 RTP/SCS describes a process to develop and deploy needed technologies, along with key action steps for public sector agencies to help move the region to that objective. The 2016 RTP/SCS reaffirms zero- and near zero-emission technologies as a priority, and establishes the regional path forward to such as goods movement system.

SB 375 took effect in 2009 and required regional municipal planning organizations to develop regional land use plans that demonstrate how the regions will achieve compliance with the GHG reduction goals of AB 32 . Cities located within these regions are then required, in turn, to update their General Plans in accordance with the regional plans. Non-compliance with SB 375 will result in transportation funds being withheld from the regional and/or local agency. To date, the regional municipal planning organization for Riverside County (the Western Riverside Council of Governments, or WRCOG) has not adopted a regional plan that is in compliance with SB 375.

### 2.5 Local

City of Moreno Valley

## General Plan

Chapter 9 of the City's General Plan defines goals and policies related to air quality within the City of Moreno Valley. The specific policies of the General Plan that are relevant to theproject are as follows:

Objective 6.6 Promote land use patterns that reduce daily automotive trips and reduce trip distance for work, shopping, school, and recreation.

Objective 6.7 Reduce mobile and stationary source air pollutant emissions.
Policy 6.7.1 Cooperate with regional efforts to establish and implement regional air quality strategies and tactics.

Policy 6.7.2 Encourage the financing and construction of park and ride facilities.
Policy 6.7.3 Encourage express transit service from Moreno Valley to the greater metropolitan areas of Riverside, San Bernardino, Orange, and Los Angeles Counties.

Policy 6.7.4 Locate heavy industrial and extraction facilities away from residential areas and sensitive receptors.

Policy 6.7.5 Require grading activities to comply with South Coast Air Quality Management District's Rule 403 regarding the control of fugitive dust.

Policy 6.7.6 Require building construction to comply with the energy conservation requirements of Title 24 of the California Administrative Code.

## Climate Action Strategy

The City of Moreno Valley approved the Energy Efficiency and Climate Action Strategy (Strategy) in October 2012. The Strategy identifies ways that the City can reduce energy and water consumption and greenhouse gas emissions as an organization (its employees and the operation of its facilities) and outlines the actions that the City can encourage and community members can employ to reduce their own energy and water consumption and greenhouse gas emissions. The Strategy contains the following policies to reduce greenhouse gas emissions in 2010 by 15 percent by 2020 :

R2-T1 Land Use Based Trips and VMT Reduction Policies. Encourage the development of Transit Priority Projects along High Quality Transit Corridors identified in the SCAG Sustainable Communities Plan, to allow a reduction in vehicle miles traveled.

R2-T3 Employment-Based Trip Reductions. Require a Transportation Demand Management (TDM) program for new development to reduce automobile travel by encouraging ride-sharing, carpooling, and alternative modes of transportation.

R2-E1 New Construction Residential Energy Efficiency Requirements. Require energy efficient design for all new residential buildings to be 10 percent beyond the current Title 24 standards.

R2-E2 New Construction Residential Renewable Energy. Facilitate the use of renewable energy (such as solar [photovoltaic] panels or small wind turbines) for new residential developments. Alternative approach would be the purchase of renewable energy resources off site.

R2-E5 New Construction Commercial Energy Efficiency Requirements. Require energy efficient design for all new commercial buildings to be 10 percent beyond the current Title 24 standards.

R3-E1 Energy Efficient Development, and Renewable Energy Deployment Facilitation and Streamlining. Updating of codes and zoning requirements and guidelines to further implement green building practices. This could include incentives for energyefficient projects.

R3-L2 Heat Island Plan. Develop measures that address "heat islands." Potential measures include using strategically placed shade trees, using paving materials with a Solar Reflective Index of at least 29, an open grid pavement system, or covered parking.

R2-W1 Water Use Reduction Initiative. Consider adopting a per capita water use reduction goal which mandates the reduction of water use of 20 percent per capita with requirements applicable to new development and with cooperative support of the water agencies.

R3-W1 Water Efficiency Training and Education. Work with EMWD and local water companies to implement a public information and education program that promotes water conservation.

R2-S1 City Diversion Program. For solid waste, consider a target of increasing the waste diverted from the landfill to a total of 75 percent by 2020.

## SECTION 3

## Significance Thresholds

### 3.1 State CEQA Guidelines, Appendix G

Based on Appendix G of the CEQA Guidelines, air quality impacts would occur if the project would:

AIR-1: Conflict with or obstruct implementation of the applicable air quality plan;
AIR-2: Violate any air quality standard or contribute substantially to an existing or projected air quality violation;

AIR-3: Result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is in non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors);

AIR-4: Expose sensitive receptors to substantial pollutant concentrations; and/or
AIR-5: Create objectionable odors affecting a substantial number of people.
GHG-1: Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment, or

GHG-2: Conflict with any applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs.

In addition to the Federal and State AAQS, there are daily emissions thresholds for construction and operation of a project in the Basin. The Basin is administered by the SCAQMD, and guidelines and emissions thresholds established by the SCAQMD in its CEQA Air Quality Handbook ${ }^{50}$ and subsequent additions to the Handbook were used in this analysis. It should be noted that the emissions thresholds were established based on the attainment status of the air basin with regard to air quality standards for specific criteria pollutants. Because the concentration standards were set at a level that protects public health with an adequate margin of safety, these emissions thresholds are regarded as conservative and would overstate an individual project's contribution related to air quality and health risks.

[^24]
## Air Quality Thresholds

## Construction Emissions

The following CEQA significance thresholds for regional construction emissions have been established by the SCAQMD for the Basin:

- 75 pounds per day of VOC, also known as reactive organic compounds (ROC).
- 100 pounds per day of $\mathrm{NO}_{x}$.
- 550 pounds per day of CO.
- 150 pounds per day of $\mathrm{PM}_{10}$.
- 150 pounds per day of $\mathrm{SO}_{\mathrm{x}}$.
- 55 pounds per day of $\mathrm{PM}_{2.5}$.

Projects in the Basin with construction-related emissions that exceed any of the emission thresholds are considered to be significant under CEQA.

## Operational Emissions

Projects with regional operation-related emissions that exceed any of the regional emission thresholds listed below are considered significant under the SCAQMD guidelines.

- 55 pounds per day of VOC, also known as ROC.
- 55 pounds per day of $\mathrm{NO}_{\mathrm{x}}$.
- 550 pounds per day of CO
- 150 pounds per day of $\mathrm{PM}_{10}$.
- 150 pounds per day of SOx. $^{x}$.
- 55 pounds per day of $\mathrm{PM}_{2.5}$.


## Carbon Monoxide Hotspots

The significance of localized project impacts under CEQA depends on whether ambient CO levels in the vicinity of the project are above or below State and Federal CO standards. If ambient levels are below the standards, a project is considered to have a significant impact if project emissions result in an exceedance of one or more of these standards. If ambient levels already exceed a State or Federal standard, project emissions are considered significant if they increase one-hour CO concentrations by 1.0 ppm or more or eight-hour CO concentrations by 0.45 ppm or more. The Basin meets State and Federal attainment standards for CO; therefore, the project would have a significant CO impact if project emissions result in an exceedance of State or

Federal one-hour or eight-hour standard. The following emission concentration standards for CO, based on the SCAQMD CEQA Air Quality Handbook (1993), apply to the project:

- California State one-hour CO standard of 20.0 ppm .
- California State eight-hour CO standard of 9.0 ppm .


## Localized Significance Thresholds

The SCAQMD published its Final Localized Significance Threshold Methodology in June 2003, revised July 2008) and Final Methodology to Calculate Particulate Matter (PM) 2.5 and $\mathrm{PM}_{2.5}$ Significance Thresholds (October 2006), recommending that all air quality analyses include a localized assessment of both construction and operational impacts on the air quality of nearby sensitive receptors. Localized Significant Thresholds (LSTs) represent the maximum emissions from a project site that are not expected to result in an exceedance of Federal or State AAQS. LSTs are based on the ambient concentrations of that pollutant within the Source Receptor Area (SRA) where a project is located and the distance to the nearest sensitive receptor. The project site is located in the northern portions of SRAs 24 (Moreno Valley) and 28 (San Jacinto).

In the case of CO and $\mathrm{NO}_{2}$, if ambient levels are below the air standards for these pollutants, a project is considered to have a significant impact if project emissions result in an exceedance of one or more of these standards. If ambient levels already exceed a State or Federal standard, then project emissions are considered significant if they increase ambient concentrations by a measurable amount. This would apply to $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$, both of which are nonattainment pollutants in the Basin. For these latter two pollutants, the significance criteria are the pollutant concentration thresholds presented in SCAQMD Rules 403 and 1301. The Rule 403 threshold of $10.4 \mu \mathrm{~g} / \mathrm{m}^{3}$ applies to construction emissions (and may apply to operational emissions at aggregate handling facilities). The Rule 1301 threshold of $2.5 \mu \mathrm{~g} / \mathrm{m}^{3}$ applies to non-aggregate handling operational activities.

Sensitive receptors include residences, schools, hospitals, and similar uses that are sensitive to adverse air quality. There are currently six occupied single-family homes and associated ranch/farm buildings in various locations on the project site. These residences are existing on-site sensitive receptors. The nearest off-site existing sensitive receptors in the vicinity of the project site are the residences located along Bay Avenue, Merwin Street, and west of Redlands Boulevard, and scattered residences along Gilman Springs Road.

Following the SCAQMD LST methodology, for sites larger than 5 acres, air dispersion modeling needs to be conducted. Because the project site greatly exceeds 5 acres, the localized significance for project air pollutant emissions was determined by performing dispersion modeling to determine if the pollutant concentrations would exceed relevant significance thresholds established by the SCAQMD.

The following LSTs were applied to the construction and operation of the project:

- 0.18 ppm (State 1-hour); 0.100 ppm (Federal 1-hour); and 0.03 ppm (Annual) of $\mathrm{NO}_{2}$ for construction or operations.
- 20 ppm (1-hour) and 9.0 ppm (8-hour) of CO for construction or operation.
- $10.4 \mu \mathrm{~g} / \mathrm{m}^{3}$ (24-hour) and $1 \mu \mathrm{~g} / \mathrm{m}^{3}$ of $\mathrm{PM}_{10}$ (Annual) for construction.
- $2.5 \mu \mathrm{~g} / \mathrm{m}^{3}$ (24-hour) and 1.0 ppm (Annual) of $\mathrm{PM}_{10}$ for operations.
- $10.4 \mu \mathrm{~g} / \mathrm{m}^{3}$ (24-hour) of $\mathrm{PM}_{2.5}$ for construction.
- $2.5 \mu \mathrm{~g} / \mathrm{m}^{3}$ (24-hour) of $\mathrm{PM}_{2.5}$ for operation.
- Note that when construction and operational activities occur at the same time, the SCAQMD recommends application of the significance thresholds for operation apply in determining emission significance


## Health Risk Significance Thresholds

For pollutants without defined significance standards or air contaminants not covered by the standard criteria cited above, the definition of substantial pollutant concentrations varies. For toxic air contaminants (TAC), "substantial" is taken to mean that the individual cancer risk exceeds a threshold considered to be a prudent risk management level.

The SCAQMD has defined several health risk significance thresholds that it recommends to Lead Agencies in assessing a project's health risk impacts. The City of Moreno Valley has not adopted its own set of thresholds. Therefore, the following SCAQMD thresholds were adopted for the project.

- Maximum Individual Cancer Risk (MICR) and Cancer Burden. The MICR is the estimated increase in lifetime probability of the maximally exposed individual contracting cancer as a result of exposure of TACs over the applicable exposure period. Cancer burden multiples the cancer risk by the exposed population to estimate the number of individuals that would be expected to contract cancer from the project.

A significant impact would occur for:
A. An increased MICR greater than 10 in 1 million at any receptor location; or
B. A cancer burden greater than 0.5 .

- Chronic Hazard Index (HI). This is the ratio of the estimated long-term level of exposure to a TAC for a potential maximally exposed individual to its chronic reference exposure level. A reference exposure level is the exposure level below which an adverse health effect will not occur as determined by health professionals The chronic HI calculations include multi-pathway consideration, when applicable.

A significant impact would occur if the increase in total chronic HI for any target organ system due to exposures to total TAC emissions from the project exceeds 1.0 at any receptor location.

- Acute Hazard Index (HI). This is the ratio of the estimated maximum one-hour concentration of a TAC for a potential maximally exposed individual to its acute reference exposure level, the exposure level below which an adverse health effect will not occur as determined by health professionals.

A significant impact would occur if the increase in total acute HI for any target organ system due to exposure to total TAC emissions from the project exceeds 1.0 at any receptor location.

## Greenhouse Gas Thresholds

On December 5, 2008, the SCAQMD Governing Board adopted an interim greenhouse gas significance threshold for stationary sources, rules, and plans where the SCAQMD is the lead agency (SCAQMD permit threshold). Tier 3 of the threshold is recommended by the SCAQMD for industrial projects. ${ }^{51}$ The threshold consists of five tiers, as follows:

- Tier 1 consists of evaluating whether or not a project qualifies for any applicable exemption under CEQA. The project is not exempt under CEQA; therefore, go to Tier 2.
- Tier 2 consists of determining whether or not the project is consistent with a greenhouse gas reduction plan. If a project is consistent with a qualifying local greenhouse gas reduction plan, it does not have significant greenhouse gas emissions. There is no greenhouse gas reduction plan that could be used for CEQA purposes for this project; go to Tier 3.
- Tier 3 is a screening threshold level to determine significance using a 90 percent emission capture rate approach and is $10,000 \mathrm{MTCO}_{2}$ e per year (with construction emissions amortized/averaged over 30 years and added to operational emissions). Project greenhouse gas emissions are compared with the threshold, $10,000 \mathrm{MTCO}_{2}$ e per year (see analysis below).
- Tier 4 was not approved in the interim greenhouse gas threshold.
- Tier 5 would allow the project proponent to purchase offsite mitigation to reduce greenhouse gas emissions to less than the screening level (in Tier 3).

Section 15064.4(b) of the CEQA Guideline amendments for greenhouse gas emissions state that a lead agency may take into account the following three considerations in assessing the significance of impacts from greenhouse gas emissions.

Consideration \#1: The extent to which the project may increase or reduce greenhouse gas emissions as compared to the existing environmental setting.

Consideration \#2: Whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project.

[^25]Consideration \#3: The extent to which the project complies with regulations or requirements adopted to implement a statewide, regional, or local plan for the reduction or mitigation of greenhouse gas emissions. Such regulations or requirements must be adopted by the relevant public agency through a public review process and must include specific requirements that reduce or mitigate the project's incremental contribution of greenhouse gas emissions. If there is substantial evidence that the possible effects of a particular project are still cumulatively considerable notwithstanding compliance with the adopted regulations or requirements, an EIR must be prepared for the project.

## AB 32 Capped and Uncapped Emissions

The ARB has designed a California cap-and-trade program that is enforceable and meets the requirements of AB 32. The program began on January 1, 2012, with an enforceable compliance obligation beginning with its 2013 greenhouse gas emissions inventory. Some of the project's greenhouse gas emissions are subject to the requirements of the AB 32 Cap and Trade Program and will have a greenhouse gas allocation based on current emissions levels. The AB 32 Cap-andTrade Program has divided allocations into sectors. The transportation and electricity sectors would be covered by the cap-and-trade program.

The SCAQMD has recognized that the greenhouse gas emissions associated with capped sources should not be counted for the purpose of determining what the greenhouse gas emissions are for facilities that will use electricity generated elsewhere. In September 2013, the SCAQMD adopted the following two Negative Declarations last year stating that greenhouse gas emissions subject to the ARB Cap-and-Trade Program do not count against the $10,000 \mathrm{MTCO}_{2}$ e significance threshold the SCAQMD applies when acting as a lead agency:

- Ultramar Inc. Wilmington Refinery Proposed Cogeneration Project ${ }^{52}$
- Phillips 66 Los Angeles Refinery Carson Plant - Crude Oil Storage Capacity Project ${ }^{53}$

In addition, the San Joaquin Valley Air Pollution Control District (SJVAPCD) has recently taken this issue one step further and adopted a policy: "CEQA Determinations of Significance for Projects Subject to ARB's GHG Cap-and-Trade Regulation". ${ }^{54}$ This policy applies when the SJVAPCD is the lead agency and when it is a responsible agency. In short, the SJVAPCD "has determined that GHG emissions increases that are covered under ARB's Cap-and-Trade regulation cannot constitute significant increases under CEQA . . ." The SJVAPCD classifies ARB's Cap-and- Trade Program as an approved greenhouse gas emission reduction plan or

[^26]greenhouse gas mitigation program under CEQA Guidelines Section 15064(h) (3). Here are some other pertinent excerpts from that policy:

- Consistent with CCR $\S 15064(\mathrm{~h})(3)$, the District finds that compliance with ARB's Cap-and-Trade regulation would avoid or substantially lessen the impact of project-specific GHG emissions on global climate change.
- The District therefore concludes that GHG emissions increases subject to ARB's Cap-and-Trade regulation would have a less than significant individual and cumulative impact on global climate change.
- [I]t is reasonable to conclude that implementation of the Cap-and-Trade program will and must fully mitigate project-specific GHG emissions for emissions that are covered by the Cap-and-Trade regulation.
- [T]he District finds that, through compliance with the Cap-and-Trade regulation, projectspecific GHG emissions that are covered by the regulation will be fully mitigated.

The policy acknowledges that "combustion of fossil fuels including transportation fuels used in California (on and off road including locomotives), not directly covered at large sources, are subject to Cap-and-Trade requirements, with compliance obligations starting in 2015." As such, the SJVAPCD concludes that greenhouse gas emissions associated with vehicle miles traveled cannot constitute significant increases under CEQA. This regulatory conclusion is therefore directly applicable to the project because vehicle miles traveled is by far the largest source of project greenhouse gas emissions.

Therefore, only the uncapped project emissions are compared with the SCAQMD significance threshold (see Tier 3 above).

## SECTION 4

## Methodology

The evaluation of potential impacts to air quality and GHG emissions that may result from the construction and long-term operations of the Project is conducted as follows:

### 4.1 Construction

Construction-related emissions are expected from various activities associated with the construction of the project such as rough grading, infrastructure construction, asphalt paving, building construction, architectural coatings, and construction workers commuting. Construction emissions for construction worker vehicles traveling to and from the project site, in addition to vendor trips (construction materials delivered to the project site) and haul trips (dump trucks and concrete trucks) were also accounted for in the analysis. Localized air quality in the project area would be affected by both heavy-duty construction equipment usage on site as well as local traffic due to the equipment delivery and construction worker commuting. The SCAQMD CEQA methodology was used to analyze the criteria pollutant emissions from these activities.

The assumptions that follow in this section are for the criteria pollutant analysis and the greenhouse gas analysis. This section describes the assumptions used to estimate the emissions using the California Emissions Estimator Model (CalEEMod) (Version 2016.3.2). The criteria pollutants estimated by CalEEMod for construction are as follows: $\mathrm{VOC}, \mathrm{NO}_{\mathrm{x}}, \mathrm{CO}, \mathrm{SO}_{\mathrm{x}}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$. In addition, CalEEMod also estimated construction emissions for methane, nitrous oxide, carbon dioxide, and $\mathrm{MTCO}_{2}$ e for use in the greenhouse gas impact assessment.

Construction was assumed to occur over 15 years. Although buildout of the project would depend on market conditions, the project could be built out and operational as early as 2035. ${ }^{55}$ Therefore, to provide a conservative air quality analysis, construction was assumed to be completed over a 15-year period that provides for phase overlap and the use of older construction equipment.

The various activities during construction are described as follows:

- Mass excavation: Approximately 42 million cubic yards (cy) of cut and fill will be required to rough/mass grade the entire project site, including remedial grading and over-

[^27]excavation. Earthwork will balance on site within the Specific Plan, eliminating the need to import or export dirt for the project.

- Finish grading: This activity is to fine tune the drainage patterns on the site and achieve the finish tolerance of the grading activity.
- Building: This activity involves construction of the buildings on the project site. The subactivities include bringing concrete to the site, tilting up the concrete walls, constructing the wet utilities, installing the electrical, and installing the landscaping around the buildings.
- Concrete: Concrete pouring would likely occur during nighttime hours due to limitations high temperatures pose for concrete work during the day. On-site equipment used during concrete pouring would involve daytime prep with actual concrete pouring occurring during the nighttime hours. On average, the total hours of operation for each piece of equipment during the concrete phase would be approximately 10 hours. Therefore, the analysis assumes a realistic average use of construction equipment by assuming that the maximum equipment would be used for five days per week occurring for 10 hours per day (including the concrete pouring phase).
- Utilities: Grading and trenching for electrical, natural gas, etc.
- Interchange: Construction related to the State Route 60 (SR-60) interchange improvements.
- Curbing/driving approaches: Constructing curbs and driveways.
- Coatings: The exterior of the buildings and the interior of the office space would be painted. CalEEMod assumes that a high quantity of painting would occur, even though the project consists of warehouses and would require minimal painting. VOC from painting is estimated outside of CalEEMod.
- Paving: The acreage to be paved in unknown at this time; it was assumed for worst-case purposes that one-third of each planning area would be paved. The VOC emissions from paving were estimated manually using the calculations presented in the CalEEMod User's Guide and the acreage of the planning area.
- Landscaping: This involves landscaping the area outside the immediate proximity of the buildings.


## Off-road Equipment

The off-road equipment refers to the equipment that would operate onsite (and in the adjacent offsite areas, for offsite improvements) to move dirt and materials around, and include equipment such as scrapers, graders, loaders, pavers, excavators, and dozers. This equipment operates during all subphases of construction of the project.

The emission levels for off-road equipment are based on the emission factors, horsepower, load factor, and activity level of the equipment. The emission factors are generally described as an emission rate per horsepower and time of operation and depend on the type of equipment, horsepower, and model year of the equipment. In general, the horsepower is the power of an engine - the greater the horsepower, the greater the power to be able to move dirt and materials around. In general, a greater horsepower also results in greater emissions. The load factor is the average power of a given piece of equipment while in operation compared with its maximum rated horsepower. A load factor of 1.0 indicates that a piece of equipment continually operated at its maximum operating capacity. The activity level is generally represented by the number of hours the equipment is in operation during a time period such as a day. An air emissions model, such as CalEEMod, combines the emission factors, horsepower, load factor, and activity level and outputs the emissions for the various pieces of equipment and air pollutants.

The onsite construction equipment assumptions, including the horsepower, load factor, and number, are included in Appendix A of this report and are used in the emission model to estimate construction emissions.

Equipment tiers refers to the adoption of emission standards established by the EPA and ARB that apply to diesel engines in off-road equipment. The "tier" of an engine depends on the model year and horsepower rating; generally, the newer a piece of equipment is, the greater the tier it is likely to have. Beginning in year 2011, new off-road mobile engines sold that are equal to or greater than 175 horsepower (hp) and non-emergency stationary engines less than 10 liters per cylinder and equal to or greater than 175 hp are required to meet Tier 4 Interim standards ( 40 Code of Federal Regulations, part 1039). Tier 4 Final for engines greater than 130 hp are required as of 2014.

CalEEMod contains a default inventory of construction equipment for various land uses that incorporates estimates of the number of equipment, their age, their hp , and equipment tier from which rates of emissions are developed. For the unmitigated emissions estimates, all equipment is assumed to be the CalEEMod defaults. For the mitigated emissions estimates, the off-road equipment (those over 50 hp ) are assumed to be Tier 4.

The analysis assumes that the onsite equipment are in the on position for 10 hours per day as a project design feature. This is a conservative scenario as the CalEEMod default assumes construction equipment would be on for 6 to 8 hours per day. This is used to calculate maximum daily emissions which are required for the regional analysis, because project emissions can occur on any day of the week.

Onsite equipment used during concrete pouring, which would most likely occur during the night, was assumed to occur over 24 hours to calculate the regional emissions for a worst-case 24-hour construction day. Concrete pouring phases that would include nighttime activity would occur for a maximum of one or two days for each planning area and not throughout the entire concrete pouring phase. It is assumed that during 24-hour concrete pour days, no other construction would occur on the project site. Therefore, in order to calculate annual average emissions, it is necessary to base emissions upon a realistic work schedule. The analysis assumes a more realistic annual
average use of construction equipment by assuming that the maximum equipment would occur for five days per week occurring for 10 hours per day (including the concrete pouring phase). In this way, an annual average and daily emission inventories were estimated.

## Construction Trips

Construction trips refer to the number of trips to the project site from offsite locations and include the following groups:

- Workers: These are trips from construction workers from their residence to the project site. The CalEEMod default worker trip length of 14.7 miles was increased to 25 miles, to account for a potentially longer commute distance for construction workers. The CalEEMod default vehicle fleet mix was used for employee trips.
- Vendors: These trips include water trucks and service/support trucks bringing smaller materials to the project site. The vendor trip length was increased from the default of 6.9 miles to 25 miles, to account for any additional trips and to account for deliveries from the greater Los Angeles area. The CalEEMod default vehicle fleet was used for vendor trips.
- Haul Trucks: Dump truck trips, support haul trucks, concrete trucks, and material delivery trips were represented as haul trips, with a mileage of 25 miles per trip (increased from the default of 20 miles). The CalEEMod default vehicle type was used for haul trips.

CalEEMod utilizes EMFAC2014 emissions factors for on-road sources. Therefore, construction trips emissions were calculated outside of CalEEMod using updated EMFAC2017 emissions factors. Calculations are included as Appendix A of this report. The vendor and haul trips for onsite travel (assuming trip length of 0.5 miles) and idling were also calculated using EMFAC2017 emissions factors. The CalEEMod default hp and load factors for water trucks, concrete trucks, and off-highway trucks were included in the onsite construction equipment by assigning hours per day to account for onsite travel and idling. The hp and load factors were used for each equipment as specified below:

- Water trucks and service support trucks: other material handling equipment, 1 hour per day per trip
- Concrete trucks: cement and mortar mixers, 1 hour per day per trip
- Delivery trucks, dump trucks, and support haul trucks: off-highway trucks, 0.3 hours per day per trip


## Fugitive Dust Estimates

## Off-Road Equipment

Approximately 42 million CY of cut and fill will be required to rough/mass grade the entire project site, including remedial grading and over-excavation. Grading is required to make the
land level before the building foundations are laid. Earthwork will balance on-site within the Specific Plan, eliminating the need to import or export dirt for the project.

During grading activities, fugitive dust can be generated from the movement of dirt on the project site. CalEEMod estimates dust from dozers moving dirt around, dust from graders or scrapers leveling the land, and loading or unloading dirt into haul trucks. Each of those activities is calculated differently in CalEEMod based on the number of acres traversed by the grading equipment.

Only some pieces of equipment generate fugitive dust within CalEEMod during grading activities. However, there could be construction emissions occurring over the entire planning area because some equipment does not generate fugitive dust. As an example, the building forklifts lifting materials up would not generate fugitive dust. In addition, there could be groups of graders and scrapers working at different ends of the planning area. The dispersion modeling assessment assumes that emissions would occur over the entire planning area.

According to CalEEMod, only several types of onsite off-road construction equipment generate fugitive dust. These include scrapers, crawler tractors, graders, and rubber tired dozers. For a conservative approach, for this assessment, it was assumed that compactors, excavators, and backhoes also generated fugitive dust. The scrapers are assumed to impact 1 acre over an 8-hour day and the other equipment mentioned above would impact $1 / 2$ acre over an 8 -hour day.

SCAQMD Rule 403 requires fugitive dust generating activities to follow best available control measures to reduce emissions of fugitive dust. In particular, the project would need to comply with the requirements of a "large operation," which requires more dust suppressant methods. Rule 403 states that for large operations, during earth moving, the soil moisture content must be at least 12 percent or water to prevent visible dust emissions from exceeding 100 feet in any direction. According to the SCAQMD's Mitigation Measure Examples: Fugitive Dust from Construction \& Demolition, ${ }^{56}$ maintaining a 12 percent soil moisture would reduce fugitive dust by 69 percent. Therefore, for the unmitigated and mitigated emissions estimates, dust emissions from earth moving are reduced by 69 percent. These measures from Rule 403 are accounted for in CalEEMod as "mitigation" because they reduce emissions, even though they are technically not mitigation, but requirements. Rule 403 is accounted for in CalEEMod by watering three times per day, which would result in a 61 percent reduction in fugitive dust.

## Unpaved Road Dust

There could be fugitive dust generated on unpaved roads from the employee vehicles, vendor vehicles, and haul trucks during construction. The emissions estimates for this dust were estimated using assumptions consistent with CalEEMod defaults. The mean vehicle speed was reduced from 40 miles per hour to 20 miles per hour. The percent paved was changed to zero percent. Construction parking would likely be near the paved roads; therefore, the onsite distance

[^28]is an average of 0.5 mile per trip on unpaved roads. The average vehicle weight was increased from the CalEEMod default of 2.4 tons to 5 tons. All other CalEEMod defaults were used.

SCAQMD Rule 403 requires dust control measures on unpaved roads. Best available control measure 15-1 requires that all off-road traffic and parking areas be stabilized (gravel/paving). Best available control measure 15-2 requires that all haul routes be stabilized gravel/paving) and measure 15-3 requires that construction traffic be directed over established haul routes. In addition, large operations must choose one of the following to reduce dust from unpaved roads:
(4a): Water all roads used for any vehicular traffic at least once per every two hours of active operations [ 3 times per normal 8 -hour work day]; or
(4b): Water all roads used for any vehicular traffic once daily and restrict vehicle speeds to 15 miles per hour; or
(4c): Apply a chemical stabilizer to all unpaved road surfaces in sufficient quantity and frequency to maintain a stabilized surface.

The fugitive dust reductions from the above control measures is quantified as follows; the smallest percent reduction is used in this analysis, which is from control measure 4 a ( 60 percent reduction):
(4a): According to the SCAQMD mitigation measure examples for Fugitive Dust from Construction and Demolition, ${ }^{57}$ applying water every three hours results in a 61 percent decrease in $\mathrm{PM}_{10}$. Applying a 50 percent moisture content for unpaved roads in CalEEMod's "mitigation" module results in a 60 percent reduction in fugitive dust.
(4b): CalEEMod's watering twice per day would result in a 55 percent reduction in fugitive dust. A 55 percent reduction in unpaved road dust occurs when the soil moisture level is 34 percent. Applying a speed limit reduction of 15 miles per hour and watering twice per day reduces fugitive dust by 64.7 percent reduction, according to CalEEMod calculations.
(4c): According to the SCAQMD mitigation measure examples for Fugitive Dust from Unpaved Roads, ${ }^{58}$ applying chemical dust suppressants results in an 84 percent reduction.

## Water Usage

There would be water used during construction to be compliant with SCAQMD Rule 403. Approximately 30 to 50 gallons of water are needed to compact each cubic yard of soil. If there would be 42 million cy of cut and fill, a total of 6,445 acre feet ( 2,100 million gallons) of water

[^29]would be required. The greenhouse gas emissions associated with water transport are calculated using CalEEMod in its operation module.

## Construction Waste

Greenhouse gas emissions associated with construction waste were estimated using the EPA's waste Reduction Model (WARM). The quantity of waste was estimated based on one construction waste case study and the 2008 California waste characterization study.

### 4.2 Operation

Operational emissions occur once the project commences operation. For purposes of this analysis, project buildout will occur in two phases. Therefore, operational emissions are analyzed for the Phase 1 buildout year and the full buildout year. The major sources of these emissions are summarized below.

To estimate some of the emissions on a year-by-year basis, the conceptual occupancy schedule for purposes of this analysis is shown in Table 9, Conceptual Operational Occupancy Schedule, based on the best current information. This schedule assumes that the square footage being constructed within each Plot will be occupied the following year and may vary in the future based on market demand factors associated with regional goods movement.

Table 9
Conceptual Operational Occupancy Schedule

| Year | Annual Addition (Millions of <br> Square Feet) | Cumulative Total (Millions of <br> Square Feet) |
| :---: | :---: | :---: |
| 2020 | 0.00 | 0.00 |
| 2021 | 4.60 | 4.60 |
| 2022 | 4.60 | 9.20 |
| 2023 | 4.60 | 13.80 |
| 2024 | 4.60 | 18.40 |
| 2025 | 4.55 | 22.95 |
| 2026 | 1.80 | 24.75 |
| 2027 | 1.80 | 26.55 |
| 2028 | 1.85 | 28.40 |
| 2029 | 1.80 | 30.20 |
| 2030 | 1.80 | 32.00 |
| 2031 | 1.80 | 33.80 |
| 2032 | 1.80 | 35.60 |
| 2033 | 1.80 | 37.40 |
| 2034 | 1.80 | 39.20 |
| 2035 | 1.40 | 40.60 |

Note: The square footage includes logistics development and light logistics square footage and does not include
fueling station, fire station, and convenience store.

## Motor Vehicle Emissions

Motor vehicle emissions refer to exhaust and road dust emissions from the automobiles and delivery trucks that would travel to and from the project site each day. The following procedures were used to estimate the mobile source criteria regional operational emissions, localized onsite emissions, and greenhouse gas emissions based on emission factors from the CARB EMFAC2017 mobile source emission model and emission information from the EPA dealing with paved road dust.

To quantify mobile source operational emissions, the following information is required:

- Trip generation - the number of vehicles that are expected to move to and from the project site each day.
- Vehicle fleet mix - the mix of vehicle types (i.e., automobiles, trucks, gasoline or dieselfueled, etc.).
- Trip lengths - the distance each vehicle travels during each trips.
- Emission factors - the amount of emissions generated as a function of vehicle type, vehicle speed, calendar year, and vehicle model year for a given amount of vehicle idling time or distance traveled.


## Trip Generation Rates

Trip generation quantifies the number of trips that a project generates each day during all facets of its operations. The trip generation is determined by multiplying an appropriate trip generation rate for a particular land use descriptive of the project by the quantity of that land use. Trip generation rates are determined for daily traffic, morning peak hour inbound and outbound traffic, and the evening peak hour inbound and outbound traffic for the proposed land use. The trip generation rates use for this project were derived from the project traffic impact analysis (TIA) prepared by WSP USA. ${ }^{59}$ The trip generation rates applied in this assessment are shown in Table 10, Trip Generation Rates.

Table 10
Trip Generation Rates

| Land Use | Unip Generation Rates | Daily Trip Rate |
| :--- | :---: | :---: |
| High Cube Logistics Center | KSF | 1.40 |
| Light Logistics | KSF | 1.74 |
| Existing Utilities Servicing <br> Station | KSF | 13.24 |
| Gas Station with Convenience <br> Store | Fuel Pumps | 31.61 |
| Convenience Store | KSF | 321.87 |
| Fire Station | Number | 137 |

KSF = thousands of square feet
Source: WSP USA Inc. Traffic Impact Analysis Report for The World Logistics Center. June 2018

[^30]Working jointly with the National Association of Industrial and Office Properties (NAIOP), the SCAQMD conducted a trip generation study for high-cube warehouses, the predominant form of land use for the project, High-Cube Warehouse Vehicle Trip Generation Analysis (October 2016). The study replaces the earlier, smaller studies that produced conflicting results and created uncertainty regarding the amount of traffic generated by the newer, more automated type of highcube warehouse proposed for the project. The results of the study for high-cube warehouse trip generation has been incorporated into the $10^{\text {th }}$ edition of the Institute of Traffic Engineers (ITE) Trip Generation Manual. The trip generation rates included in this study for high-cube warehouse uses and trip rates from the $10^{\text {th }}$ edition of the ITE Trip Generation Manual have been used for other proposed land uses.

## Vehicle Fleet Mix

The vehicle fleet mix is defined as the mix of motor vehicle classes active during the operation of the project. Emission factors are assigned to the expected vehicle mix as a function of calendar year, vehicle class, speed, and fuel use (gasoline and diesel-powered vehicles). The vehicle fleet mix for the project is based on the assumptions contained in the TIA. The TIA provided a vehicle fleet mix for passenger cars, light duty trucks, medium duty trucks, and heavy duty trucks. For purposes of this assessment, the EMFAC2017 mobile source model was used to derive a complete mix of vehicles consisting of the following vehicle classes (some vehicle classes have been separated into subclasses based on vehicle weight):

- Passenger Car: light duty automobiles (LDA), and light duty trucks (LDT1 and LDT2) identified as passenger cars in the TIA.
- Light Trucks: medium duty trucks (MDT) - identified as Light Trucks in the TIA.
- Medium Trucks: light-heavy duty trucks (LHDT1 and LHDT2) with a gross weight of between 8,501 pounds and 14,000 pounds - identified as Medium Trucks in the TIA.
- Heavy Trucks: medium-heavy duty trucks (MHDT) and heavy-heavy duty trucks (HHDT) with gross weight of 14,001 to 33,000 pound and 33,000 -plus pounds, respectively - identified as Heavy Trucks in the TIA.

The EMFAC2017 model was also used to subdivide each vehicle class by electric, gasoline, diesel, and natural gas vehicles for each analysis year.

Two types of trip generation data were estimated for this assessment:

- Daily average: The daily average trip generation and VMT is representative of daily operations and is characterized by the total amount of vehicle trips and their travel distance during an operational day. The daily vehicle trips, VMT, and fleet mix were provided by the TIA and used to estimate the daily regional emissions from the operation of the project as a project's vehicles travel to and from the project site through the South Coast Air Basin. The daily vehicle trips and fleet mix were also used to estimate local daily and annual air quality impacts to the areas surrounding the project site.
- Peak hour: The peak hour vehicle fleet mix represents the number and mix of vehicles that would access the project during the peak hour of traffic. The peak hour information was provided by the TIA and used to estimate 1-hour and 8-hour local air pollutant impacts as well as for the estimation of acute non-cancer hazards.

Forecasted trip generation and vehicle miles traveled (VMT) contained in the TIA were used to estimate the project's motor vehicle emissions. The traffic model provided estimates of project traffic volumes segregated by vehicle class as passenger cars, light heavy duty trucks, medium heavy duty trucks, and heavy-heavy duty trucks. The TIA provides VMT attributable to the project based on the net effect the project has on regional travel as well as project VMT without consideration of a net effect. The net effect includes consideration that creation of a job center (the project) would redistribute existing regional travel and result in shorter employee trips. Freeway and non-freeway VMT and speed data, as provided by WSP, were utilized to determine the appropriate emission factors to apply to project trips from the EMFAC2017 model. In calculating the operational traffic emissions, the VMT per speed was based on daily speed data provided by WSP. Emissions factors vary by speed bin. Therefore, accounting for variations in speed attributable to slow downs occurring during peak hours provides a realistic representation of project mobile emissions.

For purposes of the health risk assessment, peak hour intersection turning movement volumes provided by the TIA for the project area were utilized in order to assign emissions to specific roadway and freeway segments to determine risk. The traffic model is composed of a series of traffic segments that represent the flow of traffic from one geographic point to another. The project's motor vehicle traffic volumes were estimated using the number of peak hour vehicles forecasted by the regional traffic model. The output of the traffic model is in the form of two-way traffic flows for each traffic segment. For each roadway segment, the total number of vehicles was forecasted. The number of vehicles was then broken down into several vehicle types, as described above. Motor vehicle emissions were then estimated for each roadway segment by using the traffic volumes extracted from the traffic model forecasts, the length of the roadway segment, and the emission factors from EMFAC2017.

Mobile emissions utilize EMFAC2017's projected vehicle fuel mix for Project milestone years 2025 and 2035, which are associated with Phase 1 buildout and project full occupancy, respectively. EMFAC2017 does not include population assumptions for electric trucks. The potential penetration of electric trucks and potential use in association with the project has been analyzed by ESA..$^{60}$ Although the State has set targets for zero-emission vehicles, it would be speculative to assume that any EV Penetration scenarios would be practicable or feasible. Therefore, as a worst-case analysis, the greenhouse gas analysis included herein does not factor in any potential emissions reductions provided by electric or natural gas-fueled trucks. For informational purposes only, emissions associated with a Medium EV Penetration Scenario has been taken into account to show further emissions reduction potential.

[^31]
## Local Travel

The automobile and truck traffic generated by the project would travel along several local roadways within and bordering the area of the project including Redlands Boulevard, World Logistics Center Parkway, Gilman Springs Road, Alessandro Boulevard, and Eucalyptus Avenue. As the project traffic travels along the roadway network, this traffic would generate air emissions. To examine the local air quality impacts from the project vehicles during operation along the local roadway network, a number of roadway segments were identified for analysis as described in the TIA.

The local roadway segments analyzed in this assessment are identified in Figure 18. The TIA only provided peak hour turning movement volumes along each of the roadway segments for passenger cars, and light, medium, and heavy trucks during the existing, Phase 1 interim year, and buildout year. For purposes of the health risk assessment, the average of the AM and PM peak hour volumes were multiplied by 10 to estimate daily traffic volumes along each of the studied roadway segments.

The localized air quality analysis also addressed vehicle travel and idling within the truck yards of each phase of the project site. The exact physical locations and sizes of the various buildings that would comprise the project are unknown at this time. However, average trip lengths within the truck yards for the project's two phases and individual land uses was estimated based on a review of the location of transportation analysis zones located within the project boundaries and the placement of the existing and planned local roadway network that would comprise the project. For this purpose, an average truck trip length of 1,080 feet was assigned to the high cube development truck yard areas, 574 feet for the light logistics land uses truck yards, 330 feet for the gas utility land use, and 160 feet for the fueling station/convenience store and fire station land uses.

## Regional Travel

The project's motor vehicles would also travel along numerous regional roadways outside of the project boundaries including local surface street and freeways. Figure 19 shows the local surface street roadway network analyzed and Figure 20 shows the freeway segments analyzed.




SOURCE: ESRI 2016; ESA 2018
World Logistics Center
Freeway Network Analyzed in the


## Emission Factors

There are emission factors available through EMFAC for VOC, $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}, \mathrm{SO}_{\mathrm{x}}, \mathrm{PM}_{10}, \mathrm{PM}_{2.5}$, $\mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}$, and $\mathrm{CH}_{4}$. There are no emission factors available for black carbon or ultrafine particles. Emissions from motor vehicles can be characterized as follows:

- Combustion Emissions (grams/mile traveled or grams/hour for idling): Combustion emissions (i.e., exhaust emissions) result from the combustion of fuel and are the main source of emissions for all pollutants for the project. EMFAC2017 has the capability to provide emission rates for user defined user speeds, fuel type, vehicle class, and model year.
- Running Loss (grams/mile): Running loss emissions are defined as evaporative hydrocarbons that are emitted from hoses, fittings or canisters, while the vehicle is in operation. This occurs either because fuel heating as caused the vapor generation rate to exceed the vehicle's capacity to control the vapors, or through permeation and leakage (VOC only).
- Diurnal and Resting Loss (grams/vehicle): Diurnal and resting loss emissions are evaporative hydrocarbons. Diurnal emissions result from a sitting vehicle as the ambient temperature rises. Resting loss emissions result from a sitting vehicle as the ambient temperature declines or remains constant.
- Tire wear (grams/mile): and Brake Wear (grams/mile): EMFAC has the capability to provide particulate emissions from tires and brakes that occur from operational wear ( $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ only).
- Road Dust (grams/mile) is generated from re-suspension of loose particulate material from the surface of the road as a result of movement of vehicles and wind flow. Road dust emissions are primarily a factor of the amount of re-suspendable particulate matter available on the road surface and the traffic flow volume on the road. The estimation of road dust emissions was based on the methodology presented by the EPA in its assessment of road dust emissions from paved roads ( $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ only).

The EMFAC2017 emission factors were developed for the South Coast Air Basin on an annual basis. To derive the basin-wide emission factors, the emission factors were developed as a weighted average of the county emission factors from the four counties that comprise the South Coast Air Basin, weighted by the vehicle miles traveled in each county.

Motor vehicle emissions for each category of emissions were estimated for vehicle travel within the project's truck yards, along adjacent and internal roadways, and truck idling within the project's truck yards.

Truck idling emissions assumed that each heavy duty truck would idle 5 minutes per day prior to mitigation, pursuant to the ARB Air Toxic Control Measure limiting the idling time for heavy duty diesel trucks and the World Logistics Center Specific Plan.

Emission factors for the year 2020 are used for the "worst-case" scenario. Phase 1 of the project used emission factors from the year 2025, and Phase 2 of the project used emission factors for the year 2035. For the mitigated version, the emission factors were modified to reflect the mitigation measure that requires the use of model year 2010 or newer trucks for all medium-heavy duty (MHDT) and heavy-heavy duty diesel (MHDT) trucks associated with the project.

Emission factors for the year 2020 were used for the "worst-case" scenario. Interim year 2025 (Phase 1 buildout) of the project used emission factors from the year 2025, and horizon year 2035 (Phase 2 buildout) of the project used emission factors for the year 2035. For years 2021 through 2024 and years 2026 through 2034, emissions factors and the Project's net effect on VMT were interpolated and scaled using data from 2025 and 2035 in order to provide an estimate of emissions and potential overlap of construction and operational emissions. For the mitigated scenario, the emission factors were modified to reflect the mitigation measure that requires the use of model year 2010 or newer trucks for all heavy-duty diesel trucks associated with the project. Note that emissions from the existing on-site residence and fugitive dust that would be removed were not included in this analysis as a worst-case scenario.

## A Note About Operational Heavy-Duty Truck Emissions

The majority of the project's operational emissions are from on-road mobile sources, more particularly, heavy-duty trucks that contribute a disproportionate amount of emissions compared to passenger vehicles. Emissions from on-road mobile sources are regulated at the state and federal levels, and therefore, are outside of the control of local agencies such as the City and the SCAQMD. For example, the EPA is working closely with the EPA, engine, and vehicle manufacturers, and other interested parties to identify programs that will reduce emissions from heavy-duty diesel vehicles in California. In its "Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-fueled Engines and Vehicles," the ARB presented a blueprint for achieving a 75 percent reduction in diesel particulates by 2010 and an 85 percent reduction by 2020 from the 2000 baseline. ${ }^{61}$ The emission reductions would arise from a combination of measures including the use of ultra-low sulfur diesel fuel, new emission standards for large diesel engines, restrictions on diesel engine idling, addition of post-combustion filter and catalyst equipment, and retrofits for business and government diesel truck fleets. The implementation of these emission reductions will also result in reductions of other pollutants such as $\mathrm{NO}_{\mathrm{x}}, \mathrm{VOC}$, and CO. As these emission reduction programs are implemented and there is a turnover in the use of older vehicles with newer and cleaner vehicles, the project's operational emissions are expected to decline significantly in the future.

Emission controls on mobile source vehicles already adopted by the ARB particularly dealing with $\mathrm{NO}_{\mathrm{x}}$ and $\mathrm{PM}_{10}$ controls on heavy duty trucks will reduce truck emissions significantly over the next 10 years. Today's vehicle fleet (assumed to be 2020) is comprised of vehicles as old as 25 years and generates substantially more emissions than the vehicles that would replace them in the future.

[^32]
## Greenhouse Gases

EMFAC2017 has emission factors for the greenhouse gases carbon dioxide and methane. Greenhouse gas emissions from mobile vehicles were estimated using the same procedures as shown above for carbon dioxide, nitrous oxide, and methane. ${ }^{62}$ The emissions were estimated in tons per year and were converted to $\mathrm{MTCO}_{2} \mathrm{e}$ by multiplying the greenhouse gas by its global warming potential ( 1 for carbon dioxide and 21 for methane) and then multiplying it by 0.9072 (a conversion from tons to metric tons). The emissions factors from EMFAC2017 include reductions from the following regulations:

- Regulation - Pavley (AB 1493): Clean car standards to reduce greenhouse gas emissions from new passenger vehicles (LDA-MDV) from 2009 to 2016.
- Regulation - Low Carbon Fuel Standard (Executive Order S-01-07): The low carbon fuel standard would reduce carbon intensity in fuels. Carbon intensity is a measure of the greenhouse gas emissions associated with production and use of a fuel. Fuels like natural gas from landfills, dairy biogas, and biodiesel have lower carbon intensity than gasoline or diesel.

Black carbon emissions were estimated based on the diesel $\mathrm{PM}_{2.5}$ emissions discussed below.

## Other Emission Sources

There are other emission sources besides mobile vehicles during operation of the project. VOC emissions would be emitted during the occasional repainting of buildings and from consumer products. Criteria pollutants and greenhouse gases would be emitted from landscaping, natural gas usage, onsite yard trucks, onsite forklifts, and onsite emergency generators. Greenhouse gases would be emitted from electricity, water and wastewater, refrigerants, and solid waste generation. There would also be some sequestration from the onsite trees that would be planted on the project site as a result of the project. These emission sources are discussed below.

## Architectural Coatings (Painting)

Paints release VOC emissions. The buildings in the project would be repainted on occasion. Painting emissions were estimated by CalEEMod using default assumptions for buildout and estimated for the previous years based on square footage shown in Table 9.

## Consumer Products

Consumer products are various solvents used in non-industrial applications that emit VOCs during their product use. "Consumer Product" means a chemically formulated product used by household and institutional consumers including, but not limited to, detergents; cleaning compounds; polishes; floor finishes; cosmetics; personal care products; home, lawn, and garden

[^33]products; disinfectants; sanitizers; aerosol paints; and automotive specialty products; but does not include other paint products, furniture coatings, or architectural coatings. ${ }^{63}$

The default emission factor developed for CalEEMod is based on a statewide factor and is not applicable to the project. The entire project would not use consumer products as specified above. The warehouses may have small kitchen areas and bathrooms that would use cleaning products. The majority of the square footage for the project would be used for warehousing/distribution. Negligible quantities of personal care products, home, lawn, and garden products, disinfectants, sanitizers, polishes, cosmetics, and floor finishes would be used. In addition, the buildings in the project would be LEED certified; LEED has a variety of credits available for use of low emitting materials. Therefore, to estimate VOC emissions from the project, the emission factor is reduced to 25 percent of its original value, to $5.1 \mathrm{E}-6$ pounds VOC per day per square foot.

## Landscape Equipment

Landscape maintenance includes fuel combustion emissions from equipment such as lawn mowers, rototillers, shredders/grinders, blowers, trimmers, chain saws, and hedge trimmers. CalEEMod estimated the landscaping equipment using the default assumptions in the model. Emissions were estimated for buildout and interpolated for the previous years based on square footage in Table 9.

## Electricity

There would be emissions from the power plants that would generate electricity to be used by the project (for lighting, etc.). Emissions were estimated using electricity generation numbers provided by WSP for 2025 and buildout and interpolated for the previous years based on square footage in Table 9.

The Moreno Valley Electric Utility (MVU) would provide electricity for the project, however Southern California Edison (SCE) annual emission factors from 2020 through 2064 were used as a proxy for calculating GHG emissions. As described in Section 4.7.2.2, SB 100 increased California's Renewables Portfolio Standard and requires retail sellers and local publicly owned electric utilities to procure eligible renewable electricity for 60 percent of retail sales by December 31, 2030, and that CARB should plan for 100 percent eligible renewable energy resources and zero-carbon resources by December 31, 2045. SB 100 also mandated interim RPS milestones of 44 percent of retail sales by December 31, 2024, and 52 percent by December 31, 2027. To achieve the RPS mandate, utilities such as MVU and SCE are expected to steadily increase their renewable resources for energy production. This assumption is appropriate because utilities have steadily increased the percentage of energy obtained from renewable resources in response to existing mandates. Therefore, all electricity consumption would decrease in GHG intensity (i.e., emissions generated per kilowatt-hour) as the RPS milestones are met.

[^34]For estimating electricity emissions for the Proposed Project through the expected life of the project, $\mathrm{CO}_{2} \mathrm{e}$ intensity factors were projected for each operational year through 2064, based on RPS compliance.

Building annual electricity for the project would consume approximately 174,423 MWh per year in 2025 and 298,084 MWh per year in 2035. EV charging annual electricity under the Medium EV Penetration scenario would consume 9,157 MWh per year in 2025 and 127,132 MWh per year in 2035.

## Natural Gas

There would be emissions from the combustion of natural gas for the project (heat and the CNG/LNG fueling station). The Project is not expected to generate demand for natural gas. The Project would mostly comprise high-cube warehouses that do not require heating from natural gas. The spaces that do require heating are ancillary office spaces. Because all heating and cooling is provided via direct evaporative cooling and heat pumps, natural gas is not required. This allows the Project to reduce on-site fossil fuel combustion that would normally be associated with service water and space heating. The Title 24 Baseline scenario assumes compliance but not exceedance of energy standards and includes annual natural gas use equating to $51,274 \mathrm{MMBtu}$ in 2025 and 84,771 MMBtu at buildout. As such, the Project would result in a 100 percent decrease in consumption of natural gas from the Title 24 Baseline scenario for both Phase 1 and Full Buildout.

## Wastewater

Depending on the type of wastewater treatment plant, there could be emissions from treatment of wastewater. However, the project's wastewater would be transferred to the Eastern Municipal Water District's Moreno Valley Regional Water Reclamation Facility. The facility was upgraded with fuel cell cogeneration. A digester gas-fueled fuel cell system provides power and heat to the plant while using all available digester gas. ${ }^{64}$ CalEEMod was used to determine emissions from wastewater.

## Water

There would be greenhouse gas emissions from the use of electricity to pump water to the project. The applicant conducted a water usage analysis; therefore, CalEEMod default water usage is not used. Emissions for buildout are estimated and calculated for prior years based on the square footage anticipated in those years. Emissions from years occurring after buildout are assumed to be affected by SB 100 and would gradually decrease to zero once 100 percent renewable electricity is reached in 2045.

[^35]
## Refrigerants

Refrigerants may be used in air conditioning for the office component of the warehouses. Refrigerants are hydrofluorocarbons and have a relatively high global warming potential around the range 1,000 to 3,000 . The emissions take into account reductions from SCAQMD's Rule 1415, which require registration, refrigerant leak inspections, and refrigerant leak repairs. Procedures and assumptions for estimating the emissions are shown in Appendix F. The emissions are estimated in tons of hydrofluorocarbons and are converted to $\mathrm{MTCO}_{2} \mathrm{e}$.

## Solid Waste: Operation

Greenhouse gas emissions would be generated from the decomposition of solid waste generated by the project. Operational waste from the project would initially be delivered to the Badlands Sanitary Landfill, which installed a landfill gas energy capture recovery system in 2011. The project is estimated to generated approximately 38,165 tons of solid waste per year. Emissions at buildout are estimated by CalEEMod and are applied to earlier years based on a percentage of the square footage assumed to be operational.

## Yard Trucks

According to a project design feature, the yard trucks could be powered by natural gas, propane, or electricity. Therefore, diesel is not assumed for the yard trucks. For the Port of Los Angeles activities, the most common fuel for yard trucks besides diesel is propane. ${ }^{65}$ Therefore, emissions are based on assuming that the yard trucks are powered by propane. It is assumed for purposes of this analysis that there would be two yard trucks at each facility in the on position for seven hours per day.

## Emergency Generators

Emissions from emergency generators would result during testing and maintenance. It is assumed that there would be one generator per 1.5 million square feet based on the current equipment in operation at the adjacent Skechers warehouse north of the project. The generators were assumed to operate for a total 50 hours per year per generator for routine testing and maintenance purposes, with all generators operating for one hour on the same day to estimate the maximum daily emissions. For the unmitigated emissions, the generator is assumed to be Tier 4 diesel. For the mitigated emissions, it is assumed that the generators would be fueled by natural gas.

## Forklifts

It is assumed that there would be five natural gas forklifts per light logistics planning area, and assuming three light logistics areas, there would be a total of 15 natural gas forklifts. It is assumed that the warehouses would have electric forklifts, as they would primarily operate inside.

[^36]
## Land Use Change

The project would change the land use from pervious surfaces to impervious (buildings, asphalt, concrete) thereby reducing potential carbon sequestration from the existing farmland. CalEEMod has default accumulation for "cropland" of 6.2 tons $\mathrm{CO}_{2} /$ acre/year. However, since the project site is dry farmed and therefore would have less carbon accumulation, a different method was chosen to estimate these emissions. These emissions are included in the operational greenhouse gas emissions. The assumptions are shown in Table 11, Land Use Change.

Table 11
Land Use Change

| Vegetation Land <br> Use Type | Vegetation Land <br> Use Subtype | Initial Acres | Final Acres | Carbon <br> Sequestration <br> (MTCO2e/acre/year) |
| :--- | :--- | :--- | :--- | :--- |
| Cropland | Cropland | 2,610 | 45 | 0.45 |

Source of acres: Project description
Source of carbon sequestration: Brown and Huggins 2010; Table 1 in the article presents a range of carbon sequestration for dryland agriculture; the highest of the range was selected ( $0.90 \mathrm{Mg} \mathrm{C} \mathrm{ha}^{-1} \mathrm{yr}^{-1}$ ) and was converted by multiplying by 1.24 (the conversion of Mg to $\mathrm{MTCO}_{2} \mathrm{e}$ ) and dividing by 2.47 (conversion of ha to acres).

## Carbon Sequestration (New Trees)

The project would plant trees and integrate landscape into the project design, thereby increasing carbon sequestration. Carbon sequestration is the process of capture and storage of carbon dioxide; trees and vegetation store carbon in their tissues and wood. There is no estimate of the number of trees to be planted in the Specific Plan. The Specific Plan indicates the following regarding trees:

- Streetscapes: The Specific Plan (Section 4.2.3) indicates that trees are required along all street frontages.
- Parking area: Specific Plan measure 5.4.3 requires that landscaping in parking areas comply with the standards contained in the Municipal Code.
- Tree size: Specific Plan measure 5.3 .4 specifies that all trees are to be a minimum of 15 gallons.
- Building perimeters: Specific Plan measure 5.3.5 indicates that trees along building and site perimeters are required at a minimum average spacing of 1 tree per 30 linear feet of perimeter.

The number of trees is estimated as shown in Table 12, Estimated Tree Inventory. This inventory does not represent actual future plantings, which would be refined later during individual building plans. There would also be trees in the project entryways, the roundabouts, the open space areas, and the detention areas; however, those were not included to be conservative.

Table 12
Estimated Tree Inventory


Although CalEEMod does have calculations to estimate carbon sequestration from new trees, the carbon sequestration rates from the Center for Urban Forest Research (CUFR) Tree Carbon Calculator provide specific species information. As a comparison, CalEEMod has a sequestration rate of 0.0354 metric tons per miscellaneous tree per year. Table 13, Tree Carbon Sequestration Rates (Age of Tree), displays the carbon dioxide sequestration rates per tree from the CUFR Tree Carbon Calculator for tree species at 5 years and 10 years old. As shown in the table, generally, the older the tree is, the higher the sequestration rate. Therefore, for purposes of this analysis, the rate at five years is used because it assumes less carbon sequestration.

Table 13
Tree Carbon Sequestration Rates (Age of Tree)

| Tree Species |  | CO $_{\mathbf{2}}$ Sequestration (Ib/tree/year) |  |
| :--- | :---: | :---: | :---: |
|  | Code | $\mathbf{5}$ years | $\mathbf{1 0}$ years |
| Afghan pine | PIBR2 | 47.3 | 161.0 |
| Blue palo verde | CEFL | 14.6 | 53.3 |
| Brisbane box | TRCO | 40.1 | 36.8 |
| Chilean mesquite/ Algarrobo | PRCH | 36.1 | 100.3 |
| Crape myrtle sp. | LAIN | 2.0 | 3.6 |
| Desert willow | CHLI | 4.9 | 15.1 |
| Sweet acacia | ACFA | 17.0 | 38.0 |
| Sycamore | PLRA | 41.7 | 109.5 |
| Average | -- | 24.0 | 55.4 |

Note:
The rate at 5 years is used in this analysis; 10 years is shown for informational purposes, to demonstrate that the tree will increase sequestration rates overtime. The Codes for the trees are listed in the event that the reader wants to duplicate the modeling; the code makes it easier to conduct the modeling.
Source: CUFR Tree Carbon Calculator (2012) - the model does not provide model output

Table 14, Tree Carbon Sequestration Rates (Height of Tree), displays the carbon sequestration rates for the height of the tree, which is used as surrogate for two tree types that do not have data for the age of the tree. The lower tree height ( 25 feet) is used in this analysis.

Table 14
Tree Carbon Sequestration Rates (Height of Tree)

| Tree Species | Code | $\mathrm{CO}_{2}$ Sequestration (lb/tree/year) |  |
| :--- | :---: | :---: | :---: |
|  |  | $\mathbf{1 0}$ years |  |
| Date Palm | PHDA4 | 14.8 | 15.0 |
| Mexican Fan Palm | WARO | 26.9 | 26.4 |
| Source: CUFR Tree Carbon Calculator (2012) - the model does not provide model output |  |  |  |

Table 15, Tree Carbon Sequestration Estimates, displays the carbon sequestration estimates for the new trees that would be planted on the project site. As shown in the table, the trees would absorb 111 tons per year.

Table 15
Tree Carbon Sequestration Estimates

| Type of Tree | Trees | $\mathbf{C O}_{2}$ Sequestration <br> (Ib/tree/year) | $\mathbf{C O}_{2}$ Sequestration <br> (tons/year) |
| :--- | :---: | :---: | :---: |
| Average | 4,100 | 24.0 | 49 |
| Afghan pine | 465 | 47.3 | 11 |
| Blue Palo Verde | 55 | 14.6 | $<1$ |
| Sweet Acacia | 55 | 17,0 | $<1$ |
| Date Palm | 104 | 14.8 | 1 |
| Chilean Mesquite/ <br> Algarrobo | 2,134 | 36.1 | 39 |
| Mexican Fan Palm (30' <br> trunk height) | 216 | 26.4 | 3 |
| Brisbane Box | 375 | 40.1 | 8 |
| Total | $\mathbf{- -}$ | $\mathbf{1 1 1}$ |  |
| Source: Calculated using the data in prior tables. |  |  |  |

## Black Carbon

As discussed above, there is substantial uncertainty in estimating greenhouse gas impacts from black carbon emissions at this time. In addition, black carbon is not considered a "greenhouse gas" according to AB32. Nevertheless, black carbon emissions from construction and operation are estimated.

## Emissions Methodology

The methodology used in estimating black carbon emissions is from EPA's Report to Congress on Black Carbon (EPA 2012). Essentially, $\mathrm{PM}_{2.5}$ emissions are converted to black carbon emissions by application of speciation factors. The equation:
$\mathrm{PM}_{2.5}$ Emissions (in tons) x fraction of $\mathrm{PM}_{2.5}$ that is black carbon = black carbon emissions

The speciation factors of black carbon as a percentage of $\mathrm{PM}_{2.5}$ are from Table A1-5 and associated text in the EPA's Report to Congress on Black Carbon (EPA 2012). The only sources in this greenhouse gas analysis that assume a portion of black carbon emissions are as follows:

- Construction. 77 percent of the $\mathrm{PM}_{2.5}$ exhaust emitted during construction is assumed to be black carbon. ${ }^{66} \mathrm{PM}_{2.5}$ exhaust was estimated using CalEEMod, which is converted to black carbon emissions.
- Operational mobile - heavy duty. The EPA's report identifies diesel heavy-heavy duty trucks (HHDT) may have 77 percent black carbon out of the $\mathrm{PM}_{2.5}$ exhaust emissions. Therefore, this percentage is applied to the following vehicle classes: diesel light-heavy duty trucks (LHDT1 and LHDT2), diesel medium-heavy duty trucks (MHDT), and HHDT. The black carbon emissions are estimated in the $\mathrm{PM}_{2.5}$ spreadsheets in Appendix B.
- Operational mobile - light duty. The EPA report indicates that 64 percent of $\mathrm{PM}_{2.5}$ exhaust emissions for light duty diesel vehicles may be black carbon. ${ }^{67}$ Therefore, this percentage is applied to the following vehicle classes: diesel light duty trucks (LDT1 and LDT2) and medium duty trucks (MDT).
- Natural gas. 38 percent of the $\mathrm{PM}_{2.5}$ emissions from natural gas usage is assumed to be black carbon.

This is a conservative estimate of black carbon, as discussed in the following excerpt from the EPA's report:

[^37]For the 2007 vehicle (engine) model year, stringent [EPA] emission standards of $0.01 \mathrm{~g} / \mathrm{BHP}$-hr (grams per break horsepower/hour - a standard unit for emissions from heavy-duty mobile source engines) became effective for heavyduty diesel engines, which represents over $99 \%$ control [or reduction] from a pre=control diesel engine in the 1970 time frame. As a result of these standards, BC [black carbon] emissions have been dramatically or even preferentially reduced as the major PM constituent. To meet these stringent PM standards, virtually all new on-highway diesel trucks in the United States, beginning with the 2007 model year, have been equipped with diesel particular filters (DPFs). DPFs typically eliminate more than $90 \%$ of diesel PM and can reduce BC by as much as $99 \% .{ }^{68}$

## Global Warming Potential

In the EPA's "Report to Congress on Black Carbon," black carbon emissions are estimated for the United States and globally but are not converted to a metric (such as $\mathrm{MTCO}_{2} \mathrm{e}$ ) using a global warming potential. The report discusses the global warming potential of BC :
[Black carbon] BC influences the climate differently than the warming effects of GHGs. These differences have important implications for identifying appropriate metrics to compare climate impacts (and reductions thereof) ... While a GWP can be calculated for BC, there are reasons that GWPs may be less applicable for this purpose due to the different nature of BC compared to GHGs, in terms of various physical properties and the fact that unlike GHGs, BC is not well mixed in the atmosphere. However, because GWPs are the most commonly used, and only official, metric in climate policy discussions, many studies have calculated GWPs for BC. One-hundred-year GWPs for BC in the literature range from 330to 2,240. That is to say, 330 to 2,240 tons of $\mathrm{CO}_{2}$ would be required to produce the same integrated radiative effect over 100 years as one ton of $B C$. Some of the factors that account for the range in these estimates include the use of different and uncertain indirect and snow/ice albedo effects ${ }^{69}$ estimates, use of a different $\mathrm{CO}_{2}$ lifetime for the baseline, and recognition of the dependence of a GWP for $B C$ on emissions location...
... There is currently no single metric widely accepted by the research and policy community for comparing BC and long-lived GHGs. In fact, some question whether and when such comparisons are useful. For example, there are concerns that some such comparisons may not capture the different weights placed on near-term and long-term climate change. ${ }^{70}$

### 4.3 Localized Significance Threshold Analysis

Localized Analysis Methodology
SCAQMD has developed the Localized Significance Threshold (also known as "LST") methodology and recommends that this methodology be used in determining whether a project

[^38]may generate significant adverse localized air quality impacts and substantially affect sensitive receptors. The evaluation of localized air quality impacts determines the potential of the project to violate any air quality standard, contribute substantially to an existing or projected air quality violation, or expose sensitive receptors to substantial pollutant concentrations.

According to the SCAQMD LST assessment methodology, the assessment of localized impacts addresses only those emissions that are generated "onsite," that is for the purposes of this project, emissions generated from within or along the boundaries of the project. Therefore, for this localized analysis, only the onsite emissions are examined. Freeway trips as well as trips along the surface street network away from the project were only included in the health risk assessment prepared for this project.

To evaluate localized impacts for construction and operation, an air dispersion model (EPA model, AERMOD) was used to simulate the movement of project related air pollutants through the air and output air concentrations of those pollutants at numerous receptor locations surrounding the project. The estimated concentrations provide conservative estimates (in terms of likely over-predictions) and may not represent actual occurrences. The methodology follows SCAQMD modeling guidance for AERMOD, where applicable. ${ }^{71}$

Table 16, General Air Dispersion Modeling Assumptions - Localized Air Quality Assessment, lists the general model assumptions used in the localized significance threshold assessment.

[^39]Table 16
General Air Dispersion Modeling Assumptions - Localized Air Quality Assessment

| Feature | Assumption |
| :--- | :--- |
| Terrain processing | Complex terrain; elevations were obtained for the project site using the EPA <br> AERMAP terrain data pre-processor |
| Emission source <br> configuration | See Table 17 and 18 |
| Land Use | Urban: County of Riverside population provided by the SCAQMD |
| Coordinate System | Universal Transverse Mercator |
| Meteorological Data | SCAQMD Riverside Meteorological Data for 2012-2016 |
| NO2 Assessment <br> Methodology | Ozone Limiting using ozone data from the SCAQMD Riverside-Rubidoux air <br> monitoring station for 2012-2016 |
| Receptor Height | 0 meters, as recommended by SCAQMD LST methodology |
| Receptor Location | Receptor locations were defined both within and outside of the project <br> boundaries. |

Each of the emission sources that are included in the AERMOD air dispersion model consist of a particular emission source representation. The following definitions are used in defining the emission source representations referred to in Table 17, Project Localized Analysis Construction Emission Source Assumptions, and Table 18, Project Localized Analysis Operational Emission Source Assumptions.

- Point source: a single identifiable local source of emissions; it is approximated in the AERMOD air dispersion model as a mathematical point in the modeling region with a location and emission characteristics such as height of release, temperature, etc. (example: a stack from a standby generator or a stack from a motor vehicle such as a truck);
- Volume source: a three dimensional source of pollutants release (example: exhaust emissions from construction equipment);
- Line source: a series of volume sources along a path (example: vehicular traffic along a street or freeway); and
- Area source: a large area where emissions are assumed to be uniformly distributed in the horizontal and vertical directions (example: parking lot).


## Construction Modeling Assumptions - Local Air Quality Assessment

Table 17 summarizes the emission source characteristics during construction. For the unmitigated scenario, it is assumed that construction equipment would be in the on position for 10 hours per day for all construction activities. In addition, during building construction, additional hours from midnight to 6 AM were also included to account for the concrete pouring of the tilt-up building walls that would most likely take place at night. The construction was assumed to take place five days per week.

Table 17
Project Localized Analysis Construction Emission Source Assumptions

| Emission Source <br> Type | Air Dispersion <br> Model Emission <br> Source <br> Description |  | Relevant Assumptions |
| :--- | :--- | :--- | :--- |

## Operational Model Assumptions - Local Air Quality Assessment

The characterization of the project's operational emission sources as required by AERMOD air dispersion model is provided in Table 18. It is assumed for this analysis that facility operations would occur for 24 hours per day, 7 days per week, 365 days per year.

A graphical representation of the AERMOD air dispersion model local operational sources is shown in Figure 21. The AERMOD model also requires the placement of a network of receptors which represent the geographic locations where the impacts from the project's emissions are calculated.

Figure 22 shows the receptor network used in the localized significance threshold analysis. Receptors were located within and outside of the project's boundaries. A dense receptor grid was used in order to adequately characterize the project's offsite impacts. Of particular importance is the location of receptors in the residential areas adjacent and to the west of the project across Redlands Boulevard and scattered residences across Gilman Springs Road as well as locations of other sensitive receptors such as schools.

Table 18
Project Localized Analysis Operational Emission Source Assumptions

| Emission Source Type | Air Dispersion Model Emission Source Description | Relevant Assumptions |
| :---: | :---: | :---: |
| Onsite vehicle traffic within the truck yards | Area Source | - Stack release height: 6 feet for all vehicles <br> - Vehicle speed: 15 mph <br> - Vehicle trip length based on a review of the layout of the project development phases in relation to the local roadway network. <br> - High cube warehouse: 1,080 feet <br> - Light logistics: 570 feet <br> - Gas compressor utility: 330 feet <br> - All other land uses: 160 feet <br> - Vehicle types: passenger cars and heavy duty delivery trucks <br> - Emission factor: ARB EMFAC2017 model |
| Onsite diesel truck idling within the truck yards | Area source | - State release height: 6 feet <br> - Idle time: 5 minutes per truck per day (unmitigated) <br> - Vehicle type: heavy duty delivery trucks <br> - Emission factor: ARB EMFAC2017 model |
| Local Roadway Vehicle Travel | Line sources | - Line source width equal to the width of the roadway plus 3 meters on both sides. <br> - Vehicle speeds: <br> - Heavy duty trucks: 25 mph on local roadways <br> - All other vehicles: 35 mph on local roadways |
| Standby Diesel Electric Generators | Point sources | - The project was assumed to contain 27 emergency standby diesel generators distributed within the project boundary at full build out ( 1 generator per 1.5 million square feet of space) <br> - Rated at 315 kilowatts electrical output <br> - Projected testing and maintenance assumed to be 1 hour per day and 50 hours per year <br> - Height of emission release assumed to be 9 feet based on estimates of the generator's temperature, gas flow rate, and influence of building downwash on plume rise <br> - Emissions based on EPA Tier 3 emission standards for diesel generators |
| Support Equipment | Area sources | - Forklifts using natural gas as fuel <br> - Yard trucks using liquid petroleum gas as fuel |

## Localized Significance Threshold Analysis

The localized significance threshold analysis evaluated four conditions:

- Project Build Out (2020): this condition assumes that Phase 1 and Phase 2 of the project are fully built out in 2020 as a worst-case scenario.
- 2022, the year when the project emissions from both project construction and operation are at their highest combined levels for several pollutants; and when construction activities would occur near the existing residences west of the project boundary along Merwin Street;
- 2025, the earliest year Phase 1 is assumed to be fully operational. When the projected construction schedule would result in construction activities in the southern portion of the project adjacent to Alessandro Boulevard and east of the existing residential areas along

Merwin Street, and when all of Phase I operations would occur (approximately 57 percent of entire project floor space); and

- 2035 when Phase 1 and Phase 2 of the project are fully operational.

Project Full Build Out 2020 represents a worst-case scenario since the project could not be physically built out in its entirety in a single year and does not reflect the fact that the project would be developed over a time period of 15 years depending on market demands for warehouse space. This assumption also does not account for the fact that emissions from mobile sources, prior to mitigation, particularly from heavy duty diesel trucks are expected to decline significantly over time as emissions control technologies continue to improve. This assessment also provided consistency with the TIA and noise reports which examines Project Build Out under existing conditions. The project impact results were added to the existing background concentrations and then compared to the localized threshold for the appropriate pollutant. Background concentration data was obtained from the SCAQMD's Rubidoux monitoring station for years 2016-2018, the most recent data available. Background concentrations of CO and $\mathrm{NO}_{2}$ for State standards were derived as the highest air quality measured data over the most recent 3 years of meteorological data 2016-2018. Background concentrations for the National 1-hour NO2 is the 3-year average of the $98^{\text {th }}$ percentile of the daily maximum 1-hour average. The 2022, 2025, and 2035 conditions represent the project development including the localized impacts during construction and operation over the time period of 2020 to 2035.


World Logistics Center


World Logistics Center

### 4.4 Health Risk Assessment

## About Health Risk Assessments

A Health Risk Assessment (HRA) is a guide that helps to determine whether current or future exposures to a chemical or substance in the environment could affect the health of a population. In general, risk depends on the following factors:

- How much of a chemical is present in an environmental medium (e.g., air);
- How much contact (exposure) a person has with the contaminated environmental medium; and
- The inherent toxicity of the chemical.

This HRA builds and expands upon the methodology described above in the localized air quality assessment by examining the regional effects of the project's potential health risk impacts. The HRA methodology applies a risk characterization model to the results from the air dispersion model to estimate potential health risks at each sensitive receptor location. However, unlike the localized assessment of the criteria pollutants (e.g., carbon monoxide, oxides of nitrogen, and particulate matter), which looks at impacts from exposure times of one hour to a year within a specific year, the HRA examines the impacts over an exposure time period from one hour to an extended exposure time period of many years.

## Health Risk Impacts Assessed

The health risk assessment estimated the incremental health impacts attributable to the project's construction and operations for the following condition:

- Proposed Project Development condition which examines the effect of project-related construction and operational traffic emissions as if the project were built out in accordance with its proposed phased construction and operational buildout schedule commencing with the construction of Phase 1 in 2020 and the final full build out in 2035. This condition forms the basis for quantifying the incremental impacts from the project.

A multi-pollutant health risk assessment was conducted for the Proposed Project. The health risk assessment evaluated toxic emissions from a variety of sources. These included exhaust emissions of particulate matter (PM) and total organic gases (TOG) from diesel and gasoline combustion, as well as toxics associated with fugitive PM from tire wear and brake wear of mobile sources. Annual average emissions and impacts were calculated for each year starting from 2020 when construction of the Project would commence. Specifically, annual average concentrations of toxics were estimated from the construction emissions for each year of construction from 2020 to 2034 according to the construction schedule and equipment usage projected for each year of construction. Proposed Project Development examines project impacts resulting from the proposed construction and operation of the project from the commencement of construction in 2020 for a 30-year duration for sensitive/residential receptors, 25 -year for worker
receptors, and 9-year exposure time periods for school-site student receptors. Annual average emissions and impacts during operation were estimated for the Phase 1 build out year and the final full build out year, years for which detailed traffic information was available from the TIA. The annual average operational emissions were then scaled among operational years between 2021 and 2035 based on the Phase 1 build out year and final full build out year's emissions, using scaling factors that reflecting changes in EMFAC-based emission factors from 2025 or 2035 and the project occupancy schedule for each specific year. See Appendix B. 9 for detail on the scaling factor development and how the in-between years' emissions were calculated.

During years when both construction and operations occur simultaneously (2021 to 2034), the annual concentrations at the sensitive receptors from construction were added to the annual concentrations from operations to provide a total impact assessment of all emissions from the project during each year. The resulting total annual average concentrations calculated each year for the exposure time period (individual annual averages) multiplied by the requisite daily breathing rates, age sensitivity factors, and time-at-home factors for each year of exposure. The HRA studied two scenarios for the 30-year exposure cancer risk calculation for sensitive/residential receptors. Scenario 1 assumes that a fetus in the 3rd trimester (within the mother's womb) commences its 30-year exposure starting in year 2020 (construction start year), covering the entire 15 years of construction and progressive project occupancy (operations are not assumed to commence until the year 2021, the first year of operational occupancy) between 2020 and 2035 and another 15 years after project full buildout between 2035 and 2050 (construction + operation scenario); Scenario 2 assumes that a fetus in the 3rd trimester commences its 30-year exposure starting in the 1st year of full buildout in 2035 and last until 2064 (full operation scenario).

The mitigation conditions require all construction equipment that are greater than 50 horsepower to be Tier 4, all medium-heavy-duty and heavy-heavy-duty diesel trucks accessing the project during operation be model year 2010 or newer and that all on-site equipment be Tier 4 .

## Risk Assessment Methodology

The HRA process involves four main steps: hazard identification, dose-response assessment, exposure assessment, and risk characterization.

## Hazard Identification

Hazard identification is the process by which contaminants of concern are selected for investigation in the risk assessment, and includes a review of the chemicals that are potentially released to the atmosphere from the equipment of concern. This assessment is responsive to the emissions of various toxic air contaminants from the construction and operation of the project. The main toxic air contaminants associated with the project include PM and (TOG) ${ }^{72}$ from diesel and gasoline combustion, as well as toxics associated with fugitive PM from tire wear and brake

[^40]wear of mobile sources. An abbreviated list of common toxicity values for chemicals evaluated in this analysis and target organs ${ }^{73}$ that each contaminant affects in a toxic exposure are summarized in Table 19, Toxicity Values. Please refer to Appendix E for a more detailed list of the TACs analyzed in this study.

The ARB has simplified the process for estimating cancer and chronic non-cancer impacts of air toxics by specifying cancer potency values and reference exposure levels (RELs). For diesel PM, which is a surrogate for the combined health effects associated with exposure to diesel exhaust emissions (ARB 2005b) and provides a hazard level that is greater than would occur when estimating the cancer and chronic non-cancer risk by specifying the individual TOG compounds. However, no acute non-cancer REL has been defined for diesel PM, therefore emissions of the speciated toxic air contaminants in diesel exhaust were evaluated in estimating acute non-cancer hazards.

No such surrogate values exist for gasoline, tire wear or break wear emissions, so the speciated toxic air contaminants were determined as well as their corresponding cancer potency values and RELs.

Table 19
Toxicity Values

| Toxic Air Contaminant | CAS <br> Number | Inhalation Cancer Potency Factor [mg/kg-day] ${ }^{-1}$ | Chronic Reference Exposure Level $\mu \mathrm{g} / \mathrm{m}^{3}$ | Target Organ for Chronic Exposure | Acute Reference Exposure Level $\mu \mathrm{g} / \mathrm{m}^{3}$ | Target Organ for Acute Exposure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diesel PM* | 9901 | 1.1 | 5 | I | ND | ND |
| Acetaldehyde | 75070 | * | * | * | 470 | D, I |
| Acrolein | 107028 | * | * | * | 2.5 | D,I |
| Benzene | 71432 | * | * | * | 27 | C,E,F |
| Formaldehyde | 50000 | * | * | * | 55 | D |
| Methanol | 67561 | * | * | * | 28,000 | G |
| MEK | 78933 | * | * | * | 13,000 | D, I |
| Styrene | 100425 | * | * | * | 21,000 | H,D,I |
| Toluene | 108883 | * | * | * | 37,000 | D,G,H,I |
| M-Xylene | 108383 | * | * | * | 22,000 | D,G,I |
| O-Xylene | 95476 | * | * | * | 22,000 | D,G,I |
| P-Xylene | 106423 | * | * | * | 22,000 | D,G,I |
| 1-3 Butadiene | 106990 | * | * | * | 660 | H |
| Copper | 7440508 | * | * | * | 100 | 1 |
| Chlorine | 7782505 | * | * | * | 210 | D, I |
| Nickel | 7440020 | * | * | * | 0.2 | F |
| Sulfates | 9960 | * | * | * | 120 | 1 |
| Arsenic | 7440382 | * | * | * | 0.2 | I,G, |
| Vanadium (fume or dust) | 7440622 | * | * | * | 30 | D, I |

## Notes:

* Only diesel PM emissions were evaluated for cancer risk and chronic hazard indices because diesel PM is a surrogate for the combined health effects associated with exposure to diesel exhaust emissions (ARB 2005b). For the acute hazard indices, diesel PM was not evaluated since no acute non-cancer REL has been defined for diesel PM; rather, emissions of the other toxic air contaminants were evaluated for all emission sources in

[^41]
## Dose-Response

The dose-response assessment develops relationships between exposures to a given chemical and the corresponding potential health effects associated with exposure to that chemical. In general, data are limited regarding adverse effects associated with direct exposure to humans to a particular chemical. Therefore, animal experiments have often been performed to assess a chemical's toxicity. These experiments are conducted to determine the organs that are adversely affected by a toxic chemical and the amount of the chemical needed to produce an adverse effect on the organ.

Two types of adverse health effects are generally considered in health risk assessments: carcinogenic and non-carcinogenic. Carcinogenic compounds are not considered to have threshold levels (i.e., dose levels below which there are no risks). Any exposure, therefore, will have some associated risk. Chemicals that potentially produce carcinogenic effects have been shown or are suspected to produce tumors in animals or humans.

Non-carcinogenic effects, such as liver or kidney damage, may be either reversible or permanent. In these situations, it is assumed that there is a level of exposure at which these chemicals produce no adverse effects in the human body. In other words, exposure to these chemicals in amounts less than a threshold level will result in no adverse health effects. The toxicity assessment characterizes the relationship between the magnitude of exposure and the nature and magnitude of adverse health effects that may result from such exposure.

## Exposure Assessment

Exposure assessment identifies potential exposure pathways, estimates chemical concentrations at potential exposure points, and calculates expected doses of emitted substances. An exposure pathway is defined as the means by which an individual or a population is exposed to contaminants that originate from a source. Each pathway represents a different mechanism for exposure.

Four elements must be present in order for a potential human exposure pathway to exist;

1. A source and mechanism of substance release to the environment;
2. An environmental transport medium (e.g., air, water, soil);
3. An exposure point, or point of potential contact with the contaminated medium; and
4. A receiver (i.e., human) with a route of entry (e.g., inhaling air, drinking water) at the point of contact.

The current risk assessment only considers toxic air contaminants that are released into the air and inhaled. The levels of atmospheric contaminants resulting from emissions of toxic air contaminants are calculated using mathematical air dispersion models, which use emission rates and exposure duration, design features specific to the emissions sources, and meteorological data. The air modeling results include annual average and maximum hourly ambient air concentrations of the modeled substances at various receptor locations. In order to evaluate human exposure, a human receiver with a route of exposure to the affected medium is required, such as a person inhaling air in a potentially affected area. Therefore, potential health risks are only evaluated for developed areas where humans typically are present. A quantitative estimate of potential human exposure is developed for the inhalation pathway in this study.

The cancer risk and chronic non-cancer hazard indices are based on concentrations from sources of exhaust PM and TOG, and fugitive PM. These sources include off-road construction equipment, heavy duty trucks, gasoline vehicles, onsite equipment and emergency generators. A majority of the toxic emissions are related to diesel exhaust. Diesel exhaust, a complex mixture that includes hundreds of individual constituents, is identified by the State of California as a known carcinogen. Under California regulatory guidelines, ${ }^{74}$ diesel PM is used as a surrogate measure of carcinogen exposure for the mixture of chemicals that make up diesel exhaust as a whole. The California Environmental Protection Agency and other proponents of using the surrogate approach to quantifying cancer risks associated with the diesel mixture indicate that this method is preferable to use of a component-based approach. A component-based approach involves estimating risks for each of the individual components of a mixture. Critics of the component-based approach believe it will underestimate the risks associated with diesel as a whole mixture because the identity of all chemicals in the mixture may not be known, and/or exposure and health effect information for all chemicals identified within the mixture may not be available.

Gasoline combustion can also release chemicals that are carcinogenic, and are included in this study. A preliminary comparison of the relative toxicity of gasoline-borne toxics compared to diesel PM concluded that the potential cancer risks associated with the TACs from gasoline combustion emissions from the project's gasoline vehicles are substantially less than the potential cancer risks from the project's diesel PM emissions. Less than 2 percent of the total cancer risk from the project's vehicles can be attributed to the gasoline TACs with the remaining 98 percent attributable to toxics from diesel PM. Furthermore, toxics associated with fugitive PM from tire wear and brake wear contribute substantially less than the potential cancer risks from the project's diesel PM emissions.

[^42]The acute non-cancer indices are based on toxic concentrations from both diesel and gasoline vehicles. To estimate acute non-cancer hazard indices, specific chemical concentrations that comprise the PM and TOG emissions must be calculated in a process called speciation. ${ }^{75}$

## Risk Characterization

Risk characterization is the process of combining dose-response information with the estimates of human exposure in order to derive a quantitative estimate of the likelihood that humans will experience any adverse health effects for the given exposure assumptions. Two general types of health effects are generally considered: potential carcinogenic risks after chronic (long-term) exposure and potential non-carcinogenic health impacts following chronic (long-term) and acute (short-term) exposure. Each of these health effects was evaluated in this report.

## Estimation of Cancer Risks

Excess cancer risks are estimated as the upper-bound incremental probability that an individual will develop cancer over a lifetime as a direct result of exposure to potential carcinogens over a specified exposure duration. The estimated risk is expressed as a unitless probability. The cancer risk attributed to a chemical is calculated by multiplying the chemical intake or dose at the human exchange boundaries (e.g., lungs) by the chemical-specific cancer potency factor (CPF). A risk level of 1 in a million implies a likelihood that up to one person, out of one million equally exposed people would contract cancer if exposed continuously ( 24 hours per day) to the levels of toxic air contaminants over a specified duration of time. This risk would be an excess cancer risk that is in addition to any cancer risk borne by a person not exposed to these air toxics.

As noted above, diesel PM is used as a surrogate measure of carcinogenic exposure for the mixture of chemicals that make up diesel exhaust as a whole. Cancer risks were estimated in accordance with the "Current OEHHA Guidance". ${ }^{76}$ The "Current OEHHA Guidance" assumes a lifetime exposure of 30 years with the inclusion of early-in-life sensitivity factors for sensitive receptors, a 25 -year exposure for worker receptors, and a 9 -year exposure duration for school-site student receptors.

The cancer risk from toxics is calculated by multiplying an average toxics concentration calculated using the AERMOD air dispersion model and an inhalation exposure factor as shown in Equation 1 below.

Cancer Risk = Inhalation cancer potency factor (CPF) x Dose-inhalation
(EQ-1)
Where:

[^43]Cancer Risk = Total individual lifetime excess cancer risk defined as the cancer risk a hypothetical individual faces if exposed to carcinogenic emissions from a particular facility; this risk is defined as an excess risk because it is the risk above and beyond the background cancer risk to the population contributed by causes not related to the project; cancer risk is expressed in terms of risk per million exposed individuals.

Inhalation cancer potency factor $(C P F)=1.1$ (milligrams per kilogram per day $)^{-1}$ for diesel PM ;

$$
\text { Dose-inhalation }=\mathbf{C}_{\text {air }} \times\left(E F \times E D \times 10^{-6} \div \text { AT } \times A A F\right)
$$

Where:
$\mathrm{C}_{\text {air }}$ is the average diesel PM concentrations calculated from the AERMOD model in $\mu \mathrm{g} / \mathrm{m}^{3}$;
EF is the exposure frequency (days per week);
ED is the exposure duration (years); and
AT is the time period over which the exposure is calculated (days)
AAF are a set of age-specific adjustment factors that include age sensitivity factors (ASF), daily breathing rates (DBR), and time at home factors (TAH).

## Cancer Risk Exposure Assumptions

The principal focus of this HRA is on the potential health impacts to sensitive/residential receptors located within and surrounding the project site. Sensitive receptors include hospitals, schools, daycare facilities, elderly housing and convalescent facilities. Residences are also considered sensitive receptors. An important parameter necessary to estimate cancer risk is the duration of exposure of an individual to toxic air contaminants. An assessment of population mobility can assist in determining the length of time a residential receptor is exposed in a particular location. For example, the duration of exposure to a source of toxic air contaminants will be directly related to the period of time residents live near the source of the emissions.

Table 20, Exposure Assumptions for Cancer Risk, summarizes the primary exposure assumptions used in this HRA to calculate individual cancer risk by receptor type, which is based on the SCAQMD HRA Guidance and the "Current OEHHA Guidance".

Table 20
Exposure Assumptions for Cancer Risk

| Type of Guidance | Receptor Type | Exposure Frequency |  | Exposure Duration (years) | Age Sensitivity Factors | Time at Home Factor (\%) | Daily <br> Breathing <br> Rate <br> (L/kg- <br> day) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hours/ day | Days/ year |  |  |  |  |
| Current <br> OEHHA <br> Guidance | Sensitive/Residential: |  |  |  |  |  |  |
|  | $3^{\text {rd }}$ Trimester | 24 | 350 | 0.25 | 10 | 100 | 361 |
|  | 0-2 years | 24 | 350 | 2 | 10 | 100 | 1090 |
|  | 2-16 years | 24 | 350 | 14 | 3 | 100 | 572 |
|  | Older than 16 years | 24 | 350 | 13.75 | 1 | 73 | 261 |
|  | Student | 8 | 180 | 9 | 3 | NA | 640 |
|  | Worker | 8 | 250 | 25 | 1 | NA | 230 |

Table 20
Exposure Assumptions for Cancer Risk

|  |  | Exposure Frequency |  | Exposure Duration (years) | Age Sensitivity Factors | Time at Home Factor (\%) | Daily Breathing Rate (L/kgday) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type of Guidance | Receptor Type | Hours/ day | Days/ year |  |  |  |  |

Time at home factor is 1 if there is a school receptor within the 1 in a million (or greater) cancer risk isopleth, which was the case for this project's unmitigated scenario for the Construction + Operation HRA. (L/kg-day) = liters per kilogram body weight per day; NA = not applicable.
The daily breathing rates shown are RMP using the Derived Method for residential as recommended by the SCAQMD and the 95th percentile rate for other receptors as recommended by the OEHHA.
Source: OEHHA 2015; SCAQMD, 2016

The underlying factors used in the analysis exemplify the conservative nature of utilizing the exposure scenarios and the underlying assumptions:

- The residential cancer risk calculation assumes that each resident will be exposed to particulate matter and organic gases for 24 hours a day for 350 days a year at the location of his or her home throughout the entire 30 -year residential exposure period.
- The worker and student cancer risk calculations assume that workers or students are exposed to diesel PM for 8 hours a day, next to, but outside of the buildings in which they work or study.
- The atmospheric dispersion model and traffic model that are used to estimate risks generally provide impact estimates that are over-estimated based on the use of conservative model assumptions.


## Other Factors that Influence Health Risk Estimates: Conservative Trip Estimates

It should also be noted that the TIA used a conservative estimate of the number of truck trips after the project begins operation. The number of truck trips is important because diesel PM emissions are directly related to both the number of trucks and the vehicle miles traveled.

As mentioned above, the TIA uses the traffic generation rate for high-cube warehouses from the $10^{\text {th }}$ edition of the Institute of Traffic Engineers Trip Generation Manual which is based on the High-Cube Warehouse Vehicle Trip Generation Analysis prepared jointly by SCAQMD and National Association of Industrial and Office Properties (NAOIP).

## Cancer Burden

Whereas cancer risk represents the probability that an individual will develop cancer, cancer burden multiplies the cancer risk by the exposed population to estimate the number of individuals that would be expected to contract cancer from the project. The exposed population is defined as the number of persons within a facility's zone of impact, which is typically the area exposed to an incremental cancer risk of one in a million from the project. Consistent with this definition,
cancer burden was calculated by first identifying all population census tracts ${ }^{77}$ located within the project's zone of impact, multiplying the estimated incremental project cancer risk impact in the census tract by the population of the census tract and then summing all of products of population times estimated cancer risk in the zone of impact. Note that each census tract contributes to the cancer burden in proportion to its population and risk. For example, if a census tract has a relatively high estimated cancer risk, but no people living there, it will not contribute to the estimation of the cancer burden. As provided in the "Current OEHHA Guidance", the cancer burden is calculated assuming a 70 -year exposure duration along with the appropriate exposure frequency, daily breathing rates, age sensitivity factors, and time at home factors appropriate to each age group. ${ }^{78}$ A cancer burden greater than 0.5 is considered a significant cancer burden.

## Non-cancer Hazards

An evaluation of the potential non-cancer effects of chronic (long-term) and acute (short-term) chemical exposures was also conducted. For chemicals that cause non-cancer health effects, risks are typically characterized using a measure called the hazard index (HI). Adverse non-cancer health effects are evaluated by comparing the concentration of each TAC with the reference concentration level below which an adverse health effect will not occur as determined by health professionals. This reference concentration level is referred to as the Reference Exposure Level (REL). The State of California has published a database of RELs for numerous toxic air contaminants. Toxic air contaminants may have a unique chronic and/or acute REL. A significant risk is defined by the SCAQMD as an HI of 1 or greater, and indicates that the source of TAC emissions has a potential to cause adverse non-cancer health effects.

## Chronic Non-cancer Impacts

Exposures to TACs such as diesel PM can cause chronic non-cancer illnesses such as reproductive effects, respiratory effects, eye sensitivity, immune effects, kidney effects, blood effects, central nervous system, birth defects, or other adverse environmental effects. Risk characterization for chronic non-cancer health risks from diesel PM is expressed as a HI. The HI is a ratio of the predicted concentration of a project's emissions to its REL.

When evaluating chronic non-cancer effects due to TAC exposures, a hazard quotient (HQ) is established for each individual TAC as follows and for each target organ ${ }^{31}$ affected by the individual TAC:

$$
\begin{equation*}
H_{i}=C_{\text {air }} / \text { REL }_{i} \tag{EQ-3}
\end{equation*}
$$

Where:

77 A census tract is a geographic region defined for the purpose of taking a census. Usually these regions coincide with the limits of cities, towns, or other administrative areas. Each tract has a unique numeric code and averages about 4,000 inhabitants. The census tract centroid is the geographic center of the tract based on a weighted distribution of the population within the tract using the census blocks that comprise the tract. A census block is the smallest geographic unit used to tabulate population and each tract can be comprised of several blocks.
78 Office of Environmental Health Hazard Assessment, Air Toxics Hot Spots Program, Risk Assessment Guidelines, Guidance Manual for Preparation of Health Risk Assessments, February 2015, Section 8.1. http://www.oehha.ca.gov/air/hot_spots/2015/2015GuidanceManual.pdf
$\mathrm{HQi}=$ chronic hazard quotient for each TAC, i
Cair $=$ Annual average concentration of each TAC, $\mathrm{i}(<\mathrm{g} / \mathrm{m} 3)$
RELi $=$ Chronic Reference Exposure Level for TAC, $\mathrm{i}(<\mathrm{g} / \mathrm{m} 3)$
$\mathrm{i}=$ toxic air contaminant of interest

To evaluate the potential for adverse non-cancer health effects from simultaneous exposure to multiple TACs, the HQs for all TACs that affect the same target organ are summed yielding a HI as follows:

$$
\begin{equation*}
\mathbf{H I}_{\mathrm{to}}=\Sigma \mathrm{HQ}_{\mathrm{tac}} \tag{EQ-4}
\end{equation*}
$$

Where:
$\mathrm{HI}_{\mathrm{to}}=$ sum of the hazard quotients for all TACs affecting the same target organ
$\mathrm{HQ}_{\mathrm{tac}}=$ hazard quotient for TAC and target organ

Chronic health effects were calculated based on maximum annual average of toxic concentrations from the construction and operation of the project.

## Acute Non-cancer Impacts

The OEHHA has not defined an acute non-cancer REL for diesel PM. This HRA calculated the potential acute non-cancer hazards associated with the various toxic air contaminant components of PM and organic gas exhaust emissions from diesel and gasoline vehicles that have been found to cause acute non-cancer hazards.

The ARB maintains and updates estimates of the chemical composition and hazard levels of TOGs for a variety of emission source categories. These estimates are contained in what are referred to as speciation profiles. Speciation profiles provide estimates of the toxic air contaminant composition of TOG emissions, and are used in the development of emission inventories and air quality models.

Speciation profiles based on those developed by the ARB were used in this study ${ }^{79}$ to derive estimates of the pollutant levels of the PM and TOG components and their acute non-cancer hazards from both gasoline exhaust and diesel exhaust.

Table 21, Speciation Profiles for Diesel and Gas Fuel Combustion Sources, presents the speciation profiles that were used to convert PM and organic gas emissions into individual TAC emissions. Only chemicals that have a defined acute non- cancer reference exposure level (RELs) were included. The estimated total PM and organic gas emissions are multiplied by the profile percentage for a particular TAC to obtain the emissions of that particular TAC.

[^44]Table 21
Speciation Profiles for Diesel and Gas Fuel Combustion Sources

| Sources | Emission Type | TAC Speciation Profile |
| :---: | :---: | :---: |
| Off-road diesel construction equipment | Exhaust TOG | ARB TOG profile \#818 |
|  | Exhaust PM | ARB PM Profile \#425 |
|  | Evaporative TOG | Assume negligible |
|  | Brake/Tire PM | N/A |
| On-road diesel vehicles | Exhaust TOG | ARB TOG profile \#818 |
|  | Exhaust PM | ARB PM profile \#425 |
|  | Evaporative TOG | Assume negligible |
|  | Brake PM | ARB PM profile \#472 |
|  | Tire PM | ARB PM profile \#473 |
| On-road gasoline vehicles | Exhaust TOG | ARB TOG profile \#2118 |
|  | Exhaust PM | ARB PM profile \#400 |
|  | Evaporative TOG | ARB TOG profile \#660 |
|  | Brake PM | ARB PM profile \#472 |
|  | Tire PM | ARB PM profile \#473 |
| Off-road natural gasfired internal combustion engine | Exhaust TOG | ARB TOG Profile \#719 |
| Notes: <br> ${ }^{(1)}$ TOG speciation profile 2108 is from the ARB SPECIATE database; this profile is used to characterize TOG emissions from gasoline-fueled vehicles <br> (2) TOG speciation profile 818 is from the ARB SPECIATE database; this profile was used to characterize TOG emissions from diesel-fueled vehicles Source: <br> California Air Resources Board 2013. |  |  |

The methodology used to estimate acute non-cancer hazards follows a similar basic methodology used to estimate chronic non-cancer hazards with two important differences: the toxic air contaminant concentration, $\mathrm{C}_{\text {air }}$ in Equation 3 is based on the predicted maximum one-hour concentration of the toxic air contaminant, and the REL used is specific to the acute impacts from the contaminant.

## Geographic Scope of the Health Risk Assessment

The HRA is characterized by two important differences from the localized significance threshold assessment for criteria pollutants. According to the SCAQMD localized significance threshold assessment methodology, the assessment of localized impacts addresses only those emissions that are generated "onsite", that is for the purposes of this project, emissions generated from within or along the boundaries of the Specific Plan. However, for the HRA, both the universe of the project's emission sources and air dispersion model receptors were expanded to assess the off-site impact of the project's emissions of toxics. Besides onsite emission sources and receptors, the

HRA also included a receptor grid that extends from the project boundary to 5 kilometers (km) away and roadway network that ends 10 km from the project boundary (e.g., including approximately 18 miles of SR-60, surface roadway networks that are extending from the project boundary to 7.6 miles west and 6.9 miles east). The study area reasonably captures the most extensive emissions from project-generated vehicles on the roadway network since all trips to and from the project would travel on the roadway segments and freeway segments (SR-60) nearest the project site regardless of origin or destination. Since project activity is highest on-site, the project's emissions and associated health impact decreases with distance from the project site. Thus, the selected study area is capable of capturing the project's maximum impact. If the maximum risk from the study area is less than significant, project health risk impacts will be less than significant for receptors further away.

The generation of emissions from traffic traveling along the various arterial and freeway mainline roadway segments requires information on traffic volumes, length of segment, and emission factors. The emission factors, in turn, depend on vehicle type, speed, calendar year, and fuel type. Estimates of peak hour vehicle volumes and types (passenger cars, light heavy duty trucks, medium heavy duty trucks, and heavy-heavy duty trucks) were provided by the traffic consultant for each roadway segment analyzed. The TIA provided peak hourly volumes of cars and trucks traveling on freeways. Based on the distribution of traffic of cars and trucks, an hourly emissions profile for cars and trucks was applied to the mobile source segments in the HRA dispersion modeling to best represent daily traffic conditions. The TIA also provided daily vehicle volumes for freeway segments, but not for non-freeway segments. For use in the cancer risk and chronic non-cancer hazard calculations, the daily vehicle volumes for non-freeway segments were assumed to be 10 times that of the peak hour vehicle volumes. The physical length and width of each roadway segment were estimated using the segment location as provided by the traffic consultant and aerial photographs available from Google Earth. Vehicle speeds for each roadway segment and vehicle type were based on the speed groups provided by the traffic consultant. Vehicles traveling on freeways were assumed to be traveling 55 miles per hour.

## SECTION 5

Environmental Impacts

### 5.1 Compliance with Air Quality Plan

## Conflict with or obstruct the implementation of the applicable air quality plan (AIR-1)

According to the 1993 SCAQMD Handbook, there are two key indicators of consistency with the AQMP:

1. Indicator: Whether the project would not result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations, or delay timely attainment of air quality standards or the interim emission reductions specified in the AQMP.
2. Indicator: A project would conflict with the AQMP if it would exceed the assumptions in the AQMP in 2012 or increments based on the year of project buildout and phase. The Handbook indicates that key assumptions to use in this analysis are population number and location and a regional housing needs assessment. The parcel-based land use and growth assumptions and inputs used in the Regional Transportation Model run by the Southern California Association of Governments that generated the mobile inventory used by the SCAQMD for AQMP are not available and assumed not to include the project; therefore, the SCAQMD's significance thresholds are used to determine if the project exceeds the assumptions in the AQMP.

Considering the recommended criteria in the SCAQMD's 1993 Handbook, this analysis utilizes the following criteria to address this potential impact:

## Project's Contribution to Air Quality Violations and Assumptions in AQMP

According to the SCAQMD, the project is consistent with the AQMP if the project would not result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations, or delay timely attainment of air quality standards or the interim emission reductions specified in the AQMP. ${ }^{80}$ As shown in analyses in Impact AIR-2, the project could violate an air quality standard and therefore could contribute substantially to an existing or projected air quality violation.

[^45]If a project's emissions exceed the SCAQMD regional thresholds for $\mathrm{NO}_{\mathrm{x}}, \mathrm{VOC}, \mathrm{PM}_{10}$, or $\mathrm{PM}_{2.5}$, it follows that the emissions could cumulatively contribute to an exceedance of a pollutant for which the Basin is in nonattainment (ozone, $\mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$ ) at a monitoring station in the Basin.

The thresholds are criteria for determining environmental significance and are discussed in the SCAQMD's 1993 Handbook for Air Quality Analysis and are updated in the SCAQMD's most recent thresholds published online in 2012. An exceedance of a nonattainment pollutant at a monitoring station would not be consistent with the goals of the AQMP to achieve attainment of pollutants.

As discussed in the analyses below (AIR-2), the project would exceed the regional emission significance thresholds for VOC, $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}, \mathrm{PM}_{10}$, and/or $\mathrm{PM}_{2.5}$ prior to the application of mitigation. (Refer specifically to Table 22 for construction emissions and Table 25 for operational emissions.) This means that project emissions could combine with other sources and could result in an ozone, $\mathrm{PM}_{10}$, or $\mathrm{PM}_{2.5}$ exceedance at a nearby monitoring station. The Basin in which the project is located is in nonattainment for these pollutants; therefore, according to this criterion, the project would not be consistent with the AQMP. The regional emissions assume a zero baseline for existing emissions on the project site and therefore assumes that the AQMP had no emissions for the project site. The regional significance thresholds can be interpreted to mean that if project emissions exceed the thresholds, then the project would also not be consistent with the assumptions in the AQMP. Therefore, based on this criterion, the project could contribute to air quality violations and would not be consistent with the AQMP.

## Compliance with Emission Control Measures

The second indicator of whether the project could conflict with or obstruct implementation of the AQMP is by assessing the project's compliance with the control measures in the AQMPs and the State Implementation Plan (SIP).

## 2012 AQMP

The project would comply with all applicable rules and regulations enacted as part of the AQMP. In addition, the AQMP relies upon the SCAG regional transportation strategy, which is in its adopted 2012-2035 RTP/SCS and 2011 FTIP. Included in the RTP/SCS are transportation control measures including active transportation (non-motorized transportation, e.g., biking and walking); transportation demand management; transportation system management; transit; passenger and high-speed rail; goods movement; aviation and airport ground access; highways; arterials; and operations and maintenance.

## 2016 AQMP

As stated previously, the SCAQMD recently approved on March 3, 2017 the Final 2016 AQMP. Currently, the 2016 AQMP is being reviewed by the U.S. EPA and CARB. Until the approval of the EPA and CARB, the current regional air quality plan is the Final 2012 AQMP adopted by the SCAQMD on December 7, 2012. Therefore, consistency analysis with the 2016 AQMP has not been included. Nonetheless, the project would comply with all applicable rules and regulations
enacted as part of the 2016 AQMP, including transportation control measures from the 2016 RTC/SCS.

## State Implementation Plans

Geographical areas in the State that exceed the Federal air quality standards are called nonattainment areas. The project area is in nonattainment for ozone, $\mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$. SIPs show how each area will attain the Federal standards. To do this, the SIPs identify the amount of pollutant emissions that must be reduced in each area to meet the standard and the emission controls needed to reduce the necessary emissions. On September 27, 2007, the CARB adopted its State Strategy for the 2007 SIP. In 2009, the SIP was revised to account for emissions reductions from regulations adopted in 2007 and 2008 and clarifies CARB's legal commitment. Additional recent revisions to the SIP are as follows:

- In 2008, the EPA revised the lead ${ }^{81}$ national ambient air quality standard by reducing it to $0.15 \mu \mathrm{~g} / \mathrm{m}^{3}$. On December 31, 2010, the Los Angeles County portion of the Basin was designated as nonattainment for the 2008 lead national standard as a result of exceedances measured near a large lead-acid battery recycling facility. The 2012 Lead SIP for Los Angeles County was prepared by the SCAQMD and addresses the recent revision to the lead national standard, and outlines the strategy and pollution control activities that demonstrate attainment of the lead national standard before December 31, 2015. The 2012 Lead SIP was approved May 4, 2012.
- A SIP revision for the federal nitrogen dioxide standard was prepared in 2012, to address the new 1-hour federal ambient air quality standard for nitrogen dioxide.
- The proposed California Infrastructure SIP revision was considered by the CARB on January 23, 2014. The proposed Infrastructure SIP revision is administrative in nature and covers the National Ambient Air Quality Standards (federal standards) for ozone (1997 and 2008), fine particulate matter ( $\mathrm{PM}_{2.5} ; 1997$, 2006, and 2012), lead (2008), nitrogen dioxide (2010), and sulfur dioxide (2010). The proposed revision describes the infrastructure (authorities, resources, and programs) California has in place to implement, maintain, and enforce these federal standards. It does not contain any proposals for emission control measures.

The SIP takes into account CARB rules and regulations. The project will comply with applicable rules and regulations as identified in the AQMPs and SIPs and therefore, complies with this criterion.

## Summary

Although the project would be consistent with the policies, rules, and regulations in the AQMP and SIPs, the project must meet all the criteria listed above to be consistent with the AQMP. The project could impede AQMP attainment because its construction and operation emissions exceed

[^46]the SCAQMD regional significance thresholds, so the project is considered to be inconsistent with the AQMP.

### 5.2 Regional Emissions

## Violate any air quality standard or contribute substantially to an existing or projected air quality violation (AIR-2)

## Regional Construction Emissions

Grading and other construction activities produce combustion emissions from various sources such as site grading, utility engines, on-site heavy-duty construction vehicles, equipment hauling materials to and from the site, asphalt paving, and motor vehicles transporting the construction crew. Exhaust emissions during these construction activities will vary daily as construction activity levels change. The use of construction equipment on site would result in localized exhaust emissions. Activity during peak grading days typically generates a greater amount of air pollutants than other project construction activities.

While the actual details of the future construction schedule are not known, it is expected that project construction would occur in two phases with the construction of Phase 1 occurring over five years and the construction of Phase 2 occurring over ten years. Appendix A includes details of the emission factors and other assumptions.

Table 22, Short-Term Regional Construction Emissions - Without Mitigation, identifies projected emissions resulting from grading and construction activities for the project and shows the estimated maximum daily construction emissions over the course of project construction prior to the application of mitigation.

The construction emissions estimates summarized in Table 22 are based on an assumed construction scenario. Using emission factors from the CalEEMod model for off-road sources and EMFAC2017 emission factors for on-road sources, Table 22 indicates that construction emissions of criteria pollutants would exceed the SCAQMD daily emission thresholds for all criteria pollutants (VOC, $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$ ), with the exception of $\mathrm{SO}_{\mathrm{x}} .{ }^{82}$ This is a significant impact requiring mitigation.

Fugitive dust emissions are generally associated with land clearing and exposure of soils to the air and wind, and cut-and-fill grading operations. Dust generated during construction varies substantially by project, depending on the level of activity, the specific operations and equipment, local soils, and weather conditions at the time of construction. The project will be required to comply with SCAQMD Rules 402 and 403 to control fugitive dust. There are a number of feasible control measures that can be reasonably implemented to significantly reduce $\mathrm{PM}_{10}$ emissions from construction.

[^47]As identified in Table 22, fugitive dust and exhaust emissions during the anticipated peak construction day for the project would exceed SCAQMD daily construction thresholds. The percentage of dust and exhaust varies by year but for $\mathrm{PM}_{10}$ is an average of 85 percent dust and 15 percent exhaust. $\mathrm{PM}_{2.5}$ has an average of 54 percent dust and 46 percent exhaust.

Table 22
Short-Term Regional Construction Emissions-Without Mitigation

|  | Maximum Daily Pollutant Emissions (Ibs/day) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | VOC | NOx | CO | $\mathrm{SO}_{2}$ | PM 10 dust | PM 10 exhaust | $\begin{aligned} & \mathrm{PM}_{10} \\ & \text { Total } \end{aligned}$ | $\begin{aligned} & \mathrm{PM}_{2.5} \\ & \text { dust } \end{aligned}$ | PM ${ }_{2.5}$ exhaust | $\begin{aligned} & \mathbf{P M}_{2.5} \\ & \text { Total } \end{aligned}$ |
| 2020 | 319 | 989 | 701 | 2 | 127 | 42 | 168 | 27 | 38 | 66 |
| 2021 | 333 | 1124 | 832 | 2 | 126 | 47 | 172 | 26 | 43 | 69 |
| 2022 | 333 | 1103 | 865 | 2 | 154 | 45 | 199 | 37 | 41 | 78 |
| 2023 | 328 | 1010 | 858 | 2 | 170 | 41 | 211 | 40 | 37 | 77 |
| 2024 | 312 | 811 | 771 | 2 | 151 | 32 | 184 | 31 | 30 | 61 |
| 2025 | 285 | 529 | 576 | 1 | 124 | 20 | 144 | 27 | 19 | 46 |
| 2026 | 270 | 405 | 401 | 1 | 91 | 16 | 107 | 18 | 14 | 33 |
| 2027 | 267 | 380 | 376 | 1 | 40 | 15 | 55 | 10 | 14 | 24 |
| 2028 | 272 | 423 | 400 | 1 | 172 | 16 | 188 | 24 | 14 | 39 |
| 2029 | 268 | 390 | 378 | 1 | 114 | 15 | 129 | 18 | 14 | 32 |
| 2030 | 272 | 206 | 324 | 1 | 114 | 6 | 120 | 18 | 6 | 24 |
| 2031 | 263 | 163 | 292 | 1 | 108 | 5 | 113 | 15 | 5 | 20 |
| 2032 | 261 | 151 | 267 | 1 | 103 | 4 | 107 | 14 | 4 | 19 |
| 2033 | 251 | 110 | 226 | 1 | 81 | 3 | 84 | 11 | 3 | 14 |
| 2034 | 250 | 111 | 221 | 1 | 99 | 3 | 102 | 13 | 3 | 15 |
| SCAQMD <br> Threshold | 75 | 100 | 550 | 150 | NA | NA | 150 | NA | NA | 55 |
| Exceeds Threshold? | Yes | Yes | Yes | No | NA | NA | Yes | NA | NA | Yes |

Notes

- The emissions assume all construction activities (mass grading, fine grading, building, utilities, curbing, landscaping, painting, paving, and/or interchange) occur on the same day, depending on the year in which the activity occurs.
- Emissions assume compliance with SCAQMD Rule 403.
* PM totals may not add up due to rounding.

VOC = volatile organic compounds; $\mathrm{NOx}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{CO}=$ carbon monoxide; $\mathrm{PM}_{10}$ and $\mathrm{PM} 2.5=$ particulate matter; $\mathrm{NA}=$ not applicable as there is no separate threshold for dust/exhaust

Concrete pouring would likely occur during nighttime hours due to limitations high temperatures pose for concrete work during the day. On-site equipment used during concrete pouring would involve daytime prep with actual concrete pouring occurring during the nighttime hours. On average, the total hours of operation for each piece of equipment during the concrete phase would be approximately 10 hours. Therefore, maximum daily emissions presented in Table 22 represent the maximum daily emissions including the average concrete pour day. However, under rare occurences, extended concrete pour days may be required. Table 23, Short-Term Regional 24Hour Concrete Pour Emissions - Without Mitigation summarizes daily maximum emissions for
each year of construction associated with 24-hour operation of on-site building concrete equipment. As shown in Table 23, maximum 24-hour concrete pour days would exceed SCAQMD thresholds for $\mathrm{NO}_{\mathrm{x}}$. However, all maximum daily emissions are less than those for the worst-case construction day as summarized in Table 22. Therefore, rare 24-hour concrete pour days would be within the estimated worst-case construction day assumptions. No further analysis of 24 -hour concrete pour days is required.

Table 23
Short-Term Regional 24-Hour Concrete Pour Emissions-Without Mitigation

| Year | Maximum Daily Pollutant Emissions (Ibs/day) |  |  |  |  |  |  |  |  | PM ${ }_{2.5}$ <br> Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | VOC | NOx | CO | $\mathrm{SO}_{2}$ | PM 10 dust | PM 10 exhaust |  | PM ${ }_{2.5}$ dust | $\mathrm{PM}_{2.5}$ <br> exhaust |  |
| 2020 | 18 | 155 | 165 | 0 | 12 | 9 | 20 | 1 | 8 | 9 |
| 2021 | 17 | 144 | 164 | 0 | 12 | 8 | 19 | 1 | 7 | 8 |
| 2022 | 15 | 131 | 163 | 0 | 12 | 7 | 18 | 1 | 6 | 7 |
| 2023 | 15 | 123 | 163 | 0 | 12 | 6 | 17 | 1 | 6 | 7 |
| 2024 | 14 | 117 | 163 | 0 | 12 | 5 | 17 | 1 | 5 | 6 |
| 2025 | 13 | 110 | 163 | 0 | 12 | 4 | 16 | 1 | 4 | 5 |
| 2026 | 13 | 110 | 163 | 0 | 12 | 4 | 16 | 1 | 4 | 5 |
| 2027 | 13 | 110 | 163 | 0 | 12 | 4 | 16 | 1 | 4 | 5 |
| 2028 | 13 | 110 | 163 | 0 | 12 | 4 | 16 | 1 | 4 | 5 |
| 2029 | 13 | 110 | 163 | 0 | 12 | 4 | 16 | 1 | 4 | 5 |
| 2030 | 14 | 87 | 167 | 0 | 12 | 2 | 14 | 1 | 2 | 3 |
| 2031 | 14 | 87 | 167 | 0 | 12 | 2 | 14 | 1 | 2 | 3 |
| 2032 | 14 | 87 | 167 | 0 | 12 | 2 | 14 | 1 | 2 | 3 |
| 2033 | 14 | 87 | 167 | 0 | 12 | 2 | 14 | 1 | 2 | 3 |
| 2034 | 14 | 87 | 167 | 0 | 12 | 2 | 14 | 1 | 2 | 3 |
| SCAQMD Threshold | 75 | 100 | 550 | 150 | NA | NA | 150 | NA | NA | 55 |
| Exceeds Threshold? | No | No | No | No | NA | NA | No | NA | NA | No |

* PM totals may not add up due to rounding.
$\mathrm{VOC}=$ volatile organic compounds $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides $\mathrm{CO}=$ carbon monoxide $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ = particulate matter $\mathrm{NA}=$ not applicable as there is no separate threshold for dust/exhaust

Similar to extended concrete pouring days, other phases of construction such as utility installation and building construction may require an occasional extended construction day based on the task at hand and schedule goals. Occasional extended construction hours would occur for specific tasks within specific planning areas as needed (determined on a day-to-day basis) and would not occur site-wide throughout the 15 -year construction period. Therefore, it is anticipated that estimated yearly maximum construction day emissions, as summarized in Table 22, represent the realistic worst-case regional construction emissions for the 15 -year construction duration. Therefore, no further analysis of potential extended construction days is required.

The project is required to comply with regional rules that assist in reducing short-term air pollutant emissions. SCAQMD Rule 402 requires implementation of dust-suppression techniques to prevent fugitive dust from creating a nuisance off site. SCAQMD Rule 403 requires that fugitive dust be controlled with best available control measures so that the presence of such dust does not remain visible in the atmosphere beyond the property line of the emission source. In addition, SCAQMD Rule 403 requires implementation of dust suppression techniques to prevent fugitive dust from creating a nuisance off site. Applicable dust suppression techniques from Rule 403 are summarized below. Implementation of these dust suppression techniques can reduce the fugitive dust generation (and thus the $\mathrm{PM}_{10}$ component). Compliance with these rules would reduce impacts on nearby sensitive receptors. The applicable Rule 403 measures are as follows:

- All clearing, grading, earthmoving, or excavation activities shall cease when winds exceed 25 miles per hour per SCAQMD guidelines in order to limit fugitive dust emissions.
- The contractor shall ensure that all disturbed unpaved roads and disturbed areas within the project are watered at least three times daily during dry weather. Watering, with complete coverage of disturbed areas, shall occur at least three times a day, preferably in the mid-morning, afternoon, and after work is done for the day.
- Cover all trucks hauling dirt, sand, soil, or other loose materials, or maintain at least 0.6 meter ( 2 feet) of freeboard (vertical space between the top of the load and top of the trailer) in accordance with the requirements of California Vehicular Code Section 23114.
- The contractor shall ensure that traffic speeds on unpaved roads and project site areas are 15 miles per hour or less to reduce fugitive dust haul road emissions.

As previously discussed, SCAQMD Rule 1113 regulates the sale and application of architectural coatings. Rule 1113 is applicable to any person who applies or solicits the application of any architectural coating within the Basin. Rule 1113 sets limits on the amount of ROG or VOC emissions allowed for all types of architectural coatings. Compliance with Rule 1113 means that architectural coatings used during construction would have ROG or VOC emissions that comply with these limits.

## Operational Emissions

Long-term air pollutant emission impacts that would result from the project are those associated with stationary sources (generators, forklifts, etc.), area sources (landscaping and maintenance activities), and mobile sources (e.g., emissions from the use of motor vehicles by projectgenerated traffic).

As discussed above in Section 4, the TIA provides VMT attributable to the project based on the net effect the project would have on regional travel as well as project VMT without consideration of a net effect. The emissions from the net effect on VMT, in conjunction with the proposed stationary and area sources, are shown in Table 24, Operational Regional Air Pollutant Emissions (Worst-Case Scenario), Table 25, Operational Regional Air Pollutant Emissions (Detail, Unmitigated), Table 26, Operational Regional Air Pollutant Emissions (Year by Year,

Pounds per Day, Unmitigated), and Table 27, Combined Construction and Operational Regional Air Pollutant Emissions (Year by Year, Pounds per Day, Unmitigated), below for determination of significance. For informational purposes only Table 28, Operational Regional Air Pollutant Emissions (Detail, Unmitigated) - No Net Effect (For Informational Purposes Only) includes operational mobile emissions without consideration of a net effect in regional traffic volumes.

## Worst-case Scenario

Projected emissions resulting from operational activities of the project under the worst-case scenario are identified in Table 24.

There may be minor emissions of VOC from the fueling station, depending on what type of fuel is used. However, details regarding the fueling station are currently unknown so the emission source is not estimated. This is a worst-case analysis because it assumes that the entire project would be built-out in 2020. The motor vehicle and truck emission factors are from 2020, which assumes a "dirtier" fleet than would be the case in later years. In addition, no reductions are taken for mitigation measures.

As identified in Table 24, operational emissions for the project would exceed SCAQMD daily operational thresholds for all criteria pollutants with the exception of $\mathrm{SO}_{\mathrm{x}}$ for the "worst-case" 2020 scenario.

Table 24
Operational Regional Air Pollutant Emissions (Worst-Case Scenario)

| Scenario | Source | Emissions (pounds per day) |  |  |  |  | PM ${ }_{2.5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | VOC | NOx | CO | SOx | PM 10 |  |
| Buildout 2020 emission factors | Mobile | $\underline{161}$ | 3,500 | 1,377 | 14 | $\underline{\underline{260}}$ | $\underline{131}$ |
|  | Area | $\underline{\underline{311}}$ | $\underline{\underline{1}}$ | 4 | $\underline{\underline{0}}$ | $\bigcirc 1$ | $\underline{\underline{1}}$ |
|  | Onsite equipment | $\underline{\underline{9}}$ | $\underline{\underline{245}}$ | $\underline{\underline{89}}$ | $\underline{\underline{0}}$ | $\underline{\underline{2}}$ | $\underline{\underline{2}}$ |
|  | Total | 481 | 3,745 | 1,470 | 14 | 263 | 134 |
| Significance Threshold |  | 55 | 55 | 550 | 150 | 150 | 55 |
| Significant Impact? |  | Yes | Yes | Yes | No | Yes | Yes |

Notes: VOC = volatile organic compounds; NOx = nitrogen oxides; CO = carbon monoxide $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}=$ particulate matter $<1=$ less than one

## Operational Regional Emissions

Table 25 shows the detailed operational emission sources generated both on site and off site for Phase 1 and buildout. The table shows particulate matter $\left(\mathrm{PM}_{10}\right.$ and $\left.\mathrm{PM}_{2.5}\right)$ divided into dust (roadway and tire and brake wear) and exhaust sources. As shown in the table, emissions of VOC, $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$ are significant after completion of Phase 1 and after full buildout.

Table 26 shows the operational emissions year by year using emission factors interpolated from 2025 and 2035 emission factors. The VOC, $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$ emissions would be over the SCAQMD's significance thresholds for most years. The emissions demonstrate that although the number of vehicles and trucks would increase year by year, the emissions do not increase
dramatically because the per-vehicle emission factors decrease over time as cleaner vehicles enter the fleet over time.

## Combined Construction and Operation

There would be overlapping of construction and operational emissions with project implementation. The maximum daily operational emissions as shown in Table 26 were added to the maximum daily construction emissions and are shown in Table 27, which shows all pollutants for all years exceed the SCAQMD thresholds, with the exception of $\mathrm{SO}_{\mathrm{x}}$ emissions.

As identified in the preceding tables, project-related air quality impacts for all criteria pollutants, with the exception of $\mathrm{SO}_{\mathrm{x}}$, would be significant and mitigation measures are required.

| Phase | Source | Emissions (pounds/day) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | VOC | NOx | CO | SOx | PM $\mathbf{1 0}_{0}$ Dust | PM ${ }_{10}$ Exh. | PM 10 Total | PM ${ }_{2.5}$ Dust | PM $\mathbf{2 . 5}^{\text {Exh. }}$ | PM ${ }^{2.5}$ <br> Total |
| Phase 1 | Mobile | 24 | 849 | 277 | 5 | 129 | 13 | 141 | 40 | 7 | 47 |
|  | Area | 203 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | On-site Equipment | 5 | 138 | 51 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
|  | Total | 232 | 988 | 331 | 5 | 129 | 14 | 143 | 40 | 9 | 48 |
| Buildout | Mobile | 45 | 1,361 | 867 | 10 | 375 | 13 | 388 | 113 | 12 | 125 |
|  | Area | 311 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | On-site Equipment | 9 | 245 | 89 | 0 | 0 | 2 | 2 | 0 | 2 | 2 |
|  | Total | 364 | 1,606 | 961 | 10 | 375 | 15 | 390 | 113 | 15 | 127 |
| Significance Threshold |  | 55 | 55 | 550 | 150 | None | None | 150 | None | None | 55 |
| Significant Impact? |  | Yes | Yes | Yes | No | -- | -- | Yes | -- | -- | Yes |
| Notes: VOC $=$ volatile organic compounds $\mathrm{NO}_{x}=$ nitrogen oxides $\quad \mathrm{CO}=$ carbon monoxide <br> $<1=$ less than 1  <br> On-site equipment emissions include emissions from yard trucks, forklifts, and stationary generators.  |  |  |  |  |  |  | $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}=$ particulate matter $\quad$ Exh. = exhaust |  |  |  |  |

Table 26
Operational Regional Air Pollutant Emissions (Year by Year, pounds per day, unmitigated)

Table 27
Combined Construction and Operational Regional Air Pollutant Emissions (Year by Year, Pounds per Day, Unmitigated)

| Year | VOC | NOx | CO | $\mathrm{SO}_{2}$ | PM 10 | PM ${ }_{2.5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2020 (construction only) | 319 | 989 | 701 | 2 | 168 | 66 |
| 2021 | 384 | 1,463 | 943 | 3 | 207 | 83 |
| 2022 | 429 | 1,710 | 1,066 | 4 | 266 | 105 |
| 2023 | 465 | 1,818 | 1,127 | 5 | 308 | 114 |
| 2024 | 486 | 1,751 | 1,086 | 6 | 309 | 106 |
| 2025 | 490 | 1,517 | 906 | 7 | 282 | 94 |
| 2026 | 491 | 1,438 | 817 | 7 | 276 | 90 |
| 2027 | 505 | 1,489 | 870 | 7 | 250 | 89 |
| 2028 | 528 | 1,607 | 970 | 8 | 408 | 112 |
| 2029 | 540 | 1,645 | 1,017 | 8 | 374 | 113 |
| 2030 | 560 | 1,529 | 1,029 | 9 | 391 | 114 |
| 2031 | 568 | 1,551 | 1,058 | 9 | 408 | 117 |
| 2032 | 582 | 1,602 | 1,092 | 9 | 428 | 124 |
| 2033 | 588 | 1,620 | 1,105 | 10 | 429 | 127 |
| 2034 | 603 | 1,679 | 1,150 | 10 | 473 | 137 |
| 2035 | 364 | 1,606 | 961 | 10 | 390 | 127 |
| Max Daily Emissions | 603 | 1,818 | 1,150 | 10 | 473 | 137 |
| SCAQMD Threshold | 55 | 55 | 550 | 150 | 150 | 55 |
| Significant? | Yes | Yes | Yes | No | Yes | Yes |
| - Year 2020 contains construction emissions only; buildout contains operational emissions only Sulfur oxide (SOx) emissions are substantially under the threshold of 150 pounds per day Reduction from existing onsite emissions are not included. <br> $\mathrm{VOC}=$ volatile organic compounds; $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides; $\mathrm{CO}=$ carbon monoxide; $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}=$ particulate matter |  |  |  |  |  |  |

Section 5: Environmental Impacts


### 5.3 Cumulatively Considerable Air Quality Impacts <br> Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors) (AIR-3)

The project would result in the emission criteria pollutants for which the project area is in nonattainment during both construction and operation. A significant impact may occur if a project would add a cumulatively considerable contribution of a federal or state non-attainment pollutant. The Basin is currently in non-attainment for ozone, $\mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$.

## Construction Emissions

The emissions from construction of the project would exceed applicable SCAQMD regional and local impact thresholds. Therefore, the project would result in a cumulatively considerable net increase for non-attainment pollutants or ozone precursors.

## Operational Emissions

Future operations would exceed applicable SCAQMD regional thresholds. Therefore, the project would result in a cumulative considerable net increase for non-attainment of criteria pollutants or ozone precursors.

### 5.4 Substantial Pollutant Concentrations

Expose Sensitive Receptors to Substantial Pollutant Concentrations (AIR-4)

## Localized Construction and Operational Emissions

The localized significance threshold analysis evaluated four conditions:

1. Project Build Out (2020), which assumes that Phase 1 and Phase 2 of the Project are fully built out in 2020 as a worst-case scenario;
2. 2022, the year when the Project emissions from both Project construction and operation are at their highest combined levels for several pollutants; and when construction activities would occur near the existing residences west of the Project boundary along Merwin Street;
3. 2025 , the earliest year Phase 1 is assumed to be fully operational. When the projected construction schedule would result in construction activities in the southern portion of the Project adjacent to Alessandro Boulevard and east of the existing residential areas along Merwin Street, and when all of Phase 1 operations would occur (approximately 57 percent of entire project floor space); and
4. 2035, when Phase 1 and Phase 2 of the Project are fully operational.

Project Full Build Out under 2020 conditions represents hypothetical worst-case conditions in that the project physically could not be built-out in 2020 or, in fact, in any single year due to the size of the project. These conditions have been included in this assessment to correspond to the analysis scenarios examined in the project TIA. These conditions also do not account for the fact that vehicle emissions are expected to decline over time as vehicle emission control technologies improve. Thus, consideration of these conditions will significantly overestimate the project's potential air quality impacts. The 2022, 2025, and 2035 conditions represent the logical and realistic development of the project over a period of 15 years as represented by the project applicant. The LST analysis is presented for each condition below.

Pursuant to the SCAQMD's LST methodology, only emissions generated from emission sources located within and along the project boundaries are included in the LST assessment. These emission sources include vehicle travel on the roadway network within and along the borders of the project and emissions from support equipment including forklifts, yard/hostler trucks, and emergency standby electric generators.

## Project Full Build Out (2020) LST Assessment

The localized assessment results for the Project Phase 1 and Phase 2 Full Build Out (2020) condition are provided in Table 29, Localized Assessment of Project Phase 1 and Phase 2 Full Build Out (2018) Emissions Maximum Impacts Within the Project Boundaries (Without Mitigation), for receptors located within the project boundaries and in Table 30, Localized Assessment of Project Phase 1 and Phase 2 Full Build Out (2018) Emissions Maximum Impacts Outside the Project Boundaries (Without Mitigation), for receptors located outside the project's boundaries along with a comparison to the SCAQMD's localized significance thresholds. The significance thresholds for CO and nitrogen dioxide are derived from the measured ambient air quality data from the SCAQMD Riverside air monitoring station and serve as the measure of existing air quality.

Table 29
Localized Assessment of Project Phase 1 and Phase 2 Full Build Out (2018) Emissions Maximum Impacts Within the Project Boundaries (Without Mitigation)

| Pollutant | Averaging Time, Units | Existing Background ${ }^{1}$ | Air Concentration ${ }^{2}$ |  | Standard/ <br> Threshold | Total Impact Exceeds Threshold |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Project Local Increase | Total (Background + Project) |  |  |
| Carbon Monoxide | 1 hour, ppm | 2.2 | 0.05 | 2.2 | 20.0 | No |
|  | 8 hour, ppm | 2.0 | 0.03 | 2.0 | 9.0 | No |
| Nitrogen Dioxide | State 1 hour, ppm | 0.073 | 0.019 | 0.092 | 0.180 | No |
|  | National 1 hour, ppm | 0.058 | 0.018 | 0.076 | 0.100 | No |
|  | Annual, ppm | 0.015 | 0.004 | 0.019 | 0.030 | No |
| PM 10 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 7.2 | 7.2 | 2.5 | Yes |

Table 29
Localized Assessment of Project Phase 1 and Phase 2 Full Build Out (2018) Emissions Maximum Impacts Within the Project Boundaries (Without Mitigation)

| Pollutant | Averaging <br> Time, <br> Units | Existing <br> Background ${ }^{1}$ | Project <br> Local <br> Increase | Total <br> (Background <br> + Project) | Total <br> Standard/ <br> Threshold | Impact <br> Exceeds <br> Threshold |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NA | 4.0 | 4.0 | 1.0 | Yes |
|  | $24 \mathrm{hour}^{3}$ <br> $\mu \mathrm{~g} / \mathrm{m}^{3}$ | NA | 2.0 | 2.0 | 2.5 | No |

$\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubic meter (a concentration unit)
$\mathrm{NA}=$ Not Applicable, the SCAQMD threshold methodology does not require a background for $\mathrm{PM}_{10}$ or $\mathrm{PM}_{2.5}$
1 Background data for CO and $\mathrm{NO}_{2}$ for State standards were derived as the highest air quality measured data over the most recent 3 years of meteorological data 2016-2018. Background concentrations for the National 1-hour NO2 is the 3 year average of the $98^{\text {th }}$ percentile of the daily maximum 1-hour average.
2 Highest impacts generally occur at the existing residences within the project boundaries.

Table 30
Localized Assessment of Project Phase 1 and Phase 2 Full Build Out (2018) Emissions Maximum Impacts Outside the Project Boundaries (Without Mitigation)

| Pollutant | Averaging Time, Units | Existing Background ${ }^{1}$ | Air Concentration ${ }^{2}$ |  | Standard/ Threshold | Total Impact Exceeds Threshold |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Project Local Increase | Total (Background + Project) |  |  |
| Carbon Monoxide | 1 hour, ppm | 2.2 | 0.03 | 2.2 | 20.0 | No |
|  | 8 hour, ppm | 2.0 | 0.02 | 2.0 | 9.0 | No |
| Nitrogen Dioxide | State 1 hour, ppm | 0.073 | 0.015 | 0.088 | 0.180 | No |
|  | National 1 hour, ppm | 0.058 | 0.015 | 0.073 | 0.100 | No |
|  | Annual, ppm | 0.015 | 0.001 | 0.016 | 0.030 | No |
| PM $1_{10}$ | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 2.9 | 2.9 | 2.5 | No |
|  | Annual, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 1.8 | 1.8 | 1.0 | No |
| PM 2.5 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 0.8 | 0.8 | 2.5 | No |

## Notes:

$\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubic meter (a concentration unit); NA = Not Applicable, the SCAQMD threshold methodology does not require a background for $\mathrm{PM}_{10}$ or $\mathrm{PM}_{2.5}$
1 Background data for CO and $\mathrm{NO}_{2}$ for State standards were derived as the highest air quality measured data over the most recent 3 years of meteorological data 2016-2018. Background concentrations for the National 1-hour NO2 is the 3 year average of the $98^{\text {th }}$ percentile of the daily maximum 1-hour average.
2 Highest impacts generally occur at the existing residences along Gilman Springs Road to the east of the project.

As noted from Table 29, the project would exceed the SCAQMD's significance thresholds for the annual $\mathrm{PM}_{10}$ threshold for receptors located within the project's boundaries. As shown in table 30, the significance thresholds would not be exceeded at any sensitive receptor located outside of the project boundaries.

It is important to note the Project Phase 1 and Phase 2 Full Build Out (2020) conditions assumes that the project's emissions are at the levels that would occur in 2020. The majority of the project's operational emissions are from on-road mobile sources, more particularly, heavy-duty trucks that contribute a disproportionate amount of emissions compared to passenger vehicles. Emissions from on-road mobile sources are regulated at the State and Federal levels and, therefore, are outside of the control of local agencies such as the City and the SCAQMD. For example, the CARB is working closely with the USEPA, engine and vehicle manufacturers, and other interested parties to identify programs that will reduce emissions from heavy-duty diesel vehicles in California. Emission reductions arise from a combination of measures including the use of ultra-low sulfur diesel fuel, new emission standards for large diesel engines, restrictions on diesel engine idling, addition of post-combustion filter and catalyst equipment, and retrofits for business and government diesel truck fleets. The implementation of these emission reductions will also result in reductions of other pollutants such as $\mathrm{NO}_{\mathrm{x}}$, VOC, and CO. As these emission reduction programs are implemented and there is a turnover in the use of older vehicles with newer and cleaner vehicles, the project's operational emissions are expected to decline significantly in the future. Emission controls on mobile source vehicles already adopted by the CARB particularly dealing with $\mathrm{NO}_{\mathrm{x}}$ and $\mathrm{PM}_{10}$ controls on heavy duty trucks will reduce truck emissions significantly over time. Thus, two Project (2020) conditions represent highly conservative estimates, in terms of overestimating of the project's operational impacts.

## Proposed Project Development Schedule LST Assessment

The final localized threshold assessment condition examined potential local project impacts considering the proposed construction and build out schedule of the project over a time period of 15 years from the commencement of construction in 2020 to the final build out and operation in 2035. This condition examined three specific time periods:

- The project's onsite maximum daily and annual construction emissions were estimated using the CalEEMod land use emission model and the construction equipment inventory and activities provided by the applicant. The project's onsite operational emissions, principally from the project's mobile sources, were derived from detailed traffic volume data provided by the project's TIA that reflects a completely operational Phase 1. The TIA applied a comprehensive regional transportation model to develop daily and peak hour traffic volumes for 2025 and buildout from the project's mobile sources. Peak hour and daily project traffic volumes were developed for each year from 2020 to buildout for roadway segments within and along the boundaries of the project using the following assumptions:
- Project operational traffic volumes were assumed to be zero in 2020, the year that project construction would commence.
- Traffic volumes for the years 2021 to 2024 (the completion year for Phase 1 operations) were interpolated from 2025 volumes provided in the TIA by applying the annual project occupancy schedule to the 2025 traffic volumes.
- Traffic volumes for the years 2026 to 2034 were interpolated from the provided traffic volumes at buildout by applying the annual project occupancy schedule.


## Year 2025

The localized impacts for the short-term construction and operational activities were analyzed using an air dispersion model (EPA AERMOD Model) to simulate the transport and dispersion of project-related emissions through the air. These impacts were then compared to the applicable SCAQMD localized concentration thresholds.

The estimated maximum localized air quality impacts from the construction and operation of the project at Phase 1 buildout are summarized in Table 31, Localized Assessment - Construction and Operation, Year 2025 Maximum Impacts within the Project Boundaries (Without Mitigation), for locations within the project's boundaries. These maximum impacts were found at the locations of the existing residences within the project boundaries. Table 32, Localized Assessment - Construction and Operation, Year 2025 Maximum Impacts Outside the Project Boundaries (Without Mitigation), summarizes the highest air quality impacts for sensitive receptors located outside of the project boundaries. These maximum impacts were found at the locations of the existing residences outside of the project boundary located west of the project boundary along Merwin Street. As noted from these two tables, project impacts would exceed the significance thresholds for $\mathrm{PM}_{10}$ for locations within the project boundaries, and thus represents a significant impact without mitigation.

Table 31
Localized Assessment - Construction and Operation, Year 2025 Maximum Impacts Within the Project Boundaries (Without Mitigation)

| Pollutant | Averaging Time, Units | Existing Background 1 | Air Concentration |  | Standard/ <br> Threshold | Total Impact Exceeds Threshold? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Project Local Increase | Total <br> (Background <br> + Project) |  |  |
| Carbon <br> Monoxide | 1 hour, ppm | 2.2 | 0.09 | 2.3 | 20.0 | No |
|  | 8 hour, ppm | 2.0 | 0.03 | 2.0 | 9.0 | No |
| Nitrogen Dioxide | State 1 hour, ppm | 0.073 | 0.030 | 0.104 | 0.180 | No |
|  | National 1 hour, ppm | 0.058 | 0.021 | 0.079 | 0.100 | No |
|  | Annual, ppm | 0.015 | 0.002 | 0.017 | 0.030 | No |
| PM ${ }_{10}$ | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 5.7 | 5.7 | $2.5^{2}$ | Yes |
|  | Annual, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 2.6 | 2.6 | 1.0 | Yes |
| PM 2.5 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 1.5 | 1.5 | $2.5{ }^{2}$ | No |

Notes:
$\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubic meter (a concentration unit), ppm = parts per million (a concentration unit); NA = Not Applicable, the SCAQMD threshold methodology does not require a background for $\mathrm{PM}_{10}$ or $\mathrm{PM}_{2.5}$
1 Background data for CO and $\mathrm{NO}_{2}$ for State standards were derived as the highest air quality measured data over the most recent 3 years of meteorological data 2016-2018. Background concentrations for the National 1-hour NO2 is the 3 year average of the $98^{\text {th }}$ percentile of the daily maximum 1-hour average.
2 During periods when both construction and operation overlap the SCAQMD recommends the operational significance thresholds for $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ as opposed to the construction thresholds which are $10.4 \mathrm{ug} / \mathrm{m}^{3}$ for $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$. This provides a very conservative threshold for determining the significance of project impacts.

Table 32
Localized Assessment - Construction and Operation, Year 2025 Maximum Impacts Outside the Project Boundaries (without Mitigation)

| Pollutant | Averaging Time, Units | Existing Background 1 | Air Concentration |  | Standard/ <br> Threshold | Total Impact Exceeds Threshold? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Project Local Increase | Total <br> (Background <br> + Project $)$ |  |  |
| Carbon Monoxide | 1 hour, ppm | 2.2 | 0.11 | 2.3 | 20.0 | No |
|  | 8 hour, ppm | 2.0 | 0.03 | 2.0 | 9.0 | No |
| Nitrogen Dioxide | State 1 hour, ppm | 0.073 | 0.037 | 0.110 | 0.180 | No |
|  | National 1 hour, ppm | 0.058 | 0.024 | 0.082 | 0.100 | No |
|  | Annual, ppm | 0.015 | 0.001 | 0.016 | 0.030 | No |
| PM 10 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 5.4 | 5.4 | $2.5^{2}$ | Yes |
|  | Annual, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 0.6 | 0.6 | 1.0 | No |
| PM 2.5 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 1.3 | 1.3 | $2.5^{2}$ | No |

Notes:
$\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubic meter (a concentration unit), ppm = parts per million (a concentration unit); NA = Not Applicable, the SCAQMD threshold methodology does not require a background for $\mathrm{PM}_{10}$ or $\mathrm{PM}_{2.5}$
1 Background data for CO and $\mathrm{NO}_{2}$ for State standards were derived as the highest air quality measured data over the most recent 3 years of meteorological data 2016-2018. Background concentrations for the National 1-hour NO2 is the 3 year average of the $98{ }^{\text {th }}$ percentile of the daily maximum 1-hour average.
2 During periods when both construction and operation overlap the SCAQMD recommends the operational significance thresholds for $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ as opposed to the construction thresholds which are $10.4 \mathrm{ug} / \mathrm{m}^{3}$ for $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$. This provides a very conservative threshold for determining the significance of project impacts.

