APPENDIX F5

Phase II Environmental Site Assessment 447 West St. John Street

Milligan Parking Lot Project

REPORT FOR PHASE II ESA 447 W. Saint John Street San Jose, California 95110

Prepared for

City of San Jose Public Works Department Attn: Mr. Mark Saturnio 200 E. Santa Clara St. Tower 5th Floor San Jose, CA 95113

> Prepared by Envirocom P.O. Box 28310 San Jose, CA 95159 (408) 894-9062

December 11, 2019 Project 19-032.10

December 11, 2019 Project 19-032.10

Mr. Mark Saturnio Associate Engineer City of San Jose, DPW City Facilities Architectural Services Division 200 East Santa Clara St. T6 San Jose, CA 95113

Subject: Report for Phase II Environmental Site Assessment, 447 W. Saint John Street, San Jose, California

Dear Mr. Saturnio:

Envirocom is pleased to present this report summarizing scope and results of a Phase II Environmental Site Assessment (ESA) for the subject location, hereafter, referred to as the Site. Site location is shown in Figure 1.

Envirocom understands that future planned development for the Site is a paved ground surface parking lot.

BACKGROUND

The Site is approximately 0.41 acre of commercial property, which is entirely occupied by a commercial/industrial building and is identified with assessor parcel number 259-29-032. The Site is located in a mixed residential and commercial/industrial neighborhood. Figure 2 shows the Site neighboring properties.

A Phase I ESA prepared for the Site dated August 6, 2019, documented the Site being occupied by residential dwellings in late 1800. It was then constructed with the existing building around 1939. The existing building has wood structures covered with corrugated sheet metal on concrete and asphalt pavements. The Site was known to be occupied by Food Machinery Corporation in 1950 followed being used as a warehouse of paper products.

P.O. Box 28310 San Jose, CA 95159 Phone (408) 894-9062 Fax (408) 894-9063 The Site has been used for automotive repair occupied by Valaya Automotive from 2006 to the present time.

Four above ground hydraulic lifts were observed west of the Site. Several automobiles, extensive equipment, auto parts, and objects occupied the entire Site. An office was observed southeast of the Site. Waste oil drums and chemical steel cabinet was observed in a room northwest of the Site.

Figure 3 shows the Site plan.

OBJECTIVE

The objective of the Phase II ESA was to: (1) obtain preliminary soil, groundwater, and soil gas data and (2) based on the subsurface data, evaluate whether a subsurface investigation would be warranted at the Site considering its future land use as a paved parking lot.

SCOPE OF WORK

To obtain preliminary subsurface environmental data, Envirocom had drillers advancing 5 soil borings (VSB1 through VSB5) and constructed 5 soil-gas probes (VSG1 through VSG5) at the Site. The Soil borings and the soil-gas probes were approximately 5 feet apart. Envirocom collected soil groundwater, and soil-gas samples for chemical analysis. Figure 3 shows the soil boring and soil gas probe locations.

Prior to the field activities, Envirocom retained services of a private utility locating company, and contacted Underground Services Alert (USA) to clear the sampling locations from underground utilities. Envirocom retained services of a California-licensed drilling contractor to advance the soil borings and construct soil-gas probes. Envirocom submitted the samples to a State-certified analytical laboratory for chemical analysis. Envirocom summarized the information in this report.

PREFIELD ACTIVITIES

Envirocom coordinated with the client, tenant, and C. Cruz Sub-Surface Locators, inc. (C. Cruz) of Milpitas, California to clear underground utilities at the sampling/drilling locations. Additionally, Envirocom contacted Underground Services Alert (USA) and notified them of the drilling date and time. Envirocom prepared a health and safety plan for its employees and sub contractors. Envirocom coordinated with Enthalpy Analytical (EA) of Berkeley, California to

obtain appropriate sampling containers. EA is a California Department of Public Health (CDPH) certified laboratory (#2896). Envirocom also coordinated with Cascade Drilling, Ltd. (Cascade) of Richmond, California to drill boreholes and collect soil, soil gas, and groundwater samples. Envirocom prepared field material and equipment. Envirocom notified the client and the tenant of the drilling/sampling date and time.

FIELD ACTIVITIES

Drilling & Soil and Groundwater Sampling

On November 11, 2019, Cascade used a track-mounted Geoprobe® direct push drilling equipment to advance soil boring VSB1 through VSB5 for soil and groundwater sampling. Cascade used a hollow shaft, which was lined with new clear plastic tube (4 feet long) and attached to steel rods. The shaft penetrated into ground by hydraulic hammer and collected continuous soil samples at 4-foot intervals until reaching bottom of borings at 20 feet below ground surface (bgs). After collection, plastic tubes were removed from inside of the shaft for inspection and sample collection. Envirocom screened soil conditions from ground surface to bottom of each boring using visual observations as well as a photo ionization detector (PID). The observations were recorded in boring logs. One soil sample was collected from each boring at approximately 10 feet bgs (above water table) for chemical analysis. Envirocom cut a section of the plastic tube (approximately 6-inch long) containing soil for laboratory analysis. Envirocom sealed the tubes with Teflon[®] tape and plastic end caps, labeled them, place them on ice in a cooler.

No visual contamination or PID reading was observed/detected in the soil samples. Soil type encountered in the borings consisted of clayey silt to silty clay to approximately 14 feet bgs followed with silty sand and sand to bottom of borings at 20 feet bgs. Boring locations are shown in Figure 3. Exploratory boring logs are enclosed in Appendix A.

Groundwater was first encountered at approximately 14' bgs in the borings at the Site. Cascade inserted new 3/4-inch diameter perforated and solid PVC piping in each boring to collect grab groundwater samples. Envriocom utilized a well sounder to measure the groundwater level in each boring. Static groundwater levels at the Site measured from 14' to 15' bgs.

New disposable bailers were used to transfer groundwater into clean volatile organic analysis (VOA) vials. The vials were sealed with Teflon-septum screw cap. They were labeled, placed on ice in a cooler, and together with the soil and soil gas samples and chain-of-custody documentation submitted to EA for

chemical analysis. Certified analytical results and chain-of-custody documentation are enclosed in Appendix B.

After collecting all samples, Cascade sealed the soil borings with Portland cement and Bentonite[®] mixture. Cascade sealed top of the borings with concrete or asphalt to match the surroundings.

Drill cuttings were placed in a 55-gallon drum, which was stored at 150 N. Autumn Street location.

Soil-Gas Sampling

Cascade utilized the same track-mounted Geoprobe® direct push drilling equipment for advancing the boreholes and construct the soil gas probes. Sample locations are shown in Figure 3. After advancing the boreholes VSG1 through VSG5 to 5 feet bgs, Cascade connected a gas probe to 1/4-inch diameter Teflon® tubing and used 3/4-inch diameter PVC piping to center and place the probe to the bottom of each borehole. Cascade extended the sampling tubing from the gas probe tip to the ground surface. Cascade placed approximately 2" of sand beneath each probe, 10" of sand was placed around the probe and the tubing, 1' of dry Bentonite[®] was placed above the sand, and 3' of hydrated Bentonite[®] was placed on top of the dry Bentonite[®] extending to the ground surface. After construction, each sample location was left to reach equilibrium, before purging volume, and soil gas sample collection was performed.

Envirocom used a new 1 liter Tedlar® bag, a diaframe pump, and a vacuum chamber/lung box to collect each sample. After collection, the samples were labeled, placed in a sealed box, and submitted to EAL with chain-of-custody documentation for chemical analysis.

CHEMICAL ANALYSIS

The soil and groundwater samples were analyzed for volatile organic compounds (VOCs) using the United States Environmental Protection Agency (EPA) method 8260B.

The soil gas samples were also analyzed for VOCs using EPA method TO-15. They were also analyzed for total petroleum hydrocarbons as gasoline (TPHG) using EPA method TO-3M.

ANALYTICAL RESULTS FOR SOIL AND GROUNDWATER SAMPLES

No odor and stain was detected/observed and no PID detection was observed in the soil samples. No sheen or unusual odor was observed/detected in the groundwater samples.

No TPHG or VOCs were detected in the soil samples collected at 10 feet bgs at the Site.

No TPHG was detected in the groundwater samples. Up to 46 ug/L Acetone, 0.6 ug/L Xylene, and 0.7 ug/L 1,2,4-Trimethylbenzene were detected in the groundwater samples. The remaining results were below laboratory reporting limits (RLs).

Analytical results for soil and groundwater samples are presented in Table I and Table II, respectively.

ANALYTICAL RESULTS FOR SOIL GAS SAMPLES

Up to 690 ug/m³ Acetone, 360 ug/m³ Benzene, 2,500 ug/m³ Methylene Chloride, 81.7 ug/m³ Tetrachloroethene (PCE) as well as other gasoline constituents were detected in the soil gas samples collected at the Site. Summary of the analytical results are presented in Table III.

CONCLUSION

The followings summarize the findings:

- Field observations did not indicate presence of contamination in soil and groundwater at the Site;
- No VOCs or TPHG was detected in the soil samples (Table I);
- Low concentrations of gasoline constituents and Acetone were detected in the groundwater samples (Table II);
- Gasoline constituents and few VOCs such as Acetone, Methylene Chloride, and PCE were detected in the soil gas samples (Table III).

DISCUSSION

Levels Envirocom used Environmental Screening (ESLs) for commercial/industrial land use to determine degree of risk to public exposure at the Site. ESLs were established by the San Francisco Regional Water Quality Control Board (SFRWQCB, Water Board, February 2016, Rev. 3). They were revised in 2019, Rev. 2. They are conservative risk-based screening levels. ESLs are not cleanup levels, but they indicate whether additional investigation/mitigation measures would be warranted at properties where contaminant concentrations exceed ESLs for specific land use practices. The land use practices provided by SFRWQCB consist of residential and commercial/industrial. Therefore, ESLs would not apply to the future planned development of the Site as unoccupied paved parking lot. However, in the absence of a Site-specific risk assessment for parking lot, Envirocom used ESLs for commercial/industrial land use as a reference threshold. Please note that variables determining contaminant exposure risk to public who park their cars at the Site in the future will be less stringent than the variables used for ESLs assigned for commercial/industrial land use.

Field observations and PID readings did not reveal soil impact at the Site. Analytical results for the soil samples were below laboratory reporting limits (RL). However, vast area of the Site was covered with cars and objects that could have impacted shallow soil.

Low concentrations of Acetone, Xylene, and 1,2,4-Trimethylbenzene were detected in the groundwater samples. However, these concentrations are below ESLs for groundwater vapor intrusion.

No Acetone, Methylene Chloride, or PCE was detected in the groundwater or soil samples at the Site suggesting that their presence in the soil gas samples may be associated with migration of these chemicals from known and/or unknown source(s) near the Site.

Concentrations of Benzene, Methylene Chloride, and PCE in soil gas samples are above vapor intrusion human health risk ESLs for commercial land use. Ambient and background air sampling and analysis would determine whether direct exposure of human health risk associated with the above chemicals exist at the Site. Considering that the Site is an active auto repair business, ambient air sample results could be influenced by the activities and chemicals stored at the Site at this time.

RECOMMENDATIONS

Envirocom recommends collecting ambient and background air samples for chemical analysis when the Site becomes vacant. When all floor surfaces become visible and accessible, additional subsurface assessment and/or preparation of a soil management plan may be recommended for the Site.

Envirocom also recommends performing hazardous material inspection including asbestos, lead, and PCBs, before demolition of the structure at the Site.

LIMITATIONS

The content and conclusion provided by Envirocom in this report are based on information collected during its assessment/monitoring, which include, but are not limited to field observations and analytical results for the soil and groundwater samples collected at the Site. Envirocom assumes that the samples collected and laboratory results are reasonably representative of the whole Site, which may not be the case at unsampled areas. This assessment/monitoring was performed in accordance with generally accepted principles and practices of environmental engineering and assessment in Northern California at the time of the work. This report presents our professional opinion based on our findings, technical knowledge, and experience working on similar projects. No warranty, either expressed or implied, is made. The conclusions presented are based on the analytical results and current regulatory requirements. We are not responsible for the impact of any changes in environmental standards or regulations in the future.

Please feel welcome to contact us if you have questions.