## Year 2022

The year 2022 was selected for the LST Analysis for two principal reasons: 1) the year 2022 corresponds to the year with the highest combined total onsite construction and operational emissions for $\mathrm{NO}_{\mathrm{x}}$ and $\mathrm{PM}_{2.5}$, the second highest onsite emissions for CO , and the fourth highest onsite emissions of $\mathrm{PM}_{10}$; and 2) the location of the building construction in 2022 places the construction emissions nearest to the existing residences located west of the project boundary along Merwin Street.

The project's maximum combined impacts from construction and operations during 2022 are shown in Table 33, Localized Assessment - Construction and Operation, Year 2032 Maximum Impacts Within the Project Boundaries (Without Mitigation), for the existing sensitive receptors located within the project boundaries along with the SCAQMD-recommended significance thresholds. Table 34, Localized Assessment - Construction and Operation, Year 2032 Maximum Impacts Outside the Project Boundaries (Without Mitigation), shows the maximum combined impacts for sensitive receptors located outside of the project boundaries. Maximum impacts outside of the project boundary were found within the residential areas located to the west of the project boundary. As shown in these tables, the project would exceed the SCAQMD's significance thresholds for $\mathrm{PM}_{10}$ at locations within the project boundary and outside of the project boundary and $\mathrm{NO}_{\mathrm{x}}$ within the project boundary.

Table 33

## Localized Assessment - Construction and Operation, Year 2032 Maximum Impacts Within the Project Boundaries (Without Mitigation)

| Pollutant | Averaging Time, Units | Existing Background ${ }^{1}$ | Air Concentration ${ }^{2}$ |  | Standard/ <br> Threshold | Total Impact Exceeds Threshold? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Project Local Increase | Total (Background + Project) |  |  |
| Carbon <br> Monoxide | 1 hour, ppm | 2.2 | 0.13 | 2.3 | 20.0 | No |
|  | 8 hour, ppm | 2.0 | 0.04 | 2.0 | 9.0 | No |
| Nitrogen Dioxide | State 1 hour, ppm | 0.073 | 0.056 | 0.129 | 0.180 | No |
|  | National 1 hour, ppm | 0.058 | 0.048 | 0.106 | 0.100 | Yes |
|  | Annual, ppm | 0.015 | 0.002 | 0.017 | 0.030 | No |
| PM10 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 5.2 | 5.2 | $2.5^{3}$ | Yes |
|  | Annual, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 1.4 | 1.4 | 1.0 | Yes |
| PM 2.5 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 1.6 | 1.6 | $2.5^{3}$ | No |

$\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubic meter (a concentration unit)
NA = Not Applicable, the SCAQMD threshold methodology does not require a background for $\mathrm{PM}_{10}$ or $\mathrm{PM}_{2.5}$
1 Background data for CO and $\mathrm{NO}_{2}$ for State standards were derived as the highest air quality measured data over the most recent 3 years of meteorological data 2016-2018. Background concentrations for the National 1-hour NO2 is the 3 year average of the $98{ }^{\text {th }}$ percentile of the daily maximum 1-hour average.
2 Highest impacts at any receptor located outside of the boundaries of the project generally occur in the residential areas to the west of the project.
3 During periods when both construction and operation overlap the SCAQMD recommends the operational significance thresholds for $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ as opposed to the construction thresholds which are $10.4 \mathrm{ug} / \mathrm{m}^{3}$ for $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$. This provides a very conservative threshold for determining the significance of project impacts.

Table 34
Localized Assessment - Construction and Operation, Year 2032 Maximum Impacts Outside the Project Boundaries (without Mitigation)

| Pollutant | Averaging Time, Units | Existing Background ${ }^{1}$ | Air Concentration ${ }^{2}$ |  | Standard/ <br> Threshold | Total Impact Exceeds Threshold? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Project Local Increase | Total (Background + Project) |  |  |
| Carbon Monoxide | 1 hour, ppm | 2.2 | 0.11 | 2.3 | 20.0 | No |
|  | 8 hour, ppm | 2.0 | 0.03 | 2.0 | 9.0 | No |
| Nitrogen Dioxide | State 1 hour, ppm | 0.073 | 0.041 | 0.115 | 0.180 | No |
|  | National 1 hour, ppm | 0.058 | 0.036 | 0.094 | 0.100 | No |
|  | Annual, ppm | 0.015 | 0.001 | 0.016 | 0.030 | No |
| PM 10 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 4.0 | 4.0 | $2.5^{3}$ | Yes |
|  | Annual, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 0.8 | 0.8 | 1.0 | No |
| PM 2.5 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 1.3 | 1.3 | $2.5^{3}$ | No |

$\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubic meter (a concentration unit)
NA = Not Applicable, the SCAQMD threshold methodology does not require a background for $\mathrm{PM}_{10}$ or $\mathrm{PM}_{2.5}$
1 Background data for CO and nitrogen dioxide derived as the highest air quality measured data over a 3 -year rolling average from 2014-2017.
2 Highest impacts at any receptor located outside of the boundaries of the project generally occur in the residential areas to the east of the project across Gilman Springs Road
3 During periods when both construction and operation overlap the SCAQMD recommends the operational significance thresholds for $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ as opposed to the construction thresholds which are $10.4 \mathrm{ug} / \mathrm{m}^{3}$ for $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.55}$. This provides a very conservative threshold for determining the significance of project impacts.

## Year 2035

The year 2035 represents a long-term planning year when both phases of the project would be fully in operation. Operational emissions during 2035 were estimated based on the project's trip generation and project-related travel along the local roadway network within and along the project boundaries. Table 35, Localized Assessment - Project Operation Full Build Out, Year 2035 Maximum Impacts Within the Project Boundaries (Without Mitigation), shows the maximum localized air quality impacts for 2035 relative to the background air quality levels at the existing sensitive receptors located within the project boundaries. Table 36, Localized Assessment - Project Operation, Year 2035 Maximum Impacts Outside of the Project Boundaries (Without Mitigation), identifies the highest localized impacts for sensitive receptors located outside of the project boundaries. As shown in Table 35 and Table 36, the project would exceed $\mathrm{PM}_{10}$ LSTs for receptors within and outside the project boundary and would, therefore, represent a significant impact without mitigation.

Table 35
Localized Assessment - Project Operation Full Build Out, Year 2035 Maximum Impacts Within the Project Boundaries (Without Mitigation)

| Pollutant | Averaging Time, Units | Existing Background ${ }^{1}$ | Air Concentration |  | Standard/ <br> Threshold | Total Impact Exceeds Threshold? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Project Local Increase | Total (Background + Project) |  |  |
| Carbon Monoxide | 1 hour, ppm | 2.2 | 0.04 | 2.2 | 20 | No |
|  | 8 hour, ppm | 2.0 | 0.02 | 2.0 | 9.0 | No |
| Nitrogen Dioxide | State 1 hour, ppm | 0.073 | 0.018 | 0.091 | 0.180 | No |
|  | National 1 hour, ppm | 0.058 | 0.016 | 0.074 | 0.100 | No |
|  | Annual, ppm | 0.015 | 0.003 | 0.018 | 0.030 | No |
| PM 10 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 8.3 | 8.3 | 2.5 | Yes |
|  | Annual, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 4.6 | 4.6 | 1.0 | Yes |
| PM2.5 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 2.1 | 2.1 | 2.5 | No |

[^48]Table 36
Localized Assessment - Project Operation, Year 2035 Maximum Impacts Outside of the Project Boundaries (Without Mitigation)

| Pollutant | Averaging Time, Units | Existing Background ${ }^{1}$ | Air Concentration |  | Standard/ <br> Threshold | Total Impact Exceeds Threshold? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Project Local Increase | Total (Background + Project) |  |  |
| Carbon Monoxide | 1 hour, ppm | 2.2 | 0.03 | 2.2 | 20 | No |
|  | 8 hour, ppm | 2.0 | 0.01 | 2.0 | 9.0 | No |
| Nitrogen Dioxide | State 1 hour, ppm | 0.073 | 0.013 | 0.086 | 0.180 | No |
|  | National 1 hour, ppm | 0.058 | 0.012 | 0.070 | 0.100 | No |
|  | Annual, ppm | 0.015 | 0.001 | 0.016 | 0.030 | No |
| PM 10 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 2.50 | 2.50 | 2.5 | Yes |
|  | Annual, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 0.95 | 0.95 | 1.0 | No |
| PM 2.5 | 24 hour, $\mu \mathrm{g} / \mathrm{m}^{3}$ | NA | 0.66 | 0.66 | 2.5 | No |

$\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubic meter (a concentration unit); NA = Not Applicable, the SCAQMD threshold methodology does not require a background for $\mathrm{PM}_{10}$ or $\mathrm{PM}_{2.5}$
1 Background data for CO and $\mathrm{NO}_{2}$ for State standards were derived as the highest air quality measured data over the most recent 3 years of meteorological data 2016-2018. Background concentrations for the National 1-hour $\mathrm{NO}_{2}$ is the 3 -year average of the $98{ }^{\text {th }}$ percentile of the daily maximum 1-hour average.

## Summary

The localized significance analysis demonstrates that without mitigation, the project would exceed the localized significance thresholds for $\mathrm{NO}_{\mathrm{x}}$ and $\mathrm{PM}_{10}$ for one or more of the LST assessment years $(2022,2025$, or 2035) analyzed. Therefore, according to this criterion, the air pollutant emissions would result in a significant impact and could exceed or contribute to an exceedance of the national 1-hour $\mathrm{NO}_{2}$ annual, as well as the 24 -hour and annual $\mathrm{PM}_{10}$ ambient air quality standards.

## Toxic Air Contaminants

## Acute and Chronic Health Risk Impacts

Acute and chronic health risk impact analyses examine the increased risk for non-cancer health outcomes associated with project-related air pollutant emissions. Since these are non-cancer health impacts, as described below, the impacts are analyzed separately from increased cancer risk associated with air pollution.

The construction and operation of the project would not emit any toxic chemicals in any significant quantity other than vehicle exhaust. While there may be other toxic substances in use on site, risk would be negligible due to intermittent use (i.e., chemicals from periodic maintenance), dispersion of chemicals throughout the project site, and compliance with State and Federal handling regulations.

Exposure to diesel exhaust can have immediate (acute) health effects, such as irritation of the eyes, nose, throat, and lungs, and can cause coughs, headaches, light headedness, and nausea. In studies with human volunteers, diesel exhaust particles made people with allergies more susceptible to the materials to which they are allergic, such as dust and pollen. Exposure to diesel exhaust also causes inflammation in the lungs, which may aggravate chronic respiratory symptoms and increase the frequency or intensity of asthma attacks. However, according to the rulemaking on Identifying Particulate Emissions from Diesel-Fueled Engines as a Toxic Air Contaminant ${ }^{83}$, the available data from studies of humans exposed to diesel exhaust are not sufficient for deriving an acute non-cancer REL.

The analysis, however, does derive an estimate of acute non-cancer risks by examining the acute health effects of the various toxic components that comprise diesel and gasoline emissions. There is specific guidance for estimating the acute non-cancer hazards from these toxic components based on chemical profiles established by the CARB which was used in the analysis to determine the project's acute non-cancer hazards.

To determine the project's chronic non-cancer hazard impact, the highest emissions concentrations was determined covering the years 2020 (the commencement of project construction) to 2035 (the full build out of the project). In this regard, the highest annual average concentrations prior to mitigation determined through air dispersion modeling occurred at an existing residence located within the project boundaries. This concentration was due to the impacts of emissions from the offroad construction equipment and operation equipment. This level of impact results in a chronic

[^49]non-cancer HI of 0.04 . This HI is less than the SCAQMD's significance level of 1.0 , and is, therefore, less than significant.

The estimation of the acute non-cancer HI requires the estimation of the maximum 1-hour impacts of toxic air contaminant (TAC) components in organic gases and PM emissions. For project construction, estimates of the maximum 1-hour ROG and PM exhaust emissions were derived from the project's peak daily construction equipment emissions; for project operation, estimates of the project's maximum 1-hour TOG and PM emissions were derived from the project's peak hour traffic data along the nearly 230 roadway segments contained within the study area and then speciated or broken down into the various TAC components by fuel type, gasoline and diesel, and emission type (i.e., exhaust, evaporative, brake wear and tire wear). The acute non-cancer HI was determined for a worst-case condition that assumed the project would be constructed between 2020 and 2034 and full operation starts in 2035. Based on this information, the maximum acute non-cancer HI found at any receptor within the model domain prior to mitigation was 0.07 during any year of project construction and operation, which is less than the SCAQMD's non-cancer HI of 1.0, and, therefore, is less than significant without mitigation.

Therefore, the potential for short-term acute and chronic exposure from TAC emissions are considered to be less than significant and no mitigation is required.

## Cancer Risks

As noted in Section 4, Methodology, the project health risk assessment examined the following condition for impacts to both sensitive/residential and worker receptors:

- Proposed Project Development condition which evaluates the impacts of project-related construction and operational traffic diesel PM emissions as if the project were built out in accordance with its proposed phased construction and operational buildout schedule commencing with the construction of Phase 1 in 2020 and the full build out in 2035.

The mitigation conditions require that all diesel-fueled haul trucks during construction be 2010 or newer, diesel trucks accessing the project during operation be model year 2010 or newer, and that all on-site equipment be Tier 4.

To be conservative, the HRA relied on EMFAC2017 to determine the breakdown of vehicle types and fuel types and did not consider the potential reductions in TACs emissions and health risks from increased penetration of zero emission vehicles (ZEVs). The increased penetration of ZEVs is speculative, but likely given rapid technology advancement and more stringent legislation. For example, this HRA assumed that the 2035 heavy duty truck fleet would be made up of 89 percent diesel, 9 percent gasoline, 3 percent natural gas, and 0 percent electric. According to the WLC Transportation Energy Technical Report (ESA, 2019), a High EV Penetration scenario projects that the heavy duty truck fleet would consist 30 percent electric by 2035 . Therefore, accounting for the High EV Penetration scenario would result in a greatly reduced health risk impact than what has been calculated in this analysis.

## Localized Risk

Cancer Risk for Sensitive/Residential Receptors. For reference, a risk level of 1 in a million implies a likelihood that up to one person, out of one million equally exposed people would contract cancer if exposed continuously ( 24 hours per day) to the specific concentration of TAC emissions over the duration of the exposure. This risk would be an excess cancer risk that is in addition to any cancer risk borne by a person not exposed to these air toxics. ${ }^{84}$

Table 37, Estimated Cancer Risks, 30-Year Exposure for Sensitive/Residential Receptors Starting from Beginning of Project Construction (Construction and Operation HRA), Without Mitigation, presents the estimated cancer risks for the 30 -year exposure scenario that starts from the beginning of project construction (Construction + Operation HRA), which uses updated construction and operational emissions values. The results are provided separately for project construction emissions, operational emissions, and the total project emissions prior to the application of emission mitigation. Table 38, Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Receptors Starting from Beginning of Project Full Operation in 2035, Without Mitigation, shows the estimated cancer risk for the 30 -year exposure scenario that starts from the beginning of project full operation in 2035 (Operational HRA), which used the 2035 emission levels to represent the emissions for 2035 to 2064.

On the basis of the results shown in Table 37, the project would exceed the SCAQMD's cancer risk significance threshold of 10 in a million prior to the application of mitigation and would represent a significant impact. Table 38 shows that during full project operation, the estimated maximum cancer risk would exceed the 10 in a million threshold within and outside of the Project boundary and would represent a significant impact. Overall, without mitigation, the Project is expected to have a significant impact mainly due to diesel PM emissions from construction and heavy-duty diesel truck activities.

Figure 23, Incremental Project Cancer Risk - No Mitigation (Construction and Operation), and Figure 24, Incremental Project Cancer Risk - No Mitigation (30 Years of Full Operation), show the incremental cancer risks for the project location. The figures show the results prior to the application of mitigation.

Estimates of Cancer Risk for School Site Receptors. Cancer risk estimates at school sites in the area were prepared assuming a 9 -year exposure during construction and operation as well as operation at full buildout. Prior to the application of the mitigation, the maximum cancer risk is at Ridgecrest Elementary School for the construction + operational scenario and would be approximately 12.6 in a million. Similarly, the maximum cancer risk for the full operational scenario is 3.54 in one million is at Bear Valley Elementary School. Therefore, maximum impacts at schools are greater than the 10 in one million significance threshold prior to mitigation and are potentially significant without mitigation.

Estimates of Cancer Risk for Worker Receptors. Estimates of worker exposures were prepared based on the assumption of a 25 -year exposure duration for 250 days per year and 8 hours per day

[^50]as described in the methodology section above. Note that the OEHHA early-in-life age factors do not apply to worker receptors. The highest worker cancer risk estimates prior to the application of mitigation is approximately 10.9 in one million for the construction + operational scenario and 3.8 in one million for the full operational scenario, both at one onsite location. Therefore, cancer risk for worker receptors anywhere in the revised HRA's study area is greater than the 10 in one million significance threshold. Projected impacts are potentially significant without mitigation.

Estimates of Cancer Burden. The cancer burden calculation provides an estimate of the increased number of cancer cases as a result of exposures to TAC emissions. The total cancer burden is the product of the number of persons in a population area (such as a census tract) and the estimated individual risk from TACs in that population area and then summed over all of the population areas. The SCAQMD indicates that the burden calculation includes those population units having an incremental cancer risk of 1 in a million or greater.

Cancer risks were estimated at the geographical center (centroid) of census tracts that are within the study area of the HRA. For the 30-year exposure duration in accordance with "Current OEHHA Guidance", the cancer burden is estimated to be 0.64 out of a population of about 176,824 individuals that were estimated to have a cancer risk of 1 in a million or more prior to mitigation. The SCAQMD has established a threshold for cancer burden of 0.5 . Therefore, the project would potentially exceed the SCAQMD's cancer burden significance threshold prior to the application of mitigation.

These analyses are based on the assumption that new technology diesel exhaust cause cancer, contrary to what was found by the HEI study and discussed in more detail below.
Section 5: Environmental Impacts

$$
\begin{aligned}
& \text { Table } 37 \\
& \text { Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Receptors Starting from Beginning of Project Construction }
\end{aligned}
$$

Section 5: Environmental Impacts

Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Receptors Starting from Beginning of Project Full Operation in 2035,

| Receptor Location | Total Incremental Increase in <br> Cancer Risk |
| :--- | :---: | :---: | :---: |
| (risk/million) |  |$\quad$| SCAQMD Cancer Risk Significance |
| :---: |
| Threshold |
| (risk/million) |$\quad$| Exceeds Threshold? |
| :---: |

[^51]Air Quality, Greenhouse Gas, and Health Risk Assessment Report



## Regional Freeway Network Risk

As mentioned in the methodology section, the HRA study area was focused on the most extensive emissions from project related activities. Because project activity is highest on-site and surrounding the Project boundary, the Project's emissions and associated health impact decreases with an increase in distance from the project site. This is demonstrated by the cancer risk contours in Figures 23 and 24. The HRA study area includes approximately 18 miles of freeway segments along SR-60 that extend from north of the project boundary 8.6 miles toward the west (toward Port of Long Beach) and 9 miles toward east (toward Palm Springs), and the HRA receptor grids include receptors along the SR-60 freeway. Based on the results shown in Figure 23 for the construction plus operation scenario, without mitigation, a segment surrounding the project boundary will potentially have an incremental cancer risk exceeding the SCAQMD 10 in one million threshold; at an approximate distance of 2.5 miles away from the project boundary. Based on results shown in Figure 24 for 30 years of the full project operation, without mitigation, a similar section surrounding the Project boundary out to an approximate distance of 2.5 miles will potentially have an incremental cancer risk exceeding 10 in one million. Some receptors near the SR-60 could also exceed the 10 in one million cancer risk threshold.

The Project's mitigation conditions require that all construction equipment over 50 horsepower would be Tier 4, all diesel trucks accessing the project during operation be model year 2010 or newer, that all on-site equipment be Tier 4. Also, air filtration system meeting ASHRAE Standard 52.2 MERV-13 standards will be offered to the owners of the houses located at 13100 World Logistics Center Parkway (formerly Theodore Street) and 12400 World Logistics Center Parkway (formerly Theodore Street).

Because Project-generated vehicle trips and associated impacts decrease with an increase in distance from the project site, the project impact along the regional freeway network outside the HRA's study area will be less than those presented in Figures 23 and 24. Therefore, the project's impact to the regional freeway network will be the greatest during Project full operation, as shown in Tables 54 and 55, and will be less than significant with mitigation.

Of note, results in Figure24 is based on project construction overlapping with project operations (partial project operation since project is not built out yet) while Figure 24 is based on full project operation. The difference between the two sets of results indicate that the incremental cancer risk in Figure 23 is mainly driven by the DPM emissions from onsite construction equipment. Therefore, the impact would be localized near the project site and will disappear once construction completes.

## Carbon Monoxide Hotspots

Vehicular trips associated with the development of the project could contribute to congestion at intersections and along roadway segments in the project vicinity resulting in potential local CO "hotspot" impacts. The primary mobile source pollutant of local concern is CO, which is a direct function of vehicle travel speeds and idling time and, thus, traffic flow conditions. CO transport is extremely limited; it disperses rapidly with distance from the source under normal meteorological conditions. However, under certain extreme meteorological conditions, CO concentrations proximate to a congested roadway or intersection may reach unhealthful levels affecting local
sensitive receptors (residents, school children, etc.). High CO concentrations are typically associated with roadways or intersections operating at unacceptable levels of service or with very high traffic volumes. In areas with high ambient background CO concentrations, modeling is recommended to determine a project's effect on local CO levels.

Carbon monoxide (CO) "hotspot" thresholds ensure that emissions of CO associated with traffic impacts from a project in combination with CO emissions from existing and forecast regional traffic do not exceed State or Federal standards for CO at any traffic intersection affected by the project. Project concentrations may be considered significant if a CO hot spot intersection analysis determines that project-generated CO concentrations cause a localized violation of the State CO 1-hour standard of 20 ppm , State CO 8-hour standard of 9 ppm , Federal CO 1-hour standard of 35 ppm , or Federal CO 8-hour standard of 9 ppm .

A CO hotspot is a localized concentration of CO that is above the State or Federal 1-hour or 8hour CO ambient air standards. Localized high levels of CO are associated with traffic congestion and idling or slow-moving vehicles. To provide a worst-case scenario, CO concentrations are estimated at project-impacted intersections where the concentrations would be the greatest.

This analysis follows guidelines recommended by the CO Protocol ${ }^{85}$ and the SCAQMD. According to the CO Protocol, intersections with Level of Service (LOS) E or F require detailed analysis. In addition, intersections that operate under LOS D conditions in areas that experience meteorological conditions favorable to CO accumulation require a detailed analysis. The LOS for intersections is determined in the TIA. The SCAQMD recommends that a local CO hot spot analysis be conducted if the intersection meets one of the following criteria: (1) the intersection is at LOS D or worse and where the project increases the volume to capacity ratio by 2 percent, or (2) the project decreases LOS at an intersection from C to D. A decrease in LOS, i.e., from C to D, means that there is more traffic and more delay at the intersection.

For this project analysis, the intersections with the highest traffic volumes and the LOS E or F before mitigation were identified for 2025 using information from the table in the TIA "Intersection LOS under 2025 Plus Phase 1 Conditions." The intersections with the greatest LOS before mitigation were also identified for buildout using information from the table in the TIA "Intersection LOS under 2040 Plus Build-out Conditions."

The CO concentrations were estimated using the CALINE4 model using 2025 and 2035 emission factors. The emission factors are for "all" vehicle classes and are not adjusted for a projectspecific fleet to provide a worst-case scenario. In addition, the emission factors do not take into account the project mitigation reductions from requiring that all diesel trucks are model year 2010 or newer. Results of the CO hotspot modeling are provided in Appendix C.

Table 39, Carbon Monoxide Concentrations at Intersections, 2025, shows estimated CO concentrations at year 2025 plus project traffic conditions. The estimated CO concentrations at year buildout are shown in Table 40, Carbon Monoxide Concentrations at Intersections, 2035.

[^52]As shown in the tables, the estimated 1-hour and 8-hour average CO concentrations from projectgenerated and cumulative traffic plus the background concentrations are below the State and Federal standards. No CO hotspots are anticipated because of traffic-generated emissions by the project in combination with other anticipated development in the area. Therefore, the mobile emissions of CO from the project are not anticipated to contribute substantially to an existing or projected air quality violation of CO. Therefore, according to this criterion, air pollutant emissions during operation would result in a less than significant impact. No mitigation is required.

Table 39
Carbon Monoxide Concentrations at Intersections, 2025

| Intersection | Peak Hour | CO Concentration (ppm) |  | Significan t Impact? |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 Hour | 8 Hour |  |
| Alessandro Boulevard and Chicago Avenue | PM | 2.0 | 1.3 | No |
| Alessandro Boulevard and Canyon Crest Drive | PM | 1.6 | 1.1 | No |
| Alessandro Boulevard and Mission Grove Parkway | PM | 1.4 | 0.9 | No |
| Arlington Avenue and Victoria Avenue | PM | 1.1 | 0.7 | No |
| Alessandro Boulevard and Sycamore Canyon Boulevard | AM | 1.1 | 0.7 | No |

- ppm = parts per million
- A significant impact would occur if the estimated CO concentration is over the 1-hour State standard of 20 ppm or the 8 -hour State/Federal standard of 9 ppm.

Table 40
Carbon Monoxide Concentrations at Intersections, 2035

| Intersection | Peak | CO Concentration <br> (ppm) |  | Significant <br> Impact? |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 Hour | 8 Hour |  |
| Alessandro Boulevard and Chicago Avenue | PM | 1.9 | 1.3 | No |
| Alessandro Boulevard and Canyon Crest Drive | PM | 1.8 | 1.2 | No |
| Alessandro Boulevard and Sycamore Canyon <br> Boulevard | PM | 1.6 | 1.1 | No |
| Ramona Expressway and Sanderson Avenue | PM | 2.2 | 1.5 | No |
| Alessandro Boulevard and Mission Grove Parkway | PM | 1.5 | 1.0 | N |

- $\quad$ ppm = parts per million
- A significant impact would occur if the estimated CO concentration is over the 1-hour State standard of 20 ppm or the 8 -hour State/Federal standard of 9 ppm .


### 5.5 Odors

## Create objectionable odors affecting a substantial number of people (AIR-5)

The SCAQMD recommends that odor impacts be addressed in a qualitative manner. Such an analysis shall determine whether the project would result in excessive nuisance odors, as defined
under the California Code of Regulations and Section 41700 of the California Health and Safety Code, and thus would constitute a public nuisance related to air quality.

Land uses typically considered associated with odors include wastewater treatment facilities, waste-disposal facilities, or agricultural operations. The project does not contain land uses typically associated with emitting objectionable odors.

SCAQMD Rule 402 dictates that air pollutants discharged from any source shall not cause injury, nuisance, or annoyance to the health, safety, or comfort of the public. With the exception of shortterm construction-related odors (e.g., equipment exhaust, paint, and asphalt odors), the proposed uses that would be developed on the proposed site do not include uses that are generally considered to generate offensive odors (e.g., agricultural uses, wastewater treatment plants, or landfills). While the application of architectural coatings and installation of asphalt may generate odors, these odors are temporary and not likely to be noticeable beyond the project boundaries. SCAQMD Rules 1108 and 1113 identify standards regarding the application of asphalt and architectural coatings, respectively.

SCAQMD Rule 1108 sets limitations on ROG (reactive organic gases), which are similar to and for the purposes of this EIR equivalent to and therefore interchangeable with volatile organic compounds (VOC) content in asphalt. This rule is applicable to any person who supplies, sells, offers for sale, or manufactures any asphalt materials for use in the Basin. Rule 1113 of the SCAQMD deals with the selling and application of architectural coatings. Rule 1113 is applicable to any person who supplies, sells, offers for sale, or manufactures any architectural coating for use in the Basin that is intended to be applied to buildings, pavements, or curbs. This rule is also applicable to any person who applies or solicits the application of any architectural coating within the Basin. Rule 1113 sets limits on the amount of VOC emissions allowed for all types of architectural coatings, along with a time table for tightening the emissions standards in the future. Compliance with Rule 1113 means that architectural coatings used during construction would have VOC emissions that comply with these limits.

The SCAQMD indicates that the number of overall complaints has been declining. Between 2003 and 2007, odor complaints made up 50 to 55 percent of the total nuisance complaints. Over the past decade, odor complaints from paint and coating operations have decreased from 27 to 7 percent and odor complaints from refuse collection stations have increased from 9 to 34 percent.

Diesel exhaust and VOCs would be emitted during construction of the project, which are objectionable to some; however, emissions would disperse rapidly from the project site and therefore should not reach an objectionable level at the nearest sensitive receptors. Diesel exhaust would also be emitted during operation of the project from the long-haul trucks that would visit the project site. However, the concentrations would not be at a level to result in a negative odor response at nearby sensitive or worker receptors. In addition, modern emission control systems on diesel vehicles since 2007 virtually eliminate diesel's characteristic odor.

During blow-down maintenance activities, natural gas odors will be present around the SDG\&E Compressor Plant located on the project site. When this portion of the WLC Specific Plan is developed, these odors will occasionally be detectable from the industrial warehouse properties
adjacent to the SDG\&E facility. These odors will be infrequent and odorized natural gas will not be present in high concentrations. Therefore, potential odor impacts from on-site natural gas operations are considered to be less than significant and do not require mitigation.

Adherence to applicable provisions of these rules is standard for all development within the Basin. In addition, conditions for the design of waste storage areas on the proposed site would be established through the permit process to ensure enclosures are appropriately designed and maintained to prevent the proliferation of odors. Solid waste generated by the proposed on-site uses will be collected by a contracted waste hauler, ensuring that any odors resulting from on-site uses would be adequately managed. Therefore, impacts associated with this issue would be less than significant and no mitigation is required.

### 5.6 Greenhouse Gas Emissions

## Generate GHG Emissions, either directly or indirectly, that may have a significant impact on the environment (GHG-1)

Future development that could occur within the project site could generate GHG emissions during both construction and operation activities. The following activities are associated with the project and could directly or indirectly contribute to the generation of GHG emissions:

- Removal of Vegetation (Land Use Change) and Sequestration: Carbon sequestration is the process of capture and storage of carbon dioxide; trees, vegetation, and soil store carbon in their tissues and wood. The net removal of vegetation for construction from land use change results in a loss of the carbon sequestration in plants. However, planting additional vegetation (sequestration) would result in additional carbon sequestration and would lower the carbon footprint of the project.
- Construction Activities: During construction of the project, GHGs would be emitted through the operation of construction equipment and from worker and builder supply vendor vehicles, each of which typically uses fossil-based fuels to operate. The combustion of fossil-based fuels creates GHGs such as $\mathrm{CO}_{2}, \mathrm{CH}_{4}$, and $\mathrm{N}_{2} \mathrm{O}$. Leaks from installation of refrigeration equipment for air conditioning may occur.
- Gas, Electric, and Water Use: Natural gas use results in the emissions of $\mathrm{CH}_{4}$ (the major component of natural gas) and $\mathrm{CO}_{2}$ from the combustion of natural gas. Electricity use can result in GHG production if the electricity is generated by combusting fossil fuel. Conveying water to the project and treating wastewater also uses electricity.
- Solid Waste Disposal: Solid waste generated by the project could contribute to GHG emissions in a variety of ways. Landfilling and other methods of disposal use energy for transporting and managing the waste, and they produce additional GHGs to varying degrees. Landfilling, the most common waste management practice, results in the release of $\mathrm{CH}_{4}$ from the anaerobic decomposition of organic materials. $\mathrm{CH}_{4}$ is approximately 21 times more potent than $\mathrm{CO}_{2}$. Landfill $\mathrm{CH}_{4}$ can also be a source of energy. In addition, many materials in landfills do not decompose fully, and the carbon that remains is sequestered in the landfill and not released into the atmosphere.
- Motor Vehicle Use: Transportation associated with the project would result in GHG emissions from the combustion of fossil fuels and the use of electricity in daily automobile and truck trips.
- On-site Equipment: During operation of the project, there would be on-site equipment operating, including yard trucks, emergency generators, and forklifts.


## Construction Emissions

The project would emit GHGs mainly from direct sources such as combustion of fuels from worker vehicles and construction equipment, as shown in Table 41, Construction Greenhouse Gas Emissions (Without Mitigation). The GHG emissions are from all phases of construction. The SCAQMD recommends that construction emissions be averaged over a 30 -year period.

Table 41
Construction Greenhouse Gas Emissions (Without Mitigation)

| Year | Annual Emissions <br> (mt CO2e) |
| :---: | :---: |
| 2020 | 18,770 |
| 2021 | 22,198 |
| 2022 | 23,363 |
| 2023 | 23,511 |
| 2024 | 22,113 |
| 2025 | 16,408 |
| 2026 | 12,424 |
| 2027 | 11,692 |
| 2028 | 12,000 |
| 2029 | 11,452 |
| 2030 | 12,311 |
| 2031 | 10,610 |
| 2032 | 9,993 |
| 2033 | 7,451 |
| 2034 | 7,430 |
| Total | $\mathbf{2 2 1 , 7 2 7}$ |
| Averaged over 30 years | $\mathbf{7 , 3 9 1}$ |

$\mathrm{mt} \mathrm{CO}_{2} \mathrm{e}=$ metric tons of carbon dioxide equivalents
Note: The SCAQMD recommends that construction emissions be averaged over a 30-year period.
Sources include onsite construction equipment, worker trips, haul trips, vendor trips, refrigerant installation for the air conditioning in the offices, construction waste, and water use. Values presented in the table may not equal the sum due to rounding.

## Operational Emissions

## Total Emissions, Worst-case Scenario

Operational or long-term emissions occur over the life of the project. Operational emissions for a worst-case buildout condition are shown in Table 42, Project Operational GHG Emissions (Worst-Case 2020 Analysis at Buildout). This is a worst-case analysis because it assumes that the entire project would be build-out in 2020. The emissions are presented by greenhouse gas (in tons per year), which was also converted to metric tons of carbon dioxide equivalents ( $\mathrm{mt} \mathrm{CO}_{2} \mathrm{e}$ ). The
vehicle emissions in the table represent travel within the South Coast Air Basin. The emissions do not take into account mitigation measures to reduce emissions, such as the use of model year 2010 and later diesel trucks on the project site. As shown in the table, the project's uncapped emissions are over the SCAQMD's significance threshold of $10,000 \mathrm{mt} \mathrm{CO}_{2} \mathrm{e}$ per year. Therefore, emissions are potentially significant.

The analysis presented in Table 42, also represents a worst-case analysis because the emission factors do not take into account implementation of California's Mobile Source Strategy and the full reductions expected from newer trucks and cars as a result of the Pavley regulations, the Low Carbon Fuel Standard, and California's Advanced Clean Car program. The emissions are estimated using emission factors from EMFAC2017, CARB's emission factor model, for the year 2020.

Table 42
Project Operational GHG Emissions (Worst-Case 2020 Analysis at Buildout)

| Source | Emissions (metric tons per year) |  |  |  |  | GHG Emissions $\left(\mathrm{mt} \mathrm{CO}_{2} \mathrm{e}\right)^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Carbon Dioxide | Methane | Nitrous Oxide | HFCs | Black Carbon |  |
| Capped Emissions |  |  |  |  |  |  |
| Construction | 7,382 | 0.00 | 0.00 | 0.00 | 0.01 | 7,391 |
| Net Mobile | 245,516 | 6.84 | 31.06 | 0.00 | 8.10 | 261,099 |
| Yard trucks | 7,172 | 0.00 | 0.00 | 0.00 | 0.00 | 7,172 |
| Generator | 242 | 0.01 | 0.00 | 0.00 | 0.03 | 267 |
| Forklifts | 250 | 0.00 | 0.00 | 0.00 | 0.01 | 257 |
| Electricity ${ }^{2}$ | 34,147 | - | - | - | - | 34,147 |
| Water | 2,548 | - | - | - | - | 2,548 |
| Natural gas ${ }^{2}$ | 4,483 | 2.15 | 24.49 | - | 0.00 | 4,689 |
| Total Capped | 300,931 | 44.13 | 144.66 | 0.00 | 8.16 | 317,570 |
| Uncapped Emissions |  |  |  |  |  |  |
| Construction Refrigerants and Waste | 104 | 0.00 | 0.00 | 0.05 | 0.00 | 166 |
| Waste | 7,747 | 457.83 | 0.00 | - | - | 19,193 |
| Refrigerants | 0 | 0.00 | 0.00 | 1.71 | 0.00 | 2,572 |
| Land use change | 1,154 | 0.00 | 0.00 | 0.00 | 0.00 | 1,154 |
| Sequestration | -111 | 0.00 | 0.00 | 0.00 | 0.00 | -111 |
| Total Uncapped | 8,894 | 457.83 | 0.00 | 1.77 | 0.00 | 22,974 |
| Threshold | -- | -- | -- | -- | -- | 10,000 |
| Significant impact? | -- | -- | -- | -- | -- | Yes |

${ }^{1} \mathrm{mt} \mathrm{CO}_{2} \mathrm{e}$ is calculated from the emissions (tons/year) by multiplying by the individual global warming potential (carbon dioxide - 1 , methane -21 , nitrous oxide -310 , hydrofluorocarbons [HFC] -1500, black carbon 760 ) and converted to metric tons by multiplying by $0.9072 .<0.01=$ less than 0.01 .
${ }^{2}$ - Electricity and natural gas emissions estimates are based on minimum compliance with 2019 Title 24 building standards and compliance with RPS.

## Total Project Emissions

Table 43, Project GHG Emissions at Buildout by GHG (Unmitigated), shows the unmitigated capped and uncapped project emissions at buildout, including estimates of the project's mobile emissions estimates for future years based on EMFAC2017 emission factors for the actual year assessed, which take into account the Pavley regulations, the LCFS, and California's Advanced Clean Car Program. Emissions are shown by individual GHG (carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, and black carbon) and totaled using the common unit of metric tons $\mathrm{CO}_{2} \mathrm{e}$ based on the globalwarming potential of each gas. Emissions estimates for electricity and natural gas do not account for Project Design Features that improve building energy efficiency and maximize the use of on-site renewable energy.

Table 43
Project GHG Emissions at Buildout by GHG (Unmitigated)

| Source | Emissions (metric tons per year) |  |  |  |  | GHG Emissions $\left(\mathrm{mt} \mathrm{CO}_{2} \mathrm{e}\right)^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Carbon Dioxide | Methane | Nitrous Oxide | HFCs | Black Carbon |  |
| Capped Emissions |  |  |  |  |  |  |
| Construction | 7,382 | 0.00 | 0.00 | 0.00 | 0.02 | 7,391 |
| Net Mobile | 172,164 | 7.23 | 19.61 | 0.00 | 1.53 | 179,355 |
| Yard trucks | 7,172 | 0.00 | 0.00 | 0.00 | 0.00 | 7,172 |
| Generator | 242 | 0.01 | 0.00 | 0.00 | 0.03 | 267 |
| Forklifts | 250 | 0.00 | 0.00 | 0.00 | 0.01 | 257 |
| Electricity ${ }^{2}$ | 34,147 | - | - | - | - | 34,147 |
| Water | 2,548 | - | - | - | - | 2,548 |
| Natural gas ${ }^{2}$ | 4,483 | 2.15 | 24.49 | - | 0.00 | 4,689 |
| Total Capped | 227,579 | 44.53 | 133.21 | 0.00 | 9.64 | 235,826 |
| Uncapped Emissions |  |  |  |  |  |  |
| Construction Refrigerants and Waste | 104 | 0.00 | 0.00 | 0.05 | 0.00 | 166 |
| Waste | 7,747 | 457.83 | 0.00 | - | - | 19,193 |
| Refrigerants | 0 | 0.00 | 0.00 | 1.71 | 0.00 | 2,572 |
| Land use change | 1,154 | 0.00 | 0.00 | 0.00 | 0.00 | 1,154 |
| Sequestration | -111 | 0.00 | 0.00 | 0.00 | 0.00 | -111 |
| Total Uncapped | 8,894 | 457.83 | 0.00 | 1.77 | 0.00 | 22,974 |
| Threshold | -- | -- | -- | -- | -- | 10,000 |
| Significant impact? | -- | -- | -- | -- | -- | Yes |

${ }^{1} \mathrm{mt} \mathrm{CO}_{2} \mathrm{e}$ is calculated from the emissions (tons/year) by multiplying by the individual global warming potential (carbon dioxide - 1, methane -21 , nitrous oxide -310 , hydrofluorocarbons [HFC] - 1500, black carbon 760)
${ }^{2}$ - Electricity and natural gas emissions estimates are based on minimum compliance with 2019 Title 24 building standards and compliance with RPS.

The total emissions estimate for the project, summarized in Table 44, Project GHG Emissions (Year by Year Without Mitigation), include both construction and operations emissions, and do not account for Project Design Features that improve building energy efficiency and maximize the use of on-site renewable energy; nor do they account for the project's mitigation measures.

Table 44 shows a summary of project emissions (unmitigated) for each year between 2020 and 2064. The analysis assumes the gradual phasing in of structures until buildout (2035) and the gradual phasing out of structures as they reach their presumed lifetime of 30 years. Therefore, the lifetime of the Project extends until 2064 when the final structures are presumed to have reached their 30 -year lifetime. As shown in the table, the annual uncapped emissions are over the SCAQMD's significance threshold of $10,000 \mathrm{mt} \mathrm{CO}_{2}$ e per year for a majority of the years presented. Therefore, emissions are potentially significant, and mitigation is required.

| Source | GHG Unmitigated Emissions (mt CO2 ${ }_{2}$ e/year) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
| Capped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction | 18,770 | 22,198 | 23,363 | 23,511 | 22,113 | 16,408 | 12,424 | 11,692 | 12,000 | 11,452 | 12,311 | 10,610 | 9,993 | 7,451 | 7,430 |
| Net Mobile | 0 | 22,089 | 42,984 | 62,716 | 81,169 | 97,097 | 103,414 | 113,746 | 123,988 | 133,464 | 142,515 | 151,159 | 159,397 | 167,226 | 174,639 |
| Yard trucks | 0 | 813 | 1,625 | 2,438 | 3,250 | 4,053 | 4,371 | 4,689 | 5,016 | 5,334 | 5,652 | 5,970 | 6,288 | 6,606 | 6,924 |
| Generator | 0 | 30 | 61 | 91 | 121 | 151 | 163 | 175 | 187 | 199 | 211 | 222 | 234 | 246 | 258 |
| Forklifts | 0 | 29 | 58 | 87 | 117 | 145 | 157 | 168 | 180 | 191 | 203 | 214 | 226 | 237 | 248 |
| Electricity | 0 | 6,097 | 11,672 | 18,583 | 24,799 | 36,149 | 40,666 | 41,689 | 41,168 | 40,436 | 40,169 | 39,884 | 39,257 | 38,288 | 36,329 |
| Water | 0 | 133 | 267 | 445 | 623 | 953 | 1,283 | 1,458 | 1,562 | 1,667 | 1,817 | 1,986 | 2,156 | 2,326 | 2,437 |
| Natural gas | 0 | 0 | 545 | 1,089 | 1,634 | 2,723 | 3,080 | 3,259 | 3,438 | 3,617 | 3,795 | 3,974 | 4,153 | 4,331 | 4,510 |
| Solar | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Capped | 18,770 | 51,390 | 80,574 | 108,959 | 133,825 | 157,680 | 165,558 | 176,875 | 187,539 | 196,360 | 206,672 | 214,020 | 221,703 | 226,711 | 232,775 |
| Uncapped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction Refrigerants and Waste | 209 | 209 | 209 | 209 | 206 | 102 | 141 | 144 | 141 | 141 | 141 | 141 | 141 | 141 | 118 |
| Waste | 0 | 2,175 | 4,349 | 6,524 | 8,698 | 10,847 | 11,698 | 12,549 | 13,423 | 14,274 | 15,125 | 15,976 | 16,827 | 17,678 | 18,529 |
| Refrigerants | 0 | 291 | 583 | 874 | 1,166 | 1,454 | 1,568 | 1,682 | 1,799 | 1,913 | 2,027 | 2,141 | 2,255 | 2,369 | 2,483 |
| Land use change | 0 | 131 | 262 | 392 | 523 | 652 | 704 | 755 | 807 | 858 | 910 | 961 | 1,012 | 1,063 | 1,114 |
| Sequestration | 0 | -13 | -25 | -38 | -50 | -63 | -68 | -72 | -77 | -82 | -87 | -92 | -97 | -102 | -107 |
| Total Uncapped | 209 | 2,793 | 5,377 | 7,961 | 10,543 | 12,992 | 14,043 | 15,057 | 16,093 | 17,104 | 18,116 | 19,127 | 20,138 | 21,149 | 22,137 |
| Threshold | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
| Significant impact? | No | No | No | No | Yes |


| Table 44bProject GHG Emissions (Year by Year without Mitigation) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | GHG Unmitigated Emissions (mt CO $22 /$ year) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2035 (Buildout) | 2036 | 2037 | 2038 | 2039 | 2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 2046 | 2047 | 2048 | 2049 |
| Capped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Net Mobile | 179,355 | 179,355 | 179,355 | 179,355 | 179,355 | 179,355 | 179,355 | 179,355 | 179,355 | 179,355 | 179,355 | 179,355 | 179,355 | 179,355 | 179,355 |
| Yard trucks | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 |
| Generator | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 |
| Forklifts | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 |
| Electricity | 34,147 | 29,379 | 26,115 | 22,850 | 19,586 | 16,322 | 13,057 | 9,793 | 6,529 | 3,264 | 0 | 0 | 0 | 0 | 0 |
| Water | 2,548 | 2,580 | 2,580 | 2,580 | 2,580 | 2,580 | 2,580 | 2,580 | 2,580 | 2,580 | 0 | 0 | 0 | 0 | 0 |
| Natural gas | 4,689 | 4,689 | 4,689 | 4,689 | 4,689 | 4,689 | 4,689 | 4,689 | 4,689 | 4,689 | 4,689 | 4,689 | 4,689 | 4,689 | 4,689 |
| Solar | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Capped | 228,435 | 223,699 | 220,435 | 217,170 | 213,906 | 210,642 | 207,377 | 204,113 | 200,849 | 197,584 | 191,740 | 191,740 | 191,740 | 191,740 | 191,740 |
| Uneapped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction Refrigerants and Waste | 166 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Waste | 19,193 | 19,193 | 19,193 | 19,193 | 19,193 | 19,193 | 19,193 | 19,193 | 19,193 | 19,193 | 19,193 | 19,193 | 19,193 | 19,193 | 19,193 |
| Refrigerants | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 |
| Land use change | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 |
| Sequestration | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 |
| Total Uncapped | 22,974 | 22,808 | 22,808 | 22,808 | 22,808 | 22,808 | 22,808 | 22,808 | 22,808 | 22,808 | 22,808 | 22,808 | 22,808 | 22,808 | 22,808 |
| Threshold | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
| Significant impact? | Yes |

World Logistics Center
Air Quality, Greenhouse Gas, and Health Risk Assessment Report
Table 44c
Project GHG Emissions (Year by Year without Mitigation)

| Source | GHG Unmitigated Emissions (mt $\mathrm{CO}_{2} \mathrm{e} /$ year) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2050 | 2051 | 2052 | 2053 | 2054 | 2055 | 2056 | 2057 | 2058 | 2059 | 2060 | 2061 | 2062 | 2063 | 2064 | Total (2020-2064) |
| Capped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 221,727 |
| Net Mobile | 154,246 | 132,651 | 107,890 | 87,750 | 57,330 | 45,453 | 40,481 | 37,820 | 35,334 | 32,020 | 28,614 | 25,570 | 22,850 | 21,257 | 19,775 | 5,114,971 |
| Yard trucks | 6,168 | 5,304 | 4,314 | 3,509 | 2,293 | 1,818 | 1,619 | 1,512 | 1,413 | 1,280 | 1,144 | 1,022 | 914 | 850 | 791 | 204,561 |
| Generator | 230 | 198 | 161 | 131 | 85 | 68 | 60 | 56 | 53 | 48 | 43 | 38 | 34 | 32 | 29 | 7,620 |
| Forklifts | 221 | 190 | 155 | 126 | 82 | 65 | 58 | 54 | 51 | 46 | 41 | 37 | 33 | 30 | 28 | 7,340 |
| Electricity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 636,226 |
| Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 44,876 |
| Natural gas | 4,032 | 3,468 | 2,820 | 2,294 | 1,499 | 1,188 | 1,058 | 989 | 924 | 837 | 748 | 668 | 597 | 556 | 517 | 132,674 |
| Solar | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Capped | 164,897 | 141,811 | 115,340 | 93,810 | 61,289 | 48,592 | 43,277 | 40,432 | 37,774 | 34,231 | 30,590 | 27,336 | 24,428 | 22,725 | 21,141 | 6,369,995 |
| Uncapped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction <br> Refrigerants and Waste | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2,559 |
| Waste | 16,506 | 14,195 | 11,545 | 9,390 | 6,135 | 4,864 | 4,332 | 4,047 | 3,781 | 3,426 | 3,062 | 2,736 | 2,445 | 2,275 | 2,116 | 547,418 |
| Refrigerants | 2,212 | 1,902 | 1,547 | 1,258 | 822 | 652 | 580 | 542 | 507 | 459 | 410 | 367 | 328 | 305 | 284 | 73,356 |
| Land use change | 993 | 854 | 694 | 565 | 369 | 293 | 261 | 243 | 227 | 206 | 184 | 165 | 147 | 137 | 127 | 32,922 |
| Sequestration | -95 | -82 | -67 | -54 | -35 | -28 | -25 | -23 | -22 | -20 | -18 | -16 | -14 | -13 | -12 | -3,159 |
| Total Uncapped | 19,615 | 16,869 | 13,720 | 11,159 | 7,291 | 5,780 | 5,148 | 4,809 | 4,493 | 4,072 | 3,639 | 3,252 | 2,906 | 2,703 | 2,515 | 653,096 |
| Threshold | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 450,000 |
| Significant impact? | Yes | Yes | Yes | Yes | No | Yes |
| $\mathrm{mt} \mathrm{CO}_{2} \mathrm{e}=$ metric tons of carbon dioxide equivalents, which is calculated from the emissions (tons/year) by multiplying by the individual global warming potential (carbon dioxide -1 , methan oxide -310 , hydrofluorocarbons -1500 , black carbon 760 ) and converted to metric tons by multiplying by 0.9072 . <br> 1 - Electricity and natural gas emissions estimates account for PDFs that improve energy efficiency and eliminate the use of building natural gas; includes electricity use by on-site EV chargers. <br> 2 - Estimated construction emissions are included prior to buildout. <br> $3-2036$ is the first full year that the Project would be built out. Years from buildout until 2049 are conservatively estimated to be equivalent to buildout year emissions and exclude construction since construction activity would cease after buildout. Years post-2049 take into account the phasing out of structures as they reach their presumed 30-year lifetime. <br> 4 - Electricity emissions decrease to zero in 2045 after RPS has reached $100 \%$ renewable electricity |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 5.7 Greenhouse Gas Plan, Policy, Regulation Consistency

## Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs (GHG-2) <br> Federal and State Reduction Strategies

Table 45, Project Compliance with Federal/State Greenhouse Gas Reduction Strategies, evaluates the consistency of the project with the various Federal and State energy conservation strategies and other regulations related to GHG emissions.

Table 45
Project Compliance with Federal/State Greenhouse Gas Reduction Strategies

| Strategy | Project Consistency |
| :---: | :---: |
| Mandatory Codes |  |
| California Green Building Code. The Cal Green Code (Title 24, Part 11) prescribes a wide array of measures that would directly and indirectly result in reduction of GHG emissions from the Business as Usual Scenario (California Building Code). The mandatory measures that are applicable to nonresidential projects include site selection, energy efficiency, water efficiency, materials conservation and resource efficiency, and environmental quality measures. | Consistent. The project will be required to adhere to the non-residential mandatory measures as required by the Cal Green Code. |
| Energy Efficiency Measures |  |
| Energy Efficiency. Maximize energy efficiency building and appliance standards, and pursue additional efficiency efforts including new technologies, and new policy and implementation mechanisms. Pursue comparable investment in energy efficiency from all retail providers of electricity in California (including both investorowned and publicly owned utilities). | Consistent with Mitigation Incorporated. The project will comply with current California Building Code (CBC) requirements for building construction. Mitigation Measures MM-GHG-5 and MM-GHG-6 would increase energy efficiency. Mitigation Measure MM-GHG-7 would require that the project exceed Title 24 ( 2008 version) by 10 percent or comply with the current version. The WLC PDFs go further by committing the project to energy conservation measures that will enable the project to exceed the more rigorous 2016 Title 24 requirements. |
| Renewables Portfolio Standard. Achieve a 50 percent renewable energy mix statewide by 2050. Qualifying renewable energy sources under the RPS include (but are not limited to) wind, solar, geothermal, small hydroelectric, biomass, anaerobic digestion, and landfill gas. | Not Applicable. The project is not part of the State's power generation grid, but would install solar photovoltaic panels on project roofs pursuant to Mitigation Measure MM-GHG-7. The solar would reduce the project's electricity related emissions by approximately 5.0 percent. In addition, Moreno Valley Electric Utility is subject to the Renewable Portfolio Standard. |

Table 45
Project Compliance with Federal/State Greenhouse Gas Reduction Strategies

| Strategy | Project Consistency |
| :---: | :---: |
| Water Conservation and Efficiency Measures |  |
| Water Use Efficiency. Increasing the efficiency of water transport and reducing water use would reduce GHG emissions. The CalGreen Code, including the California Plumbing Code (Part 5), promotes water conservation. Title 20 includes appliance and fixture efficiency standards that promote water conservation. | Consistent with Mitigation Incorporated. The project will be required to adhere to the nonresidential mandatory measures as required by the CalGreen Code. The Specific Plan outlines a number of water conservation measures, and Mitigation Measures MM-GHG-2 through MM-GHG-4 will help reduce potential water use even further. |
| Solid Waste Reduction Measures |  |
| Increase Waste Diversion, Composting, and Commercial Recycling, and Move Toward ZeroWaste. AB 341 mandates commercial recycling and sets a goal that 75 percent of the state's solid waste generated be reduced, recycled, or composted by 2020. AB 1826 adds requirements regarding mandatory commercial organics recycling. SB 1383 requires methane emissions reduction from landfills and sets statewide disposal targets to reduce landfilling of organic waste by 50 percent from the 2014 level by 2020, and 75 percent from the 2014 level by 2025. | Consistent with Mitigation Incorporated. Data available from the California Integrated Waste Management Board (CIWMB) indicate that the City of Moreno Valley has not achieved the 50 percent diversion rate. The project will comply with MM-GHG-1 to help increase solid waste diversion, composting, and recycling. The measure would also require 50 percent diversion of construction waste prior to 2020 and 75 percent diversion starting in 2020. |

## Transportation and Motor Vehicle Measures

Pavley Regulations and Vehicle Fuel Efficiency Standards. AB 1493 (Pavley) and the Advanced Clean Car (ACC) program required the State to develop and adopt regulations that achieve the maximum feasible and cost-effective reduction of GHG emissions from passenger vehicles and lightduty trucks. Regulations were adopted by the CARB in September 2004 and expanded with the ACC program in 2012.

Light-Duty Vehicle Efficiency Measures. Implement additional measures that could reduce light-duty vehicle GHG emissions. For example, measures to ensure that tires are properly inflated can both reduce GHG emissions and improve fuel efficiency.
Heavy- and Medium-Duty Fuel and Engine Efficiency Measures. Regulations to require retrofits to improve the fuel efficiency of heavy-duty trucks that could include devices that reduce aerodynamic drag and rolling resistance. This measure could also include hybridization of and increased engine efficiency of vehicles.
Mobile Source Strategy. This 2016 plan includes a target of 4.2 million zero emission vehicles (ZEVs) by 2030, and GHG reductions from medium-duty and heavy-duty vehicles, and transit. It also includes reductions in GHGs from medium-duty and heavy-duty vehicles via the Phase 2 Medium and Heavy-Duty GHG Standards.

Consistent. The project does not involve the manufacture of vehicles or production of vehicle fuels. However, vehicles that are purchased and used within the project site would comply with any vehicle and fuel standards that the CARB adopts or has adopted. In addition, the project would require that all diesel trucks be 2010 or newer (Mitigation Measure MM-AQ-6) and would be built to support the charging of future electric-powered vehicles anticipated by the Mobile Source Strategy. The Project design also includes supporting infrastructure to accommodate future EV populations consistent with targets in the Mobile Source Strategy.

Table 45
Project Compliance with Federal/State Greenhouse Gas Reduction Strategies

| Strategy | Project Consistency |
| :---: | :---: |
| Low Carbon Fuel Standard. The CARB identified this measure as a Discrete Early Action Measure in the 2008 Scoping Plan. As included in the Mobile Source Strategy, this measure would reduce the carbon intensity of California's transportation fuels by at least 18 percent by 2030. <br> Sustainable Freight Action Plan. The 2016 plan directs the State to establish targets to improve freight efficiency, transition to zero emission technologies, and increase the competitiveness of California's freight transport system. |  |
| Regional Transportation-Related Greenhouse Gas Targets. Develop regional GHG emissions reduction targets for passenger vehicles, as required by SB 375 . Local governments will play a significant role in the regional planning process to reach passenger vehicle GHG emissions reduction targets. Local governments have the ability to directly influence both the siting and design of new residential and commercial developments in a way that reduces GHGs associated with vehicle travel. | Not Applicable. Specific regional emission targets for transportation emissions do not directly apply to the project; regional GHG reduction target development is outside the scope of this project. The project will comply with any plans developed by the City of Moreno Valley. |
| Measures to Reduce High Global Warming Potential (GWP) Gases |  |
| Short-lived Climate Pollutant Strategy. SB 1383 (2016) requires the CARB to approve and implement Short-Lived Climate Pollutant strategy to reduce high GWP GHGs to achieve a statewide reduction in methane by $40 \%$, hydrofluorocarbon gases by $40 \%$, and anthropogenic black carbon by $50 \%$ below 2013 levels by 2030. | Not Applicable. New products used or serviced on the project site (after implementation of the reduction of GHG gases) would comply with future CARB rules and regulations, as would vehicles (with their refrigerants used in air conditioning systems) visiting the site. |
| AB = Assembly Bill CARB = California Air Resources Board GHG = greenhouse gas |  |

With implementation of applicable strategies/measures project design features, and mitigation measures, the project's contribution to cumulative GHG emissions would be reduced. In order to ensure that the project complies with and would not conflict with or impede the implementation of reduction goals identified in AB 32 and SB 32, the Mitigation Measures listed in the above table shall be implemented.

The project will comply with existing State and Federal regulations regarding the energy efficiency of buildings, appliances, and lighting. The warehouse buildings will be built in compliance with the California Building Code to improve public health, safety, and general welfare by enhancing the design and construction of buildings through the use of building concepts having a positive environmental impact and encouraging sustainable construction practices. In addition, Mitigation Measure MM-GHG-5 requires that the project will exceed the Title 24 energy conservation standards ( 2008 version) by 10 percent or comply with the current version, while the WLC Sustainability Plan goes even further by committing the project to energy
conservation measures that will enable the project to exceed the more rigorous 2019 Title 24 requirements. ${ }^{86}$

## CARB Scoping Plan

AB 32 focuses on reducing GHG emissions to 1990 levels by the year 2020, while SB 32 has a target of 40 percent below 1990 levels by 2030. Pursuant to the requirements in AB 32, the CARB adopted the Climate Change Scoping Plan (Scoping Plan) in 2008, which contains a variety of strategies to reduce the State's emissions. The First Update to the Scoping Plan was approved in 2014 and the Second Update was approved in 2017 following the passage of SB 32. The 2017 Scoping Plan Update incorporates all of the state's GHG reduction strategies included in Table 45. Table 46, Analysis of Additional Measures in the 2017 Scoping Plan Update, considers the strategies in the 2017 Scoping Plan Update that are not included in Table 52, indicating that all are either consistent with or not applicable to the project; therefore, the project does not conflict with the Scoping Plan.

Table 46
Analysis of Additional Measures in the 2017 Scoping Plan Update

| Scoping Plan Reduction Measure | Consistency Analysis |
| :---: | :---: |
| 16. Carbon Sequestration in Natural and Working Lands. Natural and working lands - including forests and agricultural lands - are a key sector in the State's climate change strategy. Storing carbon in trees, other vegetation, soils, and aquatic sediment is an effective way to remove carbon dioxide from the atmosphere. The 2017 Scoping Plan Update describes policies and programs that prioritize protection and enhancement of California's landscapes, and commits the State to finalizing a carbon sequestration and GHG emissions reduction goal for natural and working lands by September 2018 | Not Applicable. No forested lands exist on site. As reported in the Agriculture and Forestry Resources section 4.2.1, approximately 2,200 acres of the $2,610-a c r e$ Specific Plan area is currently dry farmed, mainly with winter wheat. However, the state's Natural and Working Lands Climate Change Implementation Plan has not been adopted, and there is no protection currently in place to preserve the site for agriculture. Further, as described in the Agriculture and Forestry Resources section, the conversion of the existing agricultural lands to urban uses is supported by the City's General Plan policies, and the entire project site and adjacent lands have been designated for urban uses for nearly 20 years by the City. The Agriculture and Forestry Resources section concludes that project implementation will result in less than significant impacts to conversion of Farmland of Local Importance. |

Source: CARB, 2017e

## Moreno Valley General Plan Policies

The project must also be evaluated against the City's General Plan policies that relate to greenhouse gas emissions, as shown in Table 47, Consistency with City General Plan Air Quality Policies. This analysis shows that the project is consistent with the applicable General Plan objectives and policies, or the particular objective or policy is not applicable to the proposed WLC project.

[^53]Table 47
Consistency with City General Plan Air Quality Policies

| Objective or Policy |  |
| :--- | :--- |
| Objective 6.6. Promote land use patterns that <br> reduce daily automotive trips and reduce trip <br> distance for work, shopping, school, and recreation. | Consistent. The project is providing employment <br> opportunities to Moreno Valley and the surrounding <br> area. |
| Policy 6.6.1. Provide sites for new neighborhood <br> commercial facilities within close proximity to the <br> residential areas they serve. | Not Applicable. The project does not propose the <br> development of neighborhood commercial facilities <br> or residential dwellings. |
| Policy 6.6.2. Provide multifamily residential <br> development sites in close proximity to | Not Applicable. The project is industrial and does <br> not propose the development of residential uses. |
| neighborhood commercial centers in order to |  |
| encourage pedestrian instead of vehicular travel. |  |$\quad$| Policy 6.6.3. Locate neighborhood parks in close |
| :--- |
| proximity to the appropriate concentration of |
| residents in order to encourage pedestrian and |
| bicycle travel to local recreation areas. | | Not Applicable. The project is industrial and does |
| :--- |
| Objective 6.7. Reduce mobile and stationary <br> nource air pollutant emissions. |
| Consistent. The project would be implementing <br> feasible Mitigation Measures to reduce mobile and <br> stationary emissions (Mitigation Measures MM- <br> AQ-6, MM-AQ-7, MM-AQ-8, and MM-AQ-10). |
| Policy 6.7.1. Cooperate with regional efforts to <br> establish and implement regional air quality <br> strategies and tactics. |
| Not Applicable. This measure is beyond the scope <br> of the project; the City will continue to work with the <br> SCAQMD in regional planning efforts. |
| Policy 6.7.2. Encourage the financing and |
| construction of park-and-ride facilities. | | Not Applicable. The project consists of industrial |
| :--- |
| uses; a park and ride on the project would not be |

Source of objective and policy: Moreno Valley General Plan (2006).

## Moreno Valley Climate Action Strategy

Table 48, Consistency with City Climate Action Strategy, evaluates the consistency of the project with the policies of the City's Climate Action Strategy approved in October 2012. As shown below, the project is consistent with the requirements of the Strategy for non-residential development with implementation of project design features and mitigation measures.

Table 48
Consistency with City Climate Action Strategy

| Strategy Items |  |  |
| :--- | :--- | :---: |
| R2-T1: Land Use Based Trips and VMT |  |  |
| Reduction Policies. Encourage the development |  |  |
| of Transit Priority Projects along High Quality |  |  |
| Transit Corridors identified in the SCAG |  |  |
| Sustainable Communities Plan, to allow a |  |  |
| reduction in vehicle miles traveled. |  |  |

R2-T3: Employment-Based Trip Reductions. Require a Transportation Demand Management (TDM) program for new development to reduce automobile travel by encouraging ride-sharing, carpooling, and alternative modes of transportation.
R2-E1: New Construction Residential Energy Efficiency Requirements. Require energy efficient design for all new residential buildings to be 10 percent beyond the current Title 24 standards.
R2-E2: New Construction Residential Renewable Energy. Facilitate the use of renewable energy (such as solar (photovoltaic) panels or small wind turbines) for new residential developments. Alternative approach would be the purchase of renewable energy resources offsite.
R2-E5: New Construction Commercial Energy Efficiency Requirements. Require energy efficient design for all new commercial buildings to be 10\% beyond the current Title 24 standards.

R3-E1: Energy Efficient Development, and Renewable Energy Deployment Facilitation and Streamlining. Updating of codes and zoning requirements and guidelines to further implement green building practices. This could include incentives for energy efficient projects.
R3-L2: Heat Island Plan. Develop measures that address "heat islands." Potential measures include using strategically placed shade trees, using paving materials with a Solar Reflective Index of at least 29, an open grid pavement system, or covered parking.

R2-W1: Water Use Reduction Initiative. Consider adopting a per capita water use reduction goal which mandates the reduction of water use of 20 percent per capita with requirements applicable to new development and with cooperative support of the water agencies.

R3-W1: Water Efficiency Training and Education. Work with EMWD and local water companies to implement a public information and education program that promotes water conservation.

Not Applicable. A Transit Priority Project is one that has at least 50 percent residential use based on area, at least 20 units per acre and is within a $1 / 2$ mile of a major transit stop or High Quality Transit Corridor. A High Quality Transit Corridor is defined as one with 15-minute frequencies during peak commute hours. The project does not include a residential component and is not along a High Quality Transit Corridor nor are there any High Quality Transit Corridors or major transit stops in the vicinity of the project area. As a result, the strategy is not applicable.
Consistent with implementation of Mitigation
Measure MM-AQ-10.

Not Applicable. This measure applies to residential projects.

Not Applicable. This measure applies to residential projects.

Consistent with Mitigation Measure MM-GHG-7.

Not Applicable. This refers to updating building and zoning codes and does not apply to this warehousing development plan.

Consistent. The Specific Plan indicates that vehicle parking areas are to be landscaped to provide a shade canopy (50 percent coverage at maturity).

Consistent. California Green Building Standards Code, Chapter 5, Division 5.3, Section 5.303.2 requires that indoor water use be reduced by 20 percent. Section 5.304.3 requires irrigation controllers and sensors. The Specific Plan also contains a variety of water conservation features. Mitigation Measures MM-GHG-2, MM-GHG-3, and MM-GHG-4 also provide water reduction measures.
Consistent. Tenants and owners within the WLC site will provide water conservation information from EMWD and other sources to workers on a regular basis.

Table 48
Consistency with City Climate Action Strategy

| Strategy Items | Project Consistency |
| :--- | :--- |
| R2-S1: City Diversion Program. For Solid Waste, <br> consider a target of increasing the waste diverted <br> from the landfill to a total of 75 percent by 2020. | Consistent. The project would incorporate standard <br> City waste reduction features and Mitigation <br> Measure MM-GHG1 (has a target to reduce waste by <br> 75 percent by 2020). |
| C11: Require that developer recycle existing <br> street material for use as base for new streets. | Consistent. Project will implement Mitigation <br> Measure MM-GHG-1 where feasible. |

## Executive Order S-3-05

The SCAQMD developed its thresholds based on consistency with California Executive Order S-3-05. As shown in Section 5.6 (GHG-1), the project's uncapped GHG emissions would not exceed the SCAQMD's industrial threshold. However, with mitigation implemented, the Project would be reduced to levels less than $10,000 \mathrm{MTCO}_{2} \mathrm{e}$ and, therefore, the project would not conflict with Executive Order S-3-05. This impact is less than significant with mitigation.

## SECTION 6

Mitigation Measures

### 6.1 Air Quality

## Compliance with AQMP

Applicable SCAQMD regulatory requirements are restated in the mitigation measures identified below. These measures shall be incorporated in all project plans, specifications, and contract documents. Implementation of the project would exceed applicable thresholds for all criteria pollutants, with the exception of $\mathrm{SO}_{\mathrm{x}}$. Despite the implementation of mitigation measures, emissions associated with the project cannot be reduced below the applicable thresholds. Construction and operational emissions would be reduced to the extent feasible through implementation of mitigation measures described below. Construction emissions would be reduced through implementation of mitigation measures that require the use of Tier 4 construction equipment, reduced idling time, use of non-diesel equipment where feasible, lowVOC paints and cleaning solvents, and dust suppression measures. Operational emissions would be reduced through implementation of mitigation measures that require reduced vehicle idling, use of non-diesel on-site equipment, meeting or exceeding 2010 engine emission standards for all diesel trucks entering the site, electric vehicle charging stations, and prohibition of refrigerated warehouses. In the absence of further feasible mitigation to reduce the project's emission of criteria pollutants to below SCAQMD thresholds, potential air quality impacts resulting from exhaust from construction equipment will remain significant and unavoidable.

## Regional Emissions

## Construction

The following measures are recommended to reduce the level of emissions of criteria pollutants:
MM-AIR-1 Construction equipment maintenance records (including the emission control tier of the equipment) shall be kept on site during construction and shall be available for inspection by the City of Moreno Valley.
a) Off-road diesel-powered construction equipment greater than 50 horsepower shall meet United States Environmental Protection Agency Tier 4 off-road emissions standards. A copy of each unit's certified tier specification shall be available for inspection by the City at the time of mobilization of each applicable unit of equipment.
b) During all construction activities, off-road diesel-powered equipment may be in the "on" position not more than 10 hours per day.
c) Construction equipment shall be properly maintained according to manufacturer specifications.
d) All diesel powered construction equipment, delivery vehicles, and delivery trucks shall be turned off when not in use. On-site idling shall be limited to three minutes in any one hour.
e) Electrical hook ups to the power grid shall be provided for electric construction tools including saws, drills and compressors, where feasible, to reduce the need for diesel-powered electric generators. Where feasible and available, electric tools shall be used
f) The project shall demonstrate compliance with South Coast Air Quality Management District Rule 403 concerning fugitive dust and provide appropriate documentation to the City of Moreno Valley.
g) All construction contractors shall be provided information on the South Coast Air Quality Management District Surplus Off-road Opt-In "SOON" funds which provides funds to accelerate cleanup of off-road diesel vehicles.
h) Construction on-road haul trucks shall be model year 2010 or newer if dieselfueled.
i) Information on ridesharing programs shall be made available to construction employees.
j) During construction, lunch options shall be provided onsite.
k) A publicly visible sign shall be posted with the telephone number and person to contact regarding dust complaints per AQMD Standards.

1) Off-site construction shall be limited to the hours between 6 a.m. to 8 p.m. on weekdays only. Construction during City holidays shall not be permitted.

MM-AIR-2 Prior to issuance of any grading permits, a Construction Staging Plan shall be submitted to and approved by the City of Moreno Valley that describes in detail the location of equipment staging areas, stockpiling/storage areas, construction parking areas, safe detours around the project construction site, as well as provide temporary traffic control (e.g., flag person) during construction-related truck hauling activities. Construction trucks shall be rerouted away from sensitive receptor areas. Trucks shall use State Route 60 using World Logistics Center Parkway (formerly Theodore Street), Redlands Boulevard (north of Eucalyptus Avenue), and Gilman Springs Road. In addition to its traffic safety purpose, the
traffic control plan can minimize traffic congestion and delays that increase idling emissions. A copy of the approved Construction Staging Plan shall be retained on site in the construction trailer.

MM-AIR-3 The following measures shall be applied during construction of the project to reduce volatile organic compounds (VOC):
a) Non-VOC containing paints, sealants, adhesives, solvents, asphalt primer, and architectural coatings (where used), or pre-fabricated architectural panels shall be used in the construction of the project to the maximum extent practicable. If such products are not commercially available, products with a VOC content of 100 grams per liter or lower for both interior and exterior surfaces shall be used.
b) Leftover paint shall be taken to a designated hazardous waste center.
c) Paint containers shall be closed when not in use
d) Low VOC cleaning solvents shall be used to clean paint application equipment.
e) Paint and solvent-laden rags shall be kept in sealed containers.

MM-AIR-4 No grading shall occur on days with an Air Quality Index forecast greater than 150 for particulates or ozone as forecasted for the project area (Source Receptor Area 24).

MM-AIR-5 The project shall comply with the SCAQMD proposed Indirect Source Rule for any warehouse that are constructed after the rule goes into effect. This rule is expected to reduce $\mathrm{NO}_{\mathrm{x}}$ and $\mathrm{PM}_{10}$ emissions during construction and operation. Emission reductions resulting from this rule were not included in the project analysis.

As shown in Table 49, Mitigated Short-Term Regional Construction Emissions, construction emissions are still significant after mitigation, with the exception of $\mathrm{PM}_{2.5}$ and $\mathrm{SO}_{2}$. The reduction in $\mathrm{PM}_{2.5}$ emissions is by a reduction in exhaust from the application of Tier 4 off-road equipment. $\mathrm{PM}_{10}$ emissions are still significant because emissions in 2022, 2023, 2024, and 2028 exceed the threshold; however, emissions of $\mathrm{PM}_{10}$ during all other years of construction are less than significant. Although mitigation reduces emissions of all pollutants (with the exception of CO due to how CalEEMod calculates Tier 4 emissions) during construction, potential air quality impacts resulting from exhaust from construction equipment and fugitive dust will remain significant and unavoidable.

Table 49
Mitigated Short-Term Regional Construction Emissions

| Year | Maximum Daily Pollutant Emissions (Ibs/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | VOC | NOx | $\mathrm{CO}^{1}$ | $\mathrm{SO}_{2}$ | PM ${ }_{10}$ Total ${ }^{2}$ | $\begin{aligned} & \text { PM }{ }_{2.5} \\ & \text { Total }^{2} \end{aligned}$ |
| 2020 | 160 | 148 | 789 | 2 | 130 | 31 |
| 2021 | 163 | 172 | 943 | 2 | 130 | 30 |
| 2022 | 166 | 191 | 995 | 2 | 159 | 42 |
| 2023 | 164 | 172 | 996 | 2 | 174 | 44 |
| 2024 | 162 | 165 | 939 | 2 | 155 | 35 |
| 2025 | 155 | 126 | 709 | 1 | 126 | 30 |
| 2026 | 149 | 87 | 493 | 1 | 93 | 20 |
| 2027 | 147 | 71 | 454 | 1 | 42 | 12 |
| 2028 | 151 | 103 | 476 | 1 | 174 | 26 |
| 2029 | 148 | 87 | 451 | 1 | 116 | 20 |
| 2030 | 148 | 82 | 430 | 1 | 116 | 20 |
| 2031 | 147 | 77 | 375 | 1 | 109 | 16 |
| 2032 | 145 | 72 | 348 | 1 | 104 | 16 |
| 2033 | 143 | 61 | 270 | 1 | 82 | 12 |
| 2034 | 143 | 64 | 263 | 1 | 100 | 14 |
| SCAQMD Threshold | 75 | 100 | 550 | 150 | 150 | 55 |
| Exceeds Threshold? | Yes | Yes | Yes | No | Yes | No |

Notes:

- Mitigation Measure AIR-1 was estimated by CaIEEMod using its mitigation module by assuming Tier 4 off-road equipment for equipment greater than 50 horsepower.
- Mitigation Measure AIR-1(b) restricts equipment from operating more than 10 hours per day in the on position, which is estimated in CalEEMod in both the unmitigated and mitigated estimates.
- Mitigation Measures AIR-1 (c) through (e), AIR-1 (g) through (m), AIR-2, and AIR-4 are not quantified.
- Mitigation Measure AIR-1 is assumed in the unmitigated and mitigated estimates (Rule 403).
- Mitigation Measure AIR-1 (i) requires that construction haul trucks be 2010 model year or greater. Mitigated model years are reflected in EMFAC2017 emission factors.
- Mitigation Measure AIR-3 reduces VOC emissions during painting and is calculated as demonstrated in Appendix A.3.

1 There is an error in the way CaIEEMod estimates the effect of a higher tier (such as Tier 3 or 4 ) on mitigated CO; therefore, the mitigated CO values are greater than unmitigated values.
2 PM totals may not add up due to rounding.
VOC = volatile organic compounds $\mathrm{NO}_{\mathrm{x}}=$ nitrogen oxides $\mathrm{CO}=$ carbon monoxide $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}=$ particulate matter

## Operations

The following mitigation measures are required to reduce emissions of criteria pollutants during project operations.

MM-AIR-6 Prior to issuance of occupancy permits for each warehouse building within the WLCSP, the developer shall demonstrate to the City that vehicles can access the building using paved roads and parking lots.

MM-AIR-7 The following shall be implemented as indicated:

## Prior to Issuance of a Certificate of Occupancy

a) Signs shall be prominently displayed informing truck drivers about the California Air Resources Board diesel idling regulations, and the prohibition of parking in residential areas.
b) Signs shall be prominently displayed in all dock and delivery areas advising of the following: engines shall be turned off when not in use; trucks shall not idle for more than three consecutive minutes; telephone numbers of the building facilities manager and the California Air Resources Board to report air quality violations.
c) Signs shall be installed at each exit driveway providing directional information to the City's truck route. Text on the sign shall read "To Truck Route" with a directional arrow. Truck routes shall be clearly marked per the City Municipal Code.

## On an Ongoing Basis

d) Tenants shall maintain records on fleet equipment and vehicle engine maintenance to ensure that equipment and vehicles are maintained pursuant to manufacturer's specifications. The records shall be maintained on site and be made available for inspection by the City.
e) Tenant's staff in charge of keeping vehicle records shall be trained/certified in diesel technologies, by attending California Air Resources Board approved courses (such as the free, one-day Course \#512). Documentation of said training shall be maintained on-site and be available for inspection by the City.
f) Tenants shall be encouraged to become a SmartWay Partner.
g) Tenants shall be encouraged to utilize SmartWay 1.0 or greater carriers.
h) Tenants' fleets shall be in compliance with all current air quality regulations for on-road trucks including but not limited to California Air Resources Board's Heavy-Duty Greenhouse Gas Regulation and Truck and Bus Regulation.
i) Information shall be posted in a prominent location available to truck drivers regarding alternative fueling technologies and the availability of such fuels in the immediate area of the World Logistics Center.
j) Tenants shall be encouraged to apply for incentive funding (such as the Voucher Incentive Program [VIP], Carl Moyer, etc.) to upgrade their fleet.
k) All yard trucks (yard dogs/yard goats/yard jockeys/yard hostlers) shall be powered by electricity, natural gas, propane, or an equivalent non-diesel fuel.

Any off-road engines in the yard trucks shall have emissions standards equal to Tier 4 Interim or greater. Any on-road engines in the yard trucks shall have emissions standards that meet or exceed 2010 engine emission standards specified in California Code of Regulations Title 13, Article 4.5, Chapter 1, Section 2025.

1) All diesel trucks entering logistics sites shall meet or exceed 2010 engine emission standards specified in California Code of Regulations Title 13, Article 4.5, Chapter 1, Section 2025 or be powered by natural gas, electricity, or other diesel alternative. Facility operators shall maintain a log of all trucks entering the facility to document that the truck usage meets these emission standards. This log shall be available for inspection by City staff at any time.
m) All standby emergency generators shall be fueled by natural gas, propane, or any non-diesel fuel.
n) Truck and vehicle idling shall be limited to three (3) minutes.

MM-AIR-8 Prior to the issuance of building permits for more than 25 million square feet of logistics warehousing within the Specific Plan area, a publically-accessible fueling station shall be operational within the Specific Plan area offering alternative fuels (natural gas, electricity, etc.) for purchase by the motoring public. Any fueling station shall be placed a minimum of 1,000 feet from any offsite sensitive receptors or off-site zoned sensitive uses. This facility may be established in connection with the convenience store required in Mitigation Measure MM-AIR-8.

MM-AIR-9 Prior to the issuance of building permits for more than 25 million square feet of logistics warehousing within the Specific Plan area a site shall be operational within the Specific Plan area offering food and convenience items for purchase by the motoring public. This facility may be established in connection with the fueling station required in Mitigation Measure MM-AIR-7.

MM-AIR-10 Refrigerated warehouse space is prohibited unless it can be demonstrated that the environmental impacts resulting from the inclusion of refrigerated space and its associated facilities, including, but not limited to, refrigeration units in vehicles serving the logistics warehouse, do not exceed any environmental impact for the entire World Logistics Center identified in the Revised Sections of the FEIR. Such environmental analysis shall be provided with any warehouse plot plan proposing refrigerated space. Any such proposal shall include electrical hookups at dock doors to provide power for vehicles equipped with Transportation Refrigeration Units (TRUs).

MM-AIR-11 The following measures shall be incorporated as conditions to any Plot Plan approval within the Specific Plan:
a) All tenants shall be required to participate in Riverside County's Rideshare Program.
b) Storage lockers shall be provided in each building for a minimum of three percent of the full-time equivalent employees based on a ratio of 0.50 employees per 1,000 square feet of building area. Lockers shall be located in proximity to required bicycle storage facilities.
c) Class II bike lanes shall be incorporated into the design for all project streets.
d) The project shall incorporate pedestrian pathways between on-site uses.
e) Site design and building placement shall provide pedestrian connections between internal and external facilities.
f) The project shall provide pedestrian connections to residential uses within 0.25 mile from the project site.
g) A minimum of two electric vehicle-charging stations for automobiles or light-duty trucks shall be provided at each building. In addition, parking facilities with 200 parking spaces or more shall be designed and constructed so that at least six percent of the total parking spaces are capable of supporting future electric vehicle supply equipment (EVSE) charging locations. Sizing of conduit and service capacity at the time of construction shall be sufficient to install Level 2 Electric Vehicle Supply Equipment (EVSE) or greater.
h) Each building shall provide indoor and/or outdoor - bicycle storage space consistent with the City Municipal Code and the California Green Building Standards Code. Each building shall provide a minimum of two shower and changing facilities for employees.
i) Each building shall provide preferred and designated parking for any combination of low-emitting, fuel-efficient, and carpool/vanpool vehicles equivalent to the number identified in California Green Building Standards Code Section 5.106.5.2 or the Moreno Valley Municipal Code whichever requires the higher number of carpool/vanpool stalls.
j) The following information shall be provided to tenants: onsite electric vehicle charging locations and instructions, bicycle parking, shower facilities, transit availability and the schedules, telecommunicating benefits, alternative work schedule benefits, and energy efficiency.

Mitigated operational emissions for full buildout are shown in Table 50, Operational Regional Air Pollutant Emissions (Mitigated). Note that the emissions are based on conservative assumptions and does not subtract existing emissions that would cease to exist (i.e., assumes all
emissions are net new). As shown in Table 57, even with implementation of the mitigation measures, emissions are still significant.

Table 50
Operational Regional Air Pollutant Emissions (Mitigated)

| Source | Emissions (pounds per day) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | VOC | NOX $^{2}$ | CO $^{1}$ | $\mathbf{S O}_{\mathbf{2}}$ | $\mathbf{P M}_{10}$ | $\mathbf{P M}_{\mathbf{2 . 5}}$ |
| Vehicles: Local and trucks | 45 | 1,341 | 867 | 10 | 387 | 125 |
| Area | 311 | 0 | 4 | 0 | 0 | 0 |
| Onsite Equipment | 8 | 91 | 107 | 0 | 0 | 0 |
| Total Project Emissions | $\mathbf{3 6 3}$ | $\mathbf{1 , 4 3 2}$ | $\mathbf{9 7 8}$ | $\mathbf{1 0}$ | $\mathbf{3 8 8}$ | $\mathbf{1 2 5}$ |
| Significance Threshold | $\mathbf{5 5}$ | $\mathbf{5 5}$ | $\mathbf{5 5 0}$ | $\mathbf{1 5 0}$ | $\mathbf{1 5 0}$ | $\mathbf{5 5}$ |
| Significant Impact? | Yes | Yes | Yes | No | Yes | Yes |

Notes:

- $P M_{10}$ and $\mathrm{PM}_{2.5}$ emissions include exhaust and road dust.
- Landscaping emissions are negligible.
- On-site equipment emissions include emissions from yard trucks, forklifts, and stationary generators.
$\mathrm{VOC}=$ volatile organic compounds $\mathrm{NO}_{x}=$ nitrogen oxides $\mathrm{CO}=$ carbon monoxide $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ = particulate matter
1 Mitigation requiring the use of natural gas and propane equipment lead to decreases in PM and $\mathrm{NO}_{\mathrm{x}}$, but may lead to increases in CO ; therefore, the mitigated CO values are greater than unmitigated values.

During overlap of construction and operation, $\mathrm{VOC}, \mathrm{NO}_{\mathrm{x}}, \mathrm{CO}, \mathrm{PM}_{10}$, and $\mathrm{PM}_{2.5}$ would continue to exceed SCAQMD significance thresholds after mitigation, as shown in Table 51, Combined Construction and Operational Regional Air Pollutant Emissions (Year by Year, Pounds per Day) - Mitigated. Therefore, impacts are significant and unavoidable. The emissions do not take into account the existing onsite agricultural emissions.

Table 51
Combined Construction and Operational Regional Air Pollutant Emissions (Year by Year, Pounds per Day) - Mitigated

| Year | VOC | NOx | CO | $\mathrm{SO}_{2}$ | PM10 | PM 2.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2020 | 160 | 148 | 789 | 2 | 130 | 31 |
| 2021 | 207 | 369 | 1,032 | 3 | 160 | 40 |
| 2022 | 251 | 574 | 1,164 | 4 | 220 | 62 |
| 2023 | 290 | 730 | 1,236 | 5 | 264 | 74 |
| 2024 | 328 | 885 | 1,238 | 6 | 275 | 75 |
| 2025 | 359 | 982 | 1,049 | 7 | 263 | 77 |
| 2026 | 369 | 983 | 920 | 7 | 261 | 76 |
| 2027 | 384 | 1,036 | 959 | 7 | 235 | 76 |
| 2028 | 406 | 1,138 | 1,057 | 8 | 393 | 98 |
| 2029 | 420 | 1,187 | 1,103 | 8 | 360 | 100 |
| 2030 | 436 | 1,245 | 1,148 | 9 | 385 | 108 |
| 2031 | 451 | 1,301 | 1,156 | 9 | 403 | 112 |
| 2032 | 466 | 1,355 | 1,188 | 9 | 423 | 119 |
| 2033 | 479 | 1,401 | 1,165 | 10 | 426 | 123 |
| 2034 | 495 | 1,459 | 1,210 | 10 | 469 | 133 |
| 2035 | 363 | 1,432 | 978 | 10 | 388 | 125 |
| Max Daily Emissions | 495 | 1,459 | 1238 | 10 | 469 | 133 |
| SCAQMD Threshold | 55 | 55 | 550 | 150 | 150 | 55 |
| Significant? | Yes | Yes | Yes | No | Yes | Yes |

Notes:

- Year 2020 contains construction emissions only; buildout contains operational emissions only.
- Emissions do not include existing onsite emissions.
$\mathrm{VOC}=$ volatile organic compounds; $\mathrm{NO}=$ nitrogen oxides; $\mathrm{CO}=$ carbon monoxide; $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}=$ particulate matter

As discussed above, the TIA provides VMT attributable to the project based on the net effect the project has on regional travel as well as project VMT without consideration of a net effect. For informational purposes only, Table 52, Operational Regional Air Pollutant Emissions (Mitigated) - No Net Effect (For Informational Purposes Only includes mitigated operational mobile emissions without consideration of a net effect in regional traffic volumes.

Table 52
Operational Regional Air Pollutant Emissions (Mitigated) - No Net Effect (For Informational Purposes Only)

| Scenario | Source | Emissions (pounds per day) |  |  |  |  | PM ${ }^{2} .5$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | VOC | NOx | CO | SOx | PM 10 |  |
| Buildout | Vehicles: Local and trucks | 106 | 1,965 | 1,711 | 16 | 871 | 264 |
|  | Area | 311 | 0 | 4 | 0 | 0 | 0 |
|  | Onsite Equipment | 8 | 91 | 107 | 0 | 0 | 0 |
|  | Total Project Emissions | 424 | 2,056 | 1,822 | 16 | 872 | 265 |

- $\quad \mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}$ emissions include exhaust and road dust.
- Landscaping emissions are negligible.
- Sulfur oxides emissions are under the 150 pounds per day significance threshold and at buildout would be less than 23 pounds per day.
VOC = volatile organic compounds $\mathrm{NO}_{x}=$ nitrogen oxides $\mathrm{CO}=$ carbon monoxide $\mathrm{PM}_{10}$ and $\mathrm{PM}_{2.5}=$ particulate matter On-site equipment emissions include emissions from yard trucks, forklifts, and stationary generators.


## Substantial Pollutant Concentrations

## Localized Emissions

With implementation of Mitigation Measures MM-AIR-6 through MM-AIR-10, the project would continue to exceed the localized significance thresholds at one or more of the existing residences located within and outside the project boundaries for $\mathrm{PM}_{10}$ (24-hour and/or annual). Table 53, Comparison of Local Project Air Quality Impacts Before and After Mitigation, compares the project impacts before and after mitigation for those assessment conditions and pollutants that indicated a significant impact before mitigation.

Table 53
Comparison of Local Project Air Quality Impacts Before and After Mitigation

| Assessment Condition | Location | Pollutant, Averaging Time, Units | Total Impact Before Mitigation ${ }^{1}$ | Total Impact After Mitigation | Significance Threshold | Exceeds Threshold After Mitigation? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project <br> Development <br> Schedule Year <br> 2025 | Inside Project Boundaries | $\begin{gathered} \mathrm{PM}_{10} 24- \\ \text { hour, } \mu \mathrm{g} / \mathrm{m}^{3} \end{gathered}$ | 5.7 | 5.6 | 2.5 | Yes |
|  |  | $\mathrm{PM}_{10}$, Annual, $\mu \mathrm{g} / \mathrm{m}^{3}$ | 2.6 | 2.6 | 1.0 | Yes |
| Project <br> Development Schedule Year 2025 | Outside <br> Project <br> Boundaries | $\begin{gathered} \mathrm{PM}_{10} 24- \\ \text { hour, } \mu \mathrm{g} / \mathrm{m}^{3} \end{gathered}$ | 5.4 | 5.2 | 2.5 | Yes |
| Project <br> Development Schedule Year 2022 | Inside Project Boundaries | $\mathrm{NO}_{x}$ National 1 hour, ppm | 0.106 | 0.068 | 0.100 | No |
|  |  | $\mathrm{PM}_{10} 24-$ $\text { hour, } \mu \mathrm{g} / \mathrm{m}^{3}$ | 5.2 | 5.2 | 2.5 | Yes |
|  |  | $\mathrm{PM}_{10}$ Annual, $\mu \mathrm{g} / \mathrm{m}^{3}$ | 1.4 | 1.4 | 1.0 | Yes |
|  | Outside <br> Project <br> Boundaries | $\text { PM } 10 \text { 24- }$ $\text { hour, } \mu \mathrm{g} / \mathrm{m}^{3}$ | 4.0 | 4.0 | 2.5 | Yes |
| Project <br> Development <br> Schedule <br> Year 2035 Build <br> Out | Inside Project Boundaries | $\begin{gathered} \mathrm{PM}_{10} 24 \\ \text { hour, } \mu \mathrm{g} / \mathrm{m}^{3} \end{gathered}$ | 8.3 | 8.3 | 2.5 | Yes |
|  |  | $\mathrm{PM}_{10}$ Annual, $\mu \mathrm{g} / \mathrm{m}^{3}$ | 4.6 | 4.6 | 1.0 | Yes |
|  | Outside <br> Project <br> Boundaries | $\begin{gathered} \mathrm{PM}_{10} 24 \\ \text { hour, } \mu \mathrm{g} / \mathrm{m}^{3} \end{gathered}$ | 2.50 | 2.49 | 2.5 | No |

Notes:
1 Total Impacts include the incremental impacts from the project plus the pollutant background.
$\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubic meter (a unit of concentration); ppm = parts per million (a unit of concentration)

## Cancer Risks

Mitigation Measures MM-AIR-1, MM-AIR-2, and MM-AIR-4 through MM-AIR-10 to reduce construction and operational emissions of criteria pollutants would reduce the estimated cancer risks associated with the project. Additionally, the following mitigation measure is required to ensure that significant health risk does not occur at on-site sensitive receptors.

MM-AIR-12 (a) The house at 30220 Dracaea Avenue shall be demolished prior to the issuance of the first grading permit for grading within the World Logistics Center.
(b) An air filtration system meeting ASHRSE Standard 52.2 MERV-13 standards shall be offered to the owners of the houses located at 13100 World Logistics Center Parkway (formerly Theodore Street) and 12400 World Logistics Center Parkway (formerly Theodore Street). The developer shall offer to install
the air filtration system to the owners of the two properties within two months of the certification of the Final Revised FEIR. Prior to the issuance of the first grading permit within the World Logistics Center, documentation shall be provided to the City confirming that an offer to install the air filtration system has been extended to the owners of each of the two properties. The owners of the two properties shall be under no obligation to accept the offer. Each property owner shall have two years from the receipt of the offer to accept the offer. Upon acceptance of each offer, the developer shall work with each owner to ensure the air filtration system is properly installed within one year of acceptance.

Through mitigation requirements, new technology diesel engines are required for the WLC project. The mitigation conditions require that all diesel trucks accessing the project during operation be model year 2010 or newer and that all on-site equipment be Tier 4.

Mitigation Measures MM-AIR-1 and MM-AIR-2 require 2010-compliant trucks for operation and Tier 4 equipment for construction, both of which rely on diesel particulate filters. These vehicles reduce emissions by 90 percent when compared to 2006 vehicles and by 99 percent when compared to uncontrolled diesel engines. Recent emissions testing by CARB revealed that these diesel engines are cleaner than originally estimated. These findings, which are reflected in the CARB emissions factor model EMFAC2017, are 70 percent cleaner than previously estimated.

Beginning in 2001, USEPA and CARB began issuing a series of regulations that require new diesel-powered vehicles and equipment to use the latest emissions control technology. This technology relies on two components. The first is a diesel particulate filter, which is capable of reducing particulate matter emissions by over 90 percent (required for new engines beginning in 2007). The second technology is selective catalytic reduction, which reduces emissions of nitrogen oxides by over 90 percent (required for new engines beginning in 2010). Diesel emissions from equipment equipped with this technology is referred to as New Technology Diesel Engines (NTDE).

Mitigation Measure MM-AIR-8 encourages the use of alternative fueled vehicles on the project site. As discussed above, a High EV Penetration scenario assumes that up to 40 percent of the project's heavy duty trucks would be electric-powered; however, no reduction in emissions has been taken.

As discussed above, the HRA has been prepared consistent with "Current OEHHA Guidance". Although air quality significance thresholds have been established for outdoor environments, a significant portion of human exposure to air pollutants occurs indoors where people spend more than 90 percent of their time. ${ }^{87}$ One approach to reduce exposure is the installation of high efficiency panel filters inside the HVAC system. Air filters and other air-cleaning devices are designed to remove pollutants from indoor air. Some are installed in the ductwork of a home's central heating, ventilating, and air-conditioning (HVAC) system to clean the air in the entire

[^54]house. In studies of the effectiveness of air filtration systems in classrooms and by the EPA in residences, 88,89 the combination of an HVAC system with a high performance panel filter reduced indoor levels of fine particulate matter, $\mathrm{PM}_{2.5}$ and smaller particles by 70 to 90 percent.

The use of a filtration system consisting of the application of filters with a rating of ASHRSE Standard 52.2 MERV-13, as required by Mitigation MM-AIR-12, is sufficient to capture a significant portion of the diesel particulate matter. However, the filtration system would not remove the smallest of particles (less than approximately 0.01 to 0.2 micron in diameter). MERV13 filters would, however, reduce particles in the range of 0.3 to 1 micron by up to 75 percent and particles larger than 1 micron by 90 percent. ${ }^{90}$ Based on measurement studies of the size distribution of the collected DPM, approximately 0.1 to 10 percent of the total DPM mass includes particles between 0.01 and 0.2 micrometer in diameter, particles between 0.3 and 1 micrometer in diameter comprise 70 percent of the total DPM mass, and particles above 1 micrometer comprise 5 to 20 percent of the total DPM mass. ${ }^{91}$

Since the cancer risk from DPM is calculated from the mass of DPM emitted, the quantity of DPM reduced by the action of air filters would thus equate to a reduction in cancer risk. The application of MERV-13 air filter filtration system would result in a reduction of DPM exposures by approximately 70 percent.

| DPM size: | 0.01 to $0.2 \mu \mathrm{~m}$ | 0.3 to $1 \mu \mathrm{~m}$ | Greater than $1 \mu \mathrm{~m}$ |
| :--- | :--- | :--- | :--- |
| Calculation: | $10 \%$ mass $\times 0 \%$ reduction | $70 \%$ mass $\times 75 \%$ reduction | $20 \%$ mass $\times 90 \%$ reduction |
| Reduction: | $0 \%$ reduction | $52.5 \%$ reduction | $18 \%$ reduction |

Attributing an adjustment for time that windows might be open, residents would be outside, or for different compounds that result in the cancer risk would reduce the efficacy of the filters by about 20 percent, bringing the total cancer risk reduction from the filters to 50 percent.

The use of the filters would bring the OEHHA-calculated risk below the SCAQMD threshold eliminating any possible risk from the project on any onsite or offsite receptors within the study area.

## Residential Receptors

Table 54, Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Receptors Starting from Beginning of Project Construction (Construction and Operation HRA), With Mitigation, and Figure 25, Incremental Project Cancer Risk - With Mitigation (Construction and Operation), shows the cancer risks for the construction and operation HRA

[^55]after application of mitigation. As noted, the cancer risks are substantially lower after mitigation, and the SCAQMD cancer risk significance threshold would not be exceeded at any of the onsite or offsite receptors within the study area. The large reduction in cancer risk after mitigation is attributable principally to the reduced emissions associated with the commitment to Tier 4 construction equipment. The impact of this mitigation is largely felt during the first 3 to 5 years of construction when "Current OEHHA Guidance" assigns large age sensitivity factors to the first few years of the 30 -year exposure duration. Table 55, Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Receptors Starting from Beginning of Project Full Operation in 2035, With Mitigation, and Figure 26, Incremental Project Cancer Risk - With Mitigation (30 Years of Full Operation), shows the mitigated cancer risk from the 30 -year full project buildout.

## School Sensitive Receptors

With the application of the mitigation measures discussed above, the maximum cancer risk would be approximately 3.0 in one million at Bear Valley Elementary School for both the construction + operational scenario and the full operational scenario. Therefore, maximum impacts at schools are less than the 10 in one million significance threshold with the implementation of mitigation and are less than significant.

## Worker Receptors

The highest worker cancer risk estimates after the application of mitigation is approximately 1.8 in one million for the construction + operational scenario and 1.6 in one million for the full operational scenario. Therefore, cancer risk for worker receptors anywhere in the revised HRA's study area is less than the 10 in one million significance threshold with the implementation of mitigation and are less than significant.

## Cancer Burden

With the application of mitigation measures, the cancer burden is estimated to be 0.48 out of a population of about 142,397 individuals that were estimated to have a cancer risk of 1 in a million or more after mitigation. The is less than the SCAQMD threshold for cancer burden of 0.5 . Therefore, the project would not exceed the SCAQMD's cancer burden significance threshold after the application of mitigation.

In summary, the implementation of all the recommended mitigation measures, including the requirement to use 2010 diesel engine emissions standards, Tier 4 construction equipment, and installation of air filters at the identified on-site residence will reduce the OEHHA-calculated cancer risk to below 10 in one million at all sensitive receptors. Therefore, impacts would be less than significant.
Section 6: Mitigation Measures
Table 54
Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Receptors Starting from Beginning of Project Construction

| Receptor Location | Incremental Increase in Cancer Risk During Project Construction (risk/million) | Incremental Increase in Cancer Risk During Project Operation (risk/million) | Total Incremental Increase in Cancer Risk ${ }^{1}$ (risk/million) | SCAQMD Cancer Risk Significance Threshold (risk/million) | Exceeds Threshold? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum risk anywhere in the modeling domain ${ }^{2}$ | 4.9 | 4.2 | 9.1 | 10 | No |
| Existing residences within the project boundaries |  |  |  |  |  |
| 13241 World Logistics Center Pkwy | 4.9 | 4.2 | 9.1 | 10 | No |
| 13100 World Logistics Center Pkwy | 3.3 | 4.6 | 7.9 | 10 | No |
| 13200 World Logistics Center Pkwy | 4.0 | 3.8 | 7.8 | 10 | No |
| 30220 Dracaea Ave | 4.1 | 4.8 | 8.9 | 10 | No |
| 29080 Dracaea Ave | 2.3 | 2.5 | 4.8 | 10 | No |
| 29140 Dracaea Ave | 2.5 | 2.7 | 5.2 | 10 | No |
| Maximum risk at any area outside of the project boundaries ${ }^{3}$ | 1.4 | 4.3 | 5.7 | 10 | No |

[^56]Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Receptors Starting from Beginning of Project Full Operation in 2035,

| Receptor Location | Total Incremental Increase in Cancer Risk ${ }^{(1)}$ (risk/million) | SCAQMD Cancer Risk Significance Threshold (risk/million) | Exceeds Threshold? |
| :---: | :---: | :---: | :---: |
| Maximum risk anywhere in the modeling domain ${ }^{2}$ | 14.2 | 10 | Yes |
| Maximum risk within the project boundaries ${ }^{3}$ | 10.7 | 10 | Yes |
| Maximum risk at any area outside of the project boundaries ${ }^{4}$ | 9.5 | 10 | No |
| Maximum risk along SR60 freeway outside of the project boundaries ${ }^{5}$ | 9.5 | 10 | No |
| Notes: |  |  |  |
| 1 Conservatively assumed all receptors in the studied domain are operation); cancer risk estimates derived from the TIA, EMFAC2 2 Location is at the existing residence immediately to the north of 3 Location is at the existing residence located at 30220 Dracaea 4 Location is to the northwest of the project boundary, on the west 5 Location is south of SR 60 freeway, same as the location in foot | ential receptors and will have 30-year average emission model, SCAQMD HRA guidance and project boundary and is owned by the project spo e. <br> of Redlands Boulevard and south of Eucalyptu <br> (4), which to the northwest of the project bound | res from 2035 to 2064 (includes diesel PM em OEHHA Guidance" for estimating cancer risk <br> ue. <br> the west side of Redlands Boulevard and sou | s from full project <br> ucalyptus Avenue. |

[^57]


### 6.2 Greenhouse Gas Emissions

## Greenhouse Gas Emissions

Implementation of MM-AIR-7, MM-AIR-8, MM-AIR-9, MM-AIR-11, and MM-GHG-1 would result in reductions in greenhouse gas emissions and ensure consistency with applicable plans, policies, and regulations. Additional mitigation includes the following:

MM-GHG-1 The World Logistics Center project shall implement the following requirements to reduce solid waste and greenhouse gas emissions from construction and operation of project development:
a) Prior to January 1, 2020, divert a minimum of 50 percent of landfill waste generated by operation of the project. After January 1, 2020, development shall divert a minimum of 75 percent of landfill waste. In January of each calendar year after project approval the developer and/or Property Owners Association shall certify the percentage of landfill waste diverted on an annual basis.
b) Prior to January 1, 2020, recycle and/or salvage at least 50 percent of nonhazardous construction and demolition debris. After January 1, 2020, recycle and/or salvage at least 75 percent of non-hazardous construction and demolition debris. In January of each calendar year after project approval the developer and/or Property Owners Association shall certify the percentage of landfill waste diverted on an annual basis.

Develop and implement a construction waste management plan that, at a minimum, identifies the materials to be diverted from disposal and whether the materials will be sorted on-site or co-mingled. Calculations can be done by weight or volume, but must be consistent throughout.
c) The applicant shall submit a Recyclables Collection and Loading Area Plan for construction related materials prior to issuance of a building permit with the Building Division and for operational aspects of the project prior to the issuance of the occupancy permit to the Public Works Department. The plan shall conform to the Riverside County Waste Management Department's Design Guidelines for Recyclable Collection and Loading Areas.
d) Prior to issuance of certificate of occupancy, the recyclables collection and loading area shall be constructed in compliance with the Recyclables Collection and Loading Area plan.
e) Prior to issuance of certificate of occupancy, documentation shall be provided to the City confirming that recycling is available for each building.
f) Within six months after occupancy of a building, the City shall confirm that all tenants have recycling procedures set in place to recycle all items that are recyclable, including but not limited to paper, cardboard, glass, plastics, and metals.
g) The property owner shall advise all tenants of the availability of community recycling and composting services.
h) Existing onsite street material shall be recycled for new project streets to the extent feasible.

MM-GHG-2 Prior to approval of a precise grading permit for each plot plan for development within the World Logistics Center Specific Plan (WLCSP), the developer shall submit landscape plans that demonstrate compliance with the World Logistics Center Specific Plan, the State of California Model Water Efficient Landscape Ordinance (AB 1881), and Conservation in Landscaping Act (AB 325). This measure shall be implemented to the satisfaction of the Planning Division. Said landscape plans shall incorporate the following:

- Use of xeriscape, drought-tolerant, and water-conserving landscape plant materials wherever feasible and as outlined in Section 6.0 of the World Logistics Center Specific Plan;
- Use of vacuums, sweepers, and other "dry" cleaning equipment to reduce the use of water for wash down of exterior areas;
- Weather-based automatic irrigation controllers for outdoor irrigation (i.e., use moisture sensors);
- Use of irrigation systems primarily at night or early morning, when evaporation rates are lowest;
- Use of recirculation systems in any outdoor water features, fountains, etc.;
- Use of low-flow sprinkler heads in irrigation system;
- Provide information to the public in conspicuous places regarding outdoor water conservation; and
- Use of reclaimed water for irrigation if it becomes available.

MM-GHG-3 All buildings shall include water-efficient design features outlined in Section 4.0 of the World Logistics Center Specific Plan. This measure shall be implemented to the satisfaction of the Land Development/Public Works. These design features shall include, but not be limited to the following:

- Instantaneous (flash) or solar water heaters;
- Automatic on and off water facets;
- Water-efficient appliances;
- Low-flow fittings, fixtures and equipment;
- Use of high efficiency toilets (1.28 gallons per flush [gpf] or less);
- Use of waterless or very low water use urinals ( 0.0 gpf to 0.25 gpf );
- Use of self-closing valves for drinking fountains;
- Infrared sensors on drinking fountains, sinks, toilets and urinals;
- Low-flow showerheads;
- Water-efficient ice machines, dishwashers, clothes washers, and other waterusing appliances;
- Cooling tower recirculating system where applicable;
- Provide information to the public in conspicuous places regarding indoor water conservation; and
- Use of reclaimed water for wash down if it becomes available.

MM-GHG-4 Prior to approval of a precise grading permit for each plot plan, irrigation plans shall be submitted to and approved by the City demonstrating that the development will have separate irrigation lines for recycled water. All irrigation systems shall be designed so that they will function properly with recycled water if it becomes available. This measure shall be implemented to the satisfaction of the City Planning Division and Land Development Division/Public Works.

MM-GHG-5 Each application for a building permit shall include energy calculations to demonstrate compliance with the California Energy Efficiency Standards (Title 24, Part 6). Plans shall show the following:

- Energy-efficient roofing systems, such as "cool" roofs, that reduce roof temperatures significantly during the summer and therefore reduce the energy requirement for air conditioning.
- Cool pavement materials such as lighter-colored pavement materials, porous materials, or permeable or porous pavement, for all roadways and walkways not within the public right-of-way, to minimize the absorption of solar heat and subsequent transfer of heat to its surrounding environment.
- Energy-efficient appliances that achieve the 2016 California Appliance Energy Efficiency Standards (e.g., EnergyStar Appliances) and use of sunlight-filtering window coatings or double-paned windows.

MM-GHG-6 Prior to the issuance of any building permits within the World Logistics Center site, each project developer shall submit energy calculations used to demonstrate compliance with the performance approach to the California Energy Efficiency Standards, for each new structure. Plans may include but are not necessarily limited to implementing the following as appropriate:

- High-efficiency air-conditioning with electronic management system (computer) control.
- Isolated High-efficiency air-conditioning zone control by floors/separable activity areas.
- Use of Energy Star ${ }^{\circledR}$ exit lighting or exit signage.

MM-GHG-7 Prior to the issuance of a building permit, new development shall demonstrate that each building has implemented the following:

- Install solar panels with a capacity equal to the peak daily demand for the ancillary office uses in each warehouse building or up to the limit allowed by Moreno Valley Utility's restriction on distributed solar PV connecting to their grid, whichever is greater;
- Increase efficiency for buildings by implementing either 10 percent over the 2008 Title 24 's energy saving requirements for the Title 24 requirements in place at the time the building permit is approved, whichever is more strict; and
- Require the equivalent of "Leadership in Energy and Environmental Design Certified" for the buildings constructed at the World Logistics Center based on Leadership in Energy and Environmental Design Certified standards in effect at the time of project approval.

This measure shall be implemented to the satisfaction of the Building and Safety and Planning Divisions.

The WLCSP incorporates site and building designs that emphasize conservation of water and energy, which in turn help reduce greenhouse gas emissions (WLCSP September 2014, Section 1.3.2, Green Building-Sustainable Development). The current proposed Project Design Features go substantially beyond that previous commitment with energy conservation measures that exceed minimal compliance with current (2016) Title 24 requirements by about 17 percent at Phase 1 and 16 percent at full buildout, as outlined in the WLC Sustainable Energy Plan. ${ }^{92}$ Table 56, Greenhouse Gas Emissions Reduction Analysis, evaluates to what degree various design features of the project will reduce potential GHG emissions.

[^58]Table 57, GHG Reductions at Buildout, shows the GHG emissions and mitigation reductions after implementation of Project Design Features and mitigation at buildout only. Table 58, Project GHG Emissions (Year by Year With Mitigation), shows the mitigated GHG emissions for each year from 2020 through construction and 30 years operation of all Project facilities. Total uncapped GHG emissions are below the threshold of significance for every year and are therefore less than significant after mitigation.
Table 56
Greenhouse Gas Emissions Reduction Analysis

| Category | Operational Mitigation Measure or Project Design Feature ${ }^{1}$ | Calculation Method and Reductions |
| :---: | :---: | :---: |
| Construction Fuel | Mitigation Measure MM-AQ-1 would require that construction equipment be Tier 4. | This reduction was estimated in CalEEMod. Tier 4 construction equipment would have fewer PM2.5 emissions, and therefore black carbon emissions. |
| Construction Waste | Regulation in the California Green Building Standards require that projects divert (reduce or recycle) at least 50 percent of waste. | This reduction was estimated using the U.S. EPA's Waste Reduction Model (WARM) version 13. |
| On-Road <br> Vehicles: Local | Project Design Feature: Local bus service to the area is provided by the Riverside Transit Agency. Local bus routes would typically be extended into the project area when adequate demand is generated from this employment center. Future bus routes could circulate on available looped routes with adequate right-of-way along the major arterial roadways of Redlands Boulevard, Theodore Street, and Alessandro Boulevard. Likewise, the industrial collector roadways provide access to locations nearest building front entrances. Due to building scale, bus stops may be spread out by grouped entrances or centralized gateway drive areas as compared to individual business entries. | The California Air Pollution Control Officer's Association (CAPCOA) report's reduction measure TRT-1 indicates a 5.2 percent reduction in commute vehicle miles traveled for lowdensity suburbs for inclusion of a commute trip reduction program. However, this reduction is not used in this analysis. <br> No reductions are taken for these measures in order to provide a conservative analysis. |
|  | Mitigation Measure MM-AQ-10: Class II bike lanes. |  |
|  | Mitigation Measure MM-AQ-10: Participate in Riverside County's rideshare program |  |
|  | Mitigation Measure MM-AQ-10: Lockers for employees. |  |
|  | Mitigation Measure MM-AQ-10: Bicycle storage and changing rooms |  |
|  | Project Design Features: The project would have pedestrian circulation (, sidewalks, and a multiuse trail. |  |
|  | Mitigation Measure MM-AQ-10: Safe pedestrian connections |  |
|  | Mitigation Measure MM-AQ-10: Parking for fuel-efficient vehicles |  |
| On-road <br> Vehicles: Long haul trucks | Mitigation Measure MM-AQ-6: Require model year 2010 diesel trucks or later. | This was implemented by utilizing the emission factors for medium-heavy duty and heavy-heavy duty trucks from EMFAC2017 for year 2010 and after. |

Table 56
Greenhouse Gas Emissions Reduction Analysis

| Category | Operational Mitigation Measure or Project Design Feature ${ }^{1}$ | Calculation Method and Reductions |
| :---: | :---: | :---: |
| On-road Vehicles: all | Pavley-I Regulation: A clean-car standard to reduce greenhouse gas emissions from new passenger vehicles (light duty automobiles and medium duty vehicles) from 2009 through 2016. <br> Low Carbon Fuel Standard: A fuel standard that requires a reduction of at least 10 percent in the carbon intensity of California's transportation fuels by 2020. <br> California Mobile Source Strategy: This 2016 plan includes targets for zero emission vehicles (ZEVs) that exceed assumptions included in EMFAC 2014. <br> Project design includes supporting infrastructure to accommodate future EV populations consistent with targets in the Mobile Source Strategy. | EMFAC2017 provides emission factors for carbon dioxide that include these regulations. Therefore, both the unmitigated and mitigated emissions account for these regulations. |
| Electricity and Natural Gas: Title 24 | Mitigation Measures MM-GHG-5 and MM-GHG-6 would reduce electricity related emissions. In addition, the project would require LEED certification for buildings and would require buildings to exceed Title 24 (2008 version) by 10 percent or comply with the current version in place. <br> Project design includes energy conservation measures that would enable the project to exceed 2019 Title 24 energy standards by lowering electrical demand with implementation of sustainability measures such as high efficiency appliances and skylights. | Reductions from exceeding the requirements of Title 24 (2016) were accounted for in calculations. |
| Electricity, Lighting | Mitigation Measures MM-GHG-6 (lighting efficiency) and MM-GHG-7 (Title 24) would reduce electricity from lighting. <br> Project design includes energy conservation measures that lower electrical demand with implementation of sustainability measures such as high efficiency lighting and motion sensors. | Reductions due to efficient lighting were accounted for in calculations. |
| Electricity: Solar | Mitigation Measure MM-GHG-7 requires that the project install solar panels. <br> Project design includes on-site solar panel installation. | The estimated electricity generation from onsite solar is $24,083 \mathrm{MWh}$ per year, which is 5.0 percent of the electricity demand at buildout. Therefore, 5.0 percent of the unmitigated electricity-related GHG emissions are reduced by solar generation. |
| Water | Mitigation Measure MM-GHG-2 would reduce outdoor water usage | CalEEMod mitigation for water-efficient irrigation systems ( $6.1 \%$ reduction, CalEEMod default) |

Section 6: Mitigation Measures
Table 56
Greenhouse Gas Emissions Reduction Analysis

| Category | Operational Mitigation Measure or Project Design Feature ${ }^{1}$ | Calculation Method and Reductions |
| :---: | :---: | :---: |
|  | Mitigation Measure MM-GHG-3 would reduce interior water usage, including low flow fittings, fixtures and equipment. | CaIEEMod mitigation for: <br> - low-flow toilet (20\% reduction in flow, CalEEMod default) <br> - low flow bathroom faucet (32\% reduction in flow, CaIEEMod default) <br> - low-flow kitchen faucet (18\% reduction in flow, CalEEMod default) <br> - low-flow shower ( $20 \%$ reduction in flow, CalEEMod default) |
|  | Mitigation Measure MM-GHG-4 would allow reclaimed water to be used for irrigation. | No reductions are taken for the potential use of reclaimed water. |
| Waste | Mitigation Measure MM-GHG-1: Recycling and composting to divert construction and operational waste by at least 50 percent before 2020 and 75 percent thereafter. | The project would commit to reducing construction and operational waste by 50 percent prior to 2020 and 75 percent thereafter; therefore, a 75 percent reduction is applied. |
|  | Project Design Feature: Specific Plan (Section 5.1.6) requires that all development within the project provide enclosures or compactors for trash and recyclable materials. |  |
| Project design features are from the Project Description and WLC Sustainable Energy Plan (WSP, 2018); mitigation measures are shown in Section 1.0, Table 1.B. |  |  |

Table 57
GHG Reductions at Buildout (with Mitigation)

| Source |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Unmitigated | Reductions from Mitigation | With Reductions (Mitigated) |
| Capped Emissions |  |  |  |
| Construction | 7,391 | 0 | 7,391 |
| Net Mobile | 179,355 | -557 | 178,798 |
| Yard trucks | 7,172 | 0 | 7,172 |
| Generator | 267 | 19 | 286 |
| Forklifts | 257 | 0 | 257 |
| Electricity | 34,147 | -4,715 | 29,432 |
| Water | 2,548 | -268 | 2,280 |
| Natural gas | 4,689 | -4,689 | 0 |
| Solar | 0 | -3,386 | -3,386 |
| Total Capped | 238,686 | -13,596 | 222,230 |
| Uncapped Emissions |  |  |  |
| Construction Refrigerants and Waste | 166 | -17 | 149 |
| Waste | 19,193 | -14,395 | 4,798 |
| Refrigerants | 2,572 | 0 | 2,572 |
| Land use change | 1,154 | 0 | 1,154 |
| Sequestration | -111 | 0 | -111 |
| Total Uncapped | 22,974 | -14,412 | 8,562 |
| Threshold | 10,000 | - | 10,000 |
| Significant Impact? | Yes | - | No |

$\mathrm{mt}_{\mathrm{CO}_{2} \mathrm{e}=}=$ metric tons of carbon dioxide equivalents which is calculated from the emissions (tons/year) by multiplying by the individual global warming potential (carbon dioxide -1 , methane -21 , nitrous oxide -310 , hydrofluorocarbons -1500 , black carbon 760 ) and converted to metric tons by multiplying by 0.9072 .
1 - Electricity and natural gas emissions estimates account for PDFs that improve energy efficiency and eliminate the use of building natural gas; includes electricity use by on-site EV chargers. Electricity-based emissions result in an increase due to the inclusion of EV charging stations and electric outlets for electrical property maintenance equipment.
2 - Construction would no longer occur at buildout; however, according to SCAQMD recommendations, construction emissions are included as amortized over 30
Table 58a
Project GHG Emissions (Year by Year With Mitigation)

| Source | GHG Mitigated Emissions (mt $\mathrm{CO}_{2} \mathrm{e}$ /year) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
| Capped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction | 18,770 | 22,198 | 23,363 | 23,511 | 22,113 | 16,408 | 12,424 | 11,692 | 12,000 | 11,452 | 12,311 | 10,610 | 9,993 | 7,451 | 7,430 |
| Net Mobile | 0 | 20,982 | 41,248 | 60,829 | 79,602 | 96,308 | 102,643 | 112,971 | 123,218 | 132,710 | 141,787 | 150,466 | 158,748 | 166,632 | 174,108 |
| Yard trucks | 0 | 813 | 1,625 | 2,438 | 3,250 | 4,053 | 4,371 | 4,689 | 5,016 | 5,334 | 5,652 | 5,970 | 6,288 | 6,606 | 6,924 |
| Generator | 0 | 32 | 65 | 97 | 130 | 162 | 174 | 187 | 200 | 213 | 225 | 238 | 251 | 263 | 276 |
| Forklifts | 0 | 29 | 58 | 87 | 117 | 145 | 157 | 168 | 180 | 191 | 203 | 214 | 226 | 237 | 248 |
| Electricity | 0 | 5,487 | 10,505 | 16,725 | 22,319 | 32,535 | 36,088 | 36,779 | 36,207 | 35,461 | 35,096 | 34,716 | 34,056 | 33,116 | 31,366 |
| Water | 0 | 119 | 239 | 398 | 557 | 853 | 1,148 | 1,304 | 1,398 | 1,492 | 1,626 | 1,778 | 1,929 | 2,081 | 2,181 |
| Natural gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Solar | 0 | -179 | -357 | -595 | -834 | -1,276 | -1,705 | -1,931 | -2,068 | -2,204 | -2,398 | -2,618 | -2,838 | -3,059 | -3,203 |
| Total Capped | 18,770 | 49,483 | 76,746 | 103,490 | 127,254 | 149,188 | 155,300 | 165,860 | 176,151 | 184,649 | 194,501 | 201,374 | 208,653 | 213,328 | 219,330 |
| Uncapped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction Refrigerants and Waste | 192 | 192 | 192 | 192 | 190 | 85 | 124 | 127 | 124 | 124 | 124 | 124 | 124 | 124 | 101 |
| Waste | 0 | 544 | 1,087 | 1,631 | 2,175 | 2,712 | 2,924 | 3,137 | 3,356 | 3,569 | 3,781 | 3,994 | 4,207 | 4,419 | 4,632 |
| Refrigerants | 0 | 291 | 583 | 874 | 1,166 | 1,454 | 1,568 | 1,682 | 1,799 | 1,913 | 2,027 | 2,141 | 2,255 | 2,369 | 2,483 |
| Land use change | 0 | 131 | 262 | 392 | 523 | 652 | 704 | 755 | 807 | 858 | 910 | 961 | 1,012 | 1,063 | 1,114 |
| Sequestration | 0 | -13 | -25 | -38 | -50 | -63 | -68 | -72 | -77 | -82 | -87 | -92 | -97 | -102 | -107 |
| Total Uncapped | 192 | 1,145 | 2,098 | 3,051 | 4,003 | 4,840 | 5,252 | $\mathbf{5 , 6 2 8}$ | $\mathbf{6 , 0 0 9}$ | 6,382 | 6,755 | 7,128 | 7,501 | 7,874 | 8,223 |
| Threshold | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
| Significant Impact? | No |

World Logistics Center
Air Quality, Greenhouse Gas, and Health Risk Assessment Report

| Source | GHG Mitigated Emissions (mt $\mathrm{CO}_{2} \mathrm{e}$ /year) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 2035 \\ \text { (Buildout) } \end{gathered}$ | 2036 | 2037 | 2038 | 2039 | 2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 2046 | 2047 | 2048 | 2049 |
| Capped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Net Mobile | 178,798 | 178,798 | 178,798 | 178,798 | 178,798 | 178,798 | 178,798 | 178,798 | 178,798 | 178,798 | 178,798 | 178,798 | 178,798 | 178,798 | 178,798 |
| Yard trucks | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 |
| Generator | 286 | 286 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 | 267 |
| Forklifts | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 |
| Electricity | 29,432 | 26,712 | 23,744 | 20,776 | 17,808 | 14,840 | 11,872 | 8,904 | 5,936 | 2,968 | 0 | 0 | 0 | 0 | 0 |
| Water | 2,280 | 2,308 | 2,308 | 2,308 | 2,308 | 2,308 | 2,308 | 2,308 | 2,308 | 2,308 | 0 | 0 | 0 | 0 | 0 |
| Natural gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Solar | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 |
| Total Capped | 214,839 | 212,148 | 209,161 | 206,193 | 203,225 | 200,257 | 197,289 | 194,321 | 191,353 | 188,385 | 183,109 | 183,109 | 183,109 | 183,109 | 183,109 |
| Uncapped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction Refrigerants and Waste | 149 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Waste | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 |
| Refrigerants | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 |
| Land use change | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 |
| Sequestration | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 |
| Total Uncapped | 8,563 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 |
| Threshold | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
| Significant Impact? | No |

World Logistics Center
Air Quality, Greenhouse Gas, and Health Risk Assessment Report
Table 58c
Project GHG Emissions (Year by Year With Mitigation)

| Source | GHG Mitigated Emissions (mt $\mathrm{CO}_{2} \mathrm{e} / \mathrm{ye}$ ear) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2050 | 2051 | 2052 | 2053 | 2054 | 2055 | 2056 | 2057 | 2058 | 2059 | 2060 | 2061 | 2062 | 2063 | 2064 | Total (2020-2064) |
| Capped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 221,727 |
| Net Mobile | 153,767 | 132,239 | 107,555 | 87,478 | 57,152 | 45,312 | 40,356 | 37,703 | 35,225 | 31,920 | 28,525 | 25,491 | 22,779 | 21,191 | 19,714 | 5,090,636 |
| Yard trucks | 6,168 | 5,304 | 4,314 | 3,509 | 2,293 | 1,818 | 1,619 | 1,512 | 1,413 | 1,280 | 1,144 | 1,022 | 914 | 850 | 791 | 204,561 |
| Generator | 230 | 198 | 161 | 131 | 85 | 68 | 60 | 56 | 53 | 48 | 43 | 38 | 34 | 32 | 29 | 7,821 |
| Forklifts | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6,122 |
| Electricity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 563,449 |
| Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40,159 |
| Natural gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Solar | -2,912 | -2,505 | -2,037 | -1,657 | -1,082 | -858 | -764 | -714 | -667 | -605 | -540 | -483 | -431 | -401 | -373 | -92,091 |
| Subtotal, capped | 157,252 | 135,237 | 109,993 | 89,461 | 58,448 | 46,339 | 41,270 | 38,557 | 36,023 | 32,644 | 29,172 | 26,068 | 23,295 | 21,671 | 20,161 | 6,042,384 |
| Uncapped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction <br> Refrigerants and Waste | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2,289 |
| Waste | 4,126 | 3,549 | 2,886 | 2,348 | 1,534 | 1,216 | 1,083 | 1,012 | 945 | 857 | 765 | 684 | 611 | 569 | 529 | 136,855 |
| Refrigerants | 2,212 | 1,902 | 1,547 | 1,258 | 822 | 652 | 580 | 542 | 507 | 459 | 410 | 367 | 328 | 305 | 284 | 73,356 |
| Land use change | 993 | 854 | 694 | 565 | 369 | 293 | 261 | 243 | 227 | 206 | 184 | 165 | 147 | 137 | 127 | 32,922 |
| Sequestration | -95 | -82 | -67 | -54 | -35 | -28 | -25 | -23 | -22 | -20 | -18 | -16 | -14 | -13 | -12 | -3,159 |
| Subtotal, uncapped | 7,236 | 6,223 | 5,061 | 4,116 | 2,689 | 2,132 | 1,899 | 1,774 | 1,658 | 1,502 | 1,342 | 1,199 | 1,072 | 997 | 928 | 242,263 |
| Threshold | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 450,000 |
| Significant Impact? | No |
| $\mathrm{mt} \mathrm{CO}_{2} \mathrm{e}=$ metric tons of carbon dioxide equivalents, which is calculated from the emissions (tons/year) by multiplying by the individual global warming potential (carbon dioxide -1 , methane oxide -310 , hydrofluorocarbons -1500 , black carbon 760 ) and converted to metric tons by multiplying by 0.9072 . <br> 1 - Electricity and natural gas emissions estimates account for PDFs that improve energy efficiency and eliminate the use of building natural gas; includes electricity use by on-site EV charge <br> 2 - Estimated construction emissions are included prior to buildout. <br> $3-2036$ is the first full year that the Project would be built out. Years from buildout until 2049 are conservatively estimated to be equivalent to buildout year emissions and exclude constructic since construction activity would cease after buildout. Years post-2049 take into account the phasing out of structures as they reach their presumed 30-year lifetime. <br> 4 - Electricity emissions decrease to zero in 2045 after RPS has reached $100 \%$ renewable electricity <br> Source: ESA, 2019 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

The Scoping Plan Scenario assumes that California's 2016 Mobile Source Strategy (MSS) would be implemented as a key strategy in the 2017 Scoping Plan Update for meeting the state's 2030 GHG target (presented in the Energy section as Vehicle Scenario B: Medium EV Penetration). The MSS has a target of 4.2 million zero emission vehicles (ZEVs) in operation statewide by 2030. As explained in the Energy Section, after 2025 the sales and penetration of ZEVs under the MSS start to exceed the numbers assumed by EMFAC2017. Table 59, California and SCAQMD Electric Vehicle (EV) Penetration Estimates, shows that under the MSS approximately 5.2 percent of the passenger vehicle (LDA, LDT1, and LDT2) and light truck (MDV) fleet is expected to powered by electricity or other zero emission engines by 2025 in the South Coast AQMD region, compared to 2.5 percent of passenger vehicles and 1.6 percent of light trucks using EMFAC2017 assumptions. By 2035, 21 percent of passenger vehicles and 22.5 percent of light trucks are expected to be ZEVs in the South Coast AQMD region, compared to 4.7 percent of passenger vehicles and 3.9 percent of light trucks using EMFAC2017 assumptions.

AB 32/SB 32 capped emissions are shown for informational purposes in Table 60, Project Operational GHG Emissions (Year by Year With Mitigation and Medium EV Penetration) Scoping Plan Scenario, For Informational Purposes Only, as those emissions are not compared with the SCAQMD's significance threshold. The emissions presented under the Scoping Plan scenario (Table 60) assume successful implementation of the 2017 Scoping Plan Update, which included the Mobile Source Strategy in addition to the Pavley regulations, the Low Carbon Fuel Standard, and California's Advanced Clean Car program. The mobile emissions estimates for future years are based on emission factors that account for higher penetrations of electric vehicles (EVs) than assumed by EMFAC.

Table 59
California and SCAQMD Electric Vehicle (EV) Penetration Estimates

| Jurisdiction | Year | Passenger Vehicles |  |  |  | Total | EVs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2020 | $9,125,366$ | 103,722 | $1.1 \%$ | $1,539,990$ | 3,852 | $0.3 \%$ |
|  | 2025 | $10,034,980$ | 252,889 | $2.5 \%$ | $1,627,185$ | 26,375 | $1.6 \%$ |
|  | 2030 | $10,907,401$ | 417,413 | $3.8 \%$ | $1,733,368$ | 51,603 | $3.0 \%$ |
|  | 2035 | $11,642,018$ | 546,208 | $4.7 \%$ | $1,849,556$ | 72,433 | $3.9 \%$ |
| South Coast Air Basin <br> with Governor's order <br> and MSS | 2020 | $9,125,366$ | 103,722 | $1.1 \%$ | $1,539,990$ | 3,852 | $0.3 \%$ |
|  | 2025 | $10,034,980$ | 517,550 | $5.2 \%$ | $1,627,185$ | 83,921 | $5.2 \%$ |

[^59]Project GHG Emissions (Year by Year with Mitigation and Medium EV Penetration) - Scoping Plan Scenario, For Informational Purposes Only

| Source | GHG Mitigated Emissions (mt CO2 ${ }_{2}$ e/year) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
| Capped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction | 18,770 | 22,198 | 23,363 | 23,511 | 22,113 | 16,408 | 12,424 | 11,692 | 12,000 | 11,452 | 12,311 | 10,610 | 9,993 | 7,451 | 7,430 |
| Mobile | 0 | 20,982 | 41,248 | 60,829 | 79,602 | 94,618 | 102,528 | 112,913 | 123,228 | 132,810 | 141,992 | 150,778 | 159,165 | 167,154 | 174,742 |
| Yard trucks | 0 | 813 | 1,625 | 2,438 | 3,250 | 4,053 | 4,371 | 4,689 | 5,016 | 5,334 | 5,652 | 5,970 | 6,288 | 6,606 | 6,924 |
| Generator | 0 | 32 | 65 | 97 | 130 | 162 | 174 | 187 | 200 | 213 | 225 | 238 | 251 | 263 | 276 |
| Forklifts | 0 | 29 | 58 | 87 | 117 | 145 | 157 | 168 | 180 | 191 | 203 | 214 | 226 | 237 | 248 |
| Electricity | 0 | 5,634 | 10,785 | 17,172 | 22,915 | 33,404 | 40,224 | 42,353 | 42,411 | 42,184 | 42,583 | 42,956 | 42,870 | 42,326 | 40,453 |
| Water | 0 | 119 | 239 | 398 | 557 | 853 | 1,148 | 1,304 | 1,398 | 1,492 | 1,626 | 1,778 | 1,929 | 2,081 | 2,181 |
| Natural gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| Solar | 0 | -179 | -357 | -595 | -834 | -1,276 | -1,705 | -1,931 | -2,068 | -2,204 | -2,398 | -2,618 | -2,838 | -3,059 | -3,203 |
| Total Capped | 18,770 | 49,629 | 77,027 | 103,937 | 127,851 | 148,367 | 159,322 | 171,376 | 182,365 | 191,474 | 202,194 | 209,926 | 217,884 | 223,060 | 229,051 |


Project GHG Emissions (Year by Year with Mitigation and Medium EV Penetration) - Scoping Plan Scenario, For Informational Purposes Only

| Source | GHG Mitigated Emissions (mt $\mathrm{CO}_{2} \mathrm{e} / \mathrm{y}$ year) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 2035 \\ \text { (Buildout) } \end{gathered}$ | 2036 | 2037 | 2038 | 2039 | 2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 2046 | 2047 | 2048 | 2049 |
| Capped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Mobile | 172,356 | 172,356 | 172,356 | 172,356 | 172,356 | 172,356 | 172,356 | 172,356 | 172,356 | 172,356 | 172,356 | 172,356 | 172,356 | 172,356 | 172,356 |
| Yard trucks | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 | 7,172 |
| Generator | 286 | 286 | 286 | 286 | 286 | 286 | 286 | 286 | 286 | 286 | 286 | 286 | 286 | 286 | 286 |
| Forklifts | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 | 257 |
| Electricity | 38,279 | 34,818 | 30,949 | 27,080 | 23,212 | 19,343 | 15,475 | 11,606 | 7,737 | 3,869 | 0 | 0 | 0 | 0 | 0 |
| Water | 2,280 | 2,308 | 2,308 | 2,308 | 2,308 | 2,308 | 2,308 | 2,308 | 2,308 | 2,308 | 0 | 0 | 0 | 0 | 0 |
| Natural gas | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Solar | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 | -3,386 |
| Total Capped | 217,245 | 213,812 | 209,943 | 206,075 | 202,206 | 198,337 | 194,469 | 190,600 | 186,731 | 182,863 | 176,686 | 176,686 | 176,686 | 176,686 | 176,686 |


| Uncapped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Construction Refrigerants and Waste | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Waste | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 | 4,798 |
| Refrigerants | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 | 2,572 |
| Land use change | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 | 1,154 |
| Sequestration | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 | -111 |
| Total | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 | 8,414 |
| Threshold | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
| Significant Impact? | No |

Air Quality, Greenhouse Gas, and Health Risk Assessment Report

| Source | GHG Mitigated Emissions (mt $\mathrm{CO}_{2} \mathrm{e}$ /year) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2050 | 2051 | 2052 | 2053 | 2054 | 2055 | 2056 | 2057 | 2058 | 2059 | 2060 | 2061 | 2062 | 2063 | 2064 | Total (2020-2064) |
| Capped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Construction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 221,727 |
| Mobile | 148,226 | 127,475 | 103,680 | 84,326 | 55,093 | 43,680 | 38,902 | 36,344 | 33,956 | 30,770 | 27,497 | 24,572 | 21,958 | 20,428 | 19,003 | 4,963,844 |
| Yard trucks | 6,168 | 5,304 | 4,314 | 3,509 | 2,293 | 1,818 | 1,619 | 1,512 | 1,413 | 1,280 | 1,144 | 1,022 | 914 | 850 | 791 | 204,561 |
| Generator | 246 | 211 | 172 | 140 | 91 | 72 | 65 | 60 | 56 | 51 | 46 | 41 | 36 | 34 | 32 | 8,152 |
| Forklifts | 221 | 190 | 155 | 126 | 82 | 65 | 58 | 54 | 51 | 46 | 41 | 37 | 33 | 30 | 28 | 7,340 |
| Electricity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 680,637 |
| Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40,159 |
| Natural gas | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
| Solar | -2,912 | -2,505 | -2,037 | -1,657 | -1,082 | -858 | -764 | -714 | -667 | -605 | -540 | -483 | -431 | -401 | -373 | -92,091 |
| Total Capped | 151,950 | 130,677 | 106,284 | 86,444 | 56,477 | 44,777 | 39,879 | 37,257 | 34,808 | 31,543 | 28,188 | 25,189 | 22,510 | 20,941 | 19,481 | 6,034,349 |
| Uncapped Emissions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} \text { Construction } \\ \text { Refrigerants and Waste } \\ \hline \end{gathered}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2,140 |
| Waste | 4,126 | 3,549 | 2,886 | 2,348 | 1,534 | 1,216 | 1,083 | 1,012 | 945 | 857 | 765 | 684 | 611 | 569 | 529 | 136,855 |
| Refrigerants | 2,212 | 1,902 | 1,547 | 1,258 | 822 | 652 | 580 | 542 | 507 | 459 | 410 | 367 | 328 | 305 | 284 | 73,356 |
| Land use change | 993 | 854 | 694 | 565 | 369 | 293 | 261 | 243 | 227 | 206 | 184 | 165 | 147 | 137 | 127 | 32,922 |
| Sequestration | -95 | -82 | -67 | -54 | -35 | -28 | -25 | -23 | -22 | -20 | -18 | -16 | -14 | -13 | -12 | -3,159 |
| Total Uncapped | 7,236 | 6,223 | 5,061 | 4,116 | 2,689 | 2,132 | 1,899 | 1,774 | 1,658 | 1,502 | 1,342 | 1,199 | 1,072 | 997 | 928 | 242,114 |
| Threshold | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 450,000 |
| Significant Impact? | No |

[^60]
## Plan, Policy, Regulation Consistency

The WLCSP contains a sustainability section that emphasizes water and energy conservation throughout the project design, which in turn will help reduce GHG emissions (Section 1.3.2, Green Building-Sustainable Development). The WLC Sustainable Energy Plan includes additional Project Design Features that go beyond the WLSCP with energy conservation measures that exceed minimal compliance with current (2016) Title 24 requirements by about 17 percent at Phase 1 and 16 percent at full buildout. ${ }^{93}$

As previously identified, implementation of the project could result in the development of an approximately 40.6 million square foot high cube-logistics distribution logistics. The project includes a variety of physical attributes and operational programs that would help reduce operational-source pollutant emissions from worker commuting, including GHG emissions. Future development that would occur under the project would be consistent with greenhouse gas emission reduction strategies and policies, including the City's Climate Change Strategy. The project would implement the Mitigation Measures listed above to reduce its contribution to GHG emissions and to ensure it does not conflict with or impede implementation of reduction goals identified in AB 32, SB 32, Governor's Executive Order S-3-05, and other strategies to help reduce GHGs to the level proposed by the Governor. In addition, the project would also be subject to all applicable regulatory requirements, which would also reduce the GHG emissions of the project. Therefore, the project would not conflict with any applicable plan, program, policy, or regulation related to the reduction of GHG emissions. Impacts are considered less than significant.

Similar to the discussion of cumulative air quality impacts, the project may employ workers locally from the City. This has the benefit of improving the local jobs/housing balance leading to air quality benefits in terms of shorter trip lengths, which lead to lower emissions than if the workforce was derived from distant locations.

The State of California has adopted a number of policies, including AB 32, SB 32, Governor's Executive Order S-3-05, the Pavley vehicle standards, the Advanced Clean Car program, and the Mobile Source Strategy, which collectively provide the structure and commitment to address California's contribution to global climate change. Since the project is consistent with these policies, including being below the SCAQMD threshold for greenhouse gases that was structured in accordance with these State policies, the project is consistent with greenhouse gas plans, policies, and regulations and impacts are less than significant after mitigation.

[^61]Highland Fairview
Prepared by
Ramboll US Corporation
Project Number 1690014654

Date
December, 2019

## HIGHLAND FAIRVIEW WORLD <br> LOGISTICS CENTER <br> ADDITIONAL INFORMATION REGARDING POTENTIAL HEALTH EFFECTS OF AIR QUALITY IMPACTS <br> MORENO VALLEY, CALIFORNIA

## CONTENTS

1. INTRODUCTION ..... 1
2. TECHNICAL APPROACH ..... 3
3. RESULTS ..... 6
4. REFERENCES ..... 15

## APPENDICES

Appendix A: Emissions Inventory, Spatial Allocation, and SMOKE Setup
Appendix B: PGM Inputs, Outputs, and Assumptions
Appendix C: BenMAP and Potential Health Effects

## 1. INTRODUCTION

This report presents an estimate of the potential health effects of the emissions of criteria pollutants that may result from the construction and operation of the Highland Fairview World Logistics Center Project (the Project). ${ }^{1}$

## FRIANT RANCH DECISION

As background, Environmental Impact Reports (EIRs) prepared pursuant to the California Environmental Quality Act (CEQA) have long evaluated project-related health effects of toxic air contaminants, such as diesel particulate matter, through quantitative and/or qualitative means relative to air district-issued thresholds of significance. However, EIRs historically have not evaluated the specific health effects of project-related increases in criteria pollutants, other than to note and summarize scientific literature regarding the general effect of those pollutants on health. Instead, in accordance with air district-issued thresholds of significance and industry standard practice at the time, CEQA analysis historically and traditionally focused on estimating project-related mass emissions totals for criteria pollutants and, in certain cases, conducting dispersion modeling to assess impacts on local ambient air quality concentrations.

In December 2018, the California Supreme Court issued its decision in Sierra Club v. County of Fresno (2018) 6 Cal.5th 502 (hereinafter referred to as "the Friant Ranch decision"). The Court noted that the EIR at issue in the Friant Ranch decision disclosed the project's significant impacts attributable to the emissions of criteria pollutants, including oxides of nitrogen (NOx), and particulate matter (PM), but did not correlate the project's emissions to health effects. In finding the EIR inadequate in that respect, the Court held that the EIR should have "relate[d] the expected adverse air quality impacts to likely health consequences or explain[ed] in meaningful detail why it is not feasible at the time of drafting to provide such an analysis, so that the public may make informed decisions regarding the costs and benefits of" the project. (Id. at p. 510.)
CEQA practitioners and other expert agencies (like air districts) are still developing tools and methodologies to provide the type of CEQA analysis described in the Friant Ranch decision. In this report, Ramboll presents one method that can be used to correlate project-related mass emissions totals for criteria pollutants to estimated health effects. More specifically, in order to estimate the health effects of the increases of criteria pollutants for the Project, Ramboll applied a photochemical grid model (PGM), Comprehensive Air Quality Model with extensions (CAMx), to estimate the small increases in concentrations of ozone and PM 2.5 in the region as a result of the emissions of criteria and precursor pollutants from the Project. Ramboll then applied a U.S. Environmental Protection Agency (USEPA)-authored program, the Benefits Mapping and Analysis Program (BenMAP) ${ }^{2}$, to estimate the resulting health effects from the small increases in concentration. Only the health effects of ozone and PM2.5 are estimated, as those are the pollutants that USEPA uses in BenMAP to estimate the health

[^62]effects of emissions of $\mathrm{NOX}, \mathrm{VOCs}, \mathrm{CO}, \mathrm{SO}_{2}$, and $\mathrm{PM}_{2.5}$. Ozone and $\mathrm{PM}_{2.5}$ have the most critical health effects and thus are the emissions evaluated to determine the Project's health effects.

## ADDITIONAL EVALUATION

In light of the Friant Ranch decision, this analysis estimates the health effects of criteria pollutants and their precursors, specifically those that are evaluated by the USEPA in rulemaking setting the national ambient air quality standards: NOx, VOC [also known as reactive organic gases, or ROG, which are virtually the same as VOC with some slight differences ${ }^{3}, \mathrm{CO}$, ozone, $\mathrm{SO}_{2}$, and $\mathrm{PM}_{2.5}$. USEPA's default health effect functions in BenMAP for PM use fine particulate matter ( $\mathrm{PM}_{2.5}$ ) as the causal PM agent, so the health effects of $\mathrm{PM}_{10}$ are represented using $\mathrm{PM}_{2.5}$ as a surrogate. NOx and VOCs are not criteria air pollutants but, in the presence of sunlight, they form ozone and contribute to the formation of secondary $\mathrm{PM}_{2.5}$ and thus are analyzed here. As a conservative measure, $\mathrm{SO}_{2}$ and CO are evaluated due to their small contribution to the formation of secondary $\mathrm{PM}_{2.5}$ and ozone. The health effects from ozone and $\mathrm{PM}_{2.5}$ are examined for this Project because the USEPA has determined that these criteria pollutants would have the greatest effect on human health. The emissions of other criteria and precursor pollutants, including VOC, $\mathrm{NOx}, \mathrm{CO}$ and $\mathrm{SO}_{2}$, are analyzed in their contribution in the formation of ozone and secondary $\mathrm{PM}_{2.5}$.