Sincerely, Envirocom

Reza Baradaran, GE, PE Principal Engineer

27-16

Mitch Hajiaghai, REA II, CPESC, QSD Principal Environmental Consultant

Attachments:	Table I -	Analytical Results for Soil Samples
	Table II -	Analytical Results for Groundwater Samples
	Table III -	Analytical Results for Soil Gas Samples
	Figure 1 -	Site Location Map
	Figure 2 -	Neighboring Properties
	Figure 3 -	Soil Boring Locations
A	ppendix A -	Exploratory Boring Logs
A	ppendix B -	Certified Analytical Results and Chain-Of-Custody
		Documentation

19-032.10\Valaya \MH12112019

TABLE I ANALYTICAL RESULTS FOR SOIL SAMPLES (VALAYA AUTO)

Sample ID	Sample Date	Sample Location	Sample Depth In Feet	TPHG ¹ mg/kg	VOCs ² ug/kg
VSB1-10	11-11-19	VSB1	10	$< RL^3$	< RL
VSB2-10	11-11-19	VSB2	10	< RL	< RL
VSB3-10	11-11-19	VSB3	10	< RL	< RL
VSB4-10	11-11-19	VSB4	10	< RL	< RL
VSB5-10	11-11-19	VSB5	10	< RL	< RL

TPHG – Total Petroleum Hydrocarbon Gasoline
 VOCs – Volatile Organic Compounds
 < RL – Below Reporting Limit

TABLE II ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES (VALAYA AUTO) (Concentrations in ug/L)

Sample ID	Sample Date	Sample Location	TPHG ¹	Acetone	m,p-Xylenes	1.2.4-Trimethylbenze
VW1	11-11-19	VSB1	<50 H ²	<10	<0.5	<0.5
VW2	11-11-19	VSB2	<50 H	29	<0.5	<0.5
VW3	11-11-19	VSB3	<50 H	46	<0.5	<0.5
VW4	11-11-19	VSB4	<50 H	16	0.6	0.7
VW5	11-11-19	VSB5	<50 H	<10	<0.5	<0.5
Grou Groundwa Health	San Francisco Bay RWQCB, Summary of Groundwater ESLs 2019, for Groundwater Vapor Intrusion Human Health Risk Levels (Table GW-3) Residential Cancer Risk		NV ³	NV	NV	NV
Grou Groundwa Health	San Francisco Bay RWQCB, Summary of Groundwater ESLs 2019, for Groundwater Vapor Intrusion Human Health Risk Levels (Table GW-3) Residential Non-Cancer Hazard			97000000	1600	NV

1. TPHG = Total Petroleum Hydrocarbon Gasoline

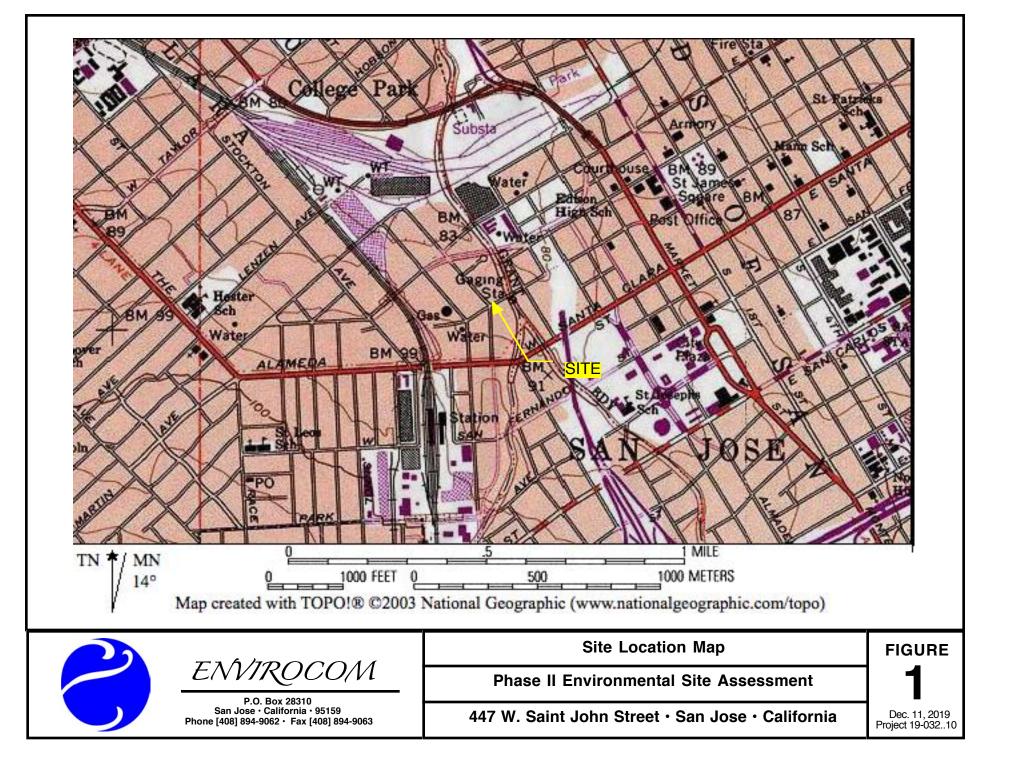
2. H = Sample was analyzed outside of holding time due to laboratory omission and miscommunication

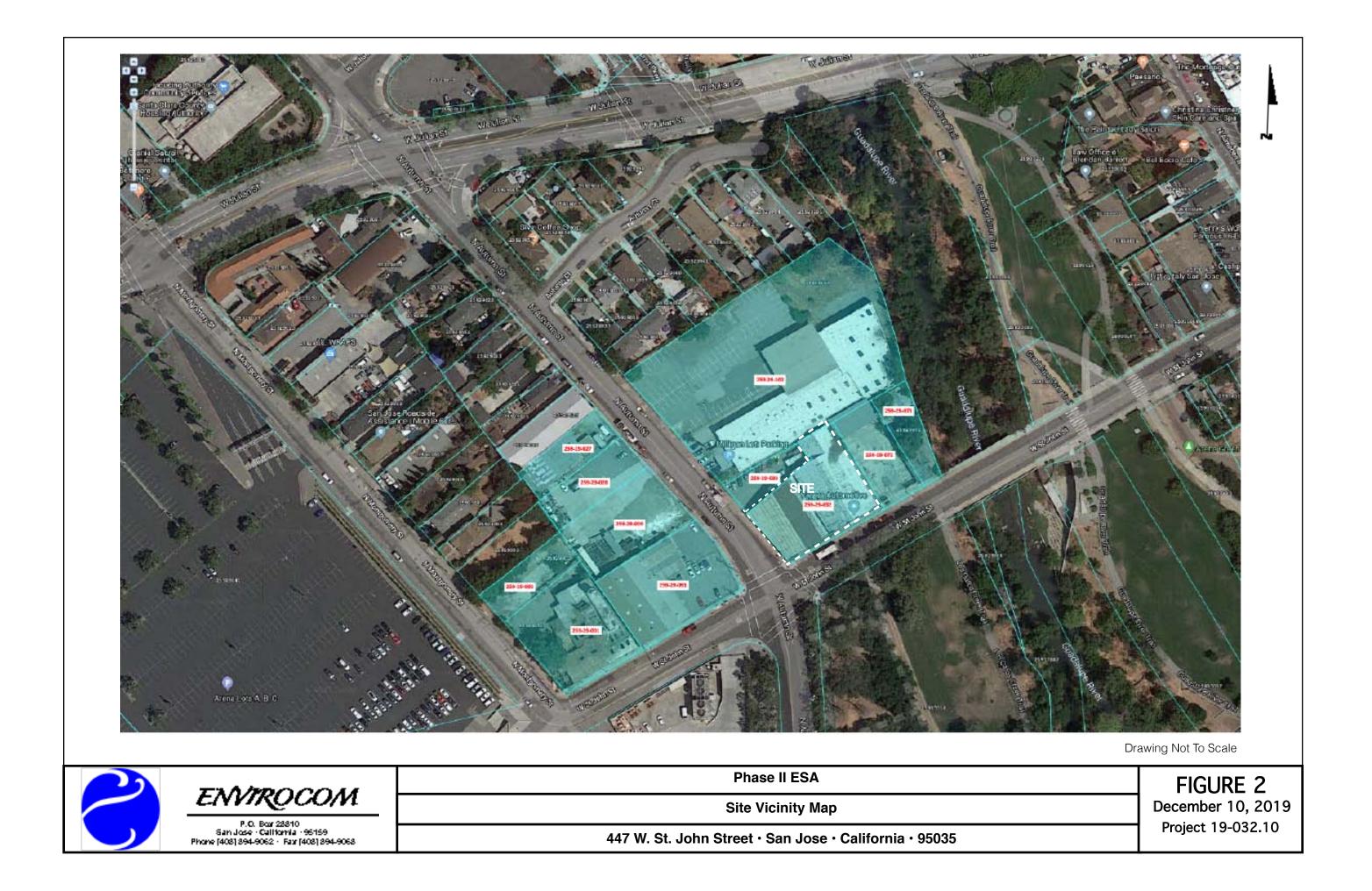
3. NV = No Value

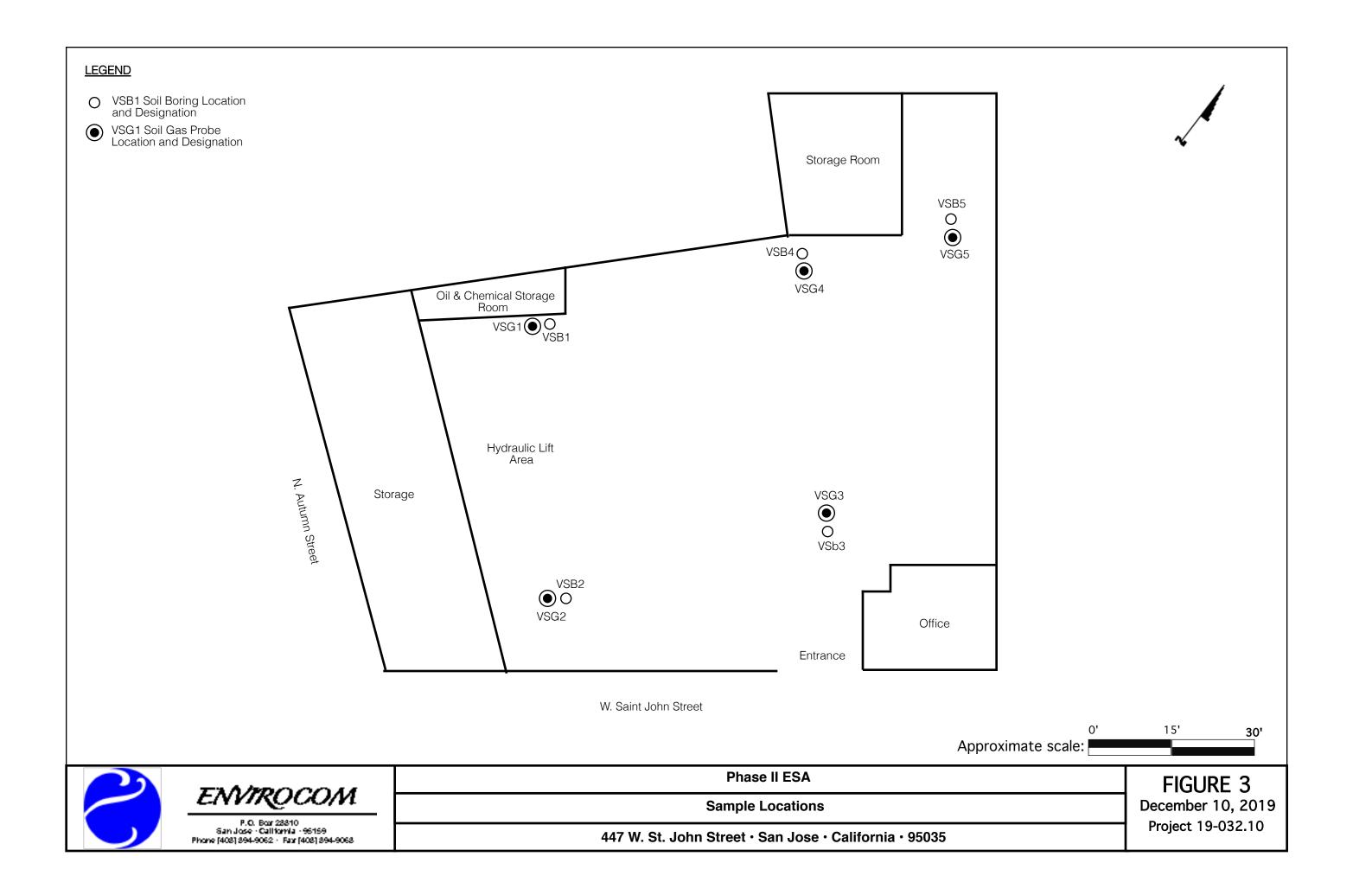
Note: All other VOCs not included in Table II were below laboratory reporting limits (RL).

TABLE III ANALYTICAL RESULTS FOR SOIL GAS SAMPLES (VALAYA AUTO) (Operative size of a surger)

(Concentrations in ug/m³)

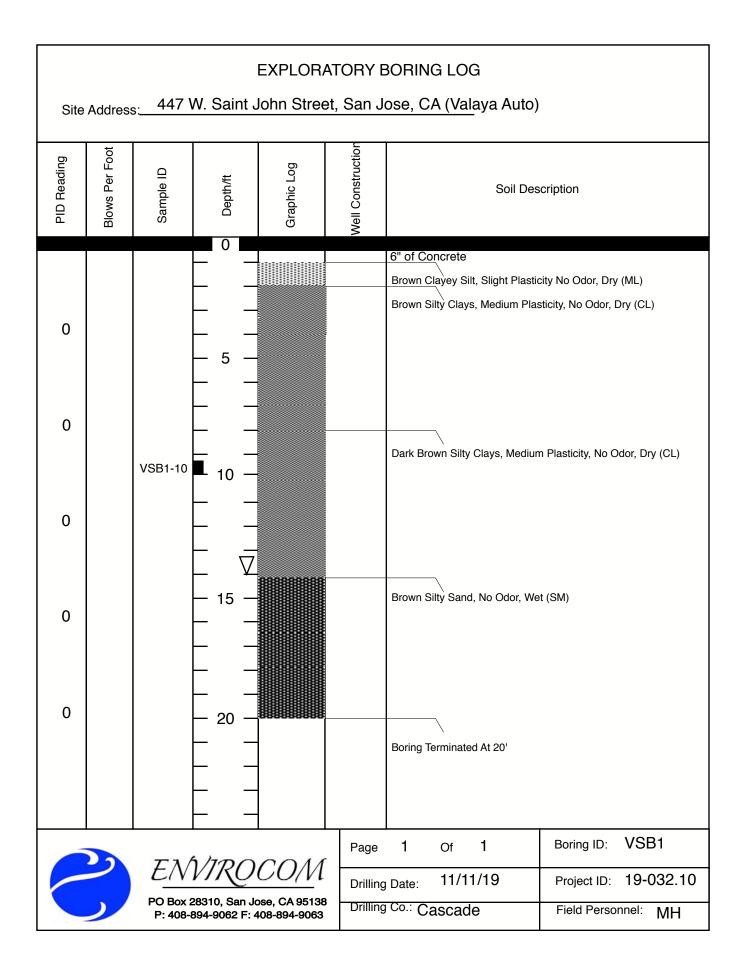

Sample ID	Sample Date	Sample Location	Sample Depth In Feet	2-Butanone	1,2,4- Trimethylbenzene	1,3,5-Trimethylbenzene	4-Ethyltoluene	4-Methyl-2-pentanone	Acetone	Benzene	Cyclohexane	Ethyl Acetate	Ethylbenzene	Heptane	Hexane	m,p-Xylene	Isopropyl Alcohol	Methylene Chloride	o-Xylene	Tetrachloroethene	Toluene
VSG1	11-11-19	VSG1	5	13.6J	58.0J	20.6J	56.0J	180	110J	360	1500	17.5	160	1200	1000	480	20.3J	36.1J	150	38.7	3000
VSG2	11-11-19	VSG2	5	<1.04	<2.46	<2.34	21.9J	28.2J	110J	82.9	240	<1.86	53.9J	200	180	190	29.2J	<0.98	58.4J	81.7J	760
VSG3	11-11-19	VSG3	5	17.3J	19.7J	<2.34	23.5J	92.7	500	100	720	25.8J	86.8	280	470	350	31.1J	98.5	84.5J	<1.52	460
VSG4	11-11-19	VSG4	5	61.1J	<9.84	<9.36	<8.4	<6.48	600J	<2.56	130J	<7.44	<5.12	<4.64	2200	<9.92	120J	2500	<4.8	<6.08	160J
VSG5	11-11-19	VSG5	5	<5.2	<12.3	<11.7	<10.5	84.8J	690J	<3.2	320J	<9.3	<6.4	120J	630	110J	210J	2000	<6	<7.6	430
Subsla He	rancisco Bay b/Soil Gas Va alth Risk Lev ıstrial/Comme	por Intrusion els (Table SG	Human ì-1)	NA ²	NA	NA	NA	NA	NV ³	14	NA	NA	160	NA	NA	NV	NA	410	NV	67	NV
Subsla He	rancisco Bay b/Soil Gas Va alth Risk Lev al/Commercia	por Intrusion els (Table SC	Human ì-1)	NA	NA	NA	NA	NA	4500000	440	NA	NA	150000	NA	NA	15000	NA	58000	15000	5800	44000