Additionally, $\mathrm{NO}_{2}$ and CO concentration changes due to the Project are not evaluated here individually, as a localized significance threshold (LST) analysis has been performed as presented in Section 4.3 of the Draft Recirculated Revised Sections of the Final Environmental Report (Draft Recirculated RSFEIR), where Project plus background contributions are compared to the National Ambient Air Quality Standards (NAAQS). The NAAQS are health based thresholds and thus a direct comparison against such thresholds allows evaluation of potential health effects. Further, there are currently no $\mathrm{NO}_{2}$ nonattainment areas in the United States, even after the 1-hour standard was implemented. Similarly, $\mathrm{SO}_{2}$ concentration changes are also not individually evaluated here as there are no current $\mathrm{SO}_{2}$ non-attainment areas in the state of California. Even so, as noted above, contributions of NOx, CO , and $\mathrm{SO}_{2}$ are all still evaluated here in their contribution to the formation of ozone and secondary $\mathrm{PM}_{2.5}$, the two criteria pollutants the USEPA has determined to have the greatest effect on human health.
The evaluation presented herein serves to describe the potential health effects of the criteria pollutant emissions disclosed in Section 4.3 of the Project's Draft Recirculated RSFEIR. This evaluation does not make a new significance determination, as the Project's air quality impacts were already found to be significant and unavoidable. Instead, this evaluation provides additional information regarding the potential health effects of the previously identified significant air quality impacts.

[^63]
## 2. TECHNICAL APPROACH

The first step in the process is to run the PGM with appropriate information to assess the small increases in ambient air concentrations of pollutants that the Project emissions may cause. PGMs require a database of information, including the spatial allocation of emissions, in the area to be modeled. This includes both base (background/existing) emissions and Project emissions. The latest publicly available PGM database for Southern California, which contains base emissions, was developed by the South Coast Air Quality Management District (SCAQMD) in support of its adopted 2016 Air Quality Management Plan (AQMP) ${ }^{4}$ and was adapted for use in this analysis. This PGM database is tailored for Southern California using California-specific input tools (e.g., the Emission FACtors (EMFAC) ${ }^{5}$ mobile source emissions model) and uses a high-resolution 4- kilometer (km) horizontal grid to better simulate meteorology and air quality in the complex terrain and coastal environment of California.

Project emissions included $\mathrm{NO}_{x}, \mathrm{SO}_{2}, \mathrm{CO}$, respirable ( $\mathrm{PM}_{10}$ ) and fine ( $\mathrm{PM}_{2.5}$ ) primary particulate matter (PM), and VOCs. As discussed above, NOx and VOC are precursors to ozone and, along with $\mathrm{SO}_{2}$, are also precursors to secondarily formed $\mathrm{PM}_{2.5}$. CO also plays a smaller role in the formation of ozone and is thus conservatively evaluated here.

The USEPA's air quality modeling guidelines (Appendix $\mathrm{W}^{6}$ ) and ozone and $\mathrm{PM}_{2.5}$ modeling guidance ${ }^{7}$ recommend using a PGM to estimate ozone and secondary $\mathrm{PM}_{2.5}$ concentrations. The USEPA's modeling guidance does not recommend specific PGMs but provides procedures for determining an appropriate PGM on a case-by-case basis. Both the modeling guidelines and guidance note that the CAMx ${ }^{8}$ and the Community Multiscale Air Quality (CMAQ ${ }^{9}$ ) PGMs have been used extensively in the past and would be acceptable PGMs. As such, the USEPA has prepared a memorandum ${ }^{10}$ documenting the suitability for using CAMx and CMAQ for ozone and secondary $\mathrm{PM}_{2.5}$ modeling of single-sources or group of sources.

To estimate the potential outcome of the Project's emissions on ambient air concentrations, the Project's unmitigated and mitigated emissions were added to the CAMx 4-km annual PGM modeling database. ${ }^{11}$ Operational and construction emissions from the Project were estimated as described in Section 4.3 of the Draft Recirculated RSFEIR. ${ }^{12}$ For this analysis, both unmitigated and mitigated Project emissions were evaluated. In both cases, total emissions modeled reflect the maximum combined (operational + construction) emissions by

[^64]pollutant. These maxima may occur in different years for different pollutants, though each pollutant's maximum year is conservatively analyzed collectively in a single year assessment. Full operational emissions (at Project buildout) were modeled for all pollutants, and the balance of emissions were allocated to construction sources, with the distribution of emissions types representative of the maximum construction years. This allows for analysis of the worst-case emissions scenario over a single construction or operational year. Full operational emissions (at Project buildout) are expected to have the greatest contribution to health effects due to the proximity of the mobile source emissions to dense population centers, and thus were modeled in full. Additional construction emissions were evaluated to conservatively represent a potential year where construction and operation may coincide, though in reality the situation of full operations plus construction is hypothetical, and conservative for the purposes of this analysis.

For use in PGMs, each Project emissions source must be spatially distributed across the modeling grid cells so that they can be incorporated into the gridded emission inventory. Operational emissions include area sources (architectural coatings, VOCs in consumer products, and landscaping equipment), emergency generators, off-road equipment, and emissions associated with motor vehicle use. Construction emissions include off-road equipment, paving, architectural coatings, fugitive dust, and emissions associated with hauling, vendor, and worker activity. Operational area sources and off-road equipment emissions were evenly distributed within the Project site. Emergency generator emissions were evenly distributed across all emergency generator point source locations. The operational mobile source category includes both passenger vehicles and trucks. The operational mobile sources are also spatially distributed in both the site's grid cells, as well as the grid cells for the local and regional roadways with Project travel. Non-road construction emissions (off-road equipment, paving, architectural coating, and fugitive dust) were allocated to specific plots within the Project area. On-road mobile construction emissions were spatially distributed to the Project site and nearby roadways. Annual emission estimates from the Project were spatially gridded, temporally allocated, and chemically speciated to be used for photochemical grid modelling using the Sparse Matrix Operator Kerner Emissions (SMOKE) emissions modelling system supported by the USEPA. The emissions inventories, spatial allocation, and SMOKE inputs and outputs are shown in

## Appendix A.

As discussed above, the SCAQMD's Southern California 2016 AQMP modeling database was used for this Project. The Southern California 4-km CAMx modeling database is based on a 2012 base meteorological year and includes future year emission scenarios. The 2031 future year projections were used for this analysis, as that is the nearest future year to full operational buildout with base emissions available as of the date of this report. The Project's emissions were tagged for treatment by the source apportionment tools in CAMx to obtain the incremental ozone and $\mathrm{PM}_{2.5}$ concentration changes due to the Project's emissions. More details and inputs for the PGM modeling are included in Appendix B.

Following completion of the CAMx source apportionment modeling, Ramboll used the USEPA's BenMAP ${ }^{13,14}$ program to estimate the potential health effects of the Project's

[^65]contribution to ozone and $\mathrm{PM}_{2.5}$ concentration. BenMAP uses the concentration estimates produced by CAMx, along with population and health effect concentration-response (C-R) functions, to estimate various health effects of the concentration increases. BenMAP has a wide history of applications by the USEPA and others, including for local-scale analysis ${ }^{15}$ as needed for assessing the health effects of a project's emissions. Ramboll used the USEPA default BenMAP health effects C-R functions that are typically used in national rulemaking, such as the health effects assessment ${ }^{16}$ for the 2012 PM 2.5 National Ambient Air Quality Standard (NAAQS). The health effects estimated for $\mathrm{PM}_{2.5}$ include mortality (all causes), hospital admissions (respiratory, asthma, cardiovascular), emergency room visits (asthma), and acute myocardial infarction (non-fatal). For ozone, the endpoints estimated include mortality, emergency room visits (respiratory) and hospital admissions (respiratory). BenMAP applies "effect functions" to calculate incremental health effects from incremental changes in PM and ozone, and an underlying assumption is that there is a causal link between PM and ozone exposures and health effects. The effect functions are derived from statistical correlations reported in epidemiologic studies that compare fluctuations in air pollutant levels measured at central monitors against small fluctuations in population-wide health effects. These are statistical correlations and do not establish a cause-and-effect relationship between small fluctuations in the level of one (or many) ambient air pollutants and health effects, particularly mortality. For example, there is no toxicological or experimental study that has demonstrated or supported that small incremental changes in PM concentrations as a whole, or major PM components, at ambient levels can cause any serious health effects, let alone death (USEPA, 2009). That being said, in an overabundance of caution, and as an expression of the precautionary principal, BenMAP uses these studies to characterize the potential human health effect of small changes in PM and ozone concentrations. Details on the BenMAP inputs and outputs and definitions for the health effects are shown in Appendix C.

[^66]
## 3. RESULTS

This section presents the results of the health effects analysis for the incremental increases in $\mathrm{PM}_{2.5}$ and ozone resulting from primary and precursor emissions for these constituents. The results presented here describe the potential health effects of the criteria pollutant emissions already disclosed in Section 4.3 of the Draft Recirculated RSFEIR, and the results themselves do not constitute a new significance determination, as the Project's air quality impacts were already found to be significant and unavoidable.

It is important to note there are a number of conservative assumptions built into this evaluation, beginning with the quantification of emissions themselves. These conservative assumptions include, but are not limited to, the following:

- Potential reductions due to mitigation measure 4.3.6.2A(d) which restricts idling of all diesel powered construction equipment, delivery vehicles, and delivery trucks to three minutes has conservatively not been accounted for (discussed further in Appendix A).
- Evaluation of full operational emissions at Project buildout, plus additional construction emissions to reflect the potential maximum combined year (discussed further in Appendix A);
- Assumption that health effects occur at any concentration, including small incremental concentrations (discussed further in Appendix C);
- Assumption that all PM2.5 is of equal toxicity (discussed further in Appendix C);

As such, results presented below are meant to represent an upper bound of potential health effects, and actual effects may be zero.

## POTENTIAL PROJECT HEALTH EFFECTS

Overall, the estimated health effects from ozone and $P_{2.5}$ are minimal in light of background incidences. Tables 3-1 through 3-4 below show the annual percent of background health incidence for $\mathrm{PM}_{2.5}$ and Ozone health effects associated with the Unmitigated and Mitigated Project, respectively. The "background health incidence" is the actual incidence of health effects (based on available data) as estimated in the local population in the absence of additional emissions from the Project. ${ }^{17}$ When taken into context, the small increase in incidences and the very small percent of the number of background incidences indicate that these health effects are minimal in a developed, urban environment.

[^67]
## Unmitigated Project Health Effects

## Table 3-1. BenMAP-Estimated Annual Mean PM 2.5 Health Effects of the Unmitigated Project Emissions Across the Southern California Model Domain ${ }^{1}$

| Health Endpoint ${ }^{\text {2 }}$ | Annual Percent of <br> Background <br> Health Incidence <br> (\%) | Background <br> Health <br> Incidence <br> (Annual) |
| :--- | :---: | :---: |
| Emergency Room Visits, Asthma [0-99] | $0.0051 \%$ | 130,805 |
| Mortality, All Cause [30-99] | $0.0047 \%$ | 325,048 |
| Hospital Admissions, Asthma [0-64] | $0.0029 \%$ | 17,730 |
| Hospital Admissions, All Cardiovascular (less <br> Myocardial Infarctions) [65-99] | $0.00063 \%$ | 224,047 |
| Hospital Admissions, All Respiratory [65-99] | $0.0016 \%$ | 193,354 |
| Acute Myocardial Infarction, Nonfatal [18-24] | $0.0020 \%$ | 36 |
| Acute Myocardial Infarction, Nonfatal [25-44] | $0.0021 \%$ | 1,904 |
| Acute Myocardial Infarction, Nonfatal [45-54] | $0.0020 \%$ | 5,241 |
| Acute Myocardial Infarction, Nonfatal [55-64] | $0.0020 \%$ | 9,226 |
| Acute Myocardial Infarction, Nonfatal [65-99] | $0.0019 \%$ | 40,966 |
| 1 Health effects are shown terms of incidences of each health endpoint and how it compares |  |  |
| to the base values (2035 base year health effect incidences or "background health <br> incidence"). Health effects and background health incidences are across the Southern <br> California model domain. |  |  |
| 2 Affected age ranges are shown in square brackets. |  |  |

Potential $\mathrm{PM}_{2.5}$-related health effects associated with unmitigated Project-related increases in ambient air concentrations include asthma-related emergency room visits ( 6.63 incidences per year), asthma-related hospital admissions ( 0.52 incidences per year), all cardiovascularrelated hospital admissions (not including myocardial infarctions) (1.42 incidences per year), all respiratory-related hospital admissions (3.17 incidences per year), mortality (15.19 incidences per year), and nonfatal acute myocardial infarction (less than 0.78 incidences per year for all age groups) (discussed further in Appendix C).

| Table 3-2. BenMAP-Estimated Annual Mean Ozone Health Effects of the <br> Unmitigated Project Emissions Across the Southern California <br> Model Domain |  |  |
| :--- | :---: | :---: |
| Health Endpoint ${ }^{2}$ | Annual Percent <br> of Background <br> Health Incidence <br> (\%) | Background <br> Health Incidence <br> (Annual) |
| Hospital Admissions, All Respiratory [65-99] | $0.00075 \%$ | 193,354 |
| Mortality, Non-Accidental [0-99] | $0.00033 \%$ | 210,692 |
| Emergency Room Visits, Asthma [0-17] | $0.014 \%$ | 50,722 |
| Emergency Room Visits, Asthma [18-99] | $0.010 \%$ | 80,084 |
| 1 | Health effects are shown terms of incidences of each health endpoint and how it <br> compares to the base values (2035 base year health effect incidences, or "background <br> health incidence"). Health effects and background health incidences are across the <br> Southern California model domain. <br> 2Affected age ranges are shown in square brackets. |  |

Potential ozone-related health effects associated with unmitigated Project-related increases in ambient air concentrations include respiratory-related hospital admissions (1.46 incidences per year), mortality ( 0.69 incidences per year), and asthma-related emergency room visits for any age range (lower than 8.20 incidences per year for all age groups) (discussed further in Appendix C).

## Mitigated Project Health Effects

| Table 3-3. BenMAP-Estimated Annual Mean PM 2.5 Health Effects of the Mitigated Project Emissions Across the Southern California Model Domain ${ }^{1}$ |  |  |
| :---: | :---: | :---: |
| Health Endpoint ${ }^{2}$ | Annual Percent of Background Health Incidence (\%) | Background Health Incidence (Annual) |
| Emergency Room Visits, Asthma [0-99] | 0.0047\% | 130,805 |
| Mortality, All Cause [30-99] | 0.0044\% | 325,048 |
| Hospital Admissions, Asthma [0-64] | 0.0028\% | 17,730 |
| Hospital Admissions, All Cardiovascular (less Myocardial Infarctions) [65-99] | 0.00059\% | 224,047 |
| Hospital Admissions, All Respiratory [65-99] | 0.0015\% | 193,354 |
| Acute Myocardial Infarction, Nonfatal [18-24] | 0.0019\% | 36 |
| Acute Myocardial Infarction, Nonfatal [25-44] | 0.0020\% | 1,904 |
| Acute Myocardial Infarction, Nonfatal [45-54] | 0.0019\% | 5,241 |
| Acute Myocardial Infarction, Nonfatal [55-64] | 0.0019\% | 9,226 |
| Acute Myocardial Infarction, Nonfatal [65-99] | 0.0018\% | 40,966 |
| 1 Health effects are shown terms of incidences of each health endpoint and how it compares to the base (2035 base year health effect incidences, or "background health incidence"). Health effects and background health incidences are across the Southern California model domain. <br> 2 Affected age ranges are shown in square brackets. |  |  |

Potential $P_{2.5}$-related health effects associated with mitigated Project-related increases in ambient air concentrations include asthma-related emergency room visits ( 6.2 incidences per year), asthma-related hospital admissions ( 0.49 incidences per year), all cardiovascularrelated hospital admissions (not including myocardial infarctions) ( 1.33 incidences per year), all respiratory-related hospital admissions ( 2.98 incidences per year), mortality (14.17 incidences per year), and nonfatal acute myocardial infarction (less than 0.724 incidences per year for all age groups) (discussed further in Appendix C).

## Table 3-4. BenMAP-Estimated Annual Mean Ozone Health Effects of the Mitigated Project Emissions Across the Southern California Model Domain ${ }^{1}$

| Health Endpoint ${ }^{\text {² }}$ | Annual Percent <br> of Background <br> Health Incidence <br> (\%) | Background <br> Health Incidence <br> (Annual) |
| :--- | :---: | :---: |
| Hospital Admissions, All Respiratory [65-99] | $0.00062 \%$ | 193,354 |
| Mortality, Non-Accidental [0-99] | $0.00027 \%$ | 210,692 |
| Emergency Room Visits, Asthma [0-17] | $0.011 \%$ | 50,722 |
| Emergency Room Visits, Asthma [18-99] | $0.0085 \%$ | 80,084 |

${ }^{1}$ Health effects are shown terms of incidences of each health endpoint and how it compares to the base (2035 base year health effect incidences, or "background health incidence"). Health effects and background health incidences are across the Southern California model domain.
2 Affected age ranges are shown in square brackets.

Potential ozone-related health effects associated with mitigated Project-related increases in ambient air concentrations include respiratory-related hospital admissions ( 1.20 incidences per year), mortality ( 0.56 incidences per year), and asthma-related emergency room visits for any age range (lower than 6.84 incidences per year for all age groups) (discussed further in Appendix C).

Because the health effects from ozone and $\mathrm{PM}_{2.5}$ are minimal in light of background incidences, and health effects from other criteria pollutants would be even smaller, the health effects of those other criteria pollutants were not quantified.

## POTENTIAL CUMULATIVE HEALTH EFFECTS

Maximum daily operational and construction emissions were estimated for 354 projects (herein referred to as "cumulative projects") in the region surrounding the Project, as described further in Section 4.3 of the Draft Recirculated RSFEIR. Maximum daily operational emissions for all cumulative projects are reflective of year 2035, consistent with the full buildout year for the Project. Construction emissions vary by project but occur within years 2020 through year 2035. To capture both potential operational and construction emissions from the cumulative projects in a single year, either maximum daily operational or construction emissions were used for each project, evaluated on a pollutant basis (shown in Appendix A).

Potential health effects from the cumulative project emissions can be generally characterized using the Project level modeling results and a comparison of overall emissions. Emissions from cumulative projects would be subject to the similar meteorological and photochemical reaction conditions as the Project assessment. The application of an overall scaling factor based on emissions, as presented here, is likely conservative since the cumulative projects are unlikely to have the same distribution of mobile emissions to the Los Angeles area as the Project.

Tables 3-5 and 3-6 below show the estimated annual percent of background health incidence for $\mathrm{PM}_{2.5}$ and Ozone health effects associated with cumulative projects (including the unmitigated Project). When taken into context, the small percent of the number of background incidences indicate that these health effects are minimal in a developed, urban environment.

Table 3-5. Estimated Annual PM 2.5 Health Effects of Cumulative Project Emissions

| Health Endpoint ${ }^{2}$ | Annual Percent <br> of Background <br> Health <br> Incidence (\%) | Background <br> Health <br> Incidence <br> (Annual) |
| :--- | :---: | :---: |
| Emergency Room Visits, Asthma [0-99] | $0.16 \%$ | 130,805 |
| Mortality, All Cause [30-99] | $0.14 \%$ | 325,048 |
| Hospital Admissions, Asthma [0-64] | $0.09 \%$ | 17,730 |
| Hospital Admissions, All Cardiovascular (less <br> Myocardial Infarctions) [65-99] | $0.02 \%$ | 224,047 |
| Hospital Admissions, All Respiratory [65-99] | $0.05 \%$ | 193,354 |
| Acute Myocardial Infarction, Nonfatal [18-24] | $0.06 \%$ | 36 |
| Acute Myocardial Infarction, Nonfatal [25-44] | $0.07 \%$ | 1,904 |
| Acute Myocardial Infarction, Nonfatal [45-54] | $0.06 \%$ | 5,241 |
| Acute Myocardial Infarction, Nonfatal [55-64] | $0.06 \%$ | 9,226 |
| Acute Myocardial Infarction, Nonfatal [65-99] | $0.06 \%$ | 40,966 |

1 Estimated health effects are compared to the base (2035 base year health effect incidences) values across the Southern California model domain.
2 Affected age ranges are shown in square brackets.

Potential PM 2.5 -related health effects associated with increases in ambient air concentrations estimated from cumulative Projects (including the unmitigated Project) include asthmarelated emergency room visits (204 incidences per year), asthma-related hospital admissions (16 incidences per year), all cardiovascular-related hospital admissions (not including myocardial infarctions) (44 incidences per year), all respiratory-related hospital admissions (98 incidences per year), mortality (467 incidences per year), and nonfatal acute myocardial infarction (less than 24 incidences per year for all age groups) (discussed further in Appendix C).

## Table 3-6. Estimated Annual Ozone Health Effects of Cumulative Project Emissions

| Health Endpoint ${ }^{2}$ | Annual Percent of <br> Background Health <br> Incidence (\%) | Background <br> Health Incidence <br> (Annual) |
| :--- | :---: | :---: |
| Hospital Admissions, All Respiratory [65-99] | $0.02 \%$ | 193,354 |
| Mortality, Non-Accidental [0-99] | $0.01 \%$ | 210,692 |
| Emergency Room Visits, Asthma [0-17] | $0.31 \%$ | 50,722 |
| Emergency Room Visits, Asthma [18-99] | $0.23 \%$ | 80,084 |

${ }^{1}$ Estimated health effects are compared to the base (2035 base year health effect incidences) values across the Southern California model domain.

2 Affected age ranges are shown in square brackets.

Potential ozone-related health effects associated with increases in ambient air concentrations estimated from cumulative Projects (including the unmitigated Project) include respiratoryrelated hospital admissions (33 incidences per year), mortality (16 incidences per year), and asthma-related emergency room visits for any age range (lower than 188 incidences per year for all age groups) (discussed further in Appendix C).

## UNCERTAINTY

Analyses that evaluate the increases in concentrations resulting from individual sources, and the health effects of increases or decreases in pollutants as a result of regulation on a localized basis, are routinely done. This analysis does not tie the increase in concentration to a specific health effect in an individual; however, it does use scientific correlations of certain types of health effects from pollution to estimate increases in effects to the population at large.

There is a degree of uncertainty in these results from a combination of the uncertainty in the emissions themselves, the increase in concentration resulting from the PGM and the uncertainty of the application of the C-R increase. All simulations of physical processes, whether ambient air concentrations, or health effects from air pollution, have a level of uncertainty associated with them, due to simplifying assumptions. The overall uncertainty is a combination of the uncertainty associated with each piece of the modeling study, in this case, the emissions quantification, the emissions model, the PGM, and BenMAP. While these results reflect a level of uncertainty, regulatory agencies, including the USEPA have judged that, even with the uncertainty in the results, the results provide sufficient information to the public to allow them to understand the potential health effects of increases or decreases in air pollution (USEPA 2012).

The approach and methodology of this analysis ensures that the uncertainty is of a conservative nature. In addition to the conservative assumptions built into the emissions noted above, there are a number of assumptions built into the application of C-R functions in BenMAP that may lead to an overestimation of health effects. For example, for all-cause mortality health effects from $\mathrm{PM}_{2.5}$, these estimates are based on a single epidemiological
study that found an association between $\mathrm{PM}_{2.5}$ concentrations and mortality. ${ }^{18}$ While similar studies suggest that such an association exists, there remains uncertainty regarding a clear causal link. This uncertainty stems from the limitations of epidemiological studies, such as inadequate exposure estimates and the inability to control for many factors that could explain the association between PM2.5and mortality such as lifestyle factors like smoking. Several reviews have evaluated the scientific evidence of health effects from specific particulate components (e.g., Rohr and Wyzga 2012; Lippmann and Chen, 2009; Kelly and Fussell, 2007). These reviews indicate that the evidence is strongest for combustion-derived components of PM including elemental carbon (EC), organic carbon (OC) and various metals (e.g., nickel and vanadium); however, there is still no definitive data that points to any particular component of PM as being more toxic than other components. The USEPA has also stated that results from various studies have shown the importance of considering particle size, composition, and particle source in determining the health effects of PM (USEPA, 2009). Further, the USEPA (2009) found that studies have reported that particles from industrial sources and from coal combustion appear to be the most significant contributors to PMrelated mortality, consistent with the findings by Rohr and Wyzga (2012) and others. This is particularly important to note here, as the majority of PM emissions generated from the Project are from entrained roadway dust, brakewear, and tirewear (see Appendix A), and not from combustion. Therefore, because they do not consider the relative toxicity of PM components, the results presented here are conservative.

Air pollution epidemiology studies are ecological studies. This means that they are population-based, observational epidemiological studies that look for patterns between population exposure and population disease rates. They do not use data at the individual level (e.g., correlations between regional mortality rates and community air pollution levels). Epidemiologists generally consider relative risks (RRs, a measure of the association between exposures and health effects) from these types of studies that are greater than 3 to 4 to reflect strong associations and to be supportive of a causal link, while smaller RRs (1.5 to 3) are considered to be weak, and require other lines of evidence (e.g., toxicological evidence, plausible biological mechanism) to demonstrate causality (Taubes 1995). For example, the RR of lung cancer for heavy smokers is in the range of 10 to 20, whereas PM associations with mortality yield RRs in the range of 1.01 to 1.05 , i.e., very close to the RR $=1.0$, which indicates little to no association.

Aside from the uncertainty as to the causal basis of the statistical associations in air pollution epidemiology studies of PM and mortality, some epidemiological studies have found no correlation between mortality and increased PM (Enstrom, 2005; 2017; Lipfert et al., 2000; Murray and Nelson, 2000; Greven et al., 2011; You et al.,2018; Zhou et al.,2015). Although there are a greater number of publications reporting a positive PM association for mortality compared to those reporting no association.

Another uncertainty highlighted by the USEPA (2012) that applies to potential health effects from both $\mathrm{PM}_{2.5}$ and ozone, is the assumption of a log-linear response between exposure and health effects, without consideration for a threshold below which effects may not be

[^68]measurable. The issue of a threshold for $\mathrm{PM}_{2.5}$ and ozone is highly debatable and can have significant implications for health effects analyses as it requires consideration of current air pollution levels and calculating effects only for areas that exceed threshold levels. Without consideration of a threshold, any incremental contribution to existing ambient air pollution levels, whether below or above the applicable threshold for a given criteria pollutant, is assumed to adversely affect health. Although the USEPA traditionally does not consider thresholds in its cost-benefit analyses, the NAAQS itself is a health-based threshold level that the USEPA has developed based on evaluating the most current evidence of health effects.

As noted above, the health effects estimation using this method presumes that effects seen at large concentration differences can be linearly scaled down to (i.e., correspond to) small increases in concentration, with no consideration of potential thresholds below which health effects may not occur. This methodology of linearly scaling health effects is broadly accepted for use in regulatory evaluations and is considered as being health protective (USEPA, 2010), but potentially overstates the potential effects. In summary, health effects presented are conservatively estimated, and the actual effects may be zero.

## 4. REFERENCES

/1/ Enstrom, JE. 2005. "Fine particulate air pollution and total mortality among elderly Californians, 1973-2002." Inhal. Toxicol. 17 (14) :803-816.
/2/ Enstrom, J. E. (2017). Fine Particulate Matter and Total Mortality in Cancer Prevention Study Cohort Reanalysis. Dose-Response.
/3/ Greven, S., Dominici, F., and Zeger, S. (2011). An approach to the estimation of chronic air pollution 1 effects using Spatio-Temporal information. Journal of the American Statistical Association, 2 106(494):396-406.
/4/ Kelly, F.J., J.C. Fussell, 2007. Particulate Toxicity Ranking Report. Report Number 2/07. Environmental Research Group, Kings College, London.
/5/ Lipfert FW, Morris SC, Wyzga RE. 2000. "Daily mortality in the Philadelphia metropolitan area and size-classified particulate matter." J Air Waste Manag Assoc. 50(8):1501-13.
/6/ Lippmann, M., L.C. Chen, 2009. Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit. Rev. Toxicol., 39, 865e913.
/7/ Murray C.J.; Nelson, C.R. 2000, "State-Space Modeling of the Relationship between Air Quality and Mortality." Journal of the Air \& Waste Management Association 50: 1075-1080.
/8/ Rohr A.C., R.E. Wyzga, 2012. Attributing Health Effects to Individual Particulate Matter Constituents. Atmos Environ., 62, 130-152. doi:10.1016/j.atmosenv.07.036.
/9/ Taubes, G. 1995. "Epidemiology faces its limits." Science 269:164-169.
/10/ USEPA, 2009. Integrated Science Assessment (ISA) For Particulate Matter (Final Report, Dec 2009). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/139F, 2009. https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=216546
/11/ USEPA, 2010. Quantitative Health Risk Assessment for Particulate Matter. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency. EPA-452/R-10-005. June 2010. Available:
https://www3.epa.gov/ttn/naaqs/standards/pm/data/PM_RA_FINAL_June_2010.pdf.
/12/ USEPA, 2012. Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality Standards for Particulate Matter. U.S. Environmental Protection Agency, Washington, DC, EPA-452/R-12-005.
https://www3.epa.gov/ttn/ecas/docs/ria/naaqs-pm_ria_final_2012-12.pdf.
/13/ USEPA, 2018. BenMAP Environmental Benefits Mapping and Analysis Program Community Edition User's Manual. United States Environmental Protection Agency. Available at: https://www.epa.gov/benmap/benmap-ce-manual-and-appendices.
/14/ You, C., Lin, D. K. J., and Young, S. S. (2018). and ozone, indicators of air quality, and acute deaths in 39 california, 2004-2007. Regulatory Toxicology and Pharmacology, 96:190-196.
/15/ Zhou, M., He, G., Fan, M., Wang, Z., Liu, Y., Ma, J., Ma, Z., Liu, J., Liu, Y., Wang, L., and Liu, Y. 4 (2015). Smog episodes, fine particulate pollution and mortality in china. Environmental Research, 5 136:396-404.

Highland Fairview World Logistics Center Additional Information Regarding Potential Health Effects of Air Quality Impacts Moreno Valley, California

APPENDIX A
EMISSIONS INVENTORY, SPATIAL ALLOCATION, AND SMOKE SETUP HIGHLAND FAIRVIEW WORLD LOGISTICS CENTER MORENO VALLEY, CALIFORNIA

## 1. INTRODUCTION

As set forth in Section 4.3 of the Project's Draft Recirculated Revised Sections of the Final Environmental Impact Report (Draft Recirculated RSFEIR), construction and operational emissions from the Project were estimated using methodologies consistent with the California Emissions Estimator Model (CalEEMod ${ }^{\circledR}$ ) and Project-specific data, where available. The model employs widely accepted calculation methodologies for emission estimates combined with appropriate default data if site-specific information is not available. In order to allow for a more accurate representation of mobile source operational emissions associated with the Project, mobile source emission factors were estimated using EMFAC2017. These emission factors were then used to estimate mobile source operational emissions using Project-specific traffic data.

Annual emission estimates from the Project need to be spatially gridded, temporally allocated, and chemically speciated to be used for photochemical grid modeling. The Sparse Matrix Operator Kerner Emissions (SMOKE) emissions modeling system (Coats, 1996; Coats and Houyoux, 1996) ${ }^{1}$ is used for this process.

Section 2 of this Appendix describes in detail the development of the gridded Project emissions.

## 2. PROJECT EMISSIONS AND SPATIAL ALLOCATION

Both unmitigated and mitigated emissions were estimated for the Project to support the photochemical grid model (PGM) and are allocated into 4 kilometer ( km ) $\times 4 \mathrm{~km}$ grid cells. This section describes those emissions and how they were spatially allocated.

### 2.1 Project Emissions and Spatial Allocation

For use in PGMs, emissions must be spatially allocated over the area so that they can be incorporated into the gridded emission inventory. The total unmitigated emission inventory for the Project is below in Table 2-1a and the total mitigated emission inventory for the Project is below in Table 2-1b. Mobile source emissions were split into sub-categories based on Project-specific data and EMFAC2017 emission rates. For particulate matter, less than 2.5 microns in diameter ( $\mathrm{PM}_{2.5}$ ) emissions are used in the modelling; less than 10 microns in diameter ( $\mathrm{PM}_{10}$ ) emissions are presented for information below.

All emissions listed in Table 2-1a represent the sum of the maximum daily unmitigated emissions for the maximum operational and maximum construction emission years. Total emissions modeled reflect the maximum combined (operational + construction) emissions by pollutant. These maxima may occur in different years for different pollutants, though each pollutant's maximum year is conservatively analyzed collectively in a single year assessment. Full operational emissions (at Project buildout) were modeled for all pollutants, and the balance of emissions were allocated to construction sources, with the distribution of emissions types representative of the maximum construction years. This allows for analysis of the worst-case emissions scenario over a single construction or operational year. Full operational emissions (at Project buildout) are expected to have the greatest contribution to health effects due to the proximity of the mobile source emissions to dense population centers, and thus were modeled in full. Additional construction emissions were evaluated to conservatively represent a potential year where construction and operation may coincide, though in reality the situation of full operations plus construction is hypothetical, and conservative for the purposes of this analysis.

[^69]| Emission Category | ROG | NOX | PM ${ }_{10}$ | PM 2.5 | $\mathrm{SO}_{2}$ | CO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | lbs/day | Ibs/day | lbs/day | lbs/day | lbs/day | lbs/day |
| Operational Emissions |  |  |  |  |  |  |
| On-Road Mobile | 45 | 1,361 | 388 | 125 | 9.63 | 867 |
| Diurnal | 1.96 | 0 | 0 | 0 | 0 | 0 |
| Hotsoak | 1.50 | 0 | 0 | 0 | 0 | 0 |
| Idling Exhaust | 5.7 | 35 | 0.18 | 0.18 | 0.07 | 80 |
| Brakewear | 0 | 0 | 113 | 48 | 0 | 0 |
| Tirewear | 0 | 0 | 29 | 7.4 | 0 | 0 |
| Resting Loss | 2.0 | 0 | 0 | 0 | 0 | 0 |
| Road Dust | 0 | 0 | 232 | 57 | 0 | 0 |
| Running Exhaust | 20 | 1,288 | 13 | 12 | 9.55 | 746 |
| Running Loss | 10.71 | 0 | 0 | 0 | 0 | 0 |
| Starting Exhaust | 2.51 | 38 | 0.02 | 0.02 | 0.01 | 41 |
| Emergency Generators | 2.06 | 62 | 1.88 | 1.86 | 0.00 | 11 |
| Architectural Coatings | 103 | 0 | 0 | 0 | 0 | 0 |
| Consumer Products | 207 | 0 | 0 | 0 | 0 | 0 |
| Landscaping | 0.38 | 0.04 | 0.01 | 0.01 | 0.0003 | 4.12 |
| Off-Road Mobile | 7.18 | 183 | 0.50 | 0.50 | 0 | 78 |
| Total Operational | 364 | 1,606 | 390 | 127 | 9.63 | 961 |
| Construction Emissions |  |  |  |  |  |  |
| Fugitive Dust | 0 | 0 | 29.95 | 4.91 | 0 | 0 |
| Off-Road Equipment | 75 | 204 | 2.16 | 2.15 | 0.38 | 184 |
| Paving | 50 | 0 | 0 | 0 | 0 | 0 |
| Architectural Coating | 111 | 0 | 0 | 0 | 0 | 0 |
| On-Road Mobile | 3.37 | 7.4 | 50.5 | 2.22 | 0.06 | 5.04 |
| Diurnal | 0.13 | 0 | 0 | 0 | 0 | 0 |
| Hotsoak | 0.26 | 0 | 0 | 0 | 0 | 0 |
| Idling Exhaust | 0.80 | 0.98 | 0.00001 | 0.00004 | 0.003 | 0.88 |
| Brakewear | 0 | 0 | 0.00830 | 0.01085 | 0 | 0 |
| Tirewear | 0 | 0 | 0.00337 | 0.00244 | 0 | 0 |
| Resting Loss | 0.13 | 0 | 0 | 0 | 0 | 0 |
| Road Dust | 0 | 0 | 50.50 | 2.21 | 0 | 0 |
| Running Exhaust | 0.59 | 5.58 | 0.00170 | 0.00478 | 0.06 | 2.88 |
| Running Loss | 0.97 | 0 | 0 | 0 | 0 | 0 |
| Starting Exhaust | 0.49 | 0.80 | 0.00001 | 0.00001 | 0.0003 | 1.27 |
| Total Construction | 239 | 212 | 82.6 | 9.3 | 0.45 | 189 |
| Total Combined | 603 | 1,818 | 473 | 137 | 10.07 | 1,150 |

Table 2-1a. Maximum Daily Unmitigated Criteria Air Pollutant Emissions Estimates

| Emission Category | ROG | NOx | PM $_{10}$ | PM $_{2.5}$ | $\mathbf{S O}_{2}$ | CO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ibs/day | Ibs/day | lbs/day | lbs/day | lbs/day | lbs/day |

Abbreviations:
CO - Carbon Monoxide
lbs - Pounds
NOX - Nitrogen Oxides
PM 2.5. - Particulate Matter less than 2.5 microns in diameter
$P M_{10}$. - Particulate Matter less than 10 microns in diameter
ROG - Reactive Organic Gas
$\mathrm{SO}_{2}$ - Sulfur Dioxide

The emissions listed in Table 2-1b represent the sum of the maximum daily mitigated emissions for the maximum operational and maximum construction emission years. Mitigated construction emissions were scaled using the approach described for unmitigated emissions. The mitigated emission inventory includes mitigation measures 4.3.6.2A through $E, 4.3 .6 .3 \mathrm{~A}$ through $F$, 4.3.6.4A, and 4.3.6.5A, as listed in Section 4.3 of the Draft Recirculated RSFEIR. Potential reductions due to mitigation measure 4.3.6.2A(d) which restricts idling of all diesel powered construction equipment, delivery vehicles, and delivery trucks to three minutes has conservatively not been accounted for (the emissions presented here assume five minutes of idling per vehicle).

| Emission Category | ROG | NOX | PM ${ }_{10}$ | PM ${ }_{2.5}$ | $\mathrm{SO}_{2}$ | CO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | lbs/day | lbs/day | lbs/day | lbs/day | lbs/day | lbs/day |
| Operational Emissions |  |  |  |  |  |  |
| On-Road Mobile | 45 | 1,341 | 387 | 125 | 9.60 | 867 |
| Diurnal | 1.96 | 0 | 0 | 0 | 0 | 0 |
| Hotsoak | 1.50 | 0 | 0 | 0 | 0 | 0 |
| Idling Exhaust | 5.7 | 35 | 0.18 | 0.17 | 0.07 | 80 |
| Brakewear | 0 | 0 | 113 | 48 | 0 | 0 |
| Tirewear | 0 | 0 | 29 | 7.4 | 0 | 0 |
| Resting Loss | 2.0 | 0 | 0 | 0 | 0 | 0 |
| Road Dust | 0 | 0 | 232 | 57 | 0 | 0 |
| Running Exhaust | 20 | 1,269 | 13 | 12 | 9.53 | 746 |
| Running Loss | 10.71 | 0 | 0 | 0 | 0 | 0 |
| Starting Exhaust | 2.51 | 38 | 0.02 | 0.02 | 0.01 | 41 |
| Emergency Generators | 0.56 | 0 | 0.00 | 0.00 | 0.00 | 28 |
| Architectural Coatings | 103 | 0 | 0 | 0 | 0 | 0 |
| Consumer Products | 207 | 0 | 0 | 0 | 0 | 0 |
| Landscaping | 0.38 | 0.04 | 0.01 | 0.01 | 0.0003 | 4.12 |
| Off-Road Mobile | 7.18 | 91 | 0.50 | 0.50 | 0 | 78 |
| Total Operational | 363 | 1,432 | 388 | 125 | 9.60 | 978 |

Table 2-1b. Maximum Daily Mitigated Criteria Air Pollutant Emissions Estimates

| Emission Category | ROG | NOx | PM 10 | PM ${ }_{2.5}$ | $\mathrm{SO}_{2}$ | CO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | lbs/day | lbs/day | lbs/day | lbs/day | lbs/day | lbs/day |
| Construction Emissions |  |  |  |  |  |  |
| Fugitive Dust | 0 | 0 | 29.95 | 4.92 | 0 | 0 |
| Off-Road Equipment | 23 | 23 | 0.57 | 0.57 | 0.41 | 255 |
| Paving | 55 | 0 | 0 | 0 | 0 | 0 |
| Architectural Coating | 50 | 0 | 0 | 0 | 0 | 0 |
| On-Road Mobile | 3.45 | 4.1 | 50.5 | 2.23 | 0.07 | 5.31 |
| Diurnal | 0.13 | 0 | 0 | 0 | 0 | 0 |
| Hotsoak | 0.29 | 0 | 0 | 0 | 0 | 0 |
| Idling Exhaust | 0.71 | 0.51 | 0.00004 | 0.00008 | 0.003 | 0.68 |
| Brakewear | 0 | 0 | 0.02370 | 0.02075 | 0 | 0 |
| Tirewear | 0 | 0 | 0.00960 | 0.00491 | 0 | 0 |
| Resting Loss | 0.13 | 0 | 0 | 0 | 0 | 0 |
| Road Dust | 0 | 0 | 50.50 | 2.20 | 0 | 0 |
| Running Exhaust | 0.58 | 3.09 | 0.00483 | 0.00938 | 0.06 | 3.19 |
| Running Loss | 1.07 | 0 | 0 | 0 | 0 | 0 |
| Starting Exhaust | 0.55 | 0.51 | 0.00002 | 0.00003 | 0.0003 | 1.44 |
| Total Construction | 132 | 27 | 81.1 | 7.7 | 0.47 | 260 |
| Total | 495 | 1,459 | 469 | 133 | 10.07 | 1,238 |

Abbreviations:
CO - Carbon Monoxide
lbs - Pounds
NOX - Nitrogen Oxides
PM ${ }_{2.5}$ - Particulate Matter less than 2.5 microns in diameter
$P M_{10}$. - Particulate Matter less than 10 microns in diameter
ROG - Reactive Organic Gas
$\mathrm{SO}_{2}$ - Sulfur Dioxide

Mobile emissions include light, medium, and heavy-duty vehicles. Table 2-2 below provides a summary of the spatial distribution of operational mobile emissions broken down by roadway for the regional freeway segments. For roadways within the Project vicinity, emissions were distributed using the VMT modeled for the Project Operational HRA. The overall distribution percentages were weighted based on the vehicle miles travelled (VMT). This breakdown was applied to both unmitigated and mitigated mobile emissions.

Table 2-2. Operational Mobile Emission Distribution

| Location | Roadway | Overall Project Distribution |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cars | Light Trucks | Medium Trucks | Heavy Trucks |
| Project Vicinity |  | 26\% | 33\% | 42\% | 29\% |
| Regional Segments | I-10 | 11\% | 5\% | 5\% | 4\% |
|  | I-110 | 5\% | 5\% | 4\% | 6\% |
|  | SR-215 (North of SR-60) | 3\% | 2\% | 1\% | 1\% |
|  | SR-215 (South of SR-60) | 4\% | 2\% | 2\% | 1\% |
|  | SR-60 (between I-215 and SR-71/Gary Ave) | 20\% | 21\% | 18\% | 21\% |
|  | SR-60 - (between SR-71/Gary Ave and I-110/SR-91) | 10\% | 12\% | 9\% | 17\% |
|  | SR-91 (between Spruce St/SR-60 and I-15) | 6\% | 6\% | 6\% | 6\% |
|  | SR-91 (between I-15 and I110) | 14\% | 14\% | 14\% | 15\% |

Project emissions are allocated according to their expected location into $4 \mathrm{~km} \times 4 \mathrm{~km}$ grid cells for the PGM. Figure 2-1a below shows a close-up of the Project boundary overlay with the 4-km grid. Operational area sources and off-road equipment emissions were evenly distributed within the Project site. Emergency generator emissions were evenly distributed across all emergency generator point source locations as shown in Figure 2-1a.

Figure 2-1a. Overlap of Model Grid Cells on Project Site


Figure 2-1b shows the full extent of operational roadways modeled. Emissions on links in the Project Vicinity were allocated using VMT modeled in the Project Operational HRA. VMT that was not modeled in the Operational HRA was allocated to regional freeway links. This includes the portions of the I-10, SR-60, SR-91, I-110 and SR-215 shown on the figure, with overall project distributions as assigned in Table 2-2. For major roadways that cross into multiple cells, emissions were allocated proportionally based on the length of roadway within each cell.

Figure 2-1b. Roadways Modeled


Construction emissions were allocated to sources modeled in the Project Construction HRA. Off-road equipment activity was allocated to Plots 4 and 9 based on the location of activity in the maximum construction year. As these plots are located within the same grid cell as the majority of the Project site, they were determined to be a reasonable representation of construction off-road equipment activity. On-site on-road emissions were evenly distributed within the Project Site. Off-site on-road emissions were evenly distributed to the road segments modeled in the Project Construction HRA (see green, yellow, and blue links in the figure below). The location of the Project construction sources are shown in Figure 2-1c.

Figure 2-1c. Modeled Construction Sources


### 2.2 Convert Project Inventories to SMOKE Input Format

The first step in the emissions processing was to convert the Project emission inventory into the Flat File 2010 (FF10) format for input to SMOKE. Appropriate Source Classification Codes (SCCs) were then assigned to the Project emissions sources. Table 2-3 provides the SCC assigned to each Project source.

| Table 2-3. Assigned SCC to Project Emission Sources |  |  |
| :---: | :---: | :---: |
| Emission Source | SCC | SCC Description |
| Architectural Coatings | 2401001000 | Solvent Utilization; Surface Coating; Architectural Coatings; Total: All Solvent Types |
| Consumer Products | 2460000000 | Solvent Utilization; Miscellaneous Non-industrial: <br> Consumer and Commercial; All Processes; Total: All Solvent Types |
| Consumer Products | 2460100000 | Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All Personal Care Products; Total: All Solvent Types |
| Consumer Products | 2460200000 | Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All Household Products; Total: All Solvent Types |
| Consumer Products | 2460400000 | Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All Automotive Aftermarket Products; Total: All Solvent Types |
| Consumer Products | 2460500000 | Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All Coatings and Related Products; Total: All Solvent Types |
| Consumer Products | 2460600000 | Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All Adhesives and Sealants; Total: All Solvent Types |
| Consumer Products | 2460800000 | Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All FIFRA Related Products; Total: All Solvent Types |
| Consumer Products | 2460900000 | Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; Miscellaneous Products (Not Otherwise Covered);Total: All Solvent Types |
| Consumer Products | 2461021000 | Solvent Utilization; Miscellaneous Non-industrial: Commercial; Cutback Asphalt; Total: All Solvent Types |
| Energy | 20200202 | Internal Combustion Engines; Industrial; Natural Gas; Reciprocating |
| Energy | 20200102 | Internal Combustion Engines; Industrial; Distillate Oil (Diesel); Reciprocating |
| Construction Dust | 2311020000 | Industrial Processes; Construction: SIC 15 17;Industrial/Commercial/Institutional; Total |
| Off-road equipment | 2265004010 | Mobile Sources; Off-highway Vehicle Gasoline, 4Stroke;Lawn and Garden Equipment; Lawn Mowers (Residential) |
| Off-road equipment | 2267003070 | Mobile Sources; LPG; Industrial Equipment; Terminal Tractors |
| Off-road equipment | 2268003020 | Mobile Sources; CNG; Industrial Equipment; Forklifts |
| Mobile | 220100111B | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Vehicles (LDGV);Rural Interstate: Brake Wear |
| Mobile | 220100111R | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Vehicles (LDGV);Rural Interstate: Resting |
| Mobile | 220100111S | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Vehicles (LDGV);Rural Interstate: Start |


| Emission Source | SCC | SCC Description |
| :---: | :---: | :---: |
| Mobile | 220100111 T | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Vehicles (LDGV);Rural Interstate: Tire Wear |
| Mobile | 220100111V | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Vehicles (LDGV);Rural Interstate: Eva (except Refueling) |
| Mobile | 220100111X | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Vehicles (LDGV);Rural Interstate: Exhaust |
| Mobile | 220102011B | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Trucks 1 \& 2 (M6) = LDGT1 (M5);Rural Interstate: Brake Wear |
| Mobile | 220102011R | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Trucks 1 \& 2 (M6) = LDGT1 (M5);Rural Interstate: Resting |
| Mobile | 220102011S | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Trucks 1 \& 2 (M6) = LDGT1 (M5);Rural Interstate: Start |
| Mobile | 220102011 T | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Trucks 1 \& 2 (M6) = LDGT1 (M5);Rural Interstate: Tire Wear |
| Mobile | 220102011V | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Trucks 1 \& 2 (M6) = LDGT1 (M5);Rural Interstate: Eva (except Refueling) |
| Mobile | 220102011X | Mobile Sources; Highway Vehicles - Gasoline; Light Duty Gasoline Trucks 1 \& 2 (M6) = LDGT1 (M5);Rural Interstate: Exhaust |
| Mobile | 220107011B | Mobile Sources; Highway Vehicles - Gasoline; Heavy Duty Gasoline Vehicles $2 B$ thru 8 B \& Buses (HDGV);Rural Interstate: Brake Wear |
| Mobile | 220107011I | Mobile Sources; Highway Vehicles - Gasoline; Heavy Duty Gasoline Vehicles 2B thru 8B \& Buses (HDGV); Rural Interstate: Idle |
| Mobile | 220107011R | Mobile Sources; Highway Vehicles - Gasoline; Heavy Duty Gasoline Vehicles 2B thru 8B \& Buses (HDGV);Rural Interstate: Resting |
| Mobile | 220107011S | Mobile Sources; Highway Vehicles - Gasoline; Heavy Duty Gasoline Vehicles 2B thru 8B \& Buses (HDGV); Rural Interstate: Start |
| Mobile | 220107011 T | Mobile Sources; Highway Vehicles - Gasoline; Heavy Duty Gasoline Vehicles 2B thru 8B \& Buses (HDGV);Rural Interstate: Tire Wear |
| Mobile | 220107011V | Mobile Sources; Highway Vehicles - Gasoline; Heavy Duty Gasoline Vehicles 2B thru 8B \& Buses (HDGV);Rural Interstate: Eva (except Refueling) |
| Mobile | 220107011X | Mobile Sources; Highway Vehicles - Gasoline; Heavy Duty Gasoline Vehicles 2B thru 8B \& Buses (HDGV);Rural Interstate: Exhaust |
| Mobile | 220361008B | Mobile Sources; Highway Vehicles - Compressed Natural Gas (CNG);Combination Short-haul Truck; All on and off-network processes except refueling: Brake Wear |


| Table 2-3. Assigned SCC to Project Emission Sources |  |  |
| :---: | :---: | :---: |
| Emission Source | SCC | SCC Description |
| Mobile | 220361008I | Mobile Sources; Highway Vehicles - Compressed Natural Gas (CNG);Combination Short-haul Truck; All on and off-network processes except refueling: Idle |
| Mobile | 220361008 T | Mobile Sources; Highway Vehicles - Compressed Natural Gas (CNG);Combination Short-haul Truck; All on and off-network processes except refueling: Tire Wear |
| Mobile | 220361008X | Mobile Sources; Highway Vehicles - Compressed Natural Gas (CNG);Combination Short-haul Truck; All on and off-network processes except refueling: Exhaust |
| Mobile | 223000111B | Mobile Sources; Highway Vehicles - Diesel; Light Duty Diesel Vehicles (LDDV);Rural Interstate: Brake Wear |
| Mobile | 223000111 T | Mobile Sources; Highway Vehicles - Diesel; Light Duty Diesel Vehicles (LDDV);Rural Interstate: Tire Wear |
| Mobile | 223000111X | Mobile Sources; Highway Vehicles - Diesel; Light Duty Diesel Vehicles (LDDV);Rural Interstate: Exhaust |
| Mobile | 223006011B | Mobile Sources; Highway Vehicles - Diesel; Light Duty Diesel Trucks 1 thru 4 (M6) (LDDT);Rural Interstate: Brake Wear |
| Mobile | 223006011 T | Mobile Sources; Highway Vehicles - Diesel; Light Duty Diesel Trucks 1 thru 4 (M6) (LDDT);Rural Interstate: Tire Wear |
| Mobile | 223006011X | Mobile Sources; Highway Vehicles - Diesel; Light Duty Diesel Trucks 1 thru 4 (M6) (LDDT);Rural Interstate: Exhaust |
| Mobile | 223007111B | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 2B;Rural Interstate: Brake Wear |
| Mobile | 223007111I | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 2B;Rural Interstate: Idle |
| Mobile | 223007111 T | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 2B;Rural Interstate: Tire Wear |
| Mobile | 223007111X | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 2B;Rural Interstate: Exhaust |
| Mobile | 2230072110 | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 3, 4, \& 5;Rural Interstate: Total |
| Mobile | 223007211B | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 3, 4, \& 5;Rural Interstate: Brake Wear |
| Mobile | 223007211I | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 3, 4, \& 5;Rural Interstate: Idle |
| Mobile | 223007211 T | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 3, 4, \& 5;Rural Interstate: Tire Wear |


| Table 2-3. Assigned SCC to Project Emission Sources |  |  |
| :---: | :---: | :---: |
| Emission Source | SCC | SCC Description |
| Mobile | 223007211X | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 3, 4, \& 5;Rural Interstate: Exhaust |
| Mobile | 223007311B | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 6 \& 7;Rural Interstate: Brake Wear |
| Mobile | 223007311I | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 6 \& 7;Rural Interstate: Idle |
| Mobile | 223007311S | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 6 \& 7;Rural Interstate: Start |
| Mobile | 223007311 T | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 6 \& 7;Rural Interstate: Tire Wear |
| Mobile | 223007311X | Mobile Sources; Highway Vehicles - Diesel; Heavy Duty Diesel Vehicles (HDDV) Class 6 \& 7;Rural Interstate: Exhaust |
| Mobile | 2270000000 | Mobile Sources; Off-highway Vehicle Diesel; Compression Ignition Equipment except Rail and Marine; Total |
| Mobile | 22940000H1 | Mobile Sources; Paved Roads; All Paved Roads; Total: Fugitives - Light-Heavy-Duty Trucks (850110000 lbs ) |
| Mobile | 22940000H2 | Mobile Sources; Paved Roads; All Paved Roads; <br> Total: Fugitives - Light-Heavy-Duty Trucks (10000- <br> 14000 lbs ) |
| Mobile | 22940000HT | Mobile Sources; Paved Roads; All Paved Roads; Total: Fugitives - Heavy-Heavy Duty Trucks |
| Mobile | 22940000LD | Mobile Sources; Paved Roads; All Paved Roads; Total: Fugitives - Passenger Cars |
| Mobile | 22940000MD | Mobile Sources; Paved Roads; All Paved Roads; Total: Fugitives - Medium-Duty Trucks (6000-8500 lbs) |
| Mobile | 22940000MT | Mobile Sources; Paved Roads; All Paved Roads; Total: Fugitives - Medium-Heavy Duty Trucks |
| Mobile | 22940000T1 | Mobile Sources; Paved Roads; All Paved Roads; Total: Fugitives - Light-Duty Trucks ( $0-3750 \mathrm{lbs}$ ) |
| Mobile | 22940000 T2 | Mobile Sources; Paved Roads; All Paved Roads; <br> Total: Fugitives - Light-Duty Trucks (3751-5750 Ibs) |
| Mobile | 22960000HT | Mobile Sources; Unpaved Roads; All Unpaved Roads; Total: Fugitives - Heavy-Heavy Duty Trucks |
| Mobile | 22960000LD | Mobile Sources; Unpaved Roads; All Unpaved Roads; Total: Fugitives - Passenger Cars |
| Mobile | 22960000MT | Mobile Sources; Unpaved Roads; All Unpaved Roads; Total: Fugitives - Medium-Heavy Duty Trucks |
| Mobile | 22960000T1 | Mobile Sources; Unpaved Roads; All Unpaved Roads; Total: Fugitives - Light-Duty Trucks ( $0-3750 \mathrm{lbs}$ ) |
| Mobile | 22960000 T2 | Mobile Sources; Unpaved Roads; All Unpaved Roads; Total: Fugitives - Light-Duty Trucks (3751-5750 Ibs) |

### 2.2.1 Generate Spatial Surrogates for 4-km Domains

As part of the analysis, the Project source emissions need to be spatially allocated to appropriate geographic locations. The emissions can be allocated to modeling grid cells using gridding surrogates. To process the Project emissions, a Project area-based spatial surrogate was developed. The surrogate was developed using the US Environmental Protection Agency (USEPA's) Spatial Allocation Tool, ${ }^{2}$ which combines geographical information system (GIS)-based data (shapefiles) and modeling domain definitions to generate the appropriate gridded surrogate data set. The Project sources were then assigned specific surrogates for gridding by cross-referencing the SCCs. As mentioned above, all unmitigated and mitigated Project emissions were distributed in the modeling grid cells where the Project is located as shown in Figures $\mathbf{2 - 1 a}$ and $\mathbf{2 - 1 b}$. The mobile sources are spatially distributed in the site's grid cells and surrounding grid cells, as outlined in Table 2-2.

### 2.2.2 SMOKE 4 km Processing of Project Emissions

SMOKE system was used to process emissions for the Southern California 4-km modeling grid shown in Figures 2-1a and 2-1b. A representative week from each month (seven days a month) was used to represent the entire month's emissions. Holidays were modeled separately as if they were a Sunday. SMOKE was applied to perform following tasks:

1. Chemical Speciation: Emission estimates of criteria pollutants were speciated for the SAPRC07 AERO6 chemical mechanism employed in Community Multiscale Air Quality (CMAQ) in SMOKE processing. Speciation profiles compatible with the SAPRC07 AERO6 mechanism from the South Coast Air Quality Management District's (SCAQMD) modeling system were used to be consistent with the regional modeling emissions. Those emissions were then converted into Comprehensive Air Quality Model with extensions (CAMx)-ready formats using CMAQ2CAMx conversion program and species mapping.
2. Temporal Allocation: Annual emission estimates were resolved on an hourly timescale for CAMx modeling. These allocations were determined from the particular source category, specified by the SCC. Monthly, weekly, and diurnal profiles were cross-referenced to the SCCs to provide the appropriate temporal resolution. The temporal profiles were also obtained from the Bay Area Air Quality Management District's (BAAQMD) emissions modeling system, as they were unavailable from SCAQMD.
3. Spatial Allocation: The Project emission estimates were spatially resolved to the grid cells for modeling using spatial surrogates as described above.

### 2.2.3 QA/QC of Emissions Modeling

Standard quality assurance/quality control (QA/QC) was conducted during all aspects of the SMOKE emissions processing. These steps followed the approach recommended in the USEPA modeling guidance (USEPA, 2007). SMOKE includes quality assurance (QA) and reporting features to keep track of the adjustments at each processing stage and ensure that data integrity is not compromised. Ramboll carefully reviewed the SMOKE log files for error messages and ensured that appropriate source profiles were used. All error records reported during processing were reviewed and resolved. This is important to ensure that source categories are correctly characterized. Ramboll also compared SMOKE input and output emissions: summary tables were generated to compare input inventory totals against model-ready output totals to confirm consistency. Spatial plots were generated to visually verify correct spatial allocation of the emissions.

[^70]
### 2.2.4 Merge SMOKE Pre-merged Emissions to Generate CAMx-ready Emission Inputs

The final step in the emissions processing is to merge the Project gridded emissions with other regional components through the gridded merge program (MRGUAM) for CAMx. The daily emissions were merged in the time format required by CAMx.

### 2.2.5 Emissions Summary

Summaries of the unmitigated and mitigated Project gridded CAMx model-ready emissions data are provided in this section. Tables 2-4 and 2-5 summarize the unmitigated and mitigated Project emission inventory data input to SMOKE from the FF10 data files in pounds per day by source type. Tables 2-6 and 2-7 present the emissions data after SMOKE processing for unmitigated and mitigated, respectively. The consistency in data in Tables 2-4 and 2-6 and in Tables 2-5 and 2-7 offer confidence in the correct operation of the SMOKE emissions processing for CAMx.

## Table 2-4. Unmitigated Project Emission Inventory Data Input to SMOKE by Source Type (lbs/day)

| Emission Category | ROG | NOX | PM ${ }_{10}$ | PM 2.5 | $\mathrm{SO}_{2}$ | CO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | lbs/day | lbs/day | lbs/day | lbs/day | lbs/day | lbs/day |
| Operational Emissions |  |  |  |  |  |  |
| On-Road Mobile | 45 | 1,361 | 388 | 125 | 9.6 | 867 |
| Emergency Generators | 2.06 | 62.1 | 2 | 2 | 0 | 11 |
| Architectural Coatings | 103 | 0 | 0 | 0 | 0 | 0 |
| Consumer Products | 207 | 0 | 0 | 0 | 0 | 0 |
| Landscaping | 0.38 | 0 | 0.01 | 0.01 | 0 | 4 |
| Off-Road Mobile | 7.18 | 183 | 0.50 | 0.50 | 0 | 78 |
| Total Operational | 364 | 1,606 | 390 | 127 | 9.6 | 961 |
| Construction Emissions |  |  |  |  |  |  |
| Fugitive Dust | 0 | 0 | 29.95 | 4.91 | 0 | 0 |
| Off-Road Equipment | 75 | 204 | 2.16 | 2.15 | 0.38 | 184 |
| Paving | 50 | 0 | 0 | 0 | 0 | 0 |
| Architectural Coating | 111 | 0 | 0 | 0 | 0 | 0 |
| On-Road Mobile | 3.4 | 7.4 | 51 | 2.2 | 0.06 | 5.0 |
| Total Construction | 239 | 212 | 82.6 | 9.3 | 0.45 | 189 |
| Total | 603 | 1,818 | 473 | 137 | 10 | 1,150 |

```
Abbreviations:
CO - Carbon Monoxide
lbs - Pounds
NOx - Nitrogen Oxides
PM2.5. - Particulate Matter less than 2.5 microns in diameter
PM 10. - Particulate Matter less than 10 microns in diameter
ROG - Reactive Organic Gas
SO
```

Table 2-5. Mitigated Project Emission Inventory Data Input to SMOKE by Source Type (lbs/day)

|  | ROG | $\mathbf{N O x}$ | $\mathbf{P M}_{\mathbf{1 0}}$ | $\mathbf{P M}_{\mathbf{2 . 5}}$ | $\mathbf{S O}_{\mathbf{2}}$ | $\mathbf{C O}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Emission Category | lbs/day | lbs/day | lbs/day | $\mathbf{l b s} / \mathbf{d a y}$ | $\mathbf{l b s} / \mathbf{d a y}$ | $\mathbf{l b s} / \mathbf{d a y}$ |
| Operational Emissions |  |  |  |  |  |  |
| On-Road Mobile | 45 | 1,341 | 387 | 125 | 9.6 | 868 |
| Emergency Generators | 0.56 | 0.4 | 0 | 0 | 0 | 28 |
| Architectural Coatings | 103 | 0 | 0 | 0 | 0 | 0 |
| Consumer Products | 207 | 0 | 0 | 0 | 0 | 0 |
| Landscaping | 0.38 | 0 | 0.01 | 0.01 | 0 | 4 |
| Off-Road Mobile | 7.18 | 91 | 0.50 | 0.50 | 0 | 78 |
| Total Operational | $\mathbf{3 6 3}$ | $\mathbf{1 , 4 3 2}$ | $\mathbf{3 8 8}$ | $\mathbf{1 2 5}$ | $\mathbf{1 0}$ | $\mathbf{9 7 8}$ |
| Construction Emissions |  |  |  |  |  |  |
| Fugitive Dust | 0 | 0 | 29.95 | 4.92 | 0 | 0 |
| Off-Road Equipment | 23 | 23 | 0.57 | 0.57 | 0.41 | 255 |
| Paving | 55 | 0 | 0 | 0 | 0 | 0 |
| Architectural Coating | 50 | 0 | 0 | 0 | 0 | 0 |
| On-Road Mobile | 3.4 | 4.1 | 51 | 2.2 | 0.07 | 5.3 |
| Total Construction | $\mathbf{1 3 2}$ | $\mathbf{2 7}$ | $\mathbf{8 1 . 1}$ | $\mathbf{7 . 7}$ | $\mathbf{0 . 4 7}$ | $\mathbf{2 6 0}$ |
| Total | $\mathbf{4 9 5}$ | $\mathbf{1 , 4 5 9}$ | $\mathbf{4 6 9}$ | $\mathbf{1 3 3}$ | $\mathbf{1 0}$ | $\mathbf{1 , 2 3 8}$ |

Abbreviations:
CO - Carbon Monoxide
Ibs - Pounds
NOx - Nitrogen Oxides
PM 2.5. - Particulate Matter less than 2.5 microns in diameter
$\mathrm{PM}_{10}$. - Particulate Matter less than 10 microns in diameter
ROG - Reactive Organic Gas
$\mathrm{SO}_{2}$ - Sulfur Dioxide

Table 2-6. Unmitigated Project Emission Inventory Data Output from SMOKE by Project Region (Ibs/day)

| Type | ROG | $\mathbf{N O x}$ | $\mathbf{P M}_{\mathbf{1 0}}$ | $\mathbf{P M}_{\mathbf{2} . \mathbf{5}}$ | $\mathbf{S O}_{\mathbf{2}}$ | $\mathbf{C O}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Onsite | 573.4 | 608.4 | 183.5 | 38.0 | 1.1 | 459.7 |
| Offsite | 29.7 | $1,209.3$ | 289.1 | 98.6 | 9.0 | 690.4 |
| Total | $\mathbf{6 0 3}$ | $\mathbf{1 , 8 1 8}$ | $\mathbf{4 7 3}$ | $\mathbf{1 3 7}$ | $\mathbf{1 0}$ | $\mathbf{1 , 1 5 0}$ |

Abbreviations:
CO - Carbon Monoxide
NOx - Nitrogen Oxides
$\mathrm{PM}_{2.5}$ - Particulate Matter less than 2.5 microns in diameter
$\mathrm{PM}_{10}$ - Particulate Matter less than 10 microns in diameter
$\mathrm{SO}_{2}$ - Sulfur Dioxide
VOC - Volatile Organic Compounds

Table 2-7. Mitigated Project Emission Inventory Data Output from SMOKE by Project Region (lbs/day)

| Type | ROG | $\mathbf{N O x}$ | $\mathbf{P M}_{\mathbf{1 0}}$ | $\mathbf{P M}_{\mathbf{2 . 5}}$ | $\mathbf{S O}_{\mathbf{2}}$ | $\mathbf{C O}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Onsite | 465.4 | 271.1 | 180.0 | 34.6 | 1.1 | 547.8 |
| Offsite | 29.3 | $1,187.9$ | 289.1 | 98.6 | 9.0 | 690.5 |
| Total | $\mathbf{4 9 5}$ | $\mathbf{1 , 4 5 9}$ | $\mathbf{4 6 9}$ | $\mathbf{1 3 3}$ | $\mathbf{1 0}$ | $\mathbf{1 , 2 3 8}$ |

```
Abbreviations:
CO - Carbon Monoxide
NOx - Nitrogen Oxides
PM}2.5\mathrm{ - Particulate Matter less than 2.5 microns in diameter
PM10 - Particulate Matter less than 10 microns in diameter
SO2-Sulfur Dioxide
VOC - Volatile Organic Compounds
```

Spatial displays of the gridded emissions data are presented below. Ramboll examined the gridded emissions in 4-km grid to verify accurate spatial allocation by SMOKE. Figures 2-2 through 2-7 displays gridded emissions for the unmitigated Project inventory in the $4-\mathrm{km}$ modeling grid and Figures 2-8 through 2-13 displays gridded emissions for the mitigated Project inventory in the 4-km modelling grid.

Figure 2-2. Spatial Distribution of Unmitigated CO Emissions (in lbs/day) for the Project in the Southern California 4-km Domain


Figure 2-3. Spatial Distribution of Unmitigated NOx Emissions (in lbs/day) for the Project in the Southern California 4-km Domain

NOx
(lbs/day)

$M i n=0$ at $(70,40) . \operatorname{Max}=499$ at $(98,56)$

NOx
(lbs/day)

$M i n=0$ at $(91,52), \mathrm{Max}=499$ at $(98,56)$

Figure 2-4. Spatial Distribution of Unmitigated VOC Emissions (in lbs/day) for the Project in the Southern California 4-km Domain

VOC
(lbs/day)


$\operatorname{Min}=0.00$ at $(70,40), M a x=474.63$ at $(98,56)$

VOC
(lbs/day)


Figure 2-5. Spatial Distribution of Unmitigated SO2 Emissions (in Ibs/day) for the Project in the Southern California 4-km Domain


Figure 2-6. Spatial Distribution of Unmitigated PM10 Emissions (in Ibs/day) for the Project in the Southern California 4-km Domain

PM10
(lbs/day)

$\operatorname{Min}=0$ at $(70,40), M a x=144$ at $(98,56)$

PM10
(lbs/day)


Min= 0 at $(91,52)$, Max $=144$ at $(98,56)$

Highland Fairview World Logistics Center Additional Information Regarding Potential Health Effects of Air Quality Impacts Moreno Valley, California

A-18
Figure 2-7. Spatial Distribution of Unmitigated PM2.5 Emissions (in Ibs/day) for the Project in the Southern California 4-km Domain


Figure 2-8. Spatial Distribution of Mitigated CO Emissions (in Ibs/day) for the Project in the Southern California 4-km Domain


Figure 2-9. Spatial Distribution of Mitigated NOx Emissions (in lbs/day) for the Project in the Southern California 4-km Domain

NOx
(lbs/day)




Min= 0 at $(70,40), \mathrm{Max}=202$ at $(98,56)$

NOx
(lbs/day)


Min= 0 at ( 91,52 ), Max=202 at $(98,56)$

Figure 2-10. Spatial Distribution of Mitigated VOC Emissions (in lbs/day) for the Project in the Southern California 4-km Domain

VOC
(Ibs/day)

[^71]

VOC
(lbs/day)


Figure 2-11. Spatial Distribution of Mitigated $\mathrm{SO}_{2}$ Emissions (in Ibs/day) for the Project in the Southern California 4-km Domain

SO2
(lbs/day)


$\mathrm{Min}=0.00$ at $(70,40), \mathrm{Max}=0.89$ at $(98,56)$

SO2
(lbs/day)


Figure 2-12. Spatial Distribution of Mitigated PM ${ }_{10}$ Emissions (in lbs/day) for the Project in the Southern California 4-km Domain

PM10
(lbs/day)

$\operatorname{Min}=0$ at $(70,40), M a x=141$ at $(98,56)$

PM10
(lbs/day)


Figure 2-13. Spatial Distribution of Mitigated PM $_{2.5}$ Emissions (in lbs/day) for the Project in the Southern California 4-km Domain


## 3. CUMULATIVE EMISSIONS

Maximum daily operational and construction emissions were estimated for 349 projects (herein referred to as "cumulative projects") in the region surrounding the Project, as described further in Section 6.3 of the Draft Recirculated RSFEIR. Maximum daily operational emissions for all cumulative projects are reflective of year 2035, consistent with the full buildout year for the Project. Construction emissions vary by project but occur within years 2020 through year 2035. To capture both potential operational and construction emissions from the cumulative projects in a single year, either maximum daily operational or construction emissions were used for each project, evaluated on a pollutant basis. Resulting maximum daily emissions for each of the cumulative projects are shown in Table 3-1 below.

| Table 3-1. Cumulative Emissions Inventory |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Maximum Daily Emissions (Ib/day) |  |  |  |  |  |
|  | R0G | NOx $^{\text {B-001 }}$ | 159.63 | 376.90 | 682.82 | 1.90 |
| CO | $\mathbf{S O}_{\mathbf{2}}$ | PM M $_{\mathbf{1 0}}$ | PM $_{\mathbf{2 . 5}}$ |  |  |  |
| B-002 | 17.12 | 15.71 | 101.66 | 0.25 | 30.84 | 64.81 |
| B-003 | 44.60 | 125.63 | 190.78 | 0.53 | 64.30 | 18.11 |
| B-004 | 292.73 | 62.82 | 146.98 | 0.71 | 82.18 | 23.03 |
| B-005 | 63.58 | 60.33 | 176.22 | 0.86 | 96.70 | 27.35 |
| B-006 | 312.85 | 72.13 | 295.58 | 1.28 | 165.89 | 44.92 |
| B-007 | 20.93 | 62.82 | 83.39 | 0.23 | 28.10 | 7.91 |


| Project ID | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathbf{S O}_{2}$ | PM10 | PM2.5 |
| B-008 | 31.35 | 125.63 | 134.08 | 0.37 | 45.19 | 13.09 |
| B-009 | 215.26 | 546.63 | 920.77 | 2.56 | 310.33 | 87.39 |
| B-010 | 30.79 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| B-011 | 104.50 | 98.54 | 140.66 | 0.27 | 34.90 | 12.01 |
| B-012 | 8.37 | 7.67 | 49.67 | 0.12 | 15.07 | 4.23 |
| B-013 | 91.43 | 251.27 | 391.07 | 1.09 | 131.80 | 37.12 |
| B-014 | 33.86 | 125.63 | 144.84 | 0.40 | 48.82 | 13.75 |
| C-001 | 103.21 | 87.59 | 125.03 | 0.24 | 31.02 | 8.71 |
| C-002 | 319.38 | 499.42 | 877.00 | 2.29 | 296.44 | 81.82 |
| C-003 | 67.60 | 31.84 | 45.45 | 0.09 | 11.28 | 3.17 |
| H-001 | 30.44 | 62.82 | 121.67 | 0.34 | 41.01 | 11.55 |
| H-002 | 22.83 | 62.82 | 91.04 | 0.25 | 30.68 | 8.64 |
| H-003 | 45.04 | 125.63 | 192.64 | 0.54 | 64.93 | 18.28 |
| H-004 | 292.08 | 62.82 | 221.02 | 0.99 | 123.91 | 33.88 |
| H-005 | 38.99 | 9.21 | 13.07 | 0.03 | 3.24 | 0.91 |
| H-006 | 315.70 | 298.17 | 425.61 | 0.81 | 105.59 | 29.65 |
| H-007 | 30.23 | 62.82 | 48.10 | 0.08 | 10.53 | 6.55 |
| H-008 | 20.38 | 62.82 | 89.12 | 0.19 | 22.30 | 6.55 |
| H-009 | 15.95 | 11.89 | 80.48 | 0.14 | 16.60 | 4.83 |
| M-001 | 333.75 | 106.20 | 69.14 | 0.30 | 36.23 | 10.03 |
| M-002 | 126.64 | 303.00 | 298.23 | 2.27 | 198.18 | 56.08 |
| M-003 | 359.18 | 176.72 | 128.30 | 1.17 | 92.10 | 26.35 |
| M-004 | 101.14 | 47.70 | 68.08 | 0.13 | 16.89 | 4.74 |
| M-005 | 184.81 | 222.58 | 253.57 | 1.79 | 163.11 | 46.13 |
| M-006 | 101.90 | 42.48 | 34.98 | 0.15 | 20.47 | 12.01 |
| M-007 | 313.29 | 73.66 | 43.56 | 0.27 | 21.45 | 6.54 |
| M-008 | 300.51 | 532.68 | 1,476.21 | 5.11 | 660.05 | 179.57 |


| ProjectID | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathrm{SO}_{2}$ | PM10 | PM ${ }^{2} 5$ |
| M-009 | 27.88 | 62.82 | 40.79 | 0.08 | 10.53 | 6.55 |
| M-010 | 259.30 | 68.24 | 42.18 | 0.23 | 17.75 | 6.54 |
| M-011 | 62.32 | 29.34 | 41.89 | 0.08 | 10.39 | 2.92 |
| MV-001 | 141.34 | 133.36 | 190.36 | 0.36 | 47.23 | 13.26 |
| MV-002 | 39.47 | 62.82 | 92.67 | 0.24 | 29.94 | 8.42 |
| MV-003 | 280.95 | 125.91 | 115.21 | 0.92 | 77.77 | 22.15 |
| MV-004 | 24.22 | 25.70 | 79.45 | 0.38 | 44.42 | 12.45 |
| MV-005 | 108.06 | 50.96 | 72.74 | 0.14 | 18.05 | 5.07 |
| MV-006 | 347.82 | 73.66 | 43.56 | 0.30 | 23.82 | 6.81 |
| MV-007 | 17.70 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| MV-008 | 32.90 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| MV-009 | 7.12 | 42.48 | 22.27 | 0.04 | 10.53 | 6.54 |
| MV-010 | 26.70 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| MV-011 | 13.75 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| MV-012 | 4.28 | 7.07 | 29.64 | 0.12 | 15.38 | 4.16 |
| MV-013 | 55.83 | 9.32 | 8.06 | 0.02 | 2.01 | 0.66 |
| MV-014 | 22.14 | 73.66 | 43.56 | 0.11 | 10.53 | 6.55 |
| MV-015 | 35.69 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| MV-016 | 18.26 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| MV-017 | 31.11 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| MV-018 | 0.44 | 2.41 | 3.44 | 0.01 | 0.85 | 0.24 |
| MV-019 | 3.70 | 2.76 | 18.68 | 0.03 | 3.85 | 1.12 |
| MV-020 | 7.49 | 41.08 | 58.63 | 0.11 | 14.55 | 4.08 |
| MV-021 | 74.37 | 26.80 | 29.64 | 0.12 | 15.38 | 4.16 |
| MV-022 | 1.93 | 1.51 | 8.28 | 0.02 | 2.79 | 0.79 |
| MV-023 | 74.90 | 73.66 | 74.24 | 0.18 | 22.52 | 6.54 |
| MV-024 | 24.12 | 62.82 | 40.79 | 0.09 | 11.09 | 6.55 |


| $\begin{aligned} & \text { Project } \\ & \text { ID } \end{aligned}$ | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathbf{S O}_{2}$ | PM10 | PM 2.5 |
| MV-025 | 26.27 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| MV-026 | 32.40 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| MV-027 | 19.03 | 42.48 | 22.27 | 0.04 | 10.53 | 6.54 |
| MV-028 | 28.42 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| MV-029 | 28.42 | 62.82 | 56.90 | 0.16 | 19.18 | 6.55 |
| MV-030 | 26.91 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| MV-031 | 30.08 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| MV-032 | 23.78 | 73.66 | 43.56 | 0.11 | 10.53 | 6.55 |
| MV-033 | 30.64 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| MV-034 | 29.52 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| MV-035 | 14.32 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| MV-036 | 1.68 | 1.54 | 9.97 | 0.02 | 3.02 | 0.85 |
| MV-037 | 40.05 | 38.00 | 111.00 | 0.54 | 60.91 | 17.23 |
| MV-038 | 11.21 | 11.90 | 36.79 | 0.18 | 20.57 | 5.77 |
| MV-039 | 41.34 | 43.88 | 135.62 | 0.65 | 75.83 | 21.25 |
| MV-040 | 91.42 | 21.38 | 17.08 | 0.04 | 4.05 | 2.46 |
| MV-041 | 384.38 | 88.36 | 64.15 | 0.59 | 46.05 | 13.17 |
| MV-042 | 207.10 | 68.24 | 42.18 | 0.18 | 14.18 | 6.54 |
| MV-043 | 13.77 | 13.07 | 38.17 | 0.19 | 20.94 | 5.92 |
| MV-044 | 294.12 | 73.66 | 49.08 | 0.45 | 35.23 | 10.08 |
| MV-045 | 80.96 | 38.16 | 54.46 | 0.10 | 13.51 | 3.79 |
| MV-046 | 8.47 | 23.30 | 16.91 | 0.15 | 12.14 | 3.47 |
| MV-047 | 9.25 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| MV-048 | 47.85 | 57.78 | 236.77 | 1.03 | 132.88 | 35.98 |
| MV-049 | 50.28 | 60.72 | 248.81 | 1.08 | 139.64 | 37.81 |
| MV-050 | 9.17 | 9.73 | 30.08 | 0.14 | 16.82 | 4.71 |
| MV-051 | 19.88 | 21.10 | 65.21 | 0.31 | 36.46 | 10.22 |


| Project ID | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathbf{S O}_{2}$ | PM10 | PM 2.5 |
| MV-052 | 22.71 | 24.10 | 74.51 | 0.36 | 41.66 | 11.68 |
| MV-053 | 27.68 | 76.17 | 55.30 | 0.50 | 39.70 | 11.36 |
| MV-054 | 293.41 | 105.91 | 76.89 | 0.70 | 55.20 | 15.79 |
| MV-056 | 9.25 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| MV-057 | 21.07 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| MV-058 | 0.39 | 0.30 | 1.66 | 0.005 | 0.56 | 0.16 |
| MV-059 | 35.69 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| MV-060 | 29.81 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| MV-061 | 92.91 | 78.83 | 112.53 | 0.22 | 27.92 | 7.84 |
| MV-062 | 28.13 | 62.82 | 112.36 | 0.31 | 37.87 | 10.66 |
| MV-063 | 33.43 | 62.82 | 45.73 | 0.13 | 15.41 | 6.55 |
| MV-064 | 28.20 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| MV-065 | 18.33 | 42.48 | 22.27 | 0.04 | 10.53 | 6.54 |
| MV-066 | 78.83 | 68.24 | 44.69 | 0.11 | 13.56 | 6.54 |
| MV-067 | 24.42 | 62.82 | 40.79 | 0.09 | 11.23 | 6.55 |
| MV-068 | 106.87 | 42.48 | 22.27 | 0.07 | 10.53 | 6.54 |
| MV-069 | 10.15 | 9.63 | 28.13 | 0.14 | 15.44 | 4.37 |
| MV-070 | 75.70 | 68.24 | 42.91 | 0.10 | 13.02 | 6.54 |
| MV-071 | 17.29 | 42.48 | 22.27 | 0.04 | 10.53 | 6.54 |
| MV-072 | 15.26 | 21.38 | 15.73 | 0.03 | 4.05 | 2.46 |
| MV-073 | 30.30 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| MV-074 | 21.80 | 62.82 | 40.79 | 0.08 | 10.53 | 6.55 |
| MV-075 | 38.91 | 125.63 | 196.29 | 0.35 | 40.48 | 13.09 |
| MV-076 | 144.64 | 136.49 | 194.82 | 0.37 | 48.33 | 13.57 |
| MV-077 | 247.25 | 73.66 | 45.18 | 0.22 | 25.26 | 7.08 |
| MV-078 | 13.44 | 14.26 | 44.08 | 0.21 | 24.65 | 6.91 |
| MV-079 | 170.32 | 42.48 | 24.86 | 0.15 | 20.47 | 12.01 |


| Project ID | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathbf{S O}_{2}$ | PM10 | PM 2.5 |
| MV-080 | 41.29 | 21.38 | 27.69 | 0.05 | 6.87 | 2.46 |
| MV-081 | 15.50 | 42.66 | 30.97 | 0.28 | 22.23 | 6.36 |
| MV-082 | 11.07 | 30.47 | 22.12 | 0.20 | 15.88 | 4.54 |
| MV-083 | 9.20 | 9.76 | 30.18 | 0.15 | 16.87 | 4.73 |
| MV-084 | 2.58 | 2.74 | 8.47 | 0.04 | 4.74 | 1.33 |
| MV-085 | 72.32 | 61.32 | 87.52 | 0.17 | 21.71 | 6.54 |
| MV-086 | 3.43 | 2.69 | 14.69 | 0.04 | 4.95 | 1.39 |
| MV-087 | 21.11 | 42.48 | 22.27 | 0.04 | 10.53 | 6.54 |
| MV-088 | 15.26 | 9.05 | 8.05 | 0.01 | 0.92 | 0.66 |
| MV-089 | 15.26 | 9.05 | 8.05 | 0.01 | 0.92 | 0.66 |
| MV-090 | 13.79 | 9.03 | 8.05 | 0.01 | 1.13 | 0.66 |
| MV-091 | 28.20 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| MV-093 | 3.36 | 3.08 | 19.94 | 0.05 | 6.05 | 1.70 |
| MV-094 | 83.53 | 73.66 | 47.36 | 0.12 | 14.37 | 6.54 |
| MV-095 | 90.34 | 76.64 | 109.40 | 0.21 | 27.14 | 7.62 |
| MV-096 | 44.13 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| MV-097 | 32.38 | 62.82 | 44.28 | 0.12 | 14.92 | 6.55 |
| MV-098 | 9.25 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| MV-099 | 30.30 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| MV-100 | 60.98 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| MV-101 | 16.92 | 9.03 | 8.05 | 0.01 | 1.40 | 0.66 |
| MV-102 | 78.08 | 26.80 | 16.75 | 0.04 | 5.61 | 2.64 |
| MV-103 | 94.99 | 42.48 | 22.27 | 0.08 | 10.53 | 6.54 |
| MV-104 | 173.12 | 42.48 | 24.97 | 0.15 | 20.47 | 12.01 |
| MV-105 | 15.26 | 9.05 | 8.05 | 0.01 | 0.92 | 0.66 |
| MV-106 | 15.26 | 9.05 | 8.05 | 0.01 | 0.92 | 0.66 |
| MV-107 | 10.37 | 21.38 | 15.09 | 0.03 | 4.05 | 2.46 |


| $\begin{aligned} & \text { Project } \\ & \text { ID } \end{aligned}$ | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathbf{S O}_{2}$ | PM10 | PM2.5 |
| MV-108 | 5.75 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| MV-109 | 53.45 | 125.63 | 228.64 | 0.64 | 77.06 | 21.70 |
| MV-110 | 21.11 | 42.48 | 22.27 | 0.04 | 10.53 | 6.54 |
| MV-111 | 10.26 | 21.38 | 15.45 | 0.03 | 4.05 | 2.46 |
| MV-112 | 19.01 | 9.06 | 8.05 | 0.01 | 0.92 | 0.66 |
| MV-113 | 29.72 | 62.82 | 40.79 | 0.08 | 10.53 | 6.55 |
| MV-114 | 10.81 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| MV-115 | 0.90 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| MV-116 | 14.32 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| MV-117 | 48.43 | 21.38 | 16.04 | 0.03 | 4.05 | 2.46 |
| MV-118 | 10.37 | 21.38 | 15.09 | 0.03 | 4.05 | 2.46 |
| MV-119 | 19.95 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| MV-120 | 97.82 | 83.00 | 118.48 | 0.23 | 29.39 | 8.25 |
| MV-121 | 8.31 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| MV-123 | 26.18 | 9.12 | 8.75 | 0.02 | 2.17 | 0.66 |
| MV-124 | 72.32 | 61.32 | 87.52 | 0.17 | 21.71 | 6.54 |
| MV-125 | 15.26 | 21.38 | 15.73 | 0.03 | 4.05 | 2.46 |
| MV-126 | 24.32 | 62.82 | 48.63 | 0.14 | 16.39 | 6.55 |
| P-001 | 6.63 | 5.19 | 28.35 | 0.08 | 9.55 | 2.69 |
| P-002 | 13.29 | 36.56 | 26.54 | 0.24 | 19.06 | 5.45 |
| P-003 | 10.24 | 28.17 | 20.45 | 0.19 | 14.68 | 4.20 |
| P-004 | 88.81 | 42.48 | 22.27 | 0.07 | 10.53 | 6.54 |
| P-005 | 213.42 | 68.24 | 42.18 | 0.19 | 14.61 | 6.54 |
| P-006 | 278.31 | 73.66 | 50.86 | 0.24 | 28.44 | 7.97 |
| P-007 | 315.44 | 62.82 | 100.86 | 0.49 | 56.39 | 15.81 |
| P-008 | 111.93 | 42.48 | 22.27 | 0.10 | 20.47 | 12.01 |
| P-009 | 297.77 | 73.66 | 44.09 | 0.21 | 24.20 | 6.84 |


| Project ID | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathbf{S O}_{2}$ | PM10 | PM 2.5 |
| P-010 | 37.65 | 103.60 | 75.21 | 0.69 | 53.99 | 15.45 |
| P-011 | 30.36 | 28.80 | 84.14 | 0.41 | 46.17 | 13.06 |
| P-012 | 210.69 | 68.24 | 42.18 | 0.19 | 21.52 | 6.54 |
| P-014 | 318.13 | 73.66 | 53.09 | 0.48 | 38.11 | 10.90 |
| P-015 | 17.29 | 47.58 | 34.54 | 0.32 | 24.80 | 7.09 |
| P-016 | 29.01 | 79.83 | 57.96 | 0.53 | 41.61 | 11.90 |
| P-017 | 12.84 | 35.34 | 25.66 | 0.23 | 18.42 | 5.27 |
| P-018 | 34.26 | 94.27 | 68.44 | 0.62 | 49.13 | 14.06 |
| P-019 | 15.45 | 42.51 | 30.86 | 0.28 | 22.16 | 6.34 |
| P-020 | 19.30 | 53.11 | 38.56 | 0.35 | 27.68 | 7.92 |
| P-021 | 3.76 | 10.36 | 7.52 | 0.07 | 5.40 | 1.54 |
| P-022 | 176.35 | 42.48 | 25.12 | 0.15 | 20.47 | 12.01 |
| P-023 | 92.93 | 42.48 | 22.27 | 0.07 | 10.53 | 6.54 |
| P-024 | 388.08 | 89.21 | 64.77 | 0.59 | 46.50 | 13.30 |
| P-025 | 481.27 | 73.66 | 45.92 | 0.42 | 32.97 | 9.43 |
| P-026 | 376.38 | 73.66 | 68.80 | 0.33 | 38.47 | 10.78 |
| P-027 | 19.13 | 52.65 | 38.22 | 0.35 | 27.44 | 7.85 |
| P-028 | 310.75 | 73.66 | 56.79 | 0.27 | 31.76 | 8.90 |
| P-030 | 25.50 | 62.82 | 101.80 | 0.28 | 34.31 | 9.66 |
| P-031 | 26.33 | 42.48 | 22.27 | 0.05 | 10.53 | 6.54 |
| P-032 | 298.19 | 281.62 | 401.98 | 0.77 | 99.73 | 28.00 |
| P-033 | 89.97 | 188.45 | 384.86 | 1.07 | 129.71 | 36.53 |
| P-034 | 392.21 | 192.98 | 140.11 | 1.28 | 100.58 | 28.77 |
| P-035 | 25.27 | 21.38 | 16.24 | 0.03 | 4.05 | 2.46 |
| P-036 | 295.79 | 232.06 | 183.83 | 1.45 | 117.29 | 33.51 |
| P-037 | 8.85 | 6.93 | 37.87 | 0.11 | 12.76 | 3.59 |
| P-038 | 10.79 | 8.44 | 46.14 | 0.13 | 15.55 | 4.38 |


| Project ID | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathbf{S O}_{2}$ | PM10 | PM ${ }^{\text {. } 5}$ |
| P-039 | 363.44 | 73.66 | 43.56 | 0.32 | 24.89 | 7.12 |
| P-040 | 25.21 | 73.66 | 43.56 | 0.11 | 10.53 | 6.55 |
| P-041 | 77.34 | 42.48 | 22.27 | 0.06 | 10.53 | 6.54 |
| P-042 | 34.59 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| P-043 | 32.33 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| P-044 | 29.67 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| P-045 | 26.33 | 42.48 | 22.27 | 0.05 | 10.53 | 6.54 |
| P-046 | 24.80 | 62.82 | 57.64 | 0.10 | 11.89 | 6.55 |
| P-047 | 26.99 | 62.82 | 107.80 | 0.30 | 36.33 | 10.23 |
| P-048 | 42.44 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| P-049 | 23.58 | 73.66 | 43.56 | 0.11 | 10.53 | 6.55 |
| P-050 | 74.37 | 35.04 | 50.01 | 0.10 | 12.41 | 3.48 |
| P-051 | 19.95 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| P-052 | 26.59 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| P-053 | 24.42 | 62.82 | 40.79 | 0.09 | 11.23 | 6.55 |
| P-054 | 24.63 | 62.82 | 49.25 | 0.14 | 16.60 | 6.55 |
| P-055 | 208.76 | 197.09 | 281.32 | 0.54 | 69.80 | 19.60 |
| P-056 | 18.50 | 9.04 | 8.05 | 0.01 | 0.92 | 0.66 |
| P-057 | 77.42 | 9.50 | 8.32 | 0.02 | 1.32 | 0.66 |
| P-058 | 175.42 | 42.48 | 25.96 | 0.13 | 20.47 | 12.01 |
| P-059 | 25.14 | 62.82 | 50.28 | 0.14 | 16.95 | 6.55 |
| P-060 | 8.58 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| P-061 | 7.75 | 21.33 | 15.48 | 0.14 | 11.12 | 3.18 |
| R-001 | 44.32 | 53.52 | 219.33 | 0.95 | 123.10 | 33.33 |
| R-002 | 12.90 | 35.51 | 25.78 | 0.24 | 18.51 | 5.29 |
| R-003 | 16.85 | 17.88 | 55.27 | 0.27 | 30.90 | 8.66 |
| R-004 | 67.87 | 68.24 | 42.18 | 0.10 | 11.67 | 6.54 |


| Project ID | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathrm{SO}_{2}$ | PM10 | PM2.5 |
| R-005 | 231.96 | 73.66 | 185.24 | 0.74 | 96.09 | 26.00 |
| R-006 | 27.03 | 42.48 | 22.27 | 0.05 | 10.53 | 6.54 |
| R-007 | 52.22 | 24.57 | 35.07 | 0.07 | 8.70 | 2.46 |
| R-008 | 11.83 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| R-009 | 701.42 | 3,844.34 | 5,487.47 | 10.50 | 1,361.41 | 382.27 |
| R-010 | 43.91 | 10.32 | 14.73 | 0.03 | 3.65 | 1.03 |
| R-011 | 158.12 | 42.48 | 54.33 | 0.24 | 30.49 | 12.01 |
| R-012 | 57.11 | 26.88 | 38.37 | 0.07 | 9.52 | 2.67 |
| R-013 | 7.00 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-014 | 7.39 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-015 | 26.03 | 62.82 | 40.79 | 0.10 | 11.97 | 6.55 |
| R-016 | 3.68 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-017 | 86.35 | 73.66 | 48.96 | 0.12 | 14.85 | 6.54 |
| R-018 | 233.52 | 320.38 | 766.09 | 3.69 | 428.35 | 120.05 |
| R-019 | 19.37 | 42.48 | 22.27 | 0.04 | 10.53 | 6.54 |
| R-020 | 387.41 | 89.06 | 64.66 | 0.59 | 46.42 | 13.28 |
| R-021 | 9.63 | 42.48 | 22.27 | 0.04 | 10.53 | 6.54 |
| R-022 | 10.37 | 21.38 | 15.09 | 0.03 | 4.05 | 2.46 |
| R-023 | 15.14 | 9.03 | 8.05 | 0.01 | 1.25 | 0.66 |
| R-024 | 241.87 | 591.67 | 1,034.58 | 2.88 | 348.69 | 98.19 |
| R-025 | 65.37 | 68.24 | 42.18 | 0.10 | 11.23 | 6.54 |
| R-026 | 268.27 | 169.90 | 321.69 | 0.98 | 122.05 | 33.93 |
| R-027 | 6.95 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-028 | 24.21 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| R-029 | 7.28 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-030 | 107.62 | 91.35 | 130.39 | 0.25 | 32.35 | 9.08 |
| R-031 | 22.77 | 21.38 | 16.09 | 0.03 | 4.05 | 2.46 |


| Project ID | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathbf{S O}_{2}$ | PM10 | PM 2.5 |
| R-032 | 41.51 | 9.75 | 13.92 | 0.03 | 3.45 | 0.97 |
| R-033 | 19.02 | 21.38 | 15.92 | 0.03 | 4.05 | 2.46 |
| R-034 | 22.79 | 9.04 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-035 | 32.18 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| R-036 | 21.81 | 42.48 | 22.27 | 0.04 | 10.53 | 6.54 |
| R-037 | 11.36 | 8.94 | 8.05 | 0.01 | 0.93 | 0.66 |
| R-038 | 6.73 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-039 | 20.88 | 62.82 | 83.18 | 0.23 | 28.03 | 7.89 |
| R-040 | 4.69 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-041 | 43.09 | 9.22 | 8.05 | 0.01 | 1.55 | 0.66 |
| R-042 | 30.95 | 62.82 | 123.74 | 0.34 | 41.70 | 11.74 |
| R-043 | 28.39 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| R-044 | 7.66 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-045 | 70.54 | 9.49 | 8.23 | 0.02 | 2.54 | 0.69 |
| R-046 | 20.42 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| R-047 | 100.07 | 21.38 | 17.27 | 0.04 | 4.05 | 2.46 |
| R-048 | 70.01 | 32.98 | 47.07 | 0.09 | 11.68 | 3.28 |
| R-049 | 26.21 | 62.82 | 41.65 | 0.08 | 10.53 | 6.55 |
| R-050 | 4.56 | 21.38 | 15.01 | 0.03 | 4.05 | 2.46 |
| R-051 | 4.62 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-052 | 18.26 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| R-053 | 16.57 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| R-054 | 14.32 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| R-055 | 11.50 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| R-056 | 67.70 | 42.48 | 22.27 | 0.07 | 10.53 | 6.54 |
| R-057 | 88.61 | 42.48 | 22.27 | 0.07 | 10.53 | 6.54 |
| R-058 | 5.33 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |


| $\begin{aligned} & \text { Project } \\ & \text { ID } \end{aligned}$ | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathbf{S O}_{2}$ | PM10 | PM 2.5 |
| R-059 | 7.75 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-060 | 94.37 | 26.80 | 17.12 | 0.07 | 9.09 | 2.64 |
| R-061 | 197.38 | 186.33 | 265.97 | 0.51 | 65.99 | 18.53 |
| R-062 | 3.64 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| R-063 | 13.39 | 21.38 | 15.65 | 0.03 | 4.05 | 2.46 |
| R-064 | 5.87 | 21.38 | 15.01 | 0.03 | 4.05 | 2.46 |
| R-065 | 35.15 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| R-066 | 11.64 | 9.03 | 8.05 | 0.01 | 0.95 | 0.66 |
| RC-001 | 60.52 | 188.45 | 258.85 | 0.72 | 87.24 | 24.57 |
| RC-002 | 96.75 | 251.27 | 413.83 | 1.15 | 139.48 | 39.28 |
| RC-003 | 165.05 | 376.90 | 706.00 | 1.96 | 237.95 | 67.01 |
| RC-005 | 36.28 | 125.63 | 155.19 | 0.43 | 52.30 | 14.73 |
| RC-006 | 278.31 | 62.82 | 95.70 | 0.41 | 53.71 | 14.54 |
| RC-007 | 267.88 | 96.69 | 70.19 | 0.64 | 50.39 | 14.42 |
| RC-009 | 319.91 | 62.82 | 84.66 | 0.41 | 46.47 | 13.12 |
| RC-010 | 262.94 | 170.02 | 525.55 | 2.53 | 293.85 | 82.36 |
| RC-011 | 377.48 | 73.66 | 43.56 | 0.33 | 25.85 | 7.40 |
| RC-012 | 196.58 | 42.48 | 35.91 | 0.17 | 20.47 | 12.01 |
| RC-013 | 25.76 | 62.82 | 102.84 | 0.29 | 34.66 | 9.76 |
| RC-014 | 100.41 | 73.66 | 56.97 | 0.14 | 17.28 | 6.54 |
| RC-015 | 29.31 | 62.82 | 40.79 | 0.08 | 10.53 | 6.55 |
| RC-017 | 17.44 | 9.03 | 8.05 | 0.01 | 1.44 | 0.66 |
| RC-018 | 9.63 | 42.48 | 22.27 | 0.04 | 10.53 | 6.54 |
| RC-019 | 49.16 | 23.12 | 33.01 | 0.06 | 8.19 | 2.46 |
| RC-020 | 5.43 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| RC-021 | 15.07 | 9.03 | 8.05 | 0.01 | 0.92 | 0.66 |
| RC-022 | 27.06 | 62.82 | 40.79 | 0.08 | 10.53 | 6.55 |


| Project ID | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathbf{S O}_{2}$ | PM10 | PM ${ }^{2} 5$ |
| RC-023 | 48.84 | 21.38 | 16.08 | 0.03 | 4.05 | 2.46 |
| RC-024 | 98.49 | 42.48 | 22.27 | 0.08 | 10.53 | 6.54 |
| RC-025 | 79.01 | 21.38 | 16.75 | 0.03 | 4.05 | 2.46 |
| RC-026 | 4.75 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| RC-027 | 97.40 | 42.48 | 22.27 | 0.08 | 10.53 | 6.54 |
| RC-028 | 10.62 | 8.94 | 8.05 | 0.01 | 0.92 | 0.66 |
| RC-029 | 15.33 | 9.03 | 8.05 | 0.01 | 1.26 | 0.66 |
| RC-030 | 333.77 | 76.73 | 55.70 | 0.51 | 39.99 | 11.44 |
| RC-031 | 93.24 | 42.48 | 22.27 | 0.07 | 10.53 | 6.54 |
| RC-032 | 35.12 | 125.63 | 150.22 | 0.42 | 50.63 | 14.26 |
| RC-033 | 19.95 | 62.82 | 79.46 | 0.22 | 26.78 | 7.54 |
| RC-034 | 22.42 | 62.82 | 89.39 | 0.25 | 30.13 | 8.48 |
| RC-035 | 139.65 | 314.09 | 602.02 | 1.68 | 204.38 | 57.49 |
| RC-036 | 24.27 | 62.82 | 96.84 | 0.27 | 32.64 | 9.19 |
| RC-037 | 29.10 | 62.82 | 116.29 | 0.32 | 39.19 | 11.04 |
| RC-038 | 307.88 | 111.14 | 80.69 | 0.74 | 57.92 | 16.57 |
| RC-039 | 22.20 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| RD-001 | 3.97 | 3.10 | 16.97 | 0.05 | 5.72 | 1.61 |
| RD-002 | 2.66 | 2.08 | 11.38 | 0.03 | 3.84 | 1.08 |
| RD-003 | 33.37 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| RD-004 | 37.94 | 73.66 | 43.56 | 0.11 | 10.53 | 6.54 |
| RD-005 | 11.09 | 30.51 | 22.15 | 0.20 | 15.90 | 4.55 |
| RD-006 | 44.93 | 21.38 | 30.15 | 0.06 | 7.48 | 2.46 |
| RD-007 | 118.61 | 55.95 | 79.86 | 0.15 | 19.81 | 5.56 |
| RD-008 | 25.29 | 42.48 | 22.27 | 0.05 | 20.47 | 12.01 |
| RD-009 | 40.83 | 21.38 | 27.38 | 0.05 | 6.79 | 2.46 |
| RD-010 | 75.04 | 42.48 | 22.27 | 0.06 | 10.53 | 6.54 |


| Project ID | Maximum Daily Emissions (lb/day) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ROG | NOx | CO | $\mathrm{SO}_{2}$ | PM 10 | PM ${ }^{2} 5$ |
| RD-011 | 51.63 | 24.29 | 34.67 | 0.07 | 8.60 | 2.46 |
| RD-012 | 13.31 | 36.64 | 26.60 | 0.24 | 19.10 | 5.46 |
| RD-013 | 22.43 | 61.73 | 44.82 | 0.41 | 32.17 | 9.20 |
| RD-014 | 17.10 | 47.04 | 34.15 | 0.31 | 24.52 | 7.01 |
| RD-015 | 9.37 | 25.78 | 18.71 | 0.17 | 13.43 | 3.84 |
| RD-016 | 15.83 | 43.56 | 31.62 | 0.29 | 22.70 | 6.49 |
| SB-001 | 13.60 | 37.44 | 27.18 | 0.25 | 19.51 | 5.58 |
| SB-002 | 6.94 | 19.10 | 13.87 | 0.13 | 9.96 | 2.85 |
| SB-003 | 13.14 | 36.17 | 26.26 | 0.24 | 18.85 | 5.39 |
| SB-004 | 17.22 | 47.39 | 34.40 | 0.31 | 24.70 | 7.07 |
| SB-005 | 6.24 | 17.18 | 12.48 | 0.11 | 8.96 | 2.56 |
| SB-006 | 12.02 | 33.09 | 24.02 | 0.22 | 17.24 | 4.93 |
| SB-007 | 19.39 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| SB-008 | 22.76 | 68.24 | 42.18 | 0.10 | 10.53 | 6.54 |
| SJ-001 | 283.22 | 735.02 | 1,049.18 | 2.01 | 260.30 | 73.09 |
| SJ-002 | 16.72 | 62.82 | 66.42 | 0.18 | 22.39 | 6.55 |
| SJ-003 | 30.03 | 62.82 | 120.01 | 0.33 | 40.45 | 11.39 |
| SJ-004 | 31.72 | 62.82 | 126.84 | 0.35 | 42.75 | 12.04 |
| Total | 26,381 | 26,742 | 33,893 | 109 | 12,738 | 4,076 |

## 4. REFERENCES

/1/ Coats Jr., C.J., 1996. High-performance algorithms in the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system. Proc. Ninth AMS Joint Conference on Applications of Air Pollution Meteorology with AWMA. Amer. Meteor. Soc., Atlanta, GA, 584-588.
/2/ Coats Jr., C.J., Houyoux, M.R., 1996. Fast Emissions Modeling with the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System. The Emission Inventory: Key to Planning, Permits, Compliance, and Reporting, Air \& Waste Management Association. New Orleans, Louisiana.
/3/ USEPA, 2007. Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5 and Regional Haze. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA-454/B-07002.

Highland Fairview World Logistics Center Additional Information Regarding Potential Health Effects of Air Quality Impacts Moreno Valley, California

APPENDIX B PGM INPUTS, OUTPUTS, AND ASSUMPTIONS HIGHLAND FAIRVIEW WORLD LOGISTICS CENTER MORENO VALLEY, CALIFORNIA

## 1. REGIONAL AIR QUALITY MODELING PLATFORM

The Southern California 2012 4- kilometer (km) Comprehensive Air Quality Model with extensions (CAMx) ${ }^{1}$ modeling database along with a 2031 emissions database were used in this assessment. The 2012 base case is based on a Photochemical Grid Model (PGM) database developed by the South Coast Air Quality Management District (SCAQMD) as part of the modeling and attainment demonstration for their 2016 Air Quality Management Plan². This PGM database is tailored for Southern California and reflects updated emissions estimates, new technical information and enhanced air quality modeling techniques. The database uses a high-resolution 4-km horizontal grid to better simulate meteorology and air quality in the complex terrain and coastal environment of California. This contrasts with the United States Environmental Protection Agency's (USEPA's) national modeling platforms ${ }^{3}$ used for national rulemakings (e.g., transport rules such as CSAPR ${ }^{4}$ or defining new National Ambient Air Quality Standards [NAAQS]) that use a coarser 12-km horizontal grid resolution. The model domain is shown in Figure 1-1.

Details of the model inputs, configuration, and results are presented in Section 2 of this Appendix.
Figure 1-1. Air Quality Modeling Domain for Southern California


[^72]
## 2. REGIONAL GRID MODELING

This section describes the regional PGM modeling setup to assess the outcome of the unmitigated and mitigated Project emissions on the ambient Particulate Matter less than 2.5 microns in diameter ( $\mathrm{PM}_{2.5}$ ) levels in the region. The 2012 base case modeling databases were developed by the SCAQMD for the Community Multiscale Air Quality (CMAQ) PGM. The CMAQ annual 2012 4-km modeling database and annual 2012 4-km Weather Research and Forecasting (WRF) meteorological model output files were obtained from the SCAQMD. The SCAQMD CMAQ and WRF 2012 4-km data were then processed to generate a 2012 4-km annual PGM modeling database suitable for the CAMx. The following paragraphs describe how Ramboll developed the CAMx 2012 4-km annual database used in this study, starting with the SCAQMD CMAQ and WRF 2012 4-km data. Preparation of the Project unmitigated and mitigated emissions inputs for CAMx is discussed in Appendix A.

### 2.1 Model Inputs and Configuration

The SCAQMD emissions database has both 2012 and 2031 future year projections for CMAQ area and in-line point emissions. Ramboll converted both years' emissions to corresponding CAMx area and point-source emissions files using the CMAQ2CAMx interface program ${ }^{5}$. Sea salt emissions were developed using an emissions processor that integrates published sea spray flux algorithms to estimate sea salt PM emissions for input to CAMx. The CAMx sea salt emissions were then merged with area emissions files.

The most commonly used prognostic meteorological models to provide meteorological fields for air quality modeling are the Weather Research and Forecasting (WRF) model (Skamarock et al., 2005) and the Fifth-Generation Mesoscale Model (MM5; Grell et al, 1994). MM5 is a nonhydrostatic, prognostic meteorological model developed in the 1970s by Pennsylvania State University and the National Center for Atmospheric Research (NCAR) and has been widely used for urban- and regionalscale photochemical, fine particulate, and regional haze regulatory modeling studies. However, development of MM5 ceased in 2006, and WRF has become the new standard model used in place of the older MM5 for regulatory air quality applications in the US. Developed jointly by NCAR and the National Center for Environmental Prediction in late 1990s, WRF has been under continuous development, improvement, testing and open peer-review for more than 10 years and used worldwide by hundreds of researchers and practitioners around the globe for a variety of mesoscale studies. SCAQMD adopted WRF version 3.6 for the 2012 simulations. For the current application, the meteorology remains unchanged for the future year simulation and SCAQMD WRF 2012 4-km model outputs were processed using the WRFCAMx ${ }^{6}$ processor to generate the meteorological fields ready for CAMx. The WRF model employs a terrain-following coordinate system defined by pressure, using multiple layers that extend from the surface to 50 millibars (approximately 19 kilometers above ground level [AGL]). A layer averaging scheme is adopted for CAMx simulations to reduce the computational burden. Table 2-1 presents the mapping from the WRF vertical layer structure to the CAMx vertical layers.

[^73]Table 2-1. Vertical Layer Structure for WRF and CAMx Modeling

| WRF |  | CAMx |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Layer | Height (m) | Layer | Height (m) | Thickness (m) | Sigma |
| 30 | 19260 | 18 | 19260 | 4769 | 0.0000 |
| 29 | 17456 |  |  |  |  |
| 28 | 15900 |  |  |  |  |
| 27 | 14492 | 17 | 14492 | 6027 | 0.0788 |
| 26 | 13185 |  |  |  |  |
| 25 | 11945 |  |  |  |  |
| 24 | 10755 |  |  |  |  |
| 23 | 9597 |  |  |  |  |
| 22 | 8465 | 16 | 8465 | 4906 | 0.2930 |
| 21 | 7345 |  |  |  |  |
| 20 | 6237 |  |  |  |  |
| 19 | 5177 |  |  |  |  |
| 18 | 4295 |  |  |  |  |
| 17 | 3559 | 15 | 3559 | 1560 | 0.6254 |
| 16 | 2944 |  |  |  |  |
| 15 | 2430 |  |  |  |  |
| 14 | 1999 | 14 | 1999 | 358 | 0.7733 |
| 13 | 1641 | 13 | 1641 | 300 | 0.8107 |
| 12 | 1341 | 12 | 1341 | 251 | 0.8431 |
| 11 | 1090 | 11 | 1090 | 209 | 0.8709 |
| 10 | 881 | 10 | 881 | 175 | 0.8946 |
| 9 | 706 | 9 | 706 | 146 | 0.9148 |
| 8 | 561 | 8 | 561 | 121 | 0.9319 |
| 7 | 439 | 7 | 439 | 101 | 0.9463 |
| 6 | 338 | 6 | 338 | 85 | 0.9585 |
| 5 | 253 | 5 | 253 | 70 | 0.9688 |
| 4 | 183 | 4 | 183 | 59 | 0.9774 |
| 3 | 124 | 3 | 124 | 49 | 0.9846 |
| 2 | 75 | 2 | 75 | 41 | 0.9907 |
| 1 | 34 | 1 | 34 | 34 | 0.9958 |
| 0 | 0 |  | 0 | 0 | 1 |

The SCAQMD data set provided the lateral boundary conditions (BCs) for the 4-km state-wide modeling grid. The SCAQMD simulated a $12-\mathrm{km}$ domain whose boundary concentrations were extracted from a global model simulation for the year 2012. The Model for Ozone and Related Chemical Tracers Version 4 (MOZART-4; Emmons et al., 2010) is a global chemical transport model
developed jointly by NCAR, the Geophysical Fluid Dynamics Laboratory, and the Max Planck Institute for Meteorology, and simulates chemistry and transport of tropospheric gases and bulk aerosols. The $12-\mathrm{km}$ outputs were saved and used to derive the boundary conditions for the $4-\mathrm{km}$ domain. The CMAQ2CAMX processor was used to convert the CMAQ 4-km boundary conditions to suitable CAMx BCs. The model was initialized from clean initial concentrations and five days of spin-up period were used for the $4-\mathrm{km}$ grids to minimize their influence.

Additional data used in the air quality modeling include ozone column data from the Ozone Monitoring Instrument (OMI), which continues the Total Ozone Mapping Spectrometer (TOMS) record for total ozone and other atmospheric parameters related to ozone chemistry (OMI officially replaced the TOMS ozone column satellite data on January 1, 2006). OMI data are available every 24 -hours and are obtained from the TOMS ftp site ${ }^{7}$. The CAMx O3MAP program reads the OMI ozone column txt file data and interpolates to fill gaps and generated gridded daily ozone column input data. The OMI data is used in the CAMx (TUV) radiation models, which is a radiative transfer model that develops clear-sky photolysis rate inputs for CAMx. The land use file was generated with the WRFCAMx processor and modified to remove lakes and set coastal waters with a surf zone width of 50 m ; this file was used to update the emissions database and provide more realistic representation of sea salt emissions.

Table 2-2 presents the CAMx configuration used for the modeling in this Project analysis. In the past, the Carbon-Bond IV (CB4) chemical mechanism (Gery et al., 1989) has been predominantly used for the California State Implementation Plan (SIP) modeling. In 1999, however, the California Air Resources Board's (CARB's) Reactivity Scientific Advisory Committee recommended switching to the 1999 State-wide Air Pollution Research Center (SAPRC99) chemical mechanism (Carter, 2000) based on a comprehensive review by Stockwell (1999), and SAPRC99 has since been the mechanism of choice for the California SIPs. The 2007 update to the SAPRC chemistry mechanism, called SAPRC07 (Carter, 2010), replaced the dated SAPRC99 mechanism. The version implemented in CAMx is SAPRC07TC, which includes additional model species to explicitly represent selected toxics and reactive organic compounds and uses numerical expressions of rate constants that are compatible with the current chemistry mechanism solver. The partitioning of inorganic aerosol constituents (sulfate, nitrate, ammonium and chloride) between gas and aerosol phases is performed using the ISORROPIA module. The Secondary Organic Aerosol Processor (SOAP) is a semi-volatile equilibrium scheme used to perform the organic aerosol-gas partitioning. These processes are described in more detailed in the CAMx user guide. ${ }^{8}$

[^74]Table 2-2. CAMx Modeling Configuration

| Science Option | Configuration | Notes |
| :--- | :--- | :--- |
| Model Code | CAMx v6.5 | Released April 2018 |
| Horizontal Grid | 4-km 1-way nesting |  |
| O3 and PM 4-km | $156 \times 102$ grid cells | Collapsed from 30 WRF layers <br> (see Table 3-1) |
| Vertical Grid | 18 vertical layers extending up to <br> $\sim 19$ km AGL | 5-day spin-up for 4-km <br> domain |
| Initial Conditions | Clean initial conditions | CMAQ 4km lateral concentrations <br> converted to CAMx |
| Boundary Conditions | Photolysis rates lookup table | Derived from satellite <br> measurements and TUV <br> processor |
| Photolysis Rate | SAPRC07TC | Solved by the Euler Backward <br> Iterative (EBI) solver |
| Gas-phase Chemistry | ISORROPIA (inorganic aerosol) <br> SOAP v2.1 (organic aerosol) |  |
| Aerosol-phase Chemistry | WRFCAMx v4.7 |  |
| Meteorological Input Pre- <br> processor | Piecewise Parabolic Method (PPM) |  |
| Advection | Eddy diffusion algorithm |  |
| Diffusion |  |  |

### 2.2 Model Results

The future modeling scenario was simulated using the CAMx source apportionment technology. Both cumulative concentrations from all the sources and the concentrations from Project-specific unmitigated and mitigated emissions are derived from separate simulations following the model configuration discussed in the previous section. The model results of hourly $\mathrm{PM}_{2.5}$ concentrations were processed into aggregated metrics that are relevant to health effects.

## PM2.5 Model Results

The metrics relevant to the $\mathrm{PM}_{2.5}$ health effects selected in this study are 24-hour annual average concentrations (see Appendix C).

## Unmitigated Proiect

Figure 2-1 shows spatial plots of annual average and a single day episode maximum 24 -hour average $\mathrm{PM}_{2.5}$ concentrations from the base case and the unmitigated Project emissions. In the 2031 base case scenario, the highest concentrations occur in Los Angeles County and the central portion of Imperial County. Annual $\mathrm{PM}_{2.5}$ concentrations in these counties generally range between 10 and 20 micrograms per cubic meter $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ with isolated regions that could be higher than $25 \mu \mathrm{~g} / \mathrm{m}^{3}$.

Contributions of the unmitigated Project emissions to annual average $\mathrm{PM}_{2.5}$ are $0.266 \mu \mathrm{~g} / \mathrm{m}^{3}$ at the most impacted area and represent a 3.2 percent increase over the base case concentrations at that location. Contributions to the maximum 24 -hour average $\mathrm{PM}_{2.5}$ are $0.781 \mu \mathrm{~g} / \mathrm{m}^{3}$ at the most impacted area and represent a 2.4 percent increase over the base case concentrations at that location.
Figure 2-2 presents increases in annual average and maximum 24 -hour average $\mathrm{PM}_{2.5}$ due to the unmitigated Project emissions by $\mathrm{PM}_{2.5}$ chemical component at the grid cell of maximum concentration change. The figure shows that on average, the primary concentrations of crustal material (labeled other), elemental carbon and primary organic aerosol account for about 86 percent of the contributions at the location of maximum impact, while the other 14 percent is due to secondary PM (sulfate, ammonium and nitrate). The maximum 24 -hr impacts show a larger impact from secondary PM, in particular nitrate alone represents 41 percent of the Project unmitigated scenario contributions.

Figure 2-1. Results of the 4 km PM 2.5 Modeling Domain
PM 2.5 Concentrations from the Base Case Scenario (left panels);
Increases in $\mathrm{PM}_{2.5}$ due to the Unmitigated Project (center and right panels);
Annual Averages (top panels); Maximum 24-hour Averages (bottom panels)


Figure 2-2. Increases in Annual Average and Episode Maximum 24-hour Average $\mathbf{P M}_{2.5}$ Concentrations due to the Unmitigated Project by PM $\mathbf{2 . 5}^{\text {Component: fine }}$ particulate sulfate $\left(\mathrm{SO}_{4}\right)$, nitrate $\left(\mathrm{NO}_{3}\right)$, ammonium $\left(\mathrm{NH}_{4}\right)$, primary organic aerosol (POA), elemental carbon (EC), and other primary PM (Other); Where the Maximum Change due to Project Emissions Occurred


## Mitigated Project

Figure 2-3 shows spatial plots of annual average and a single day episode maximum 24-hour average $\mathrm{PM}_{2.5}$ concentrations from the base case and the mitigated Project emissions. Contributions of the mitigated Project emissions to annual average $P_{2.5}$ are $0.233 \mu \mathrm{~g} / \mathrm{m}^{3}$ at the most impacted area and represent a 2.8 percent increase over the base case concentrations at that location. Contributions to the maximum 24-hour average $\mathrm{PM}_{2.5}$ are $0.607 \mu \mathrm{~g} / \mathrm{m}^{3}$ at the most impacted area and represent a 1.9 percent increase over the base case concentrations at that location. Figure 2-4 presents increases in annual average and maximum 24 -hour average $\mathrm{PM}_{2.5}$ due to the mitigated Project emissions by $\mathrm{PM}_{2.5}$ chemical component at the grid cell of maximum concentration change. The figure shows that on average, the primary concentrations of crustal material (labeled other), elemental carbon and primary organic aerosol account for about 89 percent of the contributions at the location of maximum impact, while the other 11 percent is due to secondary PM (sulfate, ammonium and
nitrate). The maximum 24-hr impacts show a larger impact from secondary PM, in particular nitrate alone represents 31 percent of the Project mitigated scenario contributions.

Figure 2-3. Results of the 4 km PM2.5 Modeling Domain
PM 2.5 Concentrations from the Base Case Scenario (left panels);
Increases in $\mathbf{P M}_{2.5}$ due to the Mitigated Project (center and right panels);
Annual Averages (top panels);
Maximum 24-hour Averages (bottom panels)


Annual Average PM25 Concentration Annual
FY2031 Highland Ranch Source Attribution

$\diamond \max (98,56)=0.2333 \mu \mathrm{~g} / \mathrm{m}^{3}$
Max 24-h Avg PM25 Concentration
FY2031
Highland Ranch Source Attribution


Figure 2-4. Increases in Annual Average and Episode Maximum 24-hour Average $\mathbf{P M}_{2.5}$ Concentrations due to the Mitigated Project by PM2.5 Component: fine particulate sulfate ( $\mathrm{SO}_{4}$ ), nitrate $\left(\mathrm{NO}_{3}\right)$, ammonium $\left(\mathrm{NH}_{4}\right)$, primary organic aerosol (POA), elemental carbon (EC), and other primary PM (Other); Where the Maximum Change due to Project Emissions Occurred


## Ozone Model Results

The metrics relevant to the ozone health effects selected in this study are consistent with the ozone NAAQS (see Appendix C). The model provides hourly concentrations that are further post-processed to produce maximum daily average 8 -hour (MDA8) ozone concentrations for each day.

## Unmitigated Project

Figure 2-5 displays spatial plots of the annual average MDA8 ozone for the 2031 emissions scenario and the corresponding annual average MDA8 increases due to the unmitigated Project emissions. In the 2031 base case emissions scenario, the eastern portion of Los Angeles County, the western portions of San Bernardino and Riverside counties and the northern portion of Orange County show the largest concentrations ranging between 50 and 56 ppb . The maximum impact to the annual average MDA8 ozone concentrations due to the unmitigated Project is 0.213 ppb and occurs in northern Riverside County where it represents a 0.41 percent increase over the base case concentrations. Figure 2-6 displays MDA8 ozone for the base case and increases in MDA8 ozone due to the unmitigated Project on July 10, the day that the unmitigated Project has the highest ozone
contribution for the entire modeling year. The highest MDA8 ozone contribution due to the unmitigated Project is 1.44 ppb (Figure 2-4, right) that occurs in northern Riverside County where total MDA8 ozone concentrations are 79.9 ppb .

Figure 2-5. Annual Average MDA8 Ozone Concentrations from the Base Case Scenario (left) and Increases in Annual Average MDA8 Ozone Concentrations due to the Unmitigated Project (right) for the Annual Modeling of the 2031 Emissions Scenario


Figure 2-6. MDA8 Ozone Concentrations from the Base Case Scenario (left) and Increases in MDA8 Ozone Concentrations due to the Unmitigated Project (right) on July 10, the Day with the Highest Unmitigated Project Ozone Contributions for the Annual Modeling of the 2031 Emissions Scenario


## Mitigated Project

Figure 2-7 displays spatial plots of the annual average MDA8 ozone for the 2031 emissions scenario and the corresponding annual average MDA8 increases due to the mitigated Project emissions. The maximum impact to the annual average MDA8 ozone concentrations due to the mitigated Project is 0.165 ppb and occurs in northern Riverside County where it represents a 0.31 percent increase over the base case concentrations. Figure 2-8 displays MDA8 ozone for the base case and increases in MDA8 ozone due to the mitigated Project on July 10, the day that the mitigated Project has the highest ozone contribution for the entire modeling year. The highest MDA8 ozone contribution due to the mitigated Project is 0.924 ppb (Figure 2-4, right) that occurs in northern Riverside County where total MDA8 ozone concentrations are 84.8 ppb .

Highland Fairview World Logistics Center Additional Information Regarding Potential Health Effects
of Air Quality Impacts
Moreno Valley, California
B-11
Figure 2-7. Annual Average MDA8 Ozone Concentrations from the Base Case Scenario (left) and Increases in Annual Average MDA8 Ozone Concentrations due to the Mitigated Project (right) for the Annual Modeling of the 2031 Emissions Scenario


Figure 2-8. MDA8 Ozone Concentrations from the Base Case Scenario (left) and Increases in MDA8 Ozone Concentrations due to the Mitigated Project (right) on July 10, the Day with the Highest Mitigated Project Ozone Contributions for the Annual Modeling of the 2031 Emissions Scenario


$\diamond \max (98,57)=0.924 \mathrm{ppb}$

July 10: 8-Hour DMAX 03 Contribution
FY2031 Highland Ranch Source Attribution


Highland Fairview World Logistics Center Additional Information Regarding Potential Health Effects of Air Quality Impacts Moreno Valley, California

## 3. REFERENCES

/1/ Carter, W.P.L., 2000. Documentation of the SAPRC99 Chemical Mechanism for VOC Reactivity Assessment, Final Report to California Air Resources Board, Contract No. 92-329, and (in part) 95-308, May 8, 2000. http://www.engr.ucr.edu/~carter/reactdat.htm
/2/ Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.F., Pfister, G.G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S.L., Kloster, S., 2010. Description and evaluation of the Model for Ozone and Related chemical Tracers, Version 4 (MOZART-4), Geoscientific Model Development, 3, 43-67.
/3/ Gery, M.W., Whitten, G.Z., Killus, J.P., Dodge, M.C., 1989. A Photochemical Kinetics Mechanism for Urban and Regional Scale Computer Modeling. J. Geophys. Res., 94, 925-956.
/4/ Grell, G.A., Dundhia, J., Stauffer, D.R., 1994. A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), National Center for Atmospheric Research, Boulder, CO, NCAR/TN-398+STR.
/5/ Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, G.O., Barker, D.M., Wang, W., Powers, J.G., 2005. A description of the Advanced Research WRF Version 2. NCAR Technical Note NCAR/TN468+STR, June 2005.
/6/ Stockwell, W.R., 1999. Review of the updated maximum incremental reactivity scale of Dr. William Carter. Division of Atmospheric Sciences, Desert Research Institute, November 29, 1999. http://www.cert.ucr.edu/~carter/pubs/stockrev.pdf.

Highland Fairview World Logistics Center Additional Information Regarding Potential Health Effects of Air Quality Impacts Moreno Valley, California

APPENDIX C BENMAP AND POTENTIAL HEALTH EFFECTS HIGHLAND FAIRVIEW WORLD LOGISTICS CENTER MORENO VALLEY, CALIFORNIA

## 1. HEALTH EFFECTS ANALYSIS

The potential health effects of ozone and Particulate Matter less than 2.5 microns in diameter ( $\mathrm{PM}_{2.5}$ ) concentrations associated with the Project's emissions were estimated using the Environmental Benefits Mapping and Analysis Program (BenMAP), Community Edition v1.5 (March 2019). ${ }^{1}$ BenMAP, originally developed by the United States Environmental Protection Agency (USEPA), is a powerful and flexible tool that helps users estimate human health effects and economic value resulting from changes in air quality. BenMAP outputs include PM- and ozone-related health endpoints such as premature mortality, hospital admissions, and emergency room visits. BenMAP uses the following simplified formula to relate changes in ambient air pollution to certain health endpoints (USEPA, 2018) ${ }^{2}$ :

$$
\begin{aligned}
& \text { Health Effect }=\text { Air Quality Change } \times \text { Health Effect Estimate } \times \text { Exposed Population } \\
& \times \text { Background Health Incidence }
\end{aligned}
$$

- Air Quality Change - The difference between the starting air pollution level (the base) and the air pollution level after some change, such as a new source.
- Health Effect Estimate - An estimate of the percentage change in an adverse health effect due to a one unit change in ambient air pollution. Effect estimates, also referred to as concentrationresponse ( $\mathrm{C}-\mathrm{R}$ ) functions, are obtained from epidemiological studies.
- Exposed Population - The number of people affected by the air quality change. The government census office is a good source for this information. This analysis uses data from PopGrid, which is an add-on program to BenMAP that allocates the block-level U.S. Census population to a userdefined grid. ${ }^{3}$
- Background Health Incidence - An estimate of the average number of people that die (or suffer from some adverse health effect) in a given population over a given period of time. For example, the health incidence rate might be the probability that a person will die in a given year. Health incidence rates and other health data are typically collected by the government as well as the World Health Organization. ${ }^{4}$

BenMAP applies "effect functions" to calculate incremental health effects from incremental changes in PM and ozone, and an underlying assumption is that there is a causal link between PM and ozone exposures and health effects. The effect functions are derived from statistical correlations reported in epidemiologic studies that compare fluctuations in air pollutant levels measured at central monitors against small fluctuations in population-wide health effects. These are statistical correlations and do not establish a cause-and-effect relationship between small fluctuations in the level of one (or many) ambient air pollutants and health effects, particularly mortality. For example, there is no toxicological or experimental study that has demonstrated or supported that small incremental changes in PM concentrations as a whole, or major PM components, at ambient levels can cause any serious health

1 http://www.epa.gov/air/benmap/.
2 The common function used for calculating health effects is the following log-linear function: Health Effect = Background Health Incidence x [1-exponential (Health Effect Estimate * Air Quality Change)] x Exposed Population.
3 https://www.epa.gov/benmap/benmap-community-edition.
4 Background health statistics were obtained from data included in the BenMAP model, and the sources are referenced in the BenMAP manual (AAI, 2018). For example, EPA obtained mortality rates from the Centers for Disease Control (CDC) WONDER database, and hospital admissions rates from the Healthcare Cost and Utilization Project (HCUP).
effects, let alone death (USEPA, 2009). That being said, in an overabundance of caution, and as an expression of the precautionary principal, BenMAP uses these studies to characterize the potential human health effect of small changes in PM and ozone concentrations.

The health endpoints analyzed in this study and the BenMAP results are presented in Section 2 of this appendix.

## 2. PROJECT HEALTH EFFECTS ANALYSIS RESULTS

This section presents the health effects of the unmitigated and mitigated Project emissions on the population in the Southern California model domain, estimated by the BenMAP model.

The Comprehensive Air Quality Model with extensions (CAMx) modeling results (Appendix B) are processed to generate aggregated daily averages $\mathrm{PM}_{2.5}$ and maximum daily 8-hour ozone appropriate for various health endpoints. The CAMx simulation results from the full year (January to December) are used to estimate the health effects of $\mathrm{PM}_{2.5}$ and ozone. BenMAP translates increases in the pollutant concentration associated with the Project emissions to changes in the incidence rate for each health effect using a C-R function derived from previously published epidemiological studies. BenMAP often provides multiple C-R functions based on different epidemiological studies for a given health endpoint. The USEPA default C-R functions were used when evaluating health effects, except for more refined population data. This analysis uses population data from PopGrid, which allocates the census population to each modeled $4 \times 4$ kilometer (km) grid cell.

The population used for both the quantified health effects and the calculation of background health incidence presented here is for the future year $2035^{5}$, for consistency with the Project buildout year. This is conservative compared to utilizing a 2031 population that would have been consistent with the CAMx model year.

## 2.1 $\mathrm{PM}_{2.5}$ Health Effects

Although there are a large number of potential health endpoints that could be included in the analysis as described above, Ramboll selected the key health endpoints that have been the focus of recent United States Environmental Protection Agency (USEPA) risk assessments (e.g., USEPA, 2010; USEPA, 2014). For example, the USEPA notes that health endpoints were selected based on consideration of at-risk populations (e.g. asthmatics), endpoints that have public health significance, and endpoints for which information is sufficient to support a quantitative concentration-response relationship (USEPA, 2014).

The health endpoints and associated $\mathrm{C}-\mathrm{R}$ functions examined in this study are presented in Table . Each C-R function is based on a certain age range for the given health endpoint depending on the underlying epidemiological study on which it is based.

[^75]Table 2-1. Summary of PM 2.5 Health Endpoints Used in this Study

| Health Endpoint | Age Range | Daily Metric | Seasonal Metric | Annual Metric | C-R Function Selected |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Emergency Room Visits, Asthma | 0-99 | 24-hr mean |  |  | Mar et al., 2010 ${ }^{1}$ |
| Mortality, All Cause | 30-99 | 24-hr mean | Quarterly mean | Mean | Krewski et al., 2009 ${ }^{1}$ |
| Hospital Admissions, Asthma | 0-64 | 24-hr mean | - | - | Sheppard, 2003 ${ }^{1}$ |
| Hospital Admissions, All Cardiovascular (less Myocardial Infarctions) | 65-99 | 24-hr mean | - | - | Bell, 2012 ${ }^{1}$ |
| Hospital Admissions, All Respiratory | 65-99 | 24-hr mean | - | - | Zanobetti et al., 2009 ${ }^{1}$ |
| Acute Myocardial Infarction, Nonfatal | 18-24 | 24-hr mean | - | - | Zanobetti et al., 2009 ${ }^{1}$ |
| Acute Myocardial Infarction, Nonfatal | 25-44 | 24-hr mean | - | - |  |
| Acute Myocardial Infarction, Nonfatal | 45-54 | 24-hr mean | - | - |  |
| Acute Myocardial Infarction, Nonfatal | 55-64 | 24-hr mean | - | - |  |
| Acute Myocardial Infarction, Nonfatal | 65-99 | 24-hr mean | - | - |  |

## Unmitigated Project PM 2.5 Health Effects

Increases in the BenMAP-estimated annual health effect incidences and percent of background health incidence associated with the unmitigated Project emissions are presented in Table 2-2. These values reflect the total health effects across the Southern California model domain.

The results show that the highest health effect is for all-cause mortality, with an estimated mean increased incidence of 15.19 deaths per year associated with the Project mitigated emissions. Smaller mean increased incidences were estimated for other relevant PM2.5-related health effects: 6.63 increase in incidence of asthma related emergency room visits, 3.17 increase in incidence of respiratory hospital admissions, and 1.42 increase in incidence of cardiovascular hospital admissions.

It should be noted, however, that the estimated increased incidence in those health effects are quite minor compared to the background health incidence values (shown in Table 2-2 as percent of Background Health Incidence). For example, for mortality, the increase of 15.19 deaths per year associated with project emissions represents $0.0047 \%$ of the total all-cause mortality for people ages 30 to 99 .

Table 2-2. BenMAP-Estimated Annual Mean PM2.5 Health Effects of the Unmitigated Project Emissions Across the Southern California Model Domain ${ }^{1}$

| Health Endpoint ${ }^{\text {2 }}$ | Annual Percent of <br> Background Health <br> Incidence (\%) | Potential <br> Incidences <br> (Annual, Mean) | Background <br> Health Incidence <br> (Annual) |
| :--- | :---: | :---: | :---: |
| Emergency Room Visits, Asthma [0-99] | $0.0051 \%$ | 6.63 | 130,805 |
| Mortality, All Cause [30-99] | $0.0047 \%$ | 15.19 | 325,048 |
| Hospital Admissions, Asthma [0-64] | $0.0029 \%$ | 0.523 | 17,730 |
| Hospital Admissions, All Cardiovascular (less <br> Myocardial Infarctions) [65-99] | $0.00063 \%$ | 1.42 | 224,047 |
| Hospital Admissions, All Respiratory [65-99] | $0.0016 \%$ | $0.0020 \%$ | 0.17 |
| Acute Myocardial Infarction, Nonfatal [18-24] | 0.041 | 193,354 |  |
| Acute Myocardial Infarction, Nonfatal [25-44] | $0.0021 \%$ | 0.105 | 36 |
| Acute Myocardial Infarction, Nonfatal [45-54] | $0.0020 \%$ | 0.188 | 5,904 |
| Acute Myocardial Infarction, Nonfatal [55-64] | $0.0020 \%$ | 0.776 | 9,226 |
| Acute Myocardial Infarction, Nonfatal [65-99] | $0.0019 \%$ | 40,966 |  |
| 1 | Health effects are shown in terms of incidences of each health endpoint and how it compares to the base (2035 |  |  |
| base year health effect incidences, or "background health incidence") values. Health effects and background health |  |  |  |
| incidences are across the Southern California model domain. |  |  |  |
| 2 Affected age ranges are shown in square brackets. |  |  |  |

## Mitigated Project PM2.5 Health Effects

Increases in the BenMAP-estimated annual health effect incidences and percent of background health incidence associated with the mitigated Project emissions are presented in Table 2-3. These values reflect the total health effects across the Southern California model domain.

The results show that the highest health effect is for all-cause mortality, with an estimated mean increased incidence of 14.17 deaths per year associated with the Project mitigated emissions. Smaller mean increased incidences were estimated for other relevant $\mathrm{PM}_{2.5}$-related health effects: 6.20 increase in incidence of asthma related emergency room visits, 2.98 increase in incidence of respiratory hospital admissions, and 1.33 increase in incidence of cardiovascular hospital admissions.

It should be noted, however, that the estimated increased incidence in those health effects are quite minor compared to the background health incidence values (shown in Table 2-3 as percent of Background Health Incidence). For example, for mortality, the increase of 14.17 deaths per year associated with project emissions represents $0.0044 \%$ of the total all-cause mortality for people ages 30 to 99.

Table 2-3. BenMAP-Estimated Annual Mean PM2.5 Health Effects of the Mitigated Project Emissions Across the Southern California Model Domain ${ }^{1}$

| Health Endpoint ${ }^{2}$ | Annual Percent of <br> Background Health <br> Incidence (\%) | Potential <br> Incidences <br> (Annual, Mean) | Background <br> Health Incidence <br> (Annual) |
| :--- | :---: | :---: | :---: |
| Emergency Room Visits, Asthma [0-99] | $0.0047 \%$ | 6.20 | 130,805 |
| Mortality, All Cause [30-99] | $0.0044 \%$ | 14.17 | 325,048 |
| Hospital Admissions, Asthma [0-64] | $0.0028 \%$ | 0.490 | 17,730 |
| Hospital Admissions, All Cardiovascular (less <br> Myocardial Infarctions) [65-99] | $0.00059 \%$ | 1.33 | 224,047 |
| Hospital Admissions, All Respiratory [65-99] | $0.0015 \%$ | 0.98 | 193,354 |
| Acute Myocardial Infarction, Nonfatal [18-24] | $0.0019 \%$ | 0.00067 | 36 |
| Acute Myocardial Infarction, Nonfatal [25-44] | $0.0020 \%$ | 0.038 | 1,904 |
| Acute Myocardial Infarction, Nonfatal [45-54] | $0.0019 \%$ | 0.098 | 5,241 |
| Acute Myocardial Infarction, Nonfatal [55-64] | $0.0019 \%$ | 0.176 | 9,226 |
| Acute Myocardial Infarction, Nonfatal [65-99] | $0.0018 \%$ | 0.724 | 40,966 |
| 1 Health effects are shown in terms of incidences of each health endpoint and how it compares to the base (2035 <br> base year health effect incidences, or "background health incidence") values. Health effects and background health <br> incidences are across the Southern California model domain. |  |  |  |
| 2 Affected age ranges are shown in square brackets. |  |  |  |

### 2.2 Ozone Health Effects

As noted above, although a larger number of health endpoints could be evaluated, Ramboll selected the health endpoints based on recent USEPA risk assessments (USEPA, 2010; USEPA, 2014). The health endpoints and associated C-R functions examined in this study are presented in Table 2-4. Each C-R function is associated with a certain age range for the given health endpoint depending on the epidemiological study on which it is based.

Table 2-4. Summary of Ozone Health Endpoints Used in this Study.

| Health Endpoint | Age <br> Range | Daily <br> Metric | Seasonal <br> Metric | Annual <br> Metric | C-R Function Selected |
| :--- | :---: | :---: | :---: | :---: | :--- |
| Hospital Admissions, All Respiratory | $65-99$ | MDA8 | - | - | Katsouyanni et al., 2009 ${ }^{1}$ |
| Mortality, Non-Accidental | $0-99$ | MDA8 | - | - | Smith et al., 2009 ${ }^{11}$ |
| Emergency Room Visits, Asthma | $0-17$ | MDA8 | - | - | Mar and Koenig, 2009 ${ }^{1}$ |
| Emergency Room Visits, Asthma | $18-99$ | MDA8 | - | - | Mar and Koenig, 2009 ${ }^{1}$ |
| $1 \quad$ C-R function available in BenMAP (USEPA, 2018). |  |  |  |  |  |

## Unmitigated Project Ozone Health Effects

Increases in the BenMAP-estimated annual health effect incidences and percent of background health incidence associated with the unmitigated Project emissions are presented in Table 2-5. These values reflect the total health effects across the Southern California model domain.

For this project, asthma related emergency room visits are associated with the highest health effects associated with the unmitigated project emissions in the Southern California domain (8.20 increase for adults ages 18 to 99 and 6.93 increase for children ages 0 to 17). Hospital admissions due to respiratory issues for adults age 65-99 and non-accidental mortality have lower incidence increases ( 1.46 and 0.69 respectively).

It should be noted, however, that the estimated increases in those health effect incidences are quite minor compared to the background health incidence (shown in Table 2-5 as Percent of Background Health Incidence). For example, the increase in asthma emergency room visits represents $0.014 \%$ of the total asthma-related emergency room visits for children.

| Health Endpoint ${ }^{2}$ | Annual Percent of Background Health Incidence (\%) | ```Potential Incidences (Annual, Mean)``` | Background Health Incidence (Annual) |
| :---: | :---: | :---: | :---: |
| Hospital Admissions, All Respiratory [65-99] | 0.00075\% | 1.46 | 193,354 |
| Mortality, Non-Accidental [0-99] | 0.00033\% | 0.69 | 210,692 |
| Emergency Room Visits, Asthma [0-17] | 0.014\% | 6.93 | 50,722 |
| Emergency Room Visits, Asthma [18-99] | 0.010\% | 8.20 | 80,084 |
| ${ }^{1}$ Health effects are shown in terms of incidences of each health endpoint and how it compares to the base (2035 base year health effect incidences, or "background health incidence") values. Health effects and background health incidences are across the Southern California model domain. <br> ${ }^{2}$ Affected age ranges are shown in square brackets. |  |  |  |
|  |  |  |  |

## Mitigated Project Ozone Health Effects

Increases in the BenMAP-estimated annual health effect incidences and percent of background health incidence associated with the mitigated Project emissions are presented in Table 2-6. These values reflect the total health effects across the Southern California model domain.

For this project, asthma related emergency room visits are associated with the highest health effects associated with the mitigated project emissions in the Southern California domain (6.84 increase for adults ages 18 to 99 and 5.80 increase for children ages 0 to 17). Hospital admissions due to respiratory issues for adults age 65-99 and non-accidental mortality have lower incidence increases ( 1.20 and 0.56 respectively).

It should be noted, however, that the estimated increases in those health effect incidences are quite minor compared to the background health incidence (shown in Table 2-6 as Percent of Background Health Incidence). For example, the increase in asthma emergency room visits represents $0.011 \%$ of the total asthma-related emergency room visits for children.