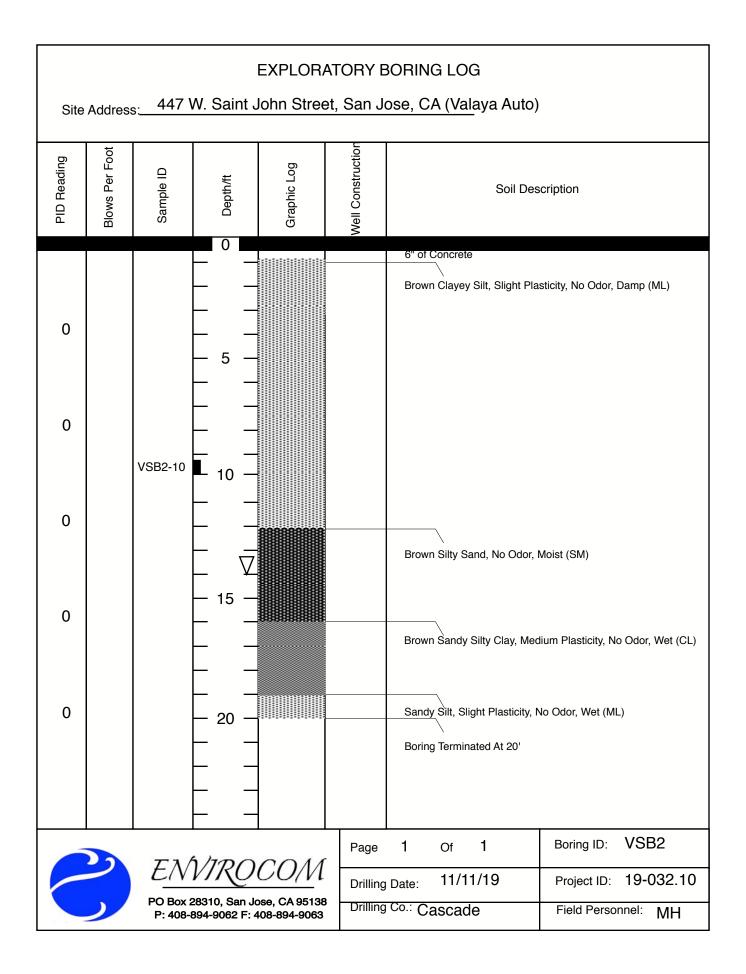

1. J = Reported Value Is Estimated

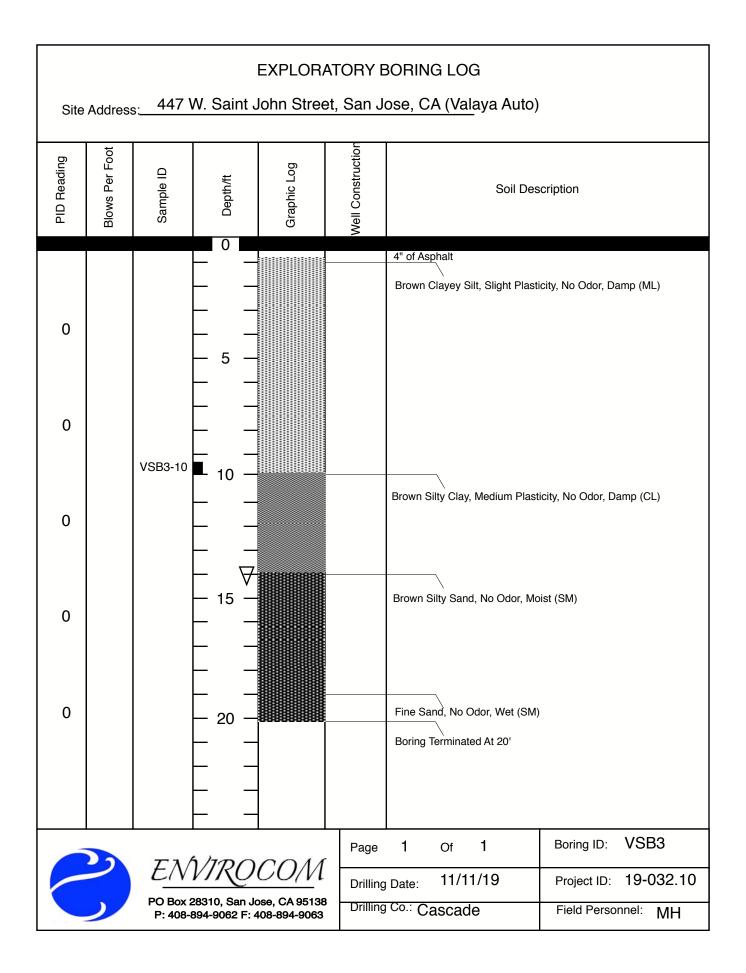

2. NA = Not Available

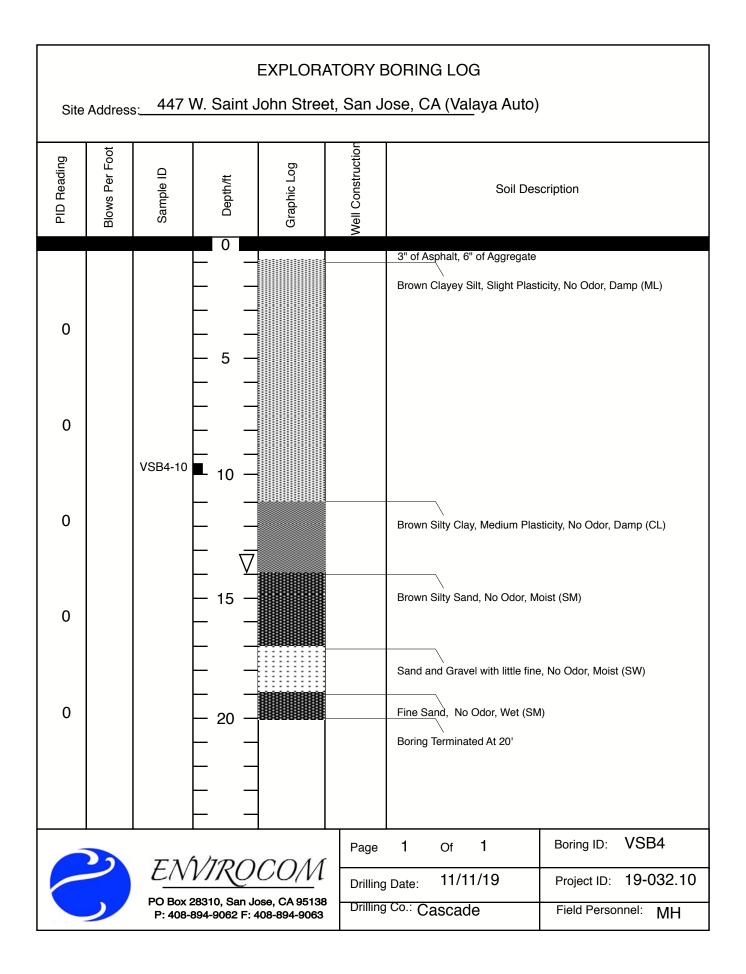
3. NV = No Value

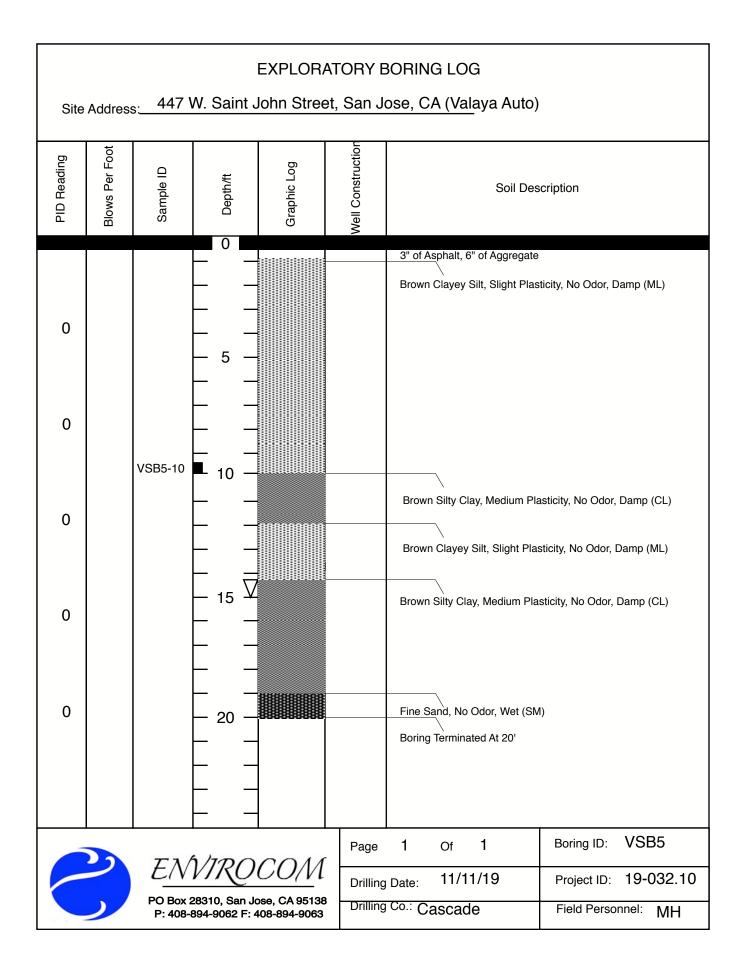
Note: Concentrations of all other VOCs not included in table III were below Method Detection limits (MDL). Concentration of Total Petroleum Hydrocarbon Gasoline (TPHG) for samples VSG4 was below MDL. 3,800J ug/m³ TPHG was detected in sample VSG5. This concentration is less than ESL for non-cancer hazard of 83,000 ug/m³. There is no value for TPHG cancer risk. Concentrations of TPHG for samples VSG1, VSG2, and VSG3 were not reported due to laboratory omission and miscommunication.








Appendix A


EXPLORATORY BORING LOGS

Appendix B

CERTIFIED ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Enthalpy Analytical 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900

enthalpy.com

Lab Job Number: 315811 Report Level: II Report Date: 11/22/2019

Analytical Report prepared for:

Mazyar Hajiaghai Envirocom 800 Charcot Avenue Suite 114 San Jose, CA 95131

Project: 19-032.10 - Valaya Auto

Authorized for release by:

Jessie Silbermon

Jess Silberman, Project Manager (510) 204-2223 Jessica.Silberman@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 2896, NELAP# 4044-001

Sample Summary

Mazyar Hajiaghai	Lab Job Number:	315811
Envirocom	Project No:	19-032.10
800 Charcot Avenue	Project Name:	Valaya Auto
Suite 114	, Date Received:	11/12/19
San Jose, CA 95131	Bale Heeewed.	11/12/10

Sample ID	Lab ID	Collected	Matrix
VSB1-10	315811-001	11/11/19 00:00	Soil
VSB2-10	315811-002	11/11/19 00:00	Soil
VSB3-10	315811-003	11/11/19 00:00	Soil
VSB4-10	315811-004	11/11/19 00:00	Soil
VSB5-10	315811-005	11/11/19 00:00	Soil

Case Narrative

Envirocom	Lab Job Number:	315811
800 Charcot Avenue	Project No:	19-032.10
Suite 114	Location:	Valaya Auto
San Jose, CA 95131	Date Received:	11/12/19
Mazyar Hajiaghai		

This data package contains sample and QC results for five soil samples, requested for the above referenced project on 11/12/19. The samples were received intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

Low recoveries were observed for gasoline C7-C12 in the MS/MSD for batch 276331; the parent sample was not a project sample, the BS/BSD were within limits, and the associated RPD was within limits. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High recoveries were observed for trichloroethene in the MS/MSD for batch 276255; the parent sample was not a project sample, the LCS was within limits, the associated RPD was within limits, and this analyte was not detected at or above the RL in the associated samples. No other analytical problems were encountered.

Detection Summary for 315811

Client: Envirocom Project: 19-032.10 Location Valaya Auto

1 of 1

No detections for VSB1-10, Lab ID 315811-001

No detections for VSB2-10, Lab ID 315811-002

No detections for VSB3-10, Lab ID 315811-003

No detections for VSB4-10, Lab ID 315811-004

No detections for VSB5-10, Lab ID 315811-005

					Снан	OF CUST	ODY					
Project Name: <u>Valaya Auto</u> Project No: 19-032.10 Date: <u>11/11/19</u> Project Location <u>447 W. St. John Street, SJ</u> Client: <u>City of San Jose</u> Sampler: <u>May na Haijay ha</u>												
Sample ID	Date Sampled	Sampling Time	Matrix	N° of Containers		Ana	alysis Requested	l		Turnaround Time		
		ALZERIAL S			TPHG VOLS 8260B							
VSBI-	1/11/19	T	Soil	1	1					24-hour Other	Normal	
V5.82-10	1/11		1	1						24-hour Other	Normal	
V5B3-10										24-hour Other	Normal	
V3B4-12										24-hour Other	Normal	
V3B5-10			\mathbf{V}	\bigvee	V					24-hour Other	Normat	
			V							24-hour Other	Normal	
										24-hour Other	Normal	
										24-hour Other	Normal	
NOTES:		0										
Relinguishe	alloy	fer re		Date 11/12/19	Tim 15:6	11 1 2	Ledson		Da U/I	te 12/19	Time 15:10	
Audre	Had	son :	11/12/19	19:45		2 a			4	12/19	17:50	
0										L	(17:50)	

P.O. Box 28310 · San Jose · California · 95159 Phone (408) 894-9062 · Fax (408) 894-9063

		1						
	CEIPT CHECKLIST						1	
Section 1:	Login # 315811	Client: _	GAVIDO	on				
	Date Received: <u>11-12-14</u>	Project:	Million	ом 1			ENT	HALP
	Shipping info (if applicable)		Je	,			12	
	Are custody seals present?		ves where?		samples		ckage	
2	Date: H					_ 011 pu	chube	
	Were custody seals intact u							
Samples reco	eived in a cooler? 1 Yes, how ma	그는 아이에서 잘 알려요. 아이가 가지 않는 것을 하는 것을 수가 있다. 말하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수가 있다. 말하는 것을 수가 있다. 말하는 것을 하는 것을 수가 있다. 말하는 것을 것을 수가 있다. 말하는 것이 같이 같이 않는 것을 수가 있다. 말하는 것이 같이 않다. 말하는 것이 같이 않다. 말하는 것이 같이 같이 않다. 말하는 것이 같이 않는 것이 같이 않다. 말하는 것이 같이 않다. 말하는 것이 같이 않다. 말하는 것이 같이 않는 것이 않는 것이 같이 않다. 말하는 것이 같이 않는 것이 않는 것이 않는 것이 않는 것이 같이 않는 것이 않았다. 않아 않는 것이 않는 것이 않는 것이 않는 것이 않 않이 않 않이 않는 것이 않는 것이 않는 것이 않						
	Sample Temp (°C):			# 🗆 B, or 🗆 C				
	Samples received on ice directly			and the second the second case				
	Date Opened <u>i1-124</u> By (prin			(sign)				
Section 3:	bate Opened by (prin	<u> </u>		otify PM if tempe		ode 6°C	or arrive	froza
	alor (if other describe)		important : N	otily Pivi il tempe	rature exce	eas o C	or arrive	: moze
	ooler: (if other, describe)					D		
	e Wrap, Foam blocks, Bags,		and the second		rotoam, L	Paper to	owers	
	eceived on ice directly from the fi						- 11	
Type of ice u	ised : 🗆 Wet, 🛛 Blue/Gel, I e measured using 🗆 Thermomete		Temp	erature blank(s) in		J Yes, [_ NO	
	o (°C): #1: <u>4,5</u> #2:	,#3:	_, #4:	#5:, #6: _	·	‡7:	NO	
Section 4:	the second se		4 ida - 4 6 - 6 - 6 -			YES	NO	N/A
	ly papers dry, filled out properly, a		tidentifiable			V	1	and the second
	od 5035 sampling containers prese					10.5100.000	K	elanda hira b
	what time were they transferred t	o freezerr				traps that god	AND THE REAL	Alfan I de
	es arrive unbroken/unopened?					V	1/	249125
	y missing / extra samples? in the appropriate containers for	indicated test	c2		3	1/	V	
	abels present, in good condition a							STREETS
	tainer count match the COC?	ind completer				1		142111111
	le labels agree with custody pape	rs?				1		ANNEX PO
	nt amount of sample sent for test					V		18 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
	nge the hold time in LIMS for unpr		2			V		V
	nge the hold time in LIMS for pres							V
	> 6mm present in VOA samples?							1
	nt contacted concerning this same	le deliverv?					1/	CLEICE INC.
	vho was called?	denvery.	Ву	Date:	4	N. NEW PA	CARE OF ALL	
Section 5:				Dutc		YES	NO	N/A
	ples appropriately preserved?	(if N/A skin th	e rest of section	5)		125		
	k preservatives for all bottles for			5/				· ·
	ument your preservative check?	cuch sumple.						
	lot#, pH strip	lot#		pH strip lot#	5			all of the second
Preservative			,	p				
H2SO4 lo		nples			on/at			
HCL lot#	added to san	-			on/at			
HNO3 lot					on/at			
□ NaOH lot					on/at			
Section 6:				0				
	Comments:							
Date Loga	red in 11/13/19 By (p	print)	Rv	(sign)	(0		
				· · · · · · · · · · · · · · · · · · ·	0	11/		
Date La	beled $11/13/14$ By (p	print) 2	H	(sign)	7	14/		•

Total Volatile Hydrocarbons

			•			
Lat) #: 315811			Project#: 19	9-032.10	
Clie	ent: Envirocom			Location: Va	alaya Auto)
Field ID:	VSB1-10	Basis:	as received		Received:	11/12/19
Туре:	SAMPLE	Diln Fac:	1.000		Analyzed:	11/22/19
Lab ID:	315811-001	Batch#:	276331		Prep:	EPA 5030B
Matrix:	Soil	Sampled:	11/11/19		Analysis:	EPA 8015B
Analyte				Result	RL	Units
Gasoline C7-C12				ND	1.1	mg/Kg
Surrogate					%REC	: Limits
Bromofluorobenze	ene (FID)				92	39-127
Field ID:	VSB2-10	Basis:	as received		Received:	11/12/19
Туре:	SAMPLE	Diln Fac:	1.000		Analyzed:	11/22/19
Lab ID:	315811-002	Batch#:	276331		Prep:	EPA 5030B
Matrix:	Soil	Sampled:	11/11/19		Analysis:	EPA 8015B
Analyte				Result	RL	Units
Gasoline C7-C12				ND	0.96	mg/Kg
Surrogate					%REC	: Limits
Bromofluorobenze	ene (FID)				93	39-127
Field ID:	VSB3-10	Basis:	as received		Received:	11/12/19
Туре:	SAMPLE	Diln Fac:	1.000		Analyzed:	11/22/19
Lab ID:	315811-003	Batch#:	276331		Prep:	EPA 5030B
Matrix:	Soil	Sampled:	11/11/19		Analysis:	EPA 8015B
Analyte				Result	RL	Units
Gasoline C7-C12				ND	1.1	mg/Kg
Surrogate					%REC	: Limits
Bromofluorobenze	ene (FID)				92	39-127
Field ID:	VSB4-10	Basis:	as received		Received:	11/12/19
Туре:	SAMPLE	Diln Fac:	1.000		Analyzed:	11/22/19
Lab ID:	315811-004	Batch#:	276331		Prep:	EPA 5030B
Matrix:	Soil	Sampled:	11/11/19		Analysis:	EPA 8015B
Analyte				Result	RL	Units
Gasoline C7-C12				ND	1.1	mg/Kg
Surrogate					%REC	
Bromofluorobenze	ene (FID)				92	2 39-127

Total Volatile Hydrocarbons

Lab #: 315811				Project#: 19	9-032.10				
Client: Envirocom	l	Location: Valaya Auto							
Field ID: VSB5-10		Basis:	as received		Received: 11	/12/19			
Type: SAMPLE		Diln Fac:	1.000		Analyzed: 11	/22/19			
Lab ID: 315811-005		Batch#:	276331		Prep: El	PA 5030B			
Matrix: Soil		Sampled:	11/11/19		Analysis: El	Received: 11/12/19 Analyzed: 11/22/19 Prep: EPA 5030B Analysis: EPA 8015B RL Units 1.0 mg/Kg %REC Limits 94 39-127 Prep: EPA 5030B Analysis: EPA 8015B			
Analyte				Result	RL	Units			
Gasoline C7-C12				ND	1.0	mg/Kg			
Surrogate					%REC	Limits			
Bromofluorobenzene (FID)					94	39-127			
Type: BLANK	Matrix:	Soil	Batch#:	276331	Prep:	EPA 5030B			
Lab ID: QC999862	Diln Fac:	1.000	Analyzed:	11/21/19	Analysis:	EPA 8015B			
Analyte				Result	RL	Units			
Gasoline C7-C12				ND	1.0	mg/Kg			
Surrogate					%REC	Limits			
Bromofluorobenzene (FID)					90	39-127			
Legend									

ND: Not Detected

RL: Reporting Limit

Total Volatile Hydrocarbons: Batch QC

Lab #: 31581	1		Project#: 19-032.10							
Client: Enviro	com		Location: Valaya Auto							
Type: BS	Matrix: Soil	Ва	atch#: 27633	31	Prep:	EPA 5030B				
Lab ID: QC999863	Diln Fac: 1.000	Anal	Analyzed: 11/21/19			Analysis: EPA 8015B				
Analyte	Spi	ked	Result	%REC	Limits	Units	\$			
Gasoline C7-C12	1.	000	0.9699	97	80-122	mg/Kg	g			
Surrogate					%REC	Limits				
Bromofluorobenzene (FID)					94	39-127				
Type: BSD	Matrix: Soil	Ва	atch#: 27633	31	Prep:	EPA 5030B				
Lab ID: QC999864	Diln Fac: 1.000	Anal	yzed: 11/21	/19	Analysis:	EPA 8015B				
Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim			
Gasoline C7-C12	1.000	0.9559	96	80-122	mg/Kg	1	20			
Surrogate					%REC	Limits				
Bromofluorobenzene (FID)					87	39-127				

Legend **RPD:** Relative Percent Difference

Total Volatile Hydrocarbons: Batch QC

Lab #: 315811 Client: Envirocom		Project#: 19-032.10 Location: Valaya Auto							
Туре:	MS		Diln Fac	: 1.000		Р	rep: EP/	A 5030B	
MSS Lab ID:	315840-007		Batch#	: 276331		Analy	sis: EPA	A 8015B	
Lab ID:	QC999867		Sampled	: 11/13/19					
Matrix:	Soil		Received	: 11/13/19					
Analyte		MSS F	Result	Spiked	Result	%REC	Limits	Un	its
Gasoline C7-C12		C	.7362	10.42	6.610	56 *	58-120	mg.	/Kg
Surrogate						%R	EC	Limits	
Bromofluorobenzene (F	ID)						94	39-127	
Field ID:	ZZZZZZZZZZZ		Basis	: as received		Analyz	zed: 11/2	22/19	
Туре:	MSD		Diln Fac	: 1.000		Ρ	rep: EPA	A 5030B	
MSS Lab ID:	315840-007		Batch#	: 276331		Analy	sis: EPA	A 8015B	
Lab ID:	QC999868		Sampled	: 11/13/19					
Matrix:	Soil		Received	: 11/13/19					
Analyte		Spiked	Result	%REC	C Limits	Ur	nits	RPD	Lim
Gasoline C7-C12		10.42	6.646	57	* 58-120	mg	/Kg	1	35
Surrogate						%R	EC	Limits	
Bromofluorobenzene (F	ID)						94	39-127	
Legend									

*: Value is outside QC limits

RPD: Relative Percent Difference

Purgeable Organics by GC/MS

Lab #: 315811			Project#: 19-03	32.10			
Client: Envirocom			Location: Valaya Auto				
Field ID: VSB1-10	Diln Fac:	0.9804	Ana	alyzed:	11/20/19		
Lab ID: 315811-001	Batch#:	276255		Prep:	EPA 5030E	3	
Matrix: Soil	Sampled:	11/11/19	An	alvsis:	EPA 8260E	3	
Basis: as received	Received:			, <u>,</u> , , , , , , , , , , , , , , , , ,			
Analyte			Result	RL	MDL	Units	
Freon 12			ND	9.8		ug/Kg	
Chloromethane			ND	9.8		ug/Kg	
Vinyl Chloride			ND	9.8	0.5	ug/Kg	
Bromomethane			ND	9.8		ug/Kg	
Chloroethane			ND	9.8		ug/Kg	
Trichlorofluoromethane			ND	4.9		ug/Kg	
Acetone			ND	20		ug/Kg	
Freon 113			ND	4.9		ug/Kg	
1,1-Dichloroethene			ND	4.9		ug/Kg	
Methylene Chloride			ND	20		ug/Kg	
Carbon Disulfide			ND	4.9		ug/Kg	
МТВЕ			ND	4.9		ug/Kg	
trans-1,2-Dichloroethene			ND	4.9		ug/Kg	
Vinyl Acetate			ND	49		ug/Kg	
1,1-Dichloroethane			ND	4.9		ug/Kg	
2-Butanone			ND	9.8		ug/Kg	
cis-1,2-Dichloroethene			ND	4.9		ug/Kg	
2,2-Dichloropropane			ND	4.9		ug/Kg	
Chloroform			ND	4.9		ug/Kg	
Bromochloromethane			ND	4.9		ug/Kg	
1,1,1-Trichloroethane			ND	4.9		ug/Kg	
1,1-Dichloropropene			ND	4.9		ug/Kg	
Carbon Tetrachloride			ND	4.9		ug/Kg	
1,2-Dichloroethane			ND	4.9		ug/Kg	
Benzene			ND	4.9		ug/Kg	
Trichloroethene			ND	4.9		ug/Kg	
1,2-Dichloropropane			ND	4.9		ug/Kg	
Bromodichloromethane			ND	4.9		ug/Kg	
Dibromomethane			ND	4.9		ug/Kg	
4-Methyl-2-Pentanone			ND	9.8		ug/Kg	
cis-1,3-Dichloropropene			ND	4.9		ug/Kg	
Toluene			ND	4.9		ug/Kg	
trans-1,3-Dichloropropene			ND	4.9		ug/Kg	
1,1,2-Trichloroethane			ND	4.9		ug/Kg	
2-Hexanone			ND	9.8		ug/Kg	
1,3-Dichloropropane			ND	4.9		ug/Kg	
Tetrachloroethene			ND	4.9		ug/Kg	
Dibromochloromethane			ND	4.9		ug/Kg	
1,2-Dibromoethane			ND	4.9		ug/Kg	
Chlorobenzene			ND	4.9		ug/Kg	
1,1,1,2-Tetrachloroethane			ND	4.9		ug/Kg	

1 of 2

Purgeable Organics by GC/MS

Project#: 19-032.10					
Location: Valaya Auto					
Result	RL	MDL	Units		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
ND	4.9		ug/Kg		
	%REC	Li	mits		
	107	77	-126		
	100	77	-131		
	101	80	-120		
	112	80	-123		

ND: Not Detected RL: Reporting Limit

Purgeable Organics by GC/MS

Lab #: 315811			Project#: 19-0	32.10			
Client: Envirocom			Location: Valaya Auto				
Field ID: VSB2-10	Diln Fac:	0.9363	An	alyzed:	11/20/19		
Lab ID: 315811-002	Batch#:	276255		Prep:	EPA 5030E	3	
Matrix: Soil	Sampled:	11/11/19	Ar	nalvsis:	EPA 8260E	3	
Basis: as received	Received:			,,			
Analyte			Result	RL	MDL	Units	
Freon 12			ND	9.4		ug/Kg	
Chloromethane			ND	9.4		ug/Kg	
Vinyl Chloride			ND	9.4	0.5	ug/Kg	
Bromomethane			ND	9.4		ug/Kg	
Chloroethane			ND	9.4		ug/Kg	
Trichlorofluoromethane			ND	4.7		ug/Kg	
Acetone			ND	19		ug/Kg	
Freon 113			ND	4.7		ug/Kg	
1,1-Dichloroethene			ND	4.7		ug/Kg	
Methylene Chloride			ND	19		ug/Kg	
Carbon Disulfide			ND	4.7		ug/Kg	
MTBE			ND	4.7		ug/Kg	
trans-1,2-Dichloroethene			ND	4.7		ug/Kg	
Vinyl Acetate			ND	47		ug/Kg	
1,1-Dichloroethane			ND	4.7		ug/Kg	
2-Butanone			ND	9.4		ug/Kg	
cis-1,2-Dichloroethene			ND	4.7		ug/Kg	
2,2-Dichloropropane			ND	4.7		ug/Kg	
Chloroform			ND	4.7		ug/Kg	
Bromochloromethane			ND	4.7		ug/Kg	
1,1,1-Trichloroethane			ND	4.7		ug/Kg	
1,1-Dichloropropene			ND	4.7		ug/Kg	
Carbon Tetrachloride			ND	4.7		ug/Kg	
1,2-Dichloroethane			ND	4.7		ug/Kg	
Benzene			ND	4.7		ug/Kg	
Trichloroethene			ND	4.7		ug/Kg	
1,2-Dichloropropane			ND	4.7		ug/Kg	
Bromodichloromethane			ND	4.7		ug/Kg	
Dibromomethane			ND	4.7		ug/Kg	
4-Methyl-2-Pentanone			ND	9.4		ug/Kg	
cis-1,3-Dichloropropene			ND	4.7		ug/Kg	
Toluene			ND	4.7		ug/Kg	
trans-1,3-Dichloropropene			ND	4.7		ug/Kg	
1,1,2-Trichloroethane			ND	4.7		ug/Kg	
2-Hexanone			ND	9.4		ug/Kg ug/Kg	
1,3-Dichloropropane			ND	4.7		ug/Kg	
Tetrachloroethene			ND	4.7		ug/Kg	
Dibromochloromethane			ND	4.7 4.7		ug/Kg ug/Kg	
1,2-Dibromoethane			ND	4.7 4.7		ug/Kg ug/Kg	
Chlorobenzene			ND	4.7 4.7		ug/Kg ug/Kg	
1,1,1,2-Tetrachloroethane			ND	4.7		ug/Kg ug/Kg	

13 of 24

cation: Vala Result ND ND ND ND ND ND ND ND ND ND	Aya Auto RL 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7		Units ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND ND ND N	4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND ND ND N	4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND ND	4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND	4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND	4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND	4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND	4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND	4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND	4.7 4.7 4.7 4.7 4.7 4.7 4.7		ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND	4.7 4.7 4.7 4.7 4.7 4.7		ug/Kg ug/Kg ug/Kg
ND ND ND ND	4.7 4.7 4.7 4.7		ug/Kg ug/Kg
ND ND ND ND	4.7 4.7 4.7		ug/Kg
ND ND ND	4.7 4.7		
ND ND	4.7		
ND			uy/ny
	47		ug/Kg
	4./		ug/Kg
ND	4.7		ug/Kg
	%REC	Limit	s
	109	77-12	26
	102	77-13	31
	99	80-12	20
	109	80-12	23
		109 102 99	10977-1210277-139980-12