Table 2-6. BenMAP-Estimated Annual Mean Ozone Health Effects of the Mitigated Project Emissions Across the Southern California Model Domain ${ }^{1}$

| Health Endpoint ${ }^{\text {2 }}$ | Annual Percent of <br> Background Health <br> Incidence (\%) | Potential <br> Incidences <br> (Annual, Mean) | Background <br> Health Incidence <br> (Annual) |
| :--- | :---: | :---: | :---: |
| Hospital Admissions, All Respiratory [65-99] | $0.00062 \%$ | 1.20 | 193,354 |
| Mortality, Non-Accidental [0-99] | $0.00027 \%$ | 0.56 | 210,692 |
| Emergency Room Visits, Asthma [0-17] | $0.011 \%$ | 5.80 | 50,722 |
| Emergency Room Visits, Asthma [18-99] | $0.009 \%$ | 6.84 | 80,084 |
| Health effects are shown in terms of incidences of each health endpoint and how it compares to the base (2035 <br> base year health effect incidences, or "background health incidence") values. Health effects and background <br> health incidences are across the Southern California model domain. <br> 2 <br> Affected age ranges are shown in square brackets. |  |  |  |

## 3. CUMULATIVE HEALTH EFFECTS

Potential health effects from the cumulative project emissions can be generally characterized using the Project level modeling results and a comparison of overall emissions. Cumulative project locations are shown in Figure 3-1 below and would be subject to the similar meteorological and photochemical reaction conditions as the Project assessment. The application of an overall scaling factor based on emissions, as presented here, is likely conservative since the cumulative projects are unlikely to have the same distribution of mobile emissions to the Los Angeles area as the Project.

Figure 3-1. Cumulative Project Locations


Concentrations changes, and thus health effects, from $\mathrm{PM}_{2.5}$ are driven by primary $\mathrm{PM}_{2.5}$ components (see Appendix B), with smaller contributions from NOx, VOC, and $\mathrm{SO}_{2}$ on secondary $\mathrm{PM}_{2.5}$ formation. Based on a ratio of total $\mathrm{PM}_{2.5}$ emissions from the cumulative projects to the unmitigated Project $\mathrm{PM}_{2.5}$ emissions, approximate health effect results from $\mathrm{PM}_{2.5}$ were calculated. Combined estimated health effects from the cumulative projects and from the modeled unmitigated Project are shown in
Table 3-1 below.

Table 3-1. Estimated Annual PM 2.5 Health Effects of Cumulative Project Emissions

| Health Endpoint ${ }^{2}$ | Annual Percent of Background Health Incidence (\%) | Potential Incidences (Annual, Estimated) | Background Health Incidence (Annual) |
| :---: | :---: | :---: | :---: |
| Emergency Room Visits, Asthma [0-99] | 0.16\% | 204 | 130,805 |
| Mortality, All Cause [30-99] | 0.14\% | 467 | 325,048 |
| Hospital Admissions, Asthma [0-64] | 0.09\% | 16 | 17,730 |
| Hospital Admissions, All Cardiovascular (less Myocardial Infarctions) [65-99] | 0.02\% | 44 | 224,047 |
| Hospital Admissions, All Respiratory [65-99] | 0.05\% | 98 | 193,354 |
| Acute Myocardial Infarction, Nonfatal [18-24] | 0.06\% | 0.02 | 36 |
| Acute Myocardial Infarction, Nonfatal [25-44] | 0.07\% | 1 | 1,904 |
| Acute Myocardial Infarction, Nonfatal [45-54] | 0.06\% | 3 | 5,241 |
| Acute Myocardial Infarction, Nonfatal [55-64] | 0.06\% | 6 | 9,226 |
| Acute Myocardial Infarction, Nonfatal [65-99] | 0.06\% | 24 | 40,966 |
| ${ }^{1}$ Estimated health effects are compared to the base (2035 base year health effect incidences) values across the Southern California model domain. <br> 2 Affected age ranges are shown in square brackets. |  |  |  |

Concentration changes, and thus health effects, from ozone are driven primarily by emissions of VOC and NOx, with some contribution from CO. Based on a ratio of total VOC and NOx emissions from the cumulative projects to the unmitigated Project VOC and NOx emissions, approximate health effect results from ozone were calculated. Combined estimated health effects from the cumulative projects and from the modeled unmitigated Project are shown in Table 3-2 below.

Table 3-2. Estimated Annual Ozone Health Effects of Cumulative Project Emissions

| Health Endpoint ${ }^{2}$ | Annual Percent <br> of Background <br> Health Incidence <br> (\%) | Potential <br> Incidences <br> (Annual, <br> Estimated) | Background <br> Health <br> Incidence <br> (Annual) |
| :--- | :---: | :---: | :---: |
| Hospital Admissions, All Respiratory [65-99] | $0.02 \%$ | 33 | 193,354 |
| Mortality, Non-Accidental [0-99] | $0.01 \%$ | 16 | 210,692 |
| Emergency Room Visits, Asthma [0-17] | $0.31 \%$ | 159 | 50,722 |
| Emergency Room Visits, Asthma [18-99] | $0.23 \%$ | 188 | 80,084 |

Highland Fairview World Logistics Center Additional Information Regarding Potential Health Effects of Air Quality Impacts Moreno Valley, California C-10

Table 3-2. Estimated Annual Ozone Health Effects of Cumulative Project Emissions

| Health Endpoint ${ }^{2}$ | Annual Percent <br> of Background <br> Health Incidence <br> $(\%)$ | Potential <br> Incidences <br> (Annual, <br> Estimated) | Background <br> Health <br> Incidence <br> (Annual) |
| :---: | :---: | :---: | :---: |

1 Estimated health effects are compared to the base (2035 base year health effect incidences) values across the Southern California model domain.

2
Affected age ranges are shown in square brackets.

## 4. CONCLUSION

The $\mathrm{PM}_{2.5}$ and ozone concentration changes modeled by CAMx for unmitigated and mitigated Project emissions were converted to health effects on various health endpoints including premature mortality, hospitalizations, and emergency room visits, using the BenMAP health effects assessment model and USEPA defaults for health endpoints. Estimated changes in the health effect incidences are presented across the grids in the Southern California model domain. Across the board, the estimated increases in those health effect incidences are quite minor compared to the background health incidence values, with the largest $\mathrm{PM}_{2.5}$ health effect from unmitigated Project emissions (all-cause mortality) representing only $0.0047 \%$ of the background health incidence across the Southern California model domain. When taken into context, the small increase in incidences and the very small percent of the number of background incidences indicate that these health effects are minimal in a developed, urban environment.

Similarly, for estimated cumulative health effects, the estimated increases in those health effect incidences are quite minor compared to the background health incidence values, with the largest PM2.5 health effect from all-cause mortality representing only $0.14 \%$ of the background health incidence across the Southern California model domain.

## Uncertainty

The approach and methodology of this analysis ensures that the uncertainty is of a conservative nature. In addition to the conservative assumptions built into the emissions noted above, there are a number of assumptions built into the application of C-R functions in BenMAP that may lead to an overestimation of health effects. For example, for all-cause mortality health effects from $\mathrm{PM}_{2.5}$, these estimates are based on a single epidemiological study that found an association between PM ${ }_{2.5}$ concentrations and mortality. ${ }^{6}$ While similar studies suggest that such an association exists, there remains uncertainty regarding a clear causal link. This uncertainty stems from the limitations of epidemiological studies, such as inadequate exposure estimates and the inability to control for many factors that could explain the association between PM2.5 and mortality such as lifestyle factors like smoking. Several reviews have evaluated the scientific evidence of health effects from specific particulate components (e.g., Rohr and Wyzga 2012; Lippmann and Chen, 2009; Kelly and Fussell, 2007). These reviews indicate that the evidence is strongest for combustion-derived components of PM including elemental carbon (EC), organic carbon (OC) and various metals (e.g., nickel and vanadium), however, there is still no definitive data that points to any particular component of PM as being more toxic than other components. The USEPA has also stated that results from various studies have shown the importance of considering particle size, composition, and particle source in determining the health effects of PM (USEPA, 2009). Further, the USEPA (2009) found that studies have reported that particles from industrial sources and from coal combustion appear to be the most significant contributors to PM-related mortality, consistent with the findings by Rohr and Wyzga (2012) and others. This is particularly important to note here, as the majority of PM emissions generated from the Project are from entrained roadway dust, breakwear, and tirewear (see Appendix A), and not from combustion. Therefore, because they do not consider the relative toxicity of PM components, the results presented here are conservative.

[^76]Air pollution epidemiology studies are ecological studies. This means that they are population-based, observational epidemiological studies that look for patterns between population exposure and population disease rates. They do not use data at the individual level (e.g., correlations between regional mortality rates and community air pollution levels). Epidemiologists generally consider relative risks (RRs, a measure of the association between exposures and health effects) from these types of studies that are greater than 3 to 4 to reflect strong associations and to be supportive of a causal link, while smaller RRs ( 1.5 to 3 ) are considered to be weak, and require other lines of evidence (e.g., toxicological evidence, plausible biological mechanism) to demonstrate causality (Taubes 1995). For example, the RR of lung cancer for heavy smokers is in the range of 10 to 20 , whereas PM associations with mortality yield RRs in the range of 1.01 to 1.05 , i.e., very close to the $R R=1.0$, which indicates little to no association.

Aside from the uncertainty as to the causal basis of the statistical associations in air pollution epidemiology studies of PM and mortality, some epidemiological studies have found no correlation between mortality and increased PM (Enstrom, 2005; 2017; Lipfert et al., 2000; Murray and Nelson, 2000; Greven et al., 2011; You et al.,2018; Zhou et al.,2015). Although there are a greater number of publications reporting a positive PM association for mortality compared to those reporting no association.

Another uncertainty highlighted by the USEPA (2012) that applies to potential health effects from both PM2.5 and ozone, is the assumption of a log-linear response between exposure and health effects, without consideration for a threshold below which effects may not be measurable. The issue of a threshold for $\mathrm{PM}_{2.5}$ and ozone is highly debatable and can have significant implications for health effects analyses as it requires consideration of current air pollution levels and calculating effects only for areas that exceed threshold levels. Without consideration of a threshold, any incremental contribution to existing ambient air pollution levels, whether below or above the applicable threshold for a given criteria pollutant, is assumed to adversely affect health. Although the USEPA traditionally does not consider thresholds in its cost-benefit analyses, the NAAQS itself is a health-based threshold level that the USEPA has developed based on evaluating the most current evidence of health effects.

As noted above, the health effects estimation using this method presumes that effects seen at large concentration differences can be linearly scaled down to (i.e., correspond to) small increases in concentration, with no consideration of potential thresholds below which health effects may not occur. This methodology of linearly scaling health effects is broadly accepted for use in regulatory evaluations and is considered as being health protective (USEPA, 2010), but potentially overstates the potential effects. In summary, health effects presented in this report are conservatively estimated, and the actual effects may be zero.

## 5. REFERENCES

/1/ Enstrom, JE. 2005. "Fine particulate air pollution and total mortality among elderly Californians, 1973-2002." Inhal. Toxicol. 17 (14):803-816.
/2/ Enstrom, J. E. (2017). Fine Particulate Matter and Total Mortality in Cancer Prevention Study Cohort Reanalysis. Dose-Response.
/3/ Greven, S., Dominici, F., and Zeger, S. (2011). An approach to the estimation of chronic air pollution 1 effects using Spatio-Temporal information. Journal of the American Statistical Association, 2 106(494):396-406.
/4/ Kelly, F.J., J.C. Fussell, 2007. Particulate Toxicity Ranking Report. Report Number 2/07. Environmental Research Group, Kings College, London.
/5/ Lipfert FW, Morris SC, Wyzga RE. 2000. "Daily mortality in the Philadelphia metropolitan area and size-classified particulate matter." J Air Waste Manag Assoc. 50(8):1501-13.
/6/ Lippmann, M., L.C. Chen, 2009. Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit. Rev. Toxicol., 39, 865e913.
/7/ Murray C.J.; Nelson, C.R. 2000, "State-Space Modeling of the Relationship between Air Quality and Mortality." Journal of the Air \& Waste Management Association 50: 1075-1080.
/8/ Rohr A.C., R.E. Wyzga, 2012. Attributing Health Effects to Individual Particulate Matter Constituents. Atmos Environ., 62, 130-152. doi:10.1016/j.atmosenv.07.036.
/9/ Taubes, G. 1995. "Epidemiology faces its limits." Science 269:164-169.
/10/ USEPA, 2009. Integrated Science Assessment (ISA) For Particulate Matter (Final Report, Dec 2009). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/139F, 2009. https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=216546
/11/ USEPA, 2010. Quantitative Health Risk Assessment for Particulate Matter. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency. EPA-452/R-10-005. June 2010. Available: https://www3.epa.gov/ttn/naaqs/standards/pm/data/PM_RA_FINAL_June_2010.pdf
/12/ USEPA, 2012. Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality Standards for Particulate Matter. U.S. Environmental Protection Agency, Washington, DC, EPA-452/R-12-005. https://www3.epa.gov/ttn/ecas/docs/ria/naaqs-pm_ria_final_201212.pdf.
/13/ USEPA, 2014. Health Risk and Exposure Assessment for Ozone Final Report. Risk and Benefits Group, Health and Environmental Impacts Division, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency.EPA-452/R-14-004a.
/14/ USEPA, 2018. BenMAP Environmental Benefits Mapping and Analysis Program - Community Edition User's Manual. United States Environmental Protection Agency. Available at: https://www.epa.gov/benmap/benmap-ce-manual-and-appendices.
/15/ You, C., Lin, D. K. J., and Young, S. S. (2018). and ozone, indicators of air quality, and acute deaths in 39 california, 2004-2007. Regulatory Toxicology and Pharmacology, 96:190-196.
/16/ Zhou, M., He, G., Fan, M., Wang, Z., Liu, Y., Ma, J., Ma, Z., Liu, J., Liu, Y., Wang, L., and Liu, Y. 4 (2015). Smog episodes, fine particulate pollution and mortality in china. Environmental Research, 5 136:396-404.

## Appendix E Energy

## E-1 Vehicle Energy Technical Report

# WORLD LOGISTICS CENTER <br> Transportation Energy Technical Study 

# WORLD LOGISTICS CENTER <br> Transportation Energy Technical Study 

Prepared for
City of Moreno Valley
14177 Frederick Street
Moreno Valley, California 92552
Prepared by:
ESA, with contributions from CALSTART

## 80 South Lake Avenue

Suite 570
Pasadena, CA 91101
626.204.6170
www.pernet.com

| Irvine | Sacramento |
| :--- | :--- |
| Los Angeles | San Diego |
| Oakland | San Francisco |
| Orlando | Santa Monica |
| Pasadena | Seattle |
| Petaluma | Tampa |
| Portland | Woodland Hills |

## WORLD LOGISTICS CENTER (WLC) <br> Transportation Energy Technical Study

TABLE of CONTENTS
Page

1. Project Background ..... 1
Project Design Features and Sustainable Development Standards ..... 1
Relevant Policies and Regulations ..... 3
2017 Scoping Plan Update ..... 3
California Cap and Trade Program ..... 4
Renewable Energy ..... 4
Transportation Energy ..... 4
2. Project Transportation Energy Demand .....  7
Trips and Vehicle Counts ..... 7
Vehicle Fuel Use Estimates ..... 8
Electric Vehicle (EV) Forecasts and Electricity Loads ..... 9
Vehicle Scenario A: Low EV Penetration ..... 9
Vehicle Scenario B: Medium EV Penetration ..... 11
Vehicle Scenario C: High EV Penetration ..... 13
3. Transportation Energy Best Practices and Emerging Technologies ..... 14
Zero Emission Vehicles ..... 14
Electric Vehicle Charging Infrastructure ..... 16
Charging Stations ..... 16
Road-Connected Power ..... 18
Plug-in All-Electric Vehicles (BEV) ..... 19
Passenger BEVs ..... 19
Truck BEVs ..... 20
Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid Electric Vehicles (PHEV). ..... 21
Range Extended Electric Vehicle (REEV) - Fuel Cell ..... 23
Cost and Availability of Zero Emission Trucks ..... 24
Zero Emission Truck Technology Demonstration Projects ..... 25
Countywide Zero-Emission Trucks Collaborative ..... 25
Advanced Technology for Truck Corridors ..... 26
I-710 Corridor Zero-Emission Truck Commercialization Study ..... 27
Additional Zero Emission Truck Demonstration Projects ..... 29
Low Carbon Fuels ..... 29
Biodiesel Fuel ..... 29
Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG) ..... 32
4. References ..... 35

## 1.Project Background

Environmental Science Associates (ESA) is providing this Transportation Energy Technical Report in support of the California Environmental Quality Act (CEQA) document development for the World Logistics Center (WLC) Project being considered by the City of Moreno Valley. This report assesses the feasibility of implementing available technologies and other measures for improving energy performance and/or reducing harmful air pollutants emissions from transportation sources resulting from implementation of the Project, based on Project applicability, relative cost, commercial readiness, funding availability, policy and regulatory support, potential industry partners, and other factors.

The proposed Project as evaluated by the May 2015 Draft Environmental Impact Report (DEIR) is the World Logistics Center Specific Plan (WLCSP), a master plan covering 2,610 acres and proposing a maximum of 40.4 million square feet of "high-cube logistics" warehouse distribution uses (approximately 99.5 percent of the total building area) classified as "Logistics Development" (LD) and 200,000 square feet (approximately 0.5 percent) of warehousing-related uses classified as "Light Logistics" (LL).

High cube logistics warehouses are characterized by a high level of automated material handling systems and truck activities that typically occur outside of the peak traffic hour. High cube logistics warehouses are generally used for the storage of manufactured goods prior to their distribution to retail outlets. High-cube warehouse and logistics facilities include ancillary office and maintenance space along with the outdoor storage of trucks, trailers, and shipping containers.

The WLCSP describes warehousing and logistics activities consistent with the storage and processing of manufactured goods and materials prior to their distribution to other facilities and retail outlets. Refrigerated warehouse space is not an allowed use within the Specific Plan area (see Mitigation Measure 4.3.6.3E in the DEIR). LD land uses provide a location for businesses to sort, organize, and transfer products from one shipping process to another.

## Project Design Features and Sustainable Development Standards

The WLCSP requires sustainable development standards be implemented so that new development within the Project area minimizes energy consumption, conserves water, and uses recycled or sustainable building materials, where feasible (WLCSP September 2014, Section 1.3.2, Green Building-Sustainable Development). It provides developers with a specific framework for identifying and implementing a variety of practicable and measurable green building design, construction, operations, and maintenance. All new development within the project area will be required to meet the California Building Energy Standards in effect at the time construction commences. In addition, buildings within the Specific Plan will be structurally upgraded to be "solar ready" (i.e., allow the installation of solar photovoltaic systems on the roof of each building) (WLCSP Section 1.3.2, Green Building Sustainable Development). The WLCSP will require extensive energy conservation measures, solar energy systems, and underground utilities to be installed on future development.

The sustainability guidelines for the World Logistics Center serve the following functions to:

- Assist in meeting California's greenhouse gas reduction targets as set forth through Executive Order S-3-05 and Assembly Bill 32 and its amendment Assembly Bill SB 32 (also known as the Global Warming Solutions Act of 2006);
- Assist in the region's development of a Sustainable Communities Strategy pursuant to Senate Bill 375;
- Assist in meeting other state and local goals and requirements, including Assembly Bill 1385, The Complete Streets Act;
- Establish practical and innovative solutions for the developer, business, and residential community to improve resource efficiency and reduce consumption of energy, water, and raw materials; and
- Support waste management reduction identified in AB 341.

Building Design and Construction Features:

- Achieve applicable elements of certification from the U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) ${ }^{1}$, and encourages LEED certification best practices for use of recycled materials and products, such as recycled steel, and crushed concrete and pavement materials;
- Install electric vehicle charging stations per the local building code ( 6 percent of parking spaces);
- Construct "Solar ready" buildings;
- Implement design and construction techniques will be employed to reduce the heat island effect, including the use of materials that have a low solar reflectance index such as white roofs and light-colored pavements;
- Develop waste management plan and a comprehensive recycling and management program to divert at least 50 percent of waste from landfill, including storage and collection of recyclables, building and material reuse, and careful construction waste management;
- Incorporate the use of passive heating and cooling into the design or modification of the high-cube warehouse development (e.g., white building colors and roof insulation to minimize heat gain, and landscaping to help shade buildings);
- Install outdoor electric outlets to accommodate the use of electrical property maintenance equipment (Section 12.4 of the WLCSP);
- Install advanced irrigation systems, drought-tolerant plants, the use of mulch, recycled and other permissible alternative sources of water, and turfless plantings with alternative landscaping materials such as rock and other materials that do not require potable water sources.

Transportation Features:

- Construct sidewalks and a multiuse trail for pedestrian circulation; and
- RTA will determine if and when bus service will be provided by RTA.
- All streets are designed to accommodate bus services (WLCSP Section 3.2.4)

Solid Waste Diversion Features:

1 Section 1.3.2 of the WLCSP state that all buildings of at least 500,000 square feet shall be designed to meet or exceed the LEED Certified Building Standards

- Require that all development within the project provide enclosures or compactors for trash and recyclable materials per Specific Plan (Section 5.1.6).


## Relevant Policies and Regulations

The following plans, policies and regulations support the state's long-term energy policies and goals, including GHG reduction targets as expressed by SB 32 and Governor's Executive Order S-3-05 (40 percent below 1990 levels and 80 percent below 1990 levels, respectively). ${ }^{2}$ These policy and regulatory developments are driving investments in technologies, infrastructure, and new markets that represent California's transition to a more energy-efficient, low carbon economy. They are an important consideration in assessing the costs and benefits of new transportation energy technologies as they apply to the Project and to the state's larger energy goals.

## 2017 Scoping Plan Update

On December 14, 2017, the California Air Resources Board (CARB) approved the final version of California's 2017 Climate Change Scoping Plan (2017 Scoping Plan Update), which outlines the proposed framework of action for achieving the 2030 GHG target of 40 percent reduction in GHG emissions relative to 1990 levels. ${ }^{3}$ The 2017 Scoping Plan Update identifies key sectors of the implementation strategy, which includes improvements in low carbon energy, industry, transportation sustainability, natural and working lands, waste management, and water. Through a combination of data synthesis and modeling, CARB determined that the target Statewide 2030 emissions limit is 260 MMTCO2e, and that further commitments will need to be made to achieve an additional reduction of 50 MMTCO2e beyond current policies and programs. The cornerstone of the 2017 Scoping Plan Update is an expansion of the Cap-and-Trade program to meet the aggressive 2030 GHG emissions goal and ensure achievement of the 2050 limit set forth by Executive Order B-30-15.

The Scoping Plan strategy for meeting the 2030 GHG target includes the full range of measures developed or required by legislation with 2030 as their target date and include: extending the low carbon fuel standard (LCFS) to an 18 percent reduction in carbon intensity beyond 2020; the requirements of SB 350 to increase renewables to 50 percent and to double energy efficiency savings of existing buildings; the Mobile Source Strategy targets for more zero emission vehicles and much cleaner trucks and transit; the Sustainable Freight Action Plan to improve freight efficiency and transition to zero emission freight handling technologies; and the requirements under SB 1383 to reduce anthropogenic black carbon 50 percent and hydrofluorocarbon and methane emissions by 40 percent below 2013 levels by 2030, and the Cap-and-Trade Program that extends through 2030.

California's climate stabilization strategy relies on contributions from all sectors of the economy, which includes continued investment in renewable energy such as solar photovoltaics (Solar PV), wind, and other types of distributed generation. In addition to being an integral factor in meeting GHG reduction goals, shifting to clean, local, and efficient use of energy also reinvests energy expenditures on local economies and reduces risks associated with exposure to volatile global and national oil and gas commodity prices (CARB, 2017).

[^77]
## California Cap and Trade Program

Authorized by the California Global Warming Solutions Act of 2006 (AB 32), the cap-and-trade program is a core strategy in the Scoping Plan for the state to meet its reduction targets for 2020 and 2030, and ultimately achieve an 80 percent reduction from 1990 levels by 2050. Pursuant to its authority under AB 32, CARB has designed and adopted a California Cap-and-Trade Program to reduce GHG emissions from major sources (deemed "covered entities") by setting a firm cap on statewide GHG emissions and employing market mechanisms to achieve AB 32's emission-reduction mandate of returning to 1990 levels of emissions by $2020 .{ }^{4}$ Under the Cap-and-Trade program, an overall limit is established for GHG emissions from capped sectors (e.g., electricity generation, petroleum refining, cement production, and large industrial facilities that emit more than 25,000 metric tons $\mathrm{CO}_{2}$ e per year) and declines over time, and facilities subject to the cap can trade permits to emit GHGs. The statewide cap for GHG emissions from the capped sectors commenced in 2013 and declines over time, achieving GHG emission reductions throughout the Program's duration. ${ }^{5}$ On July 17, 2017 the California legislature passed Assembly Bill 398, extending the Cap-and-Trade program through December 31, 2030.

The Cap-and-Trade Regulation provides a firm cap, ensuring that the 2020 and 2030 statewide emission limits will not be exceeded. An inherent feature of the Cap-and-Trade Program is that it does not direct GHG emissions reductions to occur in any discrete location or by any particular source. Rather, GHG emissions reductions are assured on a State-wide basis.

## Renewable Energy

A core component of the state's climate stabilization strategy, as described in the 2017 Scoping Plan Update, is widespread electrification of buildings, appliances, and transportation in conjunction with decarbonization of the electricity sector (CARB, 2017). The California Renewable Portfolio Standard (RPS), as updated by SB 350, requires utilities and electric service providers to procure at least 50 percent of total electricity from eligible renewable energy resources by 2030 .

Statewide, solar and wind installations have grown exponentially in recent years. With renewables increasingly serving the state's electricity demand there is a growing need for storage solutions that increase grid reliability in the face of variable demand combined with the inherent seasonal and diurnal fluctuations in solar and wind generation.

Additional challenges facing expansion of renewable energy include overcoming electric equipment performance, cost-effectiveness, and consumer acceptance.

## Transportation Energy

## Pavley Regulation and the California Mobile Source Strategy

Assembly Bill 1493 (2002) requires CARB to set GHG emission standards for passenger vehicles, light duty trucks, and other vehicles whose primary use is non-commercial personal transportation manufactured in and after 2009. In setting these standards, CARB must consider cost effectiveness, technological feasibility, economic impacts, and provide maximum flexibility to manufacturers. The federal Clean Air Act ordinarily preempts state regulation of motor vehicle emission standards; however, California is allowed to set its own standards with a

[^78]federal waiver from the USEPA, granted in 2009. Known as the Pavley Clean Car Standards, AB 1493 regulated GHG emissions from new passenger vehicles (light duty automobiles and medium duty vehicles) from 2009 through 2016.

In January 2012, CARB approved the Advanced Clean Cars (ACC) program, a new emissions-control program for model years 2015 through 2025. The program includes components to reduce smog-forming pollution, reduce GHG emissions, promote clean cars, and provide the fuels for clean cars. The zero emissions vehicle (ZEV) program acts as the focused technology of the Advanced Clean Cars program by requiring manufacturers to produce increasing numbers of ZEVs and plug-in hybrid electric vehicles (PHEV) in the 2018 to 2025 model years (CARB, 2017).

In May 2016, CARB released the updated Mobile Source Strategy that demonstrates how the State can simultaneously meet air quality standards, achieve GHG emission reduction targets, decrease health risk from transportation emissions, and reduce petroleum consumption over the next fifteen years, through a transition to zero-emission and low-emission vehicles, cleaner transit systems and reduction of vehicle miles traveled. The Mobile Source Strategy calls for 1.5 million ZEVs (including plug-in hybrid electric, battery-electric, and hydrogen fuel cell vehicles) by 2025 and 4.2 million ZEVs by 2030. It also calls for more stringent GHG requirements for light-duty vehicles beyond 2025 as well as GHG reductions from medium-duty and heavy-duty vehicles and increased deployment of zero-emission trucks primarily for class 3-7"last mile" delivery trucks in California. Statewide, the Mobile Source Strategy would result in a 45 percent reduction in GHG emissions, and a 50 percent reduction in the consumption of petroleum-based fuels (CARB, 2016).

## Transportation Electrification

Complementing the Mobile Source Strategy and the state's push toward zero carbon electricity, SB 350 orders the CPUC to direct the six investor-owned electric utilities in the state to file Applications for programs that "accelerate widespread transportation electrification." These programs are required to reduce dependence on petroleum, increase the adoption of zero-emission vehicles, help meet air quality standards, and reduce GHG emissions.

On January 11, 2018, the CPUC approved the first transportation electrification applications under SB 350 from the three large investor-owned utilities. The decision approves 15 projects with combined budgets of $\$ 42$ million. In SCE territory, $\$ 16$ million was approved for projects that help expand residential and transit bus EV charging infrastructure, including in or adjacent to disadvantaged communities, as well as crane and heavy duty vehicle electrification at the Port of Long Beach. In PG\&E and San Diego Gas and Electric territories, projects are similar but also include electrification of delivery vehicles and commercial shuttle fleets, and demonstration projects for electrification of school buses and medium- or heavy-duty vehicles fleets (CPUC, 2018).

In January 2018, Governor Brown signed Executive Order B-48-18, setting targets of 200 hydrogen fueling stations and 250,000 electric vehicle chargers to support 1.5 million ZEVs on California roads by 2025, on the path to 5 million ZEVs by 2030. The initiative is designed to focus multi-stakeholder efforts on deploying charging and fueling infrastructure as well as making ZEVs increasingly affordable to own and operate.

Title 24, Part 11, of the California Code of Regulations (California Building Energy Standards) includes construction requirements for non-residential projects that are designed to facilitate installation of future electric vehicle supply equipment (EVSE) to support electric vehicle (EV) charging. Under the current regulation (2016),
section 5.106.5.3 requires construction plans and specifications for large project (those with more than 200 total parking spaces) to include raceways for future EVSE at a minimum of 6 percent of the total parking spaces.

## Low Carbon Fuel Standard

The overall goal with the low carbon fuel standard is to lower the carbon intensity of California transportation fuel. The standard initially required a reduction of at least 10 percent in the carbon intensity of California's transportation fuels by 2020. With adoption of the 2017 Scoping Plan, the standard has been changed to a reduction of at least 18 percent. Recent proposed amendments by CARB indicate that the program will be extended to 2030 with a greenhouse gas reduction target of 20 percent. A significant expansion of the renewable fuel market has been included in the CARB staff proposal.

## CARB Low NOx Regulation

Shifting away from fossil fuels is especially important for heavy duty vehicles because while they comprise just 7 percent of all vehicles in California, they account for 33 percent of NOx emissions from all sources (Chandler, Espino, and O'Dea 2017). CARB has identified that reductions of up to 90 percent are needed for heavy-duty trucks to meet NOx reduction targets. In 2013, California established an optional low-NOx standard to pave the way for a future mandatory standard. A more stringent low-NOx regulation is expected in the 2021/2023 timeframe. When implemented, this regulation will continue to drive the deployment of zero or near-zero emissions truck solutions. This development has been taken into consideration in estimating the number of zero emission trucks projected in this study.

## CARB Advanced Clean Local Truck Rule

The goal with the Advanced Clean Local Truck Rule is to accelerate the early market adoption of zero emission trucks that are usually centrally fueled, have duty cycles with low average speed and stop-and-go operation. The rule focuses on urban, mostly vocational trucks, but includes class 7-8 urban goods movement trucks as well. The proposed regulatory schedule begins with the 2023 vehicle model year with early action credits given for pre2023 vehicle models. The regulation is scheduled for CARB board consideration in November 2018.

## The Clean Port Plan 2.0 for Ports of Long Beach and Los Angeles

The ports of Long Beach and Los Angeles have set goals to drastically reduce air pollution over the next decades and move towards zero emissions solutions. It is anticipated that new fee structures will be implemented in 2021 that favors low-NOx engine and zero emission solutions.

## SCAG Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS)

In April, 2016, the Southern California Association of Governments (SCAG) adopted the 2016 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS), which provides a vision for transportation throughout the region for the next 25 years. It considers the role of transportation in the broader context of economic, environmental, and quality-of-life goals for the future, identifying regional transportation strategies to address mobility needs. The 2016 RTP/SCS describes how the region can attain the GHG emission-reduction targets set by CARB by achieving an 8 percent reduction by 2020, 18 percent reduction by 2035, and 21 percent reduction by 2040 compared to the 2005 level on a per capita basis.

The 2016 RTP/SCS includes $\$ 70.7$ billion in goods movement strategies, and a Goods Movement Appendix that addresses the region's challenges in moving freight while reducing harmful emissions generated by trucks and other goods movement sources.

## SCAG Comprehensive Regional Goods Movement Plan and Implementation Plan

This report from SCAG, issued in 2012, presents a long-range comprehensive plan for the goods movement system in Southern California. The Plan is designed to ensure that the region continues to play a vital role in the global supply chain while meeting regional economic goals, addressing critical mobility challenges, preserving the environment, and contributing to community livability and quality of life goals. The Plan is the final product of the SCAG Comprehensive Regional Goods Movement Plan and Implementation Strategy, a four-year effort to collect data, conduct analyses, and engage with regional, statewide and national stakeholders covering various aspects of the region's goods movement system

## California Sustainable Freight Action Plan (2016)

California Sustainable Freight Action Plan includes strategies to improve freight efficiency and transition to zero emission freight handling technologies. It includes goals to achieve 25 percent improvement of freight system efficiency by 2030, and to deploy over 100,000 freight vehicles and equipment capable of zero emission operation, and maximize near-zero emission freight vehicles and equipment powered by renewable energy by 2030.

## 2.Project Transportation Energy Demand

## Trips and Vehicle Counts

Table 1 provides estimates of daily vehicle forecasts for the project derived from the revised traffic model output and based on the assumption that two vehicle trips represents one vehicle on site. Table 1 shows the project vehicle forecasts estimates for each vehicle category modeled in the traffic analysis (WSP, 2018) and indicates how the categories correlate with the vehicle types used by the Emission FACtors (EMFAC) model, which is the standard tool used in CEQA analysis to calculate emission rates from motor vehicles operating on highways, freeways and local roads in California.

Table 1: Project Vehicle Forecasts (daily):

| Project Category | EMFAC Category | $\mathbf{2 0 2 5}$ | $\mathbf{2 0 3 5}$ |
| :--- | :---: | :---: | :---: |
| Passenger Vehicles | LDA, LDT1, LDT2, MCY | 11,766 | $\mathbf{2 0 , 2 9 9}$ |
| Light Trucks (2axle) | MDT | 875 | 1,532 |
| Medium Trucks (3 axle) | LHDT1, LHDT2 | 1,113 | 1,964 |
| Heavy Trucks (4+ axle) | MHDT, HHDT | 3,261 | 5,605 |
| TOTAL |  | 17,015 | 29,400 |

Note: Assumes 2 trips = 1 vehicle

## Vehicle Fuel Use Estimates

Table 2 shows the breakdown of vehicle fuels forecasted by EMFAC 2017 for the vehicle fleet in the South Coast AQMD for the years 2025 and 2035. By 2025, 2.5 percent of passenger vehicles and 1.6 percent of light trucks are projected to be EVs. By 2035, 4.7 percent of passenger vehicles and 3.9 percent of light trucks are expected to be EVs. EMFAC projects zero electric trucks in these future years.

Table 2: Fleet Mix by Fuel Type

| Air Quality Vehicle Type | \% Gas | \% Diesel | \% Electric | \% Natural Gas |
| :---: | :---: | :---: | :---: | :---: |
| Interim Year 2025 |  |  |  |  |
| Passenger cars | 96.6\% | 0.9\% | 2.5\% | 0.0\% |
| Light trucks | 95.9\% | 2.5\% | 1.6\% | 0.0\% |
| Medium Trucks | 51.5\% | 48.5\% | 0.0\% | 0.0\% |
| Heavy Trucks | 9.6\% | 88.2\% | 0.0\% | 2.2\% |
| Horizon Year 2035 |  |  |  |  |
| Passenger cars | 94.3\% | 1.0\% | 4.7\% | 0.0\% |
| Light trucks | 93.0\% | 3.1\% | 3.9\% | 0.0\% |
| Medium Trucks | 44.3\% | 55.7\% | 0.0\% | 0.0\% |
| Heavy Trucks | 8.9\% | 88.6\% | 0.0\% | 2.5\% |
| Source: EMFAC2017, South Coast Air Basin, Calendar Year 2025 \& 2035 |  |  |  |  |

Table 3 provides annual fuel use estimates for the vehicles associated with project operation in 2025 and 2035, based on the traffic modeling results and the EMFAC 2017 fuel mix data.

Table 3: Projections of Annual Fuel and Electricity Use by WLC Fleet

| Vehicle Category | Gasoline (gal) | Diesel (gal) | Electricity (MWh) | Natural Gas (MMBtu) |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Passenger Vehicles | 14,494 | 84 | 4,206 | 0 |  |
| Light Trucks | 1,131 | 22 | 173 | 0 |  |
| Medium Trucks | 2,487 | 1,249 | 0 | 0 |  |
| Heavy Trucks | 3,345 | 31,109 | 0 | 612 |  |
| 2035 | 21,460 | 1,520 | 154 | 27,351 |  |
| Passenger Vehicles | 3,045 | 41 | 793 | 0 |  |
| Light Trucks | 4,303 | 43,131 | 0 | 0 |  |
| Medium Trucks |  |  |  |  |  |

Note: Based on 2018 WLC traffic modeling results and the EMFAC 2017 fuel mix data

## Electric Vehicle (EV) Forecasts and Electricity Loads

Theoretically, each vehicle that visits the WLC site represents an EV charging opportunity. However, the fueling station and convenience market are quick stops and not considered good candidates for locating EV charging stations. Table 4 provides a summary of vehicles trips by EMFAC vehicle category, with trips to the fueling station and convenience market subtracted from the totals. Table 4 provides a summary of the project's vehicle forecasts in 2025 and 2035 that represent EV charging opportunities.

Table 4: Project Trip Generation (average daily trips):

| Phase 1-2025 | Average daily trips | gas station and convenience mkt trips | Net trips | Max vehicles with EV charging potential |
| :---: | :---: | :---: | :---: | :---: |
| Passenger vehicles | 23,532 | 669 | 22,863 | 11,431 |
| Light Trucks (2 axle) | 1,751 | 296 | 1,455 | 727 |
| Medium Trucks (3 axle) | 2,226 | 0 | 2,226 | 1,113 |
| Heavy Trucks | 6,143 | 379 | 6,143 | 3,072 |
| Total | 34,031 | 1,344 | 32,687 | 16,343 |
| Full Build-Out - 2035 |  |  |  |  |
| Pass vehicles | 40,598 | 669 | 39,929 | 19,964 |
| Light Trucks (2 axle) | 3,064 | 296 | 2,768 | 1,384 |
| Medium Trucks (3 axle) | 3,928 | 0 | 3,928 | 1,964 |
| Heavy Trucks | 10,831 | 379 | 10,831 | 5,415 |
| Total | 58,800 | 1,344 | 57,456 | 28,728 |

Note: assumes 2 trips $=1$ vehicle

Using the daily vehicle forecasts provided in Table 4, anticipated EV counts and the corresponding average and peak electricity loads were estimated for three different EV penetration scenarios as described below.

## Vehicle Scenario A: Low EV Penetration

Scenario A reflects the requirements of current state building code (Title 24, part 11), stipulating that 6 percent of parking spaces be constructed to accommodate the future installation of electric vehicle supply equipment (EVSE) for future electric vehicle charging. Scenario A assumes that EV charging stations will be installed at 6 percent of the parking spaces by the completion of Phase 1. This Scenario assumes no increase in the stringency of the requirement, as any change in the regulatory minimums would be purely speculative at this time. Scenario A also assumes that the code-compliant charging stations would be used only for charging passenger vehicles and light duty truck EVs, and there would be no charging of medium-duty or heavy-duty truck EVs. Table 5 indicates the number of EV charging stations needed for 2025 and 2035 based on these assumptions.

Table 5: EV Charging Station Requirements at WLC

| Stage of Development | WLC WAREHOUSE BUILDINGS |  |  | WLC PARKING REQUREMENTS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total Bldg SF | Avg Bldg SF <br> (approximate) | \# Bldgs | Avg per <br> Bldg | WLC <br> Total | EV Charging <br> Equipped (6\%) |
|  | $22,946,000$ | $1,500,000$ | 15 | 584 | 8,781 | 527 |
| Full build out - 2035 | $40,600,000$ | $1,500,000$ | 27 | 575 | 15,536 | 932 |

For determining the breakdown of vehicle types and fuels powering the fleet, Scenario A relies on EMFAC 20176. As shown in Table 6, EMFAC 2017 forecasts approximately 619,000 passenger EVs ( 2.5 percent of total) and 59,000 light truck EVs ( 1.4 percent of total) statewide by 2025 , and approximately 1.4 million passenger EVs (4.7 percent of total) and 172,000 light truck EVs ( 3.7 percent of total) statewide by 2035. ${ }^{7}$ For the South Coast Air Basin, EMFAC 2017 forecasts the same percentages of passenger EVs and 1.6 percent of light truck EV populations by 2025, and slightly higher percentages by 2035. Based on the percentages for the South Coast Air Basin, the number of passenger EVs estimated to access the Project area on any day under Scenario A were determined to be 300 for Phase 1 (2025) and 991 for full build-out in 2035.

Table 6: EMFAC 2017 EV Forecasts for State of California and South Coast Air Basin ${ }^{\text {a }}$

|  |  | Passenger Vehicles |  |  | Light Trucks |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | EVs | \% EVs | Total | EVs | $\begin{gathered} \text { \% } \\ \text { EVs } \\ \hline \end{gathered}$ |
| South Coast Air Basin | 2020 | 9,125,366 | 103,722 | 1.1\% | 1,539,990 | 3,852 | 0.3\% |
|  | 2025 | 10,034,980 | 252,889 | 2.5\% | 1,627,185 | 26,375 | 1.6\% |
|  | 2030 | 10,907,401 | 417,413 | 3.8\% | 1,733,368 | 51,603 | 3.0\% |
|  | 2035 | 11,642,018 | 546,208 | 4.7\% | 1,849,556 | 72,433 | 3.9\% |
| Statewide | 2020 | 22,409,020 | 262,338 | 1.2\% | 4,131,850 | 8,393 | 0.2\% |
|  | 2025 | 24,876,417 | 619,462 | 2.5\% | 4,207,663 | 59,187 | 1.4\% |
|  | 2030 | 27,344,052 | 1,038,403 | 3.8\% | 4,367,848 | 119,836 | 2.7\% |
|  | 2035 | 29,511,582 | 1,380,703 | 4.7\% | 4,600,339 | 172,291 | 3.7\% |

Notes:
a: reflects EMFAC 2017 assumptions based on Governor's Order calling for 1.5 million ZEVs statewide by 2025

[^79]Scenario A energy demand calculations assume that passenger EVs would have an average battery size of 100 kWh in the year 2025, equating to an average charge capacity of 80 kWh ( 80 percent). Passenger cars in 2035 would have an average battery size of 200 kWh , equating to an average charge capacity of 160 kWh ( 80 percent).

Scenario A assumes that half of the passenger EV population on site each day would charge their batteries to full capacity. If Level 2 AC chargers with a minimum charging rate of 19.2 kW (highest rate currently available) were provided, it would take approximately 4 hours to fully charge a vehicle with a 100 kWh battery. If the site was served by DC power blocks that spread the power delivery across multiple vehicles simultaneously in response to site energy management requirements, the charging time could be much faster. DC power blocks provide power at up to 500 kW , but it is reasonable to assume an average charging rate would be 100 kW , resulting in a charging time of approximately 48 minutes for a vehicle with a 100 kWh battery.

Peak electricity loads for servicing the EVs were provided by WSP in their World Logistics Center Sustainable Energy Plan (WSP, 2018). ${ }^{8}$

The EV numbers and electricity loads for Scenario A, using the methods and assumptions outlined above, are presented in Table 7.

Table 7: Scenario A Charging Loads (Low EV Penetration)

| Vehicle Type | 2025 |  |  | 2035 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Population | Peak Rate <br> (MW) | Avg Daily <br> (MWh) | Population | Peak Rate <br> (MW) | Avg Daily <br> (MWh) |
| Passenger Vehicles | 288 | 0.7 | 11.5 | 937 | 5.7 | 74.9 |
| Light Trucks (2 axle) | 12 | 0.03 | 0.5 | 54 | 0.2 | 2.2 |
| Medium Trucks (3 axle) | 0 | 0 | 0 | 0 | 0 | 0 |
| Heavy Trucks (4+ axle) | 0 | 0 | 0 | 0 | $\mathbf{0}$ | $\mathbf{0}$ |
| Total | $\mathbf{3 0 0}$ | $\mathbf{0 . 7}$ | $\mathbf{1 2 . 0}$ | $\mathbf{9 9 1}$ | $\mathbf{5 . 9}$ | $\mathbf{7 7 . 1}$ |

## Vehicle Scenario B: Medium EV Penetration

This scenario reflects the same assumption regarding electric vehicle charging infrastructure as used in Scenario A (EV charging stations will be installed at 6 percent of parking spaces by the completion of Phase 1) but with higher electric vehicle populations consistent with the goals of California's 2017 Scoping Plan Update and 2016 Mobile Source Strategy, which are both designed to enable statewide attainment of the SB 32 GHG Target of 40 percent below 1990 levels by 2030. As with Scenario A, Scenario B includes passenger and light truck EVs, but

[^80]no charging of medium-duty or heavy-duty truck EVs. The higher numbers of passenger and light truck EVs result in a higher vehicle charging load for the project.

Table 8 summarizes EV population estimates that are aligned with Governor Brown's Executive Order calling for 1.5 million ZEVs by 2025, and the Mobile Source Strategy calling for 4.2 million ZEVs by 2030, which works out to approximately 5.2 percent of combined vehicles (passenger + light trucks) in 2025 and 13.2 percent in 2030. The EV population estimates ( 21 percent of passenger vehicles and 22.5 percent of light trucks) for 2035 are based on the conservative assumption that the EV population increase from 2025 to 2030 due to the Mobile Source Strategy is repeated over the five year period from 2030 to 2035. Based on that rate, as shown in Table 8, there would be approximately 7.2 million ZEVs in operation statewide by 2035. Assuming the EV percentages would be the same for the proposed Project located in the South Coast Air Basin, the Project would be visited by 627 EVs per day by 2025 and 4,509 EVs by 2035.

Table 8: EV Forecasts Based on Mobile Source Strategy ${ }^{\text {a }}$

|  |  | Passenger Vehicles |  |  | Light Trucks |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | EVs | \% EVs | Total | EVs | \% EVs |
| South <br> Coast Air <br> Basin | 2020 | 9,125,366 | 103,722 | 1.1\% | 1,539,990 | 3,852 | 0.3\% |
|  | 2025 | 10,034,980 | 517,550 | 5.2\% | 1,627,185 | 83,921 | 5.2\% |
|  | 2030 | 10,907,401 | 1,444,602 | 13.2\% | 1,733,368 | 229,571 | 13.2\% |
|  | $2035{ }^{\text {b }}$ | 11,642,018 | 2,447,659 | 21.0\% | 1,849,556 | 416,980 | 22.5\% |
| Statewide | 2020 | 22,409,020 | 262,338 | 1.2\% | 4,131,850 | 8,393 | 0.2\% |
|  | 2025 | 24,876,417 | 1,282,991 | 5.2\% | 4,207,663 | 217,009 | 5.2\% |
|  | 2030 | 27,344,052 | 3,621,512 | 13.2\% | 4,367,848 | 578,488 | 13.2\% |
|  | $2035{ }^{\text {b }}$ | 29,511,582 | 6,204,620 | 21.0\% | 4,600,339 | 1,037,141 | 22.5\% |

Notes:
a: reflects Mobile Source Strategy calling for 4.2 million ZEVs statewide by 2030
b: assumes the 2025-2030 EV population increase trend (over EMFAC 2017 forecast) continues through 2035

Charging loads for the light truck category were determined using the daily mileage estimates and average $\mathrm{kWh} /$ mile consumption for each vehicle category, using data from the U.S. Department of Energy's Alternative Fuels Data Center. ${ }^{9}$

Like Scenario A, Scenario B assumes that EVs in 2025 would have an average battery size of 100 kWh , and by 2035 they would have an average battery size of 200 kWh . Due to the higher EV populations the demand for fast charging will be higher, and it is reasonably assumed that DC power blocks, which manage power delivery across multiple vehicles simultaneously in response to site energy requirements, would be used at the site to handle the increased loads. Like Scenario A, it is assumed that the average charging rate for DC power block chargers would be 100 kW . At that rate a 200 kWh battery ( 160 kWh capacity) would take approximately 96 minutes to charge.

Scenario B assumes 100 percent of the charging stations at the site would be served by DC charging blocks that can charge up to 500 kW per vehicle and can spread the power delivery across multiple vehicles simultaneously in response to site energy management requirements. The average charging rate for these stations is assumed to be 100 kW .

Peak electricity loads for servicing the EVs were provided by WSP in their World Logistics Center Sustainable Energy Plan (WSP, 2018).

The EV numbers and electricity loads for Scenario B, using the methods and assumptions outlined above, are presented in Table 9.

Table 9: Scenario B Charging Loads (Medium EV Penetration)

| Vehicle Type | 2025 |  |  |  | 2035 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Population | Peak Rate <br> (MW) | Avg Daily <br> (MWh) | Population | Peak Rate <br> (MW) | Avg Daily <br> (MWh) |
| Passenger Vehicles | 590 | 1.4 | 23.6 | 4,197 | 25.6 | 336 |
| Light Trucks (2 axle) | 38 | 0.2 | 1.5 | 312 | 0.8 | 12.8 |
| Medium Trucks (3 axle) | 0 | 0 | 0 | 0 | 0 | 0 |
| Heavy Trucks (4+ axle) | 0 | 0 | 0 | 0 | $\mathbf{0}$ | 0 |
| Total | $\mathbf{6 2 7}$ | $\mathbf{1 . 6}$ | $\mathbf{2 5 . 1}$ | $\mathbf{4 , 5 0 9}$ | $\mathbf{2 6 . 4}$ | $\mathbf{3 4 9}$ |

## Vehicle Scenario C: High EV Penetration

Scenario C is the same as Scenario B with respect to passenger and light truck EVs, but includes estimates for medium duty and heavy duty EV trucks based on CALSTART's zero-emission transformation model that takes into account how nascent zero emission solutions, namely technologies from the transit bus segment, evolve and transition into other medium- and heavy-duty categories. As with the light duty truck estimates, the projections take into account funding programs, sales trends, technology development, and upcoming regulations. In addition,

[^81]the estimates consider regulatory and commercialization studies completed by CALSTART, including potential regulations related to zero emission drayage trucks and access by zero emission trucks to city centers.

CALSTART's zero emission transformation model indicates that 10 percent of medium-duty and 20 percent of heavy-duty trucks servicing the South Coast Air Basin could feasibly be EVs by 2025; by 2035, the forecasts indicate conservatively that 20 percent of medium-duty and 30 percent of heavy-duty trucks could be EVs. Charging loads for the light truck category were determined using the daily mileage estimates and average $\mathrm{kWh} /$ mile consumption for each vehicle category, using data from the U.S. Department of Energy's Alternative Fuels Data Center. ${ }^{10}$

The EV numbers and electricity loads for Scenario C, using the EV truck population forecasts for the South Coast Air Basin and the methods and assumptions outlined above, are presented in Table 9.

Table 9: Scenario C Charging Loads (High EV Penetration)

| Vehicle Type | 2025 |  |  |  | 2035 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Population | Peak Rate <br> (MW) | Avg Daily <br> (MWh) | Population | Peak Rate <br> (MW) | Avg Daily <br> (MWh) |
| Passenger Vehicles | 590 | 1.4 | 24 | 4,197 | 26 | 336 |
| Light Trucks (2 axle) | 38 | 0.2 | 1.5 | 312 | 0.8 | 12.5 |
| Medium Trucks (3 axle) | 111 | 0.5 | 6.0 | 393 | 1.6 | 21 |
| Heavy Trucks (4+ axle) | 614 | 18 | $\mathbf{2 2 9}$ | 1,625 | 46 | 607 |
| Total | $\mathbf{1 , 3 5 3}$ | $\mathbf{1 9 . 6}$ | $\mathbf{2 6 1}$ | $\mathbf{6 , 5 2 7}$ | $\mathbf{7 4}$ | $\mathbf{9 7 6}$ |

## 3.Transportation Energy Best Practices and Emerging Technologies

## Zero Emission Vehicles

Zero emission vehicle (ZEV) technology is developing rapidly for both light-duty and heavy-duty vehicles. ZEVs can be powered by grid electricity stored in a battery, by electricity produced onboard the vehicle through a fuel cell, or through electricity provided by sources outside the vehicle such as overhead catenary wires that are currently used for light rail and some transit buses. ZEVs achieve zero tailpipe emissions by utilizing electric drive to power the vehicle instead of fuel combustion, and achieve higher system efficiency compared to fossil fuel powered vehicles. The GHG emissions associated with a ZEV are generally lower than GHG emissions associated with an equivalent vehicle powered by fossil fuel, with the difference dependent on the carbon footprint of the electricity or fuel cell energy used to power the ZEV.

[^82]ZEVs discussed here include plug-in battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV) and hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV), and Range Extended Electric Vehicles (REEV) with a fuel cell or fossil-fuel powered engine.

Overall, electric engines result in lower PM and $\mathrm{NO}_{\mathrm{x}}$ emissions when compared to conventional diesel engines, and can greatly reduce GHG emissions if the electricity is supplied by renewable sources. However, electric equipment can cost 20 to 40 percent more than its internal combustion counterpart. Electric equipment has a downtime for recharging. The batteries typically provide enough power for approximately 6 hours of constant use. After that, 8 to 16 hours are required to recharge batteries, followed by 8 hours for batteries to cool before using. Faster charging batteries can restore batteries from 20 to 100 percent in 60 to 90 minutes, though more expensive than a standard battery. In addition, battery charging stations and battery transporters are required. Although PHEVs are generally more expensive than similar conventional and hybrid vehicles, some cost can be recovered through fuel savings, a federal tax credit, or state incentives. Plug-in EVs and PHEVs use electricity from the grid to run some or all of the time reducing operating costs and petroleum consumption, relative to conventional vehicles and PHEVs. PHEVs typically produce lower levels of emissions, depending on the electricity source. PHEVs generally have larger battery packs than HEVs, which makes it possible to drive moderate distances using just electricity (approximately 10 to 40 -plus miles in current models). The PHEV fuel consumption depends on the distance driven between battery charges. PHEV batteries can be charged by an outside electric power source, by the internal combustion engine, or through regenerative braking. HEVs combine the benefits of high fuel economy and low emissions with the power and range of conventional vehicles, without requiring a plug-in to charge the batteries.

As highlighted by the CEC in an annual Progress Report (CEC, 2017d), ZEV technology and supporting infrastructure is advancing rapidly in California:

- Nearly 300,000 ZEVs have been sold in California (predominantly light duty vehicles).
- Battery technology has improved, and the costs of batteries and other components have fallen dramatically. Based on manufacturer announcements, available models of PHEVs and BEVs are expected to increase nearly three-fold over the next five model years from the 25 models offered today.
- Due to substantial investments in the past several years, ZEV electric infrastructure in California has grown substantially. This trend is expected to accelerate as new infrastructure developments emerge. More than 10,000 Level $2^{11}$ and 1,500 direct current fast charger (DCFC) connectors have been deployed across California.
- California is developing the first major fuel cell electric vehicle (FCEV) market and hydrogen fueling network in the United States. Three FCEV models are for sale in California, and 28 retail hydrogen refueling stations are open in California with an additional 32 stations proposed or already in development. Toyota and Honda have also announced partnerships with private companies for financial support of additional stations in California and the Northeast.

[^83]CEC's 2017 Progress Report outlines the state's Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP), funded by vehicle and vessel registration, vehicle identification plates, and smog-abatement fees (per Assembly Bill 118), is providing up to $\$ 100$ million per year to fund ZEV technology development and readiness planning, EV charging infrastructure, hydrogen refueling stations, clean vehicle rebate programs, and standards development. More than $\$ 129$ million has been provided by the ARFVTP to date for California companies to demonstrate advanced ZEV technologies for medium- and heavy-duty trucks, buses, and freight movement.

Another more recent report by Next 10 concludes that California will meet or exceed its 1.5 million by 2025 ZEV goal, but that the state's charging infrastructure is not keeping pace with the growth of its electric vehicle fleet. Through October 2017, more than 337,000 ZEVs had been sold in California, and ZEV sales increased 29.1 percent in California over the previous year. Meanwhile, California has 16,549 public and nonresidential privatesector charging outlets - most in the nation by far but only 0.05 public charging outlets per ZEV. Studies show that California will need 125,000 to 220,000 charging ports from private and public sources by 2020 in order to provide adequate infrastructure (Next 10, 2018).

## Electric Vehicle Charging Infrastructure

## Charging Stations

Many plug-in electric vehicle owners may do the majority of their charging at home (or at fleet facilities, in the case of fleets). Some employers offer access to charging at the workplace. In many states, plug-in electric vehicle drivers also have access to public charging stations at libraries, shopping centers, hospitals, and businesses. The charging infrastructure is rapidly expanding, providing drivers with the convenience, range, and confidence to meet more of their transportation needs with plug-in vehicles. PHEVs have added flexibility, because they can also refuel with gasoline or diesel (or possibly other fuels in the future) when necessary (U.S. Department of Energy, 2016).

Charging equipment for plug-in electric vehicles (PHEVs or EVs) is classified by the rate at which the batteries are charged. Note than, in addition to the charging station itself, charging times vary based on how depleted the battery is, how much energy it holds, the type of battery, and the type of EV. The charging time can range from 15 minutes to 20 hours or more, depending on these factors.

- Level 1 chargers: Operating on 120-volts, Level 1 chargers offer the slowest type of charging. For plug-in hybrids with smaller battery packs (i.e., a typical passenger PHEV), it may be enough to recharge the vehicle in a few hours to overnight.
- Level 2 chargers: Most dedicated home and public charging stations use Level 2 chargers, which operate at 240 Volts and are at least twice as fast as Level 1 charging due to the higher amperage of the circuit. BEVs like the Nissan Leaf typically require a Level 2 charger to provide overnight charging.
- DC Fast Chargers: A direct current fast charger (DCFC) uses direct current (DC) rather than household alternating current (AC) and is very high-powered. DCFCs are generally practical only at public sites, such as along highways, given the higher cost of the electric utility having to install dedicated high-power lines. Unlike Level 1 and Level 2 chargers, which use a standard "J-1772" type connector for plugging in the vehicle, there are three different kinds of DC quick charging connectors:
- CHAdeMO: This is currently the most popular standard, used by the Nissan Leaf, Mitsubishi iMiEV, and Kia Soul EV.
- CCS (Combined Charging Standard): All U.S. makers except Tesla and all German makers use this standard, including cars from BMW, Chevrolet, Ford, Mercedes-Benz, Volkswagen, and Volvo that are fitted with quick-charging ports.
- Tesla Supercharger: As usual, Tesla has gone its own way and created a dedicated network of free, high-powered fast-charging stations that can only be used by Tesla owners.
- Modular DC Power Blocks: With these systems, the maximum charging power can be dedicated to just one vehicle or spread between several vehicles depending on the demand. They address the ever-growing demands of increased current and power densities in networked applications while providing maximum flexibility for system configuration. An example of a scalable modular architecture that can grow as the charging demand grows is the ChargePoint Express Plus station with an accompanying Power Cube, and a solution by ABB that includes Power Converter modules and Charge-Boxes.

The cost of charging stations is variable depending upon the type of charging station and location (curbside or garage). Component cost of charging stations vary based on hardware, electrical materials and labor, other materials and labor, transformer, mobilization, and permitting. (Greenbiz.com 2016).

Public charging stations are not as ubiquitous as gas stations, but charging equipment manufacturers, automakers, utilities, Clean Cities coalitions, municipalities, and government agencies are establishing a rapidly expanding network of charging infrastructure. Almost all public sites offer Level 2 charging, with a few providing DCFCs, increasingly with both CHAdeMO and CCS cables. Plug-in electric vehicles can be recharged at stations available within close distance of the WLC site, as shown in Figure 1, Electric Vehicle Charging Stations near World Logistics Center Site, below.

Figure 1 Electric Vehicle Charging Stations near WLC


Source: www.plugshare.com

## Applicability to Proposed Project:

The adoption of ZEV passenger vehicles by WLC employees is beyond the direct control of the Proposed Project. However, providing on-site EV charging stations for employees to use as they park their vehicles would help incentivize the use of such vehicles, helping to reduce the GHG emissions associated with commuting. By 2025, it is expected that modular DC power blocks will be the preferred EV charging solution for the WLC site, given the projected EV population and the anticipated need for power load management.

## Road-Connected Power

This technology, well established in the transit industry (e.g., electric trolley-bus), is used widely in mining with extremely heavy equipment and is now being demonstrated for heavy haul trucks in Europe and the United States. Power is transferred to the vehicle from an overhead catenary wire to an apparatus mounted on the roof of the vehicle known as a pantograph. Roadway power infrastructure is typically complicated and expensive, and may be appropriate only in certain areas or applications.

## Applicability to Proposed Project:

For passenger vehicles and light duty trucks, road-connected power is not a feasible technology for passenger vehicles at this time.

For medium and heavy-duty trucks, despite there being demonstration projects at ports and other sites with heavy truck traffic, installing road connected power at a site like the WLC would only be effective if a critical mass of vehicles visiting the site were fitted with special equipment to connect with the overhead catenary line used to transmit electrical energy. For effective charging, vehicles would have to do most or all of their driving on site. This technology does not represent a feasible approach to supporting the Project's use of zero emission trucks.

## Plug-in All-Electric Vehicles (BEV)

All-electric vehicles (EVs), sometimes referred to as battery electric vehicles (BEVs), use a battery to store the electrical energy from a plug-in source that powers the electric motor (there is no internal combustion motor). EV batteries are charged by plugging the vehicle into an electric power source. Although most U.S. electricity production contributes to air pollution, the USEPA categorizes all-electric vehicles as zero-emission vehicles because they produce no direct exhaust or emissions. Because EVs use no fuel, widespread use of these vehicles could dramatically reduce petroleum consumption.

The efficiency and driving range of BEVs varies substantially based on vehicle size, driving conditions and driving habits. Extreme outside temperatures tend to reduce range, because more energy must be used to heat or cool the cabin. High driving speeds reduce range because of the energy required to overcome increased drag. Compared with gradual acceleration, rapid acceleration reduces range. Hauling heavy loads or driving up significant inclines also reduces range.

## Passenger BEVs

As described above, there is strong momentum in California in growing the fleet of passenger EVs to meet or exceed the state's ZEV targets of 1.5 million by 2025 and 4.2 million by 2030. A high percentage of these are expected to be BEVs, but charging infrastructure is not keeping pace, and more public and nonresidential privatesector charging outlets are needed (Next 10,2018 ).

Currently available passenger BEVs have a shorter driving range per charge than most conventional vehicles have per tank of gas. BEV manufacturers typically target a range of more than 200 miles on a fully charged vehicle. According to the U.S. Department of Transportation, Federal Highway Administration, 100 miles is sufficient for more than 90 percent of all household vehicle trips in the United States. For longer trips, it is necessary to recharge the vehicle or swap the battery.

## Applicability to Proposed Project:

As outlined in the Electric Vehicle Scenarios above, a significant population of passenger EVs is expected to visit the site at Phase 1 (2025) and full buildout of the project (2035). Developing the supporting infrastructure (i.e., cable raceways) for installing EV charging stations will enable WLC to more readily and cost effectively provide this service to future tenants if and when demand dictates. For a project the size of WLC, the current Title 24 building code requires that 6 percent of parking spaces be constructed to accommodate electric vehicle supply equipment (EVSE) for future electric vehicle charging.

## Truck BEVs

CARB has recently assessed the five- to ten-year outlook for BEV technology in the medium-duty ( 8,501 to 14,000 pounds (lbs.) Gross Vehicle Weight Rating (GVWR)) and heavy-duty ( $14,001 \mathrm{lbs}$. and above GVWR) truck and bus market (CARB, 2015). The study found that battery electric transit buses and shuttle buses are increasingly available from a variety of manufacturers, as are other medium-duty BEVs, primarily delivery vehicles. BEV trucks currently in the marketplace typically use lithium-ion battery chemistries. BEVs are just beginning to penetrate the heavy-duty vehicle market. To date, most medium- and heavy-duty BEV truck deployments in California have been in the urban vocational work truck category, focusing on urban transit buses and intracity delivery with daily ranges of generally 100 miles or less.

Heavy duty and medium duty delivery trucks, drayage trucks all have large potential for market penetration but lag transit buses and shuttles in terms of technology development. While transit buses have already been commercialized, medium duty BEVs are undergoing pilots and advanced demonstration projects, while drayage heavy duty BEVs are still in the early demonstration phase.

## Applicability to Proposed Project:

Figure 2 provides a snapshot of the market penetration and technology development status for BEV trucks. BEV solutions for heavy duty applications are in the early phases of commercial market deployment. BEV applications in the medium duty delivery and work truck segments are also in the early market or late pilot deployment stage. As the project gets built out, several truck BEV options may become feasible for the tenants depending on the specific distances traveled and duty cycles of the vehicles deployed. Recognizing that the timeline for market penetration and technology development is currently speculative, developing the supporting infrastructure for charging these vehicles (i.e., cable raceways to support EV supply equipment) will enable WLC to provide future EV charging capabilities to future tenants as truck BEVs become commercially available.

Figure 2 Technology and Commercialization Status - Battery Electric Trucks


Source: CALSTART, 2018

## Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid Electric Vehicles (PHEV)

Hybrid electric vehicles (HEVs) are powered by an internal combustion engine or other propulsion source that can be run on conventional or alternative fuel, and an electric motor that uses energy stored in a battery (but not recharged from a plug-in source). Electric drive is typically used at low speeds for shorter distances, while blended electric-fuel mode is used at higher speeds and longer distances. The extra power provided by the electric motor allows for a smaller combustion engine. Additionally, the battery can power auxiliary loads like sound systems and headlights, and reduce engine idling when stopped. Together, HEVs combine the benefits of high fuel economy and low emissions with the power and range of conventional vehicles.

A HEV cannot plug into off-board sources of electricity to charge the battery. Instead, the HEV uses regenerative braking and the internal combustion engine to charge the battery. The HEV captures energy normally lost during braking by using the electric motor as a generator, and storing the captured energy in the battery. The energy from the battery provides extra power during acceleration.

Plug-in hybrid electric vehicles (PHEVs) are powered by both an electric motor using electricity stored in batteries, or an internal combustion engine or other propulsion source, using a fuel such as gasoline or diesel. Electric drive is typically used at low speeds for shorter distances, while blended electric-fuel mode is used at higher speeds and longer distances. Using electricity from the grid to run the vehicle some or all of the time reduces operating costs and petroleum consumption, relative to conventional vehicles. PHEVs might also produce lower levels of emissions, depending on the electricity source.

PHEVs generally have larger battery packs than non-plug-in hybrid electric vehicles (discussed below). This makes it possible to drive moderate distances using just electricity (about 10 to 40 -plus miles in current models), commonly referred to as the "all-electric range" of the vehicle.

During urban driving, most of a PHEV's power comes from stored electricity, if the battery is charged. For example, a light-duty PHEV driver might drive to and from work on all-electric power, plug in the vehicle to charge it at night, and be ready for another all-electric commute the next day. The internal combustion engine powers the vehicle when the battery is mostly depleted, during rapid acceleration, or when intensive heating or air conditioning is required. Some heavy-duty PHEVs work the opposite way, with the internal combustion engine used for driving to and from a job site and electricity used to power the vehicle's equipment or control the cab's climate while at the job site. The PHEV fuel consumption depends on the distance driven between battery charges. For example, if the PHEV is never plugged in to charge, the fuel economy will be about the same as a similarly sized non-plug-in hybrid electric vehicle. If the PHEV is driven a shorter distance than its all-electric range, and plugged in to charge between trips, it may be possible to use only electric power.

PHEV batteries can be charged by an outside electric power source, by the internal combustion engine, or through regenerative braking. During braking, the electric motor acts as a generator, using the energy to charge the battery (U.S. Department of Energy, 2016).

## Applicability to Proposed Project:

California's growing the fleet of passenger EVs includes BEVs, HEVs, and PHEVs, all contributing the state's ZEV targets of 1.5 million by 2025 and 4.2 million by 2030. The full range of EV types should be expected in the fleet mix visiting the WLC in 2025. It is speculative to state what the fleet mix will be in 2035, but the all three EV types should be anticipated in designing the charging infrastructure.

There are currently early market offerings in the medium-duty delivery and work truck categories that are applicable to this project. Hybrid systems show promise to enable the electrification of the driveline of heavy duty trucks by augmenting the range with a secondary power system. Figure 3 provides a snapshot of the market penetration and technology development status for HEV and PHEV trucks.

Figure 3 Technology and Commercialization Status - Hybrid Electric Trucks


Source: CALSTART, 2018

## Range Extended Electric Vehicle (REEV) - Fuel Cell

Range extended electric vehicles that utilize a fuel cell as an additional energy source are promising and deserve attention. In particular, medium-duty delivery vehicles have been identified as a viable vehicle category in the near term. In on road applications fuel cell buses are approaching commercial technology readiness levels. Advancements in the commercialization of both battery electric trucks and fuel cell electric buses have the potential to expedite the commercialization of fuel cell electric trucks. Figure 4 provides a snapshot of the market penetration and technology development status for fuel cell electric trucks.

Figure 4 Technology and Commercialization Status - Fuel Cell Electric Trucks


Source: CALSTART, 2018

## Cost and Availability of Zero Emission Trucks

Medium-duty and heavy-duty zero emission trucks currently cost significantly more than conventionally fueled trucks and buses, but funding exists to help offset the higher cost. This includes CARB's Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP), which is funded by Low Carbon Transportation investments and the Air Quality Improvement Program (AQIP), offers a purchase voucher on a first-come, firstserved basis. Vouchers are available for electric, hybrid, fuel cell, and low-NOx natural gas trucks and buses. The program has been operating for over eight years and over 4000 vouchers have been issued. Base voucher amounts range from $\$ 20,000$ to $\$ 315,000$ depending on vehicle size and technology. ${ }^{12}$ In addition, the California State Transportation Agency/Caltrans funds transit expansion and capital improvement projects with Greenhouse Gas Reduction Fund monies, some of which have gone to EV transit buses. The Goods Movement Emission Reduction Program funded by Proposition 1B provides funds to existing truck owners who wish to upgrade to EVs (CARB, 2015).

[^84]Ongoing pilot projects and demonstration projects for emerging ZEV technologies are being funded by CARB, the California Energy Commission (CEC), and local air control districts including the South Coast Air Quality Management District (SCAQMD), some of which are described below under "Technology Demonstration Projects."

As indicated in Table 10, there were very few heavy duty EV trucks operating in California in 2015, but there were hundreds of medium-duty EVs on the road, and the number has grown. Many of these vehicles are being used for urban delivery. CARB expects widespread penetration of such medium duty EV trucks into the market place in the next 5 to 10 years. UPS recently received 17 fully electric EVI delivery vans purchased with CEC demonstration funds, with each van costing around $\$ 143,000$, including the purchase of the chassis and decommissioning of the existing powertrain (CARB, 2015).

Table 10
Summary of Medium-Duty and Heavy-Duty EV Populations in 2015

| Vehicle | Technology Readiness | Number in Service | Notes |
| :---: | :---: | :---: | :---: |
| Transit Bus | Commercially Available | Approximately 40 in California, and >2,500 worldwide | 3 models commercially available in U.S. |
| School Bus | Limited Commercial Availability | 4 in California | 3 new buses ordered in SCAQMD 6 repowers underway with V2G |
| Medium-Duty (8,501 to 14,000 lbs. GVWR) ${ }^{\text {a }}$ | Limited Commercial Availability | 300+ | Focused on delivery service |
| Heavy-Duty (> 14,000 lbs. GVWR) | Demonstration Phase | 2 Drayage <br> 1 Refuse | 13 Class-8 Trucks under construction |

Source: CARB, 2015
Notes:
a. $\quad$ GVWR $=$ Gross Vehicle Weight Rating

Zenith Motors offers an electric delivery/work van that can also be configured as a 12-passenger shuttle. The vans offer a range option of 90 or 120 miles, using LiPO4 batteries, with around 6 hours required to recharge. With the available HVIP vouchers, Zenith is offering the 120 mile 350 cargo van configuration for a net cost of $\$ 40,400$, which is comparable to the analogous Ram ProMaster gasoline unit (CARB, 2015).

## Zero Emission Truck Technology Demonstration Projects

A number of zero emission truck technologies are being tested and demonstrated in the South Coast Air Basin and throughout California that aim to advance their commercial development goods movement.

## Countywide Zero-Emission Trucks Collaborative

At the request of partner agencies, the Los Angeles County Metropolitan Transportation Authority (Metro) has taken the lead in forming a Countywide Zero-Emission Trucks Collaborative to promote development and deployment of zero-emission trucks in Los Angeles County. The Collaborative will include ports of Long Beach and Los Angeles, Caltrans, Southern California Association of Governments (SCAG), and SCAQMD. The Collaborative is currently developing pilot projects as well as demonstration projects for zero-emission trucks.

Advancing zero-emission truck technology and implementation will help achieve the air quality objectives of Metro's Long Range Transportation Plan, goods movement program, and the agency's over-arching goal of creating a more sustainable transportation system. The collective efforts will be critical to meeting the stringent, federal health-based air standards proposed by the USEPA. The SDAQMD believes that should the new standards be adopted by USEPA, then a significant percentage of vehicles will need to achieve zero or near-zero-emissions by 2023. However, to date, the focus has been on dedicated zero-emission electric truck technology along the I710 (see "I-710 Corridor Zero-Emission Truck Commercialization Study" below). As part of the I-710 Corridor Project EIR/EIS, Metro has explored the feasibility of zero-emission trucks, including an Alternative with a 17mile zero-emission, dedicated freight corridor in response to community air quality concerns. Metro has been investigating vehicle technologies that could meet the zero-emission requirement of the corridor. However, there are a series of challenges to overcome and critical stages in the development process to be completed before commercialization of zero-emission trucks will be realized. Establishing a coalition focused on technology advancement and implementation will help align Metro's policies and leverage its investments with those of partner agencies to realize our common vision for zero-emission trucks, clean air, and sustainable communities (Metro 2016).

## Advanced Technology for Truck Corridors

The Advanced Technology for Truck Corridors pilot project being led by CalTrans brings together Integrated Corridor Management, Active Traffic Management, Freight Advanced Traveler Information System, and Connected Vehicle advanced technology platforms as an integrated strategy to improve system efficiency and support the goals of the California Sustainable Freight Action Plan (CalTrans, 2016):

- Increase freight system efficiency of freight operations at specific facilities and along freight corridors such that more cargo can be moved with fewer emissions.
- Accelerate use of clean vehicle and equipment technologies and fuels of freight through targeted introduction of zero emission or near-zero emission (ZE/NZE) technologies, and continued development of renewable fuels.
- Encourage State and federal incentive programs to continue supporting zero and near-zero pilot and demonstration projects in the freight sector.
- Accelerate use of clean vehicle, equipment, and fuels in freight sector through targeted introduction of ZE/NZE technologies, and continued development of renewable fuels. This includes developing policy options that encourage ZE/NZE vehicles on primary freight corridors (e.g., Interstate-710); examples of such policy options include a separated ZE/ NZE freight lane, employing market mechanisms such as favorable road pricing for ZE/NZE vehicles, and developing fuel storage and distribution infrastructure along those corridors.

The Advanced Technology for Truck Corridors Pilot Project Work Plan (CalTrans, 2017) describes the project occurring in phases. The first phase will mainly involve advance technology deployment along I-710 and nearby arterials, the second phase will involve State Route 60 and I-10, and the third phase will involve improvements along I-15. The components include

- Integrated Corridor Management where Intelligent Transportation Systems (ITS) will incorporate Vehicle-to-Infrastructure (V2I) communications using the latest Connected Vehicle (CV) technology. New ITS infrastructure will allow for the collection of truck-specific data on all freeways, including lane-by-lane information, freight vehicle classification, and truck length data. Data from these systems will be transmitted to the Caltrans Advanced Traffic Management System and others through the Regional Integration of Intelligent Transportation Systems network.
- Active Traffic Management incorporating a series of advanced Active Traffic Management (ATM) strategies that address congestion using various methods to manage and control traffic in real-time based on prevailing conditions, and to make informed, performance-driven decisions regarding traffic management.
- Connected Vehicle Technology, which has the potential to transform transportation through the creation of safe, interoperable wireless communications networks among passenger cars, buses, commercial trucks, trains, traffic signals, smart phones, and other connected devices. This technology aims to address some of the biggest challenges in surface transportation with respect to safety, mobility, and the environment.
- Support for Zero and Near-Zero Emission Trucks: The Pilot supports the region's efforts to increase the number of ZE and NZE trucks operating within and around the San Pedro Bay Port Complex by setting a target for deploying ZE charging stations and other alternative fueling stations along the I-710 south corridor. The objective of SCAQMD's program is to deploy up to 500 ZE and low Nitrogen Oxide (NOx)/NZE trucks on the I-710 Corridor between 2018 and 2025 (Phase 1) and another 500 ZE and NZE trucks between 2026 and 2035 (Phase 2) for a total of 1,000 ZE and NZE trucks. The program is intended to help build a fleet of ZE and NZE trucks that would utilize the I-710 Corridor as the I-710 Project comes online. It is envisioned that incentive funding for vehicle replacements, vehicle conversions, and/or purchase subsidies will develop.


## I-710 Corridor Zero-Emission Truck Commercialization Study

CALSTART recently completed a zero emission truck commercialization study to support the I-710 Corridor Project (CALSTART, 2013). CALSTART reviewed a number of reports and studies to evaluate which zeroemission truck technologies could potentially meet the needs of the I-710 Corridor Project and drayage users, developing a preliminary business case for the more feasible technology alternatives, and describing a commercialization plan for these zero-emission capable trucks based on the technologies recommended. The study concludes that zero-emission capable drayage trucks can be developed, demonstrated, and commercially deployed (roughly 10,000 trucks) by 2025.

Through user surveys and interviews with drayage operators, CALSTART determined a market need for at least 100 miles in range capability, before refueling is needed (one-tank range), and preferably 200 miles. Additional performance requirements identified that are independent of fuel technology include:

- The vehicle must have sufficient power for operation (400 horsepower; 1,200 to 1,800 foot-pounds of torque);
- The vehicle must have at least 100 miles in range capability, before refueling is needed (one-tank range), and preferably 200 miles; and
- The vehicle must have the capability to be used on all delivery routes.

Key findings of the CALSTART study include:

- BEV designs can deliver 100+ miles of range but based on their analysis have a challenging business case.
- REEV with Fuel Cell designs can deliver more than 100 miles of zero emission range, and offer a reasonable business cases when utilization is high. Electrical infrastructure needs are lower than BEVs, and hydrogen infrastructure needs should be manageable in the I-710 region.
- REEV with Engine (CNG) can deliver 50 miles of ZE range and up to 250 more miles of "very low emissions" range. CALSTART concludes that this option has the best business case of the examined alternatives, provided CNG costs are low and utilization is high. Electrical infrastructure needs are lower than BEVs, and CNG infrastructure is already under development.
- The optimal technology for a zero-emission capable Class 8 drayage truck depends upon the zeroemission range required:
- 20 miles ZE range: HEV, PHEV, REEV, and BEV architectures are all suitable;
- 50 miles ZE range: Both REEV and BEV designs are optimal;
- 100 miles ZE range: Both REEV and BEV designs are optimal; and
- Over 100 miles ZE range: REEV with Fuel Cell is the primary viable option.

The CALSTART study emphasizes supporting infrastructure as a key to the successful deployment of any zeroemission truck implementation. First, and foremost, sufficient refueling and/or recharging stations are needed. Infrastructure development should proceed concurrently with the development and deployment of zero-emission trucks for operations to be successful. As with any scaling up of zero emission truck operations, additional studies are required to determine infrastructure needs for the I-710 Corridor Project. Full commercialization will require several paths of parallel activity, including focused vehicle and infrastructure development; demonstration projects; a supportive regulatory framework; enhanced operational and business case assessment; and fleet training, maintenance training, and decision support.

The CALSTART study found that the current cost of a zero emission truck is approximately double the cost of a conventional diesel truck. However, costs of the key components of batteries and fuel cells are expected to fall dramatically as technology advances and volumes increase. Future operating costs (i.e., primarily fuel costs) can be reasonably estimated based on fuel consumption and predicted fuel costs but maintenance costs will remain difficult to estimate until enough zero emission trucks are in operation for long enough to collect data and ascertain maintenance needs.

## Additional Zero Emission Truck Demonstration Projects

Recently, the South Coast Air Quality Management District (SCAQMD) submitted comments to the California Department of Toxic Substances Control (DTSC) regarding the air quality impacts analyzed in the Draft Program EIR for the Santa Susana Field Laboratory Project, describing several zero emission truck demonstration projects underway in the South Coast Air Basin (SCAQMD, 2017), For each of these projects, the SCAQMD memo provides details on technology development, funding information and incremental vehicle cost:

- CARB Zero Emission Drayage Truck Demonstration Project - SCAQMD received an award of approximately $\$ 23.6$ million in 2016 to develop and demonstrate zero emission drayage trucks under CARB's Low Carbon Transportation Greenhouse Gas Reduction Fund Investments Program.
- 2012 DOE Zero Emission Drayage Truck Demonstration Project (ZECT I)
- DOE Zero Emission Cargo Transport Demonstration Project (ZECT II)
- CEC Sustainable Freight Transportation Project
- Overhead Catenary Truck Project


## Low Carbon Fuels

## Biodiesel Fuel

Biodiesel is a cleaner burning diesel replacement fuel, produced from a renewable diverse mix of resources including agricultural oils, recycled cooking oil, and animal fats. Meeting strict technical fuel quality and engine performance specifications (American Society of Testing \& Materials (ASTM) D6751), biodiesel can be used in existing diesel engines without modification, and is covered by all major engine manufacturers' warranties, most often in blends of 5 percent up to 20 percent (known as B20) biodiesel. Biodiesel is produced in nearly every state in the country. Biodiesel is the only alternative fuel to have fully completed the health effects testing requirements of the 1990 Amendments to the federal Clean Air Act. Health testing was performed based on inhalation of biodiesel exhaust at different concentrations. Results of the testing concluded that biodiesel exhaust concentrations expected to be observed on the field would not pose a threat to human health (Sharp, 1998)

Biodiesel that meets ASTM D6751 and is legally registered with the USEPA, is a legal motor fuel for sale and distribution (Biodiesel.org 2016). The use of biodiesel in a conventional diesel engine, not equipped with new diesel after treatment, results in substantial reduction of unburned hydrocarbons, carbon monoxide (CO), and PM compared to emissions from diesel fuel. In addition, the exhaust emissions of sulfur oxides and sulfates (major components of acid rain) from biodiesel are essentially eliminated compared to higher sulfur diesel (Biodiesel.org 2016).

Of the major exhaust pollutants, both unburned hydrocarbons and $\mathrm{NO}_{\mathrm{x}}$ are ozone (or smog) forming precursors. The use of biodiesel in a conventional diesel engine results in substantial reduction of unburned hydrocarbons, CO, and PM. However, emissions of $\mathrm{NO}_{\mathrm{x}}$ are either slightly reduced or slightly increased depending on the duty cycle of the engine and testing methods used. Biodiesel further enhances the advantages of diesel by reducing vehicle emissions. B20, a 20 percent blend of biodiesel and conventional diesel, reduces emissions of hydrocarbons by 20 percent and CO and PM emissions by 12 percent. Based on engine testing, using the most
stringent emissions testing protocols required by USEPA for certification of fuels or fuel additives in the U.S., the overall ozone forming potential of the hydrocarbon emissions from biodiesel was nearly 50 percent less than that measured for diesel fuel. New Technology Diesel Engines (NTDE) (i.e. those with PM traps and selective catalytic reduction, SCR, technology required for on-road applications in the US after 2010) reduce emissions of both PM and $\mathrm{NO}_{\mathrm{x}}$ with B 20 by over 90 percent compared to a conventional diesel engine based on model year 2004 emissions standards. This makes NTDEs as clean as or cleaner than either gasoline or natural gas fueled engines (Biodiesel.org 2016).

## Biodiesel Availability

Biodiesel is available nationwide, and can be purchased directly from biodiesel producers and marketers, petroleum distributors, or at a few public retailers throughout the nation (Biodiesel.org 2016). Biodiesel fuel is available at fueling stations within $\qquad$ miles of the WLC site, as shown in Figure 5, Biodiesel Fueling Stations near World Logistics Center Site, below.

## Biodiesel Usage

Biodiesel usage is growing rapidly in every market segment where conventional diesel fuel is used. Some of the leading types of consumers of biodiesel fuels include state and municipal governments, school districts, U.S. Department of Defense, agriculture, cruise ships, mining, commercial trucking and truck stop operators. Many cities and states have started to require that their trucks and buses use biodiesel fuels. Notable examples of municipal users in California include the cities of San Francisco, San Jose, and Santa Monica. Some states such as Washington, Louisiana and Minnesota now also mandate that a certain percentage of all diesel fuel sold must be biodiesel.

Use of biodiesel is diverse, with a variety of users (e.g., municipalities, agencies, and utilities) and equipment and vehicle fleets, such as the following examples (Berkeleybioddiesel.org 2016):

- New common rail engines use biodiesel fuel, B5 or B20, depending on manufacturer.
- Automobile manufacturer acceptance and vehicular usage of biodiesel fuel began when Chrysler released the Jeep Liberty CRD diesels into the American market with B5, which was an indication of at least partial acceptance of biodiesel fuel usage in the automotive industry.
- The City of Halifax, Nova Scotia updated its bus system to allow the fleet of city buses to run completely on a fish-oil based biodiesel fuel.
- The McDonalds Corporation in United Kingdom produced biodiesel from the waste oil of its restaurants and use as biodiesel fuel to run its vehicle fleet. The British Train Operating Company, Virgin Trains was transformed to run on B20. The Royal Train runs onB100.
- The Disneyland Theme Park operates its park trains on B98 biodiesel blends.
- Caterpillar Corporation uses of blends up to B20 in its off-road Tier 4938 K wheel loader. Caterpillar has approved the use of B 20 biodiesel across its range of compact and mid-range engines.
- Komatsu Corporation announced that an acceptable biodiesel fuel blend of up to B20 can be used for all Komatsu engines.
- The Volvo Corporation warranty statement for Volvo Trucks' D11, D13, and D16 engines that the use of biodiesel up to a maximum of B20 in and of itself, will not affect the manufacturer's mechanical warranty as to engine and emissions system related components, provided the bio fuel used in the blend conforms to ASTM standards.
- The John Deere Corporation announced that all John Deere engines can use biodiesel blends. B5 blends are preferred, but concentrations up to B20 can be used providing the biodiesel used in the fuel blend meets the ASTM standards.

Applications of biodiesel fuel can also be seen as a heating fuel in domestic and commercial boilers, using a blend of heating oil and standardized biofuel, known as "bio heat" (Berkeleybioddiesel.org 2016).

As of 2015, the annual U.S. production of biodiesel was 1,263 million gallons (U.S. Energy Information Administration (EIA 2016), and 32 million gallons in California (California Biodiesel Alliance 2016).

The USEPA has set a target of 18.8 billion (bn) gallons blended into the U.S.' fuel supply in 2017, up 4 percent from the 18.1 bn gallons set for this year, which includes 14.8 bn for conventional biofuels, mainly ethanol, up from 14.5 bn for this year. This figure is still far below the 24 bn gallon target in the Renewable Fuel Standard set in 2007 by Congress, which was aimed at cutting US oil imports and increasing renewable fuel use. In addition:

- Total renewable fuel volumes would grow by nearly 700 million gallons between 2016 and 2017.
- Biomass-based biodiesel, which must achieve at least 50 percent lifecycle emissions reductions, would grow by 100 million gallons between 2017 and 2018 .
- Cellulosic biofuel, which requires 60 percent lifecycle carbon emissions reductions, would grow by 82 million gallons, or 35 percent, between 2016 and 2017.


## Biodiesel Benefits and Drawbacks

The use of biodiesel has benefits and drawbacks. According to a USEPA study, the use of B20 can reduce emissions of hydrocarbons by 20 percent, CO by 11 percent, and PM by 10 percent; however it can increase $\mathrm{NO}_{\mathrm{x}}$ emissions by 2 percent. The use of biodiesel does not contribute substantial amounts of GHGs to the global climate change problem since they only emit back to the environment the $\mathrm{CO}_{2}$ that their source plants absorbed from the atmosphere as part of the natural carbon cycle. A benefit of biodiesel is that it can be used in existing diesel engines with no physical changes needed.

Many producers have been unable to produce biodiesel that meets ASTM 6751 quality due primarily to their inability to remove all impurities and water during the washing and refining processes. The USEPA found that the use of B20 can reduce fuel efficiency by 1 to 2 percent. B100, and other diesel/biodiesel blends, are more expensive to consumers than standard diesel fuel, as a result of the rapidly rising feedstock prices and production problems of producers.

## Applicability to Proposed Project:

Future tenants and suppliers of the WLCSP warehouses may choose to use biodiesel. Given that buildout of the WLC will result in daily emissions of NOx well in excess of applicable significance levels, and NOx is the primary culprit in the Basin's ozone nonattainment status, the use of biodiesel in Project-related vehicles should not be mandated. However, because the use of biodiesel results in a reduction of hydrocarbons, CO, and PM as compared to conventional diesel, its use should not be discouraged or limited.

## Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG)

CNG and LNG are two forms of natural gas currently used in vehicles. CNG is produced by compressing natural gas to less than 1 percent of its volume at standard atmospheric pressure. To provide adequate driving range, CNG is stored onboard a vehicle in a compressed gaseous state within cylinders at a pressure of 3,000 to 3,600 pounds per square inch. CNG is used in light-, medium-, and heavy-duty applications. A CNG-powered vehicle gets about the same fuel economy as a conventional gasoline vehicle on a gallon of gasoline equivalent (GGE) basis. GGE is the typical way CNG is sold at public fueling stations. One GGE equals about 5.66 pounds of CNG.

LNG is natural gas that has been converted to liquid form for easier storage and transport. LNG is produced by purifying natural gas and super-cooling it to approximately $-260^{\circ} \mathrm{F}$ to turn it into a liquid. During the process known as liquefaction, natural gas is cooled below its boiling point, removing most of the compounds found in the fuel. The remaining natural gas is primarily methane with small amounts of other hydrocarbons. LNG must be kept at cold temperatures and stored in double-walled, vacuum-insulated pressure vessels. Because of LNG's relatively high production cost as well as the need to store it in expensive cryogenic tanks, the fuel's widespread use in commercial applications has been limited. One GGE equals about 1.5 gallons of LNG (U.S. Department of Energy, 2016).

There are three types of natural gas vehicles (NGVs):

- Dedicated: designed to run only on natural gas.
- Bi-fuel: have two separate fueling systems that enable them to run on either natural gas or gasoline.
- Dual-fuel: traditionally limited to heavy-duty applications have fuel systems that run on natural gas, and use diesel fuel for ignition assistance.

Light-duty vehicles are typically equipped with dedicated or bi-fuel systems, while heavy-duty vehicles use dedicated or dual-fuel systems. On the vehicle, natural gas is stored in tanks as CNG. Dedicated NGVs only have one fuel tank, and are not as heavy as bi-fuel NGVs and can offer more cargo capacity. The driving range of NGVs is generally less than that of comparable conventional vehicles because of the lower energy density of natural gas. Extra storage tanks can increase range, but the additional weight may displace cargo capacity.

LNG, a more expensive option, is used in some heavy-duty vehicles. The form of natural gas used is typically chosen based on the range an application needs. Because it is a liquid, the energy density of LNG is greater than CNG, so more fuel can be stored onboard the vehicle. As a result, LNG is more suitable than CNG for trucks that require longer ranges because liquid is more dense than gas, and, therefore, more energy can be stored by volume in a given tank. LNG is typically used in medium- and heavy-duty vehicles, such as Class 7 and 8 trucks requiring a greater range.

## CNG/LNG Availability

Natural gas powers approximately 150,000 vehicles in the United States and approximately 15.2 million vehicles worldwide. Both CNG and LNG are domestically produced, relatively low priced, and commercially available. Considered alternative fuels under the Energy Policy Act of 1992, CNG and LNG are sold in units of GGEs or diesel gallon equivalents (DGEs) based on the energy content of a gallon of gasoline or diesel fuel. A CNG/LNG fueling station is planned for the WLC site, as described in the WLC Specific Plan. It would service smaller on-
site CNG vehicles (e.g., forklifts) associated with the warehouses and would also be publically available for refueling.

## CNG/LNG Usage

CNG and LNG usage has been supported by various companies in the past for off-road construction trucks and on-road heavy duty trucks, such as the following:

- With regard to off-road construction trucks, Caterpillar is developing large CNG powered mining trucks that would be used mainly for hauling mining ore, debris, and soil.
- For on-road trucks, Volvo offers two CNG-powered on-road heavy duty day cabs (Model VNL and VNM) equipped with a factory-installed Cummins ISL G engine (available 2013). The larger, more robust VNL model features a 12 -liter Cummins- Westport ISX12 G gas engine. As of November 2016, Volvo VNL models are commercially available with the ISX12 natural gas engine.
- Terex introduced its first natural-gas-fueled mixer truck -- the front-discharge FD5000 "Great Lakes" --with a new 12-liter Cummins ISX12G engine available in ratings up to 400 hp and 1450 ft . lb . of torque, in 2014.
- Freightliner Trucks showcased its first 114SD concrete mixer with CNG technology at the 2013 World of Concrete in Las Vegas. In addition, there are other Freightliner trucks that run off of natural gas.

These engines discussed above are also incorporated into a number of mass transit uses. CNG/LNG is used in a variety of heavy-duty sources, such as school buses, transit buses, capacity trucks, tractors, and freightliners.

## CNG/LNG Benefits and Drawbacks

Natural gas vehicles are good choices for centrally fueled fleets. CNG tank technology and safety are improving, and in many cases CNG can provide operators with adequate range (less than 250 miles/day) for their operations. For vehicles needing to travel long distances (greater than 250 miles/day), LNG is a better choice. The advantages of natural gas as a transportation fuel include its domestic availability, widespread distribution infrastructure, low cost, and inherently clean-burning qualities.

The horsepower, acceleration, and cruise speed of NGVs are comparable to those of equivalent conventional vehicles. However, torque levels are slightly lower compared to diesel fueled engines. The Cummins ISL G natural gas engine has a diesel counterpart, the ISL 9 engine. The ISL G (natural gas) provides torque levels of up to $1,000 \mathrm{lb}-\mathrm{ft}$, while the ISL 9 (diesel) provides torque levels of up to $1,300 \mathrm{lb}-\mathrm{ft}$. Although the ISL G and ISL 9 engines are rated for $80,000 \mathrm{lb}$ line haul applications, the deficiency in torque result in trucks travelling slower to the receiver destination. As torque is required for hauling heavy loads upgrade, use of natural gas engines may not be feasible for hauling heavy loads.

Compared with conventional diesel and gasoline vehicles, NGVs can produce some emissions benefits. When used as a vehicle fuel, natural gas can offer life cycle GHG emissions benefits over conventional fuels, depending on vehicle type, drive cycle, and engine calibration. In addition, using natural gas may reduce some types of tailpipe emissions from fuel combustion in a vehicle's engine. The emissions of primary concern include the regulated emissions of hydrocarbons, $\mathrm{NO}_{x}, \mathrm{CO}$, as well as $\mathrm{CO}_{2}$. Due to increasingly stringent emissions regulations, the gap has narrowed between tailpipe emissions benefits from NGVs and conventional vehicles with modern emissions controls. USEPA is requiring all fuels and vehicle types to meet increasingly lower, near zero, thresholds for tailpipe emissions of air pollutants. Still, NGVs continue to provide emissions benefits, especially when replacing older conventional vehicles or when considering life cycle emissions (ADFC 2016).

There are many heavy-duty NVGs - as well as a number of light-duty NGVs-available from original equipment manufacturers. Qualified system retrofitters can also economically, safely, and reliably convert many vehicles for natural gas operation.

However, unlike biodiesel, which is a fuel which can be used interchangeably with conventional diesel with no physical alteration of the engine needed, powering heavy duty equipment with CNG or LNG requires a major engine retrofit or for new equipment to be purchased with a CNG/LNG compatible engine to be installed by the original engine manufacturer (OEM). Thus, the use of CNG or LNG can prove to be costly.

California's Low Carbon Fuel Standard (LCFS) is starting to drive a growing preference for EVs over natural gas and other fossil-fueled vehicles. Even after accounting for the emissions associated with generating electricity (based on California's grid mix), electric buses, for example, typically have 70 percent lower GHGs and 50 percent lower NOX emissions than diesel and natural gas buses on a life cycle basis (Chandler, Espino, and O’Dea 2017). The LCFS helps make electric trucks and buses more affordable to companies and government agencies that purchase heavy-duty vehicle fleets because they can generate and sell LCFS credits and use the proceeds however best serves their business needs.

## Applicability to Proposed Project:

The WLC Specific Plan requires that smaller on-site service vehicles associated with the warehouses will (such as forklifts) use non-diesel fuels such as compressed natural gas (CNG). The Proposed Project would include a CNG/LNG fueling station on-site that would service these vehicles and would also provide refueling to the public. Environmental Analysis for the project indicates that 204 trucks could refuel at the station each day based on trip rates presented in the Project's traffic study. The environmental analysis is conservative in that the traffic study uses a gas station with convenience store for deriving trip generation rates, which would be higher than for a CNG/LNG station.

CNG and LNG vehicles, along with a supporting refueling infrastructure, are applicable to the Proposed Project, and the Proposed Project is providing the refueling infrastructure to support their use. However, future growth of $\mathrm{CNG} / \mathrm{LNG}$ trucks is speculative due to the financial incentive of the LCFS, increasingly strict NOx regulations, and market competition from BEVs and other ZEVs. Future tenants and suppliers of the WLCSP warehouses may choose to use trucks powered by natural gas. Given that buildout of the WLC will result in daily emissions of NOx well in excess of applicable significance levels, and NOx is the primary culprit in the Basin's ozone nonattainment status, the use of natural gas in Project-related vehicles could benefit the project relative to the use of diesel-powered trucks, but it should not be mandated because ZEVs provide even more benefit.

## 4. References

California Air Resources Board (CARB), 2015. Technology Assessment Medium- And Heavy- Duty Battery Electric Trucks And Buses, https://www.arb.ca.gov/msprog/tech/techreport/bev_tech_report.pdf. Accessed February 2018.

CARB, 2016, Mobile Source Strategy, May, 2016. Available at: https://www.arb.ca.gov/planning/sip/2016sip/2016mobsrc.htm . Accessed March 2018.

CARB, 2017, California's 2017 Climate Change Scoping Plan: the strategy for achieving California's 2030 greenhouse gas target, November, 2017.

California Department of Transportation (CalTrans) 2016. California Sustainable Freight Action Plan. http://www.casustainablefreight.org/theplan.html . Accessed February 2018.

California Energy Commission (CEC) 2011, California Energy Efficiency Strategic Plan, http://www.cpuc.ca.gov/general.aspx?id=4125. Accessed February 2018.

CEC, 2017a, Tracking Progress: Energy Storage. Available at: http://www.energy.ca.gov/renewables/tracking_progress/ . Accessed February 2018.

CEC, 2017b, Tracking Progress: Renewable Energy. Available at: http://www.energy.ca.gov/renewables/tracking_progress/ . Accessed February 2018.

CEC, 2017c, Tracking Progress: Resource Flexibility. Available at: http://www.energy.ca.gov/renewables/tracking_progress/ . Accessed February 2018.

CEC, 2017d, Tracking Progress: Zero-Emission Vehicles and Infrastructure. Available at: http://www.energy.ca.gov/renewables/tracking_progress/ . Accessed February 2018.

CEC, 2018. California Energy Demand 2018-2030 Revised Forecast. CEC-200-2018-002-SD. Available at: http://www.energy.ca.gov/2017_energypolicy/documents/ . Accessed February 2018.

California Public Utilities Commission (CPUC), 2018. Summary of Approved SB 350 Transportation Electrification Priority Review Projects for SDG\&E, SCE, and PG\&E. Available at http://www.cpuc.ca.gov/sb350te/ . Accessed February 2018.

CALSTART, 2013, I-710 Project Zero-Emission Truck Commercialization Study. Prepared for Gateway Cities Council of Governments and Los Angeles County Metropolitan Transportation Authority, November 20, 2013.

CALSTART, 2018. Charts provided by Kristian Jokinen of CALSTART on April 26, 2018.
Chandler, S., J. Espino, and J. O'Dea. 2017. Delivering opportunity: How electric buses and trucks can create jobs and improve public health in California. Cambridge, MA, and Berkeley, CA: Union of Concerned Scientists and The Greenlining Institute. Online at www.ucsusa.org/sites/default/files/attach/2016/10/UCS-Electric-Buses-Report.pdf.

First Carbon Solutions/Michael Brandman Associates, 2015, Air Quality, Greenhouse Gas, and Health Risk Assessment Report for World Logistics Center. Included as Appendix D of the DEIR for World Logistics Center, City of Moreno Valley, California.

Next 10, with Beacon Economics, 2018, The Road Ahead for Zero-Emission Vehicles in California: Market Trends \& Policy Analysis. Available at: http://next10.org/zev . Accessed March, 2018.

Oilprice.com 2016. Alternative-Energy/Biofuels/U.S.-Military-gets-Serious-about-Biofuels.html. Available at http://oilprice.com/Alternative-Energy/Biofuels/U.S.-Military-gets-Serious-about-Biofuels.html. Accessed February 2018.

South Coast Air Quality Management District (SCAQMD) 2017, Comments on the Draft Program Environmental Impact Report for the Santa Susana Field Laboratory Project, Attachment B: Zero Emission Truck Technologies. Letter to the California Department of Toxic Substances Control (DTSC), dated November 28, 2017.

United States Department of Energy, "Energy Efficiency and Renewable Energy," http://www.afdc.energy.gov. Accessed February 2018.

United States Environmental Protection Agency (USEPA) 2015. The Green Book Non-attainment Areas for Criteria Pollutants, https://www.epa.gov/green-book. Accessed February 2018.

## E-2 WSP Renewable Technology Feasibility Report

HIGHLAND FAIRVIEW

## WORLD LOGISTICS CENTER <br> COMPARISON OF RENEWABLE ENERGY TECHNOLOGIES



# WORLD LOGISTICS CENTER COMPARISON OF RENEWABLE ENERGY TECHNOLOGIES 

```
TECHNICAL REPORT ( \(5{ }^{\text {TH }}\) DRAFT)
```

PROJECT NO.: 12877B
DATE: MAY 2018

```
WSP
SUITE 300W
4 8 4 0 ~ P E A R L ~ E A S T ~ C I R C L E ~
BOULDER, CO }8030
TEL.: +1 303 551-0936
WSP.COM
```


## PRODUCTION TEAM

## CLIENT

| Project Director | Brian Hixson |
| :--- | :--- |
| WSP |  |
| Project Manager | Basem Muallem |
| Deputy Project Manager | Chris Turnage |
| Technical Director | Evan A. Evans |
| Deputy Technical Director | Alan Davis |
| Lead Energy Analyst | Derek Fehrer |
| Supporting Energy Analyst | John Bynum |
| Supporting Energy Analyst | Taylor Burdge |

Lead Air Quality Analyst
Supporting Air Quality Analyst

Heidi Rous, Environmental Science Associates
Jeff Caton, Environmental Science Associates

## EXECUTIVE SUMMARY

## OVERVIEW

At the request of Highland Fairview, WSP has conducted a comparison of renewable energy technologies and energy efficiency strategies which could be incorporated into the World Logistics Center (WLC) project ("Project") to reduce its energy use and energy-related environmental impacts.

The Project is a 40.6 million square foot logistics campus on the eastern side of the City of Moreno Valley. For the purposes of this analysis the project is assumed to be developed in two phases. Phase 1 consists of 15 buildings totaling $22,560,000 \mathrm{sf}$ and is assumed to be completed in the year 2025. Phase 2 consists of 12 buildings totaling $18,040,000 \mathrm{sf}$ and is assumed to be completed in 2040.

WSP's approach involved first estimating the Project's overall energy needs. This is known as the "Demand-Side Energy Analysis." WSP then identified specific ways that these energy needs could be reduced through the incorporation of a variety of energy efficiency technologies into the project design. Once the Demand-Side Energy Analysis was complete, WSP evaluated various means for supplying renewable clean energy to meet the reduced energy needs. This is known as the "Supply-Side Energy Analysis".

## DEMAND-SIDE ENERGY ANALYSIS

The demand-side energy analysis was conducted using the IES hourly energy simulation software. To utilize the software, an accurate model of a typical Project building was developed, which included the details of a typical building such as the type of building construction material (concrete, wood, or metal), the amount of heating, ventilation and air-conditioning (HVAC) equipment, the type and extent of interior lighting, and the type and extent of material-handling equipment that would go into a typical WLC building. This established a prototype building that would be minimally compliant with the State of California's Title 24 building code requirements. The Title 24-compliant prototype was then modified to incorporate the energy conservation measures (ECMs) to which the Project has committed in the WLC Specific Plan. The adjusted model represented the baseline model against which the energy performance of several additional ECMs were compared, creating a Project Building Model that took the Project well beyond Title 24 compliance.

The Demand-Side Analysis showed the package of ECMs in the Project Building Model provided a $17 \%$ improvement in energy performance and an equally impressive $18 \%$ reduction in GHG emissions over the baseline model. Key ECMs assumed in the Project Building Model were variable refrigerant flow (VRF) heat pumps providing heating and cooling to the office spaces, direct evaporative cooling as the first cooling stage and VRF as the supplemental cooling stage for any potential air-conditioned warehouse spaces, LED lighting throughout the offices and warehouses, and LED exterior and parking lot lighting.

The estimated overall energy demand for the Project assumes that all WLC buildings will incorporate the features of the Project Building Model, and will also accommodate electric vehicle (EV) energy usage at WLC, as discussed herein. While EV usage is expected to increase substantially over time, EV energy usage was not included in the

Demand-Side Analysis to highlight the effectiveness of the ECM's, which do not have any effect or offer any benefits regarding EV energy usage. A Summary of the Overall Energy Analysis Results with EV usage included is below.

## SUPPLY-SIDE ENERGY ANALYSIS

The Project Building Model incorporating the recommended ECMs provided the analytical baseline against which potential renewable clean energy options were measured. WSP evaluated the Project site, its land uses, the circulation plan and existing utilities, along with other constraints and opportunities, to compile a comprehensive list of potential energy supply options. A screening process was applied to narrow the comprehensive list down to those several options that held the greatest potential for being successfully implemented at the Project. Screening criteria that caused some of the energy supply options to be discarded involved safety considerations, regulatory barriers, air emissions concerns, and technical impracticalities. The following table summarizes the Energy Resources considered.

Energy Resources Screening Results

| Supply Option | Screening Criteria |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Carbon | Resiliency | Financial | Technical | Regulatory |
| Recommended for further investigation: |  |  |  |  |  |
| Combined Cooling, Heat and Power (CCHP) | - | $\checkmark$ | $\checkmark$ | $\checkmark$ | - |
| Ground Source Heat Pump (GSHP) | $\checkmark$ | - | - | - | $\checkmark$ |
| Solar photovoltaic (PV) | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ |
| Solar PV + battery | $\checkmark$ | $\checkmark$ | - | $\checkmark$ | $\checkmark$ |
| Off-site procurement | - | - | $\checkmark$ | $\checkmark$ | - |
| Not recommended for further investigation: |  |  |  |  |  |
| Biomass | $\checkmark$ | $\checkmark$ | - | $\times$ | $\times$ |
| Biogas/landfill gas | $\checkmark$ | $\checkmark$ | - | $\times$ | - |
| District energy | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ | - |
| In-line hydro | $\checkmark$ | $\checkmark$ | - | $\times$ | - |
| Microgrid | $\checkmark$ | $\checkmark$ | $\times$ | $\checkmark$ | $\times$ |
| Natural gas pressure recovery | $\checkmark$ | $\checkmark$ | - | $\times$ | - |
| Wind | $\checkmark$ | - | - | $\times$ | $\times$ |

The energy supply options emerging from the screening process were then subjected to engineering analysis to develop a technical basis for identifying the single best supply-side option for use at the WLC project. Groundsource heat pumps (GSHPs); combined cooling, heat, and power (CCHP); and solar photovoltaics (PV) with and without battery storage were modeled with the HOMER Energy simulation tool and other specialized software. Purchasing of green power (offsite procurement) from renewable energy projects located away from the WLC site was also considered among the sustainable energy options.

## SUPPLY-SIDE CONCLUSIONS

WSP concluded in its analysis that GSHPs are not recommended for the Project due to the cooling requirements within the building being much greater than the building heating needs as a result of year-round weather conditions at the WLC site. Such an imbalance would cause the geoexchange field (where excess heat removed from the building by the cooling process is transferred via piping into the ground) to grow increasingly warmer over time. This, in turn, would degrade GSHP performance in providing building space cooling.

CCHP produces air emissions, resulting from the combustion of fossil fuels, that exacerbate the poor air quality of Moreno Valley and the entire South Coast Air Quality Basin. Furthermore, CCHP increases the Project's GHG emissions since it produces more GHG emissions than California's increasingly green grid.

Moreno Valley Utilities (MVU) is the utility provider for the Project and while solar PV is a viable option, MVU has limitations in its Electric Service Rules on the amount of PV allowed for commercial and industrial projects. A system that combines PV with battery storage of excess solar generation was considered, but the MVU solar sizing limitations and the estimated WLC Project demands do not result in excess solar generation to charge a battery. In addition, MVU's Time-of-Use rate structure is not compatible with the Project's peak electrical usage (load curve) making the use of batteries to deliver any meaningful reduction an unviable option.

Considering the air emissions constraints, MVU rate structures, Project electric load curves, and MVU PV sizing rules, rooftop PV systems without energy storage were determined to be the Project's best sustainable clean energy supply option. To determine the specific allowable PV size, WSP analyzed the hourly electric loads simulated using the IES modeling software. Phase 1 building simulation produced a minimum daytime electric load of about 600 kW . The minimum daytime electric load for Phase 2 buildings was simulated to be about $1,600 \mathrm{~kW}$. Thus, since MVU limits on-site PV size to one-half the minimum electric demand a building experiences during daytime hours, Phase 1 buildings can provide up to 300 kW of PV (one-half the 600 kW minimum daytime electric load) and Phase 2 buildings can provide up to 800 kW (one-half the $1,600 \mathrm{~kW}$ minimum daytime electric load). The combination of the recommended ECM package and allowed rooftop solar enables the Project to meet more than $50 \%$ of its annual energy requirements from renewable energy.

Utilizing the maximum permitted amount of rooftop PV would enable the Project office spaces to achieve effectively net-zero energy (NZE) operations. In Phase 1 this would amount to the equivalent of fifteen 60,000 square-foot NZE office buildings. At full build-out this would amount to the equivalent of twenty-seven 60,000 square-foot NZE office buildings. To put this in context, the entire state of California has about 30 NZE office buildings in operation, under construction, or publicly committed as of 2016.

WSP's IES computer model of the Project buildings established the following annual energy usage of the office spaces for each building and the PV generation for each building as follows. Note that advances over time in energy efficiency technologies are assumed to result in less energy usage by Phase 2 offices:

Office Demand and PV Generation per Building

| Description | Phase 1 |  | Phase 2 |  |
| :--- | ---: | ---: | ---: | ---: |
|  | Annual Energy <br> Use (kWh/yr) | Peak Demand <br> (kW) | Annual Energy <br> $(\mathrm{kWh} / \mathrm{yr})$ | Peak Demand <br> (kW) |
| Office-only energy usage <br> per building | 474,120 | 280 | 417,230 | 270 |
| PV generation per <br> building | 512,400 | 300 | $1,366,400$ | 800 |
| Total project office <br> energy usage | $7,111,800$ | 4,200 | $5,006,707$ | 3,240 |
| Total project PV <br> generation | $7,686,000$ |  | 4,500 | $16,396,800$ |

As shown in the table above, the use of PV in each phase would cover both the peak electric load generated by the offices and the annual energy usage of the offices, thereby achieving effective NZE status for the offices. Due to the highly speculative nature of the EV penetration in Phase 2, project mitigation measures require the project to upgrade the structural integrity of the roof on each building to accommodate the possibility of future solar installation over the entire roof. At a minimum, the project will install enough solar power in both phases to meet energy needs of the Project's office spaces.

## ELECTRIC VEHICLE CHARGING LOADS

The use of electric vehicles (EVs) by the motoring public and in industry is projected to increase substantially over the period of Project build-out. Title 24 currently requires $6 \%$ of on-site parking spaces be designed to accommodate EV charging of passenger and light-duty truck vehicle classes. These minimum Title 24 requirements were applied to estimate the additional Phase 1 electricity usage at the Project attributable to EV charging. Because Phase 2 build-out concludes in 2040, EV charging energy usage is highly speculative, but the Project analysis assumed EV projections consistent with California policy trends.

The projected EV electric needs are significant for Phase 1 of the Project, amounting to about $6 \%$ of the total energy usage. At full build-out of the Project, projected EV impact is substantial, accounting for more than one-third of total energy usage by the WLC project. The incremental EV charging needs determine the overall minimum daytime electric load on each building. This, in turn, defines MVU's allowable amount of PV on each building's roof, establishing 300 kW as the expected maximum amount of allowed PV on each Phase 1 building, and accounting for the increase to a maximum of 800 kW of PV expected to be allowed on each Phase 2 building.

## OVERALL PROJECT ELECTRICITY NEEDS

The combination of the electricity consumed by the buildings and that used by on-site EV chargers will result in a significant new load to be met by MVU's system. The table below summarizes the megawatts of peak electric demand projected to be associated with each phase of WLC development.

Peak Electric Demand for WLC Development

| Stage | Number of Buildings | Total Peak Demand <br> (MW) |
| :--- | ---: | ---: | ---: |
| Phase 1 | 15 | 36.5 |
| Full Build | 27 | 83.3 |

## SUMMARY OF ENERGY ANALYSIS RESULTS

A summary of the projected energy performance of the Project is presented in the following tables. Phase 1 results are multiplied by the 15 buildings that are planned for the initial phase of construction. Build-out results are multiplied by 27 buildings in the total Project ( 15 buildings in Phase 1 plus 12 buildings in Phase 2 ). The first table summarizes the impact of the recommended ECM package, relative to buildings that are minimally compliant with Title 24. Note that these figures do not include EV electricity usage or PV generation in order to paint a clear picture of the efficacy of the recommended ECM package. The results demonstrate that the recommended ECMs are expected to deliver energy savings of $16-17 \%$.

Energy Efficiency Performance for WLC Development

| Stage | Energy Savings <br> $(M W h / y r)$ | Energy <br> Savings (\%) | GHG Savings <br> (tonnes CO2e/yr) | GHG Savings <br> $(\%)$ | Renewable <br> Energy Supply <br> $(\%) \%$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Phase 1 | 34,892 | $16.7 \%$ | 6,019 | $10 \%$ | $49 \%$ |
| Full Build | 57,449 | $16.2 \%$ | 9,085 | $18 \%$ | $55 \%$ |

The second table summarizes the impact of the allowed PV capacities, relative to buildings incorporating the recommended ECM package. Note that these figures include EV electricity usage in order to paint a clear picture of the efficacy of on-site electricity generation via PV. This explains the much smaller values for energy savings and GHG savings.
Solar PV Performance for WLC Development

| Stage | Energy Savings <br> $(\mathbf{M W h} / \mathrm{yr})$ | Energy <br> Savings (\%) | GHG Savings <br> (tonnesCO2e/yr) | GHG Savings <br> (\%) | Renewable <br> Energy Supply <br> $(\%) \%$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Phase 1 | 7,686 | $4 \%$ | 1,276 | $4 \%$ | $51 \%$ |
| Full Build | 24,083 | $5 \%$ | 3,386 | $5 \%$ | $57 \%$ |

*Renewable energy fraction takes account of renewables on the California grid
The bar chart below graphically presents the projected energy usage and GHG emissions for the entire Project at the end of Phase 1 and the end of Phase 2. The business-as-usual (BAU) bar reflects minimal compliance with Title 24;
the middle bar represents the recommended ECM package; and the third bar shows the combination of the ECM package and allowable PV.
Phase 1 and Full Build-Out Energy and GHG Results


OFF-SITE RENEWABLE ENERGY PROCUREMENT
Under current regulations, WLC tenants will be able to purchase electricity only from MVU. In the interest of completeness of the discussion on the topic of renewable energy, we herein describe multiple off-site renewable electricity procurement methods that are available in many other electric utility service territories. These include:

- Unbundled renewable energy certificates (RECs);
- Power purchase agreements (PPAs);
- Community choice aggregation (CCA);
- Green tariffs.

There is no one-size-fits-all recommendation for procurement of off-site renewable energy. Each customer's circumstances are likely to be unique, so the best off-site procurement option for one may very well not be the best option for another.

To meet the Project Objectives and the City's Economic Development Objectives (see Section 3.6 of the Project Final EIR and Section 1.3.1 of the WLC Specific Plan), WLC must establish and maintain a competitive position in meeting these objectives. The price premium associated with off-site renewable energy procurement would increase

WLC tenant utility costs and thus run counter to the Project Objectives and the City's Economic Development Objectives. Even if regulations allowed it, it would be counterproductive to require WLC tenants to procure renewable energy from off-site sources. For these reasons, the concept of requiring a tenant to procure off-site renewable energy was not considered a viable sustainable supply option to impose on the Project. Should electricity regulations change in the future to allow procurement of off-site renewable energy, and should WLC tenants elect for corporate, marketing, or other reasons to pursue procurement of off-site renewable energy, the means of doing so via one of the means presented in this report may become available to them.

## TABLE OF CONTENTS

1 INTRODUCTION ..... 1
1.1 Authorization ..... 1
1.2 Purpose ..... 1
2 BACKGROUND ..... 2
2.1 World Logistics Center ..... 2
2.2 Energy Context ..... 2
3 BASELINE PERFORMANCE ..... 4
3.1 Project Phasing ..... 4
3.2 Prototype Buildings. ..... 4
3.3 Electric Vehicles ..... 6
3.4 Baseline Energy Performance ..... 7
3.5 WLC Energy Projections ..... 7
4 DEMAND-SIDE ENERGY ANALYSIS ..... 9
4.1 Recommended Measures ..... 9
4.2 Tenant Loads ..... 11
5 SUPPLY-SIDE ENERGY STRATEGY ..... 12
5.1 Energy Supply Screening ..... 12
5.2 Ground-Source Heat Pump ..... 15
5.3 Fuel Cell Combined Cooling, Heat, and Power. ..... 15
5.4 Solar PV ..... 16
5.5 Energy Storage ..... 17
5.6 Off-Site Renewable Energy Procurement ..... 18
5.7 Recommended Path Forward ..... 25
6 CONCLUSION ..... 26
6.1 Summary of Opportunities ..... 26
6.2 Summary of Recommendations ..... 26
7 APPENDIX A: CURRENT AND FUTURE ENERGY CONTEXT ..... 27
7.1 Electric Grid Projections ..... 27
FIGURES
FIGURE 1: WLC MAP ..... 2
FIGURE 2: BASELINE MONTHLY ENERGY CONSUMPTION ..... 5
FIGURE 3: AVERAGE WEEKDAY ELECTRIC LOAD PROFILES ..... 6
FIGURE 4: PROJECTED BUSINESS-AS-USUAL ANNUAL ENERGY CONSUMPTION AND GHG EMISSION FROM WLC ..... 8
FIGURE 5: ENERGY AND GHG IMPACT FOR PHASE 1 ..... 11
FIGURE 6: ENERGY AND GHG IMPACT OF PROPOSED ECMS + PV FOR PHASE 1 ..... 25
FIGURE 7: CAMX EMISSIONS FACTOR PROJECTION ..... 27

## TABLES

TABLE 1: GHG EMISSION FACTORS ..... 3
TABLE 2: WLC PHASING SCHEDULE ..... 4
TABLE 3: PROTOTYPE BUILDING SPECIFICATIONS ..... 4
TABLE 4: BREAKDOWN OF ENERGY USAGE INTENSITY ..... 7
TABLE 5: ECM DESCRIPTIONS ..... 10
TABLE 6: EFFICIENCY SCENARIO PERFORMANCE ..... 10
TABLE 7: SCREENING CRITERIA MATRIX ..... 12
TABLE 8: ENERGY RESOURCES SCREENING RESULTS ..... 13
TABLE 9: FUEL CELL PERFORMANCE ..... 16
TABLE 10: SOLAR PV PERFORMANCE ..... 17
TABLE 11: UNBUNDLED RECS ..... 20
TABLE 12: VPPA EVALUATION ..... 22
TABLE 13: CCA EVALUATION ..... 23
TABLE 14: GREEN TARIFF EVALUATION ..... 24

## 1 INTRODUCTION

### 1.1 AUTHORIZATION

WSP has been engaged to undertake an analysis of feasible renewable energy technologies that make sense for the World Logistics Center (WLC).

### 1.2 PURPOSE

The objective of this analysis is to identify potential renewable energy options for the WLC that will improve energy performance and reduce greenhouse gas (GHG) emissions of the WLC. The analysis considers Phase 1 and Phase 2 of the WLC. This document reports on analytical outcomes including:

- High level screening of all potential demand-side options to maximize the energy efficiency of the buildings and therefore minimize WLC energy consumption,
- High level screening of all potential supply-side options to deliver sustainable energy to the buildings,
- More detailed analysis of the options that show the best potential.

Evaluations considered the financial, energy, carbon, and technical feasibility of each option. Obviously infeasible options were screened out, including any supply-side options involving combustion of fossil fuels, due to Moreno Valley and the entire South Coast Air Quality Basin being out of compliance for $\mathrm{NO}_{x}$ and other air pollutants. This analysis includes electricity consumption of mobile energy end uses, including electric forklifts used in future WLC warehouses and electric passenger vehicles and electric light-duty trucks expected to be charged in future WLC parking lots.

## 2 BACKGROUND

### 2.1 WORLD LOGISTICS CENTER

The World Logistics Center (WLC) is a master-planned development encompassing 2,610 acres in Moreno Valley California, as shown in Figure 1. At full build-out the development will include up to 40.6 million square feet of building area. The vision for the World Logistics Center is to establish a world class corporate park specifically designed to support large-scale logistics operations.

Figure 1: WLC Map


WSP has undertaken an energy analysis the results of which are presented in this report. This report is intended to guide development of an updated EIR and help determine the best path forward to incorporate renewable energy into the development.

### 2.2 ENERGY CONTEXT

### 2.2.1 ELECTRIC UTILITIES

Moreno Valley Electric Utility (MVU) is expected to provide electric services to the WLC. A report developed by Utility Specialists determined that MVU will need to construct additional substation capacity beyond already planned expansions to meet the electric needs of the WLC. Therefore, reducing peak electricity demand from the WLC can also reduce the additional substation capacity required to serve the WLC.
Tenants of the WLC will contract for utility services directly with MVU. The rate structure for each account is determined by the monthly maximum demand. WSP expects that all proposed buildings in the WLC will exceed the 20 kW demand threshold specified by MVU and will therefore be subject to Schedule C-Large General Service. Tenants will also be eligible for Schedule TOU-LGS - Time of Use - Large General Service rates. However, analysis using energy models and

15-minute interval consumption data from five existing logistics buildings in the MVU service territory determined that a time-of-use rate is not advantageous to the customer. Therefore, the WSP analysis was conducted with the assumption that tenants at the WLC will be subject to the rates specified in Schedule C-Large General Service for primary voltage customers. The rate structure is such that customers can decrease their energy costs by reducing monthly peak electricity demand, reducing electricity consumption, or improving the power factor of their facility. Analysis of the renewable energy options within this report considers the impact of reducing monthly peak electricity demand and reducing electricity consumption.
MVU offers a solar net energy metering program to its customers. A successor rate to net energy metering, NEM 2.0, was adopted by the City Council on April 17, 2018. Under this new rate, customers will be paid for any excess generation at the end of each billing period, and will receive a dollar-denominated credit on their bill. However, based on conversation with MVU, WSP expects that this program will not be available to the WLC because of the expected size of each of the warehouses at the development. Furthermore, MVU imposes limits on the capacity of on-site solar PV generation that can be installed by their customers. Per Resolution No. 2017-20 the "maximum solar generating capacity that will be approved to be connected to each meter is up to $50 \%$ of the meter minimum daytime load." This dramatically limits the amount of on-site solar generation that can be installed at WLC buildings.

### 2.2.2 NATURAL GAS UTILITIES

Southern California Gas Company (SCG) provides natural gas services in the WLC area for space heating and service water in the business-as-usual scenario. It is assumed that the tenants of the WLC will contract for natural gas services directly with SCG and be subject to the $G N-10$ rates. A new natural gas distribution network at the site is required to provide natural gas services to individual buildings. In an all-electric scenario where WLC buildings do not consume natural gas, there is no need for a natural gas distribution network and capital cost savings can be realized.

### 2.2.3 GHG EMISSIONS

Electricity emissions factors for both Phase 1 and Phase 2 were calculated using 2016 eGRID factors for California-Mexico Power Area (CAMX) and changes in the energy resource mix projected by U.S. Energy Information Administration (EIA). As discussed in Appendix A: Current and Future Energy Context, the EIA projects that the California grid's emission factor will decline $31 \%$ from current levels by 2025 and $41 \%$ by 2040.

For natural gas, an emissions factor of $117 \mathrm{lb}_{\mathrm{CO}}^{2} \mathrm{e} / \mathrm{MMBTU}$ (pounds of $\mathrm{CO}_{2}$-equivalent per million BTU ) was used to calculated GHG emissions per guidance from EPA's mandatory reporting rule. This emissions factor was held constant for both Phase 1 and Phase 2.

Table 1: GHG emissions factors

| Phasing | Grid Electricity <br> (lb CO2e /MWh) | Natural Gas <br> (lb CO2e /MMBTU) |
| :---: | ---: | ---: |
| Phase 1 (2025) | 366 | 117 |
| Phase 2 (2040) | 310 | 117 |

### 2.2.4 CRITERIA POLLUTANTS

The Moreno Valley air shed within the South Coast Air Quality Management District (SCAQMD) currently exceeds allowable $\mathrm{NO}_{\mathrm{x}}$ limits by a factor of three. Consequently, distributed energy resources that emit $\mathrm{NO}_{\mathrm{x}}$ were excluded from further analysis.

## 3 BASELINE PERFORMANCE

### 3.1 PROJECT PHASING

The WLC project will be built out over a 20 -year period. For purposes of this analysis, it was assumed that there will be a total of 27 distribution centers, each of approximately $1.5 \mathrm{M} \mathrm{ft}^{2}$, planned for construction completion by 2040 . Fifteen of the 27 buildings will be built during Phase 1 (2020-2025) with the remaining 12 buildings being constructed during Phase 2 (2025-2040). When complete, WLC will total approximately $40.6 \mathrm{M} \mathrm{ft}^{2}$ of floor area.

Based on the distribution centers that currently exist within the MVU service territory, this analysis assumes that about $11 \%$ of the WLC buildings will feature air-conditioned warehouses. No refrigerated warehouses were included.
The complete phasing schedule is detailed in Table 2.
Table 2: WLC phasing schedule

| Unconditioned |  |  | Air-Conditioned | Total |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Phase } 1 \\ 2020-2025 \end{gathered}$ | Number of Buildings | 13 | 2 | 15 |
|  | Floor Area ( $\mathrm{ft}^{2}$ ) | 19.55 M | 3.01 M | 22.56 M |
| $\begin{gathered} \text { Phase } 2 \\ 2025-2040 \end{gathered}$ | Number of Buildings | 11 | 1 | 12 |
|  | Floor Area ( $\mathrm{ft}^{2}$ ) | 16.54 M | 1.5 M | 18.04 M |
| Full Buildout | Number of Buildings | 24 | 3 | 27 |
|  | Floor Area ( $\mathrm{ft}^{2}$ ) | 36.09 M | 4.51 M | 40.6 M |

### 3.2 PROTOTYPE BUILDINGS

WSP developed Title 24-compliant energy models for air-conditioned and unconditioned prototype buildings. Each model contains details about building construction; lighting systems and controls; heating, ventilating, and air-conditioning (HVAC) systems and controls; and office equipment. The prototype buildings were created based on the building space usages, floor areas, and operating schedules specified in Table 3.
Table 3: Prototype building characteristics

| Primary Usage | Area Breakdown |  | Operating Schedule |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | Area $\left(\mathbf{f t}^{2}\right)$ | Percent | Weekdays | Saturday | Sunday/Holiday |
| Office | 60,144 | $4 \%$ | $8: 00 \mathrm{AM}-6: 00 \mathrm{PM}$ | Not Operational | Not Operational |
| Warehouse | $1,443,556$ | $96 \%$ | $8: 00 \mathrm{AM}-12: 00 \mathrm{AM}$ | $8: 00 \mathrm{AM}-4: 00 \mathrm{PM}$ | Not Operational |
| Whole Building | $\mathbf{1 , 5 0 3 , 7 0 0}$ | $\mathbf{1 0 0 \%}$ |  |  |  |

As-built construction drawings and actual metered electricity usage data for the existing Skechers building and a sample of other distribution center buildings in the MVU territory were used to estimate the process loads (such as electric forklifts and conveyance systems) within the warehouses. The process loads were extracted from hourly metered data by subtracting the lighting and HVAC loads produced by the baseline building energy models. The resulting estimate of process equipment electricity usage was spot-checked against actual metered data collected by MVU on select Skechers forklift battery chargers and conveyance motors. This estimated process load data was adjusted to account for WLC's projected operating schedule and then used as inputs to the prototype models.
The air-conditioned and unconditioned prototype models were then driven with Moreno Valley long-term average weather data to produce the baseline annual hourly building energy loads against which the energy demand-side options and the energy supply-side options were evaluated (see Sections 4 and 5).

Figure 2 details monthly energy consumption for both the air-conditioned and unconditioned warehouses. Lighting and equipment is responsible for most of the energy consumption, even in the air-conditioned warehouses. Energy usage in the air-conditioned warehouses is highest during the winter months with natural gas representing $30 \%$ of the monthly energy consumption. In contrast, the unconditioned warehouse shows little seasonal variation. Note that the Title 24-compliant buildings use natural gas for space heating and for domestic hot water.

Figure 2: Baseline monthly energy consumption


Figure 3 details an average weekday electric load profile projected for the Phase 1 unconditioned and air-conditioned WLC buildings during the summer and winter. As anticipated, the warehouse's operating schedule determines the shape of the load profiles. Demand quickly ramps up during the start of the 8:00 AM shifts and then remains relatively flat for the rest of the day. There is a small dip around 6:00 PM when the office schedule ends but the major drop happens at 12:00 AM when the warehouse shift ends. The need for air conditioning adds to the air-conditioned warehouse demand during the summer while there is little difference between the unconditioned and air-conditioned warehouses during the winter.

Figure 3: Average weekday electric load profiles for Phase 1 buildings


## Winter Weekday



The peak electric demand for each of the 13 Phase 1 buildings with an unconditioned warehouse is projected to be about 2.1 MW , including estimated EV charging loads. The peak for each of the two Phase 1 buildings with air-conditioned warehouses is projected to be about 4.1 MW. Total aggregated peak demand at the end of Phase 1 construction is projected to be approximately 34.9 MW across 13 buildings with unconditioned warehouses and two buildings with air-conditioned warehouses. Note that these are peak demand values as opposed to the average demand values depicted in Figure 3.

For Phase 2, the peak electric demand for each of the 11 Phase 2 buildings with an unconditioned warehouse is projected to be about 3.7 MW, including the substantially greater EV charging loads that are projected for the $2025-2040$ Phase 2 period. The peak for the one Phase 2 building with an air-conditioned warehouse is projected to be about 5.4 MW . Total aggregated peak demand at full buildout is projected to be approximately 58.2 MW across 24 buildings with unconditioned warehouses and three buildings with airconditioned warehouses.

### 3.3 ELECTRIC VEHICLES

In addition to building energy consumption, electric vehicles are expected to contribute significantly to the electricity demand and consumption at the WLC. For this analysis, electric vehicle (EV) demand and consumption were calculated based on Title 24 code requirements, vehicle traffic, battery sizes, and anticipated charging requirements. Only passenger EVs and light-duty truck EVs were considered. No medium-duty or heavy-duty trucks were included since current code is silent on these vehicle classes. The resulting hourly data was then added to the building model outputs to create combined load profiles.

Peak EV charging rate was estimated by allocating the annual electricity consumption of EVs - the average daily consumption multiplied by 365 - on an hourly basis per the building operating schedules. Specifically, EV charging was assumed to follow the same hourly schedule as that of the building interior lighting and process loads. Logically, when the lights are on and the process equipment is operating, staff are on duty and the vehicles that brought them to the building are parked in the parking lot. The annual EV electricity usage was allocated across each week day and each weekend day such that the hourly EV load shape tracked the lighting and process load shape all year long.

The resulting peak electric load imposed by EV charging is about $25 \%$ of the aggregate nameplate capacity of all charging stations. This result is in line with industry expectations that charging blocks managed with automated 'smart' controls will reduce the coincident peak demand to $20-25 \%$ of the aggregate capacity of the individual charging stations. So for example, when all charging stations of a 100 kW -rated charging block are plugged into EVs, the block is expected to experience a maximum power draw of only about 25 kW at any point in time.

The incremental EV charging loads projected for WLC determine the peak and the minimum daytime electric loads on each building. The daytime minimum defines the maximum amount of PV that MVU's rules allow on each building's roof. See Section 5.4 for details.

### 3.4 BASELINE ENERGY PERFORMANCE

Because of the anticipated improvements in building energy performance and the expected rise of electric vehicles, Phase 2 models were adjusted to 2040 conditions. The electric vehicle load is expected to increase 20 -fold during Phase 2 while the average Title 24 -compliant building energy consumption is expected to decrease by about $13 \%$ in Phase 2 . The breakdown of energy usage intensity ( $\mathrm{kWh} / \mathrm{ft}^{2}-\mathrm{yr}$ ) is shown in Table 4 for Phase 1 and Phase 2 buildings with unconditioned and airconditioned warehouses.

Table 4: Breakdown of energy usage intensity (kWh/ft²-yr) for Title 24-compliant buildings

| End Use | Phase 1 |  | Phase 2 |  |
| :--- | ---: | ---: | ---: | ---: |
|  | Unconditioned | Air-Conditioned | Unconditioned | Air-Conditioned |
| Equipment and Lighting | 8.02 | 8.02 | 7.08 | 7.08 |
| HVAC | 0.88 | 3.73 | 0.81 | 3.43 |
| Building Total | 8.90 | 11.75 | 7.88 | 10.51 |
| Electric Vehicles | 0.48 | 0.48 | 9.66 | 9.66 |
| TOTAL | $\mathbf{9 . 3 8}$ | $\mathbf{1 2 . 2 3}$ | $\mathbf{1 7 . 5 5}$ | $\mathbf{2 0 . 1 7}$ |

### 3.5 WLC ENERGY PROJECTIONS

Based on the results of the energy modeling and electric vehicle load definitions, the Title 24 -compliant annual energy consumption and GHG emissions profile shown in the following figure were derived for the WLC over the buildout of the project. This projection considers expected changes to California's electric grid (ever-increasing amounts of renewable electricity in the mix) as well as the estimated increased penetration of passenger EVs and light-duty truck EVs at WLC in future years.

Figure 4: Projected Title 24-compliant annual energy consumption and GHG emissions of WLC over build-out period


## 4 DEMAND-SIDE ENERGY ANALYSIS

### 4.1 RECOMMENDED MEASURES

Energy efficiency is often the most cost-effective method to reduce the energy and carbon impacts of a building. Regulatory constraints limiting the capacity of on-site renewables that can be implemented at the WLC, outlined further in Section 5: Supply-Side Energy Strategy, further highlight the importance of reducing energy consumption through demand-side measures.

Using the baseline energy models discussed in Section 3: Baseline Performance, WSP evaluated a wide range of energy conservation measures (ECMs) to identify the most cost-effective set for reducing building energy consumption and related emissions beyond Title 24 energy code. The engineering analysis underpinning this proposal led WSP to reject some of the evaluated demand-side options because they are duplicative with other more advantageous options or are incompatible with the most advantageous HVAC systems. The ECMs outlined in Table 5 are the best choice for the WLC based on maximizing environmental protections in the most cost-effective manner practical.

The ECMs address internal loads, such as lighting and equipment, as well as the energy required to provide heating, cooling, and domestic hot water. While most energy consumption is due to lighting and equipment loads, there is still an opportunity to reduce the amount of energy required to provide heating and cooling for the buildings. For the office space, the recommended system is underfloor air distribution coupled with water-cooled variable refrigerant flow (VRF) technology that is served by a shared water loop. The shared water loop allows for sharing of energy among zones so that if one zone requires heating while another requires cooling, energy can be transferred between zones resulting in built-in energy recovery. If additional cooling is needed during extremely warm weather, a cooling tower provides supplemental heat rejection to the atmosphere.

Air-conditioned warehouse spaces are recommended to be served by displacement ventilation whereby conditioned air is delivered at low velocity from air diffusers near floor level. Cooling of supply air is achieved via direct evaporative cooling sections that deliver sufficiently cool air at required warehouse conditions for most hours during the typical weather year. During hours that evaporative cooling doesn't meet the cooling load or doesn't maintain acceptable relative humidity in the warehouse, VRF systems are utilized for supplemental space cooling. The shared water loop of the warehouse VRF systems is connected to an air-to-water heat pump to provide supplemental cooling via heat rejection to the atmosphere. When heating requirements exceed the heat recovered within the shared water loop by the VRF units, supplemental heat for the water loop is extracted from the atmosphere by the same air-to-water heat pump running in reverse.

Because all heating and cooling in the buildings is provided via direct evaporative cooling and heat pumps, natural gas is not required. This allows the WLC to eliminate on-site fossil fuel combustion that would normally be associated with service water and space heating, thereby eliminating associated air emissions. Additionally, in all-electric buildings there is not a need for natural gas distribution infrastructure. Cleaner options could be considered by WLC tenants to fuel back-up generators, including E85 (85\% ethanol, $15 \%$ gasoline), biodiesel, propane, and batteries. SCAQMD discusses permitted emergency generation at http://www.aqmd.gov/home/permits/emergency-generators\#Fact1.

The WLC Specific Plan has previously publicly committed to certain energy efficiency features that will appear in the WLC buildings. The ECMs in Table 5 go substantially beyond that previous commitment in terms of the features of the buildings. They individually and collectively, in addition to the HVAC systems recommended above, reduce the amount of energy consumed by the various equipment that the buildings will contain. This package of ECMs delivers energy performance that exceeds minimal compliance with current Title 24 requirements by 16-17\%. Table 6 summarizes the energy performance of the ECM package.

Table 5: ECM Descriptions

| Category | ECM Description | Application Area |
| :---: | :---: | :---: |
| Envelope | Optimal Choice of Vertical Fenestration Construction | All |
|  | Optimal Choice of Skylight Construction | Warehouse |
|  | Optimal Window to Wall Ratio | All |
|  | Optimal Skylight to Roof Ratio | Warehouse |
| Exterior Loads | LED exterior lighting | All |
|  | Daylight sensor based exterior lighting | All |
| Internal Equip. Loads | Automatic Receptacle Control | Office |
|  | Highest Efficiency Office Equipment | Office |
|  | Highest Efficiency Other Internal Loads | Office |
| Lighting | Multi-Level Switching | All |
|  | High Performance Lighting (LED) | All |
|  | Use separate controls for lighting areas near windows | All |
|  | Occupant sensors | Office |
| Daylighting | High-on-wall continuous daylighting windows/clerestory windows | Warehouse |
|  | Optimal Daylighting Control | All |
|  | Dimming daylight controls | Office |
| HVAC | Thermostat setback/setup | Office |
|  | Shut off outdoor air and exhaust air dampers during unoccupied periods | Office |
|  | Supply air temperature reset | Office |
|  | High Performance Fans | All |
|  | Variable Speed Fans | Office |
|  | High efficiency pumps | All |
|  | Variable Speed Pump motors | All |
|  | Reduce service water consumption | All |
|  | Efficient service water pumping | All |
|  | Integrated and optimized air side economizer | Office |
|  | Direct Evaporative Cooling | Warehouse |
|  | Variable refrigerant flow heat pump \& cooling | Office |
|  | Dedicated Outside Air System Ventilation with Heat Recovery | Office |
|  | Demand controlled ventilation/ $\mathrm{CO}_{2}$ controls | Office |

Table 6: Efficiency Scenario Performance

| Stage | Energy <br> Savings <br> $(M W h / y r)$ | Energy <br> Savings <br> $(\%)$ | GHG <br> Savings <br> (tonnes <br> CO2e/yr) $^{(M)}$ | GHG <br> Savings <br> $(\%)$ | Renewable <br> Energy <br> Supply <br> $(\%)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Phase 1 | 34,892 | $16.7 \%$ | 6,019 | $10 \%$ | $49 \%$ |
| Full build | 57,449 | $16.2 \%$ | 9,085 | $18 \%$ | $55 \%$ |

[^85]The impact of the recommended ECMs on the annual energy consumption and GHG emissions of the WLC at the end of Phase 1 is shown in Figure 5.

Figure 5: Phase 1 and Full Build-Out Energy and GHG Results


### 4.2 TENANT LOADS

It is unknown at this time who will be the tenants within the WLC buildings. Warehouse operations could vary widely, from relatively low-energy operations featuring high-pile goods storage and materials to relatively high-energy operations featuring highly automated facilities with extensive material handling equipment. WSP's analysis assumes the typical WLC tenant will have highly automated warehouse operations. Because the WLC developer has no direct control over warehouse equipment and operations, the ECM analysis did not consider any opportunities to reduce energy usage by warehouse equipment.

## 5 SUPPLY-SIDE ENERGY STRATEGY

### 5.1 ENERGY SUPPLY SCREENING

As a preliminary step in developing a sustainable energy strategy for WLC, WSP has undertaken a high-level screening analysis of renewable energy technologies. The purpose is to identify feasible supply options. The screening criteria used in this exercise are categorized in the matrix below as Carbon, Resiliency, Financial, Technical, and Regulatory:

Table 7: Screening Criteria Matrix

| Screening Criteria | $\checkmark$ | $\times$ |  |
| :--- | :--- | :--- | :--- |
| Carbon | Net carbon emissions will <br> be reduced | Net carbon emissions will <br> not be reduced | Effect on net carbon emissions is <br> unclear without analysis |
| Resiliency | Energy resiliency will be <br> enhanced | Energy resiliency will not <br> be enhanced | Effect on energy resiliency is <br> unclear without analysis |
| Financial | Financial performance will <br> likely be attractive | Financial performance will <br> likely be unattractive | Financial performance is unclear <br> without analysis |
| Technical | No anticipated technical <br> challenges | Technical challenges are <br> expected | Existence of technical challenges <br> is unclear without analysis |
| Regulatory | No anticipated regulatory <br> challenges | Regulatory challenges are <br> expected | Existence of regulatory challenges <br> is unclear without analysis |

Incorporating high-performance energy efficiency into the WLC is the least-cost sustainable energy resource available and, thus, should be the first step in reducing energy demand and greenhouse gas (GHG) emissions. Furthermore, improving the energy efficiency of the buildings will reduce the additional electrical distribution capacity that must be built to supply the WLC, and MVU may be able to avoid associated substation, transformer, and local distribution capital costs. WLC has committed to achieve energy efficiency $10 \%$ better than 2008 Title 24 code or the most current code at the time of construction, whichever is more efficient. Additional, cost effective efficiency improvements are possible through adoption of additional available energy efficiency opportunities identified by the Energy Demand Side Analysis task (see Section 5 of this report).

In the business-as-usual (BAU) scenario, each warehouse will be served by 12 kV service from the Moreno Valley Electric Utility (MVU). Currently the WLC developer intends to own the buildings. However, under certain circumstance, the developer may wish to sell portions of an individual building or an entire building. In any case, the developer expects that the building occupants will be responsible for paying utility bills.

The figure below shows the results of the high-level qualitative screening analysis.

## Table 8: Energy Resources Screening Results

| Supply Option | Screening Criteria |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Carbon | Resiliency | Financial | Technical | Regulatory |
| Recommended for further investigation: |  |  |  |  |  |
| Combined Cooling, Heat and Power (CCHP) | - | $\checkmark$ | $\checkmark$ | $\checkmark$ | - |
| Ground Source Heat Pump (GSHP) | $\checkmark$ | - | - | - | $\checkmark$ |
| Solar photovoltaic (PV) | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ |
| Solar PV + battery | $\checkmark$ | $\checkmark$ | - | $\checkmark$ | $\checkmark$ |
| Off-site procurement | - | - | $\checkmark$ | $\checkmark$ | - |
| Not recommended for further investigation: |  |  |  |  |  |
| Biomass | $\checkmark$ | $\checkmark$ | - | $\times$ | $\times$ |
| Biogas/landfill gas | $\checkmark$ | $\checkmark$ | - | $\times$ | - |
| District energy | $\checkmark$ | $\checkmark$ | $\times$ | $\times$ | - |
| In-line hydro | $\checkmark$ | $\checkmark$ | - | $\times$ | - |
| Microgrid | $\checkmark$ | $\checkmark$ | $\times$ | $\checkmark$ | $\times$ |
| Natural gas pressure recovery | $\checkmark$ | $\checkmark$ | - | $\times$ | - |
| Wind | $\checkmark$ | - | - | $\times$ | $\times$ |

The WLC build-out cycle will occur over 20 years. The evident trends in the decreasing capital cost and the increasing efficiency over time of PV, batteries, lighting technology, and controls technology have been considered and are reflected in the analyses underpinning the comparison of renewable energy technologies.

Energy supply options that warrant further investigation are discussed in sections $5.3-5.6$. These investigations were conducted using the HOMER energy modeling software. Several supply options were removed from consideration and are discussed briefly described below.

## Biomass:

Biomass systems replace conventional fuel boilers with boilers that burn biofuels, such as agricultural residues, forest and mill residues, and urban wood waste. Biomass systems can be used to generate heat only, or, generate both heat and electricity. Because WLC is expected to have minimal heating loads, the most advantageous configuration would be to use biomass to generate electricity and potentially heat for use in an absorption chiller.
An analysis using National Renewable Energy Lab's System Advisor Model found that there are limited biomass resources available within a 50 -mile radius of WLC, enough for roughly 11 MW of generating capacity, and that these resources primarily consist of urban wood waste. Due to the logistical complexity of obtaining and ensuring sufficient feedstock and concerns about criteria pollutant emissions, specifically $\mathrm{NO}_{\mathrm{x}}$ in this SCAQMD air shed, WSP has not given biomass further consideration.

## Biogas/landfill gas:

Biogas is a methane-rich gas, similar to natural gas, that can be generated from wastewater treatment plants, landfills, and anaerobic digesters. Biogas could potentially be sourced from the Badlands Landfill, which is less than a mile north of the planned site of WLC. However, the amount of gas presently being captured at the landfill is relatively small - 1.3 million cubic feet per day, which is sufficient to generate roughly 2 MW of electricity. Much of the gas is already being used to generate electricity at the Badlands Landfill ${ }^{1}$. Therefore, WSP has not given further consideration to the direct use of biogas.

## District energy:

District energy distribution is a common approach for supplying both heating and cooling energy to universities, medical and military campuses, and urban areas. District energy can be a tool for achieving GHG and energy use reductions by serving buildings with centralized, high-efficiency equipment instead of distributed, less efficient systems. District energy systems can open the opportunity to recover heat rejection from one building to be used as a heat source in another building. Lastly, district energy systems can reduce the overall plant equipment installed in the district, since diversity (not all buildings peak at the same time) and back-up systems can be centralized.

However, the benefits mentioned above are best realized by dense development with a large building diversity, i.e. a mixture of commercial, community, residential, and retail space. In the WLC, it is expected that the buildings will have similar loads, therefore reducing the potential for capital savings to be unlocked by a district energy system's ability to exploit high demand diversity on the customer side. While there are no technical constraints to district energy, most of the warehouses are unconditioned and so the distance between air-conditioned spaces in the WLC makes the cost of installing a district energy distribution system prohibitively expensive.

In addition, SCAQMD air quality standards are greatly exceeded by current air pollution levels in the WLC air shed. District energy systems that are energized by the combustion of fuels will exacerbate the already untenable local air quality and so are not given further consideration. District energy energized by electrically driven heat pumps are discussed in Section 5.2 below.

## In-line hydro:

WSP understands that a 145 -inch diameter water transmission pipeline, owned by the California Aqueduct/Metropolitan Water District, crosses the project area. In-line turbines can be used to generate electricity from water flowing through transmission pipelines. While this offers the opportunity for zero-carbon electricity to be generated at WLC, the generation potential is expected to be small and complexity relatively high. Therefore, WSP did not give further consideration to in-line hydro.

## Microgrid:

Microgrids are local electricity distribution systems that can be "islanded", ie, they can operate independently of the regional grid when the latter experiences a failure. The resiliency provided by microgrids can sustain operations that are missioncritical. Such resilience can also greatly benefit operations that value the ability to continue operating in the face of a grid interruption. However, electricity distribution regulations preclude delivery of electric power across public rights-of-way by any entity besides the utility. Furthermore, MVU is currently precluded from owning/operating generation assets. Finally, the extra expense of the specialized microgrid equipment causes microgrid economics to favor high-density collections of buildings, such as urban districts and campuses. The layout of WLC and MVU restrictions only accommodate small clusters of buildings, perhaps two or three buildings. At this scale, a microgrid is impractical and so WSP has not given microgrids further consideration.

## Natural gas pressure recovery:

Several high-pressure natural gas pipelines cross the property. These can be used to generate electricity by dropping the high pressure in the pipes down to local distribution pressure through expansion turbines. There are strict rules and safety standards governing the natural gas transmission facilities. While this offers the opportunity for zero-carbon electricity to be

[^86]generated at WLC, the generation potential is expected to be small and complexity relatively high. Therefore, WSP has not given further consideration to natural gas pressure recovery.

## Wind:

The annual average wind speed in Moreno Valley is relatively low ${ }^{2}$. In addition, while utility-scale wind farms are very cost competitive, smaller-scale wind technology deployments are less so. Furthermore, on-site deployment of wind turbines would likely face opposition by regulators and the public over safety and noise concerns. For these reasons, WSP has not given further consideration to on-site wind.

### 5.2 GROUND-SOURCE HEAT PUMP

A ground-source heat pump (GSHP) plant uses a reversible chiller (heat pump) to provide both heating and cooling to the building(s) being served. Typically, a ground loop consisting of a field of vertical geo-exchange boreholes (300-600 ft deep) is drilled below the lowest parking level of the site. Other configurations, such as foundation- and slab-integrated exchange fields, have been used successfully in numerous locations.

Under the right conditions, these systems can provide improved heating and cooling performance seasonally compared to an air-source heat pump or traditional natural gas or electric resistance heating. Furthermore, they can eliminate noise, rooftop equipment, and cooling towers and associated water use. GSHP heating and cooling is one means to make the transition to an all-electric energy profile, thereby creating a possible pathway for WLC to eventually offer buildings with the potential to be powered by $100 \%$ renewable energy.

However, GSHP is not recommended in the WLC location due to building space cooling requirements being much greater than space heating needs. Such an imbalance would cause the geo-exchange field to grow increasingly warmer over time. This, in turn, would degrade GSHP performance in providing building space cooling. For this reason, VRF reversible heat pumps are recommended for offices and air-conditioned warehouses. These systems also create a possible pathway for WLC to eventually offer buildings with the potential to be powered by $100 \%$ renewable energy.

### 5.3 FUEL CELL COMBINED COOLING, HEAT, AND POWER

CCHP plants generate electricity and useful thermal energy through the capture of waste heat. Combined heat and power plants (CHP) supply thermal energy as heat and combined cooling heat and power plants (CCHP) provide thermal energy as both heating and cooling, the latter by means of an absorption chiller. Making use of waste heat from electricity generation increases the overall efficiency of the plant.

WSP evaluated the suitability for CCHP - using a fuel cell as primary plant equipment - to reduce lifetime GHG emissions from the WLC. While fuel cells are costlier than combustion turbines and reciprocating engines (the CCHP primary equipment alternatives), they have the advantage of dramatically lowering $\mathrm{NO}_{\mathrm{x}}$ emissions, which is an important criterion in this SCAQMD air shed.

Because the California electricity grid features so much renewable energy and is therefore so clean, and getting cleaner every year, on-site electricity generation by CCHP, energized by natural gas-fed fuel cells, actually produces more GHG emissions and requires more overall energy consumption when compared to WLC receiving all required energy from the grid.

While fuel cells offer an advantage through shifting energy usage from electricity to cheaper natural gas, they would increase site energy consumption and GHG emissions compared to the base case while decreasing the percentage of renewables in the WLC's energy supply due to decreased use of cleaner grid electricity. Because California's grid electricity already contains a high percentage of renewable electricity, it is less carbon intensive than the electricity generated by a fuel cell. While fuel cells are more efficient than the natural gas-fired power plants that operate during periods of peak power demand on the

[^87]California grid, the long-term expectation of the California Energy Commission and EIA is that the majority of new capacity in California will come from renewables, not from gas-fired plants. Considering this, using generating capacity at WLC that relies on natural gas, even if it is efficient fuel cells, will increase WLC emissions.

Table 9 summarizes the performance of fuel cell CCHP at WLC. Negative values indicate net increases compared to baseline.
Table 9: Fuel Cell CCHP Performance

| Stage | Energy <br> Savings <br> $(M W h / y r)$ | Energy <br> Savings <br> $(\%)$ | GHG <br> Savings <br> (tonnes <br> CO2e/yr) | GHG <br> Savings <br> $(\%)$ | Renewable <br> Energy <br> Supply <br> $(\%) \%$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Phase 1 | $-95,739$ | $-52 \%$ | $-18,425$ | $-60 \%$ | $19 \%$ |
| Full build | $-240,849$ | $-52 \%$ | $-50,888$ | $-78 \%$ | $21 \%$ |

*Renewable energy fraction takes account of renewables on the California grid

### 5.4 SOLAR PV

On-site solar PV generation is scalable, becoming more cost competitive as project size increases, and can thus be a foundational component of WLC's sustainable energy strategy. Understanding available options and trade-offs is important to optimize the use of solar at WLC. WSP has analyzed the feasibility and impact of on-site solar at the WLC, considering the trade-offs between roof- and ground-mounted solar and current and future electric rate structures.
As pointed out in Section 2.2.1, MVU limits on-site PV size to one-half the minimum electric demand a building experiences during daytime hours. To determine the specific allowable PV size, WSP analyzed the hourly electric loads simulated using the IES modeling software. Phase 1 building simulation produced a minimum daytime electric load of about 600 kW . The minimum daytime electric load for Phase 2 buildings was simulated to be about $1,600 \mathrm{~kW}$. Thus, to stay within all the constraints facing the WLC project, Phase 1 buildings can feature 300 kW of PV (one-half the 600 kW minimum daytime electric load) and Phase 2 buildings can feature 800 kW . At these PV system sizes, a total of 4.5 MW of PV capacity would exist at WLC at the end of Phase 1 and a total of 14.1 MW of PV capacity would exist at WLC at full build-out.
The WLC Specific Plan commits to meet the annual energy requirements of all office spaces with PV, thereby effectively achieving net-zero energy (NZE) office operations. Since each individual WLC building is expected to feature about 60,000 sqft of office space, this is the equivalent of fifteen 60,000 square-foot office buildings at WLC achieving NZE consumption by 2025. The entire state of California has about 30 NZE office buildings in operation, under construction, or publicly committed as of $2016^{3}$. Thus, the WLC Specific Plan will grow California's NZE office population by about $50 \%$ by 2025. At full WLC build-out there will be the equivalent of twenty seven 60,000 square-foot office buildings achieving NZE status. WSP estimates that the offices in each typical WLC building will consume about $474,120 \mathrm{kWh} / \mathrm{yr}$ and experience peak electric demand of about 280 kW . The maximum allowed amount of PV capacity/building in Phase $1(300 \mathrm{~kW})$ will generate about $512,275 \mathrm{kWh} / \mathrm{yr}$ at the WLC location. The maximum allowed amount of PV capacity/building in Phase $2(800 \mathrm{~kW})$ will generate about $1,366,400 \mathrm{kWh} / \mathrm{yr}$. Thus, in all cases, the maximum allowed PV capacities are sufficient in both Phase 1 and Phase 2 to satisfy $100 \%$ of the office energy needs, thereby meeting the NZE objective for WLC office space.

[^88]Table 10 summarizes the performance of solar PV at WLC in the amounts allowed by MVU.
Table 10: Solar PV Performance

| Stage | Energy <br> Savings <br> $(M W h / y r)$ | Energy <br> Savings <br> $(\%)$ | GHG <br> Savings <br> $($ tonnes <br> $\left.\mathrm{CO}_{2} \mathrm{e} / \mathrm{yr}\right)$ | GHG <br> Savings <br> $(\%)$ | Renewable <br> Energy <br> Supply <br> $(\%) \%$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Phase 1 | 7,686 | $4 \%$ | 1,276 | $4 \%$ | $51 \%$ |
| Full build | 24,083 | $5 \%$ | 3,386 | $5 \%$ | $57 \%$ |

*Renewable energy fraction takes account of renewables on the California grid

### 5.5 ENERGY STORAGE

Energy storage using either Lithium-ion batteries or Vehicle-to-Grid technology (see below) is not viable under current regulatory and economic conditions. For example, MVU currently has no policies or rules that would allow WLC to use battery storage to increase usage of solar electricity. However, these conditions may change. In the future, energy storage may help:

- maximize direct use of on-site renewable electricity generation,
- optimize the building's demand curve ("peak shaving") to reduce strain on the electric grid and lower WLC tenant demand charges,
- shift WLC on-site electricity generation to time-of-use periods with lower electricity rates ("load shifting").


### 5.5.1 LITHIUM-ION BATTERIES

Lithium-ion (Li-ion) batteries can connect to electrical systems and store electricity. Because of the MVU solar sizing limit, there is no excess solar generation available to charge a battery with the Phase 1 and Phase 2300 kW and 800 kW solar systems. In addition, MVU currently disallows the use of batteries to get around the PV size limits by enabling the generation and storage of excess solar output without feeding power to MVU's system. Consequently, greater renewable energy penetration at WLC is not currently possible. Further, MVU's rate structures, combined with WLC's load characteristics, make battery integration unviable - MVU's Time-of-Use rates do not match up with WLC's peak electric usage and WLC's electric load profiles are not 'spikey' enough for batteries to deliver meaningful reductions in the electric demand charge.

### 5.5.2 VEHICLE-TO-GRID

This section is included in the report for completeness of the energy storage discussion. Vehicle-to-grid (V2G) technology is not currently available but is expected to become available at some point during WLC build-out period.

A V2G system uses the on-board battery packs of parked electric vehicles as distributed energy resources to store electricity for use during peak electricity demand periods. Smart controls on EV charging stations will enable each EV owner to decide whether or not to allow V2G charging and discharging of the EV's battery pack. MVU rules and rate structures would need to change to accommodate V2G technology and to incentivize EV owners to make their vehicle's batteries available while the vehicle is parked.

Vehicle manufactures currently do not enable 2-way V2G exchanges of electricity, but this is expected to change in the coming years. Like stationary Li-ion batteries, V2G could be used by WLC in the future to maximize use of on-site renewable electricity and perform peak-shaving and load-shifting functions if MVU's rules and rate structures were to change. Electric vehicle population estimates for WLC suggest that significant amounts of potential V2G storage would be available for Phase 1 if electricity exchanges were enabled. With the anticipated proliferation of electric vehicles, V2G
storage potential will increase substantially for Phase 2. Should V2G technology be enabled in the future, it should be investigated.

### 5.6 OFF-SITE RENEWABLE ENERGY PROCUREMENT

Various mechanisms exist for many electricity customers to procure renewable energy from off-site projects, including renewable energy certificates, green tariffs, power purchase agreements, virtual power purchase agreements, community choice aggregation, and directed biogas. Procurement of off-site renewable energy can hedge against energy cost fluctuations, support the development of new renewable energy projects, and allow electricity consumers to claim the environmental benefits associated with the renewable energy generation. However, off-site procurement of renewable energy does not reduce the consumers' reliance on the electric grid to transport electricity nor the natural gas grid to transport biogas. Furthermore, off-site renewable energy procurement is likely to come at a cost premium to the energy end-user.
Under current regulations, WLC tenants will be able to purchase electricity only from MVU. Should electricity regulations change in the future to allow procurement of off-site renewable energy, and should WLC tenants elect for corporate, marketing, or other reasons to pursue procurement of off-site renewable energy, the means of doing so via one of the means presented in this report may become available to them.

The price premium associated with off-site renewable energy procurement would increase WLC tenant utility costs and thus run counter to the Project Objectives and the City's Economic Development Objectives (see Section 3.6 of the Project Final EIR and Section 1.3.1 of the WLC Specific Plan). Even if regulations allowed it, it would be counterproductive to require WLC tenants to procure renewable energy from off-site sources. Rather, WLC must establish and maintain a competitive position that supports achievement of the Project and City objectives. For these reasons, the concept of requiring a tenant to procure off-site renewable energy was not considered a viable sustainable supply option to impose on the Project. However, for the sake of completeness, WSP has evaluated the means for off-site procurement of renewable energy at WLC. We herein describe multiple off-site renewable electricity procurement methods that are available in many other electric utility service territories. These include:

- Unbundled renewable energy certificates (RECs);
- Power purchase agreements (PPAs);
- Community choice aggregation (CCA);
- Green tariffs.

Each option is evaluated on the following criteria:

- Market credibility;
- Relevance to future zero net energy regulations expected to be implemented in California;
- Risk profile;
- Impact on lifetime energy costs of the development.

Pricing of green power is highly variable depending on the particular circumstances surrounding each individual project or the current pricing offered by commodities markets. Thus, it is impossible to estimate with any accuracy what might be the impact on overall WLC energy costs if green power were part of the equation. The discussions below present some limited indications of possible cost considerations. It would be prudent to assume that some amount of cost premium would come with green power. To the extent this is the case, the resulting higher electricity costs would run counter to the strategic objective of the City of Moreno Valley to use low-cost electricity as an economic development tool.

### 5.6.1 BACKGROUND INFORMATION

## RENEWABLE ENERGY CLAIMS

Renewable electricity generation projects produce two products of interest; physical electricity and RECs. RECs are an important characteristic of green power to understand, because they are the mechanism that allows an organization to claim the renewable benefits of a green power project. The Environmental Protection Agency (EPA) defines a REC as the
representation of the property rights to the environmental, social, and other non-power qualities of one MWh of renewable electricity generation, which can be sold as a separate commodity from the electricity being produced by the renewable energy system. ${ }^{4}$

If RECs are sold together with their associated electricity, they are known as bundled RECs. If they are sold separately, they are known as unbundled RECs.

To be able to claim and communicate the renewable energy benefits from any green power, an organization must own and retire the RECs associated with the green power, or have the RECs retired on its behalf per the Federal Trade Commission's Green Guides. ${ }^{5}$

For all options evaluated herein other than unbundled RECs and Community Choice Aggregation, it is assumed the end purchaser of off-site renewable energy can claim ownership to the associated RECs per the FTC's guidelines.

## ZERO ENERGY BUILDINGS IN CALIFORNIA

Relevant to this project, the California Energy Efficiency Strategic Plan indicates that " $50 \%$ of commercial buildings will be retrofit to Zero Net Energy by 2030." ${ }^{6}$ Zero Net Energy for the commercial sector being defined as "an energy-efficient building where, on a source-energy basis, the actual annual consumed energy is less than or equal to the on-site renewable generated energy." Source energy is all energy consumed on-site "plus the energy consumed in the extraction, processing and transport of primary fuels such as coal, oil and natural gas; energy losses in thermal combustion in power generation plants; and energy losses in transmission and distribution to the building site." ${ }^{7}$

For the purposes of this analysis, it is assumed that the California Energy Efficiency Strategic Plan is aligned with the U.S. Department of Energy (USDOE) definition of Zero Energy Buildings and the associated guidance in relation to the use of off-site energy in achieving zero energy status. USDOE guidance indicates that net zero energy status can be achieved through the purchase of off-site renewable electricity for energy efficient buildings that have maximized the installation of on-site renewable energy. The USDOE Zero Energy Building definition does not include specific guidance on what off-site renewable energy procurement mechanisms can be used toward net zero energy status.

### 5.6.2 UNBUNDLED RENEWABLE ENERGY CERTIFICATES (RECS)

An organization can directly purchase RECs that are unbundled from the electricity supply. When purchased as unbundled commodities, RECs provide no physical electricity to the purchaser. Instead, the purchaser will continue to contract with their utility for electricity generated by the region's grid mix (including non-renewable fuel sources), but purchase the environmental attributes from individual green power projects.
RECs may be purchased in regulated or deregulated markets, and across markets, providing renewable attributes to electricity use at facilities of choice, regardless of geography or local green power resources. However, because unbundled RECs are typically purchased from existing renewable energy projects, their impact on the development of new green power projects is not as direct or significant as with other green power procurement options. Unbundled RECs are typically available for a price premium of about $1 \%$ of the cost of physical power.

[^89]
## CRITERIA

| Market credibility | Based on WSP's experience in the renewable energy marketplace through memberships <br> such as Rocky Mountain Institute's (RMI's) Business Renewable Center, corporate <br> renewable energy buyers are evolving their renewable energy procurement strategies to <br> go beyond unbundled RECs. This evolution is due to the desire to have more of an <br> impact on development of new renewable energy generation. Unbundled RECs typically <br> come from renewable energy generation already in operation, and thus are perceived to <br> have a lower impact on new generation. |
| :--- | :--- |
| Relevance to future zero net energy <br> regulations expected to be implemented in <br> California | Per USDOE, energy efficient buildings can achieve net-zero energy status using RECs <br> if physical limitations preclude the building from fully meeting its energy demand with <br> on-site renewables. These buildings can achieve net zero energy status with the "REC- <br> ZEB" qualifier.WSP's opinion is that unbundled RECs would qualify under the current <br> forecasted regulation only after the demand and supply side options outlined herein are <br> implemented. It is uncertain whether the limitations on the size of on-site solar imposed <br> by MVU would qualify the buildings in the WLC to achieve net zero status using RECs. <br> Importantly, unbundled RECs are increasingly being considered low impact, and the <br> leading governing bodies in the net zero energy space may require long-term contracts <br> for such procurement. WSP is aware that market credibility is shifting away from <br> unbundled RECs. |
| Risk profile | Purchasers of unbundled RECs are subject to spot pricing on an ongoing (e.g., annual) <br> procurement cycle. There is no physical power risk associated with unbundled <br> purchases. |
| Impact on lifetime energy costs of the <br> project | There is no direct financial return on investment in purchasing unbundled RECs, nor <br> does the purchase reduce vulnerability to future increases in electricity prices. |
| Regardless if WLC tenants purchase unbundled RECs, there will be an increase to the |  |
| energy costs of the project. Unbundled RECs are typically available for about 1\% of the |  |
| cost of physical power. |  |

### 5.6.3 POWER PURCHASER AGREEMENTS (PPAs)

PPAs are contractual agreements used in the utility power sector for the long-term purchase of electricity produced by a specific project. For electricity producers, PPAs offer long-term revenue certainty with a credit-worthy purchaser that allows the project to attract capital investment. For electricity purchasers, PPAs offer a long-term supply of green power with price stability. In California, "Direct Access" agreements offer an alternative similar to a PPA, but using the utility as an intermediary. However, the program is currently at capacity and therefore not available to WLC tenants. ${ }^{8}$

Alternatively, WLC tenants may consider a virtual power purchase agreement (VPPA), also known as a synthetic PPA or "contract for differences." A VPPA is a financial swap that allows an electricity purchaser to provide financial and credit support to a project developer by setting a floor price for electricity sold by the project to the wholesale electricity market. If the wholesale price is below the floor price, the purchaser pays the developer the difference. If the wholesale price exceeds

[^90]the floor price, the developer pays the purchaser. In return for guaranteeing a floor price, the purchaser may receive RECs from the project.

This option is a potential solution for customers that have electricity load distributed over many facilities or with loads in regulated electricity markets, like California. Unlike a physical PPA, synthetic PPAs do not include the physical consumption of electricity and therefore, there is no need for a purchaser's facilities to be in the same power market as the project. The combination of wholesale electricity market revenues and the floor price provides financial and credit support to the project owner sufficient to proceed with project financing and construction, thereby providing the critical support necessary for a new project to be implemented.

From an electricity purchaser's perspective, a VPPA can provide a long-term fixed supply of RECs along with potential for annual revenues on the contract. The purchaser, in a sense, is making a bet that market prices will continue to rise and that revenue from increasing prices will flow through the project to the purchaser. If properly structured, this contract can hedge against future electricity price increases or volatility. Purchasers must also understand the risk and financial exposure they face if market prices decline over the term of the agreement.

PPA pricing is highly dependent on the deal, and given the confidential, bilateral nature of the deals, pricing details are not publicly available. Moreover, VPPA deals discussed in the report, beyond a long-term contract for RECs, are often structured to be a hedge against of the price of electricity being procured by the offtaker (e.g., WLC tenants from MVU). VPPA pricing has fallen considerably over the past several years. Current publicly available estimates have VPPA prices at $\$ 22 / \mathrm{MWh}$. As to whether this would represent a price premium, be cost-neutral, or result in increased income is dependent on the deal structure and electricity market pricing forecasts. The VPPA imposes an incremental cost on top of the cost WLC tenants pay to MVU for electricity. If the VPPA yields a cost savings, this benefit would effectively reduce the net cost paid to MVU for delivered electricity. However, if the VPPA yields a cost adder, it would effectively raise the net cost of delivered electricity. See https://www.epa.gov/greenpower/green-power-pricing for more details.

Table 12: VPPA Evaluation

## CRITERIA

## EVALUATION

| Market credibility |
| :--- |
| Relevance to future zero net energy <br> regulations expected to be rolled out in <br> California |



Impact on lifetime energy costs of the project

PPA and VPPA transactions are viewed as having a higher impact relative to development of new renewable energy generation sources when compared to purchasing unbundled RECs. Net zero energy certification through voluntary programs such as the International Future Living Institute may require the project to be located physically close to the WLC. ${ }^{9}$

The previously referenced Department of Energy paper titled "A Common Definition for Zero Energy Buildings" dated 2015 does not specifically address PPAs or VPPAs in the context contemplated in this report. However, if the RECs are obtained through the PPA or VPPA, WSP expects that these procurement methods will qualify for achieving zero net energy status per the Department of Energy Guidance, once efficiency and onsite renewables have been maximized.

There are several risk factors to evaluate when completing investment-grade due diligence on a PPA or VPPA contract, many of which are beyond the scope of this analysis. However, two risks germane to WLC are the typical contract length and price risk. Both are addressed just below.

- Contract length: While the market is currently grappling with overcoming the length of typical deals, current structures are long-term commitments of 10-20 years. If WLC tenants are party to a PPA or VPPA, assuming the transactional complexity due to multi-party offtakers could be overcome, they would be contracting for a length of time (again, 10-20 years) that many businesses are not comfortable with. For example, this term may in fact be longer than the lease agreement at WLC.
- Price risk: In PPAs and VPPAs, the purchaser can be exposed if future electricity prices drop below contract pricing. Contracts are typically for an electricity price forecast believed to outperform escalation of their current utility's forecasted rate. Some purchasers find value in having price certainty, which a PPA or VPPA could provide depending on the details of the contract.

PPAs and VPPAs can provide a hedge or "price stability" mechanism for electricity. If structured well, there should be either minimal or, at best, an improvement on the lifetime energy costs of the project.

The discussion on price brings up the issue of the parties at the WLC that would enter into the PPA or VPPA. There are two options: the developer of the WLC or the tenants. Due to transaction costs and complexity, it is likely the only applicable party to execute a PPA or VPPA would be the developer. However, since the developer is not responsible for purchasing electricity - the tenants are - the transaction costs and any reconciliation of the price of the energy delivered to WLC and the price of the PPA or VPPA would likely have to be incorporated into the lease agreements.

[^91]
### 5.6.4 COMMUNITY CHOICE AGGREGATION (CCA)

Community Choice Aggregation (CCA) is a program that allows cities and counties to buy and/or generate electricity for residents and businesses within their areas. ${ }^{10}$ Basically, CCA is intended to provide utility rate payers with more options, which are increasingly providing green power procurement options.

CCA options are not currently available in Moreno Valley. ${ }^{11}$ The below evaluation is provided in the circumstance that CCA options become available to WLC in the future. CCAs in California have shown they can be competitive with local utility pricing.

Table 13: CCA Evaluation
CRITERIA

| Market credibility | Purchasing from a CCA who has a higher than the required renewable energy fuel mix <br> by actively bringing new renewable energy projects on line as opposed to procuring <br> unbundled RECs would be viewed as credibly procuring renewable energy. |
| :--- | :--- |
| Relevance to future zero net energy <br> regulations expected to be rolled out in <br> California | As highlighted in the unbundled REC section above, the current DOE definition for <br> zero energy buildings is not clear on certain emerging renewable energy procurement <br> options such as PPAs, CCA, and green tariffs. Based on a New Building Institute paper <br> titled "ZNE Project Guide for State Buildings", co-sponsored by California utilities <br> PG\&E and Southern California Edison, procurement from a CCA would qualify towards <br> a zero energy build status. |
| Risk profile | CCA procurement has a similar risk profile to conventional procurement from the <br> local utility. |
| Impact on lifetime energy costs of the <br> project | CCAs in California have shown to be competitive with local utility pricing. |

### 5.6.5 GREEN TARIFF

Electricity markets in a growing number of states offer customers the ability to purchase green power directly from a local utility. These agreements allow the customer to contract for some or all of their purchased electricity to be attributed to existing green power projects feeding into the local grid. The utility will then retire the coinciding RECs on the customer's behalf, allowing the customer to claim the environmental benefits associated with the purchase of green power.
Variations of this mechanism are available in regulated and deregulated markets. In deregulated markets, a customer may directly choose their electricity provider (e.g., CCA programs discussed above), while customers in regulated markets may have the option to pay a premium on their electric bill to claim energy generated from the utility's renewable portfolio.

[^92]Because utility products and green tariffs are typically based on existing renewable energy projects, their impact on the development of new green power projects is not as direct or significant as with other green power procurement options. MVU currently does not have a green tariff option. However, there may be an opportunity for Highland Fairview to work with MVU to develop such a tariff.
Per MVU's Integrated Resource Plan (IRP; 2015-2016), the utility indicates a desire to contract for new renewable energy. ${ }^{13}$
"It is important to note that, due to typical project development timelines associated with renewable generator development, most of MVU's near-term incremental renewable energy requirements will need to be served by existing generators that have already qualified for California RPS eligibility. Looking forward, MVU may choose to contract with yet-to-be developed resources for renewable energy needs that have been identified in the medium- and long-term planning horizons. These planning horizons will allow sufficient time for necessary solicitation and contracting activities (to be completed by MVU) as well as new resource development. Based on recently completed renewable energy sol icitations throughout the market, there appears to be ample renewable energy supply available for interested buyers, although prices are above the cost of conventional energy purchases. As discussed in this Plan, before making firm purchase commitments for additional renewable energy supply, MVU will continue to evaluate the cost/ rate impacts that would result from additional renewable energy procurement."
Due to the large energy demands WLC will put on MVU, the developer of WLC may consider exploring working with MVU on the development of a green tariff similar to recent projects in regulated markets. ${ }^{14}$ For example, Facebook recently worked to deliver two green tariffs with their local utilities in New M exico and Nebraska. ${ }^{15}$

Pricing analysis for a green tariff (which is distinguished from utility green pricing products which could be the utility simply delivering unbundled RECs as part of the rate) is highly subjective to the structure of the rate. They may be cost competitive with current utility rates. See https://www.nrel.gov/docs/fy17osti/68179.pdf for more details.

Table 14: Green Tariff Evaluation
CRITERIA

| Market credibility | Development of a green tariff by MVU that is delivering renewable energy through an <br> owned asset or a contract with an independent power provider would be perceived as <br> being highly credible. |
| :--- | :--- |
| Relevance to future zero net energy <br> regulations expected to be rolled out in <br> California | As highlighted in the unbundled REC section above, the current DOE definition for <br> zero energy buildings is not clear on some of emerging renewable energy <br> procurement options such as PPAs, CCA, and green tariffs. Provided the rate payer has <br> claim to the environmental attributes of the electricity they are procuring, it is WSP's <br> opinion that such purchases would qualify the building as zero net energy in that it's a <br> similar argument to that made by the New Buildings Institute in the aforementioned <br> paper. |
| Risk profile | Given MVU would be the offtaker or owner of the renewable energy generation, this <br> option has a similar risk profile to conventional procurement from the local utility. |
| Impact on lifetime energy costs of the <br> project | Unknown at this time. The rate would be dependent on MVU's agreements or assets. <br> Per their IRP, MVU states "Based on recently completed renewable energy solicitations |
| throughout the market, there appears to beamplerenewable energy supply available for |  |
| interested buyers, although prices are above the cost of conventional energy purchases." |  |

[^93]
### 5.7 RECOMMENDED PATH FORWARD

The recommended pathway does not include any on-site combustion or conversion of natural gas to electricity. Any CCHP configuration involving combustion is immediately disqualified due to the significant $\mathrm{NO}_{x}$ emissions it would contribute to an air shed that is already three times over the allowed $\mathrm{NO}_{\mathrm{x}}$ limit. While fuel cells emit minimal $\mathrm{NO}_{\mathrm{x}}$ and exploit the relatively low cost of natural gas compared to electricity, they result in a net increase in site energy consumption and GHG emissions and are therefore not recommended.

The recommended path forward also does not include requiring WLC tenants to procure renewable energy from off-site sources. The price premium associated with off-site renewable energy procurement would increase WLC tenant utility costs and thus run counter to the Project Objectives and the City's Economic Development Objectives.
The recommended path includes all-electric building systems which eliminates the need for on-site natural gas usage. WLC is then positioned with the future potential to operate $100 \%$ on renewable energy. However, PV capacity of 300 kW per building in Phase 1 is the maximum allowed by MVU rules.

The impact of the recommended ECMs and the proposed on-site PV on the annual energy consumption and GHG emissions of the WLC is shown in Figure 6.

Figure 6: Energy and GHG impact of proposed ECMs + PV for Phase 1 and Full Build-Out


## 6 CONCLUSION

### 6.1 SUMMARY OF OPPORTUNITIES

The State of California is expected to implement regulations to promote net-zero energy buildings. WLC has the opportunity to proactively embrace all-electric design standards at the outset of project construction. Doing so in advance of these regulations would make WLC net-zero-ready and position it to comply with future net-zero regulations. This, combined with WLC's commitment to solar-ready roof construction, positions the development to achieve its environmental stewardship and sustainability goals.

### 6.2 SUMMARY OF RECOMMENDATIONS

- Establish the ability of WLC to achieve net-zero energy over time by embracing all-electric design standards at the outset of project construction.
- Adopt maximum allowable solar PV capacity of 300 kW per building as a component of the Phase 1 design standards.
- Revisit this analysis with some frequency to capture inevitable changes over time in the MVU solar limit, MVU rate structures, Title 24 requirements, net-zero regulations, and changes in sustainable energy equipment costs.
- Implement recommended ECMs and maximum allowable solar PV capacity in Phase 1.


## 7 APPENDIXA: CURRENT AND FUTURE ENERGY CONTEXT

### 7.1 ELECTRIC GRID PROJECTIONS

Driven by an aggressive Renewable Portfolio Standard (RPS) ${ }^{16}$ and a decreased reliance on coal, California's grid is one of the cleanest in the country. In $2017,25 \%$ of its electricity was derived from renewable sources and the resulting carbon intensity of $529 \mathrm{lbCO} 2_{\mathrm{e}} / \mathrm{MWh}$ is nearly $50 \%$ below the national average of $1,000 \mathrm{lbCO} 2_{\mathrm{e}} / \mathrm{MWh}$. As highlighted in the graph below, rapid decarbonization of the California grid is expected to continue. The U.S. Energy Information Administration projects that that the grid's emissions factor will decline $31 \%$ from current levels by 2025 and $41 \%$ by 2040 .

Figure 7: CAMX Emissions Factor Projection


[^94]
## いゆ|

```
WSP
SUITE 300W
4 8 4 0 ~ P E A R L ~ E A S T ~ C I R C L E ~
BOULDER, CO }8030
TEL.: +1 303 551-0936
WSP.COM
```


## E-3 Construction Fuel Consumption

## World Logistics Center

## Construction Energy Analysis

Annual Fuel Summary

|  |  |
| ---: | :--- |
|  | Heavy-Duty Construction Equipment |
| $21,376,801$ | Total Project Consumption |
| $1,370,308$ | Annual Consumption |
|  | Haul Trucks |
| $1,667,280$ | Total Project Consumption |
| 106,877 | Annual Consumption |
|  | Vendor Trucks |
| $1,195,386$ | Total Project Consumption |
| 76,627 | Annual Consumption |
|  | Workers |
| 844,012 | Total Project Consumption |
| 54,103 | Annual Consumption |
| $2,862,666$ | Project Consumption of diesel for Haul Trucks and Vendors |
| 183,504 | Annual Consumption |
| $24,239,467$ | Total Gallons Diesel |
| 844,012 | Total Gallons Gasoline |

15.6 Estimated Project Construction Duration (years)

1,553,812 Annual Average Gallons Diesel
54,103 Annual Average Gallons Gasoline

| Riverside County |  |  |  |
| :--- | :--- | ---: | ---: |
| Source |  |  |  |
| Wuel Type | Gallons |  |  |
| Workers | Gasoline | $1,052,000,000$ | $0.0051 \%$ |
| Off-Road/Vendor/Haul Trucks | Diesel | $275,000,000$ | $0.5650 \%$ |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

1 Gasoline and diesel amounts from CEC, 2019. Available:
https://ww2.energy.ca.gov/almanac/transportation_data/gasoline/piira_retail_survey.html
World Logistics Center
Construction Energy Analysis
Off-Road Equipment


Equipment $\leq 50 \mathrm{hp}$

| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 2 and 4 (2020) Mass Excavation | Graders | 1 | 10 | 193 | 0.41 | 262 | 207,321 |
| Plots 2 and 4 (2020) Mass Excavation | Off-Highway Trucks | 1 | 10 | 400 | 0.38 | 262 | 398,240 |
| Plots 2 and 4 (2020) Mass Excavation | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 262 | 70,006 |
| Plots 2 and 4 (2020) Mass Excavation | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 262 | 70,006 |
| Plots 2 and 4 (2020) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 262 | 398,816 |
| Plots 2 and 4 (2020) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 262 | 398,816 |
| Plots 2 and 4 (2020) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 262 | 1,215,680 |
| Plots 2 and 4 (2020) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 262 | 1,215,680 |
| Plots 2 and 4 (2020) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 410 | 0.4 | 262 | 859,360 |
| Plots 2 and 4 (2020) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 305 | 0.4 | 262 | 319,640 |
| Plots 2 and 4 (2020) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 262 | 146,720 |
| Plots 2 and 4 (2020) Mass Excavation | Rubber Tired Dozers | 3 | 10 | 85 | 0.4 | 262 | 267,240 |
| Plots 2 and 4 (2020) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 262 | 4,150,080 |
| Plots 2 and 4 (2020) Mass Excavation | Scrapers | 12 | 10 | 550 | 0.48 | 262 | 8,300,160 |
| Plots 2 and 4 (2020) Mass Excavation | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 262 | 82,399 |
| Plots 2 and 4 (2020) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 262 | 17,502 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 2 and 4 (2020) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 262 | 17,502 |
| Plots 2 and 4 (2020) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 262 | 146,720 |
| Plots 2 and 4 (2020) Finish Grading | Rubber Tired Dozers | 3 | 10 | 85 | 0.4 | 262 | 267,240 |
| Plots 2 and 4 (2020) Finish Grading | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 262 | 82,399 |
| Plots 2 and 4 (2020) Utilities | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 262 | 10,564 |
| Plots 2 and 4 (2020) Utilities | Excavators | 2 | 10 | 523 | 0.38 | 262 | 1,041,398 |
| Plots 2 and 4 (2020) Utilities | Excavators | 5 | 10 | 286 | 0.38 | 262 | 1,423,708 |
| Plots 2 and 4 (2020) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 262 | 378,328 |
| Plots 2 and 4 (2020) Utilities | Excavators | 4 | 10 | 396 | 0.38 | 262 | 1,577,030 |
| Plots 2 and 4 (2020) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 262 | 378,328 |
| Plots 2 and 4 (2020) Utilities | Excavators | 2 | 10 | 188 | 0.38 | 262 | 374,346 |
| Plots 2 and 4 (2020) Utilities | Excavators | 8 | 10 | 40 | 0.38 | 262 | 318,592 |
| Plots 2 and 4 (2020) Utilities | Forklifts | 4 | 10 | 89 | 0.2 | 262 | 186,544 |
| Plots 2 and 4 (2020) Utilities | Other Material Handling Equipment | 7 | 1 | 167 | 0.4 | 262 | 122,511 |
| Plots 2 and 4 (2020) Utilities | Other Material Handling Equipment | 16 | 1 | 167 | 0.4 | 262 | 280,026 |
| Plots 2 and 4 (2020) Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 262 | 164,798 |
| Plots 2 and 4 (2020) Utilities | Tractors/Loaders/Backhoes | 8 | 10 | 90 | 0.37 | 262 | 697,968 |
| Plots 2 and 4 (2020) Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 262 | 57,745 |
| Plots 2 and 4 (2020) Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 262 | 131,000 |
| Plots 2 and 4 (2020) Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 262 | 35,003 |
| Plots 2 and 4 (2020) Landscaping | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 262 | 175,016 |
| Plots 2 and 4 (2020) Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 262 | 281,074 |
| Plots 2 and 4 (2020) Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 262 | 133,777 |
| Plots 2 and 4 (2020) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 262 | 141,532 |
| Plots 2 and 4 (2020) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 262 | 151,226 |
| Plots 2 and 4 (2020) Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 262 | 102,180 |
| Plots 2 and 4 (2020) Building Concrete | Cement and Mortar Mixers | 15 | 1 | 9 | 0.56 | 262 | 19,807 |
| Plots 2 and 4 (2020) Building Concrete | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 262 | 35,003 |
| Plots 2 and 4 (2020) Building Concrete | Pumps | 2 | 10 | 84 | 0.74 | 262 | 325,718 |
| Plots 2 and 4 (2020) Building Concrete | Tractors/Loaders/Backhoes | 4 | 10 | 78 | 0.37 | 262 | 302,453 |
| Plots 2 and 4 (2020) Building-Wet Utilities | Excavators | 2 | 10 | 300 | 0.38 | 262 | 597,360 |
| Plots 2 and 4 (2020) Building-Wet Utilities | Excavators | 2 | 10 | 179 | 0.38 | 262 | 356,425 |
| Plots 2 and 4 (2020) Building-Wet Utilities | Excavators | 2 | 10 | 173 | 0.38 | 262 | 344,478 |
| Plots 2 and 4 (2020) Building-Wet Utilities | Other Material Handling Equipment | 15 | 1 | 167 | 0.4 | 262 | 262,524 |
| Plots 2 and 4 (2020) Building-Wet Utilities | Rubber Tired Loaders | 6 | 10 | 152 | 0.36 | 262 | 860,198 |
| Plots 2 and 4 (2020) Building-Wet Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 85 | 0.37 | 262 | 329,596 |
| Plots 2 and 4 (2020) Building-Wet Utilities | Tractors/Loaders/Backhoes | 6 | 10 | 108 | 0.37 | 262 | 628,171 |
| Plots 2 and 4 (2020) Building-Electrical | Cement and Mortar Mixers | 16 | 1 | 9 | 0.56 | 262 | 21,128 |
| Plots 2 and 4 (2020) Building-Electrical | Excavators | 4 | 10 | 40 | 0.38 | 262 | 159,296 |
| Plots 2 and 4 (2020) Building-Electrical | Forklifts | 4 | 10 | 89 | 0.2 | 262 | 186,544 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 2 and 4 (2020) Building-Electrical | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 262 | 105,010 |
| Plots 2 and 4 (2020) Building-Electrical | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 262 | 348,984 |
| Plots 2 and 4 (2020) Temporary Utilities | Cranes | 2 | 10 | 445 | 0.29 | 262 | 676,222 |
| Plots 2 and 4 (2020) Building-Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 262 | 57,745 |
| Plots 2 and 4 (2020) Building-Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 262 | 131,000 |
| Plots 2 and 4 (2020) Building-Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 262 | 281,074 |
| Plots 2 and 4 (2020) Building-Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 262 | 133,777 |
| Plots 2 and 4 (2020) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 262 | 141,532 |
| Plots 2 and 4 (2020) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 262 | 151,226 |
| Plots 2 and 4 (2020) Building-Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 262 | 102,180 |
| Plots 2 and 4 (2020) Paving | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 262 | 105,010 |
| Plots 2 and 4 (2020) Paving | Pavers | 2 | 10 | 126 | 0.42 | 262 | 277,301 |
| Plots 2 and 4 (2020) Paving | Paving Equipment | 2 | 10 | 131 | 0.36 | 262 | 247,118 |
| Plots 2 and 4 (2020) Paving | Plate Compactors | 2 | 10 | 8 | 0.43 | 262 | 18,026 |
| Plots 2 and 4 (2020) Paving | Rollers | 2 | 10 | 81 | 0.38 | 262 | 161,287 |
| Plots 2 and 4 (2020) Paving | Scrapers | 2 | 10 | 362 | 0.48 | 262 | 910,502 |
| Plots 2 and 4 (2020) Paving | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 262 | 348,984 |
| Plots 2 and 4 (2020) Curbing/Drive Approaches | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 262 | 10,564 |
| Plots 2 and 4 (2020) Curbing/Drive Approaches | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 262 | 70,006 |
| Plots 2 and 4 (2020) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 99 | 0.36 | 262 | 93,377 |
| Plots 2 and 4 (2020) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 131 | 0.36 | 262 | 123,559 |
| Plots 2 and 4 (2020) Curbing/Drive Approaches | Tractors/Loaders/Backhoes | 1 | 10 | 55 | 0.37 | 262 | 53,317 |
| Plot 4 (2021) Mass Excavation | Graders | 2 | 10 | 193 | 0.41 | 261 | 413,059 |
| Plot 4 (2021) Mass Excavation | Off-Highway Trucks | 2 | 10 | 400 | 0.38 | 261 | 793,440 |
| Plot 4 (2021) Mass Excavation | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 261 | 87,174 |
| Plot 4 (2021) Mass Excavation | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 261 | 87,174 |
| Plot 4 (2021) Mass Excavation | Plate Compactors | 2 | 10 | 354 | 0.43 | 261 | 794,588 |
| Plot 4 (2021) Mass Excavation | Plate Compactors | 2 | 10 | 354 | 0.43 | 261 | 794,588 |
| Plot 4 (2021) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 305 | 0.4 | 261 | 636,840 |
| Plot 4 (2021) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 140 | 0.4 | 261 | 292,320 |
| Plot 4 (2021) Mass Excavation | Rubber Tired Dozers | 3 | 10 | 85 | 0.4 | 261 | 266,220 |
| Plot 4 (2021) Mass Excavation | Rubber Tired Dozers | 3 | 10 | 580 | 0.4 | 261 | 1,816,560 |
| Plot 4 (2021) Mass Excavation | Rubber Tired Dozers | 3 | 10 | 580 | 0.4 | 261 | 1,816,560 |
| Plot 4 (2021) Mass Excavation | Rubber Tired Dozers | 3 | 10 | 410 | 0.4 | 261 | 1,284,120 |
| Plot 4 (2021) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 261 | 4,134,240 |
| Plot 4 (2021) Mass Excavation | Scrapers | 14 | 10 | 550 | 0.48 | 261 | 9,646,560 |
| Plot 4 (2021) Mass Excavation | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 261 | 164,169 |
| Plot 4 (2021) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plot 4 (2021) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plot 4 (2021) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 261 | 146,160 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 4 (2021) Finish Grading | Rubber Tired Dozers | 3 | 10 | 85 | 0.4 | 261 | 266,220 |
| Plot 4 (2021) Finish Grading | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |
| Plot 4 (2021) Utilities | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 261 | 10,524 |
| Plot 4 (2021) Utilities | Excavators | 2 | 10 | 523 | 0.38 | 261 | 1,037,423 |
| Plot 4 (2021) Utilities | Excavators | 10 | 10 | 286 | 0.38 | 261 | 2,836,548 |
| Plot 4 (2021) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 261 | 376,884 |
| Plot 4 (2021) Utilities | Excavators | 4 | 10 | 396 | 0.38 | 261 | 1,571,011 |
| Plot 4 (2021) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 261 | 376,884 |
| Plot 4 (2021) Utilities | Excavators | 2 | 10 | 188 | 0.38 | 261 | 372,917 |
| Plot 4 (2021) Utilities | Excavators | 8 | 10 | 40 | 0.38 | 261 | 317,376 |
| Plot 4 (2021) Utilities | Forklifts | 4 | 10 | 89 | 0.2 | 261 | 185,832 |
| Plot 4 (2021) Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 261 | 139,478 |
| Plot 4 (2021) Utilities | Other Material Handling Equipment | 18 | 1 | 167 | 0.4 | 261 | 313,826 |
| Plot 4 (2021) Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 261 | 164,169 |
| Plot 4 (2021) Utilities | Tractors/Loaders/Backhoes | 8 | 10 | 90 | 0.37 | 261 | 695,304 |
| Plot 4 (2021) Building-Concrete | Cement and Mortar Mixers | 30 | 1 | 9 | 0.56 | 261 | 39,463 |
| Plot 4 (2021) Building-Concrete | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 261 | 34,870 |
| Plot 4 (2021) Building-Concrete | Pumps | 2 | 10 | 84 | 0.74 | 261 | 324,475 |
| Plot 4 (2021) Building-Concrete | Tractors/Loaders/Backhoes | 10 | 10 | 90 | 0.37 | 261 | 869,130 |
| Plot 4 (2021) Building-Wet Utilities | Excavators | 2 | 10 | 300 | 0.38 | 261 | 595,080 |
| Plot 4 (2021) Building-Wet Utilities | Excavators | 2 | 10 | 179 | 0.38 | 261 | 355,064 |
| Plot 4 (2021) Building-Wet Utilities | Excavators | 2 | 10 | 173 | 0.38 | 261 | 343,163 |
| Plot 4 (2021) Building-Wet Utilities | Other Material Handling Equipment | 15 | 1 | 167 | 0.4 | 261 | 261,522 |
| Plot 4 (2021) Building-Wet Utilities | Rubber Tired Loaders | 6 | 10 | 152 | 0.36 | 261 | 856,915 |
| Plot 4 (2021) Building-Wet Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 108 | 0.37 | 261 | 417,182 |
| Plot 4 (2021) Building-Wet Utilities | Tractors/Loaders/Backhoes | 6 | 10 | 108 | 0.37 | 261 | 625,774 |
| Plot 4 (2021) Building-Electrical | Cement and Mortar Mixers | 18 | 1 | 9 | 0.56 | 261 | 23,678 |
| Plot 4 (2021) Building-Electrical | Excavators | 10 | 10 | 40 | 0.38 | 261 | 396,720 |
| Plot 4 (2021) Building-Electrical | Forklifts | 4 | 10 | 89 | 0.2 | 261 | 185,832 |
| Plot 4 (2021) Building-Electrical | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 261 | 104,609 |
| Plot 4 (2021) Building-Electrical | Tractors/Loaders/Backhoes | 10 | 10 | 90 | 0.37 | 261 | 869,130 |
| Plot 4 (2021) Building-Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 261 | 57,524 |
| Plot 4 (2021) Building-Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 261 | 130,500 |
| Plot 4 (2021) Building-Landscaping | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plot 4 (2021) Building-Landscaping | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 261 | 52,304 |
| Plot 4 (2021) Building-Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 261 | 280,001 |
| Plot 4 (2021) Building-Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 261 | 133,267 |
| Plot 4 (2021) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 261 | 140,992 |
| Plot 4 (2021) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 261 | 150,649 |
| Plot 4 (2021) Building-Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 261 | 101,790 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 4 (2021) Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 261 | 57,524 |
| Plot 4 (2021) Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 261 | 130,500 |
| Plot 4 (2021) Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 261 | 34,870 |
| Plot 4 (2021) Landscaping | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 261 | 174,348 |
| Plot 4 (2021) Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 261 | 280,001 |
| Plot 4 (2021) Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 261 | 133,267 |
| Plot 4 (2021) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 261 | 140,992 |
| Plot 4 (2021) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 261 | 150,649 |
| Plot 4 (2021) Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 261 | 101,790 |
| Plot 4 (2021) Temporary Utilities | Cranes | 2 | 10 | 445 | 0.29 | 261 | 673,641 |
| Plot 4 (2021) Curbing/Drive Approaches | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 261 | 10,524 |
| Plot 4 (2021) Curbing/Drive Approaches | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plot 4 (2021) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 99 | 0.36 | 261 | 93,020 |
| Plot 4 (2021) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 131 | 0.36 | 261 | 123,088 |
| Plot 4 (2021) Curbing/Drive Approaches | Tractors/Loaders/Backhoes | 1 | 10 | 55 | 0.37 | 261 | 53,114 |
| Plot 4 (2021) Paving | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 261 | 104,609 |
| Plot 4 (2021) Paving | Pavers | 2 | 10 | 126 | 0.42 | 261 | 276,242 |
| Plot 4 (2021) Paving | Paving Equipment | 2 | 10 | 131 | 0.36 | 261 | 246,175 |
| Plot 4 (2021) Paving | Plate Compactors | 2 | 10 | 8 | 0.43 | 261 | 17,957 |
| Plot 4 (2021) Paving | Rollers | 2 | 10 | 81 | 0.38 | 261 | 160,672 |
| Plot 4 (2021) Paving | Scrapers | 2 | 10 | 362 | 0.48 | 261 | 907,027 |
| Plot 4 (2021) Paving | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 261 | 347,652 |
| Plots 4 and 9 (2022) Mass Excavation | Graders | 2 | 10 | 193 | 0.41 | 260 | 411,476 |
| Plots 4 and 9 (2022) Mass Excavation | Off-Highway Trucks | 2 | 10 | 400 | 0.38 | 260 | 790,400 |
| Plots 4 and 9 (2022) Mass Excavation | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 260 | 86,840 |
| Plots 4 and 9 (2022) Mass Excavation | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 260 | 86,840 |
| Plots 4 and 9 (2022) Mass Excavation | Plate Compactors | 2 | 10 | 354 | 0.43 | 260 | 791,544 |
| Plots 4 and 9 (2022) Mass Excavation | Plate Compactors | 2 | 10 | 354 | 0.43 | 260 | 791,544 |
| Plots 4 and 9 (2022) Mass Excavation | Rubber Tired Dozers | 4 | 10 | 580 | 0.4 | 260 | 2,412,800 |
| Plots 4 and 9 (2022) Mass Excavation | Rubber Tired Dozers | 4 | 10 | 580 | 0.4 | 260 | 2,412,800 |
| Plots 4 and 9 (2022) Mass Excavation | Rubber Tired Dozers | 4 | 10 | 410 | 0.4 | 260 | 1,705,600 |
| Plots 4 and 9 (2022) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 305 | 0.4 | 260 | 634,400 |
| Plots 4 and 9 (2022) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 140 | 0.4 | 260 | 291,200 |
| Plots 4 and 9 (2022) Mass Excavation | Rubber Tired Dozers | 3 | 10 | 85 | 0.4 | 260 | 265,200 |
| Plots 4 and 9 (2022) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 260 | 4,118,400 |
| Plots 4 and 9 (2022) Mass Excavation | Scrapers | 14 | 10 | 550 | 0.48 | 260 | 9,609,600 |
| Plots 4 and 9 (2022) Mass Excavation | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plots 4 and 9 (2022) Finish Grading | Other Construction Equipment | 2 | 10 | 167 | 0.42 | 260 | 364,728 |
| Plots 4 and 9 (2022) Finish Grading | Other Construction Equipment | 2 | 10 | 167 | 0.42 | 260 | 364,728 |
| Plots 4 and 9 (2022) Finish Grading | Rubber Tired Dozers | 2 | 10 | 140 | 0.4 | 260 | 291,200 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 4 and 9 (2022) Finish Grading | Rubber Tired Dozers | 4 | 10 | 85 | 0.4 | 260 | 353,600 |
| Plots 4 and 9 (2022) Finish Grading | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plots 4 and 9 (2022) Utilities | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 260 | 10,483 |
| Plots 4 and 9 (2022) Utilities | Excavators | 2 | 10 | 523 | 0.38 | 260 | 1,033,448 |
| Plots 4 and 9 (2022) Utilities | Excavators | 10 | 10 | 286 | 0.38 | 260 | 2,825,680 |
| Plots 4 and 9 (2022) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 260 | 375,440 |
| Plots 4 and 9 (2022) Utilities | Excavators | 4 | 10 | 396 | 0.38 | 260 | 1,564,992 |
| Plots 4 and 9 (2022) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 260 | 375,440 |
| Plots 4 and 9 (2022) Utilities | Excavators | 2 | 10 | 188 | 0.38 | 260 | 371,488 |
| Plots 4 and 9 (2022) Utilities | Excavators | 8 | 10 | 40 | 0.38 | 260 | 316,160 |
| Plots 4 and 9 (2022) Utilities | Forklifts | 4 | 10 | 89 | 0.2 | 260 | 185,120 |
| Plots 4 and 9 (2022) Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plots 4 and 9 (2022) Utilities | Other Material Handling Equipment | 18 | 1 | 167 | 0.4 | 260 | 312,624 |
| Plots 4 and 9 (2022) Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plots 4 and 9 (2022) Utilities | Tractors/Loaders/Backhoes | 8 | 10 | 90 | 0.37 | 260 | 692,640 |
| Plots 4 and 9 (2022) Building-Concrete | Cement and Mortar Mixers | 30 | 1 | 9 | 0.56 | 260 | 39,312 |
| Plots 4 and 9 (2022) Building-Concrete | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plots 4 and 9 (2022) Building-Concrete | Pumps | 2 | 10 | 84 | 0.74 | 260 | 323,232 |
| Plots 4 and 9 (2022) Building-Concrete | Tractors/Loaders/Backhoes | 10 | 10 | 90 | 0.37 | 260 | 865,800 |
| Plots 4 and 9 (2022) Building-Wet Utilities | Excavators | 2 | 10 | 300 | 0.38 | 260 | 592,800 |
| Plots 4 and 9 (2022) Building-Wet Utilities | Excavators | 2 | 10 | 179 | 0.38 | 260 | 353,704 |
| Plots 4 and 9 (2022) Building-Wet Utilities | Excavators | 2 | 10 | 173 | 0.38 | 260 | 341,848 |
| Plots 4 and 9 (2022) Building-Wet Utilities | Other Material Handling Equipment | 15 | 1 | 167 | 0.4 | 260 | 260,520 |
| Plots 4 and 9 (2022) Building-Wet Utilities | Rubber Tired Loaders | 6 | 10 | 152 | 0.36 | 260 | 853,632 |
| Plots 4 and 9 (2022) Building-Wet Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 85 | 0.37 | 260 | 327,080 |
| Plots 4 and 9 (2022) Building-Wet Utilities | Tractors/Loaders/Backhoes | 6 | 10 | 108 | 0.37 | 260 | 623,376 |
| Plots 4 and 9 (2022) Building-Electrical | Cement and Mortar Mixers | 18 | 1 | 9 | 0.56 | 260 | 23,587 |
| Plots 4 and 9 (2022) Building-Electrical | Excavators | 10 | 10 | 40 | 0.38 | 260 | 395,200 |
| Plots 4 and 9 (2022) Building-Electrical | Forklifts | 4 | 10 | 89 | 0.2 | 260 | 185,120 |
| Plots 4 and 9 (2022) Building-Electrical | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 260 | 104,208 |
| Plots 4 and 9 (2022) Building-Electrical | Tractors/Loaders/Backhoes | 10 | 10 | 90 | 0.37 | 260 | 865,800 |
| Plots 4 and 9 (2022) Building-Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 260 | 57,304 |
| Plots 4 and 9 (2022) Building-Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 260 | 130,000 |
| Plots 4 and 9 (2022) Building-Landscaping | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 260 | 69,472 |
| Plots 4 and 9 (2022) Building-Landscaping | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 260 | 69,472 |
| Plots 4 and 9 (2022) Building-Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 260 | 278,928 |
| Plots 4 and 9 (2022) Building-Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 260 | 132,756 |
| Plots 4 and 9 (2022) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 260 | 140,452 |
| Plots 4 and 9 (2022) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 260 | 150,072 |
| Plots 4 and 9 (2022) Building-Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 260 | 101,400 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 4 and 9 (2022) Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 260 | 57,304 |
| Plots 4 and 9 (2022) Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 260 | 130,000 |
| Plots 4 and 9 (2022) Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plots 4 and 9 (2022) Landscaping | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 260 | 173,680 |
| Plots 4 and 9 (2022) Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 260 | 278,928 |
| Plots 4 and 9 (2022) Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 260 | 132,756 |
| Plots 4 and 9 (2022) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 260 | 140,452 |
| Plots 4 and 9 (2022) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 260 | 150,072 |
| Plots 4 and 9 (2022) Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 260 | 101,400 |
| Plots 4 and 9 (2022) Temporary Utilities | Cranes | 2 | 10 | 445 | 0.29 | 260 | 671,060 |
| Plots 4 and 9 (2022) Curbing/Drive Approaches | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 260 | 10,483 |
| Plots 4 and 9 (2022) Curbing/Drive Approaches | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 260 | 69,472 |
| Plots 4 and 9 (2022) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 99 | 0.36 | 260 | 92,664 |
| Plots 4 and 9 (2022) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 131 | 0.36 | 260 | 122,616 |
| Plots 4 and 9 (2022) Curbing/Drive Approaches | Tractors/Loaders/Backhoes | 1 | 10 | 55 | 0.37 | 260 | 52,910 |
| Plots 4 and 9 (2022) Paving | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 260 | 104,208 |
| Plots 4 and 9 (2022) Paving | Pavers | 2 | 10 | 126 | 0.42 | 260 | 275,184 |
| Plots 4 and 9 (2022) Paving | Paving Equipment | 2 | 10 | 131 | 0.36 | 260 | 245,232 |
| Plots 4 and 9 (2022) Paving | Plate Compactors | 2 | 10 | 8 | 0.43 | 260 | 17,888 |
| Plots 4 and 9 (2022) Paving | Rollers | 2 | 10 | 81 | 0.38 | 260 | 160,056 |
| Plots 4 and 9 (2022) Paving | Scrapers | 2 | 10 | 362 | 0.48 | 260 | 903,552 |
| Plots 4 and 9 (2022) Paving | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plot 9 (2023) Mass Excavation | Graders | 2 | 10 | 193 | 0.41 | 260 | 411,476 |
| Plot 9 (2023) Mass Excavation | Off-Highway Trucks | 2 | 10 | 400 | 0.38 | 260 | 790,400 |
| Plot 9 (2023) Mass Excavation | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 260 | 86,840 |
| Plot 9 (2023) Mass Excavation | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 260 | 86,840 |
| Plot 9 (2023) Mass Excavation | Plate Compactors | 2 | 10 | 354 | 0.43 | 260 | 791,544 |
| Plot 9 (2023) Mass Excavation | Plate Compactors | 2 | 10 | 354 | 0.43 | 260 | 791,544 |
| Plot 9 (2023) Mass Excavation | Rubber Tired Dozers | 4 | 10 | 580 | 0.4 | 260 | 2,412,800 |
| Plot 9 (2023) Mass Excavation | Rubber Tired Dozers | 4 | 10 | 580 | 0.4 | 260 | 2,412,800 |
| Plot 9 (2023) Mass Excavation | Rubber Tired Dozers | 4 | 10 | 410 | 0.4 | 260 | 1,705,600 |
| Plot 9 (2023) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 305 | 0.4 | 260 | 317,200 |
| Plot 9 (2023) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 140 | 0.4 | 260 | 291,200 |
| Plot 9 (2023) Mass Excavation | Rubber Tired Dozers | 3 | 10 | 85 | 0.4 | 260 | 265,200 |
| Plot 9 (2023) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 260 | 4,118,400 |
| Plot 9 (2023) Mass Excavation | Scrapers | 12 | 10 | 550 | 0.48 | 260 | 8,236,800 |
| Plot 9 (2023) Mass Excavation | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plot 9 (2023) Finish Grading | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 9 (2023) Finish Grading | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 9 (2023) Finish Grading | Rubber Tired Dozers | 2 | 10 | 140 | 0.4 | 260 | 291,200 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 9 (2023) Finish Grading | Rubber Tired Dozers | 4 | 10 | 85 | 0.4 | 260 | 353,600 |
| Plot 9 (2023) Finish Grading | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plot 9 (2023) Utilities | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 260 | 10,483 |
| Plot 9 (2023) Utilities | Excavators | 2 | 10 | 523 | 0.38 | 260 | 1,033,448 |
| Plot 9 (2023) Utilities | Excavators | 10 | 10 | 286 | 0.38 | 260 | 2,825,680 |
| Plot 9 (2023) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 260 | 375,440 |
| Plot 9 (2023) Utilities | Excavators | 4 | 10 | 396 | 0.38 | 260 | 1,564,992 |
| Plot 9 (2023) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 260 | 375,440 |
| Plot 9 (2023) Utilities | Excavators | 2 | 10 | 188 | 0.38 | 260 | 371,488 |
| Plot 9 (2023) Utilities | Excavators | 8 | 10 | 40 | 0.38 | 260 | 316,160 |
| Plot 9 (2023) Utilities | Forklifts | 4 | 10 | 89 | 0.2 | 260 | 185,120 |
| Plot 9 (2023) Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plot 9 (2023) Utilities | Other Material Handling Equipment | 18 | 1 | 167 | 0.4 | 260 | 312,624 |
| Plot 9 (2023) Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plot 9 (2023) Utilities | Tractors/Loaders/Backhoes | 8 | 10 | 90 | 0.37 | 260 | 692,640 |
| Plot 9 (2023) Building-Concrete | Cement and Mortar Mixers | 30 | 1 | 9 | 0.56 | 260 | 39,312 |
| Plot 9 (2023) Building-Concrete | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 9 (2023) Building-Concrete | Pumps | 2 | 10 | 84 | 0.74 | 260 | 323,232 |
| Plot 9 (2023) Building-Concrete | Tractors/Loaders/Backhoes | 10 | 10 | 90 | 0.37 | 260 | 865,800 |
| Plot 9 (2023) Building-Wet Utilities | Excavators | 2 | 10 | 300 | 0.38 | 260 | 592,800 |
| Plot 9 (2023) Building-Wet Utilities | Excavators | 2 | 10 | 179 | 0.38 | 260 | 353,704 |
| Plot 9 (2023) Building-Wet Utilities | Excavators | 2 | 10 | 173 | 0.38 | 260 | 341,848 |
| Plot 9 (2023) Building-Wet Utilities | Other Material Handling Equipment | 15 | 1 | 167 | 0.4 | 260 | 260,520 |
| Plot 9 (2023) Building-Wet Utilities | Rubber Tired Loaders | 6 | 10 | 152 | 0.36 | 260 | 853,632 |
| Plot 9 (2023) Building-Wet Utilities | Tractors/Loaders/Backhoes | 6 | 10 | 108 | 0.37 | 260 | 623,376 |
| Plot 9 (2023) Building-Wet Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 85 | 0.37 | 260 | 327,080 |
| Plot 9 (2023) Building-Electrical | Cement and Mortar Mixers | 18 | 1 | 9 | 0.56 | 260 | 23,587 |
| Plot 9 (2023) Building-Electrical | Excavators | 10 | 10 | 40 | 0.38 | 260 | 395,200 |
| Plot 9 (2023) Building-Electrical | Forklifts | 4 | 10 | 89 | 0.2 | 260 | 185,120 |
| Plot 9 (2023) Building-Electrical | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 260 | 104,208 |
| Plot 9 (2023) Building-Electrical | Tractors/Loaders/Backhoes | 10 | 10 | 90 | 0.37 | 260 | 865,800 |
| Plot 9 (2023) Building-Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 260 | 57,304 |
| Plot 9 (2023) Building-Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 260 | 130,000 |
| Plot 9 (2023) Building-Landscaping | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 260 | 69,472 |
| Plot 9 (2023) Building-Landscaping | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 260 | 69,472 |
| Plot 9 (2023) Building-Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 260 | 278,928 |
| Plot 9 (2023) Building-Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 260 | 132,756 |
| Plot 9 (2023) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 260 | 140,452 |
| Plot 9 (2023) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 260 | 150,072 |
| Plot 9 (2023) Building-Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 260 | 101,400 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 9 (2023) Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 260 | 57,304 |
| Plot 9 (2023) Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 260 | 130,000 |
| Plot 9 (2023) Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 9 (2023) Landscaping | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 260 | 173,680 |
| Plot 9 (2023) Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 260 | 278,928 |
| Plot 9 (2023) Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 260 | 132,756 |
| Plot 9 (2023) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 260 | 140,452 |
| Plot 9 (2023) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 260 | 150,072 |
| Plot 9 (2023) Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 260 | 101,400 |
| Plot 9 (2023) Temporary Utilities | Cranes | 2 | 10 | 445 | 0.29 | 260 | 671,060 |
| Plot 9 (2023) Curbing/Drive Approaches | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 260 | 10,483 |
| Plot 9 (2023) Curbing/Drive Approaches | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 260 | 104,208 |
| Plot 9 (2023) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 99 | 0.36 | 260 | 92,664 |
| Plot 9 (2023) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 131 | 0.36 | 260 | 122,616 |
| Plot 9 (2023) Curbing/Drive Approaches | Tractors/Loaders/Backhoes | 1 | 10 | 55 | 0.37 | 260 | 52,910 |
| Plot 9 (2023) Paving | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 260 | 104,208 |
| Plot 9 (2023) Paving | Pavers | 2 | 10 | 126 | 0.42 | 260 | 275,184 |
| Plot 9 (2023) Paving | Paving Equipment | 2 | 10 | 131 | 0.36 | 260 | 245,232 |
| Plot 9 (2023) Paving | Plate Compactors | 2 | 10 | 8 | 0.43 | 260 | 17,888 |
| Plot 9 (2023) Paving | Rollers | 2 | 10 | 81 | 0.38 | 260 | 160,056 |
| Plot 9 (2023) Paving | Scrapers | 2 | 10 | 362 | 0.48 | 260 | 903,552 |
| Plot 9 (2023) Paving | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plot 9 (2023) Interchange | Bore/Drill Rigs | 1 | 10 | 206 | 0.5 | 260 | 267,800 |
| Plot 9 (2023) Interchange | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plot 9 (2023) Interchange | Cranes | 1 | 10 | 226 | 0.29 | 260 | 170,404 |
| Plot 9 (2023) Interchange | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plot 9 (2023) Interchange | Graders | 1 | 10 | 259 | 0.41 | 260 | 276,094 |
| Plot 9 (2023) Interchange | Other General Industrial Equipment | 1 | 10 | 88 | 0.34 | 260 | 77,792 |
| Plot 9 (2023) Interchange | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 260 | 69,472 |
| Plot 9 (2023) Interchange | Rubber Tired Dozers | 1 | 10 | 410 | 0.4 | 260 | 426,400 |
| Plot 9 (2023) Interchange | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 260 | 145,600 |
| Plot 9 (2023) Interchange | Rubber Tired Loaders | 1 | 10 | 180 | 0.36 | 260 | 168,480 |
| Plot 9 (2023) Interchange | Scrapers | 1 | 10 | 330 | 0.48 | 260 | 411,840 |
| Plot 9 (2023) Interchange | Tractors/Loaders/Backhoes | 1 | 10 | 98 | 0.37 | 260 | 94,276 |
| Plot 9 (2023) Interchange | Tractors/Loaders/Backhoes | 1 | 10 | 90 | 0.37 | 260 | 86,580 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Graders | 2 | 10 | 193 | 0.41 | 261 | 413,059 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Off-Highway Trucks | 2 | 10 | 400 | 0.38 | 261 | 793,440 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 261 | 87,174 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 261 | 87,174 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Plate Compactors | 2 | 10 | 354 | 0.43 | 261 | 794,588 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Plate Compactors | 2 | 10 | 354 | 0.43 | 261 | 794,588 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 261 | 1,211,040 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 261 | 1,211,040 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 410 | 0.4 | 261 | 856,080 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 305 | 0.4 | 261 | 318,420 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 140 | 0.4 | 261 | 292,320 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Rubber Tired Dozers | 3 | 10 | 85 | 0.4 | 261 | 266,220 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 261 | 4,134,240 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Scrapers | 12 | 10 | 550 | 0.48 | 261 | 8,268,480 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 261 | 164,169 |
| Plots 9 and 1,3,20 (2024) Utilities | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 262 | 10,564 |
| Plots 9 and 1,3,20 (2024) Utilities | Excavators | 2 | 10 | 523 | 0.38 | 262 | 1,041,398 |
| Plots 9 and 1,3,20 (2024) Utilities | Excavators | 10 | 10 | 286 | 0.38 | 262 | 2,847,416 |
| Plots 9 and 1,3,20 (2024) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 262 | 378,328 |
| Plots 9 and 1,3,20 (2024) Utilities | Excavators | 4 | 10 | 396 | 0.38 | 262 | 1,577,030 |
| Plots 9 and 1,3,20 (2024) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 262 | 378,328 |
| Plots 9 and 1,3,20 (2024) Utilities | Excavators | 2 | 10 | 188 | 0.38 | 262 | 374,346 |
| Plots 9 and 1,3,20 (2024) Utilities | Excavators | 8 | 10 | 40 | 0.38 | 262 | 318,592 |
| Plots 9 and 1,3,20 (2024) Utilities | Forklifts | 4 | 10 | 89 | 0.2 | 262 | 186,544 |
| Plots 9 and 1,3,20 (2024) Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 262 | 140,013 |
| Plots 9 and 1,3,20 (2024) Utilities | Other Material Handling Equipment | 20 | 1 | 167 | 0.4 | 262 | 350,032 |
| Plots 9 and 1,3,20 (2024) Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 262 | 164,798 |
| Plots 9 and 1,3,20 (2024) Utilities | Tractors/Loaders/Backhoes | 8 | 10 | 90 | 0.37 | 262 | 697,968 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | Cement and Mortar Mixers | 30 | 1 | 9 | 0.56 | 262 | 39,614 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 262 | 35,003 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | Pumps | 2 | 10 | 84 | 0.74 | 262 | 325,718 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | Tractors/Loaders/Backhoes | 10 | 10 | 90 | 0.37 | 262 | 872,460 |
| Plots 9 and 1,3,20 (2024) Building-Wet Utilities | Excavators | 2 | 10 | 300 | 0.38 | 262 | 597,360 |
| Plots 9 and 1,3,20 (2024) Building-Wet Utilities | Excavators | 2 | 10 | 179 | 0.38 | 262 | 356,425 |
| Plots 9 and 1,3,20 (2024) Building-Wet Utilities | Excavators | 2 | 10 | 173 | 0.38 | 262 | 344,478 |
| Plots 9 and 1,3,20 (2024) Building-Wet Utilities | Other Material Handling Equipment | 15 | 1 | 167 | 0.4 | 262 | 262,524 |
| Plots 9 and 1,3,20 (2024) Building-Wet Utilities | Rubber Tired Loaders | 6 | 10 | 152 | 0.36 | 262 | 860,198 |
| Plots 9 and 1,3,20 (2024) Building-Wet Utilities | Tractors/Loaders/Backhoes | 6 | 10 | 108 | 0.37 | 262 | 628,171 |
| Plots 9 and 1,3,20 (2024) Building-Wet Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 85 | 0.37 | 262 | 329,596 |
| Plots 9 and 1,3,20 (2024) Building-Electrical | Cement and Mortar Mixers | 12 | 1 | 9 | 0.56 | 262 | 15,846 |
| Plots 9 and 1,3,20 (2024) Building-Electrical | Excavators | 10 | 10 | 40 | 0.38 | 262 | 398,240 |
| Plots 9 and 1,3,20 (2024) Building-Electrical | Forklifts | 4 | 10 | 89 | 0.2 | 262 | 186,544 |
| Plots 9 and 1,3,20 (2024) Building-Electrical | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 262 | 105,010 |
| Plots 9 and 1,3,20 (2024) Building-Electrical | Tractors/Loaders/Backhoes | 10 | 10 | 90 | 0.37 | 262 | 872,460 |
| Plots 9 and 1,3,20 (2024) Building-Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 262 | 57,745 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 9 and 1,3,20 (2024) Building-Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 262 | 131,000 |
| Plots 9 and 1,3,20 (2024) Building-Landscaping | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 262 | 70,006 |
| Plots 9 and 1,3,20 (2024) Building-Landscaping | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 262 | 70,006 |
| Plots 9 and 1,3,20 (2024) Building-Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 262 | 281,074 |
| Plots 9 and 1,3,20 (2024) Building-Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 262 | 133,777 |
| Plots 9 and 1,3,20 (2024) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 262 | 141,532 |
| Plots 9 and 1,3,20 (2024) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 262 | 151,226 |
| Plots 9 and 1,3,20 (2024) Building-Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 262 | 102,180 |
| Plots 9 and 1,3,20 (2024) Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 262 | 57,745 |
| Plots 9 and 1,3,20 (2024) Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 262 | 131,000 |
| Plots 9 and 1,3,20 (2024) Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 262 | 35,003 |
| Plots 9 and 1,3,20 (2024) Landscaping | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 262 | 175,016 |
| Plots 9 and 1,3,20 (2024) Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 262 | 281,074 |
| Plots 9 and 1,3,20 (2024) Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 262 | 133,777 |
| Plots 9 and 1,3,20 (2024) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 262 | 141,532 |
| Plots 9 and 1,3,20 (2024) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 262 | 151,226 |
| Plots 9 and 1,3,20 (2024) Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 262 | 102,180 |
| Plots 9 and 1,3,20 (2024) Curbing/Drive Approaches | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 262 | 10,564 |
| Plots 9 and 1,3,20 (2024) Curbing/Drive Approaches | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 262 | 105,010 |
| Plots 9 and 1,3,20 (2024) Curbing/Drive Approaches | Paving Equipment | 2 | 10 | 99 | 0.36 | 262 | 186,754 |
| Plots 9 and 1,3,20 (2024) Curbing/Drive Approaches | Paving Equipment | 2 | 10 | 131 | 0.36 | 262 | 247,118 |
| Plots 9 and 1,3,20 (2024) Curbing/Drive Approaches | Tractors/Loaders/Backhoes | 2 | 10 | 55 | 0.37 | 262 | 106,634 |
| Plots 9 and 1,3,20(2024) Temporary Utilities | Cranes | 2 | 10 | 445 | 0.29 | 262 | 676,222 |
| Plots 9 and 1,3,20 (2024) Interchange | Bore/Drill Rigs | 1 | 10 | 206 | 0.5 | 262 | 269,860 |
| Plots 9 and 1,3,20 (2024) Interchange | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 262 | 5,282 |
| Plots 9 and 1,3,20 (2024) Interchange | Cranes | 1 | 10 | 226 | 0.29 | 262 | 171,715 |
| Plots 9 and 1,3,20 (2024) Interchange | Excavators | 1 | 10 | 190 | 0.38 | 262 | 189,164 |
| Plots 9 and 1,3,20 (2024) Interchange | Graders | 1 | 10 | 259 | 0.41 | 262 | 278,218 |
| Plots 9 and 1,3,20 (2024) Interchange | Other General Industrial Equipment | 1 | 10 | 88 | 0.34 | 262 | 78,390 |
| Plots 9 and 1,3,20 (2024) Interchange | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 262 | 70,006 |
| Plots 9 and 1,3,20 (2024) Interchange | Rubber Tired Dozers | 1 | 10 | 410 | 0.4 | 262 | 429,680 |
| Plots 9 and 1,3,20 (2024) Interchange | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 262 | 146,720 |
| Plots 9 and 1,3,20 (2024) Interchange | Rubber Tired Loaders | 1 | 10 | 180 | 0.36 | 262 | 169,776 |
| Plots 9 and 1,3,20 (2024) Interchange | Scrapers | 1 | 10 | 330 | 0.48 | 262 | 415,008 |
| Plots 9 and 1,3,20 (2024) Interchange | Tractors/Loaders/Backhoes | 1 | 10 | 98 | 0.37 | 262 | 95,001 |
| Plots 9 and 1,3,20 (2024) Interchange | Tractors/Loaders/Backhoes | 1 | 10 | 90 | 0.37 | 262 | 87,246 |
| Plots 9 and 1,3,20 (2024) Finish Grading | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 262 | 35,003 |
| Plots 9 and 1,3,20(2024) Finish Grading | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 262 | 35,003 |
| Plots 9 and 1,3,20 (2024) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 262 | 146,720 |
| Plots 9 and 1,3,20 (2024) Finish Grading | Rubber Tired Dozers | 4 | 10 | 85 | 0.4 | 262 | 356,320 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 9 and 1,3,20 (2024) Finish Grading | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 262 | 164,798 |
| Plots 9 and 1,3,20 (2024) Paving | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 262 | 105,010 |
| Plots 9 and 1,3,20 (2024) Paving | Pavers | 2 | 10 | 126 | 0.42 | 262 | 277,301 |
| Plots 9 and 1,3,20 (2024) Paving | Paving Equipment | 2 | 10 | 131 | 0.36 | 262 | 247,118 |
| Plots 9 and 1,3,20 (2024) Paving | Plate Compactors | 2 | 10 | 8 | 0.43 | 262 | 18,026 |
| Plots 9 and 1,3,20 (2024) Paving | Rollers | 2 | 10 | 81 | 0.38 | 262 | 161,287 |
| Plots 9 and 1,3,20 (2024) Paving | Scrapers | 2 | 10 | 362 | 0.48 | 262 | 910,502 |
| Plots 9 and 1,3,20 (2024) Paving | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 262 | 348,984 |
| Plots 5 and 10 (2025) Mass Excavation | Graders | 1 | 10 | 193 | 0.41 | 261 | 206,529 |
| Plots 5 and 10 (2025) Mass Excavation | Off-Highway Trucks | 1 | 10 | 400 | 0.38 | 261 | 396,720 |
| Plots 5 and 10 (2025) Mass Excavation | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plots 5 and 10 (2025) Mass Excavation | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plots 5 and 10 (2025) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 261 | 397,294 |
| Plots 5 and 10 (2025) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 261 | 397,294 |
| Plots 5 and 10 (2025) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 261 | 1,211,040 |
| Plots 5 and 10 (2025) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 261 | 1,211,040 |
| Plots 5 and 10 (2025) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 410 | 0.4 | 261 | 856,080 |
| Plots 5 and 10 (2025) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 305 | 0.4 | 261 | 318,420 |
| Plots 5 and 10 (2025) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 261 | 146,160 |
| Plots 5 and 10 (2025) Mass Excavation | Rubber Tired Dozers | 3 | 10 | 85 | 0.4 | 261 | 266,220 |
| Plots 5 and 10 (2025) Mass Excavation | Scrapers | 2 | 10 | 550 | 0.48 | 261 | 1,378,080 |
| Plots 5 and 10 (2025) Mass Excavation | Scrapers | 7 | 10 | 550 | 0.48 | 261 | 4,823,280 |
| Plots 5 and 10 (2025) Mass Excavation | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |
| Plots 5 and 10 (2025) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plots 5 and 10 (2025) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plots 5 and 10 (2025) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 261 | 146,160 |
| Plots 5 and 10 (2025) Finish Grading | Rubber Tired Dozers | 3 | 10 | 85 | 0.4 | 261 | 266,220 |
| Plots 5 and 10 (2025) Finish Grading | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |
| Plots 5 and 10 (2025) Utilities | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 261 | 10,524 |
| Plots 5 and 10 (2025) Utilities | Excavators | 2 | 10 | 523 | 0.38 | 261 | 1,037,423 |
| Plots 5 and 10 (2025) Utilities | Excavators | 10 | 10 | 286 | 0.38 | 261 | 2,836,548 |
| Plots 5 and 10 (2025) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 261 | 376,884 |
| Plots 5 and 10 (2025) Utilities | Excavators | 4 | 10 | 396 | 0.38 | 261 | 1,571,011 |
| Plots 5 and 10 (2025) Utilities | Excavators | 2 | 10 | 190 | 0.38 | 261 | 376,884 |
| Plots 5 and 10 (2025) Utilities | Excavators | 2 | 10 | 188 | 0.38 | 261 | 372,917 |
| Plots 5 and 10 (2025) Utilities | Excavators | 8 | 10 | 40 | 0.38 | 261 | 317,376 |
| Plots 5 and 10 (2025) Utilities | Forklifts | 4 | 10 | 89 | 0.2 | 261 | 185,832 |
| Plots 5 and 10 (2025) Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 261 | 139,478 |
| Plots 5 and 10 (2025) Utilities | Other Material Handling Equipment | 18 | 1 | 167 | 0.4 | 261 | 313,826 |
| Plots 5 and 10 (2025) Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 261 | 164,169 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 5 and 10 (2025) Utilities | Tractors/Loaders/Backhoes | 8 | 10 | 90 | 0.37 | 261 | 695,304 |
| Plots 5 and 10 (2025) Building-Concrete | Cement and Mortar Mixers | 20 | 1 | 9 | 0.56 | 261 | 26,309 |
| Plots 5 and 10 (2025) Building-Concrete | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 261 | 34,870 |
| Plots 5 and 10 (2025) Building-Concrete | Pumps | 2 | 10 | 84 | 0.74 | 261 | 324,475 |
| Plots 5 and 10 (2025) Building-Concrete | Tractors/Loaders/Backhoes | 6 | 10 | 90 | 0.37 | 261 | 521,478 |
| Plots 5 and 10 (2025) Building-Wet Utilities | Excavators | 2 | 10 | 300 | 0.38 | 261 | 595,080 |
| Plots 5 and 10 (2025) Building-Wet Utilities | Excavators | 2 | 10 | 179 | 0.38 | 261 | 355,064 |
| Plots 5 and 10 (2025) Building-Wet Utilities | Excavators | 2 | 10 | 173 | 0.38 | 261 | 343,163 |
| Plots 5 and 10 (2025) Building-Wet Utilities | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 261 | 174,348 |
| Plots 5 and 10 (2025) Building-Wet Utilities | Rubber Tired Loaders | 6 | 10 | 152 | 0.36 | 261 | 856,915 |
| Plots 5 and 10 (2025) Building-Wet Utilities | Tractors/Loaders/Backhoes | 6 | 10 | 108 | 0.37 | 261 | 625,774 |
| Plots 5 and 10 (2025) Building-Wet Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 85 | 0.37 | 261 | 328,338 |
| Plots 5 and 10 (2025) Building-Electrical | Cement and Mortar Mixers | 8 | 1 | 9 | 0.56 | 261 | 10,524 |
| Plots 5 and 10 (2025) Building-Electrical | Excavators | 6 | 10 | 40 | 0.38 | 261 | 238,032 |
| Plots 5 and 10 (2025) Building-Electrical | Forklifts | 4 | 10 | 89 | 0.2 | 261 | 185,832 |
| Plots 5 and 10 (2025) Building-Electrical | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 261 | 104,609 |
| Plots 5 and 10 (2025) Building-Electrical | Tractors/Loaders/Backhoes | 6 | 10 | 90 | 0.37 | 261 | 521,478 |
| Plots 5 and 10 (2025) Building-Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 261 | 57,524 |
| Plots 5 and 10 (2025) Building-Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 261 | 130,500 |
| Plots 5 and 10 (2025) Building-Landscaping | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plots 5 and 10 (2025) Building-Landscaping | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plots 5 and 10 (2025) Building-Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 261 | 280,001 |
| Plots 5 and 10 (2025) Building-Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 261 | 133,267 |
| Plots 5 and 10 (2025) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 261 | 140,992 |
| Plots 5 and 10 (2025) Building-Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 261 | 150,649 |
| Plots 5 and 10 (2025) Building-Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 261 | 101,790 |
| Plots 5 and 10 (2025) Landscaping | Excavators | 2 | 10 | 29 | 0.38 | 261 | 57,524 |
| Plots 5 and 10 (2025) Landscaping | Forklifts | 2 | 10 | 125 | 0.2 | 261 | 130,500 |
| Plots 5 and 10 (2025) Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 261 | 34,870 |
| Plots 5 and 10 (2025) Landscaping | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 261 | 174,348 |
| Plots 5 and 10 (2025) Landscaping | Rubber Tired Loaders | 2 | 10 | 149 | 0.36 | 261 | 280,001 |
| Plots 5 and 10 (2025) Landscaping | Skid Steer Loaders | 2 | 10 | 69 | 0.37 | 261 | 133,267 |
| Plots 5 and 10 (2025) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 73 | 0.37 | 261 | 140,992 |
| Plots 5 and 10 (2025) Landscaping | Tractors/Loaders/Backhoes | 2 | 10 | 78 | 0.37 | 261 | 150,649 |
| Plots 5 and 10 (2025) Landscaping | Trenchers | 2 | 10 | 39 | 0.5 | 261 | 101,790 |
| Plots 5 and 10 (2025) Temporary Utilities | Cranes | 2 | 10 | 445 | 0.29 | 261 | 673,641 |
| Plots 5 and 10 (2025) Curbing/Drive Approaches | Cement and Mortar Mixers | 6 | 1 | 9 | 0.56 | 261 | 7,893 |
| Plots 5 and 10 (2025) Curbing/Drive Approaches | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 261 | 104,609 |
| Plots 5 and 10 (2025) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 99 | 0.36 | 261 | 93,020 |
| Plots 5 and 10 (2025) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 131 | 0.36 | 261 | 123,088 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 5 and 10 (2025) Curbing/Drive Approaches | Tractors/Loaders/Backhoes | 1 | 10 | 55 | 0.37 | 261 | 53,114 |
| Plots 5 and 10 (2025) Paving | Other Material Handling Equipment | 6 | 1 | 167 | 0.4 | 261 | 104,609 |
| Plots 5 and 10 (2025) Paving | Pavers | 2 | 10 | 126 | 0.42 | 261 | 276,242 |
| Plots 5 and 10 (2025) Paving | Paving Equipment | 2 | 10 | 131 | 0.36 | 261 | 246,175 |
| Plots 5 and 10 (2025) Paving | Plate Compactors | 2 | 10 | 8 | 0.43 | 261 | 17,957 |
| Plots 5 and 10 (2025) Paving | Rollers | 2 | 10 | 81 | 0.38 | 261 | 160,672 |
| Plots 5 and 10 (2025) Paving | Scrapers | 2 | 10 | 362 | 0.48 | 261 | 907,027 |
| Plots 5 and 10 (2025) Paving | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 261 | 347,652 |
| Plots 10 and 8 (2026) Mass Excavation | Graders | 1 | 10 | 193 | 0.41 | 261 | 206,529 |
| Plots 10 and 8 (2026) Mass Excavation | Off-Highway Trucks | 1 | 10 | 400 | 0.38 | 261 | 396,720 |
| Plots 10 and 8 (2026) Mass Excavation | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plots 10 and 8 (2026) Mass Excavation | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 261 | 52,304 |
| Plots 10 and 8 (2026) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 261 | 397,294 |
| Plots 10 and 8 (2026) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 261 | 397,294 |
| Plots 10 and 8 (2026) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 261 | 1,211,040 |
| Plots 10 and 8 (2026) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 261 | 1,211,040 |
| Plots 10 and 8 (2026) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 410 | 0.4 | 261 | 856,080 |
| Plots 10 and 8 (2026) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 305 | 0.4 | 261 | 318,420 |
| Plots 10 and 8 (2026) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 261 | 146,160 |
| Plots 10 and 8 (2026) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 85 | 0.4 | 261 | 177,480 |
| Plots 10 and 8 (2026) Mass Excavation | Scrapers | 2 | 10 | 550 | 0.48 | 261 | 1,378,080 |
| Plots 10 and 8 (2026) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 261 | 4,134,240 |
| Plots 10 and 8 (2026) Mass Excavation | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |
| Plots 10 and 8 (2026) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plots 10 and 8 (2026) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plots 10 and 8 (2026) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 261 | 146,160 |
| Plots 10 and 8 (2026) Finish Grading | Rubber Tired Dozers | 2 | 10 | 85 | 0.4 | 261 | 177,480 |
| Plots 10 and 8 (2026) Finish Grading | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |
| Plots 10 and 8 (2026) Utilities | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 261 | 5,262 |
| Plots 10 and 8 (2026) Utilities | Excavators | 1 | 10 | 523 | 0.38 | 261 | 518,711 |
| Plots 10 and 8 (2026) Utilities | Excavators | 10 | 10 | 286 | 0.38 | 261 | 2,836,548 |
| Plots 10 and 8 (2026) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 261 | 188,442 |
| Plots 10 and 8 (2026) Utilities | Excavators | 2 | 10 | 396 | 0.38 | 261 | 785,506 |
| Plots 10 and 8 (2026) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 261 | 188,442 |
| Plots 10 and 8 (2026) Utilities | Excavators | 1 | 10 | 188 | 0.38 | 261 | 186,458 |
| Plots 10 and 8 (2026) Utilities | Excavators | 4 | 10 | 40 | 0.38 | 261 | 158,688 |
| Plots 10 and 8 (2026) Utilities | Forklifts | 2 | 10 | 89 | 0.2 | 261 | 92,916 |
| Plots 10 and 8 (2026) Utilities | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plots 10 and 8 (2026) Utilities | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 261 | 174,348 |
| Plots 10 and 8 (2026) Utilities | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 10 and 8 (2026) Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 261 | 347,652 |
| Plots 10 and 8 (2026) Building-Concrete | Cement and Mortar Mixers | 20 | 1 | 9 | 0.56 | 261 | 26,309 |
| Plots 10 and 8 (2026) Building-Concrete | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plots 10 and 8 (2026) Building-Concrete | Pumps | 1 | 10 | 84 | 0.74 | 261 | 162,238 |
| Plots 10 and 8 (2026) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 261 | 347,652 |
| Plots 10 and 8 (2026) Building-Wet Utilities | Excavators | 1 | 10 | 300 | 0.38 | 261 | 297,540 |
| Plots 10 and 8 (2026) Building-Wet Utilities | Excavators | 1 | 10 | 179 | 0.38 | 261 | 177,532 |
| Plots 10 and 8 (2026) Building-Wet Utilities | Excavators | 1 | 10 | 173 | 0.38 | 261 | 171,581 |
| Plots 10 and 8 (2026) Building-Wet Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 261 | 139,478 |
| Plots 10 and 8 (2026) Building-Wet Utilities | Rubber Tired Loaders | 3 | 10 | 152 | 0.36 | 261 | 428,458 |
| Plots 10 and 8 (2026) Building-Wet Utilities | Tractors/Loaders/Backhoes | 3 | 10 | 108 | 0.37 | 261 | 312,887 |
| Plots 10 and 8 (2026) Building-Wet Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 261 | 164,169 |
| Plots 10 and 8 (2026) Building-Electrical | Cement and Mortar Mixers | 5 | 1 | 9 | 0.56 | 261 | 6,577 |
| Plots 10 and 8 (2026) Building-Electrical | Excavators | 4 | 10 | 40 | 0.38 | 261 | 158,688 |
| Plots 10 and 8 (2026) Building-Electrical | Forklifts | 2 | 10 | 89 | 0.2 | 261 | 92,916 |
| Plots 10 and 8 (2026) Building-Electrical | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 261 | 52,304 |
| Plots 10 and 8 (2026) Building-Electrical | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 261 | 347,652 |
| Plots 10 and 8 (2026) Building-Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 261 | 28,762 |
| Plots 10 and 8 (2026) Building-Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 261 | 65,250 |
| Plots 10 and 8 (2026) Building-Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 261 | 34,870 |
| Plots 10 and 8 (2026) Building-Landscaping | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plots 10 and 8 (2026) Building-Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 261 | 140,000 |
| Plots 10 and 8 (2026) Building-Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 261 | 66,633 |
| Plots 10 and 8 (2026) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 261 | 70,496 |
| Plots 10 and 8 (2026) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 261 | 75,325 |
| Plots 10 and 8 (2026) Building-Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 261 | 50,895 |
| Plots 10 and 8 (2026) Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 261 | 28,762 |
| Plots 10 and 8 (2026) Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 261 | 65,250 |
| Plots 10 and 8 (2026) Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plots 10 and 8 (2026) Landscaping | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 261 | 87,174 |
| Plots 10 and 8 (2026) Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 261 | 140,000 |
| Plots 10 and 8 (2026) Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 261 | 66,633 |
| Plots 10 and 8 (2026) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 261 | 70,496 |
| Plots 10 and 8 (2026) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 261 | 75,325 |
| Plots 10 and 8 (2026) Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 261 | 50,895 |
| Plots 10 and 8 (2026) Temporary Utilities | Cranes | 1 | 10 | 445 | 0.29 | 261 | 336,821 |
| Plots 10 and 8 (2026) Curbing/Drive Approaches | Cement and Mortar Mixers | 3 | 1 | 9 | 0.56 | 261 | 3,946 |
| Plots 10 and 8 (2026) Curbing/Drive Approaches | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plots 10 and 8 (2026) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 99 | 0.36 | 261 | 93,020 |
| Plots 10 and 8 (2026) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 131 | 0.36 | 261 | 123,088 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 10 and 8 (2026) Curbing/Drive Approaches | Tractors/Loaders/Backhoes | 1 | 10 | 55 | 0.37 | 261 | 53,114 |
| Plots 10 and 8 (2026) Paving | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 261 | 52,304 |
| Plots 10 and 8 (2026) Paving | Pavers | 1 | 10 | 126 | 0.42 | 261 | 138,121 |
| Plots 10 and 8 (2026) Paving | Paving Equipment | 1 | 10 | 131 | 0.36 | 261 | 123,088 |
| Plots 10 and 8 (2026) Paving | Plate Compactors | 1 | 10 | 8 | 0.43 | 261 | 8,978 |
| Plots 10 and 8 (2026) Paving | Rollers | 1 | 10 | 81 | 0.38 | 261 | 80,336 |
| Plots 10 and 8 (2026) Paving | Scrapers | 1 | 10 | 362 | 0.48 | 261 | 453,514 |
| Plots 10 and 8 (2026) Paving | Tractors/Loaders/Backhoes | 2 | 10 | 90 | 0.37 | 261 | 173,826 |
| Plot 8 (2027) Mass Excavation | Graders | 1 | 10 | 193 | 0.41 | 261 | 206,529 |
| Plot 8 (2027) Mass Excavation | Off-Highway Trucks | 1 | 10 | 400 | 0.38 | 261 | 396,720 |
| Plot 8 (2027) Mass Excavation | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 261 | 52,304 |
| Plot 8 (2027) Mass Excavation | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plot 8 (2027) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 261 | 397,294 |
| Plot 8 (2027) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 261 | 397,294 |
| Plot 8 (2027) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 261 | 1,211,040 |
| Plot 8 (2027) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 261 | 1,211,040 |
| Plot 8 (2027) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 410 | 0.4 | 261 | 856,080 |
| Plot 8 (2027) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 305 | 0.4 | 261 | 318,420 |
| Plot 8 (2027) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 261 | 146,160 |
| Plot 8 (2027) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 85 | 0.4 | 261 | 177,480 |
| Plot 8 (2027) Mass Excavation | Scrapers | 2 | 10 | 550 | 0.48 | 261 | 1,378,080 |
| Plot 8 (2027) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 261 | 4,134,240 |
| Plot 8 (2027) Mass Excavation | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |
| Plot 8 (2027) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plot 8 (2027) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plot 8 (2027) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 261 | 146,160 |
| Plot 8 (2027) Finish Grading | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 261 | 88,740 |
| Plot 8 (2027) Finish Grading | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |
| Plot 8 (2027) Utilities | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 261 | 5,262 |
| Plot 8 (2027) Utilities | Excavators | 1 | 10 | 523 | 0.38 | 261 | 518,711 |
| Plot 8 (2027) Utilities | Excavators | 5 | 10 | 286 | 0.38 | 261 | 1,418,274 |
| Plot 8 (2027) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 261 | 188,442 |
| Plot 8 (2027) Utilities | Excavators | 2 | 10 | 396 | 0.38 | 261 | 785,506 |
| Plot 8 (2027) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 261 | 188,442 |
| Plot 8 (2027) Utilities | Excavators | 1 | 10 | 188 | 0.38 | 261 | 186,458 |
| Plot 8 (2027) Utilities | Excavators | 4 | 10 | 40 | 0.38 | 261 | 158,688 |
| Plot 8 (2027) Utilities | Forklifts | 2 | 10 | 89 | 0.2 | 261 | 92,916 |
| Plot 8 (2027) Utilities | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plot 8 (2027) Utilities | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 261 | 174,348 |
| Plot 8 (2027) Utilities | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 8 (2027) Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 261 | 347,652 |
| Plot 8 (2027) Building-Concrete | Cement and Mortar Mixers | 20 | 1 | 9 | 0.56 | 261 | 26,309 |
| Plot 8 (2027) Building-Concrete | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plot 8 (2027) Building-Concrete | Pumps | 1 | 10 | 84 | 0.74 | 261 | 162,238 |
| Plot 8 (2027) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 261 | 347,652 |
| Plot 8 (2027) Building-Wet Utilities | Excavators | 1 | 10 | 300 | 0.38 | 261 | 297,540 |
| Plot 8 (2027) Building-Wet Utilities | Excavators | 1 | 10 | 179 | 0.38 | 261 | 177,532 |
| Plot 8 (2027) Building-Wet Utilities | Excavators | 1 | 10 | 173 | 0.38 | 261 | 171,581 |
| Plot 8 (2027) Building-Wet Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 261 | 139,478 |
| Plot 8 (2027) Building-Wet Utilities | Rubber Tired Loaders | 3 | 10 | 152 | 0.36 | 261 | 428,458 |
| Plot 8 (2027) Building-Wet Utilities | Tractors/Loaders/Backhoes | 3 | 10 | 108 | 0.37 | 261 | 312,887 |
| Plot 8 (2027) Building-Wet Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 261 | 164,169 |
| Plot 8 (2027) Building-Electrical | Cement and Mortar Mixers | 5 | 1 | 9 | 0.56 | 261 | 6,577 |
| Plot 8 (2027) Building-Electrical | Excavators | 4 | 10 | 40 | 0.38 | 261 | 158,688 |
| Plot 8 (2027) Building-Electrical | Forklifts | 2 | 10 | 89 | 0.2 | 261 | 92,916 |
| Plot 8 (2027) Building-Electrical | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 261 | 52,304 |
| Plot 8 (2027) Building-Electrical | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 261 | 347,652 |
| Plot 8 (2027) Building-Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 261 | 28,762 |
| Plot 8 (2027) Building-Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 261 | 65,250 |
| Plot 8 (2027) Building-Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 261 | 34,870 |
| Plot 8 (2027) Building-Landscaping | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plot 8 (2027) Building-Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 261 | 140,000 |
| Plot 8 (2027) Building-Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 261 | 66,633 |
| Plot 8 (2027) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 261 | 70,496 |
| Plot 8 (2027) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 261 | 75,325 |
| Plot 8 (2027) Building-Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 261 | 50,895 |
| Plot 8 (2027) Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 261 | 28,762 |
| Plot 8 (2027) Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 261 | 65,250 |
| Plot 8 (2027) Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plot 8 (2027) Landscaping | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 261 | 87,174 |
| Plot 8 (2027) Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 261 | 140,000 |
| Plot 8 (2027) Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 261 | 66,633 |
| Plot 8 (2027) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 261 | 70,496 |
| Plot 8 (2027) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 261 | 75,325 |
| Plot 8 (2027) Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 261 | 50,895 |
| Plot 8 (2027) Temporary Utilities | Cranes | 1 | 10 | 445 | 0.29 | 261 | 336,821 |
| Plot 8 (2027) Curbing/Drive Approaches | Cement and Mortar Mixers | 3 | 1 | 9 | 0.56 | 261 | 3,946 |
| Plot 8 (2027) Curbing/Drive Approaches | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 261 | 34,870 |
| Plot 8 (2027) Paving | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 261 | 52,304 |
| Plot 8 (2027) Paving | Pavers | 1 | 10 | 126 | 0.42 | 261 | 138,121 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 8 (2027) Paving | Paving Equipment | 1 | 10 | 131 | 0.36 | 261 | 123,088 |
| Plot 8 (2027) Paving | Plate Compactors | 1 | 10 | 8 | 0.43 | 261 | 8,978 |
| Plot 8 (2027) Paving | Rollers | 1 | 10 | 81 | 0.38 | 261 | 80,336 |
| Plot 8 (2027) Paving | Scrapers | 1 | 10 | 362 | 0.48 | 261 | 453,514 |
| Plot 8 (2027) Paving | Tractors/Loaders/Backhoes | 2 | 10 | 90 | 0.37 | 261 | 173,826 |
| Plots 11 and 6,7 (2028) Mass Excavation | Graders | 1 | 10 | 193 | 0.41 | 260 | 205,738 |
| Plots 11 and 6,7 (2028) Mass Excavation | Off-Highway Trucks | 1 | 10 | 400 | 0.38 | 260 | 395,200 |
| Plots 11 and 6,7 (2028) Mass Excavation | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plots 11 and 6,7 (2028) Mass Excavation | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 260 | 69,472 |
| Plots 11 and 6,7 (2028) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 260 | 395,772 |
| Plots 11 and 6,7 (2028) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 260 | 395,772 |
| Plots 11 and 6,7 (2028) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 260 | 1,206,400 |
| Plots 11 and 6,7 (2028) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 260 | 1,206,400 |
| Plots 11 and 6,7 (2028) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 410 | 0.4 | 260 | 852,800 |
| Plots 11 and 6,7 (2028) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 305 | 0.4 | 260 | 634,400 |
| Plots 11 and 6,7 (2028) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 260 | 145,600 |
| Plots 11 and 6,7 (2028) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 260 | 88,400 |
| Plots 11 and 6,7 (2028) Mass Excavation | Scrapers | 2 | 10 | 550 | 0.48 | 260 | 1,372,800 |
| Plots 11 and 6,7 (2028) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 260 | 4,118,400 |
| Plots 11 and 6,7 (2028) Mass Excavation | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plots 11 and 6,7 (2028) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 11 and 6,7(2028) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 11 and 6,7 (2028) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 260 | 145,600 |
| Plots 11 and 6,7(2028) Finish Grading | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 260 | 88,400 |
| Plots 11 and 6,7 (2028) Finish Grading | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plots 11 and 6,7 (2028) Utilities | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plots 11 and 6,7 (2028) Utilities | Excavators | 1 | 10 | 523 | 0.38 | 260 | 516,724 |
| Plots 11 and 6,7 (2028) Utilities | Excavators | 5 | 10 | 286 | 0.38 | 260 | 1,412,840 |
| Plots 11 and 6,7 (2028) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plots 11 and 6,7 (2028) Utilities | Excavators | 2 | 10 | 396 | 0.38 | 260 | 782,496 |
| Plots 11 and 6,7 (2028) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plots 11 and 6,7 (2028) Utilities | Excavators | 1 | 10 | 188 | 0.38 | 260 | 185,744 |
| Plots 11 and 6,7 (2028) Utilities | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plots 11 and 6,7 (2028) Utilities | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plots 11 and 6,7 (2028) Utilities | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 260 | 69,472 |
| Plots 11 and 6,7 (2028) Utilities | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 260 | 173,680 |
| Plots 11 and 6,7 (2028) Utilities | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plots 11 and 6,7 (2028) Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plots 11 and 6,7 (2028) Building-Concrete | Cement and Mortar Mixers | 10 | 1 | 9 | 0.56 | 260 | 13,104 |
| Plots 11 and 6,7 (2028) Building-Concrete | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 11 and 6,7 (2028) Building-Concrete | Pumps | 1 | 10 | 84 | 0.74 | 260 | 161,616 |
| Plots 11 and 6,7 (2028) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plots 11 and 6,7 (2028) Building-Wet Utilities | Excavators | 1 | 10 | 300 | 0.38 | 260 | 296,400 |
| Plots 11 and 6,7 (2028) Building-Wet Utilities | Excavators | 1 | 10 | 179 | 0.38 | 260 | 176,852 |
| Plots 11 and 6,7 (2028) Building-Wet Utilities | Excavators | 1 | 10 | 173 | 0.38 | 260 | 170,924 |
| Plots 11 and 6,7 (2028) Building-Wet Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plots 11 and 6,7 (2028) Building-Wet Utilities | Rubber Tired Loaders | 3 | 10 | 152 | 0.36 | 260 | 426,816 |
| Plots 11 and 6,7 (2028) Building-Wet Utilities | Tractors/Loaders/Backhoes | 3 | 10 | 108 | 0.37 | 260 | 311,688 |
| Plots 11 and 6,7 (2028) Building-Wet Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plots 11 and 6,7 (2028) Building-Electrical | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plots 11 and 6,7 (2028) Building-Electrical | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plots 11 and 6,7 (2028) Building-Electrical | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plots 11 and 6,7 (2028) Building-Electrical | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plots 11 and 6,7 (2028) Building-Electrical | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plots 11 and 6,7 (2028) Building-Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plots 11 and 6,7 (2028) Building-Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plots 11 and 6,7 (2028) Building-Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plots 11 and 6,7 (2028) Building-Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plots 11 and 6,7 (2028) Building-Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plots 11 and 6,7 (2028) Building-Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |
| Plots 11 and 6,7 (2028) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plots 11 and 6,7 (2028) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plots 11 and 6,7 (2028) Building-Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plots 11 and 6,7 (2028) Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plots 11 and 6,7 (2028) Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plots 11 and 6,7 (2028) Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 11 and 6,7 (2028) Landscaping | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 260 | 86,840 |
| Plots 11 and 6,7 (2028) Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plots 11 and 6,7 (2028) Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |
| Plots 11 and 6,7 (2028) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plots 11 and 6,7 (2028) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plots 11 and 6,7 (2028) Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plots 11 and 6,7 (2028) Temporary Utilities | Cranes | 1 | 10 | 445 | 0.29 | 260 | 335,530 |
| Plots 11 and 6,7 (2028) Curbing/Drive Approaches | Cement and Mortar Mixers | 3 | 1 | 9 | 0.56 | 260 | 3,931 |
| Plots 11 and 6,7 (2028) Curbing/Drive Approaches | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plots 11 and 6,7 (2028) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 99 | 0.36 | 260 | 92,664 |
| Plots 11 and 6,7 (2028) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 131 | 0.36 | 260 | 122,616 |
| Plots 11 and 6,7 (2028) Curbing/Drive Approaches | Tractors/Loaders/Backhoes | 1 | 10 | 55 | 0.37 | 260 | 52,910 |
| Plots 11 and 6,7 (2028) Paving | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plots 11 and 6,7 (2028) Paving | Pavers | 1 | 10 | 126 | 0.42 | 260 | 137,592 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 11 and 6,7 (2028) Paving | Paving Equipment | 1 | 10 | 131 | 0.36 | 260 | 122,616 |
| Plots 11 and 6,7 (2028) Paving | Plate Compactors | 1 | 10 | 8 | 0.43 | 260 | 8,944 |
| Plots 11 and 6,7 (2028) Paving | Rollers | 1 | 10 | 81 | 0.38 | 260 | 80,028 |
| Plots 11 and 6,7 (2028) Paving | Scrapers | 1 | 10 | 362 | 0.48 | 260 | 451,776 |
| Plots 11 and 6,7 (2028) Paving | Tractors/Loaders/Backhoes | 2 | 10 | 90 | 0.37 | 260 | 173,160 |
| Plot 11 (2029) Mass Excavation | Graders | 1 | 10 | 193 | 0.41 | 261 | 206,529 |
| Plot 11 (2029) Mass Excavation | Off-Highway Trucks | 1 | 10 | 400 | 0.38 | 261 | 396,720 |
| Plot 11 (2029) Mass Excavation | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 261 | 52,304 |
| Plot 11 (2029) Mass Excavation | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 261 | 52,304 |
| Plot 11 (2029) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 261 | 397,294 |
| Plot 11 (2029) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 261 | 397,294 |
| Plot 11 (2029) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 261 | 1,211,040 |
| Plot 11 (2029) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 261 | 1,211,040 |
| Plot 11 (2029) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 410 | 0.4 | 261 | 856,080 |
| Plot 11 (2029) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 305 | 0.4 | 261 | 318,420 |
| Plot 11 (2029) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 261 | 146,160 |
| Plot 11 (2029) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 261 | 88,740 |
| Plot 11 (2029) Mass Excavation | Scrapers | 1 | 10 | 550 | 0.48 | 261 | 689,040 |
| Plot 11 (2029) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 261 | 4,134,240 |
| Plot 11 (2029) Mass Excavation | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |
| Plot 11 (2029) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plot 11 (2029) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plot 11 (2029) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 261 | 146,160 |
| Plot 11 (2029) Finish Grading | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 261 | 88,740 |
| Plot 11 (2029) Finish Grading | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |
| Plot 11 (2029) Utilities | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 261 | 5,262 |
| Plot 11 (2029) Utilities | Excavators | 1 | 10 | 523 | 0.38 | 261 | 518,711 |
| Plot 11 (2029) Utilities | Excavators | 5 | 10 | 286 | 0.38 | 261 | 1,418,274 |
| Plot 11 (2029) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 261 | 188,442 |
| Plot 11 (2029) Utilities | Excavators | 2 | 10 | 396 | 0.38 | 261 | 785,506 |
| Plot 11 (2029) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 261 | 188,442 |
| Plot 11 (2029) Utilities | Excavators | 1 | 10 | 188 | 0.38 | 261 | 186,458 |
| Plot 11 (2029) Utilities | Excavators | 4 | 10 | 40 | 0.38 | 261 | 158,688 |
| Plot 11 (2029) Utilities | Forklifts | 2 | 10 | 89 | 0.2 | 261 | 92,916 |
| Plot 11 (2029) Utilities | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 261 | 69,739 |
| Plot 11 (2029) Utilities | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 261 | 174,348 |
| Plot 11 (2029) Utilities | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 261 | 82,085 |
| Plot 11 (2029) Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 261 | 347,652 |
| Plot 11 (2029) Building-Concrete | Cement and Mortar Mixers | 10 | 1 | 9 | 0.56 | 261 | 13,154 |
| Plot 11 (2029) Building-Concrete | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 11 (2029) Building-Concrete | Pumps | 1 | 10 | 84 | 0.74 | 261 | 162,238 |
| Plot 11 (2029) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 261 | 347,652 |
| Plot 11 (2029) Building-Wet Utilities | Excavators | 1 | 10 | 300 | 0.38 | 261 | 297,540 |
| Plot 11 (2029) Building-Wet Utilities | Excavators | 1 | 10 | 179 | 0.38 | 261 | 177,532 |
| Plot 11 (2029) Building-Wet Utilities | Excavators | 1 | 10 | 173 | 0.38 | 261 | 171,581 |
| Plot 11 (2029) Building-Wet Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 261 | 139,478 |
| Plot 11 (2029) Building-Wet Utilities | Rubber Tired Loaders | 3 | 10 | 152 | 0.36 | 261 | 428,458 |
| Plot 11 (2029) Building-Wet Utilities | Tractors/Loaders/Backhoes | 3 | 10 | 108 | 0.37 | 261 | 312,887 |
| Plot 11 (2029) Building-Wet Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 261 | 164,169 |
| Plot 11 (2029) Building-Electrical | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 261 | 5,262 |
| Plot 11 (2029) Building-Electrical | Excavators | 4 | 10 | 40 | 0.38 | 261 | 158,688 |
| Plot 11 (2029) Building-Electrical | Forklifts | 2 | 10 | 89 | 0.2 | 261 | 92,916 |
| Plot 11 (2029) Building-Electrical | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 261 | 52,304 |
| Plot 11 (2029) Building-Electrical | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 261 | 347,652 |
| Plot 11 (2029) Building-Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 261 | 28,762 |
| Plot 11 (2029) Building-Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 261 | 65,250 |
| Plot 11 (2029) Building-Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plot 11 (2029) Building-Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 261 | 34,870 |
| Plot 11 (2029) Building-Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 261 | 140,000 |
| Plot 11 (2029) Building-Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 261 | 66,633 |
| Plot 11 (2029) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 261 | 70,496 |
| Plot 11 (2029) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 261 | 75,325 |
| Plot 11 (2029) Building-Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 261 | 50,895 |
| Plot 11 (2029) Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 261 | 28,762 |
| Plot 11 (2029) Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 261 | 65,250 |
| Plot 11 (2029) Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 261 | 17,435 |
| Plot 11 (2029) Landscaping | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 261 | 87,174 |
| Plot 11 (2029) Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 261 | 140,000 |
| Plot 11 (2029) Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 261 | 66,633 |
| Plot 11 (2029) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 261 | 70,496 |
| Plot 11 (2029) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 261 | 75,325 |
| Plot 11 (2029) Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 261 | 50,895 |
| Plot 11 (2029) Temporary Utilities | Cranes | 1 | 10 | 445 | 0.29 | 261 | 336,821 |
| Plot 11 (2029) Curbing/Drive Approaches | Cement and Mortar Mixers | 3 | 1 | 9 | 0.56 | 261 | 3,946 |
| Plot 11 (2029) Curbing/Drive Approaches | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 261 | 34,870 |
| Plot 11 (2029) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 99 | 0.36 | 261 | 93,020 |
| Plot 11 (2029) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 131 | 0.36 | 261 | 123,088 |
| Plot 11 (2029) Curbing/Drive Approaches | Tractors/Loaders/Backhoes | 1 | 10 | 55 | 0.37 | 261 | 53,114 |
| Plot 11 (2029) Paving | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 261 | 52,304 |
| Plot 11 (2029) Paving | Pavers | 1 | 10 | 126 | 0.42 | 261 | 138,121 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 11 (2029) Paving | Paving Equipment | 1 | 10 | 131 | 0.36 | 261 | 123,088 |
| Plot 11 (2029) Paving | Plate Compactors | 1 | 10 | 8 | 0.43 | 261 | 8,978 |
| Plot 11 (2029) Paving | Rollers | 1 | 10 | 81 | 0.38 | 261 | 80,336 |
| Plot 11 (2029) Paving | Scrapers | 1 | 10 | 362 | 0.48 | 261 | 453,514 |
| Plot 11 (2029) Paving | Tractors/Loaders/Backhoes | 2 | 10 | 90 | 0.37 | 261 | 173,826 |
| Plot 11 (2030) Mass Excavation | Graders | 1 | 10 | 193 | 0.41 | 260 | 205,738 |
| Plot 11 (2030) Mass Excavation | Off-Highway Trucks | 1 | 10 | 400 | 0.38 | 260 | 395,200 |
| Plot 11 (2030) Mass Excavation | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plot 11 (2030) Mass Excavation | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plot 11 (2030) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 260 | 395,772 |
| Plot 11 (2030) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 260 | 395,772 |
| Plot 11 (2030) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 260 | 1,206,400 |
| Plot 11 (2030) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 580 | 0.4 | 260 | 1,206,400 |
| Plot 11 (2030) Mass Excavation | Rubber Tired Dozers | 2 | 10 | 410 | 0.4 | 260 | 852,800 |
| Plot 11 (2030) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 305 | 0.4 | 260 | 317,200 |
| Plot 11 (2030) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 260 | 145,600 |
| Plot 11 (2030) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 260 | 88,400 |
| Plot 11 (2030) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 260 | 4,118,400 |
| Plot 11 (2030) Mass Excavation | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plot 11 (2030) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 11 (2030) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 11 (2030) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 260 | 145,600 |
| Plot 11 (2030) Finish Grading | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 260 | 88,400 |
| Plot 11 (2030) Finish Grading | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plot 11 (2030) Utilities | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plot 11 (2030) Utilities | Excavators | 1 | 10 | 523 | 0.38 | 260 | 516,724 |
| Plot 11 (2030) Utilities | Excavators | 5 | 10 | 286 | 0.38 | 260 | 1,412,840 |
| Plot 11 (2030) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plot 11 (2030) Utilities | Excavators | 2 | 10 | 396 | 0.38 | 260 | 782,496 |
| Plot 11 (2030) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plot 11 (2030) Utilities | Excavators | 1 | 10 | 188 | 0.38 | 260 | 185,744 |
| Plot 11 (2030) Utilities | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plot 11 (2030) Utilities | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plot 11 (2030) Utilities | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 260 | 69,472 |
| Plot 11 (2030) Utilities | Other Material Handling Equipment | 10 | 1 | 167 | 0.4 | 260 | 173,680 |
| Plot 11 (2030) Utilities | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plot 11 (2030) Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plot 11 (2030) Building-Concrete | Cement and Mortar Mixers | 10 | 1 | 9 | 0.56 | 260 | 13,104 |
| Plot 11 (2030) Building-Concrete | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 11 (2030) Building-Concrete | Pumps | 1 | 10 | 84 | 0.74 | 260 | 161,616 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 11 (2030) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plot 11 (2030) Building-Wet Utilities | Excavators | 1 | 10 | 300 | 0.38 | 260 | 296,400 |
| Plot 11 (2030) Building-Wet Utilities | Excavators | 1 | 10 | 179 | 0.38 | 260 | 176,852 |
| Plot 11 (2030) Building-Wet Utilities | Excavators | 1 | 10 | 173 | 0.38 | 260 | 170,924 |
| Plot 11 (2030) Building-Wet Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plot 11 (2030) Building-Wet Utilities | Rubber Tired Loaders | 3 | 10 | 152 | 0.36 | 260 | 426,816 |
| Plot 11 (2030) Building-Wet Utilities | Tractors/Loaders/Backhoes | 3 | 10 | 108 | 0.37 | 260 | 311,688 |
| Plot 11 (2030) Building-Wet Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plot 11 (2030) Building-Electrical | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plot 11 (2030) Building-Electrical | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plot 11 (2030) Building-Electrical | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plot 11 (2030) Building-Electrical | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plot 11 (2030) Building-Electrical | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plot 11 (2030) Building-Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plot 11 (2030) Building-Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plot 11 (2030) Building-Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 11 (2030) Building-Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 11 (2030) Building-Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plot 11 (2030) Building-Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |
| Plot 11 (2030) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plot 11 (2030) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plot 11 (2030) Building-Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plot 11 (2030) Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plot 11 (2030) Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plot 11 (2030) Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 11 (2030) Landscaping | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 260 | 86,840 |
| Plot 11 (2030) Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plot 11 (2030) Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |
| Plot 11 (2030) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plot 11 (2030) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plot 11 (2030) Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plot 11 (2030) Temporary Utilities | Cranes | 1 | 10 | 445 | 0.29 | 260 | 335,530 |
| Plot 11 (2030) Curbing/Drive Approaches | Cement and Mortar Mixers | 3 | 1 | 9 | 0.56 | 260 | 3,931 |
| Plot 11 (2030) Curbing/Drive Approaches | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 11 (2030) Paving | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plot 11 (2030) Paving | Pavers | 1 | 10 | 126 | 0.42 | 260 | 137,592 |
| Plot 11 (2030) Paving | Paving Equipment | 1 | 10 | 131 | 0.36 | 260 | 122,616 |
| Plot 11 (2030) Paving | Plate Compactors | 1 | 10 | 8 | 0.43 | 260 | 8,944 |
| Plot 11 (2030) Paving | Rollers | 1 | 10 | 81 | 0.38 | 260 | 80,028 |
| Plot 11 (2030) Paving | Scrapers | 1 | 10 | 362 | 0.48 | 260 | 451,776 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 11 (2030) Paving | Tractors/Loaders/Backhoes | 2 | 10 | 90 | 0.37 | 260 | 173,160 |
| Plot 11 (2031) Mass Excavation | Graders | 1 | 10 | 193 | 0.41 | 260 | 205,738 |
| Plot 11 (2031) Mass Excavation | Off-Highway Trucks | 1 | 10 | 400 | 0.38 | 260 | 395,200 |
| Plot 11 (2031) Mass Excavation | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plot 11 (2031) Mass Excavation | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plot 11 (2031) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 260 | 395,772 |
| Plot 11 (2031) Mass Excavation | Plate Compactors | 1 | 10 | 354 | 0.43 | 260 | 395,772 |
| Plot 11 (2031) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 305 | 0.4 | 260 | 317,200 |
| Plot 11 (2031) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 260 | 145,600 |
| Plot 11 (2031) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 260 | 88,400 |
| Plot 11 (2031) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 260 | 4,118,400 |
| Plot 11 (2031) Mass Excavation | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plot 11 (2031) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 11 (2031) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 11 (2031) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 260 | 145,600 |
| Plot 11 (2031) Finish Grading | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 260 | 88,400 |
| Plot 11 (2031) Finish Grading | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plot 11 (2031) Utilities | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plot 11 (2031) Utilities | Excavators | 1 | 10 | 523 | 0.38 | 260 | 516,724 |
| Plot 11 (2031) Utilities | Excavators | 5 | 10 | 286 | 0.38 | 260 | 1,412,840 |
| Plot 11 (2031) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plot 11 (2031) Utilities | Excavators | 2 | 10 | 396 | 0.38 | 260 | 782,496 |
| Plot 11 (2031) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plot 11 (2031) Utilities | Excavators | 1 | 10 | 188 | 0.38 | 260 | 185,744 |
| Plot 11 (2031) Utilities | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plot 11 (2031) Utilities | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plot 11 (2031) Utilities | Other Material Handling Equipment | 4 | 1 | 167 | 0.4 | 260 | 69,472 |
| Plot 11 (2031) Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plot 11 (2031) Utilities | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plot 11 (2031) Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plot 11 (2031) Building-Concrete | Cement and Mortar Mixers | 10 | 1 | 9 | 0.56 | 260 | 13,104 |
| Plot 11 (2031) Building-Concrete | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 11 (2031) Building-Concrete | Pumps | 1 | 10 | 84 | 0.74 | 260 | 161,616 |
| Plot 11 (2031) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plot 11 (2031) Building-Wet Utilities | Excavators | 1 | 10 | 300 | 0.38 | 260 | 296,400 |
| Plot 11 (2031) Building-Wet Utilities | Excavators | 1 | 10 | 179 | 0.38 | 260 | 176,852 |
| Plot 11 (2031) Building-Wet Utilities | Excavators | 1 | 10 | 173 | 0.38 | 260 | 170,924 |
| Plot 11 (2031) Building-Wet Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plot 11 (2031) Building-Wet Utilities | Rubber Tired Loaders | 3 | 10 | 152 | 0.36 | 260 | 426,816 |
| Plot 11 (2031) Building-Wet Utilities | Tractors/Loaders/Backhoes | 3 | 10 | 108 | 0.37 | 260 | 311,688 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 11 (2031) Building-Wet Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plot 11 (2031) Building-Electrical | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plot 11 (2031) Building-Electrical | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plot 11 (2031) Building-Electrical | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plot 11 (2031) Building-Electrical | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plot 11 (2031) Building-Electrical | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plot 11 (2031) Building-Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plot 11 (2031) Building-Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plot 11 (2031) Building-Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 11 (2031) Building-Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 11 (2031) Building-Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plot 11 (2031) Building-Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |
| Plot 11 (2031) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plot 11 (2031) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plot 11 (2031) Building-Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plot 11 (2031) Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plot 11 (2031) Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plot 11 (2031) Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 11 (2031) Landscaping | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 260 | 86,840 |
| Plot 11 (2031) Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plot 11 (2031) Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |
| Plot 11 (2031) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plot 11 (2031) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plot 11 (2031) Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plot 11 (2031) Temporary Utilities | Cranes | 1 | 10 | 445 | 0.29 | 260 | 335,530 |
| Plot 11 (2031) Curbing/Drive Approaches | Cement and Mortar Mixers | 3 | 1 | 9 | 0.56 | 260 | 3,931 |
| Plot 11 (2031) Curbing/Drive Approaches | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 11 (2031) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 99 | 0.36 | 260 | 92,664 |
| Plot 11 (2031) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 131 | 0.36 | 260 | 122,616 |
| Plot 11 (2031) Curbing/Drive Approaches | Tractors/Loaders/Backhoes | 1 | 10 | 55 | 0.37 | 260 | 52,910 |
| Plot 11 (2031) Paving | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plot 11 (2031) Paving | Pavers | 1 | 10 | 126 | 0.42 | 260 | 137,592 |
| Plot 11 (2031) Paving | Paving Equipment | 1 | 10 | 131 | 0.36 | 260 | 122,616 |
| Plot 11 (2031) Paving | Plate Compactors | 1 | 10 | 8 | 0.43 | 260 | 8,944 |
| Plot 11 (2031) Paving | Rollers | 1 | 10 | 81 | 0.38 | 260 | 80,028 |
| Plot 11 (2031) Paving | Scrapers | 1 | 10 | 362 | 0.48 | 260 | 451,776 |
| Plot 11 (2031) Paving | Tractors/Loaders/Backhoes | 2 | 10 | 90 | 0.37 | 260 | 173,160 |
| Plots 11 and 12 (2032) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 305 | 0.4 | 260 | 317,200 |
| Plots 11 and 12 (2032) Mass Excavation | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 260 | 88,400 |
| Plots 11 and 12 (2032) Mass Excavation | Scrapers | 6 | 10 | 550 | 0.48 | 260 | 4,118,400 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 11 and 12 (2032) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 11 and 12 (2032) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 11 and 12 (2032) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 260 | 145,600 |
| Plots 11 and 12 (2032) Finish Grading | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 260 | 88,400 |
| Plots 11 and 12 (2032) Finish Grading | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plots 11 and 12 (2032) Utilities | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plots 11 and 12 (2032) Utilities | Excavators | 1 | 10 | 523 | 0.38 | 260 | 516,724 |
| Plots 11 and 12 (2032) Utilities | Excavators | 5 | 10 | 286 | 0.38 | 260 | 1,412,840 |
| Plots 11 and 12 (2032) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plots 11 and 12 (2032) Utilities | Excavators | 2 | 10 | 396 | 0.38 | 260 | 782,496 |
| Plots 11 and 12 (2032) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plots 11 and 12 (2032) Utilities | Excavators | 1 | 10 | 188 | 0.38 | 260 | 185,744 |
| Plots 11 and 12 (2032) Utilities | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plots 11 and 12 (2032) Utilities | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plots 11 and 12 (2032) Utilities | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plots 11 and 12 (2032) Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plots 11 and 12 (2032) Utilities | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plots 11 and 12 (2032) Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plots 11 and 12 (2032) Building-Concrete | Cement and Mortar Mixers | 10 | 1 | 9 | 0.56 | 260 | 13,104 |
| Plots 11 and 12 (2032) Building-Concrete | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 11 and 12 (2032) Building-Concrete | Pumps | 1 | 10 | 84 | 0.74 | 260 | 161,616 |
| Plots 11 and 12 (2032) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plots 11 and 12 (2032) Building-Wet Utilities | Excavators | 1 | 10 | 300 | 0.38 | 260 | 296,400 |
| Plots 11 and 12 (2032) Building-Wet Utilities | Excavators | 1 | 10 | 179 | 0.38 | 260 | 176,852 |
| Plots 11 and 12 (2032) Building-Wet Utilities | Excavators | 1 | 10 | 173 | 0.38 | 260 | 170,924 |
| Plots 11 and 12 (2032) Building-Wet Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plots 11 and 12 (2032) Building-Wet Utilities | Rubber Tired Loaders | 3 | 10 | 152 | 0.36 | 260 | 426,816 |
| Plots 11 and 12 (2032) Building-Wet Utilities | Tractors/Loaders/Backhoes | 3 | 10 | 108 | 0.37 | 260 | 311,688 |
| Plots 11 and 12 (2032) Building-Wet Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plots 11 and 12 (2032) Building-Electrical | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plots 11 and 12 (2032) Building-Electrical | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plots 11 and 12 (2032) Building-Electrical | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plots 11 and 12 (2032) Building-Electrical | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plots 11 and 12 (2032) Building-Electrical | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plots 11 and 12 (2032) Building-Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plots 11 and 12 (2032) Building-Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plots 11 and 12 (2032) Building-Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 11 and 12 (2032) Building-Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plots 11 and 12 (2032) Building-Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plots 11 and 12 (2032) Building-Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 11 and 12 (2032) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plots 11 and 12 (2032) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plots 11 and 12 (2032) Building-Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plots 11 and 12 (2032) Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plots 11 and 12 (2032) Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plots 11 and 12 (2032) Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 11 and 12 (2032) Landscaping | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 260 | 86,840 |
| Plots 11 and 12 (2032) Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plots 11 and 12 (2032) Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |
| Plots 11 and 12 (2032) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plots 11 and 12 (2032) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plots 11 and 12 (2032) Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plots 11 and 12 (2032) Temporary Utilities | Cranes | 1 | 10 | 445 | 0.29 | 260 | 335,530 |
| Plots 11 and 12 (2032) Curbing/Drive Approaches | Cement and Mortar Mixers | 3 | 1 | 9 | 0.56 | 260 | 3,931 |
| Plots 11 and 12 (2032) Curbing/Drive Approaches | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plots 11 and 12 (2032) Paving | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plots 11 and 12 (2032) Paving | Pavers | 1 | 10 | 126 | 0.42 | 260 | 137,592 |
| Plots 11 and 12 (2032) Paving | Paving Equipment | 1 | 10 | 131 | 0.36 | 260 | 122,616 |
| Plots 11 and 12 (2032) Paving | Plate Compactors | 1 | 10 | 8 | 0.43 | 260 | 8,944 |
| Plots 11 and 12 (2032) Paving | Rollers | 1 | 10 | 81 | 0.38 | 260 | 80,028 |
| Plots 11 and 12 (2032) Paving | Scrapers | 1 | 10 | 362 | 0.48 | 260 | 451,776 |
| Plots 11 and 12 (2032) Paving | Tractors/Loaders/Backhoes | 2 | 10 | 90 | 0.37 | 260 | 173,160 |
| Plot 12 (2033) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 12 (2033) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 12 (2033) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 260 | 145,600 |
| Plot 12 (2033) Finish Grading | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 260 | 88,400 |
| Plot 12 (2033) Utilities | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plot 12 (2033) Utilities | Excavators | 1 | 10 | 523 | 0.38 | 260 | 516,724 |
| Plot 12 (2033) Utilities | Excavators | 5 | 10 | 286 | 0.38 | 260 | 1,412,840 |
| Plot 12 (2033) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plot 12 (2033) Utilities | Excavators | 2 | 10 | 396 | 0.38 | 260 | 782,496 |
| Plot 12 (2033) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plot 12 (2033) Utilities | Excavators | 1 | 10 | 188 | 0.38 | 260 | 185,744 |
| Plot 12 (2033) Utilities | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plot 12 (2033) Utilities | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plot 12 (2033) Utilities | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 12 (2033) Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plot 12 (2033) Utilities | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plot 12 (2033) Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plot 12 (2033) Building-Concrete | Cement and Mortar Mixers | 10 | 1 | 9 | 0.56 | 260 | 13,104 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 12 (2033) Building-Concrete | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 12 (2033) Building-Concrete | Pumps | 1 | 10 | 84 | 0.74 | 260 | 161,616 |
| Plot 12 (2033) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plot 12 (2033) Building-Wet Utilities | Excavators | 1 | 10 | 300 | 0.38 | 260 | 296,400 |
| Plot 12 (2033) Building-Wet Utilities | Excavators | 1 | 10 | 179 | 0.38 | 260 | 176,852 |
| Plot 12 (2033) Building-Wet Utilities | Excavators | 1 | 10 | 173 | 0.38 | 260 | 170,924 |
| Plot 12 (2033) Building-Wet Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plot 12 (2033) Building-Wet Utilities | Rubber Tired Loaders | 3 | 10 | 152 | 0.36 | 260 | 426,816 |
| Plot 12 (2033) Building-Wet Utilities | Tractors/Loaders/Backhoes | 3 | 10 | 108 | 0.37 | 260 | 311,688 |
| Plot 12 (2033) Building-Wet Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plot 12 (2033) Building-Electrical | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plot 12 (2033) Building-Electrical | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plot 12 (2033) Building-Electrical | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plot 12 (2033) Building-Electrical | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plot 12 (2033) Building-Electrical | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plot 12 (2033) Building-Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plot 12 (2033) Building-Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plot 12 (2033) Building-Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 12 (2033) Building-Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 12 (2033) Building-Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plot 12 (2033) Building-Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |
| Plot 12 (2033) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plot 12 (2033) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plot 12 (2033) Building-Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plot 12 (2033) Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plot 12 (2033) Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plot 12 (2033) Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plot 12 (2033) Landscaping | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 260 | 86,840 |
| Plot 12 (2033) Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plot 12 (2033) Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |
| Plot 12 (2033) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plot 12 (2033) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plot 12 (2033) Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plot 12 (2033) Temporary Utilities | Cranes | 1 | 10 | 445 | 0.29 | 260 | 335,530 |
| Plot 12 (2033) Curbing/Drive Approaches | Cement and Mortar Mixers | 3 | 1 | 9 | 0.56 | 260 | 3,931 |
| Plot 12 (2033) Curbing/Drive Approaches | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plot 12 (2033) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 99 | 0.36 | 260 | 92,664 |
| Plot 12 (2033) Curbing/Drive Approaches | Paving Equipment | 1 | 10 | 131 | 0.36 | 260 | 122,616 |
| Plot 12 (2033) Curbing/Drive Approaches | Tractors/Loaders/Backhoes | 1 | 10 | 55 | 0.37 | 260 | 52,910 |
| Plot 12 (2033) Paving | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 12 (2033) Paving | Pavers | 1 | 10 | 126 | 0.42 | 260 | 137,592 |
| Plot 12 (2033) Paving | Paving Equipment | 1 | 10 | 131 | 0.36 | 260 | 122,616 |
| Plot 12 (2033) Paving | Plate Compactors | 1 | 10 | 8 | 0.43 | 260 | 8,944 |
| Plot 12 (2033) Paving | Rollers | 1 | 10 | 81 | 0.38 | 260 | 80,028 |
| Plot 12 (2033) Paving | Scrapers | 1 | 10 | 362 | 0.48 | 260 | 451,776 |
| Plot 12 (2033) Paving | Tractors/Loaders/Backhoes | 2 | 10 | 90 | 0.37 | 260 | 173,160 |
| Plots 12 and 21,22 (2034) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 12 and 21,22 (2034) Finish Grading | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 12 and 21,22 (2034) Finish Grading | Rubber Tired Dozers | 1 | 10 | 140 | 0.4 | 260 | 145,600 |
| Plots 12 and 21,22 (2034) Finish Grading | Rubber Tired Dozers | 1 | 10 | 85 | 0.4 | 260 | 88,400 |
| Plots 12 and 21,22 (2034) Finish Grading | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plots 12 and 21,22 (2034) Utilities | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plots 12 and 21,22 (2034) Utilities | Excavators | 1 | 10 | 523 | 0.38 | 260 | 516,724 |
| Plots 12 and 21,22 (2034) Utilities | Excavators | 5 | 10 | 286 | 0.38 | 260 | 1,412,840 |
| Plots 12 and 21,22 (2034) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plots 12 and 21,22 (2034) Utilities | Excavators | 2 | 10 | 396 | 0.38 | 260 | 782,496 |
| Plots 12 and 21,22 (2034) Utilities | Excavators | 1 | 10 | 190 | 0.38 | 260 | 187,720 |
| Plots 12 and 21,22 (2034) Utilities | Excavators | 1 | 10 | 188 | 0.38 | 260 | 185,744 |
| Plots 12 and 21,22 (2034) Utilities | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plots 12 and 21,22 (2034) Utilities | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plots 12 and 21,22 (2034) Utilities | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 12 and 21,22 (2034) Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plots 12 and 21,22 (2034) Utilities | Tractors/Loaders/Backhoes | 1 | 10 | 85 | 0.37 | 260 | 81,770 |
| Plots 12 and 21,22 (2034) Utilities | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plots 12 and 21,22 (2034) Building-Concrete | Cement and Mortar Mixers | 5 | 1 | 9 | 0.56 | 260 | 6,552 |
| Plots 12 and 21,22 (2034) Building-Concrete | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 12 and 21,22 (2034) Building-Concrete | Pumps | 1 | 10 | 84 | 0.74 | 260 | 161,616 |
| Plots 12 and 21,22 (2034) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |
| Plots 12 and 21,22 (2034) Building-Wet Utilities | Excavators | 1 | 10 | 300 | 0.38 | 260 | 296,400 |
| Plots 12 and 21,22 (2034) Building-Wet Utilities | Excavators | 1 | 10 | 179 | 0.38 | 260 | 176,852 |
| Plots 12 and 21,22 (2034) Building-Wet Utilities | Excavators | 1 | 10 | 173 | 0.38 | 260 | 170,924 |
| Plots 12 and 21,22 (2034) Building-Wet Utilities | Other Material Handling Equipment | 8 | 1 | 167 | 0.4 | 260 | 138,944 |
| Plots 12 and 21,22 (2034) Building-Wet Utilities | Rubber Tired Loaders | 3 | 10 | 152 | 0.36 | 260 | 426,816 |
| Plots 12 and 21,22 (2034) Building-Wet Utilities | Tractors/Loaders/Backhoes | 3 | 10 | 108 | 0.37 | 260 | 311,688 |
| Plots 12 and 21,22 (2034) Building-Wet Utilities | Tractors/Loaders/Backhoes | 2 | 10 | 85 | 0.37 | 260 | 163,540 |
| Plots 12 and 21,22 (2034) Building-Electrical | Cement and Mortar Mixers | 4 | 1 | 9 | 0.56 | 260 | 5,242 |
| Plots 12 and 21,22 (2034) Building-Electrical | Excavators | 4 | 10 | 40 | 0.38 | 260 | 158,080 |
| Plots 12 and 21,22 (2034) Building-Electrical | Forklifts | 2 | 10 | 89 | 0.2 | 260 | 92,560 |
| Plots 12 and 21,22 (2034) Building-Electrical | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plots 12 and 21,22 (2034) Building-Electrical | Tractors/Loaders/Backhoes | 4 | 10 | 90 | 0.37 | 260 | 346,320 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 12 and 21,22 (2034) Building-Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plots 12 and 21,22 (2034) Building-Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plots 12 and 21,22 (2034) Building-Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 12 and 21,22 (2034) Building-Landscaping | Other Material Handling Equipment | 2 | 1 | 167 | 0.4 | 260 | 34,736 |
| Plots 12 and 21,22 (2034) Building-Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plots 12 and 21,22 (2034) Building-Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |
| Plots 12 and 21,22 (2034) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plots 12 and 21,22 (2034) Building-Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plots 12 and 21,22 (2034) Building-Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plots 12 and 21,22 (2034) Landscaping | Excavators | 1 | 10 | 29 | 0.38 | 260 | 28,652 |
| Plots 12 and 21,22 (2034) Landscaping | Forklifts | 1 | 10 | 125 | 0.2 | 260 | 65,000 |
| Plots 12 and 21,22 (2034) Landscaping | Other Material Handling Equipment | 1 | 1 | 167 | 0.4 | 260 | 17,368 |
| Plots 12 and 21,22 (2034) Landscaping | Other Material Handling Equipment | 5 | 1 | 167 | 0.4 | 260 | 86,840 |
| Plots 12 and 21,22 (2034) Landscaping | Rubber Tired Loaders | 1 | 10 | 149 | 0.36 | 260 | 139,464 |
| Plots 12 and 21,22 (2034) Landscaping | Skid Steer Loaders | 1 | 10 | 69 | 0.37 | 260 | 66,378 |
| Plots 12 and 21,22 (2034) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 73 | 0.37 | 260 | 70,226 |
| Plots 12 and 21,22 (2034) Landscaping | Tractors/Loaders/Backhoes | 1 | 10 | 78 | 0.37 | 260 | 75,036 |
| Plots 12 and 21,22 (2034) Landscaping | Trenchers | 1 | 10 | 39 | 0.5 | 260 | 50,700 |
| Plots 12 and 21,22 (2034) Temporary Utilities | Cranes | 1 | 10 | 445 | 0.29 | 260 | 335,530 |
| Plots 12 and 21,22 (2034) Curbing/Drive Approaches | Cement and Mortar Mixers | 3 | 1 | 9 | 0.56 | 260 | 3,931 |
| Plots 12 and 21,22 (2034) Paving | Other Material Handling Equipment | 3 | 1 | 167 | 0.4 | 260 | 52,104 |
| Plots 12 and 21,22 (2034) Paving | Pavers | 1 | 10 | 126 | 0.42 | 260 | 137,592 |
| Plots 12 and 21,22 (2034) Paving | Paving Equipment | 1 | 10 | 131 | 0.36 | 260 | 122,616 |
| Plots 12 and 21,22 (2034) Paving | Plate Compactors | 1 | 10 | 8 | 0.43 | 260 | 8,944 |
| Plots 12 and 21,22 (2034) Paving | Rollers | 1 | 10 | 81 | 0.38 | 260 | 80,028 |
| Plots 12 and 21,22 (2034) Paving | Scrapers | 1 | 10 | 362 | 0.48 | 260 | 451,776 |
| Plots 12 and 21,22 (2034) Paving | Tractors/Loaders/Backhoes | 2 | 10 | 90 | 0.37 | 260 | 173,160 |
| Plots 2 and 4 (2020) Building Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plots 2 and 4 (2020) Building Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plots 2 and 4 (2020) Building Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plots 2 and 4 (2020) Building Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plots 2 and 4 (2020) Building Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plots 2 and 4 (2020) Building Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plot 4 (2021) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plot 4 (2021) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plot 4 (2021) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plot 4 (2021) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plot 4 (2021) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plot 4 (2021) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plots 4 and 9 (2022) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 4 and 9 (2022) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plots 4 and 9 (2022) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plots 4 and 9 (2022) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plots 4 and 9 (2022) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plots 4 and 9 (2022) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plot 9 (2023) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plot 9 (2023) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plot 9 (2023) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plot 9 (2023) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plot 9 (2023) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plot 9 (2023) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plots 5 and 10 (2025) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plots 5 and 10 (2025) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plots 5 and 10 (2025) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plots 5 and 10 (2025) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plots 5 and 10 (2025) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plots 5 and 10 (2025) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plots 10 and 8 (2026) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plots 10 and 8 (2026) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plots 10 and 8 (2026) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plots 10 and 8 (2026) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plots 10 and 8 (2026) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plots 10 and 8 (2026) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plot 8 (2027) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plot 8 (2027) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plot 8 (2027) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plot 8 (2027) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plot 8 (2027) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plot 8 (2027) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plots 11 and 6,7 (2028) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plots 11 and 6,7 (2028) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plots 11 and 6,7 (2028) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plots 11 and 6,7 (2028) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plots 11 and 6,7 (2028) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 11 and 6,7 (2028) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plot 11 (2029) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plot 11 (2029) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plot 11 (2029) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plot 11 (2029) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plot 11 (2029) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plot 11 (2029) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plot 11 (2030) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plot 11 (2030) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plot 11 (2030) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plot 11 (2030) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plot 11 (2030) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plot 11 (2030) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plot 11 (2031) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plot 11 (2031) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plot 11 (2031) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plot 11 (2031) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plot 11 (2031) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plot 11 (2031) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plots 11 and 12 (2032) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plots 11 and 12 (2032) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plots 11 and 12 (2032) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plots 11 and 12 (2032) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plots 11 and 12 (2032) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plots 11 and 12 (2032) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plot 12 (2033) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plot 12 (2033) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plot 12 (2033) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plot 12 (2033) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plot 12 (2033) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plot 12 (2033) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |
| Plots 12 and 21,22 (2034) Building-Concrete | Cement and Mortar Mixers | 24 | 24 | 9 | 0.56 | 10 | 29,030 |
| Plots 12 and 21,22 (2034) Building-Concrete | Generator Sets | 4 | 12 | 84 | 0.74 | 10 | 29,837 |
| Plots 12 and 21,22 (2034) Building-Concrete | Other Material Handling Equipment | 2 | 24 | 167 | 0.4 | 10 | 32,064 |
| Plots 12 and 21,22 (2034) Building-Concrete | Pumps | 2 | 24 | 84 | 0.74 | 10 | 29,837 |
| Plots 12 and 21,22 (2034) Building-Concrete | Tractors/Loaders/Backhoes | 8 | 24 | 90 | 0.37 | 10 | 63,936 |
| Plots 12 and 21,22 (2034) Building-Concrete | Tractors/Loaders/Backhoes | 4 | 24 | 85 | 0.37 | 10 | 30,192 |


| Building Phase | Equipment | Number | Hours/Day | HP | Load | Days | Total hp-hr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total <100 72,413,316 |  |  |  |  |  |  |  |