ND: Not Detected

Lab #: 315811		F	Project#: 19-0	32.10		
Client: Envirocom	ocation: Valaya Auto					
Field ID: VSB3-10	Diln Fac:	0.9506	An	alyzed:	11/20/19	
Lab ID: 315811-003	Batch#:	276255		-	EPA 5030	3
Matrix: Soil	Sampled:		А	•	EPA 8260	
Basis: as received	Received:			laryolor		
Analyte			Result	RL	MDL	Units
Freon 12			ND	9.5		ug/Kg
Chloromethane			ND	9.5		ug/Kg
Vinyl Chloride			ND	9.5	0.5	ug/Kg
Bromomethane			ND	9.5		ug/Kg
Chloroethane			ND	9.5		ug/Kg
Trichlorofluoromethane			ND	4.8		ug/Kg
Acetone			ND	19		ug/Kg
Freon 113			ND	4.8		ug/Kg
1,1-Dichloroethene			ND	4.8		ug/Kg
Methylene Chloride			ND	19		ug/Kg
Carbon Disulfide			ND	4.8		ug/Kg
MTBE			ND	4.8		ug/Kg
trans-1,2-Dichloroethene			ND	4.8		ug/Kg
Vinyl Acetate			ND	48		ug/Kg
1,1-Dichloroethane			ND	4.8		ug/Kg
2-Butanone			ND	9.5		ug/Kg
cis-1,2-Dichloroethene			ND	4.8		ug/Kg
2,2-Dichloropropane			ND	4.8		ug/Kg
Chloroform			ND	4.8		ug/Kg
Bromochloromethane			ND	4.8		ug/Kg
1,1,1-Trichloroethane			ND	4.8		ug/Kg
1,1-Dichloropropene			ND	4.8		ug/Kg
Carbon Tetrachloride			ND	4.8		ug/Kg
1.2-Dichloroethane			ND	4.8		ug/Kg
Benzene			ND	4.8		ug/Kg
Trichloroethene			ND	4.8		ug/Kg
1,2-Dichloropropane			ND	4.8		ug/Kg
Bromodichloromethane			ND	4.8		ug/Kg
Dibromomethane			ND	4.8		ug/Kg
4-Methyl-2-Pentanone			ND	9.5		ug/Kg
cis-1,3-Dichloropropene			ND	4.8		ug/Kg
Toluene			ND	4.8		ug/Kg
trans-1,3-Dichloropropene			ND	4.8		ug/Kg
1,1,2-Trichloroethane			ND	4.8		ug/Kg
2-Hexanone			ND	4.0 9.5		ug/Kg
1,3-Dichloropropane			ND	4.8		ug/Kg
Tetrachloroethene			ND	4.8		ug/Kg
Dibromochloromethane			ND	4.8 4.8		ug/Kg
1,2-Dibromoethane			ND	4.8 4.8		ug/Kg
Chlorobenzene			ND	4.8 4.8		ug/Kg
1,1,1,2-Tetrachloroethane			ND	4.8		ug/Kg

Lab #: 315811	Project#: 19-0	Project#: 19-032.10						
Client: Envirocom	Location: Valaya Auto							
Analyte	Result	RL	MDL	Units				
Ethylbenzene	ND	4.8		ug/Kg				
m,p-Xylenes	ND	4.8		ug/Kg				
o-Xylene	ND	4.8		ug/Kg				
Styrene	ND	4.8		ug/Kg				
Bromoform	ND	4.8		ug/Kg				
lsopropylbenzene	ND	4.8		ug/Kg				
1,1,2,2-Tetrachloroethane	ND	4.8		ug/Kg				
1,2,3-Trichloropropane	ND	4.8		ug/Kg				
Propylbenzene	ND	4.8		ug/Kg				
Bromobenzene	ND	4.8		ug/Kg				
1,3,5-Trimethylbenzene	ND	4.8		ug/Kg				
2-Chlorotoluene	ND	4.8		ug/Kg				
4-Chlorotoluene	ND	4.8		ug/Kg				
tert-Butylbenzene	ND	4.8		ug/Kg				
1,2,4-Trimethylbenzene	ND	4.8		ug/Kg				
sec-Butylbenzene	ND	4.8		ug/Kg				
para-lsopropyl Toluene	ND	4.8		ug/Kg				
1,3-Dichlorobenzene	ND	4.8		ug/Kg				
1,4-Dichlorobenzene	ND	4.8		ug/Kg				
n-Butylbenzene	ND	4.8		ug/Kg				
1,2-Dichlorobenzene	ND	4.8		ug/Kg				
1,2-Dibromo-3-Chloropropane	ND	4.8		ug/Kg				
1,2,4-Trichlorobenzene	ND	4.8		ug/Kg				
Hexachlorobutadiene	ND	4.8		ug/Kg				
Naphthalene	ND	4.8		ug/Kg				
1,2,3-Trichlorobenzene	ND	4.8		ug/Kg				
Surrogate		%REC	Lir	nits				
Dibromofluoromethane		108	77-	126				
1,2-Dichloroethane-d4		103		131				
Toluene-d8		100	80-	120				
Bromofluorobenzene		111		123				
Legend								
MDL: Method Detection Limit								

ND: Not Detected

Lab #: 315811		I	Project#: 19-03	32.10		
Client: Envirocom	ocation: Valaya Auto					
Field ID: VSB4-10	Diln Fac:	0.9843	Ana	alyzed:	11/20/19	
Lab ID: 315811-004	Batch#:	276255		Prep:	EPA 5030E	3
Matrix: Soil	Sampled:	11/11/19	An	-	EPA 8260E	
Basis: as received	Received:					-
Analyte			Result	RL	MDL	Units
Freon 12			ND	9.8		ug/Kg
Chloromethane			ND	9.8		ug/Kg
Vinyl Chloride			ND	9.8	0.5	ug/Kg
Bromomethane			ND	9.8		ug/Kg
Chloroethane			ND	9.8		ug/Kg
Trichlorofluoromethane			ND	4.9		ug/Kg
Acetone			ND	20		ug/Kg
Freon 113			ND	4.9		ug/Kg
1,1-Dichloroethene			ND	4.9		ug/Kg
Methylene Chloride			ND	20		ug/Kg
Carbon Disulfide			ND	4.9		ug/Kg
MTBE			ND	4.9		ug/Kg
rans-1,2-Dichloroethene			ND	4.9		ug/Kg
Vinyl Acetate			ND	49		ug/Kg
1,1-Dichloroethane			ND	4.9		ug/Kg
2-Butanone			ND	9.8		ug/Kg
cis-1,2-Dichloroethene			ND	4.9		ug/Kg
2,2-Dichloropropane			ND	4.9		ug/Kg
Chloroform			ND	4.9		ug/Kg
Bromochloromethane			ND	4.9		ug/Kg
1,1,1-Trichloroethane			ND	4.9		ug/Kg
1,1-Dichloropropene			ND	4.9		ug/Kg
Carbon Tetrachloride			ND	4.9		ug/Kg
1.2-Dichloroethane			ND	4.9		ug/Kg
Benzene			ND	4.9		ug/Kg
Trichloroethene			ND	4.9 4.9		ug/Kg ug/Kg
1,2-Dichloropropane			ND	4.9		ug/Kg ug/Kg
Bromodichloromethane			ND	4.9		ug/Kg
Dibromomethane			ND	4.9		ug/Kg
4-Methyl-2-Pentanone			ND	4.9 9.8		ug/Kg ug/Kg
cis-1,3-Dichloropropene			ND	9.8 4.9		ug/Kg ug/Kg
Toluene			ND	4.9 4.9		ug/Kg ug/Kg
rans-1,3-Dichloropropene			ND	4.9 4.9		ug/Kg
1,1,2-Trichloroethane			ND	4.9 4.9		ug/Kg ug/Kg
2-Hexanone			ND	4.9 9.8		ug/Kg ug/Kg
2-nexanone 1,3-Dichloropropane			ND	9.8 4.9		
Tetrachloroethene			ND			ug/Kg
i etrachioroethene Dibromochloromethane			ND	4.9 4.0		ug/Kg
			ND ND	4.9 4.0		ug/Kg
1,2-Dibromoethane Chlorobenzene			ND ND	4.9 4.0		ug/Kg
JIIIUIUDEIIZEIIE			טא	4.9		ug/Kg

Location: Vala Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Aya Auto RL 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND ND ND N	4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND ND ND	4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND	4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND	4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND	4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND	4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9		ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND	4.9 4.9 4.9 4.9 4.9 4.9		ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND	4.9 4.9 4.9 4.9 4.9		ug/Kg ug/Kg
ND ND ND ND ND	4.9 4.9 4.9 4.9		ug/Kg
ND ND ND ND ND	4.9 4.9 4.9		
ND ND ND ND	4.9 4.9		ug/Kg
ND ND ND	4.9		
ND ND			ug/Kg
ND	4.9		ug/Kg
			ug/Kg
	4.9		ug/Kg
ND	4.9		ug/Kg
	%REC	Lin	nits
	110	77-	-126
	103	77-	-131
	100	80-	-120
	111	80-	-123
	ND ND ND ND	ND 4.9 103 100	ND 4.9 ND 77- 103 77- 100 80-

ND: Not Detected

Lab #: 315811		Р	roject#: 19-0	32.10		
Client: Envirocom		Location: Valaya Auto				
Field ID: VSB5-10	Diln Fac:	0.9747	An	alyzed:	11/20/19	
Lab ID: 315811-005	Batch#:	276255		Prep:	EPA 50308	3
Matrix: Soil	Sampled:		Ar	-	EPA 8260	
Basis: as received	Received:			u, yeiei	217102001	_
Analyte			Result	RL	MDL	Units
Freon 12			ND	9.7		ug/Kg
Chloromethane			ND	9.7		ug/Kg
Vinyl Chloride			ND	9.7	0.5	ug/Kg
Bromomethane			ND	9.7	0.0	ug/Kg
Chloroethane			ND	9.7		ug/Kg
Trichlorofluoromethane			ND	4.9		ug/Kg
Acetone			ND	19		ug/Kg
Freon 113			ND	4.9		ug/Kg
1,1-Dichloroethene			ND	4.9		ug/Kg
Methylene Chloride			ND	5 19		ug/Kg
Carbon Disulfide			ND	4.9		ug/Kg
MTBE			ND	4.9		ug/Kg
rans-1,2-Dichloroethene			ND	4.9		ug/Kg
Vinyl Acetate			ND	49		ug/Kg
1,1-Dichloroethane			ND	4.9		ug/Kg
2-Butanone			ND	9.7		ug/Kg
cis-1,2-Dichloroethene			ND	4.9		ug/Kg
2,2-Dichloropropane			ND	4.9		ug/Kg
Chloroform			ND	4.9		ug/Kg
Bromochloromethane			ND	4.9		ug/Kg
1,1,1-Trichloroethane			ND	4.9		ug/Kg
1,1-Dichloropropene			ND	4.9		ug/Kg
Carbon Tetrachloride			ND	4.9		ug/Kg
1,2-Dichloroethane			ND	4.9		ug/Kg
Benzene			ND	4.9		ug/Kg
Trichloroethene			ND	4.9 4.9		ug/Kg ug/Kg
1,2-Dichloropropane			ND	4.9 4.9		ug/Kg
Bromodichloromethane			ND	4.9		ug/Kg
Dibromomethane			ND	4.9		ug/Kg
4-Methyl-2-Pentanone			ND	4.9 9.7		ug/Kg ug/Kg
cis-1,3-Dichloropropene			ND	9.7 4.9		ug/Kg ug/Kg
Toluene			ND	4.9 4.9		ug/Kg ug/Kg
rans-1,3-Dichloropropene			ND	4.9		
rans-1,3-Dichloropropene 1,1,2-Trichloroethane			ND	4.9 4.9		ug/Kg
2-Hexanone			ND	4.9 9.7		ug/Kg
			ND	9.7 4.9		ug/Kg
1,3-Dichloropropane						ug/Kg
Tetrachloroethene				4.9		ug/Kg
Dibromochloromethane				4.9		ug/Kg
1,2-Dibromoethane				4.9		ug/Kg
Chlorobenzene			ND	4.9		ug/Kg