World Logistics Center
On-Road Workers (LDA, LDT1, LDT2)

| Building Phase | Days | One-Way <br> Trips/Day | Miles/Trip | VMT |
| :---: | :---: | :---: | :---: | :---: |
| Plots 2 and 4 (2020) Mass Excavation | 262 | 50 | 0.5 | 6,550 |
| Plots 2 and 4 (2020) Finish Grading | 262 | 15 | 0.5 | 1,965 |
| Plots 2 and 4 (2020) Utilities | 262 | 40 | 0.5 | 5,240 |
| Plots 2 and 4 (2020) Landscaping | 262 | 10 | 0.5 | 1,310 |
| Plots 2 and 4 (2020) Building Concrete | 262 | 25 | 0.5 | 3,275 |
| Plots 2 and 4 (2020) Building-Wet Utilities | 262 | 25 | 0.5 | 3,275 |
| Plots 2 and 4 (2020) Building-Electrical | 262 | 15 | 0.5 | 1,965 |
| Plots 2 and 4 (2020) Temporary Utilities | 262 | 0 | 0.5 | - |
| Plots 2 and 4 (2020) Building-Landscaping | 262 | 10 | 0.5 | 1,310 |
| Plots 2 and 4 (2020) Paving | 262 | 25 | 0.5 | 3,275 |
| Plots 2 and 4 (2020) Curbing/Drive Approaches | 262 | 10 | 0.5 | 1,310 |
| Plot 4 (2021) Mass Excavation | 261 | 50 | 0.5 | 6,525 |
| Plot 4 (2021) Finish Grading | 261 | 15 | 0.5 | 1,958 |
| Plot 4 (2021) Utilities | 261 | 40 | 0.5 | 5,220 |
| Plot 4 (2021) Building-Concrete | 261 | 25 | 0.5 | 3,263 |
| Plot 4 (2021) Building-Wet Utilities | 261 | 25 | 0.5 | 3,263 |
| Plot 4 (2021) Building-Electrical | 261 | 15 | 0.5 | 1,958 |
| Plot 4 (2021) Building-Landscaping | 261 | 10 | 0.5 | 1,305 |
| Plot 4 (2021) Landscaping | 261 | 10 | 0.5 | 1,305 |
| Plot 4 (2021) Temporary Utilities | 261 | 0 | 0.5 | - |
| Plot 4 (2021) Curbing/Drive Approaches | 261 | 10 | 0.5 | 1,305 |
| Plot 4 (2021) Paving | 261 | 25 | 0.5 | 3,263 |
| Plots 4 and 9 (2022) Mass Excavation | 260 | 50 | 0.5 | 6,500 |
| Plots 4 and 9 (2022) Finish Grading | 260 | 12.5 | 0.5 | 1,625 |
| Plots 4 and 9 (2022) Utilities | 260 | 25 | 0.5 | 3,250 |
| Plots 4 and 9 (2022) Building-Concrete | 260 | 37.5 | 0.5 | 4,875 |
| Plots 4 and 9 (2022) Building-Wet Utilities | 260 | 25 | 0.5 | 3,250 |





|  | ¢ |
| :---: | :---: |
|  |  |
|  |  |
|  <br> 合 |  |
|  |  |

World Logistics Center
Construction Energy Analysis
On-Road Workers (LDA, LDT1, LDT2)

| Building Phase | Days | One-Way Trips/Day | Miles/Trip | VMT |
| :---: | :---: | :---: | :---: | :---: |
| Plots 2 and 4 (2020) Mass Excavation | 262 | 50 | 25 | 327,500 |
| Plots 2 and 4 (2020) Finish Grading | 262 | 15 | 25 | 98,250 |
| Plots 2 and 4 (2020) Utilities | 262 | 40 | 25 | 262,000 |
| Plots 2 and 4 (2020) Landscaping | 262 | 10 | 25 | 65,500 |
| Plots 2 and 4 (2020) Building Concrete | 262 | 25 | 25 | 163,750 |
| Plots 2 and 4 (2020) Building-Wet Utilities | 262 | 25 | 25 | 163,750 |
| Plots 2 and 4 (2020) Building-Electrical | 262 | 15 | 25 | 98,250 |
| Plots 2 and 4 (2020) Temporary Utilities | 262 | 0 | 25 | - |
| Plots 2 and 4 (2020) Building-Landscaping | 262 | 10 | 25 | 65,500 |
| Plots 2 and 4 (2020) Paving | 262 | 25 | 25 | 163,750 |
| Plots 2 and 4 (2020) Curbing/Drive Approaches | 262 | 10 | 25 | 65,500 |
| Plot 4 (2021) Mass Excavation | 261 | 50 | 25 | 326,250 |
| Plot 4 (2021) Finish Grading | 261 | 15 | 25 | 97,875 |
| Plot 4 (2021) Utilities | 261 | 40 | 25 | 261,000 |
| Plot 4 (2021) Building-Concrete | 261 | 25 | 25 | 163,125 |
| Plot 4 (2021) Building-Wet Utilities | 261 | 25 | 25 | 163,125 |
| Plot 4 (2021) Building-Electrical | 261 | 15 | 25 | 97,875 |
| Plot 4 (2021) Building-Landscaping | 261 | 10 | 25 | 65,250 |
| Plot 4 (2021) Landscaping | 261 | 10 | 25 | 65,250 |
| Plot 4 (2021) Temporary Utilities | 261 | 0 | 25 | - |
| Plot 4 (2021) Curbing/Drive Approaches | 261 | 10 | 25 | 65,250 |
| Plot 4 (2021) Paving | 261 | 25 | 25 | 163,125 |
| Plots 4 and 9 (2022) Mass Excavation | 260 | 50 | 25 | 325,000 |
| Plots 4 and 9 (2022) Finish Grading | 260 | 12.5 | 25 | 81,250 |
| Plots 4 and 9 (2022) Utilities | 260 | 25 | 25 | 162,500 |
| Plots 4 and 9 (2022) Building-Concrete | 260 | 37.5 | 25 | 243,750 |
| Plots 4 and 9 (2022) Building-Wet Utilities | 260 | 25 | 25 | 162,500 |


| Building Phase | Days | One-Way <br> Trips/Day | Miles/Trip | VMT |
| :---: | :---: | :---: | :---: | :---: |
| Plots 4 and 9 (2022) Building-Electrical | 260 | 15 | 25 | 97,500 |
| Plots 4 and 9 (2022) Building-Landscaping | 260 | 17.5 | 25 | 113,750 |
| Plots 4 and 9 (2022) Landscaping | 260 | 25 | 25 | 162,500 |
| Plots 4 and 9 (2022) Temporary Utilities | 260 | 0 | 25 |  |
| Plots 4 and 9 (2022) Curbing/Drive Approaches | 260 | 12.5 | 25 | 81,250 |
| Plots 4 and 9 (2022) Paving | 260 | 17.5 | 25 | 113,750 |
| Plot 9 (2023) Mass Excavation | 260 | 50 | 25 | 325,000 |
| Plot 9 (2023) Finish Grading | 260 | 10 | 25 | 65,000 |
| Plot 9 (2023) Utilities | 260 | 10 | 25 | 65,000 |
| Plot 9 (2023) Building-Concrete | 260 | 50 | 25 | 325,000 |
| Plot 9 (2023) Building-Wet Utilities | 260 | 25 | 25 | 162,500 |
| Plot 9 (2023) Building-Electrical | 260 | 15 | 25 | 97,500 |
| Plot 9 (2023) Building-Landscaping | 260 | 25 | 25 | 162,500 |
| Plot 9 (2023) Interchange | 260 | 0 | 25 | - |
| Plot 9 (2023) Landscaping | 260 | 40 | 25 | 260,000 |
| Plot 9 (2023) Temporary Utilities | 260 | 0 | 25 | - |
| Plot 9 (2023) Curbing/Drive Approaches | 260 | 15 | 25 | 97,500 |
| Plot 9 (2023) Paving | 260 | 10 | 25 | 65,000 |
| Plots 9 and 1,3,20 (2024) Mass Excavation | 261 | 50 | 25 | 326,250 |
| Plots 9 and 1,3,20(2024) Finish Grading | 262 | 25 | 25 | 163,750 |
| Plots 9 and 1,3,20 (2024) Utilities | 262 | 25 | 25 | 163,750 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | 262 | 37.5 | 25 | 245,625 |
| Plots 9 and 1,3,20 (2024) Building-Wet Utilities | 262 | 25 | 25 | 163,750 |
| Plots 9 and 1,3,20 (2024) Building-Electrical | 262 | 15 | 25 | 98,250 |
| Plots 9 and 1,3,20 (2024) Building-Landscaping | 262 | 17.5 | 25 | 114,625 |
| Plots 9 and 1,3,20 (2024) Interchange | 262 | 12.5 | 25 | 81,875 |
| Plots 9 and 1,3,20 (2024) Landscaping | 262 | 25 | 25 | 163,750 |
| Plots 9 and 1,3,20 (2024) Temporary Utilities | 262 | 0 | 25 | - |
| Plots 9 and 1,3,20 (2024) Curbing/Drive Approaches | 262 | 10 | 25 | 65,500 |
| Plots 9 and 1,3,20 (2024) Paving | 262 | 17.5 | 25 | 114,625 |
| Plots 5 and 10 (2025) Mass Excavation | 261 | 50 | 25 | 326,250 |
| Plots 5 and 10 (2025) Finish Grading | 261 | 15 | 25 | 97,875 |
| Plots 5 and 10 (2025) Utilities | 261 | 40 | 25 | 261,000 |
| Plots 5 and 10 (2025) Building-Concrete | 261 | 10 | 25 | 65,250 |
| Plots 5 and 10 (2025) Building-Wet Utilities | 261 | 25 | 25 | 163,125 |
| Plots 5 and 10 (2025) Building-Electrical | 261 | 25 | 25 | 163,125 |
| Plots 5 and 10 (2025) Building-Landscaping | 261 | 15 | 25 | 97,875 |
| Plots 5 and 10 (2025) Landscaping | 261 | 0 | 25 |  |
| Plots 5 and 10 (2025) Temporary Utilities | 261 | 10 | 25 | 65,250 |
| Plots 5 and 10 (2025) Curbing/Drive Approaches | 261 | 25 | 25 | 163,125 |


| $\sum_{>}^{E}$ |  |
| :---: | :---: |
| 을 흘 를 |  |
|  |  |
| $\stackrel{\text { ñ }}{\text { ®̃ }}$ |  |
|  |  |


| Building Phase | Days | One-Way <br> Trips/Day | Miles/Trip | VMT |
| :---: | :---: | :---: | :---: | :---: |
| Plot 11 (2029) Building-Landscaping | 261 | 15 | 25 | 97,875 |
| Plot 11 (2029) Landscaping | 261 | 17.5 | 25 | 114,188 |
| Plot 11 (2029) Temporary Utilities | 261 | 12.5 | 25 | 81,563 |
| Plot 11 (2029) Curbing/Drive Approaches | 261 | 25 | 25 | 163,125 |
| Plot 11 (2029) Paving | 261 | 0 | 25 | - |
| Plot 11 (2030) Mass Excavation | 260 | 50 | 25 | 325,000 |
| Plot 11 (2030) Finish Grading | 260 | 15 | 25 | 97,500 |
| Plot 11 (2030) Utilities | 260 | 40 | 25 | 260,000 |
| Plot 11 (2030) Building-Concrete | 260 | 10 | 25 | 65,000 |
| Plot 11 (2030) Building-Wet Utilities | 260 | 25 | 25 | 162,500 |
| Plot 11 (2030) Building-Electrical | 260 | 25 | 25 | 162,500 |
| Plot 11 (2030) Building-Landscaping | 260 | 15 | 25 | 97,500 |
| Plot 11 (2030) Landscaping | 260 | 0 | 25 | - |
| Plot 11 (2030) Temporary Utilities | 260 | 10 | 25 | 65,000 |
| Plot 11 (2030) Curbing/Drive Approaches | 260 | 25 | 25 | 162,500 |
| Plot 11 (2030) Paving | 260 | 10 | 25 | 65,000 |
| Plot 11 (2031) Mass Excavation | 260 | 50 | 25 | 325,000 |
| Plot 11 (2031) Finish Grading | 260 | 15 | 25 | 97,500 |
| Plot 11 (2031) Utilities | 260 | 40 | 25 | 260,000 |
| Plot 11 (2031) Building-Concrete | 260 | 25 | 25 | 162,500 |
| Plot 11 (2031) Building-Wet Utilities | 260 | 25 | 25 | 162,500 |
| Plot 11 (2031) Building-Electrical | 260 | 15 | 25 | 97,500 |
| Plot 11 (2031) Building-Landscaping | 260 | 10 | 25 | 65,000 |
| Plot 11 (2031) Landscaping | 260 | 10 | 25 | 65,000 |
| Plot 11 (2031) Temporary Utilities | 260 | 0 | 25 | - |
| Plot 11 (2031) Curbing/Drive Approaches | 260 | 10 | 25 | 65,000 |
| Plot 11 (2031) Paving | 260 | 25 | 25 | 162,500 |
| Plots 11 and 12 (2032) Mass Excavation | 260 | 50 | 25 | 325,000 |
| Plots 11 and 12 (2032) Finish Grading | 260 | 12.5 | 25 | 81,250 |
| Plots 11 and 12 (2032) Utilities | 260 | 25 | 25 | 162,500 |
| Plots 11 and 12 (2032) Building-Concrete | 260 | 37.5 | 25 | 243,750 |
| Plots 11 and 12 (2032) Building-Wet Utilities | 260 | 25 | 25 | 162,500 |
| Plots 11 and 12 (2032) Building-Electrical | 260 | 15 | 25 | 97,500 |
| Plots 11 and 12 (2032) Building-Landscaping | 260 | 17.5 | 25 | 113,750 |
| Plots 11 and 12 (2032) Landscaping | 260 | 25 | 25 | 162,500 |
| Plots 11 and 12 (2032) Temporary Utilities | 260 | 0 | 25 | - |
| Plots 11 and 12 (2032) Curbing/Drive Approaches | 260 | 12.5 | 25 | 81,250 |
| Plots 11 and 12 (2032) Paving | 260 | 17.5 | 25 | 113,750 |
| Plot 12 (2033) Finish Grading | 260 | 50 | 25 | 325,000 |
| Plot 12 (2033) Utilities | 260 | 10 | 25 | 65,000 |


| $\stackrel{5}{5}$ |  |  |
| :---: | :---: | :---: |
| 을 $\stackrel{y}{y}$ $\stackrel{y}{\Sigma}$ |  |  |
|  |  | $\stackrel{\square}{\circ}$ |
| 命 |  |  |
|  |  |  |

1. California Air Resources Board, EMFAC2017 (South Coast Air Basin; HHDT and MHDT; Annual; CY 2017; Aggregate MY; Aggregate Speed)
2. California Air Resources Board, EMFAC2017 (South Coast Air Basin; HHDT and MHDT; Annual; CY 2017; Aggregate MY; 5 miles per hour converted to hourly rate)
3. Source: California Air Resources Board (CARB), 2004. Staff Report: Initial Statement of Reasons for Proposed Rulemaking, Airborne Toxic Control Measure to Limit Commercial Motor Vehicle Idling, Appendix F, July 2004, https://www.arb.ca.gov/regact/idling/idling.htm, accessed November 2016.

| Building Phase | Days | Trips/Day | Miles/Trip | VMT | Idle Hours |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 2 and 4 (2020) Mass Excavation | 262 | 9 | 0.5 | 1,179 | 197 |
| Plots 2 and 4 (2020) Finish Grading | 262 | 2 | 0.5 | 262 | 44 |
| Plots 2 and 4 (2020) Utilities | 262 | 25 | 0.5 | 3,275 | 546 |
| Plots 2 and 4 (2020) Landscaping | 262 | 6 | 0.5 | 786 | 131 |
| Plots 2 and 4 (2020) Building Concrete | 262 | 2 | 0.5 | 262 | 44 |
| Plots 2 and 4 (2020) Building-Wet Utilities | 262 | 15 | 0.5 | 1,965 | 328 |
| Plots 2 and 4 (2020) Building-Electrical | 262 | 6 | 0.5 | 786 | 131 |
| Plots 2 and 4 (2020) Temporary Utilities | 262 | 0 | 0.5 | - | - |
| Plots 2 and 4 (2020) Building-Landscaping | 262 | 7 | 0.5 | 917 | 153 |
| Plots 2 and 4 (2020) Paving | 262 | 6 | 0.5 | 786 | 131 |
| Plots 2 and 4 (2020) Curbing/Drive Approaches | 262 | 4 | 0.5 | 524 | 87 |
| Plot 4 (2021) Mass Excavation | 261 | 9 | 0.5 | 1,175 | 196 |
| Plot 4 (2021) Finish Grading | 261 | 2 | 0.5 | 261 | 44 |
| Plot 4 (2021) Utilities | 261 | 25 | 0.5 | 3,263 | 544 |
| Plot 4 (2021) Building-Concrete | 261 | 2 | 0.5 | 261 | 44 |
| Plot 4 (2021) Building-Wet Utilities | 261 | 2 | 0.5 | 261 | 44 |
| Plot 4 (2021) Building-Electrical | 261 | 6 | 0.5 | 783 | 131 |
| Plot 4 (2021) Building-Landscaping | 261 | 7 | 0.5 | 914 | 152 |
| Plot 4 (2021) Landscaping | 261 | 6 | 0.5 | 783 | 131 |
| Plot 4 (2021) Temporary Utilities | 261 | 0 | 0.5 | - | - |
| Plot 4 (2021) Curbing/Drive Approaches | 261 | 4 | 0.5 | 522 | 87 |
| Plot 4 (2021) Paving | 261 | 6 | 0.5 | 783 | 131 |
| Plots 4 and 9 (2022) Mass Excavation | 260 | 12 | 0.5 | 1,560 | 260 |
| Plots 4 and 9 (2022) Finish Grading | 260 | 4.5 | 0.5 | 585 | 98 |
| Plots 4 and 9 (2022) Utilities | 260 | 14.5 | 0.5 | 1,885 | 314 |



| Building Phase | Days | Trips/Day | Miles/Trip | VMT | Idle Hours |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 10 and 8 (2026) Building-Wet Utilities | 261 | 2 | 0.5 | 261 | 44 |
| Plots 10 and 8 (2026) Building-Electrical | 261 | 6 | 0.5 | 783 | 131 |
| Plots 10 and 8 (2026) Building-Landscaping | 261 | 7 | 0.5 | 914 | 152 |
| Plots 10 and 8 (2026) Landscaping | 261 | 6 | 0.5 | 783 | 131 |
| Plots 10 and 8 (2026) Temporary Utilities | 261 | 0 | 0.5 | - | - |
| Plots 10 and 8 (2026) Curbing/Drive Approaches | 261 | 4 | 0.5 | 522 | 87 |
| Plots 10 and 8 (2026) Paving | 261 | 6 | 0.5 | 783 | 131 |
| Plot 8 (2027) Mass Excavation | 261 | 12 | 0.5 | 1,566 | 261 |
| Plot 8 (2027) Finish Grading | 261 | 4.5 | 0.5 | 587 | 98 |
| Plot 8 (2027) Utilities | 261 | 14.5 | 0.5 | 1,892 | 315 |
| Plot 8 (2027) Building-Concrete | 261 | 8.5 | 0.5 | 1,109 | 185 |
| Plot 8 (2027) Building-Wet Utilities | 261 | 15 | 0.5 | 1,958 | 326 |
| Plot 8 (2027) Building-Electrical | 261 | 6 | 0.5 | 783 | 131 |
| Plot 8 (2027) Building-Landscaping | 261 | 4.5 | 0.5 | 587 | 98 |
| Plot 8 (2027) Landscaping | 261 | 15.5 | 0.5 | 2,023 | 337 |
| Plot 8 (2027) Temporary Utilities | 261 | 0 | 0.5 | - | - |
| Plot 8 (2027) Curbing/Drive Approaches | 261 | 5 | 0.5 | 653 | 109 |
| Plot 8 (2027) Paving | 261 | 6 | 0.5 | 783 | 131 |
| Plots 11 and 6,7 (2028) Mass Excavation | 260 | 15 | 0.5 | 1,950 | 325 |
| Plots 11 and 6,7 (2028) Finish Grading | 260 | 7 | 0.5 | 910 | 152 |
| Plots 11 and 6,7 (2028) Utilities | 260 | 4 | 0.5 | 520 | 87 |
| Plots 11 and 6,7 (2028) Building-Concrete | 260 | 15 | 0.5 | 1,950 | 325 |
| Plots 11 and 6,7(2028) Building-Wet Utilities | 260 | 15 | 0.5 | 1,950 | 325 |
| Plots 11 and 6,7(2028) Building-Electrical | 260 | 6 | 0.5 | 780 | 130 |
| Plots 11 and 6,7 (2028) Building-Landscaping | 260 | 2 | 0.5 | 260 | 43 |
| Plots 11 and 6,7 (2028) Landscaping | 260 | 0 | 0.5 | - | - |
| Plots 11 and 6,7 (2028) Temporary Utilities | 260 | 25 | 0.5 | 3,250 | 542 |
| Plots 11 and 6,7 (2028) Curbing/Drive Approaches | 260 | 0 | 0.5 | - | - |
| Plots 11 and 6,7 (2028) Paving | 260 | 6 | 0.5 | 780 | 130 |
| Plot 11 (2029) Mass Excavation | 261 | 6 | 0.5 | 783 | 131 |
| Plot 11 (2029) Finish Grading | 261 | 11.5 | 0.5 | 1,501 | 250 |
| Plot 11 (2029) Utilities | 261 | 14.5 | 0.5 | 1,892 | 315 |
| Plot 11 (2029) Building-Concrete | 261 | 14.5 | 0.5 | 1,892 | 315 |
| Plot 11 (2029) Building-Wet Utilities | 261 | 8.5 | 0.5 | 1,109 | 185 |
| Plot 11 (2029) Building-Electrical | 261 | 15 | 0.5 | 1,958 | 326 |
| Plot 11 (2029) Building-Landscaping | 261 | 6 | 0.5 | 783 | 131 |
| Plot 11 (2029) Landscaping | 261 | 4.5 | 0.5 | 587 | 98 |
| Plot 11 (2029) Temporary Utilities | 261 | 2 | 0.5 | 261 | 44 |
| Plot 11 (2029) Curbing/Drive Approaches | 261 | 15.5 | 0.5 | 2,023 | 337 |
| Plot 11 (2029) Paving | 261 | 0 | 0.5 | - | - |
| Plot 11 (2030) Mass Excavation | 260 | 9 | 0.5 | 1,170 | 195 |
| Plot 11 (2030) Finish Grading | 260 | 2 | 0.5 | 260 | 43 |
| Plot 11 (2030) Utilities | 260 | 25 | 0.5 | 3,250 | 542 |
| Plot 11 (2030) Building-Concrete | 260 | 6 | 0.5 | 780 | 130 |
| Plot 11 (2030) Building-Wet Utilities | 260 | 2 | 0.5 | 260 | 43 |
| Plot 11 (2030) Building-Electrical | 260 | 15 | 0.5 | 1,950 | 325 |
| Plot 11 (2030) Building-Landscaping | 260 | 6 | 0.5 | 780 | 130 |


| Building Phase | Days | Trips/Day | Miles/Trip | VMT | Idle Hours |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 11 (2030) Landscaping | 260 | 0 | 0.5 | - | - |
| Plot 11 (2030) Temporary Utilities | 260 | 7 | 0.5 | 910 | 152 |
| Plot 11 (2030) Curbing/Drive Approaches | 260 | 6 | 0.5 | 780 | 130 |
| Plot 11 (2030) Paving | 260 | 4 | 0.5 | 520 | 87 |
| Plot 11 (2031) Mass Excavation | 260 | 9 | 0.5 | 1,170 | 195 |
| Plot 11 (2031) Finish Grading | 260 | 2 | 0.5 | 260 | 43 |
| Plot 11 (2031) Utilities | 260 | 25 | 0.5 | 3,250 | 542 |
| Plot 11 (2031) Building-Concrete | 260 | 2 | 0.5 | 260 | 43 |
| Plot 11 (2031) Building-Wet Utilities | 260 | 2 | 0.5 | 260 | 43 |
| Plot 11 (2031) Building-Electrical | 260 | 6 | 0.5 | 780 | 130 |
| Plot 11 (2031) Building-Landscaping | 260 | 7 | 0.5 | 910 | 152 |
| Plot 11 (2031) Landscaping | 260 | 6 | 0.5 | 780 | 130 |
| Plot 11 (2031) Temporary Utilities | 260 | 0 | 0.5 | - | - |
| Plot 11 (2031) Curbing/Drive Approaches | 260 | 4 | 0.5 | 520 | 87 |
| Plot 11 (2031) Paving | 260 | 6 | 0.5 | 780 | 130 |
| Plots 11 and 12 (2032) Mass Excavation | 260 | 12 | 0.5 | 1,560 | 260 |
| Plots 11 and 12 (2032) Finish Grading | 260 | 4.5 | 0.5 | 585 | 98 |
| Plots 11 and 12 (2032) Utilities | 260 | 14.5 | 0.5 | 1,885 | 314 |
| Plots 11 and 12 (2032) Building-Concrete | 260 | 8.5 | 0.5 | 1,105 | 184 |
| Plots 11 and 12 (2032) Building-Wet Utilities | 260 | 15 | 0.5 | 1,950 | 325 |
| Plots 11 and 12 (2032) Building-Electrical | 260 | 6 | 0.5 | 780 | 130 |
| Plots 11 and 12 (2032) Building-Landscaping | 260 | 4.5 | 0.5 | 585 | 98 |
| Plots 11 and 12 (2032) Landscaping | 260 | 15.5 | 0.5 | 2,015 | 336 |
| Plots 11 and 12 (2032) Temporary Utilities | 260 | 0 | 0.5 | - | - |
| Plots 11 and 12 (2032) Curbing/Drive Approaches | 260 | 5 | 0.5 | 650 | 108 |
| Plots 11 and 12 (2032) Paving | 260 | 6 | 0.5 | 780 | 130 |
| Plot 12 (2033) Finish Grading | 260 | 15 | 0.5 | 1,950 | 325 |
| Plot 12 (2033) Utilities | 260 | 7 | 0.5 | 910 | 152 |
| Plot 12 (2033) Building-Concrete | 260 | 4 | 0.5 | 520 | 87 |
| Plot 12 (2033) Building-Wet Utilities | 260 | 15 | 0.5 | 1,950 | 325 |
| Plot 12 (2033) Building-Electrical | 260 | 15 | 0.5 | 1,950 | 325 |
| Plot 12 (2033) Building-Landscaping | 260 | 6 | 0.5 | 780 | 130 |
| Plot 12 (2033) Landscaping | 260 | 2 | 0.5 | 260 | 43 |
| Plot 12 (2033) Temporary Utilities | 260 | 0 | 0.5 | - | - |
| Plot 12 (2033) Curbing/Drive Approaches | 260 | 25 | 0.5 | 3,250 | 542 |
| Plot 12 (2033) Paving | 260 | 0 | 0.5 | - | - |
| Plots 12 and 21,22 (2034) Finish Grading | 260 | 6 | 0.5 | 780 | 130 |
| Plots 12 and 21,22 (2034) Utilities | 260 | 6 | 0.5 | 780 | 130 |
| Plots 12 and 21,22 (2034) Building-Concrete | 260 | 11.5 | 0.5 | 1,495 | 249 |
| Plots 12 and 21,22 (2034) Building-Wet Utilities | 260 | 14.5 | 0.5 | 1,885 | 314 |
| Plots 12 and 21,22 (2034) Building-Electrical | 260 | 14.5 | 0.5 | 1,885 | 314 |
| Plots 12 and 21,22 (2034) Building-Landscaping | 260 | 8.5 | 0.5 | 1,105 | 184 |
| Plots 12 and 21,22 (2034) Landscaping | 260 | 15 | 0.5 | 1,950 | 325 |
| Plots 12 and 21,22 (2034) Temporary Utilities | 260 | 6 | 0.5 | 780 | 130 |
| Plots 12 and 21,22 (2034) Curbing/Drive Approaches | 260 | 4.5 | 0.5 | 585 | 98 |
| Plots 12 and 21,22 (2034) Paving | 260 | 2 | 0.5 | 260 | 43 |
|  |  | Total Vend | Truck VMT | 169,710 |  |



| Building Phase | Days | Total OneWay Trips | Miles/Trip | VMT | Idle Hours |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 2 and 4 (2020) Mass Excavation | 262 | 1705 | 0.5 | 853 | 142 |
| Plots 2 and 4 (2020) Finish Grading | 262 | 26 | 0.5 | 13 | 2 |
| Plots 2 and 4 (2020) Utilities | 262 | 6260 | 0.5 | 3,130 | 522 |
| Plots 2 and 4 (2020) Landscaping | 262 | 0 | 0.5 | - | - |
| Plots 2 and 4 (2020) Building Concrete | 262 | 7512 | 0.5 | 3,756 | 626 |
| Plots 2 and 4 (2020) Building-Wet Utilities | 262 | 2191 | 0.5 | 1,096 | 183 |
| Plots 2 and 4 (2020) Building-Electrical | 262 | 5008 | 0.5 | 2,504 | 417 |
| Plots 2 and 4 (2020) Temporary Utilities | 262 | 0 | 0.5 | - | - |
| Plots 2 and 4 (2020) Building-Landscaping | 262 | 0 | 0.5 | - | - |
| Plots 2 and 4 (2020) Paving | 262 | 528 | 0.5 | 264 | 44 |
| Plots 2 and 4 (2020) Curbing/Drive Approaches | 262 | 624 | 0.5 | 312 | 52 |
| Plot 4 (2021) Mass Excavation | 261 | 1705 | 0.5 | 853 | 142 |
| Plot 4 (2021) Finish Grading | 261 | 52 | 0.5 | 26 | 4 |
| Plot 4 (2021) Utilities | 261 | 6260 | 0.5 | 3,130 | 522 |
| Plot 4 (2021) Building-Concrete | 261 | 7512 | 0.5 | 3,756 | 626 |
| Plot 4 (2021) Building-Wet Utilities | 261 | 7512 | 0.5 | 3,756 | 626 |
| Plot 4 (2021) Building-Electrical | 261 | 5008 | 0.5 | 2,504 | 417 |
| Plot 4 (2021) Building-Landscaping | 261 | 0 | 0.5 | - | - |
| Plot 4 (2021) Landscaping | 261 | 0 | 0.5 | - | - |
| Plot 4 (2021) Temporary Utilities | 261 | 0 | 0.5 | - | - |
| Plot 4 (2021) Curbing/Drive Approaches | 261 | 624 | 0.5 | 312 | 52 |
| Plot 4 (2021) Paving | 261 | 528 | 0.5 | 264 | 44 |
| Plots 4 and 9 (2022) Mass Excavation | 260 | 2945 | 0.5 | 1,473 | 245 |
| Plots 4 and 9 (2022) Finish Grading | 260 | 26 | 0.5 | 13 | 2 |


| Building Phase | Days | Total OneWay Trips | Miles/Trip | VMT | Idle Hours |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 4 and 9 (2022) Utilities | 260 | 3442 | 0.5 | 1,721 | 287 |
| Plots 4 and 9 (2022) Building-Concrete | 260 | 5848.5 | 0.5 | 2,924 | 487 |
| Plots 4 and 9 (2022) Building-Wet Utilities | 260 | 2191 | 0.5 | 1,096 | 183 |
| Plots 4 and 9 (2022) Building-Electrical | 260 | 2556 | 0.5 | 1,278 | 213 |
| Plots 4 and 9 (2022) Building-Landscaping | 260 | 3756 | 0.5 | 1,878 | 313 |
| Plots 4 and 9 (2022) Landscaping | 260 | 3130 | 0.5 | 1,565 | 261 |
| Plots 4 and 9 (2022) Temporary Utilities | 260 | 0 | 0.5 | - | - |
| Plots 4 and 9 (2022) Curbing/Drive Approaches | 260 | 2816 | 0.5 | 1,408 | 235 |
| Plots 4 and 9 (2022) Paving | 260 | 264 | 0.5 | 132 | 22 |
| Plot 9 (2023) Mass Excavation | 260 | 4185 | 0.5 | 2,093 | 349 |
| Plot 9 (2023) Finish Grading | 260 | 0 | 0.5 | - | - |
| Plot 9 (2023) Utilities | 260 | 624 | 0.5 | 312 | 52 |
| Plot 9 (2023) Building-Concrete | 260 | 4185 | 0.5 | 2,093 | 349 |
| Plot 9 (2023) Building-Wet Utilities | 260 | 2191 | 0.5 | 1,096 | 183 |
| Plot 9 (2023) Building-Electrical | 260 | 104 | 0.5 | 52 | 9 |
| Plot 9 (2023) Building-Landscaping | 260 | 7512 | 0.5 | 3,756 | 626 |
| Plot 9 (2023) Interchange | 260 | 0 | 0.5 | - | - |
| Plot 9 (2023) Landscaping | 260 | 6260 | 0.5 | 3,130 | 522 |
| Plot 9 (2023) Temporary Utilities | 260 | 0 | 0.5 | - | - |
| Plot 9 (2023) Curbing/Drive Approaches | 260 | 5008 | 0.5 | 2,504 | 417 |
| Plot 9 (2023) Paving | 260 | 0 | 0.5 | - | - |
| Plots 9 and 1,3,20 (2024) Mass Excavation | 261 | 2635 | 0.5 | 1,318 | 220 |
| Plots 9 and 1,3,20 (2024) Finish Grading | 262 | 3442 | 0.5 | 1,721 | 287 |
| Plots 9 and 1,3,20 (2024) Utilities | 262 | 3442 | 0.5 | 1,721 | 287 |
| Plots 9 and 1,3,20 (2024) Building-Concrete | 262 | 5848.5 | 0.5 | 2,924 | 487 |
| Plots 9 and 1,3,20 (2024) Building-Wet Utilities | 262 | 2191 | 0.5 | 1,096 | 183 |
| Plots 9 and 1,3,20 (2024) Building-Electrical | 262 | 2556 | 0.5 | 1,278 | 213 |
| Plots 9 and 1,3,20 (2024) Building-Landscaping | 262 | 3756 | 0.5 | 1,878 | 313 |
| Plots 9 and 1,3,20 (2024) Interchange | 262 | 1408.5 | 0.5 | 704 | 117 |
| Plots 9 and 1,3,20 (2024) Landscaping | 262 | 3130 | 0.5 | 1,565 | 261 |
| Plots 9 and 1,3,20 (2024) Temporary Utilities | 262 | 0 | 0.5 | - | - |
| Plots 9 and 1,3,20 (2024) Curbing/Drive Approaches | 262 | 312 | 0.5 | 156 | 26 |
| Plots 9 and 1,3,20 (2024) Paving | 262 | 264 | 0.5 | 132 | 22 |
| Plots 5 and 10 (2025) Mass Excavation | 261 | 7 | 0.5 | 3 | 1 |
| Plots 5 and 10 (2025) Finish Grading | 261 | 0 | 0.5 | 0 | 0 |
| Plots 5 and 10 (2025) Utilities | 261 | 24 | 0.5 | 12 | 2 |
| Plots 5 and 10 (2025) Building-Concrete | 261 | 0 | 0.5 | - | - |
| Plots 5 and 10 (2025) Building-Wet Utilities | 261 | 29 | 0.5 | 14 | 2 |
| Plots 5 and 10 (2025) Building-Electrical | 261 | 8 | 0.5 | 4 | 1 |
| Plots 5 and 10 (2025) Building-Landscaping | 261 | 19 | 0.5 | 10 | 2 |
| Plots 5 and 10 (2025) Landscaping | 261 | 0 | 0.5 | - | - |
| Plots 5 and 10 (2025) Temporary Utilities | 261 | 0 | 0.5 | - | - |
| Plots 5 and 10 (2025) Curbing/Drive Approaches | 261 | 2 | 0.5 | 1 | 0 |
| Plots 5 and 10 (2025) Paving | 261 | 2 | 0.5 | 1 | 0 |
| Plots 10 and 8 (2026) Mass Excavation | 261 | 7 | 0.5 | 3 | 1 |
| Plots 10 and 8 (2026) Finish Grading | 261 | 0 | 0.5 | 0 | 0 |


| Building Phase | Days | Total OneWay Trips | Miles/Trip | VMT | Idle Hours |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 10 and 8 (2026) Utilities | 261 | 24 | 0.5 | 12 | 2 |
| Plots 10 and 8 (2026) Building-Concrete | 261 | 29 | 0.5 | 14 | 2 |
| Plots 10 and 8 (2026) Building-Wet Utilities | 261 | 29 | 0.5 | 14 | 2 |
| Plots 10 and 8 (2026) Building-Electrical | 261 | 19 | 0.5 | 10 | 2 |
| Plots 10 and 8 (2026) Building-Landscaping | 261 | 0 | 0.5 | - | - |
| Plots 10 and 8 (2026) Landscaping | 261 | 0 | 0.5 | - | - |
| Plots 10 and 8 (2026) Temporary Utilities | 261 | 0 | 0.5 | - | - |
| Plots 10 and 8 (2026) Curbing/Drive Approaches | 261 | 2 | 0.5 | 1 | 0 |
| Plots 10 and 8 (2026) Paving | 261 | 2 | 0.5 | 1 | 0 |
| Plot 8 (2027) Mass Excavation | 261 | 11 | 0.5 | 6 | 1 |
| Plot 8 (2027) Finish Grading | 261 | 0 | 0.5 | 0 | 0 |
| Plot 8 (2027) Utilities | 261 | 13 | 0.5 | 7 | 1 |
| Plot 8 (2027) Building-Concrete | 261 | 22 | 0.5 | 11 | 2 |
| Plot 8 (2027) Building-Wet Utilities | 261 | 8 | 0.5 | 4 | 1 |
| Plot 8 (2027) Building-Electrical | 261 | 10 | 0.5 | 5 | 1 |
| Plot 8 (2027) Building-Landscaping | 261 | 14 | 0.5 | 7 | 1 |
| Plot 8 (2027) Landscaping | 261 | 12 | 0.5 | 6 | 1 |
| Plot 8 (2027) Temporary Utilities | 261 | 0 | 0.5 | - | - |
| Plot 8 (2027) Curbing/Drive Approaches | 261 | 11 | 0.5 | 5 | 1 |
| Plot 8 (2027) Paving | 261 | 1 | 0.5 | 1 | 0 |
| Plots 11 and 6,7 (2028) Mass Excavation | 260 | 16 | 0.5 | 8 | 1 |
| Plots 11 and 6,7 (2028) Finish Grading | 260 | 0 | 0.5 | - | - |
| Plots 11 and 6,7 (2028) Utilities | 260 | 2 | 0.5 | 1 | 0 |
| Plots 11 and 6,7 (2028) Building-Concrete | 260 | 16 | 0.5 | 8 | 1 |
| Plots 11 and 6,7 (2028) Building-Wet Utilities | 260 | 8 | 0.5 | 4 | 1 |
| Plots 11 and 6,7 (2028) Building-Electrical | 260 | 0 | 0.5 | 0 | 0 |
| Plots 11 and 6,7 (2028) Building-Landscaping | 260 | 29 | 0.5 | 14 | 2 |
| Plots 11 and 6,7 (2028) Landscaping | 260 | 0 | 0.5 | - | - |
| Plots 11 and 6,7 (2028) Temporary Utilities | 260 | 24 | 0.5 | 12 | 2 |
| Plots 11 and 6,7 (2028) Curbing/Drive Approaches | 260 | 0 | 0.5 | - | - |
| Plots 11 and 6,7 (2028) Paving | 260 | 19 | 0.5 | 10 | 2 |
| Plot 11 (2029) Mass Excavation | 261 | 0 | 0.5 | - | - |
| Plot 11 (2029) Finish Grading | 261 | 10 | 0.5 | 5 | 1 |
| Plot 11 (2029) Utilities | 261 | 13 | 0.5 | 7 | 1 |
| Plot 11 (2029) Building-Concrete | 261 | 13 | 0.5 | 7 | 1 |
| Plot 11 (2029) Building-Wet Utilities | 261 | 22 | 0.5 | 11 | 2 |
| Plot 11 (2029) Building-Electrical | 261 | 8 | 0.5 | 4 | 1 |
| Plot 11 (2029) Building-Landscaping | 261 | 10 | 0.5 | 5 | 1 |
| Plot 11 (2029) Landscaping | 261 | 14 | 0.5 | 7 | 1 |
| Plot 11 (2029) Temporary Utilities | 261 | 5 | 0.5 | 3 | 0 |
| Plot 11 (2029) Curbing/Drive Approaches | 261 | 12 | 0.5 | 6 | 1 |
| Plot 11 (2029) Paving | 261 | 0 | 0.5 | - | - |
| Plot 11 (2030) Mass Excavation | 260 | 1705 | 0.5 | 853 | 142 |
| Plot 11 (2030) Finish Grading | 260 | 26 | 0.5 | 13 | 2 |
| Plot 11 (2030) Utilities | 260 | 6260 | 0.5 | 3,130 | 522 |
| Plot 11 (2030) Building-Concrete | 260 | 0 | 0.5 | - | - |


| Building Phase | Days | Total OneWay Trips | Miles/Trip | VMT | Idle Hours |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plot 11 (2030) Building-Wet Utilities | 260 | 7512 | 0.5 | 3,756 | 626 |
| Plot 11 (2030) Building-Electrical | 260 | 2191 | 0.5 | 1,096 | 183 |
| Plot 11 (2030) Building-Landscaping | 260 | 5008 | 0.5 | 2,504 | 417 |
| Plot 11 (2030) Landscaping | 260 | 0 | 0.5 | - | - |
| Plot 11 (2030) Temporary Utilities | 260 | 0 | 0.5 | - | - |
| Plot 11 (2030) Curbing/Drive Approaches | 260 | 528 | 0.5 | 264 | 44 |
| Plot 11 (2030) Paving | 260 | 624 | 0.5 | 312 | 52 |
| Plot 11 (2031) Mass Excavation | 260 | 1705 | 0.5 | 853 | 142 |
| Plot 11 (2031) Finish Grading | 260 | 52 | 0.5 | 26 | 4 |
| Plot 11 (2031) Utilities | 260 | 6260 | 0.5 | 3,130 | 522 |
| Plot 11 (2031) Building-Concrete | 260 | 7512 | 0.5 | 3,756 | 626 |
| Plot 11 (2031) Building-Wet Utilities | 260 | 7512 | 0.5 | 3,756 | 626 |
| Plot 11 (2031) Building-Electrical | 260 | 5008 | 0.5 | 2,504 | 417 |
| Plot 11 (2031) Building-Landscaping | 260 | 0 | 0.5 | - | - |
| Plot 11 (2031) Landscaping | 260 | 0 | 0.5 | - | - |
| Plot 11 (2031) Temporary Utilities | 260 | 0 | 0.5 | - | - |
| Plot 11 (2031) Curbing/Drive Approaches | 260 | 624 | 0.5 | 312 | 52 |
| Plot 11 (2031) Paving | 260 | 528 | 0.5 | 264 | 44 |
| Plots 11 and 12 (2032) Mass Excavation | 260 | 2945 | 0.5 | 1,473 | 245 |
| Plots 11 and 12 (2032) Finish Grading | 260 | 26 | 0.5 | 13 | 2 |
| Plots 11 and 12 (2032) Utilities | 260 | 3442 | 0.5 | 1,721 | 287 |
| Plots 11 and 12 (2032) Building-Concrete | 260 | 5848.5 | 0.5 | 2,924 | 487 |
| Plots 11 and 12 (2032) Building-Wet Utilities | 260 | 2191 | 0.5 | 1,096 | 183 |
| Plots 11 and 12 (2032) Building-Electrical | 260 | 2556 | 0.5 | 1,278 | 213 |
| Plots 11 and 12 (2032) Building-Landscaping | 260 | 3756 | 0.5 | 1,878 | 313 |
| Plots 11 and 12 (2032) Landscaping | 260 | 3130 | 0.5 | 1,565 | 261 |
| Plots 11 and 12 (2032) Temporary Utilities | 260 | 0 | 0.5 | - | - |
| Plots 11 and 12 (2032) Curbing/Drive Approaches | 260 | 2816 | 0.5 | 1,408 | 235 |
| Plots 11 and 12 (2032) Paving | 260 | 264 | 0.5 | 132 | 22 |
| Plot 12 (2033) Finish Grading | 260 | 4185 | 0.5 | 2,093 | 349 |
| Plot 12 (2033) Utilities | 260 | 0 | 0.5 | - | - |
| Plot 12 (2033) Building-Concrete | 260 | 624 | 0.5 | 312 | 52 |
| Plot 12 (2033) Building-Wet Utilities | 260 | 4185 | 0.5 | 2,093 | 349 |
| Plot 12 (2033) Building-Electrical | 260 | 2191 | 0.5 | 1,096 | 183 |
| Plot 12 (2033) Building-Landscaping | 260 | 104 | 0.5 | 52 | 9 |
| Plot 12 (2033) Landscaping | 260 | 7512 | 0.5 | 3,756 | 626 |
| Plot 12 (2033) Temporary Utilities | 260 | 0 | 0.5 | - | - |
| Plot 12 (2033) Curbing/Drive Approaches | 260 | 6260 | 0.5 | 3,130 | 522 |
| Plot 12 (2033) Paving | 260 | 0 | 0.5 | - | - |
| Plots 12 and 21,22 (2034) Finish Grading | 260 | 5008 | 0.5 | 2,504 | 417 |
| Plots 12 and 21,22 (2034) Utilities | 260 | 0 | 0.5 | - | - |
| Plots 12 and 21,22 (2034) Building-Concrete | 260 | 2635 | 0.5 | 1,318 | 220 |
| Plots 12 and 21,22 (2034) Building-Wet Utilities | 260 | 3442 | 0.5 | 1,721 | 287 |
| Plots 12 and 21,22 (2034) Building-Electrical | 260 | 3442 | 0.5 | 1,721 | 287 |
| Plots 12 and 21,22 (2034) Building-Landscaping | 260 | 5848.5 | 0.5 | 2,924 | 487 |
| Plots 12 and 21,22 (2034) Landscaping | 260 | 2,191 | 0.5 | 1,096 | 183 |



1. California Air Resources Board, EMFAC2017 (South Coast Air Basin; T7 Single Construction; Annual; CY 2017; Aggregate MY; Aggregate Speed)
2. California Air Resources Board, EMFAC2017 (South Coast Air Basin; T7 Single Construction; Annual; CY 2017; Aggregate MY; 5 miles per hour converted to hourly rate) 3. Source: California Air Resources Board (CARB), 2004. Staff Report: Initial Statement of Reasons for Proposed Rulemaking, Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling, Appendix F, July 2004, https://www.arb.ca.gov/regact/idling/idling.htm, accessed November 2016.

| Building Phase | Days | Total OneWay Trips | Miles/Trip | VMT | Idle Hours |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 2 and 4 (2020) Mass Excavation | 262 | 1705 | 25 | 42,625 | 142 |
| Plots 2 and 4 (2020) Finish Grading | 262 | 26 | 25 | 650 | 2 |
| Plots 2 and 4 (2020) Utilities | 262 | 6260 | 25 | 156,500 | 522 |
| Plots 2 and 4 (2020) Landscaping | 262 | 0 | 25 | - | - |
| Plots 2 and 4 (2020) Building Concrete | 262 | 7512 | 25 | 187,800 | 626 |
| Plots 2 and 4 (2020) Building-Wet Utilities | 262 | 2191 | 25 | 54,775 | 183 |
| Plots 2 and 4 (2020) Building-Electrical | 262 | 5008 | 25 | 125,200 | 417 |
| Plots 2 and 4 (2020) Temporary Utilities | 262 | 0 | 25 | - | - |
| Plots 2 and 4 (2020) Building-Landscaping | 262 | 0 | 25 | - | - |
| Plots 2 and 4 (2020) Paving | 262 | 528 | 25 | 13,200 | 44 |
| Plots 2 and 4 (2020) Curbing/Drive Approaches | 262 | 624 | 25 | 15,600 | 52 |
| Plot 4 (2021) Mass Excavation | 261 | 1705 | 25 | 42,625 | 142 |
| Plot 4 (2021) Finish Grading | 261 | 52 | 25 | 1,300 | 4 |
| Plot 4 (2021) Utilities | 261 | 6260 | 25 | 156,500 | 522 |
| Plot 4 (2021) Building-Concrete | 261 | 7512 | 25 | 187,800 | 626 |
| Plot 4 (2021) Building-Wet Utilities | 261 | 7512 | 25 | 187,800 | 626 |
| Plot 4 (2021) Building-Electrical | 261 | 5008 | 25 | 125,200 | 417 |
| Plot 4 (2021) Building-Landscaping | 261 | 0 | 25 | - | - |
| Plot 4 (2021) Landscaping | 261 | 0 | 25 | - | - |
| Plot 4 (2021) Temporary Utilities | 261 | 0 | 25 | - | - |
| Plot 4 (2021) Curbing/Drive Approaches | 261 | 624 | 25 | 15,600 | 52 |
| Plot 4 (2021) Paving | 261 | 528 | 25 | 13,200 | 44 |
| Plots 4 and 9 (2022) Mass Excavation | 260 | 2945 | 25 | 73,625 | 245 |
| Plots 4 and 9 (2022) Finish Grading | 260 | 26 | 25 | 650 | 2 |


| $\begin{aligned} & \text { n } \\ & \text { 물 } \\ & \text { 응 } \end{aligned}$ |  |
| :---: | :---: |
| $\sum_{>}^{\vdash}$ |  |
|  |  |
|  |  |
| $\begin{aligned} & \text { ñ } \\ & \text { べ } \end{aligned}$ |  |
|  |  |


|  |  |
| :---: | :---: |
| $\sum_{>}^{\vdash}$ |  |
|  |  |
|  |  |
| $\begin{aligned} & \text { ñ } \\ & \text { だ } \end{aligned}$ |  |
|  |  |



| Building Phase | Days | Total OneWay Trips | Miles/Trip | VMT | Idle Hours |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plots 12 and 21,22 (2034) Temporary Utilities | 260.0 | 2,556.0 | 25 | 63,900 | 213 |
| Plots 12 and 21,22 (2034) Curbing/Drive Approaches | 260 | 3756 | 25 | 93,900 | 313 |
| Plots 12 and 21,22 (2034) Paving | 260 | 1408.5 | 25 | 35,213 | 117 |
| 10,324,213 |  |  |  |  | 34,414 |




Vehicle Classificat EMFAC2017 Emissions
Region Type：Air Basin Region Type：Air Coast Season：Annual

| Population | VMT | Fuel＿Consumption |
| ---: | ---: | ---: |
| 87.06695208 | 7544.942081 | 1.924993227 |
| 94401.00533 | 11283644.05 | 1766.775921 |
| 4355.501273 | 177332.3374 | 81.93282418 |
| 6178149.091 | 245245789.6 | 8365.832232 |
| 49858.7341 | 2047191.978 | 44.27440932 |
| 89063.98818 | 3493455.584 | 0 |
| 673575.0448 | 25456837.2 | 1009.703307 |
| 436.3696382 | 10308.34943 | 0.467774015 |
| 2427.188659 | 91067.68136 | 0 |
| 2108549.59 | 81418834.91 | 3534.790518 |
| 11074.63811 | 498881.6758 | 14.81780046 |
| 12230.90008 | 414287.5504 | 0 |
| 173614.6174 | 6333810.586 | 612.6252653 |
| 103329.3828 | 4276352.725 | 203.9630505 |
| 28771.81583 | 1018932.099 | 113.1501167 |
| 40572.86872 | 1644689.797 | 86.79286353 |
| 269351.1059 | 1916380.232 | 52.6214956 |
| 1509432.595 | 54618603.59 | 2902.923832 |
| 26705.37886 | 1126984.42 | 43.60769552 |
| 3852.020312 | 134619.071 | 0 |
| 35045.56901 | 331213.3277 | 66.05937563 |
| 11453.97402 | 113100.7197 | 10.93302012 |
| 24612.44595 | 1335068.759 | 269.6494288 |
| 116761.6622 | 7338725.152 | 723.8084841 |
| 5846.82319 | 252354.2354 | 51.34879326 |
| 4066.240591 | 300794.1374 | 37.44688162 |
| 2268.162807 | 93420.86198 | 10.43507716 |
| 6271.332305 | 198203.0432 | 26.62266433 |
| 938.2571472 | 88202.7311 | 18.36430248 |
| 18.19691831 | 1877.446227 | 0.296796191 |
| 12.11693886 | 1072.906717 | 0 |
| 5222.885974 | 571203.4089 | 144.1754651 |

矛気合

|  |  |
| :---: | :---: |
|  |  |
|  |  |



## 

 츤



| Temporary Construction Trailer |  |  |  |
| :---: | :---: | :---: | :---: |
| Land Use | Square Feet | Energy Use <br> per year <br> (kWh) |  |
| General Office |  | 1,000 |  |
| Note: CalEEMod 2016.3 .2 used to estimate energy use for <br> temporary construction office |  |  |  |

## Electric-powered Construction Equipment

| kWh/hp-hr |
| :---: |
| 0.7457 |


| Equipment | \# of Equipment | Hours/Day | Horsepower | Load Factor | Number Days | Total hp-hr | kWh | kWh/yr |
| :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: |
| Cranes | 3 | 12 | 231 | 0.29 | 944 | $2,276,588$ | $1,697,652$ | 108,824 |
| Signal Boards | 2 | 12 | 6 | 0.82 | 1485 | 175,349 | $130,757.60$ | 8,382 |
| Total | - | - | - | - | - | $\mathbf{2 , 4 5 1 , 9 3 7}$ | $\mathbf{1 , 8 2 8 , 4 0 9}$ | $\mathbf{1 1 7 , 2 0 6}$ |

Notes:

1. Cranes horsepower and load factors taken from CalEEMod
2. Conversion factor taken from University of North Carolina Unit Conversion Dictionary; Source: http://www.unc.edu/~rowlett/units/dictH.html

## E-4 WLC Operational Energy Demand and VMT

WLC CNG Fueling Station Consumption

| Truck CNG Capacity | Unit |
| :---: | :---: |
| 75 | DGE |
| 139.3 | SCF/DGE |
| 10,448 | SCF |


| State CNG/LNG Annual <br> Fuel Use (million CF) | MMBtu |
| :---: | :---: |
| $2,110,829$ | $2,184,708,015$ |


| Source | Fuel Capacity | ADT | Trucks/Day | Fuel Use/Day (CF) | Fuel Use/Yr <br> (MMCF) | \% of State | MMBtu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Heavy Duty Trucks | 10,448 | 408 | 204 | $2,131,290$ | 777.92 | $0.037 \%$ | 805,148 |

## Sources:

1 US Energy Information Administration, California Natural Gas Consumption by Year (2018). Available at: https://www.eia.gov/dnav/ng/ng_cons_sum_dcu_nus
2 US Department of Energy, Case Study - Natural Gas Regional Transport Trucks (2016). Available at:
2 https://www.afdc.energy.gov/uploads/publication/ng_regional_transport_trucks.pdf
Alternative Fuels Data Center, Gasonline and Diesel Gallon Equivalency Methodology. Available at:
3 https://www.afdc.energy.gov/fuels/equivalency_methodology.html
4 WSP, Traffic Impact Analysis Report for The World Logistics Center (2018).
World Logistics Center
Operational Fuel Use
Forklifts

| Value | Reference/Source |
| :---: | :---: |
|  | Highland Fairview 10/11/13 |
|  |  |
| 15 |  |
|  |  |
| 93 | Cat Lift Trucks, LG Gas Cushion Tire Lift Trucks, Model GC35K, http://www.cat-lift.com/_cat/PDFs/CLT-PDF030/CLT-PDF030.html |
| 0.2 |  |
| 260 |  |
| 290,160 |  |
| 2,542.5 | EPA Conversion factor, https://www3.epa.gov/ttnchie1/ap42/appendix/appa.pdf |
| 737,731,800 |  |
| 737.73 |  |

World Logistics Center
Operation Furs
Yard Trucks/Hostlers

| Parameter | Value | Source/Reference |
| :---: | :---: | :---: |
| Number of yard trucks per facility | 2 | Highland Fairview, October 10, 2013 |
| Fuel type | Propane |  |
| Average building/facility area, sq. ft. | 1,500,000 |  |
| Warehouse area (minus logistics), sq. ft. | 40,400,000 |  |
| Average number of buildings | 26.9 |  |
| Yard trucks | 54 |  |
| Horsepower | 199 | Port of Los Angeles Inventory of Emissions - 2016. Starcrest Consulting Group. Table 5.1 (average HP of propane yard tractor). |
| WHP | 155 | Wheel Horsepower to Crankshaft Horsepower Guestimator (Rear-Wheel Drive). http://www.mk5cortinaestate.co.uk/calculator4.php |
| Load factor | 0.39 | CARB's Emission Inventory Development for Cargo Handling Equipment. https://www.arb.ca.gov/regact/2011/cargo11/cargoappb.pdf |
| Maximum daily operating hours per truck | 7 |  |
| Annual days of operation | 260 |  |
| Annual hp-hr | 5,926,357 |  |
| Btu/hp-hr | 2,454 | EPA Conversion Factor, https://www3.epa.gov/ttnchie1/ap42/appendix/appa.pdf |
| Annual Btu | 14,543,279,587 |  |
| Annual MMBtu | 14,543.28 |  |


|  | 219 | 0 | カ9カ＇zと | 9¢ヶ＇tて | ［e7ol |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | － | － | てع8＇L | Lโદ＇غ | 10HW |
|  | てเ9 | － | LLて＇\＆̌ | 82 | 10нH |
|  | － | － | てて | โย1＇โ | ＾ロW |
|  | － | － | 975 | Et9 | Z1OH7 |
|  | － | － | ع0L | カカ8＇ธ | ［10Н7 |
|  | － | － | $\varepsilon 乙$ | น0ع＇ь | 2107 |
|  | － | － | 0 | 0¢8 | โ107 |
|  | － | － | 09 | ع9ع＇6 | $\forall \bigcirc 7$ |
|  | лeวイ／nłqw |  | 12e2／／188 | деәК／108 |  |
| 4 paunsse） |  |  |  |  | ：əd＾ı әગ！ |
| 1е2 $1 / 1 \mathrm{leg}^{\text {d }}$ |  | stt |  |  |  |
|  | エ切＇6 | โ9と＇zโ | LZL＇t6Z | ¢6s＇દzs | ｜e7ol |
|  | 0 | 0 | 990＇06 | 8LS＇LI | 10HW |
|  | しtt＇6 | 0 | sZ6＇69T | 9 9T | 1 OHH |
|  | 0 | 0てt | 8 ¢9 | ャ88＇ャて | ＾ 0 W |
|  | 0 | 0 | $6 \varepsilon \iota^{\prime} \tau$ | O¢t＇9 | Z1OH7 |
|  | 0 | 0 | 088＇sโ | L60＇02 | TıOH7 |
|  | 0 | 加でて | †06 | ちてでくIt | 2107 |
|  | 0 | ऽ\＆ะ | 0¢ | 6てL＇とて | โ10า |
|  | 0 | 29t＇6 | ¢9t＇$\varepsilon$ | 8t9＇とાદ | $\forall$ ¢ |
| леә人／sə！！ |  |  |  |  |  |
|  | － |  | OS＇tI | 0¢＇ऽ | 10HW |
|  | $0 \varepsilon^{\prime}$ 乙 |  | $0 \varepsilon^{\prime} \angle$ | OS＇t | 10HH |
|  | － |  | 09.62 | 00 てz | ＾0W |
|  | － |  | Ot＇0z | 0s＇6 | Z1OH7 |
|  | － |  | 09 ＇zて | 06\％ 0 | T10H7 |
|  | － |  | 09 ＇88 | $0 \varepsilon ' \angle \tau$ | 2107 |
|  | － |  | 09 ＇と乙 | 09 －8て | โ10า |
|  | － |  | Os＇てS | $0 \mathrm{O}^{\prime} \varepsilon \varepsilon$ | $\forall \square า$ <br>  |
| \％000 | \％ 0 | \％0＇0 | \％L＇${ }^{\text {c }}$ | \％ع＇9โ | 10нw |
| \％0＇00I | \％$\varepsilon^{\prime}$ ¢ | \％0＇0 | \％L＇七6 | \％${ }^{\text {c }} 0$ | 10HH |
| \％0＇00I | \％0＇0 | \％9＇ | \％¢＇乙 | \％6＇${ }^{\text {¢ }}$ | ＾0W |
| \％000 | \％0＇0 | \％0＇0 | \％9＇t9 | $\% \dagger$＇ऽ | Z1OH7 |
| \％000 | \％0＇0 | \％0＇0 | \％ I＇t $\dagger$ t $^{\text {d }}$ | \％6＇s | ［ıОН7 |
| \％0＇00I | \％0＇0 | \％8＇ | \％8＇0 | \％S＇L6 | 2107 |
| \％0＇00 | \％0＇0 | \％力 ${ }^{\text {T}}$ | \％0＇0 | \％9＇86 | โ107 |
| \％0＇00 | \％0＇0 | \％6＇て | \％0＇$โ$ | \％「＇96 | $\forall 07$ ：ұиәวдәд |
|  | 9N | 277ヨ | 7S0 | SVO |  |
|  |  |  | леә入／səן！ | St9＇LOT | 10нw |
|  |  |  | леә $/$／sə！！ | 266＇6＜ | 10HH |
|  |  |  | леәイ／sə！！ | St6＇sz | ＾ロW |
|  |  |  | леә）／səן！ | $6 \dagger て ゙ L \tau$ | Z10H7 |
|  |  |  | גег $/$／sə！！ | LL6＇s¢ | T10H7 |
|  |  |  | лег $/$／sə！！ | てくナ＇0てT | 2107 |
|  |  |  | леәイ／səן！ | ع $\angle 0$＇tて | โ107 |
|  |  |  | лег $/$／sə！！ | sLて＇9てを | $\forall 07$ |
|  |  |  |  |  | ıw＾ |

[^95]
Notes:

1. California Air Resources Board, EMFAC2014, South Coast Air Basin; 2023; Annual; All vehicle types; Aggregate model year; Aggregate speed).
https://www.arb.ca.gov/emfac/2014/
2. Assumes electric vehicles would replace traditional gasoline-fueled vehicles.


[^96]

[^97]|  |  |  |  |  |  | ：53ıo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | t60＇t | 0 | StE＇St | عเદ＇9z | 18.101 |  |
|  |  | － | 9ちく＇t！ | Lsて＇t | IOHW |  |
|  | ャ60＇โ | － | カ七ナ＇ธ | st | ІОНн |  |
|  | － | － | Lt | 9ヶて＇โ | ＾ 1 w |  |
|  | － | － | ¢¢8 | t92 | Z10H7 |  |
|  | － | － | 99「＇โ | て8て＇乙 | TıOH7 |  |
|  | － | － | St | カ90＇s | 2107 |  |
|  | － | － | 0 | －¢0＇七 | โ10า |  |
|  | 193／nıay | － | 801 | ヤ¢9＇ธI | $\forall$ ¢7 |  |
|  | леә $/$／nұяя |  | 120\％／1es | 1е2 $/$／es |  |  |
| 17 paunsse） |  |  |  |  |  |  |
| 1202／188 |  | ऽ̧६ऽ |  |  |  |  |
|  | LZ6＇61 | 9¢s＇t6T | †てて＇S6t | L88＇69 | ｜ełol |  |
|  | 0 | 0 | 09L＇tSt | เ98＇sz | LOHW |  |
|  | LZ6＇6I | 0 | ยา0＇t8\％ | Oャて | 10нH |  |
|  | 0 | $90{ }^{\prime} 0{ }^{\text {a }}$ | 6T大＇ธ | $6\rangle$ ¢＇とを | ＾ 1 W |  |
|  | 0 | 0 | てZ9＇6โ | £8T＇8 | 210H7 |  |
|  | 0 | 0 | 85く＇6て | 9 9て＇8て | TLOH7 |  |
|  | 0 | ع0t＇9t | てS0＇て | عโ¢＇zLI | 2107 |  |
|  | 0 | てLて＇6 | 9 | 288＇ャ ¢ | โค0า |  |
|  | 0 | ヤく9＇sてT | †¢9｀9 | โ6I＇99ヶ | $\forall 07$ |  |
| деә $/$／səı！${ }^{\text {a }}$ |  |  |  |  |  |  |
|  | － | － | โて＇ยป | $80^{\prime} 9$ | LOHW |  |
|  | TL＇r | － | S6．8 | 8 \％＇s | 10HH |  |
|  | － | － | $86 . \downarrow \varepsilon$ | s L L $<$ \％ | ＾ 1 W |  |
|  | － | － | S6＇zて | てくしot | 210H7 |  |
|  | － | － | 0s＇sz | Lと＇てI | T10Н7 |  |
|  | － | － | St＇St | く0＇ゅを | 2107 |  |
|  | － | － | zo＇0¢ | ¢8＇દย | โคロา |  |
|  | － | － | 0て＇โ9 | 00＇0t | $\forall$ ロา <br> ：｜ən」 uol｜eפ גəd sə！！w |  |
| \％0＇00 | \％0＇0 | \％0＇0 | \％L＇s8 | $\% \varepsilon \cdot \downarrow \tau$ | 10нw |  |
| \％000 | \％9＇9 | \％00 | \％$\varepsilon$＇$\varepsilon 6$ | \％${ }^{\text {¢ }} 0$ | 1 OHH |  |
| \％000 | \％0＇0 | \％s＇zz | $\% \tau^{\text {＇}}$ ¢ | \％t＇tく | ＾ 0 W |  |
| \％0＇00 | \％00 | \％0＇0 | \％9＇0L | \％が6て | Z10H7 |  |
| \％000 | \％00 | \％00 | \％ ＇ts $^{\text {c }}$ | \％L＇8t | TıaH7 |  |
| \％000 | \％0＇0 | \％0＇tて | \％60 | \％${ }^{\text {＇}} 8 \mathrm{~L}$ | 2107 |  |
| \％000 | \％00 | \％${ }^{\text {＇tz }}$ | \％00 | \％${ }^{6} 6 \mathrm{~L}$ | โ107 |  |
| \％000 | \％ 0 | \％0＇tて | \％${ }^{\text {＇}}$ | \％6＇LL | $\forall 07$ ：ұиәدגәd |  |
|  | 9N | วヨาヨ | 750 | SVO |  |  |
|  |  |  | леәイ／səן！ | ャて9「08โ | LOHW |  |
|  |  |  | леә $/$／sə！！ | т8ป＇то์ | 10HH |  |
|  |  |  | леә $/$／sə！！ | て98＇st | ＾ 1 W |  |
|  |  |  | лег $/$／sə！！ | S08＇Lて | 210H7 |  |
|  |  |  | леәイ／səן！ | ャع6＇Ls | Tıан7 |  |
|  |  |  | леә $/$／sə！！ | 896＇0zz | 2107 |  |
|  |  |  | леә／／sə！！ | tSt＇tt | โ107 |  |
|  |  |  | леәイ／səן！ | ＜tt＇86S | $\forall 07$ |  |
|  |  |  |  |  | IW＾ |  |



[^98]
## E-5 EV Scenario Assumptions

From CA Plug-in Electric Vehicle Collaborative: Plugging in at Work
Available at: http://www.peecollaborative.org/Policy-makers


2016 Sustainable Freight Action Plan
By 2030 , deploy over 100,000 freight vehicles and equipment capable of zero emission operation and maximize near-zero emission freight vehicles and equipment powered by renewable energy
2016 Mobile Source Strategy: Cleaner Technologies and Fuels Scenario
2016 Mob - 2.2 ZEVs $=1.8$ million pure ZEVs operating Statewide, and 2.4 million PHEVs
Table 25: WLC Trips by Vehicle Type Phase and Vehicle Type

## Phase 1-2025

Pass Vehicles (LDA+LDT1+LDT2)
Light Trucks (2 axle)
Medium Trucks (3 axle) Heavy Trucks
Total
Phase 2-2026 to 2035
Pass Veh
Heavy Trucks
Full Build-Out - 2035
Pass Veh
Light Trucks (2 axle)
Medium Trucks (3 axle)
Heavy Trucks



EV Population Forecasts Based on EMFAC and MSS

| Methodology | In January 2018, Governor Brown signed Executive Order B-48-18, setting targets of 200 hydrogen fueling stations and 250,000 electric vehicle chargers to support 1.5 million zero-emission vehicles (ZEVs) on California roads by 2025, on the path to 5 million ZEVs by 2030. EMFAC2017 bases its estimates of future ZEV populations on the strategies by which the light duty vehicle manufacturers take to comply with California's ZEV mandate and the Pavley vehicle standards. The 2017+ future projections are based upon the Mid-Range Scenario of the Advanced Clean Cars Midterm Review. For each model year, CARB calculated the fraction of the fleet that will operate similar to a pure zero emission vehicles. This fraction is called EV fraction and is equivalent to the sum of populations of Battery Electric Vehicles (BEVs), Fuel Cell Electric Vehicles (FCEVs), and the fraction of Plug-in Hybrid Electric Vehicles (PHEVs) population that operate like pure ZEVs, divided by the total population of Gasoline and electric fleet. To estimate the fraction of PHEVs that operates like pure ZEVs, EMFAC utilizes utility factors, which are defined as the fraction of VMT the PHEV obtains from the electrical grid. <br> EMFAC 2017 anticipates future sales of EVs through the year 2025 in the PC, LDT1, LDT2, and MDV vehicle categories, and assumes EV sales as a percentage of total vehicles remains constant thereafter. <br> The State's goal from the Mobile Source Strategy (MSS) is to achieve 4.2 million ZEVs in California by 2030, while Executive Order B-48-18 calls for 5 million ZEVs on the road by 2030. Post 2030 estimates for EVs under the MSS scenario conservatively assume that EV sales continue at the same pace after 2030. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Sources | EMFAC EV data source: EMFAC2017 Web Database (https://www.arb.ca.gov/emfac/2017/) - based on EMFAC2007 Categories EMFAC2017 Volume III - Technical Documentation, p. 193 - available at: https://ww2.arb.ca.gov/our-work/programs/mobile-source-emissions-inventory/road-documentation/msei-modeling-tools-emfac |  |  |  |  |  |  |
| Electric Vehicle Penetration - South Coast Air Basin |  |  |  |  |  |  |  |
|  |  | EMFAC 2017 - LDA + LDT1 + L¢ Governor's order \& MSS |  |  |  |  |  |
| Jurisdiction | Year | Total LDA + LDT Population | $\begin{gathered} \text { LDA + LDT EV } \\ \text { Population } \end{gathered}$ | \% EV | $\begin{gathered} \text { LDA + LDT EV } \\ \text { Population } \end{gathered}$ | \% EV | Governor's order \& MSS |
| So Coast Air Basin | 2020 | 9,125,366 | 103,722 | 1.1\% | 103,722 | 1.1\% | LDA portion of 1.5 million ZEVs by 2025 <br> LDA portion of 4.2 million ZEVs by 2030 <br> Assumes the 2025-2030 EV population increase repeats from 2030-2035 |
|  | 2025 | 10,034,980 | 252,889 | 2.5\% | 517,550 | 5.2\% |  |
|  | 2030 | 10,907,401 | 417,413 | 3.8\% | 1,444,602 | 13.2\% |  |
|  | 2035 | 11,642,018 | 546,208 | 4.7\% | 2,447,659 | 21.0\% |  |
| Statewide | 2020 | 22,409,020 | 262,338 | 1.2\% | 262,338 | 1.2\% |  |
|  | 2025 | 24,876,417 | 619,462 | 2.5\% | 1,282,991 | 5.2\% |  |
|  | 2030 | 27,344,052 | 1,038,403 | 3.8\% | 3,621,512 | 13.2\% |  |
|  | 2035 | 29,511,582 | 1,380,703 | 4.7\% | 6,204,620 | 21.0\% |  |




## E-6 Cumulative Calculations

## 1 Electricity

World Logistic Center
Cumulative Energy - Electricity
Cumulative Electrical Consumption Within MVU service Area - Summary

| Project ID | Annual Construction (MWh) | Annual Operation (MWh) | Project ID | Annual Construction (MWh) | Annual Operation <br> (MWh) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MV-001 | 0.86 | 4,293 | MV-052 |  | 11,568 |
| MV-002 | 0.63 | 3,894 | MV-053 |  | 6,714 |
| MV-003 | 0.73 | 15,041 | MV-054 | 0.74 | 9,335 |
| MV-004 |  | 12,335 | MV-056 | 0.20 | 160 |
| MV-005 | 0.37 | 1,641 | MV-057 | 0.43 | 371 |
| MV-006 | 0.83 | 4,028 | MV-058 |  | 80 |
| MV-007 | 0.39 | 311 | MV-059 | 0.62 | 631 |
| MV-008 | 0.68 | 581 | MV-060 | 0.70 | 922 |
| MV-009 | 0.15 | 110 | MV-061 | 0.52 | 2,538 |
| MV-010 | 0.55 | 471 | MV-062 | 0.60 | 5,442 |
| MV-011 | 0.30 | 241 | MV-063 | 0.69 | 2,215 |
| MV-012 |  | 914 | MV-064 | 0.67 | 872 |
| MV-013 | 0.21 | 391 | MV-065 | 0.17 | 305 |
| MV-014 | 0.49 | 1,072 | MV-066 | 0.70 | 1,474 |
| MV-015 | 0.62 | 631 | MV-068 | 0.36 | 2,725 |
| MV-016 | 0.37 | 321 | MV-069 |  | 5,391 |
| MV-017 | 0.67 | 962 | MV-070 | 0.68 | 1,415 |
| MV-018 |  | 78 | MV-071 | 0.16 | 288 |
| MV-019 |  | 883 | MV-074 | 0.58 | 1,201 |
| MV-020 |  | 1,322 | MV-075 | 1.09 | 9,286 |
| MV-021 | 0.24 | 914 | MV-076 | 0.88 | 4,394 |
| MV-022 |  | 401 | MV-077 | 0.82 | 7,015 |
| MV-023 | 0.77 | 2,449 | MV-078 |  | 6,844 |
| MV-024 | 0.50 | 1,593 | MV-079 | 0.44 | 1,971 |
| MV-025 | 0.62 | 812 | MV-080 | 0.15 | 625 |
| MV-026 | 0.69 | 1,002 | MV-081 |  | 3,760 |
| MV-027 | 0.18 | 317 | MV-082 |  | 2,686 |
| MV-028 | 0.27 | 529 | MV-083 |  | 4,685 |
| MV-029 | 0.61 | 2,756 | MV-084 |  | 1,316 |
| MV-033 | 0.63 | 541 | MV-089 | 0.10 | 70 |
| MV-034 | 0.61 | 521 | MV-090 | 0.06 | 103 |
| MV-035 | 0.32 | 251 | MV-093 |  | 658 |
| MV-036 |  | 329 | MV-102 | 0.25 | 1,096 |
| MV-037 |  | 21,270 | MV-105 | 0.10 | 70 |
| MV-038 |  | 5,712 | MV-106 | 0.10 | 70 |
| MV-039 |  | 21,058 | MV-108 | 0.02 | 42 |
| MV-040 | 0.14 | 528 | MV-111 | 0.06 | 94 |
| MV-041 | 0.91 | 7,788 | MV-112 | 0.11 | 88 |
| MV-042 | 0.50 | 2,397 | MV-118 | 0.14 | 90 |
| MV-043 |  | 7,313 | MV-121 | 0.03 | 61 |
| MV-044 | 0.76 | 5,959 | MV-123 | 0.10 | 197 |
| MV-045 | 0.28 | 1,228 | MV-124 | 0.40 | 1,974 |

World Logistic Center
Cumulative Energy - Electricity
Cumulative Electrical Consumption Within MVU service Area - Summary


## World Logistics Center

 Cumulative Energy Electricity3,000 gallons per acre
9727 kWh/Mgal to supply water
$111 \mathrm{kWh} / \mathrm{Mgal}$ to treat water
$1272 \mathrm{kWh} / \mathrm{Mgal}$ to distribute water
1911 kWh/Mgal to wastewater

## Off-Road Construction Electricity from Dust Control

Electricity from Dust Control (kWh)

| Project ID | Acers | Water Use (Mgal) | Supply | Treat | Distribute | Wastewater | Total (kWh) | Annual (kWh) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B-001 | 1,056 | 3.168 | 30,815 | 352 | 4,030 | 6,054 | 41,251 | 3,675 |
| B-003 | 295 | 0.88512 | 8,610 | 98 | 1,126 | 1,691 | 11,525 | 1,027 |
| B-004 | 74 | 0.2231658 | 2,171 | 25 | 284 | 426 | 2,906 | 1,025 |
| B-006 | 128 | 0.383067083 | 3,726 | 43 | 487 | 732 | 4,988 | 1,368 |
| B-007 | 129 | 0.38688 | 3,763 | 43 | 492 | 739 | 5,038 | 449 |
| B-008 | 207 | 0.62208 | 6,051 | 69 | 791 | 1,189 | 8,100 | 722 |
| B-009 | 1,424 | 4.272 | 41,554 | 474 | 5,434 | 8,164 | 55,626 | 4,956 |
| B-010 | 30 | 0.0912 | 887 | 10 | 116 | 174 | 1,188 | 660 |
| B-011 | 17 | 0.0496125 | 483 | 6 | 63 | 95 | 646 | 642 |
| B-013 | 605 | 1.8144 | 17,649 | 201 | 2,308 | 3,467 | 23,625 | 2,105 |
| B-014 | 224 | 0.672 | 6,537 | 75 | 855 | 1,284 | 8,750 | 780 |
| C-001 | 15 | 0.0441 | 429 | 5 | 56 | 84 | 574 | 578 |
| C-002 | 182 | 0.5468793 | 5,319 | 61 | 696 | 1,045 | 7,121 | 1,485 |
| C-003 | 5 | 0.01603035 | 156 | 2 | 20 | 31 | 209 | 234 |
| H-001 | 188 | 0.56448 | 5,491 | 63 | 718 | 1,079 | 7,350 | 655 |
| H-002 | 141 | 0.4224 | 4,109 | 47 | 537 | 807 | 5,500 | 490 |
| H-003 | 298 | 0.89376 | 8,694 | 99 | 1,137 | 1,708 | 11,638 | 1,037 |
| H-004 | 100 | 0.300290566 | 2,921 | 33 | 382 | 574 | 3,910 | 1,072 |
| H-005 | 2 | 0.00461039 | 45 | 1 | 6 | 9 | 60 | 153 |
| H-006 | 50 | 0.150113754 | 1,460 | 17 | 191 | 287 | 1,955 | 1,403 |
| H-007 | 77 | 0.229836 | 2,236 | 26 | 292 | 439 | 2,993 | 717 |
| H-008 | 141 | 0.42168 | 4,102 | 47 | 536 | 806 | 5,491 | 489 |
| M-001 | 38 | 0.113667109 | 1,106 | 13 | 145 | 217 | 1,480 | 1,174 |
| M-003 | 89 | 0.26709 | 2,598 | 30 | 340 | 510 | 3,478 | 834 |
| M-004 | 8 | 0.02401245 | 234 | 3 | 31 | 46 | 313 | 351 |
| M-005 | 156 | 0.466709532 | 4,540 | 52 | 594 | 892 | 6,077 | 541 |
| M-006 | 15 | 0.045339196 | 441 | 5 | 58 | 87 | 590 | 586 |
| M-007 | 21 | 0.06221355 | 605 | 7 | 79 | 119 | 810 | 746 |
| M-008 | 248 | 0.7434435 | 7,231 | 83 | 946 | 1,421 | 9,680 | 1,552 |
| M-009 | 43 | 0.1296 | 1,261 | 14 | 165 | 248 | 1,688 | 624 |
| M-010 | 17 | 0.0514839 | 501 | 6 | 65 | 98 | 670 | 625 |
| M-011 | 5 | 0.0147735 | 144 | 2 | 19 | 28 | 192 | 230 |
| MV-001 | 22 | 0.06714225 | 653 | 7 | 85 | 128 | 874 | 857 |
| MV-002 | 100 | 0.301416 | 2,932 | 33 | 383 | 576 | 3,925 | 629 |
| MV-003 | 74 | 0.222315 | 2,162 | 25 | 283 | 425 | 2,895 | 727 |
| MV-005 | 9 | 0.02565738 | 250 | 3 | 33 | 49 | 334 | 375 |
| MV-006 | 23 | 0.069075 | 672 | 8 | 88 | 132 | 899 | 828 |
| MV-007 | 10 | 0.02976 | 289 | 3 | 38 | 57 | 388 | 391 |
| MV-008 | 19 | 0.05568 | 542 | 6 | 71 | 106 | 725 | 676 |
| MV-009 | 4 | 0.01056 | 103 | 1 | 13 | 20 | 138 | 149 |
| MV-010 | 15 | 0.04512 | 439 | 5 | 57 | 86 | 588 | 548 |
| MV-011 | 8 | 0.02304 | 224 | 3 | 29 | 44 | 300 | 303 |
| MV-013 | 2 | 0.006201 | 60 | 1 | 8 | 12 | 81 | 206 |
| MV-014 | 34 | 0.10272 | 999 | 11 | 131 | 196 | 1,338 | 495 |
| MV-015 | 20 | 0.06048 | 588 | 7 | 77 | 116 | 788 | 617 |
| MV-016 | 10 | 0.03072 | 299 | 3 | 39 | 59 | 400 | 373 |
| MV-017 | 31 | 0.09216 | 896 | 10 | 117 | 176 | 1,200 | 667 |

## World Logistics Center

Cumulative Energy Electricity

## Off-Road Construction Electricity from Dust Control

Electricity from Dust Control (kWh)

| Project ID | Acers | Water Use (Mgal) | Supply | Treat | Distribute | Wastewater | Total (kWh) | Annual (kWh) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MV-021 | 6 | 0.016536 | 161 | 2 | 21 | 32 | 215 | 242 |
| MV-023 | 32 | 0.096327 | 937 | 11 | 123 | 184 | 1,254 | 768 |
| MV-024 | 51 | 0.15264 | 1,485 | 17 | 194 | 292 | 1,988 | 499 |
| MV-025 | 26 | 0.07776 | 756 | 9 | 99 | 149 | 1,013 | 620 |
| MV-026 | 32 | 0.096 | 934 | 11 | 122 | 183 | 1,250 | 695 |
| MV-027 | 4 | 0.012474 | 121 | 1 | 16 | 24 | 162 | 176 |
| MV-028 | 7 | 0.02079 | 202 | 2 | 26 | 40 | 271 | 273 |
| MV-029 | 88 | 0.264 | 2,568 | 29 | 336 | 505 | 3,438 | 612 |
| MV-030 | 27 | 0.07968 | 775 | 9 | 101 | 152 | 1,038 | 635 |
| MV-031 | 17 | 0.05088 | 495 | 6 | 65 | 97 | 663 | 618 |
| MV-032 | 37 | 0.1104 | 1,074 | 12 | 140 | 211 | 1,438 | 532 |
| MV-033 | 17 | 0.05184 | 504 | 6 | 66 | 99 | 675 | 629 |
| MV-034 | 17 | 0.04992 | 486 | 6 | 63 | 95 | 650 | 606 |
| MV-035 | 8 | 0.024 | 233 | 3 | 31 | 46 | 313 | 316 |
| MV-040 | 3 | 0.00906218 | 88 | 1 | 12 | 17 | 118 | 141 |
| MV-041 | 45 | 0.133545 | 1,299 | 15 | 170 | 255 | 1,739 | 910 |
| MV-042 | 14 | 0.041108835 | 400 | 5 | 52 | 79 | 535 | 499 |
| MV-044 | 34 | 0.102173714 | 994 | 11 | 130 | 195 | 1,330 | 762 |
| MV-045 | 6 | 0.01920996 | 187 | 2 | 24 | 37 | 250 | 281 |
| MV-047 | 5 | 0.01536 | 149 | 2 | 20 | 29 | 200 | 202 |
| MV-054 | 53 | 0.1600698 | 1,557 | 18 | 204 | 306 | 2,084 | 735 |
| MV-056 | 5 | 0.01536 | 149 | 2 | 20 | 29 | 200 | 202 |
| MV-057 | 12 | 0.03552 | 346 | 4 | 45 | 68 | 463 | 431 |
| MV-059 | 20 | 0.06048 | 588 | 7 | 77 | 116 | 788 | 617 |
| MV-060 | 29 | 0.08832 | 859 | 10 | 112 | 169 | 1,150 | 704 |
| MV-061 | 13 | 0.03969 | 386 | 4 | 50 | 76 | 517 | 520 |
| MV-062 | 174 | 0.52128 | 5,070 | 58 | 663 | 996 | 6,788 | 605 |
| MV-063 | 71 | 0.21216 | 2,064 | 24 | 270 | 405 | 2,763 | 693 |
| MV-064 | 28 | 0.08352 | 812 | 9 | 106 | 160 | 1,088 | 666 |
| MV-065 | 4 | 0.012012 | 117 | 1 | 15 | 23 | 156 | 170 |
| MV-066 | 19 | 0.057981 | 564 | 6 | 74 | 111 | 755 | 704 |
| MV-067 | 52 | 0.15456 | 1,503 | 17 | 197 | 295 | 2,013 | 505 |
| MV-068 | 9 | 0.026651968 | 259 | 3 | 34 | 51 | 347 | 355 |
| MV-070 | 19 | 0.055671 | 542 | 6 | 71 | 106 | 725 | 676 |
| MV-071 | 4 | 0.011319 | 110 | 1 | 14 | 22 | 147 | 160 |
| MV-072 | 2 | 0.005544 | 54 | 1 | 7 | 11 | 72 | 88 |
| MV-073 | 7 | 0.022176 | 216 | 2 | 28 | 42 | 289 | 292 |
| MV-074 | 40 | 0.121338 | 1,180 | 13 | 154 | 232 | 1,580 | 585 |
| MV-075 | 313 | 0.937962 | 9,124 | 104 | 1,193 | 1,792 | 12,213 | 1,088 |
| MV-076 | 23 | 0.068715077 | 668 | 8 | 87 | 131 | 895 | 877 |
| MV-077 | 23 | 0.0685971 | 667 | 8 | 87 | 131 | 893 | 823 |
| MV-079 | 11 | 0.0338007 | 329 | 4 | 43 | 65 | 440 | 437 |
| MV-080 | 3 | 0.00976815 | 95 | 1 | 12 | 19 | 127 | 152 |
| MV-085 | 10 | 0.03087 | 300 | 3 | 39 | 59 | 402 | 405 |
| MV-087 | 5 | 0.01386 | 135 | 2 | 18 | 26 | 180 | 196 |
| MV-088 | 1 | 0.002772 | 27 | 0 | 4 | 5 | 36 | 97 |
| MV-089 | 1 | 0.002772 | 27 | 0 | 4 | 5 | 36 | 97 |
| MV-090 | 1 | 0.001611855 | 16 | 0 | 2 | 3 | 21 | 56 |
| MV-091 | 28 | 0.08352 | 812 | 9 | 106 | 160 | 1,088 | 666 |
| MV-094 | 20 | 0.061446 | 598 | 7 | 78 | 117 | 800 | 737 |
| MV-095 | 13 | 0.0385875 | 375 | 4 | 49 | 74 | 502 | 506 |
| MV-096 | 25 | 0.07488 | 728 | 8 | 95 | 143 | 975 | 763 |
| MV-097 | 68 | 0.20544 | 1,998 | 23 | 261 | 393 | 2,675 | 672 |
| MV-098 | 5 | 0.01536 | 149 | 2 | 20 | 29 | 200 | 202 |
| MV-099 | 7 | 0.022176 | 216 | 2 | 28 | 42 | 289 | 292 |
| MV-100 | 15 | 0.044814 | 436 | 5 | 57 | 86 | 584 | 544 |
| MV-101 | 1 | 0.0019845 | 19 | 0 | 3 | 4 | 26 | 69 |

## World Logistics Center

Cumulative Energy Electricity
Off-Road Construction Electricity from Dust Control
Electricity from Dust Control (kWh)

| Project ID | Acers | Water Use (Mgal) | Supply | Treat | Distribute | Wastewater | Total (kWh) | Annual (kWh) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MV-102 | 6 | 0.0173628 | 169 | 2 | 22 | 33 | 226 | 254 |
| MV-103 | 8 | 0.0236808 | 230 | 3 | 30 | 45 | 308 | 316 |
| MV-104 | 11 | 0.034356063 | 334 | 4 | 44 | 66 | 447 | 444 |
| MV-105 | 1 | 0.002772 | 27 | 0 | 4 | 5 | 36 | 97 |
| MV-106 | 1 | 0.002772 | 27 | 0 | 4 | 5 | 36 | 97 |
| MV-107 | 3 | 0.00864 | 84 | 1 | 11 | 17 | 113 | 137 |
| MV-108 | 0 | 0.000655547 | 6 | 0 | 1 | 1 | 9 | 23 |
| MV-109 | 354 | 1.0608 | 10,318 | 118 | 1,349 | 2,027 | 13,813 | 1,231 |
| MV-110 | 5 | 0.01386 | 135 | 2 | 18 | 26 | 180 | 196 |
| MV-111 | 1 | 0.003696 | 36 | 0 | 5 | 7 | 48 | 59 |
| MV-112 | 1 | 0.003465 | 34 | 0 | 4 | 7 | 45 | 115 |
| MV-113 | 46 | 0.13824 | 1,345 | 15 | 176 | 264 | 1,800 | 666 |
| MV-114 | 0 | 0.00125685 | 12 | 0 | 2 | 2 | 16 | 44 |
| MV-115 | 0 | $4.7541 \mathrm{E}-06$ | 0 | 0 | 0 | 0 | 0 | 0 |
| MV-116 | 8 | 0.024 | 233 | 3 | 31 | 46 | 313 | 316 |
| MV-117 | 4 | 0.0107484 | 105 | 1 | 14 | 21 | 140 | 168 |
| MV-118 | 3 | 0.00864 | 84 | 1 | 11 | 17 | 113 | 137 |
| MV-119 | 11 | 0.0336 | 327 | 4 | 43 | 64 | 438 | 408 |
| MV-120 | 14 | 0.04178916 | 406 | 5 | 53 | 80 | 544 | 548 |
| MV-121 | 0 | 0.000959396 | 9 | 0 | 1 | 2 | 12 | 33 |
| MV-123 | 1 | 0.003087 | 30 | 0 | 4 | 6 | 40 | 102 |
| MV-124 | 10 | 0.03087 | 300 | 3 | 39 | 59 | 402 | 405 |
| MV-125 | 2 | 0.005544 | 54 | 1 | 7 | 11 | 72 | 88 |
| MV-126 | 75 | 0.2256 | 2,194 | 25 | 287 | 431 | 2,938 | 523 |
| MV-127 | 10 | 0.031314921 | 305 | 3 | 40 | 60 | 408 | 405 |
| MV-129 | 68 | 0.203346 | 1,978 | 23 | 259 | 389 | 2,648 | 934 |
| MV-130 | 7 | 0.020433214 | 199 | 2 | 26 | 39 | 266 | 269 |
| MV-131 | 46 | 0.13815 | 1,344 | 15 | 176 | 264 | 1,799 | 666 |
| MV-132 | 34 | 0.10131 | 985 | 11 | 129 | 194 | 1,319 | 807 |
| P-004 | 7 | 0.0221364 | 215 | 2 | 28 | 42 | 288 | 295 |
| P-005 | 14 | 0.042366 | 412 | 5 | 54 | 81 | 552 | 514 |
| P-006 | 26 | 0.07722 | 751 | 9 | 98 | 148 | 1,005 | 875 |
| P-007 | 51 | 0.153134982 | 1,490 | 17 | 195 | 293 | 1,994 | 1,062 |
| P-008 | 10 | 0.0310167 | 302 | 3 | 39 | 59 | 404 | 401 |
| P-009 | 28 | 0.0826254 | 804 | 9 | 105 | 158 | 1,076 | 937 |
| P-012 | 19 | 0.058441126 | 568 | 6 | 74 | 112 | 761 | 709 |
| P-014 | 37 | 0.11052 | 1,075 | 12 | 141 | 211 | 1,439 | 824 |
| P-022 | 12 | 0.034998 | 340 | 4 | 45 | 67 | 456 | 453 |
| P-023 | 6 | 0.016578 | 161 | 2 | 21 | 32 | 216 | 221 |
| P-024 | 45 | 0.1348344 | 1,312 | 15 | 172 | 258 | 1,756 | 919 |
| P-025 | 32 | 0.0955998 | 930 | 11 | 122 | 183 | 1,245 | 929 |
| P-026 | 35 | 0.104455494 | 1,016 | 12 | 133 | 200 | 1,360 | 1,079 |
| P-028 | 29 | 0.086229 | 839 | 10 | 110 | 165 | 1,123 | 978 |
| P-030 | 157 | 0.47232 | 4,594 | 52 | 601 | 903 | 6,150 | 548 |
| P-031 | 6 | 0.017325 | 169 | 2 | 22 | 33 | 226 | 231 |
| P-032 | 47 | 0.1417815 | 1,379 | 16 | 180 | 271 | 1,846 | 1,464 |
| P-033 | 595 | 1.7856 | 17,369 | 198 | 2,271 | 3,412 | 23,250 | 2,071 |
| P-034 | 97 | 0.29166753 | 2,837 | 32 | 371 | 557 | 3,798 | 910 |
| P-035 | 3 | 0.00924 | 90 | 1 | 12 | 18 | 120 | 144 |
| P-036 | 110 | 0.328653401 | 3,197 | 36 | 418 | 628 | 4,279 | 686 |
| P-039 | 24 | 0.07217877 | 702 | 8 | 92 | 138 | 940 | 866 |
| P-040 | 39 | 0.11712 | 1,139 | 13 | 149 | 224 | 1,525 | 564 |
| P-041 | 6 | 0.019271281 | 187 | 2 | 25 | 37 | 251 | 257 |
| P-042 | 20 | 0.05856 | 570 | 7 | 74 | 112 | 763 | 711 |
| P-043 | 18 | 0.05472 | 532 | 6 | 70 | 105 | 713 | 664 |
| P-044 | 7 | 0.021714 | 211 | 2 | 28 | 41 | 283 | 286 |
| P-045 | 6 | 0.017325 | 169 | 2 | 22 | 33 | 226 | 231 |

## World Logistics Center

Cumulative Energy Electricity

## Off-Road Construction Electricity from Dust Control

Electricity from Dust Control (kWh)

| Project ID | Acers | Water Use (Mgal) | Supply | Treat | Distribute | Wastewater | Total (kWh) | Annual (kWh) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P-046 | 92 | 0.275418 | 2,679 | 31 | 350 | 526 | 3,586 | 639 |
| P-047 | 167 | 0.50016 | 4,865 | 56 | 636 | 956 | 6,513 | 580 |
| P-048 | 24 | 0.072 | 700 | 8 | 92 | 138 | 938 | 734 |
| P-049 | 36 | 0.10944 | 1,065 | 12 | 139 | 209 | 1,425 | 527 |
| P-050 | 6 | 0.01764 | 172 | 2 | 22 | 34 | 230 | 258 |
| P-051 | 11 | 0.0336 | 327 | 4 | 43 | 64 | 438 | 408 |
| P-052 | 26 | 0.07872 | 766 | 9 | 100 | 150 | 1,025 | 627 |
| P-053 | 52 | 0.15456 | 1,503 | 17 | 197 | 295 | 2,013 | 505 |
| P-054 | 76 | 0.22848 | 2,222 | 25 | 291 | 437 | 2,975 | 530 |
| P-055 | 33 | 0.099225 | 965 | 11 | 126 | 190 | 1,292 | 1,125 |
| P-056 | 0 | 0.00126821 | 12 | 0 | 2 | 2 | 17 | 44 |
| P-057 | 1 | 0.003835965 | 37 | 0 | 5 | 7 | 50 | 127 |
| P-058 | 16 | 0.0486486 | 473 | 5 | 62 | 93 | 633 | 629 |
| P-059 | 78 | 0.23328 | 2,269 | 26 | 297 | 446 | 3,038 | 541 |
| P-060 | 0 | 0.00099225 | 10 | 0 | 1 | 2 | 13 | 35 |
| R-004 | 17 | 0.049896 | 485 | 6 | 63 | 95 | 650 | 606 |
| R-005 | 34 | 0.10335 | 1,005 | 11 | 131 | 198 | 1,346 | 1,067 |
| R-006 | 6 | 0.017787 | 173 | 2 | 23 | 34 | 232 | 237 |
| R-007 | 4 | 0.012370271 | 120 | 1 | 16 | 24 | 161 | 193 |
| R-008 | 8 | 0.023754 | 231 | 3 | 30 | 45 | 309 | 312 |
| R-009 | 645 | 1.935464942 | 18,826 | 215 | 2,462 | 3,699 | 25,202 | 2,245 |
| R-010 | 2 | 0.005196083 | 51 | 1 | 7 | 10 | 68 | 172 |
| R-011 | 23 | 0.070413724 | 685 | 8 | 90 | 135 | 917 | 899 |
| R-012 | 5 | 0.013533801 | 132 | 2 | 17 | 26 | 176 | 211 |
| R-013 | 1 | 0.00288 | 28 | 0 | 4 | 6 | 38 | 101 |
| R-014 | 0 | 0.000850689 | 8 | 0 | 1 | 2 | 11 | 30 |
| R-015 | 55 | 0.16482816 | 1,603 | 18 | 210 | 315 | 2,146 | 539 |
| R-016 | 0 | 0.001464672 | 14 | 0 | 2 | 3 | 19 | 51 |
| R-017 | 21 | 0.063525 | 618 | 7 | 81 | 121 | 827 | 762 |
| R-018 | 388 | 1.163168567 | 11,314 | 129 | 1,480 | 2,223 | 15,146 | 1,349 |
| R-019 | 4 | 0.012705 | 124 | 1 | 16 | 24 | 165 | 180 |
| R-020 | 45 | 0.134599453 | 1,309 | 15 | 171 | 257 | 1,753 | 917 |
| R-021 | 5 | 0.0144 | 140 | 2 | 18 | 28 | 188 | 204 |
| R-022 | 3 | 0.00864 | 84 | 1 | 11 | 17 | 113 | 137 |
| R-023 | 1 | 0.0017726 | 17 | 0 | 2 | 3 | 23 | 62 |
| R-024 | 1,600 | 4.8 | 46,690 | 533 | 6,106 | 9,173 | 62,501 | 5,568 |
| R-025 | 16 | 0.048048 | 467 | 5 | 61 | 92 | 626 | 583 |
| R-026 | 86 | 0.258978488 | 2,519 | 29 | 329 | 495 | 3,372 | 1,115 |
| R-027 | 0 | 0.000797769 | 8 | 0 | 1 | 2 | 10 | 28 |
| R-028 | 29 | 0.086028 | 837 | 10 | 109 | 164 | 1,120 | 686 |
| R-029 | 0 | 0.000836798 | 8 | 0 | 1 | 2 | 11 | 29 |
| R-030 | 15 | 0.045988644 | 447 | 5 | 58 | 88 | 599 | 603 |
| R-031 | 3 | 0.008316 | 81 | 1 | 11 | 16 | 108 | 132 |
| R-032 | 2 | 0.004910976 | 48 | 1 | 6 | 9 | 64 | 163 |
| R-033 | 2 | 0.00693 | 67 | 1 | 9 | 13 | 90 | 110 |
| R-034 | 1 | 0.002514712 | 24 | 0 | 3 | 5 | 33 | 88 |
| R-035 | 8 | 0.023562 | 229 | 3 | 30 | 45 | 307 | 310 |
| R-036 | 5 | 0.014322 | 139 | 2 | 18 | 27 | 186 | 203 |
| R-037 | 0 | 0.001323 | 13 | 0 | 2 | 3 | 17 | 46 |
| R-038 | 0 | 0.00077175 | 8 | 0 | 1 | 1 | 10 | 27 |
| R-039 | 129 | 0.38592 | 3,754 | 43 | 491 | 737 | 5,025 | 448 |
| R-040 | 0 | 0.0005292 | 5 | 0 | 1 | 1 | 7 | 18 |
| R-041 | 2 | 0.004779731 | 46 | 1 | 6 | 9 | 62 | 158 |
| R-042 | 191 | 0.57408 | 5,584 | 64 | 730 | 1,097 | 7,475 | 666 |
| R-043 | 16 | 0.048 | 467 | 5 | 61 | 92 | 625 | 583 |
| R-044 | 0 | 0.000882 | 9 | 0 | 1 | 2 | 11 | 31 |
| R-045 | 3 | 0.007841991 | 76 | 1 | 10 | 15 | 102 | 260 |

## World Logistics Center

Cumulative Energy Electricity
Off-Road Construction Electricity from Dust Control
Electricity from Dust Control (kWh)

| Project ID | Acers | Water Use (Mgal) | Supply | Treat | Distribute | Wastewater | Total (kWh) | Annual (kWh) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R-046 | 11 | 0.03440928 | 335 | 4 | 44 | 66 | 448 | 418 |
| R-047 | 3 | 0.009922117 | 97 | 1 | 13 | 19 | 129 | 155 |
| R-048 | 6 | 0.01660365 | 162 | 2 | 21 | 32 | 216 | 243 |
| R-049 | 66 | 0.19902 | 1,936 | 22 | 253 | 380 | 2,591 | 651 |
| R-050 | 1 | 0.0036792 | 36 | 0 | 5 | 7 | 48 | 58 |
| R-051 | 0 | 0.000520601 | 5 | 0 | 1 | 1 | 7 | 18 |
| R-052 | 10 | 0.03072 | 299 | 3 | 39 | 59 | 400 | 373 |
| R-053 | 9 | 0.02784 | 271 | 3 | 35 | 53 | 363 | 366 |
| R-054 | 8 | 0.024 | 233 | 3 | 31 | 46 | 313 | 316 |
| R-055 | 6 | 0.0192 | 187 | 2 | 24 | 37 | 250 | 253 |
| R-056 | 9 | 0.0270777 | 263 | 3 | 34 | 52 | 353 | 361 |
| R-057 | 7 | 0.022086979 | 215 | 2 | 28 | 42 | 288 | 294 |
| R-058 | 0 | 0.000605493 | 6 | 0 | 1 | 1 | 8 | 21 |
| R-059 | 0 | 0.000893025 | 9 | 0 | 1 | 2 | 12 | 31 |
| R-060 | 7 | 0.020996586 | 204 | 2 | 27 | 40 | 273 | 307 |
| R-061 | 31 | 0.093811064 | 913 | 10 | 119 | 179 | 1,222 | 1,128 |
| R-062 | 0 | 0.000403736 | 4 | 0 | 1 | 1 | 5 | 14 |
| R-063 | 2 | 0.004851 | 47 | 1 | 6 | 9 | 63 | 77 |
| R-064 | 2 | 0.0048 | 47 | 1 | 6 | 9 | 63 | 76 |
| R-065 | 20 | 0.05952 | 579 | 7 | 76 | 114 | 775 | 723 |
| R-066 | 0 | 0.001356075 | 13 | 0 | 2 | 3 | 18 | 47 |
| RC-001 | 400 | 1.20096 | 11,682 | 133 | 1,528 | 2,295 | 15,638 | 1,393 |
| RC-002 | 640 | 1.92 | 18,676 | 213 | 2,442 | 3,669 | 25,000 | 2,227 |
| RC-003 | 1,092 | 3.27552 | 31,861 | 364 | 4,166 | 6,260 | 42,651 | 3,800 |
| RC-005 | 240 | 0.72 | 7,003 | 80 | 916 | 1,376 | 9,375 | 835 |
| RC-006 | 41 | 0.12402 | 1,206 | 14 | 158 | 237 | 1,615 | 1,281 |
| RC-007 | 49 | 0.146130005 | 1,421 | 16 | 186 | 279 | 1,903 | 704 |
| RC-009 | 53 | 0.157955577 | 1,536 | 18 | 201 | 302 | 2,057 | 1,095 |
| RC-010 | 266 | 0.79794 | 7,762 | 89 | 1,015 | 1,525 | 10,390 | 926 |
| RC-011 | 25 | 0.0749694 | 729 | 8 | 95 | 143 | 976 | 899 |
| RC-012 | 18 | 0.054525686 | 530 | 6 | 69 | 104 | 710 | 705 |
| RC-013 | 159 | 0.47712 | 4,641 | 53 | 607 | 912 | 6,213 | 553 |
| RC-014 | 25 | 0.07392 | 719 | 8 | 94 | 141 | 963 | 754 |
| RC-015 | 45 | 0.13632 | 1,326 | 15 | 173 | 261 | 1,775 | 657 |
| RC-017 | 1 | 0.00204624 | 20 | 0 | 3 | 4 | 27 | 71 |
| RC-018 | 5 | 0.0144 | 140 | 2 | 18 | 28 | 188 | 204 |
| RC-019 | 4 | 0.011641959 | 113 | 1 | 15 | 22 | 152 | 182 |
| RC-020 | 0 | 0.0006174 | 6 | 0 | 1 | 1 | 8 | 22 |
| RC-021 | 0 | 0.0007368 | 7 | 0 | 1 | 1 | 10 | 26 |
| RC-022 | 42 | 0.12576 | 1,223 | 14 | 160 | 240 | 1,638 | 606 |
| RC-023 | 2 | 0.006750315 | 66 | 1 | 9 | 13 | 88 | 107 |
| RC-024 | 8 | 0.024556217 | 239 | 3 | 31 | 47 | 320 | 327 |
| RC-025 | 4 | 0.0109395 | 106 | 1 | 14 | 21 | 142 | 171 |
| RC-026 | 1 | 0.00192 | 19 | 0 | 2 | 4 | 25 | 67 |
| RC-027 | 8 | 0.024285937 | 236 | 3 | 31 | 46 | 316 | 324 |
| RC-028 | 0 | 0.0012348 | 12 | 0 | 2 | 2 | 16 | 43 |
| RC-029 | 1 | 0.001795311 | 17 | 0 | 2 | 3 | 23 | 63 |
| RC-030 | 39 | 0.115958505 | 1,128 | 13 | 147 | 222 | 1,510 | 865 |
| RC-031 | 8 | 0.02324322 | 226 | 3 | 30 | 44 | 303 | 310 |
| RC-032 | 232 | 0.69696 | 6,779 | 77 | 887 | 1,332 | 9,075 | 809 |
| RC-033 | 123 | 0.36864 | 3,586 | 41 | 469 | 704 | 4,800 | 428 |
| RC-034 | 138 | 0.41472 | 4,034 | 46 | 528 | 793 | 5,400 | 481 |
| RC-035 | 901 | 2.704098 | 26,303 | 300 | 3,440 | 5,168 | 35,210 | 3,137 |
| RC-036 | 150 | 0.44928 | 4,370 | 50 | 571 | 859 | 5,850 | 521 |
| RC-037 | 180 | 0.53952 | 5,248 | 60 | 686 | 1,031 | 7,025 | 626 |
| RC-038 | 56 | 0.167968296 | 1,634 | 19 | 214 | 321 | 2,187 | 771 |
| RC-039 | 12 | 0.03744 | 364 | 4 | 48 | 72 | 488 | 455 |

## World Logistics Center

Cumulative Energy Electricity

## Off-Road Construction Electricity from Dust Control

Electricity from Dust Control (kWh)

| Project ID | Acers | Water Use (Mgal) | Supply | Treat | Distribute | Wastewater | Total (kWh) | Annual (kWh) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RD-003 | 33 | 0.09888 | 962 | 11 | 126 | 189 | 1,288 | 716 |
| RD-004 | 21 | 0.06432 | 626 | 7 | 82 | 123 | 838 | 656 |
| RD-006 | 4 | 0.010633392 | 103 | 1 | 14 | 20 | 138 | 166 |
| RD-007 | 9 | 0.028167993 | 274 | 3 | 36 | 54 | 367 | 412 |
| RD-008 | 6 | 0.01848 | 180 | 2 | 24 | 35 | 241 | 243 |
| RD-009 | 3 | 0.009658341 | 94 | 1 | 12 | 18 | 126 | 151 |
| RD-010 | 6 | 0.018694319 | 182 | 2 | 24 | 36 | 243 | 249 |
| RD-011 | 4 | 0.012230033 | 119 | 1 | 16 | 23 | 159 | 191 |
| SB-007 | 11 | 0.03264 | 317 | 4 | 42 | 62 | 425 | 396 |
| SB-008 | 13 | 0.0384 | 374 | 4 | 49 | 73 | 500 | 466 |
| SJ-001 | 123 | 0.370052987 | 3,600 | 41 | 471 | 707 | 4,818 | 1,321 |
| SJ-002 | 103 | 0.30816 | 2,997 | 34 | 392 | 589 | 4,013 | 357 |
| SJ-003 | 186 | 0.5568 | 5,416 | 62 | 708 | 1,064 | 7,250 | 646 |
| SJ-004 | 196 | 0.58848 | 5,724 | 65 | 749 | 1,125 | 7,663 | 683 |
| WLC-001 | 19 | 0.0576 | 560 | 6 | 73 | 110 | 750 | 699 |

World Logistic Center
Cumulative Energy - Electricity Natural Gas

| ate Zone |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Electricity (kWhr/unit) |  |  | Natural Gas (kBtU/unit) |  |
|  |  | T24 | NT24 | Light | T24 | NT24 |
| BP | Office Park | 3.07 | 2.60 | 4.24 | 2.92 | 0.000 |
| HI | Heavy Industrial | 2.20 | 5.02 | 2.93 | 15.36 | 17.130 |
| ㄴI | Light Industrial | 2.20 | 5.02 | 2.93 | 15.36 | 17.130 |
| MF | Multi-Family - Mid Rise Apartment | 772.17 | 3054.10 | 741.44 | 8764.08 | 6030.000 |
| MO | Medical Office | 3.07 | 2.79 | 3.66 | 3.47 | 0.000 |
| OG | General Office | 3.07 | 2.79 | 3.66 | 3.47 | 0.000 |
| RC | Retail Commercial | 4.58 | 2.44 | 5.61 | 1.92 | 0.300 |
| SF | Single Family Residential | 951.67 | 6155.97 | 1608.84 | 24556.15 | 6030.000 |
| SR | Senior Residential | 877.14 | 3172.76 | 1001.10 | 9544.50 | 6030.000 |
| WH | Warehouse - Unrefrigerated No Rail | 0.37 | 0.82 | 1.17 | 2.00 | 0.030 |


|  |  | 9,037,829 | Electricity |  |  | Natural Gas |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project ID | mnduse_Cod | Landuse_qty | kWh | kWh | kWh | kBTU | kBTU | Electricity (kWh) | NG (MMBtu) |
| B-001 | SF | 3,300.00 | 3,140,511 | 20,314,701 | 5,309,172 | 81,035,295 | 19,899,000 | 28,764,384 | 100,934 |
| B-002 | MF | 571.00 | 440,909 | 1,743,891 | 423,362 | 5,004,290 | 3,443,130 | 2,608,162 | 8,447 |
| B-003 | SF | 922.00 | 877,440 | 5,675,804 | 1,483,350 | 22,640,770 | 5,559,660 | 8,036,595 | 28,200 |
| B-004 | LI | 1,734.00 | 3,814,800 | 8,704,680 | 5,080,620 | 26,634,240 | 29,703,420 | 17,600,100 | 56,338 |
| B-005 | HI | 2,565.68 | 5,644,505 | 12,879,734 | 7,517,454 | 39,408,906 | 43,950,167 | 26,041,693 | 83,359 |
| B-006 | BP | 1,853.25 | 5,689,482 | 4,818,454 | 7,857,786 | 5,411,494 | 0 | 18,365,722 | 5,411 |
| B-007 | SF | 403.00 | 383,523 | 2,480,856 | 648,363 | 9,896,128 | 2,430,090 | 3,512,741 | 12,326 |
| B-008 | SF | 648.00 | 616,682 | 3,989,069 | 1,042,528 | 15,912,385 | 3,907,440 | 5,648,279 | 19,820 |
| B-009 | SF | 4,450.00 | 4,234,932 | 27,394,067 | 7,159,338 | 109,274,868 | 26,833,500 | 38,788,336 | 136,108 |
| B-010 | SF | 95.00 | 90,409 | 584,817 | 152,840 | 2,332,834 | 572,850 | 828,066 | 2,906 |
| B-011 | RC | 225.00 | 1,030,500 | 549,000 | 1,262,250 | 432,000 | 67,500 | 2,841,750 | 500 |
| B-012 | MF | 279.00 | 215,435 | 852,094 | 206,862 | 2,445,178 | 1,682,370 | 1,274,391 | 4,128 |
| B-013 | SF | 1,890.00 | 1,798,656 | 11,634,783 | 3,040,708 | 46,411,124 | 11,396,700 | 16,474,147 | 57,808 |
| B-014 | SF | 700.00 | 666,169 | 4,309,179 | 1,126,188 | 17,189,305 | 4,221,000 | 6,101,536 | 21,410 |
| C-001 | RC | 200.00 | 916,000 | 488,000 | 1,122,000 | 384,000 | 60,000 | 2,526,000 | 444 |
| C-002 | RC | 1,000.00 | 4,580,000 | 2,440,000 | 5,610,000 | 1,920,000 | 300,000 | 12,630,000 | 2,220 |
| C-002 | BP | 1,579.00 | 4,847,530 | 4,105,400 | 6,694,960 | 4,610,680 | 0 | 15,647,890 | 4,611 |
| C-003 | RC | 72.70 | 332,966 | 177,388 | 407,847 | 139,584 | 21,810 | 918,201 | 161 |
| H-001 | SF | 588.00 | 559,582 | 3,619,710 | 945,998 | 14,439,016 | 3,545,640 | 5,125,290 | 17,985 |
| H-002 | SF | 440.00 | 418,735 | 2,708,627 | 707,890 | 10,804,706 | 2,653,200 | 3,835,251 | 13,458 |
| H-003 | SF | 931.00 | 886,005 | 5,731,208 | 1,497,830 | 22,861,776 | 5,613,930 | 8,115,043 | 28,476 |
| H-004 | LI | 734.98 | 1,616,965 | 3,689,620 | 2,153,503 | 11,289,354 | 12,590,276 | 7,460,088 | 23,880 |
| H-004 | BP | 995.15 | 3,055,120 | 2,587,398 | 4,219,449 | 2,905,847 | 0 | 9,861,966 | 2,906 |

Energy Consumption - Electricity \& Natural Gas

Energy Consumption－Electricity \＆Natural Gas

|  |  | $\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \sim \\ & \sim \end{aligned}\right.$ | $\begin{array}{\|c} \underset{\sim}{\underset{~}{2}} \\ \underset{\sim}{\prime} \end{array}$ | $\begin{aligned} & \infty \\ & \sim \\ & N \\ & N \end{aligned}$ | (ুু | \|on | － | $\begin{array}{\|c} \substack{\infty \\ \sim \\ N \\ \underset{\sim}{n}} \end{array}$ | $\left\lvert\, \begin{gathered} \underset{N}{n} \\ \underset{\sim}{n} \\ \underset{N}{2} \end{gathered}\right.$ | $0$ | $\stackrel{\rightharpoonup}{\underset{\lambda}{\lambda}}$ | $\left\|\begin{array}{l} n \\ 0 \\ 0 \\ j \end{array}\right\|$ | $\begin{aligned} & m \\ & \infty \\ & -1 \\ & - \\ & -1 \end{aligned}$ | $\begin{aligned} & \hline \\ & \infty \\ & \underset{-}{i} \\ & \underset{i}{2} \end{aligned}$ | $\left\lvert\, \begin{aligned} & 0 \\ & \underset{-}{-} \\ & \underset{n}{2} \end{aligned}\right.$ | $\left.\begin{gathered} n \\ n \\ n \\ i \end{gathered} \right\rvert\,$ | $\begin{aligned} & 9 \\ & n \\ & \underset{\sim}{9} \end{aligned}$ | $\underset{\sim}{\sim}$ | $\begin{array}{\|c\|} \hline 0 \\ \hat{n} \end{array}$ | $\left\lvert\, \begin{gathered} \hline \infty \\ \infty \\ \sigma_{i} \\ \underset{\sim}{2} \end{gathered}\right.$ | N | 脀 | $\left\lvert\, \begin{aligned} & 0 \\ & \underset{n}{2} \end{aligned}\right.$ | ズ | の | $\left\|\begin{array}{c} \mathrm{N} \\ \mathrm{~N} \\ \mathrm{~N} \end{array}\right\|$ | 今 | $\left.\begin{aligned} & \hline \infty \\ & 0 \\ & 0 \\ & \dot{\sigma} \end{aligned} \right\rvert\,$ | $\left\lvert\, \begin{aligned} & \underset{\tilde{N}}{2} \\ & \underset{\sim}{n} \\ & \underset{N}{2} \end{aligned}\right.$ | $\underset{\infty}{\underset{\infty}{*}}$ | $\left\lvert\, \begin{aligned} & \hat{e} \\ & \mathbf{N} \\ & N \end{aligned}\right.$ | \|~ㅜㅁ | $\left\lvert\, \begin{aligned} & N \\ & N \end{aligned}\right.$ | $\underset{\sim}{\infty}$ |  | $\left.\begin{array}{\|c\|} \hline \hat{N} \\ \hat{N} \\ n \end{array} \right\rvert\,$ | $\mid \overrightarrow{0}$ | $\begin{aligned} & \mathrm{n} \\ & \hat{N} \\ & 0 \\ & 0 \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & n \\ & \underset{\sim}{0} \\ & -i \end{aligned}$ | $\infty$ | $\left\|\begin{array}{l} \hat{o} \\ 0 \\ \mathrm{~N} \end{array}\right\|$ | $\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \bar{\pi} \\ & 0 \\ & \hline \end{aligned}$ |  | $\left\lvert\, \begin{aligned} & \underset{N}{n} \\ & N \\ & \underset{\sim}{N} \end{aligned}\right.$ | $\begin{gathered} n \\ n \\ n \\ n \\ \underset{\sim}{n} \\ \underset{\sim}{+} \end{gathered}$ | $\begin{array}{\|l\|} \hline \underset{N}{N} \\ { }_{N}^{N} \\ { }_{N}^{2} \end{array}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & n \\ & n \\ & 0 \\ & 0 \\ & n \\ & n \end{aligned}$ | $\left\|\begin{array}{l} \infty \\ \underset{1}{0} \\ -8 \\ \underset{\sim}{-} \end{array}\right\|$ | $\begin{aligned} & \dot{子} \\ & \underset{\sim}{2} \\ & \infty \\ & \infty \end{aligned}$ | $\begin{array}{\|l\|} \hline 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ \infty \\ n \end{array}$ |  | $\begin{aligned} & n \\ & n \\ & 0 \\ & 0 \\ & 0 \\ & n \end{aligned}$ | O <br> O <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 | $\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \underset{N}{n} \\ & \hat{\omega} \\ & n \\ & n \end{aligned}$ | $\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}$ | $\begin{gathered} n \\ \infty \\ n \\ n \\ n \\ \vdots \\ 0 \\ 0 \end{gathered}$ | $\left\{\begin{array}{l} \hat{N} \\ \hat{0} \\ 0 \\ 0 \\ 0 \end{array}\right.$ | $\begin{aligned} & \hline{ }_{2} \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \dot{\sigma} \end{aligned}$ | $\left\lvert\, \begin{aligned} & \underset{~}{1} \\ & \underset{N}{n} \\ & \underset{N}{n} \end{aligned}\right.$ |  | $\begin{aligned} & \hline \infty \\ & \infty \\ & \infty \\ & 0 \\ & \infty \\ & -1 \end{aligned}$ |  | $\left\lvert\, \begin{aligned} & \hline \stackrel{0}{N} \\ & \underset{\sim}{2} \\ & \underset{N}{2} \\ & \hline \end{aligned}\right.$ | $\begin{aligned} & \hat{N} \\ & \mathbf{o} \\ & \hat{n} \\ & \hat{n} \\ & n \\ & n \end{aligned}$ | $\left\lvert\, \begin{aligned} & \underset{\sim}{2} \\ & \underset{N}{n} \\ & \underset{N}{N} \end{aligned}\right.$ | $\begin{aligned} & \hline \underset{寸}{o} \\ & \underset{-}{6} \\ & \dot{\sim} \\ & \sim \end{aligned}$ | $\begin{gathered} \underset{N}{N} \\ \underset{\sim}{\infty} \\ \underset{\sim}{n} \end{gathered}$ |  | $\begin{aligned} & \underset{2}{2} \\ & \underset{n}{n} \\ & \underset{\sim}{2} \end{aligned}$ |  | $\begin{aligned} & \hat{N} \\ & 0 \\ & n \\ & n \\ & n \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{gathered} \underset{\sim}{N} \\ \underset{N}{N} \\ \underset{N}{n} \end{gathered}$ | $\begin{aligned} & \text { O} \\ & \text { N } \\ & 0 \\ & \text { j} \\ & \text { - } \\ & \text { ni } \end{aligned}$ |  | $\begin{aligned} & \infty \\ & \underset{寸}{f} \\ & \infty \\ & \sim \end{aligned}$ | $\begin{aligned} & n \\ & \underset{N}{n} \\ & \underset{i}{i} \\ & \underset{-}{2} \end{aligned}$ |  | $$ | $\begin{aligned} & \underset{-}{\underset{1}{2}} \\ & \underset{1}{n} \\ & \underset{\sim}{n} \\ & \underset{n}{2} \end{aligned}$ | $\begin{aligned} & \mathrm{N} \\ & \hat{N} \\ & 0^{2} \\ & \hat{N} \\ & \sigma^{2} \end{aligned}$ |  |  | $\begin{array}{\|c\|} \hline+ \\ \infty \\ \infty \\ 0 \\ 6 \end{array}$ | $\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$ |
|  | $\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{5} \\ & \underline{\boldsymbol{\infty}} \end{aligned}\right.$ |  |  |  | $\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & n \\ & n \\ & n \end{aligned}$ | $\left\lvert\, \begin{aligned} & 9 \\ & \AA \\ & \underset{0}{0} \\ & 0 \\ & -1 \end{aligned}\right.$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\left\lvert\, \begin{gathered} o \\ \underset{寸}{-} \\ n \\ \underset{~}{2} \\ - \\ 0 \end{gathered}\right.$ | $\left\|\begin{array}{c} 0 \\ \underset{N}{2} \\ 0 \\ 0 \\ 0 \\ -i \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \mathrm{M} \\ & \mathrm{~m} \\ & \underset{i}{2} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \underset{-1}{ } \end{aligned}$ | $\bigcirc$ | $\begin{gathered} n \\ \infty \\ \underset{\sim}{n} \\ \sim \end{gathered}$ | $\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & -1 \\ & -1 \\ & -1 \end{aligned}$ | $\left\lvert\, \begin{gathered} o \\ \infty \\ \vdots \\ \underset{\sim}{2} \\ 0 \\ n \\ -i \end{gathered}\right.$ | $\bigcirc$ |  | $\begin{aligned} & \hline \stackrel{\rightharpoonup}{n} \\ & \infty \\ & 0 \\ & \underset{-1}{2} \end{aligned}$ | $\begin{aligned} & \hline \stackrel{\rightharpoonup}{\underset{1}{1}} \\ & \underset{\sim}{n} \\ & \underset{N}{2} \end{aligned}$ | $\begin{aligned} & 0 \\ & \infty \\ & \underset{\sim}{n} \\ & \tilde{n} \\ & 0 \\ & n \\ & n \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \stackrel{y}{2} \\ & \mathrm{~N} \end{aligned}$ | $\bigcirc$ | $\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{7} \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \hline 8 \\ & \hline \\ & 0 \\ & 0 \\ & \rightarrow \\ & \rightarrow \end{aligned}$ | $\begin{aligned} & n \\ & \stackrel{n}{n} \\ & \underset{-}{2} \end{aligned}$ | $\left.\begin{array}{\|c\|} \hline \stackrel{N}{n} \\ n \\ n \\ 0 \\ 0 \\ i \end{array} \right\rvert\,$ | $\left\lvert\, \begin{gathered} \mathrm{O} \\ \underset{N}{n} \\ \text { on } \end{gathered}\right.$ | $\begin{aligned} & 0 \\ & \underset{n}{n} \\ & \infty \\ & \omega_{0} \\ & 0 \\ & \cdots \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -i \\ & n \\ & n \end{aligned}$ |  |  | $\begin{array}{\|c\|} \hline 0 \\ \underset{N}{n} \\ \underset{\sim}{n} \end{array}$ | $\begin{array}{\|c} \underset{\sim}{\underset{~}{*}} \\ \underset{\sim}{n} \end{array}$ |  |  | $\left\|\begin{array}{l} \infty \\ \infty \\ n_{2} \\ \infty^{2} \end{array}\right\|$ |  | － | $\begin{aligned} & n \\ & \infty \\ & 0 \\ & i \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ \underset{\sim}{O} \\ 0 \\ \infty \\ \infty \\ \infty \end{array}\right\|$ | $\xrightarrow{\sim}$ |
| $\begin{aligned} & ⿳ 亠 丷 厂 \\ & \mathbf{\pi} \\ & \mathbf{Z} \end{aligned}$ | $\stackrel{?}{\mathbf{x}}$ | $\left\|\begin{array}{c} 0 \\ n \\ n \\ 2 \\ n \\ n \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \substack{0 \\ N \\ n \\ n \\ n \\ m \\ m} \end{aligned}$ |  | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \\ & \mathrm{y} \\ & \mathrm{C} \\ & \infty \end{aligned}$ | $\begin{gathered} \hat{N} \\ n \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}$ | $\begin{aligned} & o \\ & 0 \\ & m \\ & m \\ & \infty \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ n \end{array}\right\|$ |  | $\left\lvert\, \begin{aligned} & 0 \\ & \substack{0 \\ \infty \\ \infty \\ \hline} \end{aligned}\right.$ | $\begin{aligned} & \hline \mathrm{O} \\ & \hline \mathrm{O} \\ & 0 \\ & \hline 8 \\ & \mathrm{C} \end{aligned}$ |  |  |  |  | $\begin{gathered} 0 \\ 8 \\ 0 \\ n \\ n \\ n \\ i \\ i \end{gathered}$ | $\left\lvert\, \begin{gathered} \underset{\sim}{2} \\ \infty \\ \underset{\sim}{2} \\ 6 \end{gathered}\right.$ |  | $\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{g} \\ \underset{-}{n} \\ n \\ n \\ \hline \end{gathered}\right.$ |  | $\left\|\begin{array}{c} \sim \\ \underset{\sim}{2} \\ \underset{\sim}{\sim} \end{array}\right\|$ | $\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \underset{\sim}{\prime} \\ & \underset{\sim}{n} \end{aligned}$ | $\left\lvert\, \begin{aligned} & n \\ & \infty \\ & - \\ & - \\ & - \\ & - \end{aligned}\right.$ | $\begin{aligned} & \hline \infty \\ & 0 \\ & 0 \\ & n \\ & n \end{aligned}$ | $\begin{aligned} & \hat{N} \\ & \underset{\sim}{2} \\ & \end{aligned}$ |  | $n$ <br> 0 <br> $\vdots$ <br> $n$ <br> $n$ |  |  |  | $\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \underset{N}{2} \\ & \underset{\sim}{n} \end{aligned}$ | $\left\lvert\, \begin{gathered} \sim \\ \underset{\sim}{2} \\ \infty \\ 0 \\ e \end{gathered}\right.$ | $\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & -\mathbf{i} \\ & \underset{\mathrm{N}}{ } \end{aligned}$ | $\left\lvert\, \begin{gathered} n \\ n \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}\right.$ | $\left.\begin{array}{\|c\|} \hline 0 \\ \hat{N} \\ 0 \\ \infty \\ \\ \underset{N}{2} \\ \underset{\sim}{n} \\ \hline \end{array} \right\rvert\,$ | $\begin{aligned} & \mathbf{N}_{1} \\ & \underset{\sim}{N} \\ & \underset{\sim}{0} \\ & \underset{i}{2} \end{aligned}$ | $\left.\begin{aligned} & \mathrm{n} \\ & 0 \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned} \right\rvert\,$ | $\begin{aligned} & \hat{-} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{-} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & \infty \\ & -1 \\ & 0 \\ & n \\ & n \\ & - \\ & - \\ & -i \end{aligned}$ | $\begin{aligned} & \hat{N} \\ & \text { oे } \end{aligned}$ | $\begin{gathered} n \\ o \\ o \\ \infty \\ \underset{N}{n} \\ \underset{i}{2} \end{gathered}$ | 0 $\sim$ $\sim$ $N$ |
|  | $\|\stackrel{\substack{2}}{\underline{z}}\|$ | $\begin{aligned} & \underset{\sim}{n} \\ & \underset{-}{2} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \hline \\ & \hline \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \underset{O}{2} \\ & \underset{\sim}{n} \\ & \underset{N}{N} \\ & \text { N } \end{aligned}$ | $\left\lvert\, \begin{gathered} \underset{N}{\infty} \\ \infty \\ \infty \\ \sim \end{gathered}\right.$ | $\left\lvert\, \begin{aligned} & \underset{n}{n} \\ & \underset{\sim}{\infty} \\ & \infty \end{aligned}\right.$ |  | $\begin{aligned} & \hline \infty \\ & \underset{甘}{\infty} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$ | $\left\lvert\, \begin{aligned} & n \\ & \underset{\sim}{n} \\ & \underset{N}{n} \end{aligned}\right.$ | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hat{0} \\ & \mathrm{O}^{2} \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & \hat{N} \\ & \hat{N} \\ & 0 \\ & 0 \\ & \infty \\ & n_{1} \end{aligned}$ | $\left\lvert\, \begin{gathered} n \\ \infty \\ - \\ - \\ 0 \\ 0 \end{gathered}\right.$ | $\begin{gathered} n \\ \underset{\sim}{g} \\ - \\ -1 \\ \underset{-}{2} \\ \underset{i}{2} \end{gathered}$ | $\begin{array}{\|c} \overrightarrow{-1} \\ \underset{\sim}{1} \\ 0 \\ 0 \\ \underset{-1}{2} \end{array}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \\ & -i \\ & i \end{aligned}$ |  | $\begin{array}{\|l\|} \stackrel{N}{N} \\ N \\ \underset{N}{n} \end{array}$ | $\left\lvert\, \begin{gathered} \vec{y} \\ 0 \\ \underset{m}{n} \end{gathered}\right.$ |  | $\left\|\begin{array}{c} \hline 8 \\ \underset{\sim}{n} \\ \sim \\ n \\ n \end{array}\right\|$ |  | $\left\lvert\, \begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{7} \\ & \underset{\sim}{n} \end{aligned}\right.$ | $\begin{aligned} & \hat{N} \\ & \infty \\ & \underbrace{\prime} \end{aligned}$ | $\begin{aligned} & n \\ & \underset{\sim}{6} \\ & -i \\ & \sim \end{aligned}$ | $\left\|\begin{array}{l} \underset{\sim}{n} \\ \underset{N}{n} \\ \underset{N}{N} \end{array}\right\|$ | $\begin{array}{\|c\|} \hline \sim \\ \sim \\ \underset{\sim}{n} \\ \sim \end{array}$ | $\begin{array}{\|l\|} \hline 0 \\ \hline \\ \infty \\ \underset{N}{n} \\ \underset{N}{2} \end{array}$ |  |  |  | $\left\lvert\, \begin{gathered} n \\ \underset{\sim}{n} \\ \underset{\sim}{\sim} \end{gathered}\right.$ | $\begin{aligned} & \infty \\ & \infty \\ & \underset{-}{\infty} \\ & \underset{-}{\prime} \end{aligned}$ |  | $\left\lvert\, \begin{aligned} & \hline 0 \\ & \hline 0 \\ & \underset{~}{0} \\ & \hline \\ & 0 \\ & \infty \end{aligned}\right.$ | $\begin{aligned} & \circ \\ & \underset{N}{N} \\ & \stackrel{\rightharpoonup}{U} \\ & \underset{\sim}{n} \end{aligned}$ |  | $\begin{aligned} & \hline m \\ & \infty \\ & \underset{寸}{\infty} \\ & \underset{寸}{+} \\ & \underset{\sim}{N} \end{aligned}$ | $\begin{aligned} & \overrightarrow{-} \\ & \infty \\ & \infty \\ & n \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & \hat{N} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & \underset{\sim}{\underset{1}{\prime}} \\ & \underset{\sim}{\underset{~}{n}} \end{aligned}$ | － |
| 空 | $\left\lvert\, \frac{c}{3}\right.$ |  | $\begin{aligned} & \overrightarrow{-} \\ & \underset{-}{\prime} \\ & \underset{\sim}{8} \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 8 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & i \end{aligned}$ |  | $\begin{gathered} n \\ \underset{\sim}{n} \\ \underset{\sim}{m} \end{gathered}$ | $\begin{aligned} & 0 \\ & 0 \\ & n \\ & N \\ & N \\ & 0 \\ & i \\ & i \end{aligned}$ |  | $\left\|\begin{array}{c} 8 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}\right\|$ | $\begin{aligned} & \hline \mathrm{O} \\ & \hline \mathbf{O} \\ & \underset{\sim}{0} \\ & \underset{\sim}{n} \end{aligned}$ |  | $\left\lvert\, \begin{gathered} n \\ \infty \\ \infty \\ \underset{\sim}{x} \end{gathered}\right.$ |  | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & 0 \end{aligned}$ | $\begin{gathered} 0 \\ \hline 0 \\ 0 \\ n \\ 0 \\ \underset{-}{2} \\ -i \end{gathered}$ | $\left\lvert\, \begin{gathered} 0 \\ 0 \\ 1 \\ \underset{n}{n} \\ \underset{\sim}{n} \end{gathered}\right.$ | $\left.\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & 0 \\ & n \\ & n \end{aligned} \right\rvert\,$ | $\begin{aligned} & \underset{N}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{-} \end{aligned}$ | $\begin{aligned} & \hline \stackrel{9}{2} \\ & \underset{\sim}{n} \\ & \underset{\sim}{-1} \\ & \underset{-}{-} \end{aligned}$ | $\left\|\begin{array}{c} 9 \\ \underset{\sim}{2} \\ \hat{n} \end{array}\right\|$ | $\begin{aligned} & \hat{o} \\ & \hat{N} \\ & \hat{n} \\ & \infty \\ & \infty \end{aligned}$ | $\begin{gathered} \underset{N}{N} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$ | $\begin{array}{\|c\|} \hline \infty \\ 0 \\ 0 \\ \infty \\ -1 \end{array}$ | $\begin{gathered} \underset{子}{\underset{~}{2}} \\ \underset{子}{2} \end{gathered}$ | $\left.\begin{array}{\|c} \text { un } \\ 0 \\ 0 \\ 6 \\ 0 \\ 0 \\ i \\ i \end{array} \right\rvert\,$ | $\begin{aligned} & N \\ & \underset{\sim}{n} \\ & \sigma^{2} \end{aligned}$ | $\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & n_{2} \\ & \infty \end{aligned}\right.$ |  | $\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{gathered} \infty \\ \infty \\ \infty \\ \infty \\ \infty \\ \underset{\sim}{n} \\ - \end{gathered}$ | $\left\lvert\, \begin{aligned} & o \\ & \underset{y}{2} \\ & \underset{j}{2} \end{aligned}\right.$ | $\begin{array}{\|c} \hline \\ \hline \\ \substack{2 \\ n \\ n \\ \hline} \end{array}$ |  |  | $\left\|\begin{array}{l} n \\ N \\ N \\ n \\ n \\ 0 \end{array}\right\|$ | $\begin{aligned} & \hline 9 \\ & \underset{N}{2} \\ & \hat{N} \\ & \underset{N}{N} \end{aligned}$ |  |  | $\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$ | $$ | O－ |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\frac{1}{3}
\] \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{~m} \\
\& \mathbf{o} \\
\& \underset{N}{\prime}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \underset{\sim}{n} \\
\& \underset{\sim}{n} \\
\& \underset{\sim}{n} \\
\& \underset{\sim}{n}
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& \hline 8 \\
\& 0 \\
\& 0 \\
\& -1 \\
\& \vdots \\
\& 0 \\
\& \text { N }
\end{aligned}
\] \& N
\(\stackrel{1}{n}\)
\(\underset{\sim}{i}\) \&  \& \[
\begin{aligned}
\& \hline \stackrel{ }{\circ} \\
\& 0 \\
\& \underset{n}{n} \\
\& \infty \\
\& \infty
\end{aligned}
\] \&  \&  \& \[
\begin{aligned}
\& \mathrm{O} \\
\& \hat{N} \\
\& o^{2} \\
\& \underset{\sim}{n}
\end{aligned}
\] \&  \& \[
\] \&  \& \[
\begin{aligned}
\& \hline \\
\& \infty \\
\& \sim \\
\& 6 \\
\& 6 \\
\& \Gamma
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& \hline \hat{N} \\
\& \stackrel{y}{2} \\
\& \dot{N} \\
\& \stackrel{y}{n}
\end{aligned}
\] \& \begin{tabular}{c}
\(n\) \\
\multirow{1}{*}{} \\
\(6^{2}\) \\
\(n\) \\
\(n\)
\end{tabular} \&  \&  \& \[
\] \& 6
-
\(\infty\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
-
- \& \[
\begin{aligned}
\& \stackrel{O}{H} \\
\& \underset{\sim}{r} \\
\& \underset{\sim}{\infty} \\
\& \underset{\sim}{n}
\end{aligned}
\] \& \[
\] \& \[
\begin{aligned}
\& \stackrel{\rightharpoonup}{N} \\
\& \underset{\sim}{n} \\
\& \underset{\sim}{1}
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \stackrel{N}{\mathrm{~N}} \\
\& \underset{i}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \stackrel{N}{\dot{*}} \\
\& \underset{\sim}{n} \\
\& \underset{\sim}{\sim}
\end{aligned}
\] \& \(n\)
\(\sim\)
\(N\)
\(n\)
\(\infty\)
\(\infty\)
\(\infty\)
\(\cdots\)
\(\cdots\) \&  \&  \& \[
\begin{aligned}
\& \stackrel{\omega}{n} \\
\& \underset{\sim}{N} \\
\& \underset{\sim}{n}
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline 1 \\
6 \\
0 \\
\infty
\end{array}
\] \& \[
\begin{aligned}
\& 9 \\
\& \hline-1 \\
\& \infty \\
\& 6 \\
\& m
\end{aligned}
\] \& \[
\begin{array}{|c|}
\hline \stackrel{\rightharpoonup}{n} \\
n \\
\infty^{-} \\
n \\
N \\
\underbrace{2}
\end{array}
\] \& \[
\begin{aligned}
\& \overrightarrow{-} \\
\& \underset{\sim}{6} \\
\& 0 \\
\& 0 \\
\& \underset{-1}{ }
\end{aligned}
\] \& \[
\begin{aligned}
\& m \\
\& \vec{j} \\
\& \dot{j} \\
\& 0 \\
\& m \\
\& \cdots
\end{aligned}
\] \& +
\(N\)
\(N\)
\(i\)
\(i\)
\(\vdots\)
\(N\) \&  \& \[
\begin{aligned}
\& \hline \stackrel{O}{N} \\
\& \hat{N} \\
\& 6 \\
\& \underset{1}{2}
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline N \\
n \\
N \\
\underset{\sim}{\lambda} \\
\hline
\end{array}
\] \& ¢