Lab #: 315811	Project#: 19-0	Project#: 19-032.10						
Client: Envirocom	Location: Valaya Auto							
Analyte	Result	RL	MDL	Units				
Ethylbenzene	ND	4.9		ug/Kg				
m,p-Xylenes	ND	4.9		ug/Kg				
o-Xylene	ND	4.9		ug/Kg				
Styrene	ND	4.9		ug/Kg				
Bromoform	ND	4.9		ug/Kg				
lsopropylbenzene	ND	4.9		ug/Kg				
1,1,2,2-Tetrachloroethane	ND	4.9		ug/Kg				
1,2,3-Trichloropropane	ND	4.9		ug/Kg				
Propylbenzene	ND	4.9		ug/Kg				
Bromobenzene	ND	4.9		ug/Kg				
1,3,5-Trimethylbenzene	ND	4.9		ug/Kg				
2-Chlorotoluene	ND	4.9		ug/Kg				
4-Chlorotoluene	ND	4.9		ug/Kg				
tert-Butylbenzene	ND	4.9		ug/Kg				
1,2,4-Trimethylbenzene	ND	4.9		ug/Kg				
sec-Butylbenzene	ND	4.9		ug/Kg				
para-lsopropyl Toluene	ND	4.9		ug/Kg				
1,3-Dichlorobenzene	ND	4.9		ug/Kg				
1,4-Dichlorobenzene	ND	4.9		ug/Kg				
n-Butylbenzene	ND	4.9		ug/Kg				
1,2-Dichlorobenzene	ND	4.9		ug/Kg				
1,2-Dibromo-3-Chloropropane	ND	4.9		ug/Kg				
1,2,4-Trichlorobenzene	ND	4.9		ug/Kg				
Hexachlorobutadiene	ND	4.9		ug/Kg				
Naphthalene	ND	4.9		ug/Kg				
1,2,3-Trichlorobenzene	ND	4.9		ug/Kg				
Surrogate		%REC	Lir	nits				
Dibromofluoromethane		110	77	-126				
1,2-Dichloroethane-d4		102	77	-131				
Toluene-d8		103	80	-120				
Bromofluorobenzene		112	80	-123				
Legend								
MDL: Method Detection Limit								

ND: Not Detected

Lab #: 31581			Project#	: 19-032	.10			
Client: Envirocom			Location: Valaya Auto					
Type: LCS	Matrix: Soil	Soil Batch#: 276255 Prep:				Prep: E	PA 5030B	
Lab ID: QC999521	Diln Fac: 1.000	00 Analyzed: 1		11/20/19	Analysis: EPA 8260			
Analyte		Spiked	Re	sult	%REC	Limits	Units	
1,1-Dichloroethene		25.00	2	8.58	114	80-130	ug/Kg	
Benzene		25.00	2	6.06	104	80-120	ug/Kg	
Trichloroethene		25.00	2	4.71	99	78-124	ug/Kg	
Toluene		25.00	2	7.08	108	80-120	ug/Kg	
Chlorobenzene		25.00	2	6.67	107	80-120	ug/Kg	
Surrogate					%	REC	Limits	
Dibromofluoromethane						103	77-126	
1,2-Dichloroethane-d4						94	77-131	
Toluene-d8						100	80-120	
Bromofluorobenzene						105	80-123	

Location: Vala #: 276255 1: 11/20/19 Result ND ND ND ND ND ND ND ND ND ND	Pro	0 ep: EPA 5 sis: EPA 8 <u>MDL</u> 0.5	
d: 11/20/19 Result ND ND ND ND ND ND ND ND ND ND	Analys RL 10 10 10 10 10 10 5.0 20 5.0 20 5.0 20 5.0 20 5.0	Sis: EPA 8	260B Units ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RL 10 10 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	MDL	Units ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND ND ND N	10 10 10 10 5.0 20 5.0 5.0 20 5.0 20 5.0		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND ND ND	10 10 10 5.0 20 5.0 5.0 20 5.0	0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND ND	10 10 5.0 20 5.0 5.0 20 5.0 20 5.0	0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND ND ND	10 10 5.0 20 5.0 5.0 20 5.0	0.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND ND	10 5.0 20 5.0 5.0 20 5.0		ug/Kg ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND ND	5.0 20 5.0 5.0 20 5.0		ug/Kg ug/Kg ug/Kg
ND ND ND ND ND ND ND	20 5.0 5.0 20 5.0		ug/Kg ug/Kg
ND ND ND ND ND ND	5.0 5.0 20 5.0		ug/Kg ug/Kg
ND ND ND ND ND	5.0 20 5.0		ug/Kg
ND ND ND ND ND	5.0 20 5.0		
ND ND ND ND ND	20 5.0		. g/
ND ND ND ND	5.0		ug/Kg
ND ND ND			ug/Kg
ND ND	0.0		ug/Kg
ND	5.0		
	5.0 50		ug/Kg
ND			ug/Kg
	5.0		ug/Kg
ND	10		ug/Kg
ND	5.0		ug/Kg
ND	10		ug/Kg
ND	5.0		ug/Kg
ND	5.0		ug/Kg
ND	5.0		ug/Kg
			ug/Kg
ND	10		ug/Kg
			ug/Kg
ND			
			ug/Kg
ND			ug/Kg ug/Kg
	ND ND ND ND ND ND ND ND ND ND ND	ND 5.0 ND 10 ND 5.0 ND 5.0	ND 5.0 ND 10 ND 5.0 ND 5.0

Lab #: 315811	Lab #: 315811 Project#: 19-032.10						
Client: Envirocom	Location: Valaya Auto						
Analyte	Result	RL	MDL	Units			
o-Xylene	ND	5.0		ug/Kg			
Styrene	ND	5.0		ug/Kg			
Bromoform	ND	5.0		ug/Kg			
lsopropylbenzene	ND	5.0		ug/Kg			
1,1,2,2-Tetrachloroethane	ND	5.0		ug/Kg			
1,2,3-Trichloropropane	ND	5.0		ug/Kg			
Propylbenzene	ND	5.0		ug/Kg			
Bromobenzene	ND	5.0		ug/Kg			
1,3,5-Trimethylbenzene	ND	5.0		ug/Kg			
2-Chlorotoluene	ND	5.0		ug/Kg			
4-Chlorotoluene	ND	5.0		ug/Kg			
tert-Butylbenzene	ND	5.0		ug/Kg			
1,2,4-Trimethylbenzene	ND	5.0		ug/Kg			
sec-Butylbenzene	ND	5.0		ug/Kg			
para-Isopropyl Toluene	ND	5.0		ug/Kg			
1,3-Dichlorobenzene	ND	5.0		ug/Kg			
1,4-Dichlorobenzene	ND	5.0		ug/Kg			
n-Butylbenzene	ND	5.0		ug/Kg			
1,2-Dichlorobenzene	ND	5.0		ug/Kg			
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/Kg			
1,2,4-Trichlorobenzene	ND	5.0		ug/Kg			
Hexachlorobutadiene	ND	5.0		ug/Kg			
Naphthalene	ND	5.0		ug/Kg			
1,2,3-Trichlorobenzene	ND	5.0		ug/Kg			
Surrogate		%REC	Lir	nits			
Dibromofluoromethane		97		126			
1,2-Dichloroethane-d4		101	77	131			
Toluene-d8		98	80-	120			
Bromofluorobenzene		104	80-	123			
Legend							

Legend MDL: Method Detection Limit

ND: Not Detected

Lab #: 3	315811		Project#: 19-032.10							
Client:	Envirocom	Location: Valaya Auto								
Field ID:	ZZZZZZZZZZ	Basis: as received					Analyzed: 11/20/			
Туре:	MS	Diln Fac: 0.8772					Prep: EPA 50			
MSS Lab ID:	315976-001	Batch#: 276255 Analysis: EPA					S: EPA 82	260B		
Lab ID:	QC999648	S	ampled:	11/18/19						
Matrix:			eceived:							
Analyte		MSS Res	sult	Spiked	Re	esult	%REC	Limits		Jnits
1,1-Dichloroethene		<0.44		43.86		9.86	91	62-141		ig/Kg
Benzene				36.45		83			00	
Trichloroethene		<0.1028		43.86			144 *	60-140		ig/Kg
Toluene		<0.10	068	43.86	3	5.37	81	60-124		ig/Kg
Chlorobenzene		<0.088	818	43.86	3	3.80	77	54-120		ıg/Kg
Surrogate							%REC	Lir	nits	
Dibromofluoromethane							101	77-	-126	
1,2-Dichloroethane-d4							92 77-13		-131	
Toluene-d8					102	80-	-120			
Bromofluorobenzene							102	80-	-123	
Field ID:	ZZZZZZZZZZZ		Basis:	as receive	b		Analyzed	1: 11/20/1	9	
Туре:	MSD	0	Diln Fac:	0.9311			Prep	: EPA 50	30B	
MSS Lab ID:	315976-001		Batch#:	276255			Analysis	S: EPA 82	260B	
Lab ID:	QC999649	S	ampled:	11/18/19						
Matrix:	Soil		eceived:							
Analyte		Spiked	Result	t %F	REC	Limits	Unit	S	RPD	Lim
1,1-Dichloroethene		46.55	55.52		119	62-141	ug/K	g	27	37
Benzene		46.55	50.92	2	109	63-128	ug/K	g	27	62
Trichloroethene		46.55	83.44	1	79 *	60-140	ug/K	g	22	44
Toluene		46.55	50.95)	109	60-124	ug/K	g	30	57
Chlorobenzene		46.55	47.54		102	54-120	ug/K	g	28	52
Surrogate							%REC	Lir	nits	
Dibromofluoromethane							98	77-	126	
1,2-Dichloroethane-d4							92		-131	
Toluene-d8							104	80-	-120	
Bromofluorobenzene							107	80-	123	
Legend										
*: Value is outside QC limits										

RPD: Relative Percent Difference

Enthalpy Analytical 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900

enthalpy.com

Lab Job Number: 315810 Report Level: II Report Date: 11/21/2019

Analytical Report prepared for:

Mazyar Hajiaghai Envirocom 800 Charcot Avenue Suite 114 San Jose, CA 95131

Project: 19-032.10 - Valaya Auto

Authorized for release by:

Jessie Silbermon

Jess Silberman, Project Manager (510) 204-2223 Jessica.Silberman@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 2896, NELAP# 4044-001

Sample Summary

Mazyar Hajiaghai	Lab Job Number:	315810
Envirocom	Project No:	19-032.10
800 Charcot Avenue	Project Name:	Valaya Auto
Suite 114	Date Received:	11/12/19
San Jose, CA 95131	Bale Heochied.	11/12/10

Sample ID	Lab ID	Collected	Matrix
VW1	315810-001	11/11/19 00:00	Water
VW2	315810-002	11/11/19 00:00	Water
VW3	315810-003	11/11/19 00:00	Water
VW4	315810-004	11/11/19 00:00	Water
VW5	315810-005	11/11/19 00:00	Water

EnvirocomLab Job Number: 315810800 Charcot AvenueProject No: 19-032.10Suite 114Location: Valaya AutoSan Jose, CA 95131Date Received: 11/12/19Mazyar HajiaghaiDate Received: 11/12/19

Case Narrative

This data package contains sample and QC results for five water samples, requested for the above referenced project on 11/12/19. The samples were received intact.

Volatile Organics by GC/MS (EPA 8260B):

High surrogate recoveries were observed for 1,2-dichloroethane-d4 in many samples. No other analytical problems were encountered.