$\sim$
$\sim$ <br>
\hline
\end{tabular}


Energy Consumption - Electricity \& Natural Gas

Energy Consumption - Electricity \& Natural Gas

World Logistic Center
Cumulative Energy - Electricity Natural Gas

World Logistic Center
Water Usage (gal/ unit) Electricity Intensity Rates (kWhr/Million Gallons)




| Electricity from Water (kWh) |  |  |  |
| :---: | :---: | :---: | :---: |
| Water Supply | Water Treatment | Water Distribution | Wastewater Treatment |
| 24,298 | 277 | 3,177 | 2,960 |
| 791,147 | 9,028 | 103,458 | 96,368 |
| 369,918 | 4,221 | 48,374 | 44,574 |
| 454,647 | 5,188 | 59,454 | 54,784 |
| 149,827 | 1,710 | 19,593 | 18,054 |
| 618,940 | 7,063 | 80,939 | 74,581 |
| 11,621 | 133 | 1,520 | 1,416 |
| 719,697 | 8,213 | 94,115 | 87,664 |
| 94,973 | 1,084 | 12,420 | 18,659 |
| 920,694 | 10,507 | 120,399 | 180,883 |
| 10,178,394 | 116,151 | 1,331,029 | 1,999,682 |
| 1,307,769 | 14,924 | 171,017 | 159,296 |
| 1,097,242 | 12,521 | 143,486 | 215,568 |
| 6,523,169 | 74,439 | 853,035 | 1,281,564 |
| 126,553 | 1,444 | 16,549 | 15,415 |
| 6,887,151 | 78,593 | 900,633 | 1,353,073 |
| 649,019 | 7,406 | 84,872 | 79,055 |
| 2,387,545 | 27,246 | 312,219 | 469,065 |
| 611,640 | 6,980 | 79,984 | 74,501 |
| 1,519,449 | 17,339 | 198,698 | 298,516 |
| 726,315 | 8,288 | 94,980 | 88,471 |
| 4,257,403 | 48,584 | 556,741 | 702,597 |
| 139,494 | 1,592 | 18,242 | 16,809 |
| 1,257,397 | 14,349 | 164,430 | 247,033 |
| 77,861 | 889 | 10,182 | 9,484 |
| 353,861 | 4,038 | 46,274 | 43,103 |
| 270,722 | 3,089 | 35,402 | 32,621 |
| 223,191 | 2,547 | 29,187 | 26,894 |
| 4,276,050 | 48,796 | 559,179 | 840,088 |
| 825,518 | 9,420 | 107,953 | 162,184 |
| 2,108,243 | 24,058 | 275,695 | 414,193 |
| 135,222 | 1,543 | 17,683 | 16,471 |
| 1,687,027 | 19,252 | 220,613 | 331,439 |
| 32,032 | 366 | 4,189 | 3,860 |
| 59,931 | 684 | 7,837 | 7,222 |
| 11,366 | 130 | 1,486 | 1,370 |
| 48,565 | 554 | 6,351 | 5,852 |
| 24,799 | 283 | 3,243 | 2,988 |
| 116,243 | 1,327 | 15,201 | 19,184 |
| 83,653 | 955 | 10,939 | 10,189 |
| 110,562 | 1,262 | 14,458 | 13,322 |




| 266＇I | て91゙て | 68T | ع\＆S＇9I |
| :---: | :---: | :---: | :---: |
| Sカ9「9て | 916＇8て | \＆ZS＇乙 | ヤてI＇してて |
| てTL＇6 | OヤS＇0T | 0 O6 | L6S＇08 |
| てLL＇ヤて | カ6S＇9て | してع＇乙 | 89ع＇と0て |
| 6IT＇をย | とヤ6＇sย | LEI＇\＆ | SS8＇カLて |
| Sヤ6＇とI | 七\＆I＇SI | してع＇ป | 8てL＇SIT |
| てع8＇0I | 9SL＇II | 970＇L | 968＇68 |
| SE0＇โ | ITI＇L | L6 | S6t＇8 |
| カ6カ＇I | して9＇โ | てヤT | $66 \varepsilon^{\prime}$ てI |
| カ6ャ＇โ | Lて9＇โ | てもT | $66 \varepsilon^{\prime}$ てI |
| ILt＇$\angle$ | LOT＇8 | LOL | L66＇โ9 |
| 0ヤ8＇8 | カ6S＇6 | Lع8 | ャ9を＇عL |
| LI8＇6I | 9 て＇して $^{\text {a }}$ | LS8＇L | S69＇て91 |
| て8I＇カt | 60カ＇6て | 999＇乙 | L88＇力てて |
| とてE＇LSI | LTL＇tOL | 8EI＇6 | SLL＇008 |
| 6S6「0てZ | S $\angle 0{ }^{\prime} \angle \triangleright \tau$ | ャع8＇てT | ヤ89＇ヤてて＇โ |
| とャع＇60¢ | S06＇SOZ | 896＇ 1 T | 8SS＇カLS＇L |
| TLて＇9 | てعL＇9 | L8S | I8t＇IS |
| カ8し「て9て | \＆ร6＇LOT | 0てヤ＇6 | 8TS＇Sて8 |
| 86L＇6てて | 8S6＇2SI | 8ヵ¢＇とI | てL9＇69I＇โ |
| とャS＇S¢て | て8L＇9SI | โ89＇عI | カT6＇86I＇โ |
| とII＇カt | 8SE＇Lt | ととI＇t | OSI＇29E |
| 806＇โ8โ | SIt＇L6I | Lてて＇しT | 989＇60S＇โ |
| て\＆S＇દて | 8\＆S＇ऽて | $6 て て ゙ て$ | て6て＇S6I |
| \＆S6＇โI | てL6＇てI | て¢I＇L | 96I＇66 |
| 886＇乙 | とヤて＇と | と8て | 66L＇力て |
| TOT＇9 | Lて9＇9 | 8LS | Tع9＇0S |
| LOO＇08 | S9S＇乙を | てヤ8＇て | とて0＇6ヵて |
| 600＇โ8I | と8カ＇0てT | カTS＇0T | L\＆と＇Lて6 |
| SIS＇L6 | ャT6＇09 | 9TE＇S | عโ8＇s9ヵ |
| 9ャO＇0て | SSL＇Iて | 868＇L | 09ع＇99】 |
| てSて＇โを | 9I6＇とを | 096＇乙 | 9SE＇6SZ |
| ヤくカ＇9 | 9て0＇L | عโ9 | IعL＇ยS |
| てع8＇0I | 9SL＇II | 920＇โ | 968＇68 |
| $\angle T S^{\prime} \angle Z$ | て98＇6て | 909＇て | LSE＇8てZ |
| 609＇く9 | てLE＇EL | ع0t＇9 | 9L0＇T9S |
| 08t＇ऽて | 七SE＇Lて | L8E＇乙 | 6LI＇60Z |
| SSt＇LI | โとヤ＇てI | S80＇โ | ع90＇s6 |
| カヤ8＇L | عTS＇8 | とャL | L60＇s9 |
| 966 | โ80＇โ | 七6 | 99て＇8 |
| L09＇ャ | 000＇ऽ | 9とち | てعて＇8\＆ |
| ұиәщұеә」 ләұемәұsем | uo！ınq！ıłs！ 1 ләұеM | ұиәщұеә」1 ләдем | KıddnS ләұеМ |
|  |  |  |  |


| Electricity from Water (kWh) |  |  |  |
| :---: | :---: | :---: | :---: |
| Water Supply | Water Treatment | Water Distribution | Wastewater Treatment |
| 99,196 | 1,132 | 12,972 | 11,953 |
| 200,458 | 2,288 | 26,214 | 24,155 |
| 10,459 | 119 | 1,368 | 1,274 |
| 234,227 | 2,673 | 30,630 | 28,531 |
| 413,884 | 4,723 | 54,124 | 81,313 |
| 839,082 | 9,575 | 109,727 | 164,849 |
| 12,399 | 141 | 1,621 | 1,494 |
| 12,399 | 141 | 1,621 | 1,494 |
| 9,300 | 106 | 1,216 | 1,121 |
| 3,455 | 39 | 452 | 421 |
| 1,141,785 | 13,030 | 149,311 | 137,583 |
| 61,997 | 707 | 8,107 | 7,471 |
| 16,533 | 189 | 2,162 | 1,992 |
| 15,499 | 177 | 2,027 | 1,868 |
| 148,794 | 1,698 | 19,458 | 17,929 |
| 6,624 | 76 | 866 | 807 |
| 64 | 1 | 8 | 8 |
| 25,832 | 295 | 3,378 | 3,113 |
| 144,998 | 1,655 | 18,961 | 17,662 |
| 9,300 | 106 | 1,216 | 1,121 |
| 36,165 | 413 | 4,729 | 4,358 |
| 220,242 | 2,513 | 28,801 | 26,827 |
| 5,056 | 58 | 661 | 616 |
| 16,269 | 186 | 2,128 | 1,982 |
| 162,695 | 1,857 | 21,276 | 19,817 |
| 24,799 | 283 | 3,243 | 2,988 |
| 242,823 | 2,771 | 31,754 | 29,260 |
| 764,808 | 8,728 | 100,014 | 150,257 |
| 3,554,003 | 40,557 | 464,757 | 698,232 |
| 499,043 | 5,695 | 65,260 | 98,044 |
| 3,374,053 | 38,503 | 441,225 | 662,878 |
| 2,474,306 | 28,236 | 323,565 | 486,111 |
| 141,561 | 1,615 | 18,512 | 17,058 |
| 1,349,621 | 15,401 | 176,490 | 265,151 |
| 1,039,883 | 11,867 | 135,986 | 204,299 |
| 386,891 | 4,415 | 50,594 | 76,010 |
| 1,034,710 | 11,808 | 135,309 | 203,283 |
| 1,349,621 | 15,401 | 176,490 | 265,151 |
| 2,676,434 | 30,542 | 349,997 | 525,821 |
| 542,098 | 6,186 | 70,890 | 106,502 |
| 1,444,095 | 16,479 | 188,844 | 283,712 |




| Electricity from Water (kWh) |  |  |  |
| :---: | :---: | :---: | :---: |
| Water Supply | Water Treatment | Water Distribution | Wastewater Treatment |
| 242,375 | 2,766 | 31,695 | 29,523 |
| 37,198 | 424 | 4,864 | 4,482 |
| 25,882 | 295 | 3,385 | 3,153 |
| 30,999 | 354 | 4,054 | 3,735 |
| 33,924 | 387 | 4,436 | 4,132 |
| 105,396 | 1,203 | 13,783 | 12,700 |
| 64,064 | 731 | 8,378 | 7,720 |
| 6,973 | 80 | 912 | 849 |
| 4,067 | 46 | 532 | 495 |
| 415,382 | 4,740 | 54,320 | 50,053 |
| 2,789 | 32 | 365 | 340 |
| 64,479 | 736 | 8,432 | 7,854 |
| 617,907 | 7,051 | 80,804 | 74,457 |
| 51,664 | 590 | 6,756 | 6,225 |
| 4,648 | 53 | 608 | 566 |
| 105,790 | 1,207 | 13,834 | 12,886 |
| 37,036 | 423 | 4,843 | 4,463 |
| 242,329 | 2,765 | 31,689 | 47,609 |
| 87,506 | 999 | 11,443 | 10,659 |
| 320,320 | 3,655 | 41,888 | 38,598 |
| 3,960 | 45 | 518 | 477 |
| 2,744 | 31 | 359 | 334 |
| 33,065 | 377 | 4,324 | 3,984 |
| 29,965 | 342 | 3,919 | 3,611 |
| 25,832 | 295 | 3,378 | 3,113 |
| 20,666 | 236 | 2,702 | 2,490 |
| 365,283 | 4,168 | 47,768 | 44,494 |
| 386,028 | 4,405 | 50,481 | 75,840 |
| 3,191 | 36 | 417 | 389 |
| 4,707 | 54 | 615 | 573 |
| 283,251 | 3,232 | 37,041 | 34,502 |
| 494,414 | 5,642 | 64,654 | 60,224 |
| 2,128 | 24 | 278 | 259 |
| 21,699 | 248 | 2,838 | 2,615 |
| 5,166 | 59 | 676 | 623 |
| 64,064 | 731 | 8,378 | 7,720 |
| 7,147 | 82 | 935 | 871 |
| 1,292,645 | 14,751 | 169,039 | 155,761 |
| 2,066,579 | 23,583 | 270,247 | 249,019 |
| 3,525,584 | 40,232 | 461,041 | 424,826 |
| 774,967 | 8,844 | 101,342 | 93,382 |


| 9て8＇9 | 6てع＇L | 0ヤ9 | ItO＇9S |
| :---: | :---: | :---: | :---: |
| Sてて＇Lてて | てSでくカレ | 0S8＇てI | 8ع0＇9てI＇โ |
| てもど8 | ESO＇6 | 06L | 0عて＇69 |
| ャて8＇てI | 8I6＇عI | SIて＇L | 6てヤ＇90T |
| 8ヤ8＇9 | てとヤ＇L | 6ヤ9 | Tع8＇9S |
| OLて＇0I | 080＇しI | $\angle 96$ | $0 \varepsilon L^{\prime}$ ¢8 |
| 958＇t | 0Lて＇S | 09巾 | 86て＇0ヵ |
| 七S6＇S08 | 6Sカ＇9をS | ャI8＇9ヵ | 60と＇Z0I＇t |
| ヤL6＇69 | 6ع6＇SL | Lて9＇9 | 60L＇08S |
| 0Lて＇8S | 8عて＇£9 | 8TS＇S | 6LS＇E8t |
| 00L＇てT | と8L＇とT | عOZ＇工 | 96と＇S0T |
| てLI＇LZ | TんI＇6て | 9ャS＇て | ヤく0＇とてて |
| \＆โS＇SカE | L96＇tLE | してL＇ても | 8Lと＇L98＇て |
| 88L＇とG | عLE＇8S | カ60＇s | I8と＇9カち |
| てI8＇しも | L88＇LS | 8てS＇t | ع8L＇96を |
| ャ6と＇06 | 00I＇86 | T9S＇8 | 89I＇0GL |
| IT8＇6L | とてI＇とS | 9と9＇t | 9とて＇90t |
| 86ع＇9¢S | OSE＇0LE | 8Iと＇乙を | 890＇てと8＇て |
| ESI＇L | Lとて＇し | 80T | て97＇6 |
| ع6L | IS8 | 七L | 80¢＇9 |
| T6¢＇ع8 | LOS＇SS | カヤ8＇t | 09ガャても |
| 6ヵて | 0Lて | 七て | L90＇て |
| E9S＇LE | E00＇sて | て8I＇て | 96I＇T6T |
| 6Iと＇七8 | 七てT＇9s | 868＇t | カ8I＇6で |
| 6LI＇とて | 8てヤ＇SI | $9 \triangleright \varepsilon^{\prime}$ L | 6L6＇LIT |
| ITE＇9 | TOL＇LT | StS＇L | โ9ع＇งをโ |
| S\＆S＇\＆ | ESE＇乙 | SOZ | S66＇LI |
| 968 | 9で | LE | ヤऽて＇ع |
| ヤくカ＇ | 七て0＇8 | 00L | LSE＇โ9 |
| 898＇L | LてO＇て | LLI | 66t＇sI |
| †TE＇โ | OTカ＇โ | とてI | ヤ8L＇0T |
| 089＇ 1 T | 88で6T | カ $\angle 9$ ¢ | LてL＇9ヵT |
| とヤ8＇6を | 6とて＇とカ | عLL＇ع | ES9＇0とを |
| 188＇โ9 | 9SI＇く9 | 098＇s | SカS＇\＆IS |
| 9てでし8I | して9＇ャてT | S $28^{\prime} 01$ | 6L6＇てS6 |
| てZL＇6SE | 8\＆ャ＇6をて | カ68＇0て | 986＇0ع8＇โ |
| 968＇6をL＇乙 | 0عL＇とて8＇โ | 9ヤT「6ST | 980‘9ャ6＇とT |
| とカで8IS | \＆S6＇tワ¢ | てOT＇0¢ | LS8＇LE9＇乙 |
| 8ヤS＇LI | 86と＇てI | 280＇โ | 908＇ャ6 |
| 89I＇T0L | てTL＇99ヵ | LてL＇0t | 0S6＇895＇ع |
| 06L＇\＆0Z | L8L＇8Iて | 260＇6I | 690＇عL9＇โ |
|  |  | ұиәщұеә」1 ләдем | KıddnS ләұем |
|  |  |  |  |

World Logistic Center
Cumulative Energy－Electricity Natural Gas

|  |  | $\left\|\begin{array}{l} m \\ 0 \\ 0 \\ 0 \\ -1 \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \overrightarrow{-} \\ & \sigma_{2} \\ & \sigma \end{aligned}\right.$ | $\left\|\begin{array}{l} \mathrm{O} \\ \underset{N}{2} \\ 6 \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \underset{\sim}{-1} \\ & \underset{寸}{-} \\ & \underset{-}{2} \end{aligned}\right.$ | $\begin{aligned} & -1 \\ & \infty \\ & \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ \underset{N}{n} \\ \hat{0} \\ 0 \\ N \end{array}\right\|$ |  | $\left\|\begin{array}{l} \overrightarrow{-} \\ 6 \\ -1 \\ -1 \\ \underset{m}{1} \end{array}\right\|$ | $\left\|\begin{array}{l} N \\ \underset{N}{n} \\ \hat{0} \\ \underset{\sim}{2} \end{array}\right\|$ | $\left\|\begin{array}{c} \underset{\sim}{n} \\ \infty \\ \hat{N} \\ \underset{m}{2} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & m \\ & \infty \\ & - \\ & \underset{N}{\lambda} \\ & N \end{aligned}\right.$ | $\left\|\begin{array}{c} \infty \\ \underset{N}{n} \\ \infty \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \hat{O} \\ & \underset{\sim}{n} \\ & \underset{N}{\hat{N}} \end{aligned}\right.$ |  | $\left\|\begin{array}{l} \underset{\sim}{\underset{N}{2}} \\ \underset{\sim}{\underset{N}{2}} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & N \\ & N \\ & \\ & \underset{\sim}{2} \\ & \underset{N}{2} \end{aligned}\right.$ | $\underset{\underset{\sim}{\sim}}{\underset{\sim}{n}}$ | $\left\|\begin{array}{l} 0 \\ \infty \\ \underset{\sim}{8} \end{array}\right\|$ | $\left\|\begin{array}{l} \underset{0}{n} \\ \stackrel{n}{n} \\ \underset{N}{n} \end{array}\right\|$ | $\left\|\begin{array}{l} \hat{0} \\ \hat{2} \\ \mathbf{n} \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ N \\ N \end{array}\right\|$ | $\left\|\begin{array}{l} \underset{\sim}{N} \\ n \\ e_{0} \end{array}\right\|$ | $\stackrel{\text { N }}{\text { N }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & 0 \\ & -7 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$ | $\left\|\begin{array}{l} \hat{N} \\ 0 \\ 0 \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{l} \underset{N}{N} \\ \underset{\sim}{\mathcal{T}} \end{array}\right\|$ | $\left\|\begin{array}{c} \underset{\sim}{\underset{~}{2}} \\ \underset{\infty}{2} \end{array}\right\|$ | $\left\|\begin{array}{l} 9 \\ 0 \\ 0 \\ 0 \\ \stackrel{1}{1} \\ -1 \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \text { ন } \\ \text { N} \\ \underset{N}{N} \\ \text { N } \end{gathered}\right.$ | $\left\|\begin{array}{l} - \\ 0 \\ 0 \\ \underset{N}{N} \\ \underset{N}{2} \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \underset{\sim}{\underset{\sim}{*}} \\ \underset{\sim}{\underset{\sim}{2}} \end{gathered}\right.$ | $\left\|\begin{array}{l} \underset{N}{N} \\ \underset{\sim}{N} \\ \underset{N}{2} \end{array}\right\|$ | $\left\|\begin{array}{l} \text { n } \\ \\ 0 \\ 0 \\ \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \hat{o} \\ & \underset{N}{2} \\ & \underset{N}{\prime} \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & \hat{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}\right.$ | $\left\|\begin{array}{l} \underset{n}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \underset{\sim}{\alpha} \\ \underset{\sim}{n} \end{array}\right\|$ | $\left\|\begin{array}{l} \hat{-} \\ \underset{N}{n} \\ { }_{n} \\ \underset{\sim}{n} \end{array}\right\|$ |  | $\left\|\begin{array}{c} 0 \\ O \\ \vdots \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \hat{N} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ \underset{n}{n} \\ \underset{\sim}{2} \end{array}\right\|$ | $\left\|\begin{array}{l} N \\ N \\ \infty \\ \infty \end{array}\right\|$ | $\left\|\begin{array}{l} \underset{\sim}{n} \\ \infty \\ \underset{\sim}{n} \end{array}\right\|$ | － |
| 은 는 ㄴ |  | $\begin{aligned} & \mathbf{~} \\ & \mathbf{~} \\ & -1 \end{aligned}$ | $\underset{\sigma}{\prime}$ | $\left\|\begin{array}{l} -1 \\ \infty \\ n \end{array}\right\|$ | $\left\|\begin{array}{l} \underset{N}{N} \\ n \\ n \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & 0 \\ & N \\ & N \end{aligned}\right.$ | $\left\|\begin{array}{c} \underset{\sim}{m} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{array}\right\|$ | $\begin{aligned} & \underset{\sim}{\mathrm{O}} \\ & \underset{\sim}{0} \\ & \underset{\sim}{2} \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ -1 \\ \infty \\ \sigma_{1} \end{array}\right\|$ | $\left(\left.\begin{array}{l} \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{array} \right\rvert\,\right.$ | $\left\|\begin{array}{l} 0 \\ \mathbf{y} \\ \infty \\ \infty \\ -1 \end{array}\right\|$ | $\begin{aligned} & 9 \\ & \stackrel{0}{7} \\ & \stackrel{n}{7} \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \infty \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \underset{\sim}{N} \\ \underset{\sim}{n} \end{array}\right\|$ | $\left\|\begin{array}{l} \overrightarrow{-} \\ 0 \\ 0 \\ \underset{\sim}{7} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \underset{\sim}{n} \\ & \underset{N}{n} \end{aligned}\right.$ | $\left\|\begin{array}{l} \infty \\ n \\ \underset{n}{n} \\ \underset{1}{2} \end{array}\right\|$ | $\mid \vec{\gamma}$ | $\underset{\sim}{N}$ | $\left\|\begin{array}{l} 0 \\ \underset{N}{N} \\ \underset{N}{N} \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ \infty \\ n \\ m \end{array}\right\|$ | $\begin{aligned} & 9 \\ & \infty \\ & \infty \\ & 0 \end{aligned}$ | $\begin{aligned} & \infty \\ & \underset{N}{N} \\ & \underset{N}{2} \end{aligned}$ | 人 |
|  | $\begin{aligned} & \frac{7}{2} \\ & \frac{0}{3} \\ & n \\ & \frac{1}{む} \\ & \frac{\pi}{3} \\ & 3 \end{aligned}$ |  | $\begin{aligned} & n \\ & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$ | $\left\lvert\, \begin{aligned} & \text { N} \\ & \text { on } \\ & \text { in } \end{aligned}\right.$ | $\left\|\begin{array}{l} \underset{N}{N} \\ \underset{N}{x} \\ \underset{\sim}{N} \end{array}\right\|$ | $\left\|\right\|$ | $\left\|\begin{array}{c} 0 \\ n \\ n \\ N \\ N \\ n \\ \underset{i}{2} \end{array}\right\|$ | $\begin{aligned} & \underset{\sim}{\underset{N}{n}} \\ & \infty \\ & \underset{N}{N} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & n \\ & n \\ & n \\ & n_{1} \\ & n \\ & n \\ & r- \end{aligned}$ | $\begin{aligned} & n \\ & \infty \\ & \underset{-}{\infty} \\ & \underset{\sim}{n} \end{aligned}$ | $\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ \hat{i} \\ 0 \\ 0 \\ -i \end{array}\right\|$ | $\left(\begin{array}{c} 0 \\ 0 \\ \infty \\ - \\ \infty \\ n \\ -1 \end{array}\right.$ | $\begin{aligned} & 0 \\ & \underset{\sim}{7} \\ & \underset{n}{n} \\ & \underset{r}{2} \end{aligned}$ | $\begin{gathered} \underset{\sim}{\sim} \\ \underset{1}{n} \\ \underset{N}{n} \\ \underset{\sim}{n} \end{gathered}$ |  | $\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$ | $\left\|\begin{array}{c} \sim \\ \sim \\ n \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{array}\right\|$ | $\left\|\begin{array}{c} N \\ \underset{n}{n} \\ m \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{7} \\ \underset{子}{2} \end{gathered}\right.$ |  | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ i \\ n \\ m \end{array}\right\|$ | $\begin{aligned} & \infty \\ & \text { o } \\ & \text { n } \\ & \text { g} \\ & \text { j} \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \underset{+}{n} \\ \tilde{N} \\ 0 \end{array}\right\|$ | $\begin{aligned} & \hat{N} \\ & \underset{\sim}{2} \\ & \underset{\sigma}{2} \end{aligned}$ |

2 Natural Gas

Cumulative Natural Gas Consumption - Summary

| Project ID | Annual MMBtu | Project ID | Annual MMBtu | Project ID | Annual MMBtu |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B-001 | 100,934 | MV-078 | 16,895 | R-015 | 5,252 |
| B-002 | 8,447 | MV-079 | 745 | R-016 | 47 |
| B-003 | 28,200 | MV-080 | 98 | R-017 | 4,068 |
| B-004 | 56,338 | MV-081 | 1,421 | R-018 | 293,639 |
| B-005 | 83,359 | MV-082 | 1,015 | R-019 | 814 |
| B-006 | 5,411 | MV-083 | 11,566 | R-020 | 2,967 |
| B-007 | 12,326 | MV-084 | 3,248 | R-021 | 459 |
| B-008 | 19,820 | MV-085 | 311 | R-022 | 275 |
| B-009 | 136,108 | MV-086 | 2,172 | R-023 | 18 |
| B-010 | 2,906 | MV-087 | 888 | R-024 | 152,931 |
| B-011 | 500 | MV-088 | 178 | R-025 | 3,077 |
| B-012 | 4,128 | MV-089 | 178 | R-026 | 661 |
| B-013 | 57,808 | MV-090 | 16 | R-026 | 30,655 |
| B-014 | 21,410 | MV-091 | 2,661 | R-026 | 1,015 |
| C-001 | 444 | MV-093 | 1,657 | R-027 | 8 |
| C-002 | 2,220 | MV-094 | 3,935 | R-028 | 2,087 |
| C-002 | 4,611 | MV-095 | 389 | R-029 | 8 |
| C-003 | 161 | MV-096 | 2,386 | R-030 | 463 |
| H-001 | 17,985 | MV-097 | 6,545 | R-031 | 533 |
| H-002 | 13,458 | MV-098 | 489 | R-032 | 49 |
| H-003 | 28,476 | MV-099 | 1,420 | R-033 | 444 |
| H-004 | 23,880 | MV-100 | 2,870 | R-034 | 42 |
| H-004 | 2,906 | MV-101 | 20 | R-035 | 1,509 |
| H-005 | 46 | MV-102 | 291 | R-036 | 917 |
| H-006 | 1,511 | MV-103 | 5,978 | R-037 | 13 |
| H-007 | 5,576 | MV-104 | 757 | R-038 | 8 |
| H-008 | 6,853 | MV-105 | 178 | R-039 | 12,296 |
| H-008 | 4,435 | MV-106 | 178 | R-040 | 5 |
| H-009 | 9,329 | MV-107 | 275 | R-041 | 80 |
| M-001 | 22 | MV-108 | 7 | R-042 | 18,291 |
| M-001 | 896 | MV-109 | 33,798 | R-043 | 1,529 |
| M-001 | 1,372 | MV-110 | 888 | R-044 | 9 |
| M-001 | 13,299 | MV-111 | 237 | R-045 | 132 |
| M-002 | 9,186 | MV-112 | 222 | R-046 | 1,096 |
| M-002 | 1,627 | MV-113 | 4,404 | R-047 | 219 |
| M-002 | 15,849 | MV-114 | 13 | R-048 | 167 |
| M-003 | 5,887 | MV-115 | 0 | R-049 | 4,828 |
| M-004 | 242 | MV-116 | 765 | R-050 | 117 |
| M-005 | 6,215 | MV-117 | 180 | R-051 | 5 |
| M-005 | 808 | MV-118 | 275 | R-052 | 979 |
| M-005 | 34,486 | MV-119 | 1,071 | R-053 | 887 |
| M-006 | 640 | MV-120 | 421 | R-054 | 765 |
| M-007 | 1,371 | MV-121 | 10 | R-055 | 612 |

Cumulative Natural Gas Consumption - Summary

| Project ID | Annual MMBtu | Project ID | Annual MMBtu | Project ID | Annual MMBtu |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M-008 | 1,388 | MV-123 | 31 | R-056 | 455 |
| M-008 | 10,167 | MV-124 | 311 | R-057 | 5,576 |
| M-009 | 4,129 | MV-125 | 355 | R-058 | 6 |
| M-010 | 1,135 | MV-126 | 7,188 | R-059 | 9 |
| M-011 | 149 | MV-127 | 690 | R-060 | 297 |
| MV-001 | 676 | MV-129 | 51,334 | R-061 | 944 |
| MV-002 | 8,014 | MV-130 | 450 | R-062 | 4 |
| MV-002 | 3,196 | MV-131 | 3,045 | R-063 | 311 |
| MV-003 | 3,859 | MV-132 | 2,233 | R-064 | 153 |
| MV-003 | 11,924 | P-001 | 4,190 | R-065 | 1,896 |
| MV-004 | 30,452 | P-002 | 1,218 | R-066 | 14 |
| MV-005 | 258 | P-003 | 938 | RC-001 | 38,263 |
| MV-006 | 1,523 | P-004 | 5,588 | RC-002 | 61,172 |
| MV-007 | 948 | P-005 | 934 | RC-003 | 104,360 |
| MV-008 | 1,774 | P-006 | 19,494 | RC-005 | 22,940 |
| MV-009 | 336 | P-007 | 38,659 | RC-006 | 1,752 |
| MV-010 | 1,438 | P-008 | 7,830 | RC-007 | 3,221 |
| MV-011 | 734 | P-009 | 20,859 | RC-009 | 118 |
| MV-012 | 278 | P-010 | 3,451 | RC-009 | 38,101 |
| MV-013 | 104 | P-011 | 39,800 | RC-010 | 201,438 |
| MV-014 | 3,273 | P-012 | 14,753 | RC-011 | 1,652 |
| MV-015 | 1,927 | P-014 | 2,436 | RC-012 | 13,765 |
| MV-016 | 979 | P-015 | 1,585 | RC-013 | 15,201 |
| MV-017 | 2,936 | P-016 | 2,659 | RC-014 | 4,734 |
| MV-018 | 12 | P-017 | 1,177 | RC-015 | 4,343 |
| MV-019 | 2,165 | P-018 | 3,140 | RC-017 | 21 |
| MV-020 | 208 | P-019 | 1,416 | RC-018 | 459 |
| MV-021 | 278 | P-020 | 1,769 | RC-019 | 117 |
| MV-022 | 1,223 | P-021 | 345 | RC-020 | 6 |
| MV-023 | 6,169 | P-022 | 771 | RC-021 | 16 |
| MV-024 | 4,863 | P-023 | 365 | RC-022 | 4,007 |
| MV-025 | 2,477 | P-024 | 2,972 | RC-023 | 1,704 |
| MV-026 | 3,059 | P-025 | 2,107 | RC-024 | 6,199 |
| MV-027 | 799 | P-026 | 26,370 | RC-025 | 2,762 |
| MV-028 | 1,331 | P-027 | 1,754 | RC-026 | 61 |
| MV-029 | 8,411 | P-028 | 21,768 | RC-027 | 6,131 |
| MV-030 | 2,539 | P-030 | 15,048 | RC-028 | 12 |
| MV-031 | 1,621 | P-031 | 1,110 | RC-029 | 18 |
| MV-032 | 3,517 | P-032 | 1,427 | RC-030 | 2,556 |
| MV-033 | 1,652 | P-033 | 56,890 | RC-031 | 5,868 |
| MV-034 | 1,590 | P-034 | 6,429 | RC-032 | 22,206 |
| MV-035 | 765 | P-035 | 592 | RC-033 | 11,745 |
| MV-036 | 828 | P-036 | 7,001 | RC-034 | 13,213 |

Cumulative Natural Gas Consumption - Summary

| Project ID | Annual MMBtu | Project ID | Annual MMBtu | Project ID | Annual MMBtu |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MV-037 | 52,508 | P-036 | 111 | RC-035 | 84,877 |
| MV-038 | 14,101 | P-037 | 5,597 | RC-035 | 278 |
| MV-039 | 51,984 | P-038 | 6,821 | RC-035 | 1,509 |
| MV-040 | 200 | P-039 | 1,591 | RC-036 | 14,314 |
| MV-041 | 2,944 | P-040 | 3,732 | RC-037 | 17,189 |
| MV-042 | 906 | P-041 | 4,865 | RC-038 | 3,702 |
| MV-043 | 18,054 | P-042 | 1,866 | RC-039 | 1,193 |
| MV-044 | 2,252 | P-043 | 1,743 | RD-001 | 2,508 |
| MV-045 | 193 | P-044 | 1,391 | RD-002 | 1,682 |
| MV-046 | 776 | P-045 | 1,110 | RD-003 | 3,150 |
| MV-047 | 489 | P-046 | 6,681 | RD-004 | 2,049 |
| MV-048 | 4,335 | P-047 | 15,935 | RD-005 | 1,016 |
| MV-049 | 4,555 | P-048 | 2,294 | RD-006 | 107 |
| MV-050 | 11,528 | P-049 | 3,487 | RD-007 | 284 |
| MV-051 | 24,995 | P-050 | 178 | RD-008 | 1,184 |
| MV-052 | 28,557 | P-051 | 1,071 | RD-009 | 97 |
| MV-053 | 2,538 | P-052 | 2,508 | RD-010 | 4,719 |
| MV-054 | 3,528 | P-053 | 4,924 | RD-011 | 123 |
| MV-056 | 489 | P-054 | 7,280 | RD-012 | 1,221 |
| MV-057 | 1,132 | P-055 | 999 | RD-013 | 2,056 |
| MV-058 | 245 | P-056 | 320 | RD-014 | 1,567 |
| MV-059 | 1,927 | P-057 | 85 | RD-015 | 859 |
| MV-060 | 2,814 | P-058 | 12,281 | RD-016 | 1,451 |
| MV-061 | 400 | P-059 | 7,432 | SB-001 | 1,247 |
| MV-062 | 16,608 | P-060 | 10 | SB-002 | 636 |
| MV-063 | 6,760 | P-061 | 711 | SB-003 | 1,205 |
| MV-064 | 2,661 | R-001 | 4,015 | SB-004 | 1,579 |
| MV-065 | 769 | R-002 | 1,183 | SB-005 | 572 |
| MV-066 | 3,713 | R-003 | 21,184 | SB-006 | 1,102 |
| MV-067 | 4,924 | R-004 | 3,196 | SB-007 | 1,040 |
| MV-068 | 6,728 | R-005 | 1,735 | SB-008 | 1,223 |
| MV-069 | 13,308 | R-006 | 1,139 | SJ-001 | 4 |
| MV-070 | 3,565 | R-007 | 125 | SJ-002 | 9,818 |
| MV-071 | 725 | R-008 | 576 | SJ-003 | 17,740 |
| MV-072 | 355 | R-009 | 19,486 | SJ-004 | 18,749 |
| MV-073 | 1,420 | R-010 | 52 | WLC-001 | 1,835 |
| MV-074 | 2,944 | R-011 | 995 | Total Cum. | 3,211,448 |
| MV-075 | 22,754 | R-012 | 136 | Net Project | 84,771 |
| MV-076 | 692 | R-013 | 92 | Total | 3,296,219 |
| MV-077 | 17,317 | R-014 | 9 | SoCalGas | 873,793,575 |
|  |  |  |  | \%SoCalGas | 0.38\% |
| Source: ESA, 2019 |  |  |  |  |  |

World Logistic Center
Cumulative Energy - Electricity Natural Gas

| ate Zone |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Electricity (kWhr/unit) |  |  | Natural Gas (kBtU/unit) |  |
|  |  | T24 | NT24 | Light | T24 | NT24 |
| BP | Office Park | 3.07 | 2.60 | 4.24 | 2.92 | 0.000 |
| HI | Heavy Industrial | 2.20 | 5.02 | 2.93 | 15.36 | 17.130 |
| ㄴI | Light Industrial | 2.20 | 5.02 | 2.93 | 15.36 | 17.130 |
| MF | Multi-Family - Mid Rise Apartment | 772.17 | 3054.10 | 741.44 | 8764.08 | 6030.000 |
| MO | Medical Office | 3.07 | 2.79 | 3.66 | 3.47 | 0.000 |
| OG | General Office | 3.07 | 2.79 | 3.66 | 3.47 | 0.000 |
| RC | Retail Commercial | 4.58 | 2.44 | 5.61 | 1.92 | 0.300 |
| SF | Single Family Residential | 951.67 | 6155.97 | 1608.84 | 24556.15 | 6030.000 |
| SR | Senior Residential | 877.14 | 3172.76 | 1001.10 | 9544.50 | 6030.000 |
| WH | Warehouse - Unrefrigerated No Rail | 0.37 | 0.82 | 1.17 | 2.00 | 0.030 |


|  |  | 9,037,829 | Electricity |  |  | Natural Gas |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project ID | mnduse_Cod | Landuse_qty | kWh | kWh | kWh | kBTU | kBTU | Electricity (kWh) | NG (MMBtu) |
| B-001 | SF | 3,300.00 | 3,140,511 | 20,314,701 | 5,309,172 | 81,035,295 | 19,899,000 | 28,764,384 | 100,934 |
| B-002 | MF | 571.00 | 440,909 | 1,743,891 | 423,362 | 5,004,290 | 3,443,130 | 2,608,162 | 8,447 |
| B-003 | SF | 922.00 | 877,440 | 5,675,804 | 1,483,350 | 22,640,770 | 5,559,660 | 8,036,595 | 28,200 |
| B-004 | LI | 1,734.00 | 3,814,800 | 8,704,680 | 5,080,620 | 26,634,240 | 29,703,420 | 17,600,100 | 56,338 |
| B-005 | HI | 2,565.68 | 5,644,505 | 12,879,734 | 7,517,454 | 39,408,906 | 43,950,167 | 26,041,693 | 83,359 |
| B-006 | BP | 1,853.25 | 5,689,482 | 4,818,454 | 7,857,786 | 5,411,494 | 0 | 18,365,722 | 5,411 |
| B-007 | SF | 403.00 | 383,523 | 2,480,856 | 648,363 | 9,896,128 | 2,430,090 | 3,512,741 | 12,326 |
| B-008 | SF | 648.00 | 616,682 | 3,989,069 | 1,042,528 | 15,912,385 | 3,907,440 | 5,648,279 | 19,820 |
| B-009 | SF | 4,450.00 | 4,234,932 | 27,394,067 | 7,159,338 | 109,274,868 | 26,833,500 | 38,788,336 | 136,108 |
| B-010 | SF | 95.00 | 90,409 | 584,817 | 152,840 | 2,332,834 | 572,850 | 828,066 | 2,906 |
| B-011 | RC | 225.00 | 1,030,500 | 549,000 | 1,262,250 | 432,000 | 67,500 | 2,841,750 | 500 |
| B-012 | MF | 279.00 | 215,435 | 852,094 | 206,862 | 2,445,178 | 1,682,370 | 1,274,391 | 4,128 |
| B-013 | SF | 1,890.00 | 1,798,656 | 11,634,783 | 3,040,708 | 46,411,124 | 11,396,700 | 16,474,147 | 57,808 |
| B-014 | SF | 700.00 | 666,169 | 4,309,179 | 1,126,188 | 17,189,305 | 4,221,000 | 6,101,536 | 21,410 |
| C-001 | RC | 200.00 | 916,000 | 488,000 | 1,122,000 | 384,000 | 60,000 | 2,526,000 | 444 |
| C-002 | RC | 1,000.00 | 4,580,000 | 2,440,000 | 5,610,000 | 1,920,000 | 300,000 | 12,630,000 | 2,220 |
| C-002 | BP | 1,579.00 | 4,847,530 | 4,105,400 | 6,694,960 | 4,610,680 | 0 | 15,647,890 | 4,611 |
| C-003 | RC | 72.70 | 332,966 | 177,388 | 407,847 | 139,584 | 21,810 | 918,201 | 161 |
| H-001 | SF | 588.00 | 559,582 | 3,619,710 | 945,998 | 14,439,016 | 3,545,640 | 5,125,290 | 17,985 |
| H-002 | SF | 440.00 | 418,735 | 2,708,627 | 707,890 | 10,804,706 | 2,653,200 | 3,835,251 | 13,458 |
| H-003 | SF | 931.00 | 886,005 | 5,731,208 | 1,497,830 | 22,861,776 | 5,613,930 | 8,115,043 | 28,476 |
| H-004 | LI | 734.98 | 1,616,965 | 3,689,620 | 2,153,503 | 11,289,354 | 12,590,276 | 7,460,088 | 23,880 |
| H-004 | BP | 995.15 | 3,055,120 | 2,587,398 | 4,219,449 | 2,905,847 | 0 | 9,861,966 | 2,906 |

Energy Consumption - Electricity \& Natural Gas

Energy Consumption－Electricity \＆Natural Gas

|  |  | $\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \sim \\ & \sim \end{aligned}\right.$ | $\begin{array}{\|c} \underset{\sim}{\underset{~}{2}} \\ \underset{\sim}{\prime} \end{array}$ | $\begin{aligned} & \infty \\ & \sim \\ & N \\ & N \end{aligned}$ | (ুু | \|on | － | $\begin{array}{\|c} \substack{\infty \\ \sim \\ N \\ \underset{\sim}{n}} \end{array}$ | $\left\lvert\, \begin{gathered} \underset{N}{n} \\ \underset{\sim}{n} \\ \underset{N}{2} \end{gathered}\right.$ | $0$ | $\stackrel{\rightharpoonup}{\underset{\lambda}{\lambda}}$ | $\left\|\begin{array}{l} n \\ 0 \\ 0 \\ j \end{array}\right\|$ | $\begin{aligned} & m \\ & \infty \\ & -1 \\ & - \\ & -1 \end{aligned}$ | $\begin{aligned} & \hline \\ & \infty \\ & \underset{-}{i} \\ & \underset{i}{2} \end{aligned}$ | $\left\lvert\, \begin{aligned} & 0 \\ & \underset{-}{-} \\ & \underset{n}{2} \end{aligned}\right.$ | $\left.\begin{gathered} n \\ n \\ n \\ i \end{gathered} \right\rvert\,$ | $\begin{aligned} & 9 \\ & n \\ & \underset{\sim}{9} \end{aligned}$ | $\underset{\sim}{\sim}$ | $\begin{array}{\|c\|} \hline 0 \\ \hat{n} \end{array}$ | $\left\lvert\, \begin{gathered} \hline \infty \\ \infty \\ \sigma_{i} \\ \underset{\sim}{2} \end{gathered}\right.$ | N | 脀 | $\left\lvert\, \begin{aligned} & 0 \\ & \underset{n}{2} \end{aligned}\right.$ | ズ | の | $\left\|\begin{array}{c} \mathrm{N} \\ \mathrm{~N} \\ \mathrm{~N} \end{array}\right\|$ | 今 | $\left.\begin{aligned} & \hline \infty \\ & 0 \\ & 0 \\ & \dot{\sigma} \end{aligned} \right\rvert\,$ | $\left\lvert\, \begin{aligned} & \underset{\tilde{N}}{2} \\ & \underset{\sim}{n} \\ & \underset{N}{2} \end{aligned}\right.$ | $\underset{\infty}{\underset{\infty}{*}}$ | $\left\lvert\, \begin{aligned} & \hat{e} \\ & \mathbf{N} \\ & N \end{aligned}\right.$ | \|~ㅜㅁ | $\left\lvert\, \begin{aligned} & N \\ & N \end{aligned}\right.$ | $\underset{\sim}{\infty}$ |  | $\left.\begin{array}{\|c\|} \hline \hat{N} \\ \hat{N} \\ n \end{array} \right\rvert\,$ | $\mid \overrightarrow{0}$ | $\begin{aligned} & \mathrm{n} \\ & \hat{N} \\ & 0 \\ & 0 \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & n \\ & \underset{\sim}{0} \\ & -i \end{aligned}$ | $\infty$ | $\left\|\begin{array}{l} \hat{o} \\ 0 \\ \mathrm{~N} \end{array}\right\|$ | $\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \bar{\pi} \\ & 0 \\ & \hline \end{aligned}$ |  | $\left\lvert\, \begin{aligned} & \underset{N}{n} \\ & N \\ & \underset{\sim}{N} \end{aligned}\right.$ | $\begin{gathered} n \\ n \\ n \\ n \\ \underset{\sim}{n} \\ \underset{\sim}{+} \end{gathered}$ | $\begin{array}{\|l\|} \hline \underset{N}{N} \\ { }_{N}^{N} \\ { }_{N}^{2} \end{array}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & n \\ & n \\ & 0 \\ & 0 \\ & n \\ & n \end{aligned}$ | $\left\|\begin{array}{l} \infty \\ \underset{1}{0} \\ -8 \\ \underset{\sim}{-} \end{array}\right\|$ | $\begin{aligned} & \dot{子} \\ & \underset{\sim}{2} \\ & \infty \\ & \infty \end{aligned}$ | $\begin{array}{\|l\|} \hline 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ \infty \\ n \end{array}$ |  | $\begin{aligned} & n \\ & n \\ & 0 \\ & 0 \\ & 0 \\ & n \end{aligned}$ | O <br> O <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 | $\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \underset{N}{n} \\ & \hat{\omega} \\ & n \\ & n \end{aligned}$ | $\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}$ | $\begin{gathered} n \\ \infty \\ n \\ n \\ n \\ \vdots \\ 0 \\ 0 \end{gathered}$ | $\left\{\begin{array}{l} \hat{N} \\ \hat{0} \\ 0 \\ 0 \\ 0 \end{array}\right.$ | $\begin{aligned} & \hline{ }_{2} \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \dot{\sigma} \end{aligned}$ | $\left\lvert\, \begin{aligned} & \underset{~}{1} \\ & \underset{N}{n} \\ & \underset{N}{n} \end{aligned}\right.$ |  | $\begin{aligned} & \hline \infty \\ & \infty \\ & \infty \\ & 0 \\ & \infty \\ & -1 \end{aligned}$ |  | $\left\lvert\, \begin{aligned} & \hline \stackrel{0}{N} \\ & \underset{\sim}{2} \\ & \underset{N}{2} \\ & \hline \end{aligned}\right.$ | $\begin{aligned} & \hat{N} \\ & \mathbf{o} \\ & \hat{n} \\ & \hat{n} \\ & n \\ & n \end{aligned}$ | $\left\lvert\, \begin{aligned} & \underset{\sim}{2} \\ & \underset{N}{n} \\ & \underset{N}{N} \end{aligned}\right.$ | $\begin{aligned} & \hline \underset{寸}{o} \\ & \underset{-}{6} \\ & \dot{\sim} \\ & \sim \end{aligned}$ | $\begin{gathered} \underset{N}{N} \\ \underset{\sim}{\infty} \\ \underset{\sim}{n} \end{gathered}$ |  | $\begin{aligned} & \underset{2}{2} \\ & \underset{n}{n} \\ & \underset{\sim}{2} \end{aligned}$ |  | $\begin{aligned} & \hat{N} \\ & 0 \\ & n \\ & n \\ & n \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{gathered} \underset{\sim}{N} \\ \underset{N}{N} \\ \underset{N}{n} \end{gathered}$ | $\begin{aligned} & \text { O} \\ & \text { N } \\ & 0 \\ & \text { j} \\ & \text { - } \\ & \text { ni } \end{aligned}$ |  | $\begin{aligned} & \infty \\ & \underset{寸}{f} \\ & \infty \\ & \sim \end{aligned}$ | $\begin{aligned} & n \\ & \underset{N}{n} \\ & \underset{i}{i} \\ & \underset{-}{2} \end{aligned}$ |  | $$ | $\begin{aligned} & \underset{-}{\underset{1}{2}} \\ & \underset{1}{n} \\ & \underset{\sim}{n} \\ & \underset{n}{2} \end{aligned}$ | $\begin{aligned} & \mathrm{N} \\ & \hat{N} \\ & 0^{2} \\ & \hat{N} \\ & \sigma^{2} \end{aligned}$ |  |  | $\begin{array}{\|c\|} \hline+ \\ \infty \\ \infty \\ 0 \\ 6 \end{array}$ | $\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$ |
|  | $\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{5} \\ & \underline{\boldsymbol{\infty}} \end{aligned}\right.$ |  |  |  | $\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & n \\ & n \\ & n \end{aligned}$ | $\left\lvert\, \begin{aligned} & 9 \\ & \AA \\ & \underset{0}{0} \\ & 0 \\ & -1 \end{aligned}\right.$ | $\stackrel{\mathrm{O}}{\mathrm{~N}}$ | $\left\lvert\, \begin{gathered} o \\ \underset{寸}{-} \\ n \\ \underset{~}{2} \\ - \\ 0 \end{gathered}\right.$ | $\left\|\begin{array}{c} 0 \\ \underset{N}{2} \\ 0 \\ 0 \\ 0 \\ -i \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \mathrm{M} \\ & \mathrm{~m} \\ & \underset{i}{2} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \underset{-1}{ } \end{aligned}$ | $\bigcirc$ | $\begin{gathered} n \\ \infty \\ \underset{\sim}{n} \\ \sim \end{gathered}$ | $\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & -1 \\ & -1 \\ & -1 \end{aligned}$ | $\left\lvert\, \begin{gathered} o \\ \infty \\ \vdots \\ \underset{\sim}{2} \\ 0 \\ n \\ -i \end{gathered}\right.$ | $\bigcirc$ |  | $\begin{aligned} & \hline \stackrel{\rightharpoonup}{n} \\ & \infty \\ & 0 \\ & \underset{-1}{2} \end{aligned}$ | $\begin{aligned} & \hline \stackrel{\rightharpoonup}{\underset{1}{1}} \\ & \underset{\sim}{n} \\ & \underset{N}{2} \end{aligned}$ | $\begin{aligned} & 0 \\ & \infty \\ & \underset{\sim}{n} \\ & \tilde{n} \\ & 0 \\ & n \\ & n \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \stackrel{y}{2} \\ & \mathrm{~N} \end{aligned}$ | $\bigcirc$ | $\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{7} \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \hline 8 \\ & \hline \\ & 0 \\ & 0 \\ & \rightarrow \\ & \rightarrow \end{aligned}$ | $\begin{aligned} & n \\ & \stackrel{n}{n} \\ & \underset{-}{2} \end{aligned}$ | $\left.\begin{array}{\|c\|} \hline \stackrel{N}{n} \\ n \\ n \\ 0 \\ 0 \\ i \end{array} \right\rvert\,$ | $\left\lvert\, \begin{gathered} \mathrm{O} \\ \underset{N}{n} \\ \text { on } \end{gathered}\right.$ | $\begin{aligned} & 0 \\ & \underset{n}{n} \\ & \infty \\ & \omega_{0} \\ & 0 \\ & \cdots \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -i \\ & n \\ & n \end{aligned}$ |  |  | $\begin{array}{\|c\|} \hline 0 \\ \underset{N}{n} \\ \underset{\sim}{n} \end{array}$ | $\begin{array}{\|c} \underset{\sim}{\underset{~}{*}} \\ \underset{\sim}{n} \end{array}$ |  |  | $\left\|\begin{array}{l} \infty \\ \infty \\ n_{2} \\ \infty^{2} \end{array}\right\|$ |  | － | $\begin{aligned} & n \\ & \infty \\ & 0 \\ & i \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ \underset{\sim}{O} \\ 0 \\ \infty \\ \infty \\ \infty \end{array}\right\|$ | $\xrightarrow{\sim}$ |
| $\begin{aligned} & ⿳ 亠 丷 厂 \\ & \mathbf{\pi} \\ & \mathbf{Z} \end{aligned}$ | $\stackrel{?}{\mathbf{x}}$ | $\left\|\begin{array}{c} 0 \\ n \\ n \\ 2 \\ n \\ n \end{array}\right\|$ | $\begin{aligned} & 0 \\ & \substack{0 \\ N \\ n \\ n \\ n \\ m \\ m} \end{aligned}$ |  | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \\ & \mathrm{y} \\ & \mathrm{C} \\ & \infty \end{aligned}$ | $\begin{gathered} \hat{N} \\ n \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}$ | $\begin{aligned} & o \\ & 0 \\ & m \\ & m \\ & \infty \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ n \end{array}\right\|$ |  | $\left\lvert\, \begin{aligned} & 0 \\ & \substack{0 \\ \infty \\ \infty \\ \hline} \end{aligned}\right.$ | $\begin{aligned} & \hline \mathrm{O} \\ & \hline \mathrm{O} \\ & 0 \\ & \hline 8 \\ & \mathrm{C} \end{aligned}$ |  |  |  |  | $\begin{gathered} 0 \\ 8 \\ 0 \\ n \\ n \\ n \\ i \\ i \end{gathered}$ | $\left\lvert\, \begin{gathered} \underset{\sim}{2} \\ \infty \\ \underset{\sim}{2} \\ 6 \end{gathered}\right.$ |  | $\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{g} \\ \underset{-}{n} \\ n \\ n \\ \hline \end{gathered}\right.$ |  | $\left\|\begin{array}{c} \sim \\ \underset{\sim}{2} \\ \underset{\sim}{\sim} \end{array}\right\|$ | $\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \underset{\sim}{\prime} \\ & \underset{\sim}{n} \end{aligned}$ | $\left\lvert\, \begin{aligned} & n \\ & \infty \\ & - \\ & - \\ & - \\ & - \end{aligned}\right.$ | $\begin{aligned} & \hline \infty \\ & 0 \\ & 0 \\ & n \\ & n \end{aligned}$ | $\begin{aligned} & \hat{N} \\ & \underset{\sim}{2} \\ & \end{aligned}$ |  | $n$ <br> 0 <br> $\vdots$ <br> $n$ <br> $n$ |  |  |  | $\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \underset{N}{2} \\ & \underset{\sim}{n} \end{aligned}$ | $\left\lvert\, \begin{gathered} \sim \\ \underset{\sim}{2} \\ \infty \\ 0 \\ e \end{gathered}\right.$ | $\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & -\mathbf{i} \\ & \underset{\mathrm{N}}{ } \end{aligned}$ | $\left\lvert\, \begin{gathered} n \\ n \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}\right.$ | $\left.\begin{array}{\|c\|} \hline 0 \\ \hat{N} \\ 0 \\ \infty \\ \\ \underset{N}{2} \\ \underset{\sim}{n} \\ \hline \end{array} \right\rvert\,$ | $\begin{aligned} & \mathbf{N}_{1} \\ & \underset{\sim}{N} \\ & \underset{\sim}{0} \\ & \underset{i}{2} \end{aligned}$ | $\left.\begin{aligned} & \mathrm{n} \\ & 0 \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned} \right\rvert\,$ | $\begin{aligned} & \hat{-} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{-} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & \infty \\ & -1 \\ & 0 \\ & n \\ & n \\ & - \\ & - \\ & -i \end{aligned}$ | $\begin{aligned} & \hat{N} \\ & \text { oे } \end{aligned}$ | $\begin{gathered} n \\ o \\ o \\ \infty \\ \underset{N}{n} \\ \underset{i}{2} \end{gathered}$ | 0 $\sim$ $\sim$ $N$ |
|  | $\|\stackrel{\substack{2}}{\underline{z}}\|$ | $\begin{aligned} & \underset{\sim}{n} \\ & \underset{-}{2} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \hline \\ & \hline \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \underset{O}{2} \\ & \underset{\sim}{n} \\ & \underset{N}{N} \\ & \text { N } \end{aligned}$ | $\left\lvert\, \begin{gathered} \underset{N}{\infty} \\ \infty \\ \infty \\ \sim \end{gathered}\right.$ | $\left\lvert\, \begin{aligned} & \underset{n}{n} \\ & \underset{\sim}{\infty} \\ & \infty \end{aligned}\right.$ |  | $\begin{aligned} & \hline \infty \\ & \underset{甘}{\infty} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$ | $\left\lvert\, \begin{aligned} & n \\ & \underset{\sim}{n} \\ & \underset{N}{n} \end{aligned}\right.$ | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hat{0} \\ & \mathrm{O}^{2} \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & \hat{N} \\ & \hat{N} \\ & 0 \\ & 0 \\ & \infty \\ & n_{1} \end{aligned}$ | $\left\lvert\, \begin{gathered} n \\ \infty \\ - \\ - \\ 0 \\ 0 \end{gathered}\right.$ | $\begin{gathered} n \\ \underset{\sim}{g} \\ - \\ -1 \\ \underset{-}{2} \\ \underset{i}{2} \end{gathered}$ | $\begin{array}{\|c} \overrightarrow{-1} \\ \underset{\sim}{1} \\ 0 \\ 0 \\ \underset{-1}{2} \end{array}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \\ & -i \\ & i \end{aligned}$ |  | $\begin{array}{\|l\|} \stackrel{N}{N} \\ N \\ \underset{N}{n} \end{array}$ | $\left\lvert\, \begin{gathered} \vec{y} \\ 0 \\ \underset{m}{n} \end{gathered}\right.$ |  | $\left\|\begin{array}{c} \hline 8 \\ \underset{\sim}{n} \\ \sim \\ n \\ n \end{array}\right\|$ |  | $\left\lvert\, \begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{7} \\ & \underset{\sim}{n} \end{aligned}\right.$ | $\begin{aligned} & \hat{N} \\ & \infty \\ & \underbrace{\prime} \end{aligned}$ | $\begin{aligned} & n \\ & \underset{\sim}{6} \\ & -i \\ & \sim \end{aligned}$ | $\left\|\begin{array}{l} \underset{\sim}{n} \\ \underset{N}{n} \\ \underset{N}{N} \end{array}\right\|$ | $\begin{array}{\|c\|} \hline \sim \\ \sim \\ \underset{\sim}{n} \\ \sim \end{array}$ | $\begin{array}{\|l\|} \hline 0 \\ \hline \\ \infty \\ \underset{N}{n} \\ \underset{N}{2} \end{array}$ |  |  |  | $\left\lvert\, \begin{gathered} n \\ \underset{\sim}{n} \\ \underset{\sim}{\sim} \end{gathered}\right.$ | $\begin{aligned} & \infty \\ & \infty \\ & \underset{-}{\infty} \\ & \underset{-}{\prime} \end{aligned}$ |  | $\left\lvert\, \begin{aligned} & \hline 0 \\ & \hline 0 \\ & \underset{~}{0} \\ & \hline \\ & 0 \\ & \infty \end{aligned}\right.$ | $\begin{aligned} & \circ \\ & \underset{N}{N} \\ & \stackrel{\rightharpoonup}{U} \\ & \underset{\sim}{n} \end{aligned}$ |  | $\begin{aligned} & \hline m \\ & \infty \\ & \underset{寸}{\infty} \\ & \underset{寸}{+} \\ & \underset{\sim}{N} \end{aligned}$ | $\begin{aligned} & \overrightarrow{-} \\ & \infty \\ & \infty \\ & n \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & \hat{N} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & \underset{\sim}{\underset{1}{\prime}} \\ & \underset{\sim}{\underset{~}{n}} \end{aligned}$ | － |
| 空 | $\left\lvert\, \frac{c}{3}\right.$ |  | $\begin{aligned} & \overrightarrow{-} \\ & \underset{-}{\prime} \\ & \underset{\sim}{8} \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 8 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & i \end{aligned}$ |  | $\begin{gathered} n \\ \underset{\sim}{n} \\ \underset{\sim}{m} \end{gathered}$ | $\begin{aligned} & 0 \\ & 0 \\ & n \\ & N \\ & N \\ & 0 \\ & i \\ & i \end{aligned}$ |  | $\left\|\begin{array}{c} 8 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}\right\|$ | $\begin{aligned} & \hline \mathrm{O} \\ & \hline \mathbf{O} \\ & \underset{\sim}{0} \\ & \underset{\sim}{n} \end{aligned}$ |  | $\left\lvert\, \begin{gathered} n \\ \infty \\ \infty \\ \underset{\sim}{x} \end{gathered}\right.$ |  | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & 0 \end{aligned}$ | $\begin{gathered} 0 \\ \hline 0 \\ 0 \\ n \\ 0 \\ \underset{-}{2} \\ -i \end{gathered}$ | $\left\lvert\, \begin{gathered} 0 \\ 0 \\ 1 \\ \underset{n}{n} \\ \underset{\sim}{n} \end{gathered}\right.$ | $\left.\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & 0 \\ & n \\ & n \end{aligned} \right\rvert\,$ | $\begin{aligned} & \underset{N}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{-} \end{aligned}$ | $\begin{aligned} & \hline \stackrel{9}{2} \\ & \underset{\sim}{n} \\ & \underset{\sim}{-1} \\ & \underset{-}{-} \end{aligned}$ | $\left\|\begin{array}{c} 9 \\ \underset{\sim}{2} \\ \hat{n} \end{array}\right\|$ | $\begin{aligned} & \hat{o} \\ & \hat{N} \\ & \hat{n} \\ & \infty \\ & \infty \end{aligned}$ | $\begin{gathered} \underset{N}{N} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$ | $\begin{array}{\|c\|} \hline \infty \\ 0 \\ 0 \\ \infty \\ -1 \end{array}$ | $\begin{gathered} \underset{子}{\underset{~}{2}} \\ \underset{子}{2} \end{gathered}$ | $\left.\begin{array}{\|c} \text { un } \\ 0 \\ 0 \\ 6 \\ 0 \\ 0 \\ i \\ i \end{array} \right\rvert\,$ | $\begin{aligned} & N \\ & \underset{\sim}{n} \\ & \sigma^{2} \end{aligned}$ | $\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & n_{2} \\ & \infty \end{aligned}\right.$ |  | $\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{gathered} \infty \\ \infty \\ \infty \\ \infty \\ \infty \\ \underset{\sim}{n} \\ - \end{gathered}$ | $\left\lvert\, \begin{aligned} & o \\ & \underset{y}{2} \\ & \underset{j}{2} \end{aligned}\right.$ | $\begin{array}{\|c} \hline \\ \hline \\ \substack{2 \\ n \\ n \\ \hline} \end{array}$ |  |  | $\left\|\begin{array}{l} n \\ N \\ N \\ n \\ n \\ 0 \end{array}\right\|$ | $\begin{aligned} & \hline 9 \\ & \underset{N}{2} \\ & \hat{N} \\ & \underset{N}{N} \end{aligned}$ |  |  | $\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$ | $$ | O－ |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\frac{1}{3}
\] \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{~m} \\
\& \mathbf{o} \\
\& \underset{N}{\prime}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \underset{\sim}{n} \\
\& \underset{\sim}{n} \\
\& \underset{\sim}{n} \\
\& \underset{\sim}{n}
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& \hline 8 \\
\& 0 \\
\& 0 \\
\& -1 \\
\& \vdots \\
\& 0 \\
\& \text { N }
\end{aligned}
\] \& N
\(\stackrel{1}{n}\)
\(\underset{\sim}{i}\) \&  \& \[
\begin{aligned}
\& \hline \stackrel{ }{\circ} \\
\& 0 \\
\& \underset{n}{n} \\
\& \infty \\
\& \infty
\end{aligned}
\] \&  \&  \& \[
\begin{aligned}
\& \mathrm{O} \\
\& \hat{N} \\
\& o^{2} \\
\& \underset{\sim}{n}
\end{aligned}
\] \&  \& \[
\] \&  \& \[
\begin{aligned}
\& \hline \\
\& \infty \\
\& \sim \\
\& 6 \\
\& 6 \\
\& \Gamma
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& \hline \hat{N} \\
\& \stackrel{y}{2} \\
\& \dot{N} \\
\& \stackrel{y}{n}
\end{aligned}
\] \& \begin{tabular}{c}
\(n\) \\
\multirow{1}{*}{} \\
\(6^{2}\) \\
\(n\) \\
\(n\)
\end{tabular} \&  \&  \& \[
\] \& 6
-
\(\infty\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
-
- \& \[
\begin{aligned}
\& \stackrel{O}{H} \\
\& \underset{\sim}{r} \\
\& \underset{\sim}{\infty} \\
\& \underset{\sim}{n}
\end{aligned}
\] \& \[
\] \& \[
\begin{aligned}
\& \stackrel{\rightharpoonup}{N} \\
\& \underset{\sim}{n} \\
\& \underset{\sim}{1}
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \stackrel{N}{\mathrm{~N}} \\
\& \underset{i}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \stackrel{N}{\dot{*}} \\
\& \underset{\sim}{n} \\
\& \underset{\sim}{\sim}
\end{aligned}
\] \& \(n\)
\(\sim\)
\(N\)
\(n\)
\(\infty\)
\(\infty\)
\(\infty\)
\(\cdots\)
\(\cdots\) \&  \&  \& \[
\begin{aligned}
\& \stackrel{\omega}{n} \\
\& \underset{\sim}{N} \\
\& \underset{\sim}{n}
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline 1 \\
6 \\
0 \\
\infty
\end{array}
\] \& \[
\begin{aligned}
\& 9 \\
\& \hline-1 \\
\& \infty \\
\& 6 \\
\& m
\end{aligned}
\] \& \[
\begin{array}{|c|}
\hline \stackrel{\rightharpoonup}{n} \\
n \\
\infty^{-} \\
n \\
N \\
\underbrace{2}
\end{array}
\] \& \[
\begin{aligned}
\& \overrightarrow{-} \\
\& \underset{\sim}{6} \\
\& 0 \\
\& 0 \\
\& \underset{-1}{ }
\end{aligned}
\] \& \[
\begin{aligned}
\& m \\
\& \vec{j} \\
\& \dot{j} \\
\& 0 \\
\& m \\
\& \cdots
\end{aligned}
\] \& +
\(N\)
\(N\)
\(i\)
\(i\)
\(\vdots\)
\(N\) \&  \& \[
\begin{aligned}
\& \hline \stackrel{O}{N} \\
\& \hat{N} \\
\& 6 \\
\& \underset{1}{2}
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline N \\
n \\
N \\
\underset{\sim}{\lambda} \\
\hline
\end{array}
\] \& ¢

$\sim$
$\sim$ <br>
\hline
\end{tabular}


Energy Consumption - Electricity \& Natural Gas

Energy Consumption - Electricity \& Natural Gas

World Logistic Center
Cumulative Energy - Electricity Natural Gas

World Logistic Center
Water Usage (gal/ unit) Electricity Intensity Rates (kWhr/Million Gallons)




| Electricity from Water (kWh) |  |  |  |
| :---: | :---: | :---: | :---: |
| Water Supply | Water Treatment | Water Distribution | Wastewater Treatment |
| 24,298 | 277 | 3,177 | 2,960 |
| 791,147 | 9,028 | 103,458 | 96,368 |
| 369,918 | 4,221 | 48,374 | 44,574 |
| 454,647 | 5,188 | 59,454 | 54,784 |
| 149,827 | 1,710 | 19,593 | 18,054 |
| 618,940 | 7,063 | 80,939 | 74,581 |
| 11,621 | 133 | 1,520 | 1,416 |
| 719,697 | 8,213 | 94,115 | 87,664 |
| 94,973 | 1,084 | 12,420 | 18,659 |
| 920,694 | 10,507 | 120,399 | 180,883 |
| 10,178,394 | 116,151 | 1,331,029 | 1,999,682 |
| 1,307,769 | 14,924 | 171,017 | 159,296 |
| 1,097,242 | 12,521 | 143,486 | 215,568 |
| 6,523,169 | 74,439 | 853,035 | 1,281,564 |
| 126,553 | 1,444 | 16,549 | 15,415 |
| 6,887,151 | 78,593 | 900,633 | 1,353,073 |
| 649,019 | 7,406 | 84,872 | 79,055 |
| 2,387,545 | 27,246 | 312,219 | 469,065 |
| 611,640 | 6,980 | 79,984 | 74,501 |
| 1,519,449 | 17,339 | 198,698 | 298,516 |
| 726,315 | 8,288 | 94,980 | 88,471 |
| 4,257,403 | 48,584 | 556,741 | 702,597 |
| 139,494 | 1,592 | 18,242 | 16,809 |
| 1,257,397 | 14,349 | 164,430 | 247,033 |
| 77,861 | 889 | 10,182 | 9,484 |
| 353,861 | 4,038 | 46,274 | 43,103 |
| 270,722 | 3,089 | 35,402 | 32,621 |
| 223,191 | 2,547 | 29,187 | 26,894 |
| 4,276,050 | 48,796 | 559,179 | 840,088 |
| 825,518 | 9,420 | 107,953 | 162,184 |
| 2,108,243 | 24,058 | 275,695 | 414,193 |
| 135,222 | 1,543 | 17,683 | 16,471 |
| 1,687,027 | 19,252 | 220,613 | 331,439 |
| 32,032 | 366 | 4,189 | 3,860 |
| 59,931 | 684 | 7,837 | 7,222 |
| 11,366 | 130 | 1,486 | 1,370 |
| 48,565 | 554 | 6,351 | 5,852 |
| 24,799 | 283 | 3,243 | 2,988 |
| 116,243 | 1,327 | 15,201 | 19,184 |
| 83,653 | 955 | 10,939 | 10,189 |
| 110,562 | 1,262 | 14,458 | 13,322 |




| 266＇I | て91゙て | 68T | ع\＆S＇9I |
| :---: | :---: | :---: | :---: |
| Sカ9「9て | 916＇8て | \＆ZS＇乙 | ヤてI＇してて |
| てTL＇6 | OヤS＇0T | 0 O6 | L6S＇08 |
| てLL＇ヤて | カ6S＇9て | してع＇乙 | 89ع＇と0て |
| 6IT＇をย | とヤ6＇sย | LEI＇\＆ | SS8＇カLて |
| Sヤ6＇とI | 七\＆I＇SI | してع＇ป | 8てL＇SIT |
| てع8＇0I | 9SL＇II | 970＇L | 968＇68 |
| SE0＇โ | ITI＇L | L6 | S6t＇8 |
| カ6カ＇I | して9＇โ | てヤT | $66 \varepsilon^{\prime}$ てI |
| カ6ャ＇โ | Lて9＇โ | てもT | $66 \varepsilon^{\prime}$ てI |
| ILt＇$\angle$ | LOT＇8 | LOL | L66＇โ9 |
| 0ヤ8＇8 | カ6S＇6 | Lع8 | ャ9を＇عL |
| LI8＇6I | 9 て＇して $^{\text {a }}$ | LS8＇L | S69＇て91 |
| て8I＇カt | 60カ＇6て | 999＇乙 | L88＇力てて |
| とてE＇LSI | LTL＇tOL | 8EI＇6 | SLL＇008 |
| 6S6「0てZ | S $\angle 0{ }^{\prime} \angle \triangleright \tau$ | ャع8＇てT | ヤ89＇ヤてて＇โ |
| とャع＇60¢ | S06＇SOZ | 896＇ 1 T | 8SS＇カLS＇L |
| TLて＇9 | てعL＇9 | L8S | I8t＇IS |
| カ8し「て9て | \＆ร6＇LOT | 0てヤ＇6 | 8TS＇Sて8 |
| 86L＇6てて | 8S6＇2SI | 8ヵ¢＇とI | てL9＇69I＇โ |
| とャS＇S¢て | て8L＇9SI | โ89＇عI | カT6＇86I＇โ |
| とII＇カt | 8SE＇Lt | ととI＇t | OSI＇29E |
| 806＇โ8โ | SIt＇L6I | Lてて＇しT | 989＇60S＇โ |
| て\＆S＇દて | 8\＆S＇ऽて | $6 て て ゙ て$ | て6て＇S6I |
| \＆S6＇โI | てL6＇てI | て¢I＇L | 96I＇66 |
| 886＇乙 | とヤて＇と | と8て | 66L＇力て |
| TOT＇9 | Lて9＇9 | 8LS | Tع9＇0S |
| LOO＇08 | S9S＇乙を | てヤ8＇て | とて0＇6ヵて |
| 600＇โ8I | と8カ＇0てT | カTS＇0T | L\＆と＇Lて6 |
| SIS＇L6 | ャT6＇09 | 9TE＇S | عโ8＇s9ヵ |
| 9ャO＇0て | SSL＇Iて | 868＇L | 09ع＇99】 |
| てSて＇โを | 9I6＇とを | 096＇乙 | 9SE＇6SZ |
| ヤくカ＇9 | 9て0＇L | عโ9 | IعL＇ยS |
| てع8＇0I | 9SL＇II | 920＇โ | 968＇68 |
| $\angle T S^{\prime} \angle Z$ | て98＇6て | 909＇て | LSE＇8てZ |
| 609＇く9 | てLE＇EL | ع0t＇9 | 9L0＇T9S |
| 08t＇ऽて | 七SE＇Lて | L8E＇乙 | 6LI＇60Z |
| SSt＇LI | โとヤ＇てI | S80＇โ | ع90＇s6 |
| カヤ8＇L | عTS＇8 | とャL | L60＇s9 |
| 966 | โ80＇โ | 七6 | 99て＇8 |
| L09＇ャ | 000＇ऽ | 9とち | てعて＇8\＆ |
| ұиәщұеә」 ләұемәұsем | uo！ınq！ıłs！ 1 ләұеM | ұиәщұеә」1 ләдем | KıddnS ләұеМ |
|  |  |  |  |


| Electricity from Water (kWh) |  |  |  |
| :---: | :---: | :---: | :---: |
| Water Supply | Water Treatment | Water Distribution | Wastewater Treatment |
| 99,196 | 1,132 | 12,972 | 11,953 |
| 200,458 | 2,288 | 26,214 | 24,155 |
| 10,459 | 119 | 1,368 | 1,274 |
| 234,227 | 2,673 | 30,630 | 28,531 |
| 413,884 | 4,723 | 54,124 | 81,313 |
| 839,082 | 9,575 | 109,727 | 164,849 |
| 12,399 | 141 | 1,621 | 1,494 |
| 12,399 | 141 | 1,621 | 1,494 |
| 9,300 | 106 | 1,216 | 1,121 |
| 3,455 | 39 | 452 | 421 |
| 1,141,785 | 13,030 | 149,311 | 137,583 |
| 61,997 | 707 | 8,107 | 7,471 |
| 16,533 | 189 | 2,162 | 1,992 |
| 15,499 | 177 | 2,027 | 1,868 |
| 148,794 | 1,698 | 19,458 | 17,929 |
| 6,624 | 76 | 866 | 807 |
| 64 | 1 | 8 | 8 |
| 25,832 | 295 | 3,378 | 3,113 |
| 144,998 | 1,655 | 18,961 | 17,662 |
| 9,300 | 106 | 1,216 | 1,121 |
| 36,165 | 413 | 4,729 | 4,358 |
| 220,242 | 2,513 | 28,801 | 26,827 |
| 5,056 | 58 | 661 | 616 |
| 16,269 | 186 | 2,128 | 1,982 |
| 162,695 | 1,857 | 21,276 | 19,817 |
| 24,799 | 283 | 3,243 | 2,988 |
| 242,823 | 2,771 | 31,754 | 29,260 |
| 764,808 | 8,728 | 100,014 | 150,257 |
| 3,554,003 | 40,557 | 464,757 | 698,232 |
| 499,043 | 5,695 | 65,260 | 98,044 |
| 3,374,053 | 38,503 | 441,225 | 662,878 |
| 2,474,306 | 28,236 | 323,565 | 486,111 |
| 141,561 | 1,615 | 18,512 | 17,058 |
| 1,349,621 | 15,401 | 176,490 | 265,151 |
| 1,039,883 | 11,867 | 135,986 | 204,299 |
| 386,891 | 4,415 | 50,594 | 76,010 |
| 1,034,710 | 11,808 | 135,309 | 203,283 |
| 1,349,621 | 15,401 | 176,490 | 265,151 |
| 2,676,434 | 30,542 | 349,997 | 525,821 |
| 542,098 | 6,186 | 70,890 | 106,502 |
| 1,444,095 | 16,479 | 188,844 | 283,712 |




| Electricity from Water (kWh) |  |  |  |
| :---: | :---: | :---: | :---: |
| Water Supply | Water Treatment | Water Distribution | Wastewater Treatment |
| 242,375 | 2,766 | 31,695 | 29,523 |
| 37,198 | 424 | 4,864 | 4,482 |
| 25,882 | 295 | 3,385 | 3,153 |
| 30,999 | 354 | 4,054 | 3,735 |
| 33,924 | 387 | 4,436 | 4,132 |
| 105,396 | 1,203 | 13,783 | 12,700 |
| 64,064 | 731 | 8,378 | 7,720 |
| 6,973 | 80 | 912 | 849 |
| 4,067 | 46 | 532 | 495 |
| 415,382 | 4,740 | 54,320 | 50,053 |
| 2,789 | 32 | 365 | 340 |
| 64,479 | 736 | 8,432 | 7,854 |
| 617,907 | 7,051 | 80,804 | 74,457 |
| 51,664 | 590 | 6,756 | 6,225 |
| 4,648 | 53 | 608 | 566 |
| 105,790 | 1,207 | 13,834 | 12,886 |
| 37,036 | 423 | 4,843 | 4,463 |
| 242,329 | 2,765 | 31,689 | 47,609 |
| 87,506 | 999 | 11,443 | 10,659 |
| 320,320 | 3,655 | 41,888 | 38,598 |
| 3,960 | 45 | 518 | 477 |
| 2,744 | 31 | 359 | 334 |
| 33,065 | 377 | 4,324 | 3,984 |
| 29,965 | 342 | 3,919 | 3,611 |
| 25,832 | 295 | 3,378 | 3,113 |
| 20,666 | 236 | 2,702 | 2,490 |
| 365,283 | 4,168 | 47,768 | 44,494 |
| 386,028 | 4,405 | 50,481 | 75,840 |
| 3,191 | 36 | 417 | 389 |
| 4,707 | 54 | 615 | 573 |
| 283,251 | 3,232 | 37,041 | 34,502 |
| 494,414 | 5,642 | 64,654 | 60,224 |
| 2,128 | 24 | 278 | 259 |
| 21,699 | 248 | 2,838 | 2,615 |
| 5,166 | 59 | 676 | 623 |
| 64,064 | 731 | 8,378 | 7,720 |
| 7,147 | 82 | 935 | 871 |
| 1,292,645 | 14,751 | 169,039 | 155,761 |
| 2,066,579 | 23,583 | 270,247 | 249,019 |
| 3,525,584 | 40,232 | 461,041 | 424,826 |
| 774,967 | 8,844 | 101,342 | 93,382 |


| 9て8＇9 | 6てع＇L | 0ヤ9 | ItO＇9S |
| :---: | :---: | :---: | :---: |
| Sてて＇Lてて | てSでくカレ | 0S8＇てI | 8ع0＇9てI＇โ |
| てもど8 | ESO＇6 | 06L | 0عて＇69 |
| ャて8＇てI | 8I6＇عI | SIて＇L | 6てヤ＇90T |
| 8ヤ8＇9 | てとヤ＇L | 6ヤ9 | Tع8＇9S |
| OLて＇0I | 080＇しI | $\angle 96$ | $0 \varepsilon L^{\prime}$ ¢8 |
| 958＇t | 0Lて＇S | 09巾 | 86て＇0ヵ |
| 七S6＇S08 | 6Sカ＇9をS | ャI8＇9ヵ | 60と＇Z0I＇t |
| ヤL6＇69 | 6ع6＇SL | Lて9＇9 | 60L＇08S |
| 0Lて＇8S | 8عて＇£9 | 8TS＇S | 6LS＇E8t |
| 00L＇てT | と8L＇とT | عOZ＇工 | 96と＇S0T |
| てLI＇LZ | TんI＇6て | 9ャS＇て | ヤく0＇とてて |
| \＆โS＇SカE | L96＇tLE | してL＇ても | 8Lと＇L98＇て |
| 88L＇とG | عLE＇8S | カ60＇s | I8と＇9カち |
| てI8＇しも | L88＇LS | 8てS＇t | ع8L＇96を |
| ャ6と＇06 | 00I＇86 | T9S＇8 | 89I＇0GL |
| IT8＇6L | とてI＇とS | 9と9＇t | 9とて＇90t |
| 86ع＇9¢S | OSE＇0LE | 8Iと＇乙を | 890＇てと8＇て |
| ESI＇L | Lとて＇し | 80T | て97＇6 |
| ع6L | IS8 | 七L | 80¢＇9 |
| T6¢＇ع8 | LOS＇SS | カヤ8＇t | 09ガャても |
| 6ヵて | 0Lて | 七て | L90＇て |
| E9S＇LE | E00＇sて | て8I＇て | 96I＇T6T |
| 6Iと＇七8 | 七てT＇9s | 868＇t | カ8I＇6で |
| 6LI＇とて | 8てヤ＇SI | $9 \triangleright \varepsilon^{\prime}$ L | 6L6＇LIT |
| ITE＇9 | TOL＇LT | StS＇L | โ9ع＇งをโ |
| S\＆S＇\＆ | ESE＇乙 | SOZ | S66＇LI |
| 968 | 9で | LE | ヤऽて＇ع |
| ヤくカ＇ | 七て0＇8 | 00L | LSE＇โ9 |
| 898＇L | LてO＇て | LLI | 66t＇sI |
| †TE＇โ | OTカ＇โ | とてI | ヤ8L＇0T |
| 089＇ 1 T | 88で6T | カ $\angle 9$ ¢ | LてL＇9ヵT |
| とヤ8＇6を | 6とて＇とカ | عLL＇ع | ES9＇0とを |
| 188＇โ9 | 9SI＇く9 | 098＇s | SカS＇\＆IS |
| 9てでし8I | して9＇ャてT | S $28^{\prime} 01$ | 6L6＇てS6 |
| てZL＇6SE | 8\＆ャ＇6をて | カ68＇0て | 986＇0ع8＇โ |
| 968＇6をL＇乙 | 0عL＇とて8＇โ | 9ヤT「6ST | 980‘9ャ6＇とT |
| とカで8IS | \＆S6＇tワ¢ | てOT＇0¢ | LS8＇LE9＇乙 |
| 8ヤS＇LI | 86と＇てI | 280＇โ | 908＇ャ6 |
| 89I＇T0L | てTL＇99ヵ | LてL＇0t | 0S6＇895＇ع |
| 06L＇\＆0Z | L8L＇8Iて | 260＇6I | 690＇عL9＇โ |
|  |  | ұиәщұеә」1 ләдем | KıddnS ләұем |
|  |  |  |  |

World Logistic Center
Cumulative Energy－Electricity Natural Gas

|  |  | $\left\|\begin{array}{l} m \\ 0 \\ 0 \\ 0 \\ -1 \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \overrightarrow{-} \\ & \sigma_{2} \\ & \sigma \end{aligned}\right.$ | $\left\|\begin{array}{l} \mathrm{O} \\ \underset{N}{2} \\ 6 \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \underset{\sim}{-1} \\ & \underset{寸}{-} \\ & \underset{-}{2} \end{aligned}\right.$ | $\begin{aligned} & -1 \\ & \infty \\ & \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ \underset{N}{n} \\ \hat{0} \\ 0 \\ N \end{array}\right\|$ |  | $\left\|\begin{array}{l} \overrightarrow{-} \\ 6 \\ -1 \\ -1 \\ \underset{m}{1} \end{array}\right\|$ | $\left\|\begin{array}{l} N \\ \underset{N}{n} \\ \hat{0} \\ \underset{\sim}{2} \end{array}\right\|$ | $\left\|\begin{array}{c} \underset{\sim}{n} \\ \infty \\ \hat{N} \\ \underset{m}{2} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & m \\ & \infty \\ & - \\ & \underset{N}{\lambda} \\ & N \end{aligned}\right.$ | $\left\|\begin{array}{c} \infty \\ \underset{N}{n} \\ \infty \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \hat{O} \\ & \underset{\sim}{n} \\ & \underset{N}{\hat{N}} \end{aligned}\right.$ |  | $\left\|\begin{array}{l} \underset{\sim}{\underset{N}{2}} \\ \underset{\sim}{\underset{N}{2}} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & N \\ & N \\ & \\ & \underset{\sim}{2} \\ & \underset{N}{2} \end{aligned}\right.$ | $\underset{\underset{\sim}{\sim}}{\underset{\sim}{n}}$ | $\left\|\begin{array}{l} 0 \\ \infty \\ \underset{\sim}{8} \end{array}\right\|$ | $\left\|\begin{array}{l} \underset{0}{n} \\ \stackrel{n}{n} \\ \underset{N}{n} \end{array}\right\|$ | $\left\|\begin{array}{l} \hat{0} \\ \hat{2} \\ \mathbf{n} \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ N \\ N \end{array}\right\|$ | $\left\|\begin{array}{l} \underset{\sim}{N} \\ n \\ e_{0} \end{array}\right\|$ | $\stackrel{\text { N }}{\text { N }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & 0 \\ & -7 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$ | $\left\|\begin{array}{l} \hat{N} \\ 0 \\ 0 \\ 0 \end{array}\right\|$ | $\left\|\begin{array}{l} \underset{N}{N} \\ \underset{\sim}{\mathcal{T}} \end{array}\right\|$ | $\left\|\begin{array}{c} \underset{\sim}{\underset{~}{2}} \\ \underset{\infty}{2} \end{array}\right\|$ | $\left\|\begin{array}{l} 9 \\ 0 \\ 0 \\ 0 \\ \stackrel{1}{1} \\ -1 \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \text { ন } \\ \text { N} \\ \underset{N}{N} \\ \text { N } \end{gathered}\right.$ | $\left\|\begin{array}{l} - \\ 0 \\ 0 \\ \underset{N}{N} \\ \underset{N}{2} \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \underset{\sim}{\underset{\sim}{*}} \\ \underset{\sim}{\underset{\sim}{2}} \end{gathered}\right.$ | $\left\|\begin{array}{l} \underset{N}{N} \\ \underset{\sim}{N} \\ \underset{N}{2} \end{array}\right\|$ | $\left\|\begin{array}{l} \text { n } \\ \\ 0 \\ 0 \\ \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \hat{o} \\ & \underset{N}{2} \\ & \underset{N}{\prime} \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & \hat{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}\right.$ | $\left\|\begin{array}{l} \underset{n}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \underset{\sim}{\alpha} \\ \underset{\sim}{n} \end{array}\right\|$ | $\left\|\begin{array}{l} \hat{-} \\ \underset{N}{n} \\ { }_{n} \\ \underset{\sim}{n} \end{array}\right\|$ |  | $\left\|\begin{array}{c} 0 \\ O \\ \vdots \\ \vdots \end{array}\right\|$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \hat{N} \\ \mathrm{~N} \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ \underset{n}{n} \\ \underset{\sim}{2} \end{array}\right\|$ | $\left\|\begin{array}{l} N \\ N \\ \infty \\ \infty \end{array}\right\|$ | $\left\|\begin{array}{l} \underset{\sim}{n} \\ \infty \\ \underset{\sim}{n} \end{array}\right\|$ | － |
| 은 는 ㄴ |  | $\begin{aligned} & \mathbf{~} \\ & \mathbf{~} \\ & -1 \end{aligned}$ | $\underset{\sigma}{\prime}$ | $\left\|\begin{array}{l} -1 \\ \infty \\ n \end{array}\right\|$ | $\left\|\begin{array}{l} \underset{N}{N} \\ n \\ n \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & 0 \\ & N \\ & N \end{aligned}\right.$ | $\left\|\begin{array}{c} \underset{\sim}{m} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{array}\right\|$ | $\begin{aligned} & \underset{\sim}{\mathrm{O}} \\ & \underset{\sim}{0} \\ & \underset{\sim}{2} \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ -1 \\ \infty \\ \sigma_{1} \end{array}\right\|$ | $\left(\left.\begin{array}{l} \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{array} \right\rvert\,\right.$ | $\left\|\begin{array}{l} 0 \\ \mathbf{y} \\ \infty \\ \infty \\ -1 \end{array}\right\|$ | $\begin{aligned} & 9 \\ & \stackrel{0}{7} \\ & \stackrel{n}{7} \end{aligned}$ | $\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \infty \end{array}\right\|$ | $\left\|\begin{array}{l} 0 \\ \underset{\sim}{N} \\ \underset{\sim}{n} \end{array}\right\|$ | $\left\|\begin{array}{l} \overrightarrow{-} \\ 0 \\ 0 \\ \underset{\sim}{7} \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \underset{\sim}{n} \\ & \underset{N}{n} \end{aligned}\right.$ | $\left\|\begin{array}{l} \infty \\ n \\ \underset{n}{n} \\ \underset{1}{2} \end{array}\right\|$ | $\mid \vec{\gamma}$ | $\underset{\sim}{N}$ | $\left\|\begin{array}{l} 0 \\ \underset{N}{N} \\ \underset{N}{N} \end{array}\right\|$ | $\left\|\begin{array}{l} n \\ \infty \\ n \\ m \end{array}\right\|$ | $\begin{aligned} & 9 \\ & \infty \\ & \infty \\ & 0 \end{aligned}$ | $\begin{aligned} & \infty \\ & \underset{N}{N} \\ & \underset{N}{2} \end{aligned}$ | 人 |
|  | $\begin{aligned} & \frac{7}{2} \\ & \frac{0}{3} \\ & n \\ & \frac{1}{む} \\ & \frac{\pi}{3} \\ & 3 \end{aligned}$ |  | $\begin{aligned} & n \\ & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$ | $\left\lvert\, \begin{aligned} & \text { N} \\ & \text { on } \\ & \text { in } \end{aligned}\right.$ | $\left\|\begin{array}{l} \underset{N}{N} \\ \underset{N}{x} \\ \underset{\sim}{N} \end{array}\right\|$ | $\left\|\right\|$ | $\left\|\begin{array}{c} 0 \\ n \\ n \\ N \\ N \\ n \\ \underset{i}{2} \end{array}\right\|$ | $\begin{aligned} & \underset{\sim}{\underset{N}{n}} \\ & \infty \\ & \underset{N}{N} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & n \\ & n \\ & n \\ & n_{1} \\ & n \\ & n \\ & r- \end{aligned}$ | $\begin{aligned} & n \\ & \infty \\ & \underset{-}{\infty} \\ & \underset{\sim}{n} \end{aligned}$ | $\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ \hat{i} \\ 0 \\ 0 \\ -i \end{array}\right\|$ | $\left(\begin{array}{c} 0 \\ 0 \\ \infty \\ - \\ \infty \\ n \\ -1 \end{array}\right.$ | $\begin{aligned} & 0 \\ & \underset{\sim}{7} \\ & \underset{n}{n} \\ & \underset{r}{2} \end{aligned}$ | $\begin{gathered} \underset{\sim}{\sim} \\ \underset{1}{n} \\ \underset{N}{n} \\ \underset{\sim}{n} \end{gathered}$ |  | $\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$ | $\left\|\begin{array}{c} \sim \\ \sim \\ n \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{array}\right\|$ | $\left\|\begin{array}{c} N \\ \underset{n}{n} \\ m \end{array}\right\|$ | $\left\lvert\, \begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{7} \\ \underset{子}{2} \end{gathered}\right.$ |  | $\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ i \\ n \\ m \end{array}\right\|$ | $\begin{aligned} & \infty \\ & \text { o } \\ & \text { n } \\ & \text { g} \\ & \text { j} \end{aligned}$ | $\left\|\begin{array}{l} 0 \\ 0 \\ \underset{+}{n} \\ \tilde{N} \\ 0 \end{array}\right\|$ | $\begin{aligned} & \hat{N} \\ & \underset{\sim}{2} \\ & \underset{\sigma}{2} \end{aligned}$ |

3

## Transportation Fuels

World Logistic Center
Cumulative Energy - Transportation Fuel
Cumulative Transportation Fuel Consumption (Annual Average) - Summary

| Project ID | Construction |  | Operational |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diesel Gallons | Gasoline Gallons | Diesel Gallons | Gasoline Gallons | Natural Gas (MMBTU) |
| B-001 | 811,945 | 886,209 | 1,993,672 | 17,519,159 | 1,625 |
| B-002 |  |  | 267,495 | 2,350,577 | 218 |
| B-003 | 136,884 | 83,203 | 557,020 | 4,894,747 | 454 |
| B-004 | 120,158 | 90,274 | 711,650 | 6,253,541 | 580 |
| B-005 |  |  | 834,317 | 7,331,468 | 680 |
| B-006 | 134,044 | 96,431 | 1,458,987 | 12,820,679 | 1,189 |
| B-007 | 54,788 | 18,615 | 243,470 | 2,139,461 | 198 |
| B-008 | 121,463 | 58,888 | 391,485 | 3,440,126 | 319 |
| B-009 | 1,343,552 | 1,592,304 | 2,688,436 | 23,624,320 | 2,192 |
| B-010 | 50,691 | 4,861 | 57,394 | 504,339 | 47 |
| B-011 | 45,372 | 9,446 | 305,089 | 2,680,936 | 249 |
| B-012 |  |  | 130,702 | 1,148,531 | 107 |
| B-013 | 382,424 | 339,379 | 1,141,830 | 10,033,700 | 931 |
| B-014 | 124,123 | 63,361 | 422,900 | 3,716,185 | 345 |
| C-001 | 43,602 | 8,938 | 271,190 | 2,383,054 | 221 |
| C-002 | 163,552 | 123,557 | 2,599,032 | 22,838,694 | 2,119 |
| C-003 | 33,981 | 3,590 | 98,578 | 866,240 | 80 |
| H-001 | 59,841 | 26,798 | 355,236 | 3,121,596 | 290 |
| H-002 | 55,851 | 20,221 | 265,823 | 2,335,888 | 217 |
| H-003 | 137,416 | 84,199 | 562,457 | 4,942,526 | 459 |
| H-004 | 129,039 | 90,032 | 1,085,086 | 9,535,072 | 885 |
| H-005 | 15,668 | 1,173 | 28,351 | 249,134 | 23 |
| H-006 | 83,134 | 27,853 | 923,116 | 8,111,773 | 753 |
| H-007 | 55,570 | 32,744 | 84,772 | 744,924 | 69 |
| H-008 | 60,183 | 46,385 | 191,790 | 1,685,330 | 156 |
| H-009 |  |  | 141,839 | 1,246,395 | 116 |
| M-001 | 101,761 | 38,543 | 315,755 | 2,774,658 | 257 |
| M-002 |  |  | 2,647,578 | 23,265,282 | 2,158 |
| M-003 | 172,547 | 152,814 | 1,391,747 | 12,229,816 | 1,135 |
| M-004 | 35,832 | 5,164 | 147,663 | 1,297,573 | 120 |
| M-005 | 232,896 | 227,504 | 2,041,886 | 17,942,835 | 1,665 |
| M-006 | 45,116 | 12,072 | 172,683 | 1,517,435 | 141 |
| M-007 | 78,878 | 36,132 | 324,181 | 2,848,704 | 264 |
| M-008 | 205,511 | 178,369 | 5,816,670 | 51,113,311 | 4,742 |
| M-009 | 46,928 | 6,545 | 81,559 | 716,693 | 66 |
| M-010 | 70,532 | 29,978 | 268,271 | 2,357,402 | 219 |
| M-011 | 32,882 | 3,305 | 90,849 | 798,323 | 74 |
| MV-001 | 51,273 | 12,703 | 412,887 | 3,628,200 | 337 |
| MV-002 | 61,451 | 31,634 | 259,474 | 2,280,100 | 212 |
| MV-003 | 143,133 | 119,796 | 1,062,934 | 9,340,413 | 867 |
| MV-004 |  |  | 384,660 | 3,380,158 | 314 |
| MV-005 | 36,448 | 5,596 | 157,779 | 1,386,461 | 129 |

World Logistic Center Cumulative Energy - Transportation Fuel

Cumulative Transportation Fuel Consumption (Annual Average) - Summary

| Project ID | Construction |  | Operational |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diesel Gallons | Gasoline Gallons | Diesel Gallons | Gasoline Gallons | Natural Gas (MMBTU) |
| MV-006 | 82,104 | 40,030 | 359,935 | 3,162,883 | 293 |
| MV-007 | 36,444 | 1,929 | 18,728 | 164,574 | 15 |
| MV-008 | 47,680 | 3,129 | 35,040 | 307,912 | 29 |
| MV-009 | 32,920 | 868 | 6,646 | 58,397 | 5 |
| MV-010 | 47,410 | 2,625 | 28,395 | 249,515 | 23 |
| MV-011 | 36,176 | 1,549 | 14,499 | 127,412 | 12 |
| MV-012 |  |  | 135,678 | 1,192,253 | 111 |
| MV-013 | 15,979 | 2,032 | 17,640 | 155,011 | 14 |
| MV-014 | 51,404 | 5,319 | 64,643 | 568,045 | 53 |
| MV-015 | 50,266 | 3,424 | 38,061 | 334,457 | 31 |
| MV-016 | 46,873 | 1,998 | 19,333 | 169,883 | 16 |
| MV-017 | 50,691 | 4,861 | 57,998 | 509,648 | 47 |
| MV-018 |  |  | 7,458 | 65,534 | 6 |
| MV-019 |  |  | 32,914 | 289,230 | 27 |
| MV-020 |  |  | 127,172 | 1,117,509 | 104 |
| MV-021 | 34,602 | 5,021 | 135,678 | 1,192,253 | 111 |
| MV-022 |  |  | 24,166 | 212,353 | 20 |
| MV-023 | 60,143 | 37,050 | 195,351 | 1,716,621 | 159 |
| MV-024 | 47,781 | 7,746 | 96,059 | 844,105 | 78 |
| MV-025 | 50,727 | 4,177 | 48,936 | 430,016 | 40 |
| MV-026 | 50,691 | 4,994 | 60,414 | 530,884 | 49 |
| MV-027 | 34,085 | 5,571 | 25,297 | 222,296 | 21 |
| MV-028 | 38,070 | 8,557 | 42,162 | 370,494 | 34 |
| MV-029 | 51,067 | 12,781 | 166,139 | 1,459,930 | 135 |
| MV-030 | 50,727 | 4,177 | 50,144 | 440,633 | 41 |
| MV-031 | 47,412 | 2,996 | 32,020 | 281,368 | 26 |
| MV-032 | 51,667 | 5,692 | 69,476 | 610,516 | 57 |
| MV-033 | 47,412 | 2,996 | 32,624 | 286,677 | 27 |
| MV-034 | 47,411 | 2,872 | 31,415 | 276,059 | 26 |
| MV-035 | 36,176 | 1,549 | 15,104 | 132,721 | 12 |
| MV-036 |  |  | 26,234 | 230,529 | 21 |
| MV-037 |  |  | 525,539 | 4,618,116 | 428 |
| MV-038 |  |  | 178,118 | 1,565,188 | 145 |
| MV-039 |  |  | 656,655 | 5,770,280 | 535 |
| MV-040 | 34,737 | 6,168 | 47,221 | 414,949 | 38 |
| MV-041 | 108,981 | 76,567 | 695,873 | 6,114,908 | 567 |
| MV-042 | 65,692 | 24,084 | 214,209 | 1,882,337 | 175 |
| MV-043 |  |  | 180,695 | 1,587,833 | 147 |
| MV-044 | 98,367 | 57,085 | 532,405 | 4,678,444 | 434 |
| MV-045 | 34,906 | 4,164 | 118,131 | 1,038,058 | 96 |
| MV-046 |  |  | 183,461 | 1,612,143 | 150 |
| MV-047 | 35,907 | 1,179 | 9,666 | 84,941 | 8 |

World Logistic Center Cumulative Energy - Transportation Fuel

Cumulative Transportation Fuel Consumption (Annual Average) - Summary

| Project ID | Construction |  | Operational |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diesel Gallons | Gasoline Gallons | Diesel Gallons | Gasoline Gallons | Natural Gas (MMBTU) |
| MV-048 |  |  | 1,168,682 | 10,269,659 | 953 |
| MV-049 |  |  | 1,228,159 | 10,792,302 | 1,001 |
| MV-050 |  |  | 145,617 | 1,279,596 | 119 |
| MV-051 |  |  | 315,736 | 2,774,495 | 257 |
| MV-052 |  |  | 360,733 | 3,169,903 | 294 |
| MV-053 |  |  | 599,891 | 5,271,472 | 489 |
| MV-054 | 120,158 | 90,395 | 834,088 | 7,329,455 | 680 |
| MV-056 | 35,907 | 1,179 | 9,666 | 84,941 | 8 |
| MV-057 | 46,874 | 2,245 | 22,353 | 196,427 | 18 |
| MV-058 |  |  | 4,833 | 42,471 | 4 |
| MV-059 | 50,266 | 3,424 | 38,061 | 334,457 | 31 |
| MV-060 | 50,987 | 4,665 | 55,581 | 488,413 | 45 |
| MV-061 | 42,739 | 8,133 | 244,071 | 2,144,749 | 199 |
| MV-062 | 58,776 | 24,816 | 328,050 | 2,882,698 | 267 |
| MV-063 | 49,658 | 10,493 | 133,516 | 1,173,253 | 109 |
| MV-064 | 50,986 | 4,427 | 52,560 | 461,869 | 43 |
| MV-065 | 34,085 | 5,439 | 24,360 | 214,063 | 20 |
| MV-066 | 53,112 | 23,199 | 117,585 | 1,033,266 | 96 |
| MV-067 | 48,047 | 7,746 | 97,267 | 854,723 | 79 |
| MV-068 | 43,801 | 12,032 | 67,341 | 591,750 | 55 |
| MV-069 |  |  | 133,194 | 1,170,430 | 109 |
| MV-070 | 52,840 | 22,315 | 112,900 | 992,100 | 92 |
| MV-071 | 34,084 | 5,174 | 22,955 | 201,713 | 19 |
| MV-072 | 30,418 | 2,729 | 11,243 | 98,798 | 9 |
| MV-073 | 38,339 | 9,183 | 44,973 | 395,193 | 37 |
| MV-074 | 48,543 | 17,378 | 44,754 | 393,270 | 36 |
| MV-075 | 168,241 | 261,706 | 345,955 | 3,040,040 | 282 |
| MV-076 | 51,807 | 12,950 | 422,559 | 3,713,191 | 345 |
| MV-077 | 72,693 | 28,602 | 218,748 | 1,922,224 | 178 |
| MV-078 |  |  | 213,413 | 1,875,341 | 174 |
| MV-079 | 51,814 | 19,833 | 176,128 | 1,547,704 | 144 |
| MV-080 | 31,956 | 2,299 | 60,069 | 527,846 | 49 |
| MV-081 |  |  | 335,939 | 2,952,024 | 274 |
| MV-082 |  |  | 239,956 | 2,108,589 | 196 |
| MV-083 |  |  | 146,106 | 1,283,887 | 119 |
| MV-084 |  |  | 41,032 | 360,563 | 33 |
| MV-085 | 40,724 | 6,380 | 189,833 | 1,668,138 | 155 |
| MV-086 |  |  | 42,894 | 376,927 | 35 |
| MV-087 | 34,375 | 6,243 | 28,108 | 246,996 | 23 |
| MV-088 | 15,044 | 1,456 | 5,622 | 49,399 | 5 |
| MV-089 | 15,044 | 1,456 | 5,622 | 49,399 | 5 |
| MV-090 | 15,041 | 597 | 9,912 | 87,101 | 8 |

World Logistic Center
Cumulative Energy - Transportation Fuel
Cumulative Transportation Fuel Consumption (Annual Average) - Summary

| Project ID | Construction |  | Operational |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diesel Gallons | Gasoline Gallons | Diesel Gallons | Gasoline Gallons | Natural Gas (MMBTU) |
| MV-091 | 50,986 | 4,427 | 52,560 | 461,869 | 43 |
| MV-093 |  |  | 52,468 | 461,059 | 43 |
| MV-094 | 56,890 | 24,579 | 124,612 | 1,095,015 | 102 |
| MV-095 | 42,451 | 7,868 | 237,292 | 2,085,172 | 193 |
| MV-096 | 50,823 | 4,199 | 47,123 | 414,089 | 38 |
| MV-097 | 49,390 | 10,247 | 129,287 | 1,136,091 | 105 |
| MV-098 | 35,907 | 1,179 | 9,666 | 84,941 | 8 |
| MV-099 | 38,339 | 9,183 | 44,973 | 395,193 | 37 |
| MV-100 | 51,486 | 18,048 | 90,883 | 798,620 | 74 |
| MV-101 | 15,041 | 597 | 12,204 | 107,237 | 10 |
| MV-102 | 34,603 | 5,311 | 49,392 | 434,031 | 40 |
| MV-103 | 42,935 | 10,820 | 75,515 | 663,582 | 62 |
| MV-104 | 52,082 | 20,090 | 179,022 | 1,573,134 | 146 |
| MV-105 | 15,044 | 1,456 | 5,622 | 49,399 | 5 |
| MV-106 | 15,044 | 1,456 | 5,622 | 49,399 | 5 |
| MV-107 | 29,796 | 725 | 5,437 | 47,780 | 4 |
| MV-108 | 14,732 | 313 | 4,031 | 35,424 | 3 |
| MV-109 | 147,517 | 99,569 | 667,578 | 5,866,264 | 544 |
| MV-110 | 34,375 | 6,243 | 28,108 | 246,996 | 23 |
| MV-111 | 30,107 | 1,872 | 7,495 | 65,866 | 6 |
| MV-112 | 15,055 | 1,747 | 7,027 | 61,749 | 6 |
| MV-113 | 47,191 | 6,919 | 86,997 | 764,472 | 71 |
| MV-114 | 14,732 | 455 | 7,729 | 67,917 | 6 |
| MV-115 | 14,732 | 313 | 14 | 119 | 0 |
| MV-116 | 36,176 | 1,549 | 15,104 | 132,721 | 12 |
| MV-117 | 32,267 | 3,304 | 30,576 | 268,686 | 25 |
| MV-118 | 29,796 | 725 | 5,437 | 47,780 | 4 |
| MV-119 | 46,873 | 2,121 | 21,145 | 185,809 | 17 |
| MV-120 | 43,314 | 8,541 | 256,980 | 2,258,182 | 210 |
| MV-121 | 14,732 | 455 | 5,900 | 51,843 | 5 |
| MV-123 | 15,359 | 881 | 18,983 | 166,814 | 15 |
| MV-124 | 40,724 | 6,380 | 189,833 | 1,668,138 | 155 |
| MV-125 | 30,418 | 2,729 | 11,243 | 98,798 | 9 |
| MV-126 | 50,003 | 11,043 | 141,974 | 1,247,576 | 116 |
| MV-127 | 50,475 | 18,335 | 163,175 | 1,433,883 | 133 |
| MV-129 | 113,312 | 82,271 | 648,447 | 5,698,151 | 529 |
| MV-130 | 45,286 | 12,195 | 106,473 | 935,619 | 87 |
| MV-131 | 107,750 | 78,093 | 719,869 | 6,325,767 | 587 |
| MV-132 | 95,297 | 56,598 | 527,904 | 4,638,896 | 430 |
| P-001 |  |  | 82,768 | 727,311 | 67 |
| P-002 |  |  | 287,948 | 2,530,307 | 235 |
| P-003 |  |  | 221,864 | 1,949,601 | 181 |

World Logistic Center
Cumulative Energy - Transportation Fuel
Cumulative Transportation Fuel Consumption (Annual Average) - Summary

| Project ID | Construction |  | Operational |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diesel Gallons | Gasoline Gallons | Diesel Gallons | Gasoline Gallons | Natural Gas (MMBTU) |
| P-004 | 42,359 | 10,148 | 70,590 | 620,305 | 58 |
| P-005 | 66,230 | 24,835 | 220,760 | 1,939,902 | 180 |
| P-006 | 77,321 | 32,120 | 246,246 | 2,163,855 | 201 |
| P-007 | 99,537 | 61,196 | 488,330 | 4,291,141 | 398 |
| P-008 | 46,187 | 13,201 | 98,909 | 869,148 | 81 |
| P-009 | 79,203 | 34,373 | 208,768 | 1,834,521 | 170 |
| P-010 |  |  | 815,852 | 7,169,202 | 665 |
| P-011 |  |  | 398,347 | 3,500,430 | 325 |
| P-012 | 65,961 | 24,464 | 186,362 | 1,637,634 | 152 |
| P-014 | 102,254 | 61,689 | 575,895 | 5,060,613 | 470 |
| P-015 |  |  | 374,723 | 3,292,836 | 306 |
| P-016 |  |  | 628,686 | 5,524,503 | 513 |
| P-017 |  |  | 278,349 | 2,445,963 | 227 |
| P-018 |  |  | 742,425 | 6,523,974 | 605 |
| P-019 |  |  | 334,787 | 2,941,903 | 273 |
| P-020 |  |  | 418,244 | 3,675,270 | 341 |
| P-021 |  |  | 81,585 | 716,920 | 67 |
| P-022 | 52,350 | 20,460 | 182,367 | 1,602,528 | 149 |
| P-023 | 42,648 | 10,555 | 86,384 | 759,092 | 70 |
| P-024 | 109,516 | 77,315 | 702,592 | 6,173,948 | 573 |
| P-025 | 97,333 | 56,895 | 498,149 | 4,377,431 | 406 |
| P-026 | 90,377 | 43,292 | 333,096 | 2,927,047 | 272 |
| P-027 |  |  | 414,645 | 3,643,642 | 338 |
| P-028 | 80,280 | 35,885 | 274,974 | 2,416,305 | 224 |
| P-030 | 57,182 | 22,579 | 297,238 | 2,611,947 | 242 |
| P-031 | 36,614 | 7,588 | 35,135 | 308,745 | 29 |
| P-032 | 77,768 | 26,351 | 871,877 | 7,661,519 | 711 |
| P-033 | 284,116 | 250,456 | 1,123,706 | 9,874,435 | 916 |
| P-034 | 184,333 | 166,949 | 1,519,815 | 13,355,199 | 1,239 |
| P-035 | 31,042 | 4,302 | 18,739 | 164,664 | 15 |
| P-036 | 199,973 | 182,238 | 1,722,889 | 15,139,688 | 1,405 |
| P-037 |  |  | 110,558 | 971,517 | 90 |
| P-038 |  |  | 134,724 | 1,183,870 | 110 |
| P-039 | 83,717 | 41,903 | 376,108 | 3,305,002 | 307 |
| P-040 | 51,931 | 5,934 | 73,705 | 647,678 | 60 |
| P-041 | 41,207 | 8,803 | 61,454 | 540,019 | 50 |
| P-042 | 47,680 | 3,253 | 36,853 | 323,839 | 30 |
| P-043 | 47,680 | 3,129 | 34,436 | 302,604 | 28 |
| P-044 | 38,338 | 8,937 | 44,036 | 386,960 | 36 |
| P-045 | 36,614 | 7,588 | 35,135 | 308,745 | 29 |
| P-046 | 55,398 | 38,815 | 101,584 | 892,661 | 83 |
| P-047 | 57,979 | 23,819 | 314,758 | 2,765,904 | 257 |

World Logistic Center
Cumulative Energy - Transportation Fuel
Cumulative Transportation Fuel Consumption (Annual Average) - Summary

| Project ID | Construction |  | Operational |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diesel Gallons | Gasoline Gallons | Diesel Gallons | Gasoline Gallons | Natural Gas (MMBTU) |
| P-048 | 50,822 | 3,944 | 45,311 | 398,163 | 37 |
| P-049 | 51,667 | 5,692 | 68,872 | 605,207 | 56 |
| P-050 | 34,597 | 3,880 | 108,476 | 953,222 | 88 |
| P-051 | 46,873 | 2,121 | 21,145 | 185,809 | 17 |
| P-052 | 50,727 | 4,177 | 49,540 | 435,325 | 40 |
| P-053 | 48,047 | 7,746 | 97,267 | 854,723 | 79 |
| P-054 | 50,003 | 11,175 | 143,786 | 1,263,503 | 117 |
| P-055 | 70,577 | 18,567 | 610,178 | 5,361,871 | 497 |
| P-056 | 15,042 | 881 | 4,044 | 35,538 | 3 |
| P-057 | 16,598 | 2,750 | 19,988 | 175,645 | 16 |
| P-058 | 52,083 | 20,336 | 122,919 | 1,080,139 | 100 |
| P-059 | 50,004 | 11,419 | 146,807 | 1,290,047 | 120 |
| P-060 | 14,732 | 455 | 6,102 | 53,619 | 5 |
| P-061 |  |  | 167,969 | 1,476,012 | 137 |
| R-001 |  |  | 1,082,613 | 9,513,334 | 883 |
| R-002 |  |  | 279,680 | 2,457,653 | 228 |
| R-003 |  |  | 267,594 | 2,351,454 | 218 |
| R-004 | 52,296 | 20,063 | 101,189 | 889,185 | 82 |
| R-005 | 76,397 | 26,843 | 847,986 | 7,451,581 | 691 |
| R-006 | 36,615 | 7,863 | 36,072 | 316,978 | 29 |
| R-007 | 32,572 | 2,731 | 76,070 | 668,459 | 62 |
| R-008 | 36,451 | 3,806 | 8,761 | 76,989 | 7 |
| R-009 | 854,784 | 698,839 | 11,902,028 | 104,587,698 | 9,703 |
| R-010 | 15,669 | 1,315 | 31,953 | 280,783 | 26 |
| R-011 | 52,896 | 18,460 | 268,185 | 2,356,641 | 219 |
| R-012 | 32,881 | 3,015 | 83,225 | 731,333 | 68 |
| R-013 | 14,732 | 455 | 1,812 | 15,927 | 1 |
| R-014 | 14,732 | 455 | 5,231 | 45,969 | 4 |
| R-015 | 48,316 | 8,248 | 103,729 | 911,506 | 85 |
| R-016 | 14,732 | 313 | 922 | 8,100 | 1 |
| R-017 | 57,160 | 25,330 | 128,828 | 1,132,064 | 105 |
| R-018 | 871,072 | 942,530 | 3,709,210 | 32,594,251 | 3,024 |
| R-019 | 34,086 | 5,703 | 25,766 | 226,413 | 21 |
| R-020 | 109,516 | 77,192 | 701,368 | 6,163,190 | 572 |
| R-021 | 32,921 | 1,143 | 9,062 | 79,633 | 7 |
| R-022 | 29,796 | 725 | 5,437 | 47,780 | 4 |
| R-023 | 15,041 | 597 | 10,900 | 95,787 | 9 |
| R-024 | 1,469,035 | 1,788,690 | 3,020,715 | 26,544,180 | 2,463 |
| R-025 | 52,026 | 19,302 | 97,441 | 856,252 | 79 |
| R-026 | 116,224 | 79,217 | 1,064,889 | 9,357,592 | 868 |
| R-027 | 14,732 | 455 | 4,906 | 43,109 | 4 |
| R-028 | 52,307 | 12,308 | 31,730 | 278,826 | 26 |

World Logistic Center
Cumulative Energy - Transportation Fuel
Cumulative Transportation Fuel Consumption (Annual Average) - Summary

| Project ID | Construction |  | Operational |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diesel Gallons | Gasoline Gallons | Diesel Gallons | Gasoline Gallons | Natural Gas (MMBTU) |
| R-029 | 14,732 | 455 | 5,146 | 45,218 | 4 |
| R-030 | 44,177 | 9,345 | 282,804 | 2,485,112 | 231 |
| R-031 | 30,730 | 3,877 | 16,865 | 148,198 | 14 |
| R-032 | 15,669 | 1,315 | 30,200 | 265,377 | 25 |
| R-033 | 30,728 | 3,303 | 14,054 | 123,498 | 11 |
| R-034 | 15,042 | 1,030 | 7,154 | 62,862 | 6 |
| R-035 | 38,341 | 9,686 | 47,784 | 419,893 | 39 |
| R-036 | 34,375 | 6,375 | 29,045 | 255,229 | 24 |
| R-037 | 14,732 | 455 | 8,136 | 71,492 | 7 |
| R-038 | 14,732 | 455 | 4,746 | 41,703 | 4 |
| R-039 | 54,524 | 18,483 | 242,865 | 2,134,152 | 198 |
| R-040 | 14,732 | 313 | 3,254 | 28,597 | 3 |
| R-041 | 15,670 | 1,599 | 13,597 | 119,482 | 11 |
| R-042 | 60,107 | 27,296 | 361,277 | 3,174,684 | 295 |
| R-043 | 47,411 | 2,749 | 30,207 | 265,442 | 25 |
| R-044 | 14,732 | 455 | 5,424 | 47,661 | 4 |
| R-045 | 16,597 | 2,466 | 22,308 | 196,032 | 18 |
| R-046 | 46,873 | 2,121 | 21,654 | 190,285 | 18 |
| R-047 | 35,047 | 6,742 | 51,702 | 454,325 | 42 |
| R-048 | 34,289 | 3,732 | 102,103 | 897,220 | 83 |
| R-049 | 52,395 | 28,492 | 73,406 | 645,046 | 60 |
| R-050 | 29,794 | 441 | 2,315 | 20,346 | 2 |
| R-051 | 14,732 | 313 | 3,201 | 28,132 | 3 |
| R-052 | 46,873 | 1,998 | 19,333 | 169,883 | 16 |
| R-053 | 36,443 | 1,806 | 17,520 | 153,956 | 14 |
| R-054 | 36,176 | 1,549 | 15,104 | 132,721 | 12 |
| R-055 | 36,175 | 1,426 | 12,083 | 106,177 | 10 |
| R-056 | 40,343 | 7,866 | 77,029 | 676,881 | 63 |
| R-057 | 42,359 | 10,148 | 70,433 | 618,920 | 57 |
| R-058 | 14,732 | 313 | 3,723 | 32,719 | 3 |
| R-059 | 14,732 | 455 | 5,492 | 48,257 | 4 |
| R-060 | 35,529 | 6,310 | 79,970 | 702,724 | 65 |
| R-061 | 57,297 | 17,591 | 576,886 | 5,069,316 | 470 |
| R-062 | 14,732 | 313 | 2,483 | 21,817 | 2 |
| R-063 | 30,417 | 2,446 | 9,838 | 86,449 | 8 |
| R-064 | 29,794 | 441 | 3,021 | 26,544 | 2 |
| R-065 | 47,681 | 3,376 | 37,457 | 329,148 | 31 |
| R-066 | 15,040 | 455 | 8,339 | 73,279 | 7 |
| RC-001 | 232,273 | 169,005 | 755,783 | 6,641,354 | 616 |
| RC-002 | 394,126 | 358,691 | 1,208,286 | 10,617,672 | 985 |
| RC-003 | 831,089 | 916,704 | 2,061,336 | 18,113,748 | 1,681 |
| RC-005 | 127,311 | 67,813 | 453,107 | 3,981,627 | 369 |

World Logistic Center
Cumulative Energy - Transportation Fuel
Cumulative Transportation Fuel Consumption (Annual Average) - Summary

| Project ID | Construction |  | Operational |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diesel Gallons | Gasoline Gallons | Diesel Gallons | Gasoline Gallons | Natural Gas (MMBTU) |
| RC-006 | 75,918 | 32,116 | 472,355 | 4,150,763 | 385 |
| RC-007 | 111,699 | 82,645 | 761,451 | 6,691,164 | 621 |
| RC-009 | 100,314 | 62,171 | 401,338 | 3,526,710 | 327 |
| RC-010 | 314,831 | 323,833 | 2,544,538 | 22,359,835 | 2,074 |
| RC-011 | 85,061 | 43,415 | 390,649 | 3,432,783 | 318 |
| RC-012 | 54,226 | 22,718 | 173,876 | 1,527,916 | 142 |
| RC-013 | 57,446 | 22,701 | 300,259 | 2,638,491 | 245 |
| RC-014 | 58,125 | 30,342 | 149,909 | 1,317,311 | 122 |
| RC-015 | 47,191 | 6,919 | 85,788 | 753,855 | 70 |
| RC-017 | 15,041 | 597 | 12,583 | 110,574 | 10 |
| RC-018 | 32,921 | 1,143 | 9,062 | 79,633 | 7 |
| RC-019 | 32,264 | 2,589 | 71,592 | 629,102 | 58 |
| RC-020 | 14,732 | 313 | 3,797 | 33,363 | 3 |
| RC-021 | 15,041 | 739 | 3,839 | 33,737 | 3 |
| RC-022 | 46,927 | 6,424 | 79,143 | 695,458 | 65 |
| RC-023 | 32,265 | 3,446 | 21,526 | 189,157 | 18 |
| RC-024 | 43,224 | 11,228 | 78,307 | 688,113 | 64 |
| RC-025 | 33,812 | 5,310 | 34,885 | 306,546 | 28 |
| RC-026 | 14,732 | 313 | 1,208 | 10,618 | 1 |
| RC-027 | 42,936 | 11,085 | 77,445 | 680,539 | 63 |
| RC-028 | 14,732 | 455 | 7,593 | 66,726 | 6 |
| RC-029 | 15,041 | 597 | 11,040 | 97,014 | 9 |
| RC-030 | 104,845 | 64,722 | 604,234 | 5,309,638 | 493 |
| RC-031 | 42,648 | 10,555 | 74,120 | 651,320 | 60 |
| RC-032 | 125,718 | 65,841 | 438,608 | 3,854,215 | 358 |
| RC-033 | 54,256 | 17,741 | 231,991 | 2,038,593 | 189 |
| RC-034 | 55,586 | 19,855 | 260,990 | 2,293,417 | 213 |
| RC-035 | 635,794 | 688,311 | 1,771,321 | 15,565,275 | 1,444 |
| RC-036 | 56,649 | 21,461 | 282,739 | 2,484,535 | 231 |
| RC-037 | 59,308 | 25,680 | 339,528 | 2,983,566 | 277 |
| RC-038 | 123,845 | 94,836 | 875,246 | 7,691,120 | 714 |
| RC-039 | 47,142 | 2,368 | 23,562 | 207,045 | 19 |
| RD-001 |  |  | 49,540 | 435,325 | 40 |
| RD-002 |  |  | 33,228 | 291,986 | 27 |
| RD-003 | 50,958 | 5,240 | 62,227 | 546,810 | 51 |
| RD-004 | 50,544 | 3,680 | 40,478 | 355,692 | 33 |
| RD-005 |  |  | 240,245 | 2,111,128 | 196 |
| RD-006 | 31,956 | 2,447 | 65,389 | 574,602 | 53 |
| RD-007 | 36,757 | 6,028 | 173,217 | 1,522,128 | 141 |
| RD-008 | 37,800 | 7,685 | 37,477 | 329,328 | 31 |
| RD-009 | 31,956 | 2,299 | 59,393 | 521,913 | 48 |
| RD-010 | 40,919 | 8,671 | 59,614 | 523,851 | 49 |

World Logistic Center
Cumulative Energy - Transportation Fuel
Cumulative Transportation Fuel Consumption (Annual Average) - Summary

| Project ID | Construction |  | Operational |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diesel Gallons | Gasoline Gallons | Diesel Gallons | Gasoline Gallons | Natural Gas (MMBTU) |
| RD-011 | 32,572 | 2,731 | 75,208 | 660,880 | 61 |
| RD-012 |  |  | 288,565 | 2,535,734 | 235 |
| RD-013 |  |  | 486,152 | 4,272,001 | 396 |
| RD-014 |  |  | 370,493 | 3,255,661 | 302 |
| RD-015 |  |  | 203,003 | 1,783,866 | 166 |
| RD-016 |  |  | 343,009 | 3,014,156 | 280 |
| SB-001 |  |  | 294,824 | 2,590,730 | 240 |
| SB-002 |  |  | 150,438 | 1,321,959 | 123 |
| SB-003 |  |  | 284,858 | 2,503,161 | 232 |
| SB-004 |  |  | 373,190 | 3,279,362 | 304 |
| SB-005 |  |  | 135,335 | 1,189,244 | 110 |
| SB-006 |  |  | 260,582 | 2,289,831 | 212 |
| SB-007 | 46,873 | 2,121 | 20,541 | 180,500 | 17 |
| SB-008 | 47,142 | 2,368 | 24,166 | 212,353 | 20 |
| SJ-001 | 126,588 | 66,774 | 2,275,619 | 19,996,740 | 1,855 |
| SJ-002 | 52,396 | 14,895 | 193,930 | 1,704,136 | 158 |
| SJ-003 | 59,839 | 26,422 | 350,403 | 3,079,125 | 286 |
| SJ-004 | 60,638 | 27,916 | 370,340 | 3,254,316 | 302 |
| WLC-001 | 47,680 | 3,253 | 36,249 | 318,530 | 30 |
| Total Cum. | 23,204,429 | 14,744,142 | 118,674,194 | 1,042,835,763 | 96,752 |
| Net Project | 1,553,812 | 54,103 | 45,345 | 30,327 | 1,094 |
| Total | 24,758,241 | 14,798,245 | 118,719,539 | 1,042,866,090 | 97,846 |
| County/ <br> SoCalGas | 275,000,000 | 1,052,000,000 | 275,000,000 | 1,052,000,000 | 873,793,575 |
| \%County/ SoCalGas | 9\% | 1\% | 43.17\% | 99\% | 0.01\% |
| Source: ESA, 2019 |  |  |  |  |  |

## World Logistic Center

 Cumulative Energy - Transportation Fuel10.21 kGCO $2 /$ gal https://www.eia.gov/environment/emissions/co2_vol_mass.php 2204.623 lbs/Metric Ton

Total Diesel Consumption: Max Annual Consumption: Min Annual Consumption:
Average Annual Consumption: Straigth Average Annual Consumption:

54,828,262 gallons 331,154 gallons 14,423 gallons 42,431 gallons 70,313 gallons

Off-Road Construction Diesel Fuel Usage

| Project ID | ConDays | ConYrs | CO2E_TOT (lbs) | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B-001 | 3401 | 11.22 | 62,872,528.69 | 28,518.49 | 2,793,192 | 248,850 |
| B-003 | 3401 | 11.22 | 21,283,851.30 | 9,654.19 | 945,562 | 84,242 |
| B-004 | 859 | 2.83 | 2,878,599.99 | 1,305.71 | 127,885 | 45,110 |
| B-006 | 1105 | 3.65 | 4,432,085.14 | 2,010.36 | 196,901 | 53,992 |
| B-007 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| B-008 | 3401 | 11.22 | 21,283,851.30 | 9,654.19 | 945,562 | 84,242 |
| B-009 | 3401 | 11.22 | 83,666,867.38 | 37,950.65 | 3,717,007 | 331,154 |
| B-010 | 545 | 1.80 | 1,730,946.09 | 785.14 | 76,899 | 42,753 |
| B-011 | 305 | 1.01 | 750,479.21 | 340.41 | 33,341 | 33,122 |
| B-013 | 3401 | 11.22 | 42,078,190.00 | 19,086.34 | 1,869,377 | 166,546 |
| B-014 | 3401 | 11.22 | 21,283,851.30 | 9,654.19 | 945,562 | 84,242 |
| C-001 | 301 | 0.99 | 738,143.44 | 334.82 | 32,793 | 33,011 |
| C-002 | 1453 | 4.80 | 5,428,618.95 | 2,462.38 | 241,173 | 50,293 |
| C-003 | 270 | 0.89 | 590,329.73 | 267.77 | 26,226 | 29,432 |
| H-001 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| H-002 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| H-003 | 3401 | 11.22 | 21,283,851.30 | 9,654.19 | 945,562 | 84,242 |
| H-004 | 1105 | 3.65 | 4,432,085.14 | 2,010.36 | 196,901 | 53,992 |
| H-005 | 119 | 0.39 | 127,583.54 | 57.87 | 5,668 | 14,432 |
| H-006 | 422 | 1.39 | 1,663,183.38 | 754.41 | 73,889 | 53,053 |
| H-007 | 1264 | 4.17 | 4,229,448.94 | 1,918.45 | 187,899 | 45,042 |
| H-008 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| M-001 | 382 | 1.26 | 1,398,993.43 | 634.57 | 62,152 | 49,299 |
| M-003 | 1264 | 4.17 | 4,229,448.94 | 1,918.45 | 187,899 | 45,042 |
| M-004 | 270 | 0.89 | 590,329.73 | 267.77 | 26,226 | 29,432 |
| M-005 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| M-006 | 305 | 1.01 | 750,479.21 | 340.41 | 33,341 | 33,122 |
| M-007 | 329 | 1.09 | 1,074,950.42 | 487.59 | 47,756 | 43,982 |
| M-008 | 1890 | 6.24 | 7,089,835.09 | 3,215.89 | 314,975 | 50,496 |
| M-009 | 819 | 2.70 | 2,614,410.05 | 1,185.88 | 116,149 | 42,971 |
| M-010 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| M-011 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| MV-001 | 309 | 1.02 | 762,062.06 | 345.67 | 33,856 | 33,198 |
| MV-002 | 1890 | 6.24 | 6,644,047.35 | 3,013.69 | 295,170 | 47,321 |
| MV-003 | 1207 | 3.98 | 3,875,133.79 | 1,757.73 | 172,158 | 43,218 |
| MV-005 | 270 | 0.89 | 590,329.73 | 267.77 | 26,226 | 29,432 |
| MV-006 | 329 | 1.09 | 1,074,950.42 | 487.59 | 47,756 | 43,982 |
| MV-007 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| MV-008 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-009 | 279 | 0.92 | 670,341.87 | 304.06 | 29,781 | 32,343 |
| MV-010 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-011 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| MV-013 | 119 | 0.39 | 127,583.54 | 57.87 | 5,668 | 14,432 |
| MV-014 | 819 | 2.70 | 2,614,410.05 | 1,185.88 | 116,149 | 42,971 |
| MV-015 | 387 | 1.28 | 1,253,155.71 | 568.42 | 55,673 | 43,589 |
| MV-016 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-017 | 545 | 1.80 | 1,730,946.09 | 785.14 | 76,899 | 42,753 |
| MV-021 | 270 | 0.89 | 590,329.73 | 267.77 | 26,226 | 29,432 |

## World Logistic Center

Cumulative Energy - Transportation Fuel
Off-Road Construction Diesel Fuel Usage

| Project ID | ConDays | ConYrs | CO2E_TOT (lbs) | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MV-023 | 495 | 1.63 | 1,577,358.30 | 715.48 | 70,076 | 42,895 |
| MV-024 | 1207 | 3.98 | 3,875,133.79 | 1,757.73 | 172,158 | 43,218 |
| MV-025 | 495 | 1.63 | 1,577,358.30 | 715.48 | 70,076 | 42,895 |
| MV-026 | 545 | 1.80 | 1,730,946.09 | 785.14 | 76,899 | 42,753 |
| MV-027 | 279 | 0.92 | 670,341.87 | 304.06 | 29,781 | 32,343 |
| MV-028 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| MV-029 | 1701 | 5.61 | 5,444,877.33 | 2,469.75 | 241,896 | 43,089 |
| MV-030 | 495 | 1.63 | 1,577,358.30 | 715.48 | 70,076 | 42,895 |
| MV-031 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-032 | 819 | 2.70 | 2,614,410.05 | 1,185.88 | 116,149 | 42,971 |
| MV-033 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-034 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-035 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| MV-040 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| MV-041 | 579 | 1.91 | 1,949,727.84 | 884.38 | 86,619 | 45,329 |
| MV-042 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-044 | 529 | 1.75 | 1,796,140.04 | 814.72 | 79,796 | 45,705 |
| MV-045 | 270 | 0.89 | 590,329.73 | 267.77 | 26,226 | 29,432 |
| MV-047 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| MV-054 | 859 | 2.83 | 2,878,599.99 | 1,305.71 | 127,885 | 45,110 |
| MV-056 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| MV-057 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-059 | 387 | 1.28 | 1,253,155.71 | 568.42 | 55,673 | 43,589 |
| MV-060 | 495 | 1.63 | 1,577,358.30 | 715.48 | 70,076 | 42,895 |
| MV-061 | 301 | 0.99 | 738,143.44 | 334.82 | 32,793 | 33,011 |
| MV-062 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| MV-063 | 1207 | 3.98 | 3,875,133.79 | 1,757.73 | 172,158 | 43,218 |
| MV-064 | 495 | 1.63 | 1,577,358.30 | 715.48 | 70,076 | 42,895 |
| MV-065 | 279 | 0.92 | 670,341.87 | 304.06 | 29,781 | 32,343 |
| MV-066 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-067 | 1207 | 3.98 | 3,875,133.79 | 1,757.73 | 172,158 | 43,218 |
| MV-068 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| MV-070 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-071 | 279 | 0.92 | 670,341.87 | 304.06 | 29,781 | 32,343 |
| MV-072 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| MV-073 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| MV-074 | 819 | 2.70 | 2,614,410.05 | 1,185.88 | 116,149 | 42,971 |
| MV-075 | 3401 | 11.22 | 21,283,851.30 | 9,654.19 | 945,562 | 84,242 |
| MV-076 | 309 | 1.02 | 762,062.06 | 345.67 | 33,856 | 33,198 |
| MV-077 | 329 | 1.09 | 1,074,950.42 | 487.59 | 47,756 | 43,982 |
| MV-079 | 305 | 1.01 | 750,479.21 | 340.41 | 33,341 | 33,122 |
| MV-080 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| MV-085 | 301 | 0.99 | 738,143.44 | 334.82 | 32,793 | 33,011 |
| MV-087 | 279 | 0.92 | 670,341.87 | 304.06 | 29,781 | 32,343 |
| MV-088 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| MV-089 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| MV-090 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| MV-091 | 495 | 1.63 | 1,577,358.30 | 715.48 | 70,076 | 42,895 |
| MV-094 | 329 | 1.09 | 1,074,950.42 | 487.59 | 47,756 | 43,982 |
| MV-095 | 301 | 0.99 | 738,143.44 | 334.82 | 32,793 | 33,011 |
| MV-096 | 387 | 1.28 | 1,253,155.71 | 568.42 | 55,673 | 43,589 |
| MV-097 | 1207 | 3.98 | 3,875,133.79 | 1,757.73 | 172,158 | 43,218 |
| MV-098 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| MV-099 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| MV-100 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-101 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| MV-102 | 270 | 0.89 | 590,329.73 | 267.77 | 26,226 | 29,432 |
| MV-103 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |

## World Logistic Center

Cumulative Energy - Transportation Fuel
Off-Road Construction Diesel Fuel Usage

| Project ID | ConDays | ConYrs | CO2E_TOT (lbs) | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MV-104 | 305 | 1.01 | 750,479.21 | 340.41 | 33,341 | 33,122 |
| MV-105 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| MV-106 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| MV-107 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| MV-108 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| MV-109 | 3401 | 11.22 | 21,283,851.30 | 9,654.19 | 945,562 | 84,242 |
| MV-110 | 279 | 0.92 | 670,341.87 | 304.06 | 29,781 | 32,343 |
| MV-111 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| MV-112 | 119 | 0.39 | 127,583.54 | 57.87 | 5,668 | 14,432 |
| MV-113 | 819 | 2.70 | 2,614,410.05 | 1,185.88 | 116,149 | 42,971 |
| MV-114 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| MV-115 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| MV-116 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| MV-117 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| MV-118 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| MV-119 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| MV-120 | 301 | 0.99 | 738,143.44 | 334.82 | 32,793 | 33,011 |
| MV-121 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| MV-123 | 119 | 0.39 | 127,583.54 | 57.87 | 5,668 | 14,432 |
| MV-124 | 301 | 0.99 | 738,143.44 | 334.82 | 32,793 | 33,011 |
| MV-125 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| MV-126 | 1701 | 5.61 | 5,444,877.33 | 2,469.75 | 241,896 | 43,089 |
| MV-127 | 305 | 1.01 | 750,479.21 | 340.41 | 33,341 | 33,122 |
| MV-129 | 859 | 2.83 | 2,878,599.99 | 1,305.71 | 127,885 | 45,110 |
| MV-130 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| MV-131 | 819 | 2.70 | 2,614,410.05 | 1,185.88 | 116,149 | 42,971 |
| MV-132 | 495 | 1.63 | 1,577,358.30 | 715.48 | 70,076 | 42,895 |
| P-004 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| P-005 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| P-006 | 348 | 1.15 | 1,180,211.69 | 535.33 | 52,432 | 45,652 |
| P-007 | 569 | 1.88 | 2,060,329.98 | 934.55 | 91,533 | 48,742 |
| P-008 | 305 | 1.01 | 750,479.21 | 340.41 | 33,341 | 33,122 |
| P-009 | 348 | 1.15 | 1,180,211.69 | 535.33 | 52,432 | 45,652 |
| P-012 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| P-014 | 529 | 1.75 | 1,796,140.04 | 814.72 | 79,796 | 45,705 |
| P-022 | 305 | 1.01 | 750,479.21 | 340.41 | 33,341 | 33,122 |
| P-023 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| P-024 | 579 | 1.91 | 1,949,727.84 | 884.38 | 86,619 | 45,329 |
| P-025 | 406 | 1.34 | 1,358,416.97 | 616.17 | 60,349 | 45,039 |
| P-026 | 382 | 1.26 | 1,398,993.43 | 634.57 | 62,152 | 49,299 |
| P-028 | 348 | 1.15 | 1,180,211.69 | 535.33 | 52,432 | 45,652 |
| P-030 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| P-031 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| P-032 | 382 | 1.26 | 1,398,993.43 | 634.57 | 62,152 | 49,299 |
| P-033 | 3401 | 11.22 | 31,681,020.65 | 14,370.27 | 1,407,470 | 125,394 |
| P-034 | 1264 | 4.17 | 4,229,448.94 | 1,918.45 | 187,899 | 45,042 |
| P-035 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| P-036 | 1890 | 6.24 | 6,644,047.35 | 3,013.69 | 295,170 | 47,321 |
| P-039 | 329 | 1.09 | 1,074,950.42 | 487.59 | 47,756 | 43,982 |
| P-040 | 819 | 2.70 | 2,614,410.05 | 1,185.88 | 116,149 | 42,971 |
| P-041 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| P-042 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| P-043 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| P-044 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| P-045 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| P-046 | 1701 | 5.61 | 5,444,877.33 | 2,469.75 | 241,896 | 43,089 |
| P-047 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| P-048 | 387 | 1.28 | 1,253,155.71 | 568.42 | 55,673 | 43,589 |

## World Logistic Center

Cumulative Energy - Transportation Fuel
Off-Road Construction Diesel Fuel Usage

| Project ID | ConDays | ConYrs | CO2E_TOT (lbs) | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P-049 | 819 | 2.70 | 2,614,410.05 | 1,185.88 | 116,149 | 42,971 |
| P-050 | 270 | 0.89 | 590,329.73 | 267.77 | 26,226 | 29,432 |
| P-051 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| P-052 | 495 | 1.63 | 1,577,358.30 | 715.48 | 70,076 | 42,895 |
| P-053 | 1207 | 3.98 | 3,875,133.79 | 1,757.73 | 172,158 | 43,218 |
| P-054 | 1701 | 5.61 | 5,444,877.33 | 2,469.75 | 241,896 | 43,089 |
| P-055 | 348 | 1.15 | 1,180,211.69 | 535.33 | 52,432 | 45,652 |
| P-056 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| P-057 | 119 | 0.39 | 127,583.54 | 57.87 | 5,668 | 14,432 |
| P-058 | 305 | 1.01 | 750,479.21 | 340.41 | 33,341 | 33,122 |
| P-059 | 1701 | 5.61 | 5,444,877.33 | 2,469.75 | 241,896 | 43,089 |
| P-060 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-004 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| R-005 | 382 | 1.26 | 1,398,993.43 | 634.57 | 62,152 | 49,299 |
| R-006 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| R-007 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| R-008 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| R-009 | 3401 | 11.22 | 23,154,451.98 | 10,502.68 | 1,028,666 | 91,645 |
| R-010 | 119 | 0.39 | 127,583.54 | 57.87 | 5,668 | 14,432 |
| R-011 | 309 | 1.02 | 762,062.06 | 345.67 | 33,856 | 33,198 |
| R-012 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| R-013 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-014 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-015 | 1207 | 3.98 | 3,875,133.79 | 1,757.73 | 172,158 | 43,218 |
| R-016 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-017 | 329 | 1.09 | 1,074,950.42 | 487.59 | 47,756 | 43,982 |
| R-018 | 3401 | 11.22 | 21,283,851.30 | 9,654.19 | 945,562 | 84,242 |
| R-019 | 279 | 0.92 | 670,341.87 | 304.06 | 29,781 | 32,343 |
| R-020 | 579 | 1.91 | 1,949,727.84 | 884.38 | 86,619 | 45,329 |
| R-021 | 279 | 0.92 | 670,341.87 | 304.06 | 29,781 | 32,343 |
| R-022 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| R-023 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-024 | 3401 | 11.22 | 83,666,867.38 | 37,950.65 | 3,717,007 | 331,154 |
| R-025 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| R-026 | 916 | 3.02 | 3,232,915.14 | 1,466.43 | 143,626 | 47,510 |
| R-027 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-028 | 495 | 1.63 | 1,577,358.30 | 715.48 | 70,076 | 42,895 |
| R-029 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-030 | 301 | 0.99 | 738,143.44 | 334.82 | 32,793 | 33,011 |
| R-031 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| R-032 | 119 | 0.39 | 127,583.54 | 57.87 | 5,668 | 14,432 |
| R-033 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| R-034 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-035 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| R-036 | 279 | 0.92 | 670,341.87 | 304.06 | 29,781 | 32,343 |
| R-037 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-038 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-039 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| R-040 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-041 | 119 | 0.39 | 127,583.54 | 57.87 | 5,668 | 14,432 |
| R-042 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| R-043 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| R-044 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-045 | 119 | 0.39 | 127,583.54 | 57.87 | 5,668 | 14,432 |
| R-046 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| R-047 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| R-048 | 270 | 0.89 | 590,329.73 | 267.77 | 26,226 | 29,432 |
| R-049 | 1207 | 3.98 | 3,875,133.79 | 1,757.73 | 172,158 | 43,218 |

## World Logistic Center

Cumulative Energy - Transportation Fuel
Off-Road Construction Diesel Fuel Usage

| Project ID | ConDays | ConYrs | CO2E_TOT (lbs) | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R-050 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| R-051 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-052 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| R-053 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| R-054 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| R-055 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |
| R-056 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| R-057 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| R-058 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-059 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-060 | 270 | 0.89 | 590,329.73 | 267.77 | 26,226 | 29,432 |
| R-061 | 328 | 1.08 | 825,272.43 | 374.34 | 36,664 | 33,869 |
| R-062 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| R-063 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| R-064 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| R-065 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| R-066 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| RC-001 | 3401 | 11.22 | 31,681,020.65 | 14,370.27 | 1,407,470 | 125,394 |
| RC-002 | 3401 | 11.22 | 42,078,190.00 | 19,086.34 | 1,869,377 | 166,546 |
| RC-003 | 3401 | 11.22 | 62,872,528.69 | 28,518.49 | 2,793,192 | 248,850 |
| RC-005 | 3401 | 11.22 | 21,283,851.30 | 9,654.19 | 945,562 | 84,242 |
| RC-006 | 382 | 1.26 | 1,398,993.43 | 634.57 | 62,152 | 49,299 |
| RC-007 | 819 | 2.70 | 2,614,410.05 | 1,185.88 | 116,149 | 42,971 |
| RC-009 | 569 | 1.88 | 2,060,329.98 | 934.55 | 91,533 | 48,742 |
| RC-010 | 3401 | 11.22 | 11,332,469.69 | 5,140.32 | 503,459 | 44,854 |
| RC-011 | 329 | 1.09 | 1,074,950.42 | 487.59 | 47,756 | 43,982 |
| RC-012 | 305 | 1.01 | 750,479.21 | 340.41 | 33,341 | 33,122 |
| RC-013 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| RC-014 | 387 | 1.28 | 1,253,155.71 | 568.42 | 55,673 | 43,589 |
| RC-015 | 819 | 2.70 | 2,614,410.05 | 1,185.88 | 116,149 | 42,971 |
| RC-017 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| RC-018 | 279 | 0.92 | 670,341.87 | 304.06 | 29,781 | 32,343 |
| RC-019 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| RC-020 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| RC-021 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| RC-022 | 819 | 2.70 | 2,614,410.05 | 1,185.88 | 116,149 | 42,971 |
| RC-023 | 249 | 0.82 | 545,409.41 | 247.39 | 24,231 | 29,485 |
| RC-024 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| RC-025 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| RC-026 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| RC-027 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| RC-028 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| RC-029 | 113 | 0.37 | 121,070.68 | 54.92 | 5,379 | 14,423 |
| RC-030 | 529 | 1.75 | 1,796,140.04 | 814.72 | 79,796 | 45,705 |
| RC-031 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| RC-032 | 3401 | 11.22 | 21,283,851.30 | 9,654.19 | 945,562 | 84,242 |
| RC-033 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| RC-034 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| RC-035 | 3401 | 11.22 | 52,475,359.34 | 23,802.42 | 2,331,285 | 207,698 |
| RC-036 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| RC-037 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| RC-038 | 859 | 2.83 | 2,878,599.99 | 1,305.71 | 127,885 | 45,110 |
| RC-039 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| RD-003 | 545 | 1.80 | 1,730,946.09 | 785.14 | 76,899 | 42,753 |
| RD-004 | 387 | 1.28 | 1,253,155.71 | 568.42 | 55,673 | 43,589 |
| RD-006 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| RD-007 | 270 | 0.89 | 590,329.73 | 267.77 | 26,226 | 29,432 |
| RD-008 | 300 | 0.99 | 736,000.66 | 333.84 | 32,698 | 33,025 |

World Logistic Center
Cumulative Energy - Transportation Fuel
Off-Road Construction Diesel Fuel Usage

| Project ID | ConDays | ConYrs | CO2E_TOT (lbs) | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RD-009 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| RD-010 | 296 | 0.98 | 723,664.89 | 328.25 | 32,150 | 32,910 |
| RD-011 | 253 | 0.83 | 554,218.69 | 251.39 | 24,622 | 29,488 |
| SB-007 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| SB-008 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |
| SJ-001 | 1105 | 3.65 | 4,432,085.14 | 2,010.36 | 196,901 | 53,992 |
| SJ-002 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| SJ-003 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| SJ-004 | 3401 | 11.22 | 10,886,681.95 | 4,938.12 | 483,655 | 43,090 |
| WLC-001 | 325 | 1.07 | 1,044,678.29 | 473.86 | 46,411 | 43,269 |

## World Logistic Center

Cumulative Energy -Transportation Fuel
$10.21 \mathrm{kGCO}_{2} / \mathrm{gal}$
https://www.eia.gov/environment/emissions/co2_vol_mass.php $2204.623 \mathrm{lbs} /$ Metric Ton

Total Diesel Consumption: Max Annual Consumption: Min Annual Consumption: Average Annual Consumption: Straigth Average Annual Consumption:

88,547,190 gallons
1,137,881 gallons 309 gallons
37,584 gallons
115,400 gallons

On-Road Construction Diesel Fuel Usage

| Project ID | ConDays | ConYrs | CO2E | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B-001 | 3401 | 11.22 | 142,267,719.23 | 64,531.54 | 6,320,425 | 563,096 |
| B-003 | 3401 | 11.22 | 13,300,173.35 | 6,032.86 | 590,877 | 52,642 |
| B-004 | 819 | 2.70 | 4,566,054.59 | 2,071.13 | 202,853 | 75,048 |
| B-006 | 819 | 2.70 | 4,870,491.67 | 2,209.22 | 216,378 | 80,052 |
| B-007 | 3401 | 11.22 | 2,955,720.52 | 1,340.69 | 131,312 | 11,699 |
| B-008 | 3401 | 11.22 | 9,404,221.31 | 4,265.68 | 417,795 | 37,222 |
| B-009 | 3401 | 11.22 | 255,785,305.76 | 116,022.24 | 11,363,589 | 1,012,399 |
| B-010 | 545 | 1.80 | 321,356.05 | 145.76 | 14,277 | 7,937 |
| B-011 | 300 | 0.99 | 273,004.10 | 123.83 | 12,129 | 12,250 |
| B-013 | 3401 | 11.22 | 54,542,297.76 | 24,739.97 | 2,423,111 | 215,878 |
| B-014 | 3401 | 11.22 | 10,076,219.23 | 4,570.50 | 447,649 | 39,882 |
| C-001 | 279 | 0.92 | 219,520.22 | 99.57 | 9,752 | 10,591 |
| C-002 | 1207 | 3.98 | 10,155,438.97 | 4,606.43 | 451,168 | 113,259 |
| C-003 | 249 | 0.82 | 84,162.40 | 38.18 | 3,739 | 4,550 |
| H-001 | 3401 | 11.22 | 4,232,199.39 | 1,919.69 | 188,021 | 16,751 |
| H-002 | 3401 | 11.22 | 3,224,335.54 | 1,462.53 | 143,245 | 12,762 |
| H-003 | 3401 | 11.22 | 13,434,675.18 | 6,093.87 | 596,853 | 53,174 |
| H-004 | 819 | 2.70 | 4,565,996.02 | 2,071.10 | 202,850 | 75,047 |
| H-005 | 113 | 0.37 | 10,375.99 | 4.71 | 461 | 1,236 |
| H-006 | 325 | 1.07 | 726,253.46 | 329.42 | 32,265 | 30,081 |
| H-007 | 1207 | 3.98 | 943,939.46 | 428.16 | 41,936 | 10,527 |
| H-008 | 3401 | 11.22 | 4,318,651.85 | 1,958.91 | 191,862 | 17,093 |
| M-001 | 325 | 1.07 | 1,266,636.33 | 574.54 | 56,272 | 52,463 |
| M-003 | 1207 | 3.98 | 11,432,787.35 | 5,185.82 | 507,916 | 127,505 |
| M-004 | 249 | 0.82 | 118,389.77 | 53.70 | 5,260 | 6,400 |
| M-005 | 3401 | 11.22 | 47,955,023.08 | 21,752.03 | 2,130,463 | 189,806 |
| M-006 | 300 | 0.99 | 267,293.43 | 121.24 | 11,875 | 11,994 |
| M-007 | 325 | 1.07 | 842,506.61 | 382.15 | 37,429 | 34,896 |
| M-008 | 1701 | 5.61 | 19,588,252.75 | 8,885.08 | 870,233 | 155,015 |
| M-009 | 819 | 2.70 | 240,753.14 | 109.20 | 10,696 | 3,957 |
| M-010 | 325 | 1.07 | 658,206.65 | 298.56 | 29,242 | 27,262 |
| M-011 | 249 | 0.82 | 62,781.05 | 28.48 | 2,789 | 3,394 |
| MV-001 | 300 | 0.99 | 402,811.20 | 182.71 | 17,895 | 18,074 |
| MV-002 | 1701 | 5.61 | 1,785,471.92 | 809.88 | 79,322 | 14,130 |
| MV-003 | 1207 | 3.98 | 8,958,903.64 | 4,063.69 | 398,011 | 99,915 |
| MV-005 | 249 | 0.82 | 129,792.09 | 58.87 | 5,766 | 7,017 |
| MV-006 | 325 | 1.07 | 920,407.34 | 417.49 | 40,890 | 38,122 |
| MV-007 | 300 | 0.99 | 76,196.27 | 34.56 | 3,385 | 3,419 |
| MV-008 | 325 | 1.07 | 106,483.22 | 48.30 | 4,731 | 4,410 |
| MV-009 | 279 | 0.92 | 11,958.93 | 5.42 | 531 | 577 |
| MV-010 | 325 | 1.07 | 99,974.29 | 45.35 | 4,441 | 4,141 |
| MV-011 | 300 | 0.99 | 70,218.89 | 31.85 | 3,120 | 3,151 |
| MV-013 | 113 | 0.37 | 12,988.91 | 5.89 | 577 | 1,547 |
| MV-014 | 819 | 2.70 | 513,092.28 | 232.73 | 22,795 | 8,433 |
| MV-015 | 387 | 1.28 | 191,958.60 | 87.07 | 8,528 | 6,677 |
| MV-016 | 325 | 1.07 | 86,992.97 | 39.46 | 3,865 | 3,603 |
| MV-017 | 545 | 1.80 | 321,356.05 | 145.76 | 14,277 | 7,937 |

## World Logistic Center

Cumulative Energy -Transportation Fuel

| Project ID | ConDays | ConYrs | CO2E | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MV-021 | 249 | 0.82 | 95,638.28 | 43.38 | 4,249 | 5,170 |
| MV-023 | 495 | 1.63 | 634,240.16 | 287.69 | 28,177 | 17,248 |
| MV-024 | 1207 | 3.98 | 409,130.69 | 185.58 | 18,176 | 4,563 |
| MV-025 | 495 | 1.63 | 288,003.00 | 130.64 | 12,795 | 7,832 |
| MV-026 | 545 | 1.80 | 321,377.50 | 145.77 | 14,278 | 7,938 |
| MV-027 | 279 | 0.92 | 36,121.68 | 16.38 | 1,605 | 1,743 |
| MV-028 | 300 | 0.99 | 112,446.37 | 51.00 | 4,996 | 5,046 |
| MV-029 | 1701 | 5.61 | 1,008,066.35 | 457.25 | 44,785 | 7,978 |
| MV-030 | 495 | 1.63 | 288,003.00 | 130.64 | 12,795 | 7,832 |
| MV-031 | 325 | 1.07 | 100,009.88 | 45.36 | 4,443 | 4,142 |
| MV-032 | 819 | 2.70 | 529,127.31 | 240.01 | 23,507 | 8,697 |
| MV-033 | 325 | 1.07 | 100,009.88 | 45.36 | 4,443 | 4,142 |
| MV-034 | 325 | 1.07 | 99,998.02 | 45.36 | 4,443 | 4,142 |
| MV-035 | 300 | 0.99 | 70,218.89 | 31.85 | 3,120 | 3,151 |
| MV-040 | 249 | 0.82 | 97,103.33 | 44.05 | 4,314 | 5,249 |
| MV-041 | 545 | 1.80 | 2,577,057.60 | 1,168.93 | 114,489 | 63,652 |
| MV-042 | 325 | 1.07 | 541,351.04 | 245.55 | 24,050 | 22,422 |
| MV-044 | 495 | 1.63 | 1,936,483.62 | 878.37 | 86,031 | 52,661 |
| MV-045 | 249 | 0.82 | 101,260.42 | 45.93 | 4,499 | 5,474 |
| MV-047 | 300 | 0.99 | 64,242.46 | 29.14 | 2,854 | 2,883 |
| MV-054 | 819 | 2.70 | 4,566,083.87 | 2,071.14 | 202,854 | 75,049 |
| MV-056 | 300 | 0.99 | 64,242.46 | 29.14 | 2,854 | 2,883 |
| MV-057 | 325 | 1.07 | 87,016.70 | 39.47 | 3,866 | 3,604 |
| MV-059 | 387 | 1.28 | 191,958.60 | 87.07 | 8,528 | 6,677 |
| MV-060 | 495 | 1.63 | 297,558.38 | 134.97 | 13,219 | 8,092 |
| MV-061 | 279 | 0.92 | 201,622.83 | 91.45 | 8,957 | 9,728 |
| MV-062 | 3401 | 11.22 | 3,963,206.18 | 1,797.68 | 176,070 | 15,686 |
| MV-063 | 1207 | 3.98 | 577,438.28 | 261.92 | 25,653 | 6,440 |
| MV-064 | 495 | 1.63 | 297,523.54 | 134.95 | 13,218 | 8,091 |
| MV-065 | 279 | 0.92 | 36,110.76 | 16.38 | 1,604 | 1,742 |
| MV-066 | 325 | 1.07 | 237,622.39 | 107.78 | 10,557 | 9,842 |
| MV-067 | 1207 | 3.98 | 433,034.63 | 196.42 | 19,238 | 4,829 |
| MV-068 | 279 | 0.92 | 225,719.23 | 102.38 | 10,028 | 10,890 |
| MV-070 | 325 | 1.07 | 231,076.92 | 104.81 | 10,266 | 9,571 |
| MV-071 | 279 | 0.92 | 36,088.93 | 16.37 | 1,603 | 1,741 |
| MV-072 | 249 | 0.82 | 17,256.72 | 7.83 | 767 | 933 |
| MV-073 | 300 | 0.99 | 118,445.57 | 53.73 | 5,262 | 5,315 |
| MV-074 | 819 | 2.70 | 339,044.34 | 153.79 | 15,062 | 5,573 |
| MV-075 | 3401 | 11.22 | 21,222,716.73 | 9,626.46 | 942,846 | 84,000 |
| MV-076 | 300 | 0.99 | 414,720.40 | 188.11 | 18,424 | 18,609 |
| MV-077 | 325 | 1.07 | 693,191.29 | 314.43 | 30,796 | 28,711 |
| MV-079 | 300 | 0.99 | 416,573.63 | 188.95 | 18,507 | 18,692 |
| MV-080 | 249 | 0.82 | 45,651.23 | 20.71 | 2,028 | 2,468 |
| MV-085 | 279 | 0.92 | 159,872.59 | 72.52 | 7,103 | 7,714 |
| MV-087 | 279 | 0.92 | 42,120.79 | 19.11 | 1,871 | 2,032 |
| MV-088 | 113 | 0.37 | 5,217.06 | 2.37 | 232 | 621 |
| MV-089 | 113 | 0.37 | 5,217.06 | 2.37 | 232 | 621 |
| MV-090 | 113 | 0.37 | 5,188.35 | 2.35 | 230 | 618 |
| MV-091 | 495 | 1.63 | 297,523.54 | 134.95 | 13,218 | 8,091 |
| MV-094 | 325 | 1.07 | 311,634.99 | 141.36 | 13,845 | 12,908 |
| MV-095 | 279 | 0.92 | 195,657.32 | 88.75 | 8,692 | 9,440 |
| MV-096 | 387 | 1.28 | 207,965.98 | 94.33 | 9,239 | 7,234 |
| MV-097 | 1207 | 3.98 | 553,446.54 | 251.04 | 24,588 | 6,172 |
| MV-098 | 300 | 0.99 | 64,242.46 | 29.14 | 2,854 | 2,883 |
| MV-099 | 300 | 0.99 | 118,445.57 | 53.73 | 5,262 | 5,315 |
| MV-100 | 325 | 1.07 | 198,364.26 | 89.98 | 8,813 | 8,216 |
| MV-101 | 113 | 0.37 | 5,188.35 | 2.35 | 230 | 618 |

## World Logistic Center

## Cumulative Energy -Transportation Fuel

| Project ID | ConDays | ConYrs | CO2E | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MV-102 | 249 | 0.82 | 95,659.64 | 43.39 | 4,250 | 5,171 |
| MV-103 | 279 | 0.92 | 207,788.23 | 94.25 | 9,231 | 10,025 |
| MV-104 | 300 | 0.99 | 422,540.10 | 191.66 | 18,772 | 18,960 |
| MV-105 | 113 | 0.37 | 5,217.06 | 2.37 | 232 | 621 |
| MV-106 | 113 | 0.37 | 5,217.06 | 2.37 | 232 | 621 |
| MV-107 | 249 | 0.82 | 5,738.60 | 2.60 | 255 | 310 |
| MV-108 | 113 | 0.37 | 2,594.65 | 1.18 | 115 | 309 |
| MV-109 | 3401 | 11.22 | 15,986,631.38 | 7,251.41 | 710,227 | 63,275 |
| MV-110 | 279 | 0.92 | 42,120.79 | 19.11 | 1,871 | 2,032 |
| MV-111 | 249 | 0.82 | 11,508.34 | 5.22 | 511 | 622 |
| MV-112 | 113 | 0.37 | 5,226.79 | 2.37 | 232 | 623 |
| MV-113 | 819 | 2.70 | 256,788.17 | 116.48 | 11,408 | 4,221 |
| MV-114 | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| MV-115 | 113 | 0.37 | 2,594.65 | 1.18 | 115 | 309 |
| MV-116 | 300 | 0.99 | 70,218.89 | 31.85 | 3,120 | 3,151 |
| MV-117 | 249 | 0.82 | 51,410.53 | 23.32 | 2,284 | 2,779 |
| MV-118 | 249 | 0.82 | 5,738.60 | 2.60 | 255 | 310 |
| MV-119 | 325 | 1.07 | 87,004.83 | 39.46 | 3,865 | 3,604 |
| MV-120 | 279 | 0.92 | 213,543.79 | 96.86 | 9,487 | 10,303 |
| MV-121 | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| MV-123 | 113 | 0.37 | 7,782.05 | 3.53 | 346 | 927 |
| MV-124 | 279 | 0.92 | 159,872.59 | 72.52 | 7,103 | 7,714 |
| MV-125 | 249 | 0.82 | 17,256.72 | 7.83 | 767 | 933 |
| MV-126 | 1701 | 5.61 | 873,640.31 | 396.28 | 38,813 | 6,914 |
| MV-127 | 300 | 0.99 | 386,722.34 | 175.41 | 17,181 | 17,352 |
| MV-129 | 819 | 2.70 | 4,149,558.43 | 1,882.21 | 184,349 | 68,203 |
| MV-130 | 300 | 0.99 | 273,248.03 | 123.94 | 12,139 | 12,261 |
| MV-131 | 819 | 2.70 | 3,941,267.73 | 1,787.73 | 175,096 | 64,779 |
| MV-132 | 495 | 1.63 | 1,926,928.24 | 874.04 | 85,606 | 52,401 |
| P-004 | 279 | 0.92 | 195,845.44 | 88.83 | 8,701 | 9,449 |
| P-005 | 325 | 1.07 | 554,344.23 | 251.45 | 24,627 | 22,960 |
| P-006 | 325 | 1.07 | 764,594.96 | 346.81 | 33,968 | 31,669 |
| P-007 | 495 | 1.63 | 1,867,826.46 | 847.23 | 82,981 | 50,794 |
| P-008 | 300 | 0.99 | 291,168.30 | 132.07 | 12,936 | 13,065 |
| P-009 | 325 | 1.07 | 810,035.03 | 367.43 | 35,987 | 33,551 |
| P-012 | 325 | 1.07 | 547,848.11 | 248.50 | 24,339 | 22,691 |
| P-014 | 495 | 1.63 | 2,079,417.84 | 943.21 | 92,381 | 56,548 |
| P-022 | 300 | 0.99 | 428,516.52 | 194.37 | 19,037 | 19,228 |
| P-023 | 279 | 0.92 | 201,822.72 | 91.55 | 8,966 | 9,738 |
| P-024 | 545 | 1.80 | 2,598,730.31 | 1,178.76 | 115,452 | 64,187 |
| P-025 | 387 | 1.28 | 1,503,410.25 | 681.94 | 66,791 | 52,294 |
| P-026 | 325 | 1.07 | 991,786.33 | 449.87 | 44,061 | 41,079 |
| P-028 | 325 | 1.07 | 836,022.35 | 379.21 | 37,141 | 34,627 |
| P-030 | 3401 | 11.22 | 3,560,457.08 | 1,615.00 | 158,178 | 14,092 |
| P-031 | 279 | 0.92 | 76,760.98 | 34.82 | 3,410 | 3,704 |
| P-032 | 325 | 1.07 | 687,346.04 | 311.77 | 30,536 | 28,469 |
| P-033 | 3401 | 11.22 | 40,101,621.58 | 18,189.79 | 1,781,566 | 158,722 |
| P-034 | 1207 | 3.98 | 12,489,603.12 | 5,665.19 | 554,867 | 139,291 |
| P-035 | 249 | 0.82 | 28,743.04 | 13.04 | 1,277 | 1,554 |
| P-036 | 1701 | 5.61 | 19,289,708.41 | 8,749.66 | 856,970 | 152,652 |
| P-039 | 325 | 1.07 | 959,350.35 | 435.15 | 42,620 | 39,735 |
| P-040 | 819 | 2.70 | 545,130.45 | 247.27 | 24,218 | 8,960 |
| P-041 | 279 | 0.92 | 171,959.85 | 78.00 | 7,640 | 8,297 |
| P-042 | 325 | 1.07 | 106,495.08 | 48.31 | 4,731 | 4,411 |
| P-043 | 325 | 1.07 | 106,483.22 | 48.30 | 4,731 | 4,410 |
| P-044 | 300 | 0.99 | 118,423.74 | 53.72 | 5,261 | 5,314 |
| P-045 | 279 | 0.92 | 76,760.98 | 34.82 | 3,410 | 3,704 |

## World Logistic Center

## Cumulative Energy -Transportation Fuel

| Project ID | ConDays | ConYrs | CO2E | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P-046 | 1701 | 5.61 | 1,555,369.71 | 705.50 | 69,099 | 12,309 |
| $\mathrm{P}-047$ | 3401 | 11.22 | 3,761,954.21 | 1,706.39 | 167,130 | 14,890 |
| P-048 | 387 | 1.28 | 207,936.75 | 94.32 | 9,238 | 7,233 |
| P-049 | 819 | 2.70 | 529,127.31 | 240.01 | 23,507 | 8,697 |
| $\mathrm{P}-050$ | 249 | 0.82 | 95,554.28 | 43.34 | 4,245 | 5,166 |
| $\mathrm{P}-051$ | 325 | 1.07 | 87,004.83 | 39.46 | 3,865 | 3,604 |
| P-052 | 495 | 1.63 | 288,003.00 | 130.64 | 12,795 | 7,832 |
| $\mathrm{P}-053$ | 1207 | 3.98 | 433,034.63 | 196.42 | 19,238 | 4,829 |
| $\mathrm{P}-054$ | 1701 | 5.61 | 873,706.85 | 396.31 | 38,816 | 6,914 |
| $\mathrm{P}-055$ | 325 | 1.07 | 601,779.60 | 272.96 | 26,735 | 24,925 |
| P-056 | 113 | 0.37 | 5,197.84 | 2.36 | 231 | 619 |
| $\mathrm{P}-057$ | 113 | 0.37 | 18,181.30 | 8.25 | 808 | 2,166 |
| $\mathrm{P}-058$ | 300 | 0.99 | 422,561.93 | 191.67 | 18,773 | 18,961 |
| P-059 | 1701 | 5.61 | 873,829.48 | 396.36 | 38,821 | 6,915 |
| $\mathrm{P}-060$ | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| R-004 | 325 | 1.07 | 217,939.46 | 98.86 | 9,682 | 9,027 |
| R-005 | 325 | 1.07 | 654,259.19 | 296.77 | 29,066 | 27,099 |
| R-006 | 279 | 0.92 | 76,783.67 | 34.83 | 3,411 | 3,705 |
| R-007 | 249 | 0.82 | 57,053.55 | 25.88 | 2,535 | 3,084 |
| R-008 | 300 | 0.99 | 76,362.85 | 34.64 | 3,393 | 3,426 |
| R-009 | 3401 | 11.22 | 192,809,167.53 | 87,456.75 | 8,565,794 | 763,139 |
| R-010 | 113 | 0.37 | 10,380.74 | 4.71 | 461 | 1,237 |
| R-011 | 300 | 0.99 | 438,983.95 | 199.12 | 19,502 | 19,697 |
| R-012 | 249 | 0.82 | 62,759.69 | 28.47 | 2,788 | 3,393 |
| R-013 | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| R-014 | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| R-015 | 1207 | 3.98 | 457,117.73 | 207.35 | 20,308 | 5,098 |
| R-016 | 113 | 0.37 | 2,594.65 | 1.18 | 115 | 309 |
| R-017 | 325 | 1.07 | 318,167.65 | 144.32 | 14,135 | 13,178 |
| R-018 | 3401 | 11.22 | 198,794,786.00 | 90,171.78 | 8,831,712 | 786,830 |
| R-019 | 279 | 0.92 | 36,132.59 | 16.39 | 1,605 | 1,743 |
| R-020 | 545 | 1.80 | 2,598,710.52 | 1,178.76 | 115,451 | 64,187 |
| R-021 | 279 | 0.92 | 11,981.62 | 5.43 | 532 | 578 |
| R-022 | 249 | 0.82 | 5,738.60 | 2.60 | 255 | 310 |
| R-023 | 113 | 0.37 | 5,188.35 | 2.35 | 230 | 618 |
| R-024 | 3401 | 11.22 | 287,488,800.99 | 130,402.70 | 12,772,057 | 1,137,881 |
| R-025 | 325 | 1.07 | 211,405.85 | 95.89 | 9,392 | 8,756 |
| R-026 | 819 | 2.70 | 4,180,707.71 | 1,896.34 | 185,733 | 68,715 |
| R-027 | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| R-028 | 495 | 1.63 | 346,097.49 | 156.99 | 15,376 | 9,412 |
| R-029 | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| R-030 | 279 | 0.92 | 231,441.19 | 104.98 | 10,282 | 11,167 |
| R-031 | 249 | 0.82 | 23,026.46 | 10.44 | 1,023 | 1,245 |
| R-032 | 113 | 0.37 | 10,380.74 | 4.71 | 461 | 1,237 |
| R-033 | 249 | 0.82 | 22,984.22 | 10.43 | 1,021 | 1,243 |
| R-034 | 113 | 0.37 | 5,202.83 | 2.36 | 231 | 620 |
| R-035 | 300 | 0.99 | 118,490.18 | 53.75 | 5,264 | 5,317 |
| R-036 | 279 | 0.92 | 42,131.71 | 19.11 | 1,872 | 2,033 |
| R-037 | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| R-038 | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| R-039 | 3401 | 11.22 | 2,888,837.35 | 1,310.35 | 128,340 | 11,434 |
| R-040 | 113 | 0.37 | 2,594.65 | 1.18 | 115 | 309 |
| R-041 | 113 | 0.37 | 10,390.23 | 4.71 | 462 | 1,238 |
| R-042 | 3401 | 11.22 | 4,299,450.31 | 1,950.20 | 191,009 | 17,017 |
| R-043 | 325 | 1.07 | 99,986.15 | 45.35 | 4,442 | 4,141 |
| R-044 | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| R-045 | 113 | 0.37 | 18,171.81 | 8.24 | 807 | 2,165 |

## World Logistic Center

## Cumulative Energy -Transportation Fuel

| Project ID | ConDays | ConYrs | CO2E | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R-046 | 325 | 1.07 | 87,004.83 | 39.46 | 3,865 | 3,604 |
| R-047 | 249 | 0.82 | 102,830.83 | 46.64 | 4,568 | 5,559 |
| R-048 | 249 | 0.82 | 89,858.10 | 40.76 | 3,992 | 4,858 |
| R-049 | 1207 | 3.98 | 822,902.29 | 373.26 | 36,558 | 9,177 |
| R-050 | 249 | 0.82 | 5,717.72 | 2.59 | 254 | 309 |
| R-051 | 113 | 0.37 | 2,594.65 | 1.18 | 115 | 309 |
| R-052 | 325 | 1.07 | 86,992.97 | 39.46 | 3,865 | 3,603 |
| R-053 | 300 | 0.99 | 76,185.35 | 34.56 | 3,385 | 3,418 |
| R-054 | 300 | 0.99 | 70,218.89 | 31.85 | 3,120 | 3,151 |
| R-055 | 300 | 0.99 | 70,207.98 | 31.85 | 3,119 | 3,150 |
| R-056 | 279 | 0.92 | 154,051.54 | 69.88 | 6,844 | 7,433 |
| R-057 | 279 | 0.92 | 195,845.44 | 88.83 | 8,701 | 9,449 |
| R-058 | 113 | 0.37 | 2,594.65 | 1.18 | 115 | 309 |
| R-059 | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| R-060 | 249 | 0.82 | 112,788.98 | 51.16 | 5,011 | 6,097 |
| R-061 | 300 | 0.99 | 522,118.14 | 236.83 | 23,196 | 23,428 |
| R-062 | 113 | 0.37 | 2,594.65 | 1.18 | 115 | 309 |
| R-063 | 249 | 0.82 | 17,235.84 | 7.82 | 766 | 932 |
| R-064 | 249 | 0.82 | 5,717.72 | 2.59 | 254 | 309 |
| R-065 | 325 | 1.07 | 106,506.95 | 48.31 | 4,732 | 4,411 |
| R-066 | 113 | 0.37 | 5,183.61 | 2.35 | 230 | 617 |
| RC-001 | 3401 | 11.22 | 27,003,460.33 | 12,248.56 | 1,199,663 | 106,880 |
| RC-002 | 3401 | 11.22 | 57,498,719.23 | 26,080.98 | 2,554,454 | 227,580 |
| RC-003 | 3401 | 11.22 | 147,104,385.91 | 66,725.42 | 6,535,300 | 582,239 |
| RC-005 | 3401 | 11.22 | 10,881,696.55 | 4,935.85 | 483,433 | 43,070 |
| RC-006 | 325 | 1.07 | 642,676.68 | 291.51 | 28,552 | 26,619 |
| RC-007 | 819 | 2.70 | 4,181,538.03 | 1,896.71 | 185,770 | 68,728 |
| RC-009 | 495 | 1.63 | 1,896,421.26 | 860.20 | 84,251 | 51,572 |
| RC-010 | 3401 | 11.22 | 68,210,389.39 | 30,939.71 | 3,030,334 | 269,977 |
| RC-011 | 325 | 1.07 | 991,798.20 | 449.87 | 44,062 | 41,079 |
| RC-012 | 300 | 0.99 | 470,322.57 | 213.33 | 20,895 | 21,104 |
| RC-013 | 3401 | 11.22 | 3,627,329.80 | 1,645.33 | 161,149 | 14,357 |
| RC-014 | 387 | 1.28 | 417,901.05 | 189.56 | 18,566 | 14,536 |
| RC-015 | 819 | 2.70 | 256,788.17 | 116.48 | 11,408 | 4,221 |
| RC-017 | 113 | 0.37 | 5,188.35 | 2.35 | 230 | 618 |
| RC-018 | 279 | 0.92 | 11,981.62 | 5.43 | 532 | 578 |
| RC-019 | 249 | 0.82 | 51,357.85 | 23.30 | 2,282 | 2,776 |
| RC-020 | 113 | 0.37 | 2,594.65 | 1.18 | 115 | 309 |
| RC-021 | 113 | 0.37 | 5,193.10 | 2.36 | 231 | 619 |
| RC-022 | 819 | 2.70 | 240,723.86 | 109.19 | 10,694 | 3,957 |
| RC-023 | 249 | 0.82 | 51,420.97 | 23.32 | 2,284 | 2,780 |
| RC-024 | 279 | 0.92 | 213,765.52 | 96.96 | 9,497 | 10,314 |
| RC-025 | 249 | 0.82 | 79,984.43 | 36.28 | 3,553 | 4,324 |
| RC-026 | 113 | 0.37 | 2,594.65 | 1.18 | 115 | 309 |
| RC-027 | 279 | 0.92 | 207,810.07 | 94.26 | 9,232 | 10,026 |
| RC-028 | 113 | 0.37 | 2,599.40 | 1.18 | 115 | 310 |
| RC-029 | 113 | 0.37 | 5,188.35 | 2.35 | 230 | 618 |
| RC-030 | 495 | 1.63 | 2,174,702.07 | 986.43 | 96,614 | 59,139 |
| RC-031 | 279 | 0.92 | 201,822.72 | 91.55 | 8,966 | 9,738 |
| RC-032 | 3401 | 11.22 | 10,479,213.50 | 4,753.29 | 465,552 | 41,477 |
| RC-033 | 3401 | 11.22 | 2,821,341.27 | 1,279.74 | 125,342 | 11,167 |
| RC-034 | 3401 | 11.22 | 3,157,217.65 | 1,432.09 | 140,263 | 12,496 |
| RC-035 | 3401 | 11.22 | 108,159,705.74 | 49,060.41 | 4,805,133 | 428,096 |
| RC-036 | 3401 | 11.22 | 3,425,832.67 | 1,553.93 | 152,197 | 13,559 |
| RC-037 | 3401 | 11.22 | 4,097,574.98 | 1,858.63 | 182,040 | 16,218 |
| RC-038 | 819 | 2.70 | 4,790,382.92 | 2,172.88 | 212,819 | 78,735 |
| RC-039 | 325 | 1.07 | 93,489.08 | 42.41 | 4,153 | 3,872 |

World Logistic Center
Cumulative Energy -Transportation Fuel

| Project ID | ConDays | ConYrs | CO2E | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RD-003 | 545 | 1.80 | 332,193.23 | 150.68 | 14,758 | 8,205 |
| RD-004 | 387 | 1.28 | 199,947.20 | 90.69 | 8,883 | 6,955 |
| RD-006 | 249 | 0.82 | 45,662.15 | 20.71 | 2,029 | 2,469 |
| RD-007 | 249 | 0.82 | 135,509.14 | 61.47 | 6,020 | 7,326 |
| RD-008 | 300 | 0.99 | 106,425.33 | 48.27 | 4,728 | 4,775 |
| RD-009 | 249 | 0.82 | 45,651.23 | 20.71 | 2,028 | 2,468 |
| RD-010 | 279 | 0.92 | 166,005.25 | 75.30 | 7,375 | 8,009 |
| RD-011 | 249 | 0.82 | 57,053.55 | 25.88 | 2,535 | 3,084 |
| SB-007 | 325 | 1.07 | 87,004.83 | 39.46 | 3,865 | 3,604 |
| SB-008 | 325 | 1.07 | 93,489.08 | 42.41 | 4,153 | 3,872 |
| SJ-001 | 819 | 2.70 | 4,416,861.47 | 2,003.45 | 196,225 | 72,596 |
| SJ-002 | 3401 | 11.22 | 2,351,229.12 | 1,066.50 | 104,456 | 9,306 |
| SJ-003 | 3401 | 11.22 | 4,231,821.20 | 1,919.52 | 188,004 | 16,750 |
| SJ-004 | 3401 | 11.22 | 4,433,573.94 | 2,011.03 | 196,967 | 17,548 |
| WLC-001 | 325 | 1.07 | 106,495.08 | 48.31 | 4,731 | 4,411 |

## World Logistic Center

 Cumulative Energy - Transportation Fuels$8.89 \mathrm{kGCO}_{2} / \mathrm{gal} \mathrm{https}: / / \mathrm{www} . e i a . g o v / e n v i r o n m e n t / e m i s s i o n s / c o 2 \_v o l \_m a s s . p h p$ $2204.623 \mathrm{lbs} /$ Metric Ton

Total Gasoline Consumption: Max Annual Consumption: Min Annual Consumption:
Average Annual Consumption: Straigth Average Annual Consumption:
$127,085,549$ gallons
$1,788,690$ gallons
313 gallons
50,842 gallons
165,626 gallons

On-Road Construction Gasoline Fuel Usage

| Project ID | ConDays | ConYrs | CO2E | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B-001 | 3401 | 11.22 | 194,955,919.05 | 88,430.50 | 9,947,188 | 886,209 |
| B-003 | 3401 | 11.22 | 18,303,688.08 | 8,302.41 | 933,905 | 83,203 |
| B-004 | 819 | 2.70 | 4,782,346.36 | 2,169.24 | 244,008 | 90,274 |
| B-006 | 819 | 2.70 | 5,108,484.58 | 2,317.17 | 260,649 | 96,431 |
| B-007 | 3401 | 11.22 | 4,095,138.22 | 1,857.52 | 208,945 | 18,615 |
| B-008 | 3401 | 11.22 | 12,954,760.09 | 5,876.18 | 660,988 | 58,888 |
| B-009 | 3401 | 11.22 | 350,288,766.12 | 158,888.28 | 17,872,698 | 1,592,304 |
| B-010 | 545 | 1.80 | 171,353.74 | 77.72 | 8,743 | 4,861 |
| B-011 | 300 | 0.99 | 183,300.16 | 83.14 | 9,352 | 9,446 |
| B-013 | 3401 | 11.22 | 74,659,559.82 | 33,865.00 | 3,809,336 | 339,379 |
| B-014 | 3401 | 11.22 | 13,938,673.27 | 6,322.47 | 711,190 | 63,361 |
| C-001 | 279 | 0.92 | 161,295.67 | 73.16 | 8,230 | 8,938 |
| C-002 | 1207 | 3.98 | 9,646,492.25 | 4,375.57 | 492,191 | 123,557 |
| C-003 | 249 | 0.82 | 57,814.90 | 26.22 | 2,950 | 3,590 |
| H-001 | 3401 | 11.22 | 5,895,208.29 | 2,674.02 | 300,790 | 26,798 |
| H-002 | 3401 | 11.22 | 4,448,430.87 | 2,017.77 | 226,971 | 20,221 |
| H-003 | 3401 | 11.22 | 18,522,831.24 | 8,401.81 | 945,086 | 84,199 |
| H-004 | 819 | 2.70 | 4,769,538.67 | 2,163.43 | 243,355 | 90,032 |
| H-005 | 113 | 0.37 | 8,570.78 | 3.89 | 437 | 1,173 |
| H-006 | 325 | 1.07 | 585,527.87 | 265.59 | 29,875 | 27,853 |
| H-007 | 1207 | 3.98 | 2,556,405.10 | 1,159.57 | 130,435 | 32,744 |
| H-008 | 3401 | 11.22 | 10,204,146.27 | 4,628.52 | 520,644 | 46,385 |
| M-001 | 325 | 1.07 | 810,251.97 | 367.52 | 41,341 | 38,543 |
| M-003 | 1207 | 3.98 | 11,930,606.95 | 5,411.63 | 608,732 | 152,814 |
| M-004 | 249 | 0.82 | 83,166.41 | 37.72 | 4,243 | 5,164 |
| M-005 | 3401 | 11.22 | 50,048,333.19 | 22,701.54 | 2,553,604 | 227,504 |
| M-006 | 300 | 0.99 | 234,256.42 | 106.26 | 11,952 | 12,072 |
| M-007 | 325 | 1.07 | 759,573.26 | 344.54 | 38,756 | 36,132 |
| M-008 | 1701 | 5.61 | 19,625,292.39 | 8,901.88 | 1,001,336 | 178,369 |
| M-009 | 819 | 2.70 | 346,721.69 | 157.27 | 17,691 | 6,545 |
| M-010 | 325 | 1.07 | 630,209.27 | 285.86 | 32,155 | 29,978 |
| M-011 | 249 | 0.82 | 53,231.04 | 24.15 | 2,716 | 3,305 |
| MV-001 | 300 | 0.99 | 246,507.21 | 111.81 | 12,577 | 12,703 |
| MV-002 | 1701 | 5.61 | 3,480,554.13 | 1,578.75 | 177,587 | 31,634 |
| MV-003 | 1207 | 3.98 | 9,352,867.53 | 4,242.39 | 477,209 | 119,796 |
| MV-005 | 249 | 0.82 | 90,129.25 | 40.88 | 4,599 | 5,596 |
| MV-006 | 325 | 1.07 | 841,524.38 | 381.71 | 42,937 | 40,030 |
| MV-007 | 300 | 0.99 | 37,425.19 | 16.98 | 1,910 | 1,929 |
| MV-008 | 325 | 1.07 | 65,783.71 | 29.84 | 3,356 | 3,129 |
| MV-009 | 279 | 0.92 | 15,660.86 | 7.10 | 799 | 868 |
| MV-010 | 325 | 1.07 | 55,192.06 | 25.03 | 2,816 | 2,625 |
| MV-011 | 300 | 0.99 | 30,051.44 | 13.63 | 1,533 | 1,549 |
| MV-013 | 113 | 0.37 | 14,852.11 | 6.74 | 758 | 2,032 |
| MV-014 | 819 | 2.70 | 281,762.49 | 127.81 | 14,376 | 5,319 |
| MV-015 | 387 | 1.28 | 85,717.75 | 38.88 | 4,374 | 3,424 |
| MV-016 | 325 | 1.07 | 42,000.60 | 19.05 | 2,143 | 1,998 |
| MV-017 | 545 | 1.80 | 171,353.74 | 77.72 | 8,743 | 4,861 |

## World Logistic Center

Cumulative Energy - Transportation Fuels
On-Road Construction Gasoline Fuel Usage

| Project ID | ConDays | ConYrs | CO2E | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MV-021 | 249 | 0.82 | 80,865.20 | 36.68 | 4,126 | 5,021 |
| MV-023 | 495 | 1.63 | 1,186,267.68 | 538.08 | 60,527 | 37,050 |
| MV-024 | 1207 | 3.98 | 604,739.88 | 274.31 | 30,855 | 7,746 |
| MV-025 | 495 | 1.63 | 133,755.74 | 60.67 | 6,825 | 4,177 |
| MV-026 | 545 | 1.80 | 176,045.06 | 79.85 | 8,982 | 4,994 |
| MV-027 | 279 | 0.92 | 100,538.24 | 45.60 | 5,130 | 5,571 |
| MV-028 | 300 | 0.99 | 166,049.02 | 75.32 | 8,472 | 8,557 |
| MV-029 | 1701 | 5.61 | 1,406,289.22 | 637.88 | 71,753 | 12,781 |
| MV-030 | 495 | 1.63 | 133,755.74 | 60.67 | 6,825 | 4,177 |
| MV-031 | 325 | 1.07 | 62,976.32 | 28.57 | 3,213 | 2,996 |
| MV-032 | 819 | 2.70 | 301,557.37 | 136.78 | 15,386 | 5,692 |
| MV-033 | 325 | 1.07 | 62,976.32 | 28.57 | 3,213 | 2,996 |
| MV-034 | 325 | 1.07 | 60,381.56 | 27.39 | 3,081 | 2,872 |
| MV-035 | 300 | 0.99 | 30,051.44 | 13.63 | 1,533 | 1,549 |
| MV-040 | 249 | 0.82 | 99,340.56 | 45.06 | 5,069 | 6,168 |
| MV-041 | 545 | 1.80 | 2,699,181.56 | 1,224.33 | 137,720 | 76,567 |
| MV-042 | 325 | 1.07 | 506,296.59 | 229.65 | 25,833 | 24,084 |
| MV-044 | 495 | 1.63 | 1,827,774.47 | 829.06 | 93,258 | 57,085 |
| MV-045 | 249 | 0.82 | 67,065.58 | 30.42 | 3,422 | 4,164 |
| MV-047 | 300 | 0.99 | 22,885.27 | 10.38 | 1,168 | 1,179 |
| MV-054 | 819 | 2.70 | 4,788,750.21 | 2,172.14 | 244,335 | 90,395 |
| MV-056 | 300 | 0.99 | 22,885.27 | 10.38 | 1,168 | 1,179 |
| MV-057 | 325 | 1.07 | 47,190.10 | 21.41 | 2,408 | 2,245 |
| MV-059 | 387 | 1.28 | 85,717.75 | 38.88 | 4,374 | 3,424 |
| MV-060 | 495 | 1.63 | 149,362.82 | 67.75 | 7,621 | 4,665 |
| MV-061 | 279 | 0.92 | 146,771.85 | 66.57 | 7,489 | 8,133 |
| MV-062 | 3401 | 11.22 | 5,459,205.34 | 2,476.25 | 278,544 | 24,816 |
| MV-063 | 1207 | 3.98 | 819,197.50 | 371.58 | 41,798 | 10,493 |
| MV-064 | 495 | 1.63 | 141,744.63 | 64.29 | 7,232 | 4,427 |
| MV-065 | 279 | 0.92 | 98,151.07 | 44.52 | 5,008 | 5,439 |
| MV-066 | 325 | 1.07 | 487,687.77 | 221.21 | 24,883 | 23,199 |
| MV-067 | 1207 | 3.98 | 604,758.62 | 274.31 | 30,856 | 7,746 |
| MV-068 | 279 | 0.92 | 217,139.38 | 98.49 | 11,079 | 12,032 |
| MV-070 | 325 | 1.07 | 469,104.28 | 212.78 | 23,935 | 22,315 |
| MV-071 | 279 | 0.92 | 93,376.73 | 42.35 | 4,764 | 5,174 |
| MV-072 | 249 | 0.82 | 43,958.08 | 19.94 | 2,243 | 2,729 |
| MV-073 | 300 | 0.99 | 178,197.12 | 80.83 | 9,092 | 9,183 |
| MV-074 | 819 | 2.70 | 920,610.37 | 417.58 | 46,972 | 17,378 |
| MV-075 | 3401 | 11.22 | 57,572,289.27 | 26,114.35 | 2,937,497 | 261,706 |
| MV-076 | 300 | 0.99 | 251,290.87 | 113.98 | 12,822 | 12,950 |
| MV-077 | 325 | 1.07 | 601,280.75 | 272.74 | 30,679 | 28,602 |
| MV-079 | 300 | 0.99 | 384,868.46 | 174.57 | 19,637 | 19,833 |
| MV-080 | 249 | 0.82 | 37,026.42 | 16.79 | 1,889 | 2,299 |
| MV-085 | 279 | 0.92 | 115,145.54 | 52.23 | 5,875 | 6,380 |
| MV-087 | 279 | 0.92 | 112,665.58 | 51.10 | 5,749 | 6,243 |
| MV-088 | 113 | 0.37 | 10,642.53 | 4.83 | 543 | 1,456 |
| MV-089 | 113 | 0.37 | 10,642.53 | 4.83 | 543 | 1,456 |
| MV-090 | 113 | 0.37 | 4,363.23 | 1.98 | 223 | 597 |
| MV-091 | 495 | 1.63 | 141,744.63 | 64.29 | 7,232 | 4,427 |
| MV-094 | 325 | 1.07 | 516,704.48 | 234.37 | 26,364 | 24,579 |
| MV-095 | 279 | 0.92 | 141,992.84 | 64.41 | 7,245 | 7,868 |
| MV-096 | 387 | 1.28 | 105,118.21 | 47.68 | 5,363 | 4,199 |
| MV-097 | 1207 | 3.98 | 799,977.60 | 362.86 | 40,817 | 10,247 |
| MV-098 | 300 | 0.99 | 22,885.27 | 10.38 | 1,168 | 1,179 |
| MV-099 | 300 | 0.99 | 178,197.12 | 80.83 | 9,092 | 9,183 |
| MV-100 | 325 | 1.07 | 379,404.36 | 172.09 | 19,358 | 18,048 |
| MV-101 | 113 | 0.37 | 4,363.23 | 1.98 | 223 | 597 |

## World Logistic Center

Cumulative Energy - Transportation Fuels
On-Road Construction Gasoline Fuel Usage

| Project ID | ConDays | ConYrs | CO2E | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MV-102 | 249 | 0.82 | 85,535.76 | 38.80 | 4,364 | 5,311 |
| MV-103 | 279 | 0.92 | 195,267.22 | 88.57 | 9,963 | 10,820 |
| MV-104 | 300 | 0.99 | 389,855.04 | 176.84 | 19,891 | 20,090 |
| MV-105 | 113 | 0.37 | 10,642.53 | 4.83 | 543 | 1,456 |
| MV-106 | 113 | 0.37 | 10,642.53 | 4.83 | 543 | 1,456 |
| MV-107 | 249 | 0.82 | 11,670.46 | 5.29 | 595 | 725 |
| MV-108 | 113 | 0.37 | 2,285.41 | 1.04 | 117 | 313 |
| MV-109 | 3401 | 11.22 | 21,903,932.86 | 9,935.46 | 1,117,599 | 99,569 |
| MV-110 | 279 | 0.92 | 112,665.58 | 51.10 | 5,749 | 6,243 |
| MV-111 | 249 | 0.82 | 30,149.54 | 13.68 | 1,538 | 1,872 |
| MV-112 | 113 | 0.37 | 12,770.23 | 5.79 | 652 | 1,747 |
| MV-113 | 819 | 2.70 | 366,516.57 | 166.25 | 18,701 | 6,919 |
| MV-114 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| MV-115 | 113 | 0.37 | 2,285.41 | 1.04 | 117 | 313 |
| MV-116 | 300 | 0.99 | 30,051.44 | 13.63 | 1,533 | 1,549 |
| MV-117 | 249 | 0.82 | 53,222.13 | 24.14 | 2,716 | 3,304 |
| MV-118 | 249 | 0.82 | 11,670.46 | 5.29 | 595 | 725 |
| MV-119 | 325 | 1.07 | 44,595.35 | 20.23 | 2,275 | 2,121 |
| MV-120 | 279 | 0.92 | 154,129.50 | 69.91 | 7,864 | 8,541 |
| MV-121 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| MV-123 | 113 | 0.37 | 6,441.06 | 2.92 | 329 | 881 |
| MV-124 | 279 | 0.92 | 115,145.54 | 52.23 | 5,875 | 6,380 |
| MV-125 | 249 | 0.82 | 43,958.08 | 19.94 | 2,243 | 2,729 |
| MV-126 | 1701 | 5.61 | 1,215,024.03 | 551.13 | 61,994 | 11,043 |
| MV-127 | 300 | 0.99 | 355,783.95 | 161.38 | 18,153 | 18,335 |
| MV-129 | 819 | 2.70 | 4,358,350.44 | 1,976.91 | 222,375 | 82,271 |
| MV-130 | 300 | 0.99 | 236,648.25 | 107.34 | 12,074 | 12,195 |
| MV-131 | 819 | 2.70 | 4,137,032.13 | 1,876.53 | 211,083 | 78,093 |
| MV-132 | 495 | 1.63 | 1,812,167.39 | 821.99 | 92,462 | 56,598 |
| P-004 | 279 | 0.92 | 183,135.22 | 83.07 | 9,344 | 10,148 |
| P-005 | 325 | 1.07 | 522,082.81 | 236.81 | 26,638 | 24,835 |
| P-006 | 325 | 1.07 | 675,234.97 | 306.28 | 34,452 | 32,120 |
| P-007 | 495 | 1.63 | 1,959,404.43 | 888.77 | 99,974 | 61,196 |
| P-008 | 300 | 0.99 | 256,174.75 | 116.20 | 13,071 | 13,201 |
| P-009 | 325 | 1.07 | 722,598.68 | 327.77 | 36,869 | 34,373 |
| P-012 | 325 | 1.07 | 514,293.49 | 233.28 | 26,241 | 24,464 |
| P-014 | 495 | 1.63 | 1,975,174.44 | 895.92 | 100,779 | 61,689 |
| P-022 | 300 | 0.99 | 397,021.21 | 180.09 | 20,257 | 20,460 |
| P-023 | 279 | 0.92 | 190,488.22 | 86.40 | 9,719 | 10,555 |
| P-024 | 545 | 1.80 | 2,725,529.99 | 1,236.28 | 139,064 | 77,315 |
| P-025 | 387 | 1.28 | 1,424,221.00 | 646.02 | 72,668 | 56,895 |
| P-026 | 325 | 1.07 | 910,081.51 | 412.81 | 46,435 | 43,292 |
| P-028 | 325 | 1.07 | 754,378.69 | 342.18 | 38,490 | 35,885 |
| P-030 | 3401 | 11.22 | 4,967,196.43 | 2,253.08 | 253,440 | 22,579 |
| P-031 | 279 | 0.92 | 136,938.51 | 62.11 | 6,987 | 7,588 |
| P-032 | 325 | 1.07 | 553,945.31 | 251.27 | 28,264 | 26,351 |
| P-033 | 3401 | 11.22 | 55,097,358.26 | 24,991.74 | 2,811,219 | 250,456 |
| P-034 | 1207 | 3.98 | 13,034,200.64 | 5,912.21 | 665,041 | 166,949 |
| P-035 | 249 | 0.82 | 69,291.76 | 31.43 | 3,535 | 4,302 |
| P-036 | 1701 | 5.61 | 20,050,990.51 | 9,094.97 | 1,023,057 | 182,238 |
| P-039 | 325 | 1.07 | 880,891.19 | 399.57 | 44,945 | 41,903 |
| P-040 | 819 | 2.70 | 314,377.56 | 142.60 | 16,040 | 5,934 |
| P-041 | 279 | 0.92 | 158,871.23 | 72.06 | 8,106 | 8,803 |
| P-042 | 325 | 1.07 | 68,378.46 | 31.02 | 3,489 | 3,253 |
| P-043 | 325 | 1.07 | 65,783.71 | 29.84 | 3,356 | 3,129 |
| P-044 | 300 | 0.99 | 173,422.77 | 78.66 | 8,849 | 8,937 |
| P-045 | 279 | 0.92 | 136,938.51 | 62.11 | 6,987 | 7,588 |

## World Logistic Center

Cumulative Energy - Transportation Fuels
On-Road Construction Gasoline Fuel Usage

| Project ID | ConDays | ConYrs | CO2E | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P-046 | 1701 | 5.61 | 4,270,690.71 | 1,937.15 | 217,902 | 38,815 |
| P-047 | 3401 | 11.22 | 5,240,009.86 | 2,376.83 | 267,360 | 23,819 |
| P-048 | 387 | 1.28 | 98,724.74 | 44.78 | 5,037 | 3,944 |
| P-049 | 819 | 2.70 | 301,557.37 | 136.78 | 15,386 | 5,692 |
| P-050 | 249 | 0.82 | 62,494.36 | 28.35 | 3,189 | 3,880 |
| P-051 | 325 | 1.07 | 44,595.35 | 20.23 | 2,275 | 2,121 |
| P-052 | 495 | 1.63 | 133,755.74 | 60.67 | 6,825 | 4,177 |
| P-053 | 1207 | 3.98 | 604,758.62 | 274.31 | 30,856 | 7,746 |
| P-054 | 1701 | 5.61 | 1,229,575.39 | 557.73 | 62,736 | 11,175 |
| P-055 | 325 | 1.07 | 390,308.47 | 177.04 | 19,915 | 18,567 |
| P-056 | 113 | 0.37 | 6,439.03 | 2.92 | 329 | 881 |
| P-057 | 113 | 0.37 | 20,097.55 | 9.12 | 1,025 | 2,750 |
| P-058 | 300 | 0.99 | 394,629.38 | 179.00 | 20,135 | 20,336 |
| P-059 | 1701 | 5.61 | 1,256,394.74 | 569.89 | 64,105 | 11,419 |
| P-060 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| R-004 | 325 | 1.07 | 421,765.89 | 191.31 | 21,520 | 20,063 |
| R-005 | 325 | 1.07 | 564,301.11 | 255.96 | 28,792 | 26,843 |
| R-006 | 279 | 0.92 | 141,899.68 | 64.36 | 7,240 | 7,863 |
| R-007 | 249 | 0.82 | 43,989.27 | 19.95 | 2,244 | 2,731 |
| R-008 | 300 | 0.99 | 73,855.50 | 33.50 | 3,768 | 3,806 |
| R-009 | 3401 | 11.22 | 153,736,537.92 | 69,733.71 | 7,844,062 | 698,839 |
| R-010 | 113 | 0.37 | 9,608.68 | 4.36 | 490 | 1,315 |
| R-011 | 300 | 0.99 | 358,213.26 | 162.48 | 18,277 | 18,460 |
| R-012 | 249 | 0.82 | 48,560.49 | 22.03 | 2,478 | 3,015 |
| R-013 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| R-014 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| R-015 | 1207 | 3.98 | 643,958.10 | 292.09 | 32,857 | 8,248 |
| R-016 | 113 | 0.37 | 2,285.41 | 1.04 | 117 | 313 |
| R-017 | 325 | 1.07 | 532,485.63 | 241.53 | 27,169 | 25,330 |
| R-018 | 3401 | 11.22 | 207,345,715.38 | 94,050.42 | 10,579,350 | 942,530 |
| R-019 | 279 | 0.92 | 102,925.41 | 46.69 | 5,252 | 5,703 |
| R-020 | 545 | 1.80 | 2,721,201.94 | 1,234.32 | 138,843 | 77,192 |
| R-021 | 279 | 0.92 | 20,622.02 | 9.35 | 1,052 | 1,143 |
| R-022 | 249 | 0.82 | 11,670.46 | 5.29 | 595 | 725 |
| R-023 | 113 | 0.37 | 4,363.23 | 1.98 | 223 | 597 |
| R-024 | 3401 | 11.22 | 393,491,285.04 | 178,484.61 | 20,077,009 | 1,788,690 |
| R-025 | 325 | 1.07 | 405,777.16 | 184.06 | 20,704 | 19,302 |
| R-026 | 819 | 2.70 | 4,196,566.74 | 1,903.53 | 214,120 | 79,217 |
| R-027 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| R-028 | 495 | 1.63 | 394,095.42 | 178.76 | 20,108 | 12,308 |
| R-029 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| R-030 | 279 | 0.92 | 168,653.32 | 76.50 | 8,605 | 9,345 |
| R-031 | 249 | 0.82 | 62,437.16 | 28.32 | 3,186 | 3,877 |
| R-032 | 113 | 0.37 | 9,608.68 | 4.36 | 490 | 1,315 |
| R-033 | 249 | 0.82 | 53,199.85 | 24.13 | 2,714 | 3,303 |
| R-034 | 113 | 0.37 | 7,528.83 | 3.42 | 384 | 1,030 |
| R-035 | 300 | 0.99 | 187,953.38 | 85.25 | 9,590 | 9,686 |
| R-036 | 279 | 0.92 | 115,052.75 | 52.19 | 5,870 | 6,375 |
| R-037 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| R-038 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| R-039 | 3401 | 11.22 | 4,065,993.55 | 1,844.30 | 207,458 | 18,483 |
| R-040 | 113 | 0.37 | 2,285.41 | 1.04 | 117 | 313 |
| R-041 | 113 | 0.37 | 11,684.48 | 5.30 | 596 | 1,599 |
| R-042 | 3401 | 11.22 | 6,004,779.88 | 2,723.72 | 306,380 | 27,296 |
| R-043 | 325 | 1.07 | 57,786.81 | 26.21 | 2,948 | 2,749 |
| R-044 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| R-045 | 113 | 0.37 | 18,021.75 | 8.17 | 920 | 2,466 |

## World Logistic Center

Cumulative Energy - Transportation Fuels
On-Road Construction Gasoline Fuel Usage

| Project ID | ConDays | ConYrs | CO2E | MT CO2e | Gallons | Gallons/year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R-046 | 325 | 1.07 | 44,595.35 | 20.23 | 2,275 | 2,121 |
| R-047 | 249 | 0.82 | 108,582.33 | 49.25 | 5,540 | 6,742 |
| R-048 | 249 | 0.82 | 60,102.74 | 27.26 | 3,067 | 3,732 |
| R-049 | 1207 | 3.98 | 2,224,442.72 | 1,008.99 | 113,497 | 28,492 |
| R-050 | 249 | 0.82 | 7,103.70 | 3.22 | 362 | 441 |
| R-051 | 113 | 0.37 | 2,285.41 | 1.04 | 117 | 313 |
| R-052 | 325 | 1.07 | 42,000.60 | 19.05 | 2,143 | 1,998 |
| R-053 | 300 | 0.99 | 35,038.02 | 15.89 | 1,788 | 1,806 |
| R-054 | 300 | 0.99 | 30,051.44 | 13.63 | 1,533 | 1,549 |
| R-055 | 300 | 0.99 | 27,664.27 | 12.55 | 1,412 | 1,426 |
| R-056 | 279 | 0.92 | 141,960.24 | 64.39 | 7,243 | 7,866 |
| R-057 | 279 | 0.92 | 183,135.22 | 83.07 | 9,344 | 10,148 |
| R-058 | 113 | 0.37 | 2,285.41 | 1.04 | 117 | 313 |
| R-059 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| R-060 | 249 | 0.82 | 101,636.58 | 46.10 | 5,186 | 6,310 |
| R-061 | 300 | 0.99 | 341,360.70 | 154.84 | 17,417 | 17,591 |
| R-062 | 113 | 0.37 | 2,285.41 | 1.04 | 117 | 313 |
| R-063 | 249 | 0.82 | 39,391.31 | 17.87 | 2,010 | 2,446 |
| R-064 | 249 | 0.82 | 7,103.70 | 3.22 | 362 | 441 |
| R-065 | 325 | 1.07 | 70,973.21 | 32.19 | 3,621 | 3,376 |
| R-066 | 113 | 0.37 | 3,325.33 | 1.51 | 170 | 455 |
| RC-001 | 3401 | 11.22 | 37,179,106.20 | 16,864.16 | 1,896,980 | 169,005 |
| RC-002 | 3401 | 11.22 | 78,907,995.95 | 35,792.06 | 4,026,103 | 358,691 |
| RC-003 | 3401 | 11.22 | 201,664,295.08 | 91,473.37 | 10,289,468 | 916,704 |
| RC-005 | 3401 | 11.22 | 14,918,124.33 | 6,766.75 | 761,164 | 67,813 |
| RC-006 | 325 | 1.07 | 675,136.65 | 306.24 | 34,447 | 32,116 |
| RC-007 | 819 | 2.70 | 4,378,157.82 | 1,985.90 | 223,386 | 82,645 |
| RC-009 | 495 | 1.63 | 1,990,626.02 | 902.93 | 101,567 | 62,171 |
| RC-010 | 3401 | 11.22 | 71,239,608.24 | 32,313.74 | 3,634,841 | 323,833 |
| RC-011 | 325 | 1.07 | 912,676.26 | 413.98 | 46,567 | 43,415 |
| RC-012 | 300 | 0.99 | 440,853.23 | 199.97 | 22,494 | 22,718 |
| RC-013 | 3401 | 11.22 | 4,994,057.72 | 2,265.27 | 254,811 | 22,701 |
| RC-014 | 387 | 1.28 | 759,531.40 | 344.52 | 38,753 | 30,342 |
| RC-015 | 819 | 2.70 | 366,516.57 | 166.25 | 18,701 | 6,919 |
| RC-017 | 113 | 0.37 | 4,363.23 | 1.98 | 223 | 597 |
| RC-018 | 279 | 0.92 | 20,622.02 | 9.35 | 1,052 | 1,143 |
| RC-019 | 249 | 0.82 | 41,701.43 | 18.92 | 2,128 | 2,589 |
| RC-020 | 113 | 0.37 | 2,285.41 | 1.04 | 117 | 313 |
| RC-021 | 113 | 0.37 | 5,401.13 | 2.45 | 276 | 739 |
| RC-022 | 819 | 2.70 | 340,317.84 | 154.37 | 17,364 | 6,424 |
| RC-023 | 249 | 0.82 | 55,505.51 | 25.18 | 2,832 | 3,446 |
| RC-024 | 279 | 0.92 | 202,620.21 | 91.91 | 10,338 | 11,228 |
| RC-025 | 249 | 0.82 | 85,523.11 | 38.79 | 4,364 | 5,310 |
| RC-026 | 113 | 0.37 | 2,285.41 | 1.04 | 117 | 313 |
| RC-027 | 279 | 0.92 | 200,041.56 | 90.74 | 10,207 | 11,085 |
| RC-028 | 113 | 0.37 | 3,323.31 | 1.51 | 170 | 455 |
| RC-029 | 113 | 0.37 | 4,363.23 | 1.98 | 223 | 597 |
| RC-030 | 495 | 1.63 | 2,072,292.47 | 939.98 | 105,734 | 64,722 |
| RC-031 | 279 | 0.92 | 190,488.22 | 86.40 | 9,719 | 10,555 |
| RC-032 | 3401 | 11.22 | 14,484,300.12 | 6,569.97 | 739,029 | 65,841 |
| RC-033 | 3401 | 11.22 | 3,902,804.02 | 1,770.28 | 199,132 | 17,741 |
| RC-034 | 3401 | 11.22 | 4,367,951.64 | 1,981.27 | 222,865 | 19,855 |
| RC-035 | 3401 | 11.22 | 151,420,561.37 | 68,683.20 | 7,725,894 | 688,311 |
| RC-036 | 3401 | 11.22 | 4,721,244.30 | 2,141.52 | 240,891 | 21,461 |
| RC-037 | 3401 | 11.22 | 5,649,256.16 | 2,562.46 | 288,241 | 25,680 |
| RC-038 | 819 | 2.70 | 5,024,030.40 | 2,278.86 | 256,340 | 94,836 |
| RC-039 | 325 | 1.07 | 49,789.91 | 22.58 | 2,540 | 2,368 |

## World Logistic Center

Cumulative Energy - Transportation Fuels
On-Road Construction Gasoline Fuel Usage

| Project ID | ConDays | ConYrs | CO2E |  | MT CO2e | Gallons |
| :--- | ---: | ---: | ---: | :---: | :---: | :---: |
|  | Gallons/year |  |  |  |  |  |
| RD-003 | 545 | 1.80 | $184,709.59$ | 83.78 | 9,424 | 5,240 |
| RD-004 | 387 | 1.28 | $92,117.45$ | 41.78 | 4,700 | 3,680 |
| RD-006 | 249 | 0.82 | $39,413.59$ | 17.88 | 2,011 | 2,447 |
| RD-007 | 249 | 0.82 | $97,087.64$ | 44.04 | 4,954 | 6,028 |
| RD-008 | 300 | 0.99 | $149,126.58$ | 67.64 | 7,609 | 7,685 |
| RD-009 | 249 | 0.82 | $37,026.42$ | 16.79 | 1,889 | 2,299 |
| RD-010 | 279 | 0.92 | $156,479.40$ | 70.98 | 7,984 | 8,671 |
| RD-011 | 249 | 0.82 | $43,989.27$ | 19.95 | 2,244 | 2,731 |
| SB-007 | 325 | 1.07 | $44,595.35$ | 20.23 | 2,275 | 2,121 |
| SB-008 | 325 | 1.07 | $49,789.91$ | 22.58 | 2,540 | 2,368 |
| SJ-001 | 819 | 2.70 | $3,537,407.10$ | $1,604.54$ | 180,488 | 66,774 |
| SJ-002 | 3401 | 11.22 | $3,276,697.94$ | $1,486.28$ | 167,186 | 14,895 |
| SJ-003 | 3401 | 11.22 | $5,812,498.00$ | $2,636.50$ | 296,570 | 26,422 |
| SJ-004 | 3401 | 11.22 | $6,141,212.75$ | $2,785.61$ | 313,342 | 27,916 |
| WLC-001 | 325 | 1.07 | $68,378.46$ | 31.02 | 3,489 | 3,253 |

On-Road Operational Transportation Fuel Calculations

| Project ID | CO2E (MT) | CO2e Gas (kg) | Gasoline (gal) | CO2e Dsl (kg) | Dsl (gal) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B-001 | 176,084.36 | 155,745,319.62 | 17,519,159 | 20255703.3 | 1,993,672 |
| B-002 | 23,625.56 | 20,896,630.31 | 2,350,577 | 2717744.228 | 267,495 |
| B-003 | 49,196.90 | 43,514,298.39 | 4,894,747 | 5659320.74 | 557,020 |
| B-004 | 62,854.09 | 55,593,978.13 | 6,253,541 | 7230362.551 | 711,650 |
| B-005 | 73,688.29 | 65,176,749.65 | 7,331,468 | 8476665.022 | 834,317 |
| B-006 | 128,860.14 | 113,975,838.78 | 12,820,679 | 14823307.56 | 1,458,987 |
| B-007 | 21,503.64 | 19,019,807.21 | 2,139,461 | 2473651.039 | 243,470 |
| B-008 | 34,576.57 | 30,582,717.31 | 3,440,126 | 3977483.557 | 391,485 |
| B-009 | 237,447.10 | 210,020,203.73 | 23,624,320 | 27314509 | 2,688,436 |
| B-010 | 5,069.10 | 4,483,577.38 | 504,339 | 583118.7314 | 57,394 |
| B-011 | 26,945.98 | 23,833,518.79 | 2,680,936 | 3099705.895 | 305,089 |
| B-012 | 11,543.84 | 10,210,437.58 | 1,148,531 | 1327934.57 | 130,702 |
| B-013 | 100,848.32 | 89,199,592.14 | 10,033,700 | 11600993.71 | 1,141,830 |
| B-014 | 37,351.23 | 33,036,885.98 | 3,716,185 | 4296664.337 | 422,900 |
| C-001 | 23,951.98 | 21,185,350.04 | 2,383,054 | 2755294.129 | 271,190 |
| C-002 | 229,550.81 | 203,035,993.39 | 22,838,694 | 26406166.5 | 2,599,032 |
| C-003 | 8,706.54 | 7,700,874.74 | 866,240 | 1001549.416 | 98,578 |
| H-001 | 31,375.03 | 27,750,984.22 | 3,121,596 | 3609198.043 | 355,236 |
| H-002 | 23,477.92 | 20,766,042.62 | 2,335,888 | 2700760.44 | 265,823 |
| H-003 | 49,677.13 | 43,939,058.35 | 4,942,526 | 5714563.568 | 562,457 |
| H-004 | 95,836.62 | 84,766,786.44 | 9,535,072 | 11024478.17 | 1,085,086 |
| H-005 | 2,504.04 | 2,214,801.23 | 249,134 | 288049.4694 | 28,351 |
| H-006 | 81,531.10 | 72,113,660.41 | 8,111,773 | 9378855.897 | 923,116 |
| H-007 | 7,487.20 | 6,622,375.78 | 744,924 | 861283.5321 | 84,772 |
| H-008 | 16,939.19 | 14,982,587.76 | 1,685,330 | 1948584.093 | 191,790 |
| H-009 | 12,527.47 | 11,080,455.57 | 1,246,395 | 1441086.133 | 141,839 |
| M-001 | 27,887.97 | 24,666,707.79 | 2,774,658 | 3208067.604 | 315,755 |
| M-002 | 233,838.42 | 206,828,354.89 | 23,265,282 | 26899388.06 | 2,647,578 |
| M-003 | 122,921.39 | 108,723,059.93 | 12,229,816 | 14140149.12 | 1,391,747 |
| M-004 | 13,041.85 | 11,535,423.10 | 1,297,573 | 1500257.653 | 147,663 |
| M-005 | 180,342.72 | 159,511,801.64 | 17,942,835 | 20745559.06 | 2,041,886 |
| M-006 | 15,251.68 | 13,489,994.54 | 1,517,435 | 1754462.527 | 172,683 |
| M-007 | 28,632.21 | 25,324,974.82 | 2,848,704 | 3293679.562 | 324,181 |
| M-008 | 513,737.85 | 454,397,333.89 | 51,113,311 | 59097362.28 | 5,816,670 |

World Logistic Center
Cumulative Energy - Transportation Fuel

| Dsl (gal) |
| :---: |
| 81,559 |
| 268,271 |
| 90,849 |
| 412,887 |
| 259,474 |
| $1,062,934$ |
| 384,660 |
| 157,779 |
| 359,935 |
| 18,728 |
| 35,040 |
| 6,646 |
| 28,395 |
| 14,499 |
| 135,678 |
| 17,640 |
| 64,643 |
| 38,061 |
| 19,333 |
| 57,998 |
| 7,458 |
| 32,914 |
| 127,172 |
| 135,678 |
| 24,166 |
| 195,351 |
| 96,059 |
| 48,936 |
| 60,414 |
| 25,297 |
| 42,162 |
| 166,139 |
| 50,144 |
| 32,020 |
| 69,476 |
| 32,624 |
| 31,415 |
| 15,104 |
| 26,234 |
| 525,539 |
| 178,118 |
| 656,655 |
| 47,221 |

World Logistic Center
Cumulative Energy - Transportation Fuel

| Project ID | CO2E (MT) | CO2e Gas (kg) | Gasoline (gal) | CO2e Dsl (kg) | Dsl (gal) | CO2e NG (kg) | MCF | MMBtu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MV-041 | 61,460.69 | 54,361,529.96 | 6,114,908 | 7070074.559 | 695,873 | 29089.20972 | 547.6131349 | 567 |
| MV-042 | 18,919.30 | 16,733,978.55 | 1,882,337 | 2176363.986 | 214,209 | 8954.461214 | 168.5704295 | 175 |
| MV-043 | 15,959.24 | 14,115,832.07 | 1,587,833 | 1835856.814 | 180,695 | 7553.473931 | 142.1964219 | 147 |
| MV-044 | 47,022.86 | 41,591,369.23 | 4,678,444 | 5409231.155 | 532,405 | 22255.81331 | 418.9723892 | 434 |
| MV-045 | 10,433.48 | 9,228,338.48 | 1,038,058 | 1200206.123 | 118,131 | 4938.144191 | 92.96205178 | 96 |
| MV-046 | 16,203.58 | 14,331,948.74 | 1,612,143 | 1863964.209 | 183,461 | 7669.119375 | 144.3734822 | 150 |
| MV-047 | 853.74 | 755,128.82 | 84,941 | 98209.47055 | 9,666 | 404.0743647 | 7.606821624 | 8 |
| MV-048 | 103,219.93 | 91,297,264.21 | 10,269,659 | 11873809.76 | 1,168,682 | 48853.76235 | 919.6867912 | 953 |
| MV-049 | 108,472.99 | 95,943,563.27 | 10,792,302 | 12478091.51 | 1,228,159 | 51340.02732 | 966.4914782 | 1,001 |
| MV-050 | 12,861.16 | 11,375,605.18 | 1,279,596 | 1479472.282 | 145,617 | 6087.160627 | 114.5926323 | 119 |
| MV-051 | 27,886.34 | 24,665,259.09 | 2,774,495 | 3207879.191 | 315,736 | 13198.54123 | 248.4665141 | 257 |
| MV-052 | 31,860.57 | 28,180,440.03 | 3,169,903 | 3665051.596 | 360,733 | 15079.53751 | 283.8768357 | 294 |
| MV-053 | 52,983.36 | 46,863,387.90 | 5,271,472 | 6094891.861 | 599,891 | 25076.90494 | 472.0802887 | 489 |
| MV-054 | 73,668.06 | 65,158,854.54 | 7,329,455 | 8474337.644 | 834,088 | 34866.92862 | 656.3804334 | 680 |
| MV-056 | 853.74 | 755,128.82 | 84,941 | 98209.47055 | 9,666 | 404.0743647 | 7.606821624 | 8 |
| MV-057 | 1,974.28 | 1,746,235.40 | 196,427 | 227109.4006 | 22,353 | 934.4219683 | 17.59077501 | 18 |
| MV-058 | 426.87 | 377,564.41 | 42,471 | 49104.73528 | 4,833 | 202.0371823 | 3.803410812 | 4 |
| MV-059 | 3,361.61 | 2,973,319.74 | 334,457 | 386699.7903 | 38,061 | 1591.042811 | 29.95186015 | 31 |
| MV-060 | 4,909.02 | 4,341,990.73 | 488,413 | 564704.4557 | 55,581 | 2323.427597 | 43.73922434 | 45 |
| MV-061 | 21,556.78 | 19,066,815.04 | 2,144,749 | 2479764.716 | 244,071 | 10202.77725 | 192.0703549 | 199 |
| MV-062 | 28,973.88 | 25,627,184.41 | 2,882,698 | 3332983.907 | 328,050 | 13713.27375 | 258.1565089 | 267 |
| MV-063 | 11,792.32 | 10,430,216.86 | 1,173,253 | 1356518.312 | 133,516 | 5581.277162 | 105.0692237 | 109 |
| MV-064 | 4,642.22 | 4,106,012.97 | 461,869 | 534013.9961 | 52,560 | 2197.154358 | 41.36209258 | 43 |
| MV-065 | 2,151.54 | 1,903,020.62 | 214,063 | 247500.35 | 24,360 | 1018.318764 | 19.17015746 | 20 |
| MV-066 | 10,385.31 | 9,185,734.16 | 1,033,266 | 1194665.151 | 117,585 | 4915.346344 | 92.53287544 | 96 |
| MV-067 | 8,590.78 | 7,598,483.78 | 854,723 | 988232.7974 | 97,267 | 4065.998295 | 76.5436426 | 79 |
| MV-068 | 5,947.66 | 5,260,660.46 | 591,750 | 684183.4976 | 67,341 | 2815.013772 | 52.99348215 | 55 |
| MV-069 | 11,763.95 | 10,405,126.39 | 1,170,430 | 1353255.132 | 133,194 | 5567.85109 | 104.8164738 | 109 |
| MV-070 | 9,971.56 | 8,819,768.66 | 992,100 | 1147068.93 | 112,900 | 4719.515812 | 88.8463067 | 92 |
| MV-071 | 2,027.41 | 1,793,230.97 | 201,713 | 233221.4837 | 22,955 | 959.5696049 | 18.06418684 | 19 |
| MV-072 | 993.02 | 878,317.21 | 98,798 | 114230.9308 | 11,243 | 469.9932759 | 8.847764983 | 9 |
| MV-073 | 3,972.07 | 3,513,268.84 | 395,193 | 456923.7232 | 44,973 | 1879.973104 | 35.39105993 | 37 |
| MV-074 | 3,952.74 | 3,496,170.45 | 393,270 | 454699.9653 | 44,754 | 1870.823644 | 35.2188186 | 36 |
| MV-075 | 30,555.32 | 27,025,952.56 | 3,040,040 | 3514902.906 | 345,955 | 14461.76373 | 272.2470581 | 282 |
| MV-076 | 37,321.14 | 33,010,270.94 | 3,713,191 | 4293202.876 | 422,559 | 17664.01158 | 332.5303384 | 345 |
| MV-077 | 19,320.20 | 17,088,575.75 | 1,922,224 | 2222481.684 | 218,748 | 9144.208489 | 172.1424791 | 178 |
| MV-078 | 18,848.98 | 16,671,781.22 | 1,875,341 | 2168274.813 | 213,413 | 8921.179014 | 167.943882 | 174 |
| MV-079 | 15,555.91 | 13,759,090.69 | 1,547,704 | 1789460.25 | 176,128 | 7362.579289 | 138.6027728 | 144 |
| MV-080 | 5,305.36 | 4,692,555.03 | 527,846 | 610297.6495 | 60,069 | 2511.016846 | 47.27064846 | 49 |
| MV-081 | 29,670.68 | 26,243,497.22 | 2,952,024 | 3413139.442 | 335,939 | 14043.06676 | 264.3649617 | 274 |
| MV-082 | 21,193.34 | 18,745,355.16 | 2,108,589 | 2437956.745 | 239,956 | 10030.76197 | 188.8321155 | 196 |
| MV-083 | 12,904.30 | 11,413,757.91 | 1,283,887 | 1484434.295 | 146,106 | 6107.576402 | 114.9769654 | 119 |
| MV-084 | 3,624.01 | 3,205,406.43 | 360,563 | 416884.1909 | 41,032 | 1715.233914 | 32.28979507 | 33 |

World Logistic Center
Cumulative Energy - Transportation Fuel

| Project ID | CO2E (MT) | CO2e Gas (kg) | Gasoline (gal) | CO2e Dsl (kg) | Dsl (gal) | CO2e NG (kg) | MCF | MMBtu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MV-085 | 16,766.39 | 14,829,745.03 | 1,668,138 | 1928705.89 | 189,833 | 7935.493419 | 149.3880538 | 155 |
| MV-086 | 3,788.48 | 3,350,884.15 | 376,927 | 435804.5256 | 42,894 | 1793.079993 | 33.75527096 | 35 |
| MV-087 | 2,482.55 | 2,195,793.03 | 246,996 | 285577.327 | 28,108 | 1174.98319 | 22.11941246 | 23 |
| MV-088 | 496.51 | 439,158.61 | 49,399 | 57115.46539 | 5,622 | 234.9966379 | 4.423882491 | 5 |
| MV-089 | 496.51 | 439,158.61 | 49,399 | 57115.46539 | 5,622 | 234.9966379 | 4.423882491 | 5 |
| MV-090 | 875.44 | 774,324.54 | 87,101 | 100706.0004 | 9,912 | 414.3461207 | 7.800190525 | 8 |
| MV-091 | 4,642.22 | 4,106,012.97 | 461,869 | 534013.9961 | 52,560 | 2197.154358 | 41.36209258 | 43 |
| MV-093 | 4,634.08 | 4,098,813.65 | 461,059 | 533077.677 | 52,468 | 2193.301954 | 41.28956992 | 43 |
| MV-094 | 11,005.95 | 9,734,682.42 | 1,095,015 | 1266059.483 | 124,612 | 5209.092141 | 98.06272856 | 102 |
| MV-095 | 20,957.98 | 18,537,181.28 | 2,085,172 | 2410882.363 | 237,292 | 9919.366774 | 186.7350673 | 193 |
| MV-096 | 4,161.99 | 3,681,253.01 | 414,089 | 478771.1689 | 47,123 | 1969.862528 | 37.08325542 | 38 |
| MV-097 | 11,418.80 | 10,099,848.00 | 1,136,091 | 1313551.669 | 129,287 | 5404.494628 | 101.7412392 | 105 |
| MV-098 | 853.74 | 755,128.82 | 84,941 | 98209.47055 | 9,666 | 404.0743647 | 7.606821624 | 8 |
| MV-099 | 3,972.07 | 3,513,268.84 | 395,193 | 456923.7232 | 44,973 | 1879.973104 | 35.39105993 | 37 |
| MV-100 | 8,026.90 | 7,099,730.79 | 798,620 | 923366.6905 | 90,883 | 3799.112313 | 71.51943361 | 74 |
| MV-101 | 1,077.84 | 953,340.75 | 107,237 | 123988.2358 | 12,204 | 510.1388627 | 9.603517746 | 10 |
| MV-102 | 4,362.43 | 3,858,533.28 | 434,031 | 501827.634 | 49,392 | 2064.726357 | 38.86909558 | 40 |
| MV-103 | 6,669.64 | 5,899,245.66 | 663,582 | 767235.7032 | 75,515 | 3156.724882 | 59.42629672 | 62 |
| MV-104 | 15,811.51 | 13,985,159.67 | 1,573,134 | 1818862.009 | 179,022 | 7483.550278 | 140.8800881 | 146 |
| MV-105 | 496.51 | 439,158.61 | 49,399 | 57115.46539 | 5,622 | 234.9966379 | 4.423882491 | 5 |
| MV-106 | 496.51 | 439,158.61 | 49,399 | 57115.46539 | 5,622 | 234.9966379 | 4.423882491 | 5 |
| MV-107 | 480.23 | 424,759.96 | 47,780 | 55242.82718 | 5,437 | 227.2918301 | 4.278837164 | 4 |
| MV-108 | 356.05 | 314,920.23 | 35,424 | 40957.44723 | 4,031 | 168.515871 | 3.172362029 | 3 |
| MV-109 | 58,961.58 | 52,151,084.30 | 5,866,264 | 6782591.56 | 667,578 | 27906.38581 | 525.3461184 | 544 |
| MV-110 | 2,482.55 | 2,195,793.03 | 246,996 | 285577.327 | 28,108 | 1174.98319 | 22.11941246 | 23 |
| MV-111 | 662.01 | 585,544.81 | 65,866 | 76153.95386 | 7,495 | 313.3288506 | 5.898509988 | 6 |
| MV-112 | 620.64 | 548,948.26 | 61,749 | 71394.33174 | 7,027 | 293.7457974 | 5.529853114 | 6 |
| MV-113 | 7,683.68 | 6,796,159.40 | 764,472 | 883885.235 | 86,997 | 3636.669282 | 68.46139462 | 71 |
| MV-114 | 682.63 | 603,782.48 | 67,917 | 78525.88267 | 7,729 | 323.0879464 | 6.082227906 | 6 |
| MV-115 | 1.19 | 1,056.50 | 119 | 137.4051855 | 14 | 0.565341741 | 0.010642729 | 0 |
| MV-116 | 1,333.97 | 1,179,888.78 | 132,721 | 153452.2977 | 15,104 | 631.3661948 | 11.88565879 | 12 |
| MV-117 | 2,700.55 | 2,388,615.84 | 268,686 | 310655.202 | 30,576 | 1278.163936 | 24.06182108 | 25 |
| MV-118 | 480.23 | 424,759.96 | 47,780 | 55242.82718 | 5,437 | 227.2918301 | 4.278837164 | 4 |
| MV-119 | 1,867.56 | 1,651,844.30 | 185,809 | 214833.2168 | 21,145 | 883.9126728 | 16.6399223 | 17 |
| MV-120 | 22,696.90 | 20,075,237.70 | 2,258,182 | 2610916.716 | 256,980 | 10742.39081 | 202.2287426 | 210 |
| MV-121 | 521.08 | 460,887.29 | 51,843 | 59941.42377 | 5,900 | 246.623799 | 4.642767301 | 5 |
| MV-123 | 1,676.64 | 1,482,974.50 | 166,814 | 192870.589 | 18,983 | 793.5493419 | 14.93880538 | 15 |
| MV-124 | 16,766.39 | 14,829,745.03 | 1,668,138 | 1928705.89 | 189,833 | 7935.493419 | 149.3880538 | 155 |
| MV-125 | 993.02 | 878,317.21 | 98,798 | 114230.9308 | 11,243 | 469.9932759 | 8.847764983 | 9 |
| MV-126 | 12,539.34 | 11,090,954.58 | 1,247,576 | 1442451.599 | 141,974 | 5934.842231 | 111.7251926 | 116 |
| MV-127 | 14,411.90 | 12,747,216.42 | 1,433,883 | 1657859.345 | 163,175 | 6821.118758 | 128.4096152 | 133 |
| MV-129 | 57,271.89 | 50,656,566.00 | 5,698,151 | 6588219.625 | 648,447 | 27106.65931 | 510.2910262 | 529 |
| MV-130 | 9,403.87 | 8,317,651.50 | 935,619 | 1081765.291 | 106,473 | 4450.829642 | 83.78820861 | 87 |

World Logistic Center
Cumulative Energy - Transportation Fuel

| CO2e Dsl (kg) | Dsl (gal) |
| :---: | :---: |
| 7313870.234 | 719,869 |
| 5363504.838 | 527,904 |
| 840918.5916 | 82,768 |
| 2925548.093 | 287,948 |
| 2254134.806 | 221,864 |
| 717198.5921 | 70,590 |
| 2242920.205 | 220,760 |
| 2501855.554 | 246,246 |
| 4961429.749 | 488,330 |
| 1004911.981 | 98,909 |
| 2121079.191 | 208,768 |
| 8289052.931 | 815,852 |
| 4047207.417 | 398,347 |
| 1893437.641 | 186,362 |
| 5851096.187 | 575,895 |
| 3807186.391 | 374,723 |
| 6387446.671 | 628,686 |
| 2828029.824 | 278,349 |
| 7543038.168 | 742,425 |
| 3401437.25 | 334,787 |
| 4249358.606 | 418,244 |
| 828905.2931 | 81,585 |
| 1852847.126 | 182,367 |
| 877664.428 | 86,384 |
| 7138337.348 | 702,592 |
| 5061198.202 | 498,149 |
| 3384260.008 | 333,096 |
| 4212789.255 | 414,645 |
| 2793738.702 | 274,974 |
| 3019941.219 | 297,238 |
| 356971.6587 | 35,135 |
| 8858270.624 | 871,877 |
| 11416850.95 | $1,123,706$ |
| 15441320.76 | $1,519,815$ |
| 190384.8846 | 18,739 |
| 17504552.16 | $1,722,889$ |
| 1123270.819 | 110,558 |
| 1368794.496 | 134,724 |
| 3821253.401 | 376,108 |
| 748847.2129 | 73,705 |
| 624371.4115 | 61,454 |
| 374423.6065 | 36,853 |
| 349871.2388 | 34,436 |
|  |  |


| Project ID | CO2E (MT) | CO2e Gas (kg) |
| ---: | ---: | :---: |
| MV-131 | $63,580.03$ | $56,236,065.48$ |
| MV-132 | $46,625.35$ | $41,239,781.35$ |
| P-001 | $7,310.17$ | $6,465,790.54$ |
| P-002 | $25,432.01$ | $22,494,426.19$ |
| P-003 | $19,595.36$ | $17,331,955.38$ |
| P-004 | $6,234.66$ | $5,514,512.25$ |
| P-005 | $19,497.88$ | $17,245,726.75$ |
| P-006 | $21,748.82$ | $19,236,670.63$ |
| P-007 | $43,130.08$ | $38,148,241.53$ |
| P-008 | $8,735.78$ | $7,726,729.37$ |
| P-009 | $18,438.70$ | $16,308,895.90$ |
| P-010 | $72,057.37$ | $63,734,207.54$ |
| P-011 | $35,182.68$ | $31,118,821.37$ |
| P-012 | $16,459.80$ | $14,558,568.82$ |
| P-014 | $50,864.02$ | $44,988,852.38$ |
| P-015 | $33,096.16$ | $29,273,308.98$ |
| P-016 | $55,526.56$ | $49,112,830.52$ |
| P-017 | $24,584.28$ | $21,744,611.99$ |
| P-018 | $65,572.20$ | $57,998,128.86$ |
| P-019 | $29,568.95$ | $26,153,519.52$ |
| P-020 | $36,940.00$ | $32,673,154.04$ |
| P-021 | $7,205.74$ | $6,373,420.75$ |
| P-022 | $16,106.94$ | $14,246,469.92$ |
| P-023 | $7,629.60$ | $6,748,327.86$ |
| P-024 | $62,054.11$ | $54,886,399.91$ |
| P-025 | $43,997.38$ | $38,915,357.31$ |
| P-026 | $29,419.63$ | $26,021,444.37$ |
| P-027 | $36,622.10$ | $32,391,973.72$ |
| P-028 | $24,286.18$ | $21,480,948.87$ |
| P-030 | $26,252.58$ | $23,220,211.29$ |
| P-031 | $3,103.18$ | $2,744,741.28$ |
| P-032 | $77,005.62$ | $68,110,900.38$ |
| P-033 | $99,247.55$ | $87,783,725.60$ |
| P-034 | $134,232.57$ | $118,727,718.41$ |
| P-035 | $1,655.03$ | $1,463,862.02$ |
| P-036 | $152,168.40$ | $134,591,824.87$ |
| P-037 | $9,764.68$ | $8,636,785.91$ |
| P-038 | $11,899.03$ | $10,524,607.96$ |
| P-039 | $33,218.45$ | $29,381,469.68$ |
| P-040 | $6,509.79$ | $5,757,857.27$ |
| P-041 | $5,427.71$ | $4,800,767.65$ |
| P-042 | $3,254.89$ | $2,878,928.64$ |
| P-043 | $2,690,146.43$ |  |
|  |  |  |

World Logistic Center
Cumulative Energy - Transportation Fuel

| Project ID | CO2E (MT) | CO2e Gas (kg) | Gasoline (gal) | CO2e Dsl (kg) | Dsl (gal) | CO2e NG (kg) | MCF | MMBtu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P-044 | 3,889.32 | 3,440,075.74 | 386,960 | 447404.4789 | 44,036 | 1840.806997 | 34.65374618 | 36 |
| P-045 | 3,103.18 | 2,744,741.28 | 308,745 | 356971.6587 | 35,135 | 1468.728987 | 27.64926557 | 29 |
| P-046 | 8,972.10 | 7,935,751.98 | 892,661 | 1032096.747 | 101,584 | 4246.472716 | 79.94112794 | 83 |
| P-047 | 27,799.99 | 24,588,882.28 | 2,765,904 | 3197945.885 | 314,758 | 13157.6715 | 247.6971291 | 257 |
| P-048 | 4,001.92 | 3,539,666.35 | 398,163 | 460356.8932 | 45,311 | 1894.098584 | 35.65697636 | 37 |
| P-049 | 6,082.91 | 5,380,292.86 | 605,207 | 699742.4777 | 68,872 | 2879.029848 | 54.19860407 | 56 |
| P-050 | 9,580.79 | 8,474,140.02 | 953,222 | 1102117.652 | 108,476 | 4534.567668 | 85.36460219 | 88 |
| P-051 | 1,867.56 | 1,651,844.30 | 185,809 | 214833.2168 | 21,145 | 883.9126728 | 16.6399223 | 17 |
| P-052 | 4,375.43 | 3,870,035.21 | 435,325 | 503323.5366 | 49,540 | 2070.881119 | 38.98496083 | 40 |
| P-053 | 8,590.78 | 7,598,483.78 | 854,723 | 988232.7974 | 97,267 | 4065.998295 | 76.5436426 | 79 |
| P-054 | 12,699.42 | 11,232,541.23 | 1,263,503 | 1460865.874 | 143,786 | 6010.606175 | 113.1514717 | 117 |
| P-055 | 53,891.96 | 47,667,037.59 | 5,361,871 | 6199411.79 | 610,178 | 25506.94313 | 480.1758873 | 497 |
| P-056 | 357.19 | 315,930.25 | 35,538 | 41088.80771 | 4,044 | 169.0563423 | 3.182536565 | 3 |
| P-057 | 1,765.41 | 1,561,488.08 | 175,645 | 203081.7968 | 19,988 | 835.5624724 | 15.72971522 | 16 |
| P-058 | 10,856.43 | 9,602,434.04 | 1,080,139 | 1248859.711 | 122,919 | 5138.325168 | 96.73051897 | 100 |
| P-059 | 12,966.21 | 11,468,518.99 | 1,290,047 | 1491556.334 | 146,807 | 6136.879414 | 115.5286034 | 120 |
| P-060 | 538.92 | 476,670.38 | 53,619 | 61994.1179 | 6,102 | 255.0694313 | 4.801758873 | 5 |
| P-061 | 14,835.34 | 13,121,748.61 | 1,476,012 | 1706569.721 | 167,969 | 7021.533382 | 132.1824808 | 137 |
| R-001 | 95,618.14 | 84,573,540.75 | 9,513,334 | 10999345.3 | 1,082,613 | 45255.85401 | 851.9550831 | 883 |
| R-002 | 24,701.77 | 21,848,536.23 | 2,457,653 | 2841545.856 | 279,680 | 11691.29443 | 220.0921392 | 228 |
| R-003 | 23,634.37 | 20,904,425.86 | 2,351,454 | 2718758.091 | 267,594 | 11186.0948 | 210.581604 | 218 |
| R-004 | 8,937.16 | 7,904,854.90 | 889,185 | 1028078.377 | 101,189 | 4229.939483 | 79.62988484 | 82 |
| R-005 | 74,895.55 | 66,244,558.88 | 7,451,581 | 8615540.635 | 847,986 | 35447.89611 | 667.3173213 | 691 |
| R-006 | 3,185.93 | 2,817,934.38 | 316,978 | 366490.9029 | 36,072 | 1507.895093 | 28.38657932 | 29 |
| R-007 | 6,718.65 | 5,942,596.61 | 668,459 | 772873.7796 | 76,070 | 3179.922259 | 59.86299434 | 62 |
| R-008 | 773.82 | 684,435.49 | 76,989 | 89015.33712 | 8,761 | 366.2458986 | 6.894689356 | 7 |
| R-009 | 1,051,206.77 | 929,784,632.27 | 104,587,698 | 120924607.5 | 11,902,028 | 497533.8293 | 9366.224195 | 9,703 |
| R-010 | 2,822.14 | 2,496,163.87 | 280,783 | 324642.5307 | 31,953 | 1335.713589 | 25.14521063 | 26 |
| R-011 | 23,686.51 | 20,950,542.71 | 2,356,641 | 2724755.891 | 268,185 | 11210.77224 | 211.0461641 | 219 |
| R-012 | 7,350.60 | 6,501,549.02 | 731,333 | 845569.2174 | 83,225 | 3479.021345 | 65.49362472 | 68 |
| R-013 | 160.08 | 141,586.65 | 15,927 | 18414.27573 | 1,812 | 75.76394338 | 1.426279055 | 1 |
| R-014 | 462.03 | 408,665.40 | 45,969 | 53149.62375 | 5,231 | 218.6795258 | 4.11670794 | 4 |
| R-015 | 9,161.51 | 8,103,287.39 | 911,506 | 1053885.828 | 103,729 | 4336.122008 | 81.62880285 | 85 |
| R-016 | 81.41 | 72,006.25 | 8,100 | 9364.886826 | 922 | 38.53101614 | 0.725357985 | 1 |
| R-017 | 11,378.33 | 10,064,051.37 | 1,132,064 | 1308896.082 | 128,828 | 5385.339619 | 101.3806404 | 105 |
| R-018 | 327,603.52 | 289,762,893.12 | 32,594,251 | 37685570.3 | 3,709,210 | 155054.0166 | 2918.938565 | 3,024 |
| R-019 | 2,275.67 | 2,012,810.27 | 226,413 | 261779.2164 | 25,766 | 1077.067924 | 20.27612809 | 21 |
| R-020 | 61,945.98 | 54,790,761.11 | 6,163,190 | 7125898.893 | 701,368 | 29318.89411 | 551.9370127 | 572 |
| R-021 | 800.38 | 707,933.27 | 79,633 | 92071.37864 | 9,062 | 378.8197169 | 7.131395273 | 7 |
| R-022 | 480.23 | 424,759.96 | 47,780 | 55242.82718 | 5,437 | 227.2918301 | 4.278837164 | 4 |
| R-023 | 962.75 | 851,545.14 | 95,787 | 110749.0475 | 10,900 | 455.6673685 | 8.578075462 | 9 |
| R-024 | 266,794.49 | 235,977,757.00 | 26,544,180 | 30690459.55 | 3,020,715 | 126273.239 | 2377.131758 | 2,463 |
| R-025 | 8,606.16 | 7,612,082.49 | 856,252 | 990001.4002 | 97,441 | 4073.275058 | 76.68062985 | 79 |

World Logistic Center
Cumulative Energy - Transportation Fuel

| Project ID | CO2E (MT) | CO2e Gas (kg) | Gasoline (gal) | CO2e Dsl (kg) | Dsl (gal) | CO2e NG (kg) | MCF | MMBtu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R-026 | 94,052.79 | 83,188,994.76 | 9,357,592 | 10819275.98 | 1,064,889 | 44514.97441 | 838.0078014 | 868 |
| R-027 | 433.29 | 383,242.98 | 43,109 | 49843.27079 | 4,906 | 205.0758228 | 3.860614134 | 4 |
| R-028 | 2,802.47 | 2,478,766.35 | 278,826 | 322379.8696 | 31,730 | 1326.404065 | 24.96995605 | 26 |
| R-029 | 454.49 | 401,992.02 | 45,218 | 52281.70609 | 5,146 | 215.1085538 | 4.049483316 | 4 |
| R-030 | 24,977.76 | 22,092,642.31 | 2,485,112 | 2873293.457 | 282,804 | 11821.91719 | 222.551152 | 231 |
| R-031 | 1,489.53 | 1,317,475.82 | 148,198 | 171346.3962 | 16,865 | 704.9899138 | 13.27164747 | 14 |
| R-032 | 2,667.29 | 2,359,200.58 | 265,377 | 306829.5542 | 30,200 | 1262.423639 | 23.76550525 | 25 |
| R-033 | 1,241.27 | 1,097,896.51 | 123,498 | 142788.6635 | 14,054 | 587.4915949 | 11.05970623 | 11 |
| R-034 | 631.82 | 558,844.24 | 62,862 | 72681.36899 | 7,154 | 299.0412008 | 5.629540677 | 6 |
| R-035 | 4,220.33 | 3,732,848.15 | 419,893 | 485481.4559 | 47,784 | 1997.471422 | 37.60300118 | 39 |
| R-036 | 2,565.30 | 2,268,986.13 | 255,229 | 295096.5712 | 29,045 | 1214.149296 | 22.85672621 | 24 |
| R-037 | 718.56 | 635,560.50 | 71,492 | 82658.82386 | 8,136 | 340.0925751 | 6.402345164 | 7 |
| R-038 | 419.16 | 370,743.63 | 41,703 | 48217.64725 | 4,746 | 198.3873355 | 3.734701346 | 4 |
| R-039 | 21,450.28 | 18,972,611.66 | 2,134,152 | 2467512.948 | 242,865 | 10152.36841 | 191.1213933 | 198 |
| R-040 | 287.42 | 254,224.20 | 28,597 | 33063.52955 | 3,254 | 136.03703 | 2.560938066 | 3 |
| R-041 | 1,200.91 | 1,062,199.09 | 119,482 | 138145.9787 | 13,597 | 568.3896701 | 10.70010674 | 11 |
| R-042 | 31,908.62 | 28,222,939.74 | 3,174,684 | 3670578.962 | 361,277 | 15102.27938 | 284.3049582 | 295 |
| R-043 | 2,667.94 | 2,359,777.57 | 265,442 | 306904.5955 | 30,207 | 1262.73239 | 23.77131758 | 25 |
| R-044 | 479.04 | 423,707.00 | 47,661 | 55105.88258 | 5,424 | 226.7283834 | 4.268230109 | 4 |
| R-045 | 1,970.31 | 1,742,724.93 | 196,032 | 226652.8406 | 22,308 | 932.5434914 | 17.55541211 | 18 |
| R-046 | 1,912.54 | 1,691,630.15 | 190,285 | 220007.6283 | 21,654 | 905.2023409 | 17.04070672 | 18 |
| R-047 | 4,566.40 | 4,038,949.20 | 454,325 | 525291.912 | 51,702 | 2161.268098 | 40.68652293 | 42 |
| R-048 | 9,017.92 | 7,976,284.29 | 897,220 | 1037368.24 | 102,103 | 4268.161818 | 80.34943181 | 83 |
| R-049 | 6,483.33 | 5,734,459.48 | 645,046 | 745804.1759 | 73,406 | 3068.546718 | 57.76631623 | 60 |
| R-050 | 204.50 | 180,876.95 | 20,346 | 23524.23724 | 2,315 | 96.78843767 | 1.822071492 | 2 |
| R-051 | 282.75 | 250,093.06 | 28,132 | 32526.24719 | 3,201 | 133.8264283 | 2.519322822 | 3 |
| R-052 | 1,707.48 | 1,510,257.64 | 169,883 | 196418.9411 | 19,333 | 808.1487294 | 15.21364325 | 16 |
| R-053 | 1,547.41 | 1,368,670.99 | 153,956 | 178004.6654 | 17,520 | 732.384786 | 13.78736419 | 14 |
| R-054 | 1,333.97 | 1,179,888.78 | 132,721 | 153452.2977 | 15,104 | 631.3661948 | 11.88565879 | 12 |
| R-055 | 1,067.18 | 943,911.03 | 106,177 | 122761.8382 | 12,083 | 505.0929559 | 9.508527031 | 10 |
| R-056 | 6,803.31 | 6,017,474.52 | 676,881 | 782612.1435 | 77,029 | 3219.989915 | 60.61728002 | 63 |
| R-057 | 6,220.74 | 5,502,200.78 | 618,920 | 715597.4045 | 70,433 | 2944.263572 | 55.42664858 | 57 |
| R-058 | 328.86 | 290,874.86 | 32,719 | 37830.18839 | 3,723 | 155.6490352 | 2.93013997 | 3 |
| R-059 | 485.03 | 429,003.34 | 48,257 | 55794.70611 | 5,492 | 229.5624882 | 4.321582986 | 4 |
| R-060 | 7,063.05 | 6,247,217.81 | 702,724 | 812491.7702 | 79,970 | 3342.927052 | 62.93160865 | 65 |
| R-061 | 50,951.49 | 45,066,218.09 | 5,069,316 | 5861158.106 | 576,886 | 24115.22763 | 453.9764238 | 470 |
| R-062 | 219.28 | 193,951.88 | 21,817 | 25224.71775 | 2,483 | 103.7849175 | 1.953782333 | 2 |
| R-063 | 868.89 | 768,527.56 | 86,449 | 99952.06444 | 9,838 | 411.2441164 | 7.74179436 | 8 |
| R-064 | 266.79 | 235,977.76 | 26,544 | 30690.45955 | 3,021 | 126.273239 | 2.377131758 | 2 |
| R-065 | 3,308.25 | 2,926,124.19 | 329,148 | 380561.6984 | 37,457 | 1565.788163 | 29.47643379 | 31 |
| R-066 | 736.52 | 651,449.51 | 73,279 | 84725.29446 | 8,339 | 348.5948895 | 6.562403793 | 7 |
| RC-001 | 66,751.98 | 59,041,634.80 | 6,641,354 | 7678752.979 | 755,783 | 31593.56439 | 594.7583658 | 616 |
| RC-002 | 106,717.80 | 94,391,102.80 | 10,617,672 | 12276183.82 | 1,208,286 | 50509.29559 | 950.8527031 | 985 |

World Logistic Center
Cumulative Energy - Transportation Fuel

| Project ID | CO2E (MT) | CO2e Gas (kg) | Gasoline (gal) | CO2e Dsl (kg) | Dsl (gal) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RC-003 | 182,060.56 | 161,031,221.37 | 18,113,748 | 20943169.59 | 2,061,336 |
| RC-005 | 40,019.17 | 35,396,663.55 | 3,981,627 | 4603568.932 | 453,107 |
| RC-006 | 41,719.15 | 36,900,282.40 | 4,150,763 | 4799124.455 | 472,355 |
| RC-007 | 67,252.62 | 59,484,448.07 | 6,691,164 | 7736343.758 | 761,451 |
| RC-009 | 35,446.82 | 31,352,449.76 | 3,526,710 | 4077592.327 | 401,338 |
| RC-010 | 224,737.81 | 198,778,929.89 | 22,359,835 | 25852507.39 | 2,544,538 |
| RC-011 | 34,502.76 | 30,517,438.20 | 3,432,783 | 3968993.58 | 390,649 |
| RC-012 | 15,357.02 | 13,583,173.44 | 1,527,916 | 1766581.055 | 173,876 |
| RC-013 | 26,519.37 | 23,456,189.05 | 2,638,491 | 3050631.679 | 300,259 |
| RC-014 | 13,240.24 | 11,710,896.14 | 1,317,311 | 1523079.077 | 149,909 |
| RC-015 | 7,576.96 | 6,701,768.30 | 753,855 | 871609.0511 | 85,788 |
| RC-017 | 1,111.37 | 983,000.24 | 110,574 | 127845.6476 | 12,583 |
| RC-018 | 800.38 | 707,933.27 | 79,633 | 92071.37864 | 9,062 |
| RC-019 | 6,323.08 | 5,592,720.56 | 629,102 | 727370.0971 | 71,592 |
| RC-020 | 335.33 | 296,594.90 | 33,363 | 38574.1178 | 3,797 |
| RC-021 | 339.09 | 299,925.68 | 33,737 | 39007.30791 | 3,839 |
| RC-022 | 6,990.02 | 6,182,617.23 | 695,458 | 804090.0401 | 79,143 |
| RC-023 | 1,901.21 | 1,681,605.62 | 189,157 | 218703.873 | 21,526 |
| RC-024 | 6,916.20 | 6,117,325.38 | 688,113 | 795598.4056 | 78,307 |
| RC-025 | 3,081.08 | 2,725,195.01 | 306,546 | 354429.5368 | 34,885 |
| RC-026 | 106.72 | 94,391.10 | 10,618 | 12276.18382 | 1,208 |
| RC-027 | 6,840.07 | 6,049,994.47 | 680,539 | 786841.5776 | 77,445 |
| RC-028 | 670.66 | 593,189.80 | 66,726 | 77148.23561 | 7,593 |
| RC-029 | 975.09 | 862,455.60 | 97,014 | 112168.024 | 11,040 |
| RC-030 | 53,366.96 | 47,202,678.83 | 5,309,638 | 6139018.878 | 604,234 |
| RC-031 | 6,546.39 | 5,790,237.86 | 651,320 | 753058.5217 | 74,120 |
| RC-032 | 38,738.56 | 34,263,970.32 | 3,854,215 | 4456254.726 | 438,608 |
| RC-033 | 20,489.82 | 18,123,091.74 | 2,038,593 | 2357027.293 | 231,991 |
| RC-034 | 23,051.04 | 20,388,478.20 | 2,293,417 | 2651655.705 | 260,990 |
| RC-035 | 156,445.96 | 138,375,296.88 | 15,565,275 | 17996617.58 | 1,771,321 |
| RC-036 | 24,971.96 | 22,087,518.05 | 2,484,535 | 2872627.014 | 282,739 |
| RC-037 | 29,987.70 | 26,523,899.89 | 2,983,566 | 3449607.653 | 339,528 |
| RC-038 | 77,303.14 | 68,374,057.85 | 7,691,120 | 8892495.985 | 875,246 |
| RC-039 | 2,081.00 | 1,840,626.50 | 207,045 | 239385.5845 | 23,562 |
| RD-001 | 4,375.43 | 3,870,035.21 | 435,325 | 503323.5366 | 49,540 |
| RD-002 | 2,934.74 | 2,595,755.33 | 291,986 | 337595.055 | 33,228 |
| RD-003 | 5,495.97 | 4,861,141.79 | 546,810 | 632223.4667 | 62,227 |
| RD-004 | 3,575.05 | 3,162,101.94 | 355,692 | 411252.1579 | 40,478 |
| RD-005 | 21,218.86 | 18,767,924.57 | 2,111,128 | 2440892.044 | 240,245 |
| RD-006 | 5,775.30 | 5,108,211.60 | 574,602 | 664356.5203 | 65,389 |
| RD-007 | 15,298.85 | 13,531,718.63 | 1,522,128 | 1759889.019 | 173,217 |
| RD-008 | 3,310.06 | 2,927,724.04 | 329,328 | 380769.7693 | 37,477 |
| RD-009 | 5,245.72 | 4,639,803.51 | 521,913 | 603436.9672 | 59,393 |

World Logistic Center

## 4 EMFAC2017 Output



|  | Region | Calendar Y Vehicle | Model Yea Speed Fuel | Population | Fleet Mix | VMT | Trips | CO2_RUNEX | CO2_IDLEX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HHDTGAS | RIVERSIDE | 2035 HHDT | Aggregatec Aggregater GAS | 11.25743 | 0.0021\% | 1362.518 | 225.2387 | 1586.73452 | 0 |
| HHDTDSL | RIVERSIDE | 2035 HHDT | Aggregatec Aggregater DSL | 32047.38 | 7.2135\% | 4793615 | 376234.1 | 987.0145677 | 13331.11395 |
| hhdtng | RIVERSIDE | 2035 HHDT | Aggregatec Aggregater NG | 771.7684 | 0.0473\% | 31452.33 | 3009.897 | 2714.207766 | 3174.530747 |
| LDAGAS | RIVERSIDE | 2035 LDA | Aggregatec Aggregater GAS | 1026177 | 52.6986\% | 35020112 | 4821114 | 202.4034979 | 0 |
| LDADSL | RIVERSIDE | 2035 LDA | Aggregatec Aggregater DSL | 12272.66 | 0.6445\% | 428289.8 | 58176.99 | 154.6038399 | 0 |
| LDAELEC | RIVERSIDE | 2035 LDA | Aggregatec Aggregater ELEC | 57077.13 |  | 1978520 | 275511.7 | 0 | 0 |
| LDT1GAS | RIVERSIDE | 2035 LDT1 | Aggregatec Aggregater GAS | 113196 | 5.6691\% | 3767315 | 521643.5 | 238.9849513 | 0 |
| LDT1DSL | RIVERSIDE | 2035 LDT1 | Aggregater Aggregater DSL | 14.31294 | 0.0007\% | 492.3036 | 67.07345 | 295.4050304 | 0 |
| LDT1ELEC | RIVERSIDE | 2035 LDT1 | Aggregatec Aggregater ELEC | 3465.608 |  | 120930.7 | 16754.53 | 0 | 0 |
| LDT2GAS | RIVERSIDE | 2035 LDT2 | Aggregatec Aggregater GAS | 339088.6 | 17.3331\% | 11518451 | 1579591 | 237.2422535 | 0 |
| LDT2DSL | RIVERSIDE | 2035 LDT2 | Aggregatec Aggregater DSL | 3254.042 | 0.1719\% | 114262.6 | 15447.74 | 206.4704 | 0 |
| LDT2ELEC | RIVERSIDE | 2035 LDT2 | Aggregatec Aggregater ELEC | 12891.58 |  | 309954.7 | 62226.35 | 0 | 0 |
| LHDT1GAS | RIVERSIDE | 2035 LHDT1 | Aggregatec Aggregater GAS | 20955.52 | 0.9951\% | 661305.6 | 312206 | 661.4861766 | 104.9596334 |
| LHDT1DSL | RIVERSIDE | 2035 LHDT1 | Aggregatec Aggregater DSL | 22345.02 | 1.0374\% | 689370.8 | 281072.3 | 398.9689362 | 115.5686394 |
| LHDT2GAS | RIVERSIDE | 2035 LHDT2 | Aggregatec Aggregater GAS | 3380.417 | 0.1555\% | 103349.9 | 50363.18 | 762.3995063 | 121.6684155 |
| LHDT2DSL | RIVERSIDE | 2035 LHDT2 | Aggregatec Aggregater DSL | 9178.708 | 0.4102\% | 272579.8 | 115456.6 | 437.009078 | 187.6016974 |
| MCYGAS | RIVERSIDE | 2035 MCY | Aggregatec Aggregater GAS | 43796.89 |  | 281780.6 | 87593.78 | 208.732552 | 0 |
| MDVGAS | RIVERSIDE | 2035 MDV | Aggregatec Aggregater GAS | 230649.6 | 11.3656\% | 7552836 | 1059811 | 291.7169927 | 0 |
| MDVDSL | RIVERSIDE | 2035 MDV | Aggregatec Aggregater DSL | 7697.93 | 0.3955\% | 262831.4 | 36182.69 | 272.565321 | 0 |
| mbvelec | RIVERSIDE | 2035 MDV | Aggregatec Aggregater ELEC | 9378.102 |  | 226957.7 | 45374.87 | 0 | 0 |
| MHGAS | RIVERSIDE | 2035 MH | Aggregatec Aggregater GAS | 4107.681 |  | 34638.88 | 410.9324 | 1385.171447 | 0 |
| MHDSL | RIVERSIDE | 2035 MH | Aggregater Aggregater DSL | 2387.596 |  | 16996.27 | 238.7596 | 823.1610404 | 0 |
| MHDTGAS | RIVERSIDE | 2035 MHDT | Aggregatec Aggregater GAS | 3103.367 | 0.2302\% | 152965.2 | 62092.18 | 1359.260719 | 465.4649771 |
| MHDTDSL | RIVERSIDE | 2035 MHDT | Aggregatec Aggregater DSL | 19033.83 | 1.6297\% | 1082985 | 189748 | 730.94652 | 640.270784 |
| OBUSGAS | RIVERSIDE | 2035 OBUS | Aggregatec Aggregater GAS | 630.9891 |  | 25215.57 | 12624.83 | 1353.01178 | 328.2707739 |
| obUSDSL | RIVERSIDE | 2035 Obus | Aggregatec Aggregater DSL | 527.6401 |  | 34295.76 | 4947.738 | 881.9809888 | 1895.303384 |
| Sbusgas | RIVERSIDE | 2035 SBUS | Aggregatec Aggregater GAS | 651.9289 |  | 24179.42 | 2607.716 | 803.4340821 | 2430.954073 |
| SBUSDSL | RIVERSIDE | 2035 SBUS | Aggregatec Aggregater DSL | 1384.753 |  | 44206.81 | 15979.86 | 1001.896198 | 3113.087544 |
| UBUSGAS | RIVERSIDE | 2035 UBUS | Aggregatec Aggregater GAS | 177.0694 |  | 24930.46 | 708.2777 | 1104.471064 | 0 |
| UBUSDSL | RIVERSIDE | 2035 UBUS | Aggregatec Aggregater DSL | 0 |  | 0 | 0 | 0 | 0 |
| ubuselec |  |  |  |  |  |  |  |  |  |
| UBUSNG | RIVERSIDE | 2035 UBUS | Aggregatec Aggregater NG | 338.7765 |  | 45825.53 | 1355.106 | 1740.489106 | 0 |

[^99]
[^0]:    1 U.S. Environmental Protection Agency. 2013. Federal Register. National Ambient Air Quality Standards for Particulate Matter. Website: http://www.gpo.gov/fdsys/pkg/FR-2013-01-15/pdf/2012-30946.pdf. Accessed May 2018.

[^1]:    2 U.S. Environmental Protection Agency. 2013. Federal Register. National Ambient Air Quality Standards for Particulate Matter. Website: http://www.gpo.gov/fdsys/pkg/FR-2013-01-15/pdf/2012-30946.pdf. Accessed May 2018.
    3 Environmental Health Perspectives, January 2015. Associations of Mortality with Long-Term Exposures to Fine and Ultrafine Particles, Species and Sources: Results from the California Teachers Study Cohort
    4 U.S. Environmental Protection Agency. 2010. Quantitative Health Risk Assessment for Particulate Matter. EPA-452/R-10-005. Website: http://www.epa.gov/nscep/index.html. (Search for the document.)

[^2]:    5 U.S. Environmental Protection Agency. 2013. Federal Register. National Ambient Air Quality Standards for Particulate Matter. Website: http://www.gpo.gov/fdsys/pkg/FR-2013-01-15/pdf/2012-30946.pdf. Accessed May 2018.
    6 U.S. Environmental Protection Agency. 2013. Federal Register. National Ambient Air Quality Standards for Particulate Matter. Website: http://www.gpo.gov/fdsys/pkg/FR-2013-01-15/pdf/2012-30946.pdf. Accessed May 2018.

[^3]:    7 Gauderman, W, et. al. Peters: Association between Air Pollution and Lung Function Growth in Southern California Children. American Journal of Respiratory and Critical Medicine. Vol 162. Page 1383. 2000.

[^4]:    8 Historical Air Quality, Summary of 1994 Air Quality, http://aqmd.gov/smog/AirQualityStandardsComplianceReport/ AirQualitySummary94.html, website accessed December 17, 2012.
    9 State of the Air 2017, American Lung Association, http://www.lung.org/associations/states/california/assets/pdfs/sota/south-coast-fact-sheet.pdf, website accessed April 2018.

[^5]:    10 CARB, California Almanac of Emissions and Air Quality, 2013 Edition

[^6]:    11 CARB. The California Almanac of Emissions and Air Quality, 2013 Edition. https://www.arb.ca.gov/aqd/almanac/almanac13/almanac13.htm. Accessed April 2018

[^7]:    12 Ambient: of or related to the immediate surroundings of something; in this context it means "in the air"

[^8]:    13 The troposphere is the zone of the atmosphere characterized by water vapor, weather, winds, and decreasing temperature with increasing altitude.
    14 U.S. Environmental Protection Agency (EPA). Climate Change: Basic Information. Available at https://archive.epa.gov/epa/climatechange/climate-change-basic-information.html. Website accessed June 2018.
    15 Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis, http://www.ipcc.ch.

[^9]:    16 World Resources Institute, CAIT. 2018. Climate Analysis Indicators Tool: WRI's Climate Data Explorer. Washington, DC. Available at: http://cait2.wri.org. Accessed April 6, 2018.
    17 Ibid.

[^10]:    22 United States Environmental Protection Agency, EPA and NHTSA Set Standards to Reduce Greenhouse Gases and Improve Fuel Economy for Model Years 2017-2025 Cars and Light Trucks, (August 2012). Available at: http://www.epa.gov/oms/climate/documents/420f12051.pdf. Accessed March 2017.

[^11]:    23 U.S. Geological Survey. 2011. Van Gosen, B.S., and Clinken beard, J.P. California Geological Survey Map Sheet 59. Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Other Natural Occurrences of Asbestos in California. Open-File Report 2011-1188

[^12]:    24 California Air Resources Board (CARB). The Advanced Clean Cars Program, 2017. Available at https://www.arb.ca.gov/msprog/acc/acc.htm. Website accessed June 2018
    25 California Air Resources Board (CARB). Mobile Source Strategy, 2016. Available at https://www.arb.ca.gov/planning/sip/2016sip/2016mobsrc.htm. Website accessed June 2018

[^13]:    26 CARB, Climate Change Proposed Scoping Plan: a Framework for Change, October 2008.
    27 CAT is a consortium of representatives from State agencies who have been charged with coordinating and implementing GHG emission reduction programs that fall outside of CARB's jurisdiction.

[^14]:    28 CARB. 2007. Expanded List of Early Action Measures to Reduce Greenhouse Gas Emissions in California Recommended for Board Consideration. October.
    29 CARB. 2007. "ARB approves tripling of early action measures required under AB 32." News Release 07-46. http://www.arb.ca.gov/newsrel/nr102507.htm. October 25.
    30 Executive Order S-3-05 establishes greenhouse gas emission reduction targets for California.

[^15]:    3117 CCR §§ 95800 to 96023.
    32 See generally 17 CCR $\S \S 95811,95812$.
    33 Scoping Plan Reduction Measures from California Air Resources Board 2008.

[^16]:    34 California Air Resources Board, First Update to the Climate Change Scoping Plan, http://www.arb.ca.gov/cc/scopingplan/2013_update/first_update_climate_change_scoping_plan.pdf, May 2014, Accessed September 12, 2016.
    35 Ibid.

[^17]:    36 CARB, California's 2017 Climate Change Scoping Plan: The strategy for achieving California's 2030 greenhouse gas target, November, 2017, https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdf; accessed December 18, 2017.

[^18]:    37 Id. at 101.
    38 California Air Resources Board (CARB). Mobile Source Strategy, 2016. Available at https://www.arb.ca.gov/planning/sip/2016sip/2016mobsrc.htm. Website accessed June 2018.

[^19]:    39 South Coast Air Quality Management District. 2012 Air Quality Management Plan, February 2013. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2012-air-quality-management-plan/final-2012-aqmp-(february-2013)/main-document-final-2012.pdf

[^20]:    40 South Coast Air Quality Management District, 2019a. General Board Meeting November 1, 2019 Agenda No. 1. Attached Minutes of the October 42019 Meeting. Available online: http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2019/2019-nov1-001.pdf?sfvrsn=6 Accessed November 6, 2015.
    41 South Coast Air Quality Management District, 2018. Board Meeting, March 2, 2018. Agenda No. 32. Available online: http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2018/2018-mar2-032.pdf?sfvrsn=7. Accessed November 3, 2019.

[^21]:    42 South Coast Air Quality Management District General Board Meeting March 1, 2019 Agenda No. 25. Mobile Source Committee Meeting February 15, 2019. Available online: http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2019/2019-mar1-025.pdf?sfvrsn=6. Accessed November 6, 2019.
    43 San Joaquin Valley Air Pollution Control District, 2017. Rule 9510 Indirect Source Review (ISR) (Adopted December 15, 2005, Amended December 21, 2017, but not in effect until March 21, 2018). Available online: http://www.valleyair.org/rules/currntrules/r9510-a.pdf. Accessed November 6, 2015.
    44 For more information see: http://www.aqmd.gov/ceqa/handbook/GHG/GHG.html.

[^22]:    $45 \mathrm{http}: / / \mathrm{www} . p o r t o f l o s a n g e l e s . o r g / c t p / i d x \quad c t p . a s p$.
    $46 \mathrm{http}: / / w w w . a r b . c a . g o v / m s p r o g / o n r o a d / p o r t t r u c k / p o r t t r u c k . h t m . ~$
    47 http://www.arb.ca.gov/msprog/onrdiesel/onrdiesel.htm.
    $48 \mathrm{http}: / / \mathrm{www} . c l e a n a i r a c t i o n p l a n . o r g / 2017-c l e a n-a i r-a c t i o n-p l a n-u p d a t e /$

[^23]:    49 CARB. 1998. The Toxic Air Contaminant Identification Process: Toxic Air Contaminant Emissions from Dieselfueled Engines

[^24]:    50 CEQA Air Quality Handbook, April 1993.

[^25]:    51 SCAQMD. 2015. Air Quality Significance Thresholds. Revised March 2015. http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2

[^26]:    52 SCAQMD. Final Negative Declaration for: Ultramar Inc. Wilmington Refinery Cogeneration Project. October 2014. https://planning.lacity.org/eir/CrossroadsHwd/deir/files/references/C38.pdf

    53 SCAQMD. Final Negative Declaration for: Phillips 66 Los Angeles Refinery Carson Plant - Crude Oil Storage Capacity Project. December 2014. http://www.aqmd.gov/docs/default-source/ceqa/documents/permit-projects/2014/phillips-66-fnd.pdf
    54 San Joaquin Valley Air Pollution Control District (SJVAPCD). 2014. CEQA Determinations of Significance for Projects Subject to ARB's GHG Cap-and-Trade Regulation. https://www.valleyair.org/policies_per/Policies/APR2025.pdf

[^27]:    55 Full build out of the Project is expected to take 15 to 20 years, dependent on market forces. The TIA analyzes full project buildout in 2040, which is worst case for traffic analysis purposes as it accounts for greater regional growth in non-project traffic. However, for purposes of a conservative construction impact analysis, the fifteen-year buildout (construction ending in 2034 and full operations in 2035) is analyzed. An accelerated construction schedule occurring in earlier years would account for greater overlap of construction activity and the use of dirtier construction equipment (i.e. subject to less stringent emission standards).

[^28]:    56 SCAQMD. 2007. Fugitive Dust Mitigation Measures. http://www.aqmd.gov/docs/default-source/ceqa/handbook/mitigation-measures-and-control-efficiencies/fugitive-dust/fugitive-dust-overview.pdf

[^29]:    57 SCAQMD. 2007. Fugitive Dust Mitigation Measures. http://www.aqmd.gov/docs/default-source/ceqa/handbook/mitigation-measures-and-control-efficiencies/fugitive-dust/fugitive-dust-overview.pdf
    58 SCAQMD. 2007. Fugitive Dust Mitigation Measures. http://www.aqmd.gov/docs/default-source/ceqa/handbook/mitigation-measures-and-control-efficiencies/fugitive-dust/fugitive-dust-overview.pdf

[^30]:    59 WSP USA, Inc. Traffic Impact Analysis Report for The World Logistics Center. June 2018

[^31]:    60 ESA. World Logistics Center Transportation Energy Technical Study. June 2018

[^32]:    61 CARB. 2000. Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-fueled Engines and Vehicles. https://www.arb.ca.gov/diesel/documents/rrpfinal.pdf

[^33]:    62 Running emissions for N2O are from EMFAC 2017 and Idling emissions are from the EPA. U.S. EPA. 2014. Emission Factors for Greenhouse Gas Inventories. https://www.epa.gov/sites/production/files/2018-03/documents/emission-factors_mar_2018_0.pdf

[^34]:    63 CARB. 2011. Regulation for Reducing Emissions from Consumer Products. https://www.arb.ca.gov/consprod/regs/fro\%20consumer\%20products\%20regulation.pdf

[^35]:    64 Carollo Engineers. Moreno Valley Regional Water Reclamation Facility Fuel Cell Cogeneration Design and Construction. https://www.carollo.com/projects/moreno-valley-regional-wrf-fuel-cell-cogeneration-design-andconstruction. Accessed May 2018.

[^36]:    65 Port of Los Angeles. 2012. Port of Los Angeles Inventory of Air Emissions - 2012. https://www.portoflosangeles.org/pdf/2012_Air_Emissions_Inventory.pdf

[^37]:    66 For construction equipment equipped with diesel particulate matter filters, the BC component is 10 percent of PM2.5; however, this percentage is not applied. The construction equipment will be Tier 3 or higher; however, the BC component of Tier 3 equipment is currently not available so a worst-case assessment is provided.
    67 The percentage of BC for the light duty diesel vehicle group varies from $31 \%$ to $64 \%$; therefore, the worst-case scenario is used in this analysis.

[^38]:    68 U.S. EPA. 2012. Report to Congress on Black Carbon, March 2012.
    69 The albedo is the reflecting power of a surface.
    70 U.S. EPA. 2012. Report to Congress on Black Carbon, March 2012.

[^39]:    71 SCAQMD. AB 2588 \& Rule 1402 Supplement Guidelines, 2016. Available at http://www.aqmd.gov/docs/default-source/planning/risk-assessment/ab2588-supplemental-guidelines.pdf?sfvrsn=9

[^40]:    72 Total Organic Gases (TOG) means compounds of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid; metallic carbides or carbonares, and ammonium carbonate; also includes all organic gas compounds emitted to the atmosphere including low reactivity or exempt compounds such as methane, ethane, etc.

[^41]:    73 A target organ is an organ or bodily system that is most affected by exposure to a specific toxic air contaminant.

[^42]:    74 CARB. 2005. HARP User Guide, Appendix K, Risk Assessment Procedures to Evaluate Particulate Emissions from Diesel-Fueled Engines. https://www.arb.ca.gov/toxics/harp/docs/userguide/appendixK.pdf

[^43]:    75 Total organic compounds are comprised of many types of individual chemical compounds. Speciation is the process of breaking a total organic compound into its individual compounds. From this information, speciation profiles are devised for many emission sources to provide the makeup of that sources total organic emissions. Speciation profiles are used to estimate emissions of the individual compounds from the emission source which, in turn, are used to estimate the health effects of the emission sources and their total organic compound emissions.
    76 Office of Environmental Health Hazard Assessment, Air Toxics Hot Spots Program, Risk Assessment Guidelines, Guidance Manual for Preparation of Health Risk Assessments, February 2015.
    http://www.oehha.ca.gov/air/hot_spots/2015/2015GuidanceManual.pdf

[^44]:    79 CARB. 2013. Speciation Profiles Used in ARB Modeling. https://www.arb.ca.gov/ei/speciate/speciate.htm

[^45]:    80 SCAQMD. 1993. South Coast Air Quality Management District. CEQA Air Quality Handbook, 1993.

[^46]:    81 Lead referred to here is a chemical element; a heavy metal.

[^47]:    82 The project would emit $\mathrm{SO}_{\mathrm{X}}$ from construction equipment exhaust; however, the maximum emissions (2 pounds per day) are less than significant as they are far below the threshold of 150 pounds per day.

[^48]:    ${ }^{(1)}$ Background data for CO and $\mathrm{NO}_{2}$ for State standards were derived as the highest air quality measured data over the most recent 3 years of meteorological data 2016-2018. Background concentrations for the National 1-hour NO2 is the 3-year average of the $98{ }^{\text {th }}$ percentile of the daily maximum 1-hour average.
    $\mu \mathrm{g} / \mathrm{m}^{3}=$ micrograms per cubic meter (a concentration unit)
    $N A=$ Not Applicable, the SCAQMD threshold methodology does not require a background for $\mathrm{PM}_{10}$ or $\mathrm{PM}_{2.5}$

[^49]:    83 CARB. 1998. The Toxic Air Contaminant Identification Process: Toxic Air Contaminant Emissions from Dieselfueled Engines. https://www.arb.ca.gov/toxics/dieseltac/factsht1.pdf

[^50]:    84 Definition of a 1 in a million cancer risk from the US EPA, Technology Transfer Network Air Toxics, Glossary of Key Terms, Website: www.epa.gov/ttn/atw/natamain/gloss1.html.

[^51]:    Conservatively assumed all receptors in the studied domain are residential receptors and will have 30-year average exposures from 2035 to 2064 (includes diesel PM emissions from full project operation); cancer risk estimates derived from the TIA, EMFAC2017 emission model, SCAQMD HRA guidance and "Current OEHHA Guidance" for estimating cancer risks
    2 Location is at the existing residence immediately to the north of the project boundary at 13241 World Logistics Center Parkway (formerly Theodore Avenue),
    3 Location is at the existing residence located at 30220 Dracaea Avenue.
    4 Location is to the northwest of the project boundary, on the west side of Redlands Boulevard and south of Eucalyptus Avenue.
    5 Location is south of SR 60 freeway, same as the location in footnote (2).

[^52]:    85 University of California, Davis. 1997. Prepared for California Department of Transportation. 1996. Transportation Project-Level Carbon Monoxide Protocol. http://www.dot.ca.gov/env/air/co-protocol.html

[^53]:    86 WSP. World Logistics Center Comparison of Renewable Energy Technologies. 2018

[^54]:    87 U.S. EPA. 2011. Exposure Factors Handbook. Chapter 16. Activity Factors, Table 16-111. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252

[^55]:    88 SCAQMD. Air Filtration in Schools. http://www.aqmd.gov/docs/default-source/technology-research/clean-fuels-program/clean-fuels-program-advisory-group---february-3-2010/air-filtration-in-schools.pdf U.S. EPA. Publications about Indoor Air Quality. https://www.epa.gov/indoor-air-quality-iaq/publications-about-indoor-air-quality\#residential-air-cleaners
    90 CARB. 2013. Rulemaking to Consider Proposed Amendments to the Air Designations for State Ambient Air Quality Standards, 2013. https://www.arb.ca.gov/regact/2012/area12/area12.htm
    91 Dieselnet.com. Diesel Exhaust Particle Size, 2002. https://www.dieselnet.com/tech/dpm_size.php

[^56]:    * Pursuant to Mitigation Measure MM-AQ-12, the Applicant shall install MERV-13 air filters at the residence located at 13241 World Logistics Center Parkway (formerly Theodore Avenue). Cancer risk calculation conservatively assumed all receptors modeled are residential receptors. 30-year average exposures from 2020 to 2049 (includes diesel PM emissions from construction and operation); cancer risk estimates derived from the EMFAC2017 emission model and "Current OEHHA Guidance" for estimating cancer risks. 2 Location is at existing residences within the boundaries of the project.
    3

[^57]:    Estimated Cancer Risks, 30-Year Exposure Duration for Sensitive/Residential Onsite Receptors Starting from Beginning of Project Full Operation in 2035, With Mitigation \& Installation of MERV-13 Filters

    | Receptor Location | Total Incremental Increase in Cancer Risk <br> (risk/million) | SCAQMD Cancer Risk Significance Threshold <br> (risk/million) | Exceeds Threshold? |
    | :--- | :---: | :---: | :---: |
    | 12400 World Logistics Center Parkway | 7.1 | 10 | No |
    | 30220 Dracaea Avenue | 5.35 | 10 | No |
    | 13241 World Logistics Center Parkway | 4.75 | 10 | No |

    1 DieselNet.com, 2002

[^58]:    92 WSP. World Logistics Center Comparison of Renewable Energy Technologies. 2018

[^59]:    LDA, LDT1, and LDT2 = Passenger cars (EMFAC category)
    MDV = Light Duty Trucks (EMFAC category)
    Sources: CARB, 2017b - based on EMFAC2011 Categories, and EMFAC2017 Volume III - Technical Documentation

[^60]:    
    use of building natural gas- includes electricity use by on-site EV chargers. 1 - Electricity and natural gas emissions estimates accoun
    2 - Estimated construction emissions are included prior to buildout.
     since construction activity would cease after buildout. Years post- 2049 take into account the phasing out of structures as they reach their presumed 30 -year lifetime. 4 - Electricity emissions decrease to zero in 2045 after RPS has reached $100 \%$ renewable electricity
    Source: ESA, 2019

[^61]:    93 WSP. World Logistics Center Comparison of Renewable Energy Technologies. 2018

[^62]:    1 Criteria pollutants are those pollutants with an air pollution standard or pollutants which are precursors to those with a standard. Pollutants with an air pollution standard include nitrogen dioxide, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, ozone, carbon monoxide (CO), particulate matter smaller than 2.5 microns in diameter and 10 microns in diameter, and ozone. Precursor pollutants to criteria pollutants include oxides of nitrogen (NOx), oxides of sulfur (SOx), carbon monoxide (CO), and volatile organic compounds (VOCs).
    2 https://www.epa.gov/benmap/benmap-ce-manual-and-appendices.

[^63]:    3 Reactive organic gas (ROG) emissions are quantified and modeled as VOCs in this assessment. ROG means total organic gases minus the California Air Resources Board's (ARB's) "exempt" compounds (e.g., methane, ethane, CFCs, etc.). ROG is similar, but not identical, to USEPA's term "VOC", which is based on USEPA's exempt list, which is slightly different from ARB's list.

[^64]:    4 https://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/final-2016-aqmp.
    5 https://www.arb.ca.gov/emfac/.
    6 https://www3.epa.gov/ttn/scram/appendix_w/2016/AppendixW_2017.pdf.
    7 https://www3.epa.gov/ttn/scram/guidance/guide/O3-PM-RH-Modeling_Guidance-2018.pdf.
    8 http://www.camx.com/.
    9 https://www.epa.gov/cmaq.
    10 https://www3.epa.gov/ttn/scram/guidance/clarification/20170804Photochemical_Grid_Model_Clarification_Memo.pdf.
    ${ }^{11}$ SCAQMD performed Weather Research and Forecasting (WRF) meteorological modeling for the 4-km domain and 2012 calendar year that has been processed by WRFCAMx to generate CAMx 2012 4-km meteorological inputs for the domain. The CMAQ 2012 emissions have been converted to the format used by CAMx using the CMAQ2CAMx processor.
    12 To the extent that the Draft Recirculated RSFEIR used conservative inputs to estimate Project-related criteria pollutants and precursors, the analysis provided herein also is conservatively influenced by those inputs.

[^65]:    13 https://www.epa.gov/benmap/how-benmap-ce-estimates-health-and-economic-effects-air-pollution. 14 https://www.epa.gov/sites/production/files/2015-04/documents/benmap-ce_user_manual_march_2015.pdf.

[^66]:    15 https://www.epa.gov/benmap/benmap-ce-applications-articles-and-presentations\#local.
    16 https://www3.epa.gov/ttn/naaqs/standards/pm/data/PM_RA_FINAL_June_2010.pdf.

[^67]:    ${ }^{17}$ Background health statistics were obtained from data included in the BenMAP model, and the sources are referenced in the BenMAP manual (USEPA, 2018). For example, EPA obtained mortality rates from the Centers for Disease Control (CDC) WONDER database, and hospital admissions rates from the Healthcare Cost and Utilization Project (HCUP).

[^68]:    18 For PM 2.5 mortality estimates, BenMAP relies on the study by Krewski et al. (2009). This study conducted multiple sensitivity analyses using different statistical model specifications. For all-cause mortality, the authors reported positive associations between exposures to $\mathrm{PM}_{2.5}$ and all-cause mortality that ranged from a $3 \%$ to a $6 \%$ increase in mortality per increase in $10 \mathrm{ug} / \mathrm{m}^{3}$ of $P M_{2.5}$, depending on the model used and the exposure data considered. The default USEPA value in BenMAP is the $6 \%$ increase, or double the low end of the range.

[^69]:    1 https://www.cmascenter.org/smoke/.

[^70]:    2 https://www.cmascenter.org/sa-tools/documentation/4.2/html/srgtool/SurrogateToolUserGuide_4_2.pdf.

[^71]:    1.00
    0.90
    0.80
    0.70
    0.60
    0.50
    0.40
    0.30
    0.20
    0.10
    0.00

[^72]:    1 http://www.camx.com.
    2 http://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/final-2016-aqmp.
    3 https://www.epa.gov/air-emissions-modeling/2014-2016-version-7-air-emissions-modeling-platforms.
    4 https://www.epa.gov/csapr.

[^73]:    5 http://www.camx.com/download/support-software.aspx.
    6 WRFCAMx is available on the CAMx website (http://www.camx.com/download/support-software.aspx).

[^74]:    7 ftp://toms.gsfc.nasa.gov/pub/omi/data/.
    8 http://www.camx.com/files/camxusersguide_v6-50.pdf

[^75]:    5 For background incidence rates, BenMAP projects likely mortality rates for future years, but for other health effects, incidence rates are based on population changes only and may not reflect rates for future years.

[^76]:    6 For PM 2.5 mortality estimates, BenMAP relies on the study by Krewski et al. (2009). This study conducted multiple sensitivity analyses using different statistical model specifications. For all-cause mortality, the authors reported positive associations between exposures to $\mathrm{PM}_{2.5}$ and all-cause mortality that ranged from a $3 \%$ to a $6 \%$ increase in mortality per increase in $10 \mathrm{ug} / \mathrm{m}^{3}$ of $\mathrm{PM}_{2.5}$, depending on the model used and the exposure data considered. The default USEPA value in BenMAP is the $6 \%$ increase, or double the low end of the range.

[^77]:    2 The majority of California's energy use generates GHG emissions. Increasing renewable energy and energy efficiency are key components to California's overall strategy to reduce energy sector GHG emissions, as described in the 2017 Scoping Plan Update
    3 CARB, California's 2017 Climate Change Scoping Plan: The strategy for achieving California's 2030 greenhouse gas target, November, 2017, https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdf; accessed December 18, 2017.

[^78]:    417 CCR §§ 95800 to 96023.
    5 See generally 17 CCR $\S \S 95811,95812$.

[^79]:    6 The Emission FACtors (EMFAC) model is the standard method used in CEQA analysis to calculate emission rates from motor vehicles operating on highways, freeways and local roads in California.
    7 As interpreted by the project traffic modeling, passenger vehicles include all LDA, LDT1, and LDT2 category vehicles in EMFAC

[^80]:    8 As explained in the WSP report, peak EV charging rate was estimated by allocating the annual electricity consumption of EVs according to the building operating schedules. The resulting peak electric load imposed by EV charging is about 25 percent of the aggregate nameplate capacity of all charging stations. This result is in line with industry expectations that charging blocks managed with automated 'smart' controls will reduce the coincident peak demand to 20-25 percent of the aggregate capacity of the individual charging stations.

[^81]:    ${ }^{9}$ https://www.afdc.energy.gov/

[^82]:    $10 \mathrm{https}: / /$ www.afdc.energy.gov/

[^83]:    ${ }^{11}$ Level 2 chargers use 208/240 volts, up to 19.2 kW ( 80 amps ), whereas Level 1 chargers use $110 / 120$ volts, 1.4 to 1.9 kW ( 12 to 16 amps).

[^84]:    12 Examples of current eligible vehicles can be found at: https://www.californiahvip.org/eligible-technologies/

[^85]:    *Renewable energy fraction takes account of renewables on the California grid

[^86]:    ${ }^{1}$ EPA's LMOP database, Landfill- and project-level data (2018).xIsx, February 2018.

[^87]:    ${ }^{2}$ Wind resource estimates developed by AWS Truepower, LLC for windNavigator . Web: http://www.windnavigator.com | http://www.awstruepower.com. Spatial resolution of wind resource data: 2.5 km . Projection: UTM Zone 11 WGS84.

[^88]:    ${ }^{3}$ New Buildings Institute, 2016 List of Zero Net Energy Buildings

[^89]:    ${ }^{4} \mathrm{https}: / / w w w . e p a . g o v / g r e e n p o w e r / r e n e w a b l e-e n e r g y-c e r t i f i c a t e s-r e c s$
    ${ }^{5} \mathrm{https}: / / w w w . f t c . g o v / s i t e s / d e f a u l t / f i l e s / a t t a c h m e n t s / p r e s s-r e l e a s e s / f t c-i s s u e s-r e v i s e d-g r e e n-g u i d e s / g r e e n g u i d e s s t a t e m e n t . p d f ~$
    6 http://www.cpuc.ca.gov/ZNE/
    ${ }^{7}$ https://www.energy.gov/sites/prod/files/2015/09/f26/bto common definition zero energy buildings 093015.pdf

[^90]:    ${ }^{8}$ http://www.cpuc.ca.gov/General. aspx?id=7881

[^91]:    ${ }^{9}$ https://living-future.org/wp-content/uploads/2017/03/Net-Zero-Energy-Offsite-Renewables-Exception.pdf

[^92]:    ${ }^{10} \mathrm{https}: / / w w w . p g e . c o m / e n \_U S / r e s i d e n t i a l / c u s t o m e r-s e r v i c e / o t h e r-s e r v i c e s / a l t e r n a t i v e-e n e r g y-p r o v i d e r s / c o m m u n i t y-c h o i c e-~$ aggregation/community-choice-aggregation.page
    11 https://cal-cca.org/
    ${ }^{12}$ https://newbuildings.org/wp-content/uploads/2018/04/ZneProjectGuideForStateBuildings.pdf

[^93]:    ${ }^{13}$ http://www.moreno-valley.ca.us/resident_services/utilities/pdfs/mvuAnnualReport0217.pdf
    
    

[^94]:    ${ }^{16}$ California's RPS requires retail sellers and publicly owned utilities to procure $50 \%$ of their electricity from eligible renewable sources by 2030

[^95]:    2． $\mathrm{https}: / / \mathrm{w} w \mathrm{w}$ ．arb．ca．gov／emfac／2014／

[^96]:    1. California Air Resources Board, EMFAC2014, South Coast Air Basin; 2023; Annual; All vehicle types; Aggregate model year; Aggregate speed).
    https://www.arb.ca.gov/emfac/2014/
    2. Assumes electric vehicles would replace traditional gasoline-fueled vehicles.
[^97]:    1. California Air Resources Board, EMFAC2014, South Coast Air Basin; 2023; Annual; All vehicle types; Aggregate model year; Aggregate speed).
    https://www.arb.ca.gov/emfac/2014/
    2. Assumes electric vehicles would replace traditional gasoline-fueled vehicles.
[^98]:    1. California Air Resources Board, EMFAC2014, South Coast Air Basin; 2023; Annual; All vehicle types; Aggregate model year; Aggregate speed),
    https://www.arb.ca.gov/emfac/2014/
    2. Assumes electric vehicles would replace traditional gasoline-fueled vehicles.
[^99]:    $100.0000 \% 66453575$

    ##  <br> 

    *Vehicle Types used = HHDT, LDA, LDT1, LDT2,LHDT1,LHDT2,MDV, MHDT