Detection Summary for 315810

Client: Envirocom Project: 19-032.10 Location Valaya Auto

No detections for VW1, Lab ID 315810-001

Sample ID: \	/W2										Lab	D: 315810-002
Analyte	Result	Flags	RL	Units		Basis	I	DF	Μ	lethod		Prep Method
Acetone	29		10	ug/L		As Recd	1.0	000	EP	A 8260B		EPA 5030B
Sample ID: \	/W3										Lab	D: 315810-003
Analyte	Result	Flags	RL	Units		Basis	I	DF	Μ	lethod		Prep Method
Acetone	46		10	ug/L		As Recd	1.0	000	EP	A 8260B		EPA 5030B
Sample ID: \	/W4										Lab	D: 315810-004
Analyte		Result	Fla	ags l	RL	Units	Basis		IDF	Metho	bd	Prep Method
Acetone		16			10	ug/L	As Recd		1.000	EPA 82	60B	EPA 5030B
m,p-Xylenes		0.6		C).5	ug/L	As Recd		1.000	EPA 82	60B	EPA 5030B
1,2,4-Trimeth	ylbenzene	0.7		C).5	ug/L	As Recd		1.000	EPA 82	60B	EPA 5030B

No detections for VW5, Lab ID 315810-005

1 of 1

					CH		USTODY				
	lame: \underline{V}	/			Project N Client: _	o: 19-03 City of San		Date: _ Sampler	11/11/ :: 170-34	119 ar Aaj	Tughai
Sample ID	Date Sampled	Sampling Time	Matrix	N° of Containers			Analysis R	lequested		Turnar	ound Time
	6.0.97				717HC V00 8260	5					
VWI	11/11/19	•	Water	4	Super					24-hour Other	Normal
VW2										24-hour Other	Normal
VW3										24-hour Other	Normal
VWY										24-hour Other	Normal
VWS	V		V	V	V					24-hour Other	Narmal
V/~/_										24-hour Other	Normal
										24-hour Other	Normal
										24-hour Other	Normal
NOTES:		λ	d								
Relinquish	ed by il	La .	`	Date	(fin 1	eived by	Ledson		Date	Time 15:10
Audra	4 Auto		1/12/1	9 17:4		No and	my p	Le (160 re)		1/12/19	17:50

SAMPLE RECEIPT CHECKLIST			
Section 1: Login # Client: Client: Date Received: 11-12-14 Project: Millight		ENT	HALP
Date Received: 11-12-14 Project: Milligen			
Section 2: Shipping info (if applicable)			
Are custody seals present? I No, or I Yes. If yes, where? I on cooler, I on samples	, 🗆 on pa	ckage	
Date: How many Signature, I Initials, None			
Were custody seals intact upon arrival? Yes No N/A			
Samples received in a cooler? 🗹 Yes, how many?/ 🔲 No (skip Section 3 below)			
If no cooler Sample Temp (°C): using IR Gun #			
□ Samples received on ice directly from the field. Cooling process had begun			
If in cooler: Date Opened <u>11-12-19</u> By (print) <u>JH</u> (sign) <u>J</u>			
Section 3: Important : Notify PM if temperature ex	ceeds 6°C	or arrive	froze
Packing in cooler: (if other, describe)			
□ Bubble Wrap, □ Foam blocks, □ Bags, □ None, □ Cloth material, □ Cardboard, □ Styrofoam,	Paper t	owels	
□ Samples received on ice directly from the field. Cooling process had begun	L ruper e	owers	
		No	
Type of ice used : Wet, Blue/Gel, None Temperature blank(s) included? Temperature measured using Temperature blank(s) Temperature blank(s) included?			
Cooler Temp (°C): #1: #2: #3: #4: #5: #6:	47.		
Section 4:			
	YES	NO	N/A
Were custody papers dry, filled out properly, and the project identifiable	-	/	
Were Method 5035 sampling containers present?	and charge	V	diago inter
If YES, what time were they transferred to freezer?	A DANSE	and said and	14.00-0-1
Did all bottles arrive unbroken/unopened?	~	1	
Are there any missing / extra samples?	-/	V	医治 合金
Are samples in the appropriate containers for indicated tests?	V		a leader
Are sample labels present, in good condition and complete?	1		
Does the container count match the COC?	V		
Do the sample labels agree with custody papers?	V/		
Was sufficient amount of sample sent for tests requested?	V	/	Exit:
Did you change the hold time in LIMS for unpreserved VOAs?	_	/	/
Did you change the hold time in LIMS for preserved terracores?		/	V
Are bubbles > 6mm present in VOA samples?		V	
Was the client contacted concerning this sample delivery?		V	SPALLS -
If YES, who was called?ByDate:	D. Carlos		
Section 5:	YES	NO	N/A
Are the samples appropriately preserved? (if N/A, skip the rest of section 5)			V
Did you check preservatives for all bottles for each sample?			s ja d
Did you document your preservative check?			
pH strip lot#, pH strip lot#, pH strip lot#, pH strip lot#	-		
Preservative added:			
H2SO4 lot# added to samples on/a	t		
HCL lot# added to samples on/a	t		
HNO3 lot# added to samples on/a	t		
NaOH lot# added to samples on/a	-		
Section 6: Explanations/Comments:			
Date Logged in 11/13/15 By (print) fr (sign)	r		
Date Labeled 11/13/19 By (print) 7/14 ZA (sign) 2	1/		
	W		•

Lab #: 315810	Pro	oject#: 19-0	32.10		
Client: Envirocom	Loc	ation: Vala	ya Auto	1	
Field ID: VW1	Batch#: 276211		Prep:	EPA 5030E	3
Lab ID: 315810-001	Sampled: 11/11/19	Ar	nalvsis:	EPA 8260E	}
Matrix: Water	Received: 11/12/19		,		
Diln Fac: 1.000	Analyzed: 11/19/19				
		D II			
Analyte		Result	RL	MDL	Units
Freon 12 Chloromethane		ND ND	1.0 1.0		ug/L
Vinyl Chloride		ND	0.5	0.1	ug/L
Bromomethane		ND	0.5 1.0	0.1	ug/L ug/L
Chloroethane		ND	1.0		
Trichlorofluoromethane		ND	1.0		ug/L
Acetone		ND	10		ug/L
Freon 113		ND	2.0		ug/L ug/L
1,1-Dichloroethene		ND	2.0 0.5		
					ug/L
Methylene Chloride Carbon Disulfide		ND ND	10 0.5		ug/L
Carbon Disulfide MTBE			0.5 0.5		ug/L
		ND ND	0.5		ug/L
trans-1,2-Dichloroethene					ug/L
Vinyl Acetate		ND	10		ug/L
1,1-Dichloroethane		ND	0.5		ug/L
2-Butanone		ND	10		ug/L
cis-1,2-Dichloroethene		ND	0.5		ug/L
2,2-Dichloropropane		ND	0.5		ug/L
Chloroform		ND	2.0		ug/L
Bromochloromethane		ND	0.5		ug/L
1,1,1-Trichloroethane		ND	0.5		ug/L
1,1-Dichloropropene		ND	0.5		ug/L
Carbon Tetrachloride		ND	0.5		ug/L
1,2-Dichloroethane		ND	0.5		ug/L
Benzene		ND	0.5		ug/L
Trichloroethene		ND	0.5		ug/L
1,2-Dichloropropane		ND	0.5		ug/L
Bromodichloromethane		ND	0.5		ug/L
Dibromomethane		ND	0.5		ug/L
4-Methyl-2-Pentanone		ND	10		ug/L
cis-1,3-Dichloropropene		ND	0.5		ug/L
Toluene		ND	0.5		ug/L
rans-1,3-Dichloropropene		ND	0.5		ug/L
1,1,2-Trichloroethane		ND	0.5		ug/L
2-Hexanone		ND	10		ug/L
1,3-Dichloropropane		ND	0.5		ug/L
Tetrachloroethene		ND	0.5		ug/L
Dibromochloromethane		ND	0.5		ug/L
1,2-Dibromoethane		ND	0.5		ug/L
Chlorobenzene		ND	0.5		ug/L
1,1,1,2-Tetrachloroethane		ND	0.5		ug

Lab #: 315810	Project#: 19-032.10						
Client: Envirocom	Location: Vala	iya Auto					
Analyte	Result	RL	MDL	Units			
Ethylbenzene	ND	0.5		ug/L			
m,p-Xylenes	ND	0.5		ug/L			
o-Xylene	ND	0.5		ug/L			
Styrene	ND	0.5		ug/L			
Bromoform	ND	1.0		ug/L			
lsopropylbenzene	ND	0.5		ug/L			
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L			
1,2,3-Trichloropropane	ND	0.5		ug/L			
Propylbenzene	ND	0.5		ug/L			
Bromobenzene	ND	0.5		ug/L			
1,3,5-Trimethylbenzene	ND	0.5		ug/L			
2-Chlorotoluene	ND	0.5		ug/L			
4-Chlorotoluene	ND	0.5		ug/L			
tert-Butylbenzene	ND	0.5		ug/L			
1,2,4-Trimethylbenzene	ND	0.5		ug/L			
sec-Butylbenzene	ND	0.5		ug/L			
para-Isopropyl Toluene	ND	0.5		ug/L			
1,3-Dichlorobenzene	ND	0.5		ug/L			
1,4-Dichlorobenzene	ND	0.5		ug/L			
n-Butylbenzene	ND	0.5		ug/L			
1,2-Dichlorobenzene	ND	0.5		ug/L			
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L			
1,2,4-Trichlorobenzene	ND	0.5		ug/L			
Hexachlorobutadiene	ND	2.0		ug/L			
Naphthalene	ND	2.0		ug/L			
1,2,3-Trichlorobenzene	ND	0.5		ug/L			
Surrogate		%REC	Lin	nits			
Dibromofluoromethane		105	80-	120			
1,2-Dichloroethane-d4		122 *	80-	120			
Toluene-d8		103	80-	120			
Bromofluorobenzene		107	80-	120			
Legend							
*: Value is outside QC limits							

MDL: Method Detection Limit

ND: Not Detected

Lab #: 315810	Pr	oject#: 19-03	32.10		
Client: Envirocom	Lo	cation: Vala	ya Aut	0	
Field ID: VW2	Batch#: 276211		Prep:	EPA 5030E	3
Lab ID: 315810-002	Sampled: 11/11/19	An	alysis:	EPA 8260E	3
Matrix: Water	Received: 11/12/19		-		
Diln Fac: 1.000	Analyzed: 11/19/19				
Analyte	· · · · · · · · · · · · · · · · · · ·	Result	RL	MDL	Units
Freon 12		ND	1.0	MDE	ug/L
Chloromethane		ND	1.0		ug/L
Vinyl Chloride		ND	0.5	0.1	ug/L
Bromomethane		ND	1.0		ug/L
Chloroethane		ND	1.0		ug/L
Trichlorofluoromethane		ND	1.0		ug/L
Acetone		29	10		ug/L
Freon 113		ND	2.0		ug/L
I,1-Dichloroethene		ND	0.5		ug/L
Methylene Chloride		ND	10		ug/L
Carbon Disulfide		ND	0.5		ug/L
MTBE		ND	0.5		ug/L
rans-1,2-Dichloroethene		ND	0.5		ug/L
/inyl Acetate		ND	10		ug/L
I,1-Dichloroethane		ND	0.5		ug/L
2-Butanone		ND	10		ug/L
cis-1,2-Dichloroethene		ND	0.5		ug/L
2,2-Dichloropropane		ND	0.5		ug/L
Chloroform		ND	2.0		ug/L
Bromochloromethane		ND	2.0 0.5		ug/L
1,1,1-Trichloroethane		ND	0.5		ug/L
1,1-Dichloropropene		ND	0.5		ug/L
Carbon Tetrachloride		ND	0.5		
1,2-Dichloroethane		ND	0.5		ug/L
					ug/L
Benzene Frieblare athene		ND ND	0.5 0.5		ug/L
Trichloroethene			0.5 0.5		ug/L
I,2-Dichloropropane Bromodichloromethane		ND ND	0.5 0.5		ug/L
					ug/L
Dibromomethane			0.5		ug/L
4-Methyl-2-Pentanone		ND	10		ug/L
cis-1,3-Dichloropropene			0.5		ug/L
Foluene		ND	0.5		ug/L
rans-1,3-Dichloropropene		ND	0.5		ug/L
I,1,2-Trichloroethane		ND	0.5		ug/L
2-Hexanone			10		ug/L
,3-Dichloropropane		ND	0.5		ug/L
Fetrachloroethene		ND	0.5		ug/L
Dibromochloromethane		ND	0.5		ug/L
I,2-Dibromoethane		ND	0.5		ug/L
Chlorobenzene		ND	0.5		ug/L
,1,1,2-Tetrachloroethane		ND	0.5		ug/L

Lab #: 315810	Project#: 19-0	32.10		
Client: Envirocom	Location: Vala	aya Auto		
Analyte	Result	RL	MDL	Units
Ethylbenzene	ND	0.5		ug/L
m,p-Xylenes	ND	0.5		ug/L
o-Xylene	ND	0.5		ug/L
Styrene	ND	0.5		ug/L
Bromoform	ND	1.0		ug/L
lsopropylbenzene	ND	0.5		ug/L
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L
1,2,3-Trichloropropane	ND	0.5		ug/L
Propylbenzene	ND	0.5		ug/L
Bromobenzene	ND	0.5		ug/L
1,3,5-Trimethylbenzene	ND	0.5		ug/L
2-Chlorotoluene	ND	0.5		ug/L
4-Chlorotoluene	ND	0.5		ug/L
tert-Butylbenzene	ND	0.5		ug/L
1,2,4-Trimethylbenzene	ND	0.5		ug/L
sec-Butylbenzene	ND	0.5		ug/L
para-Isopropyl Toluene	ND	0.5		ug/L
1,3-Dichlorobenzene	ND	0.5		ug/L
1,4-Dichlorobenzene	ND	0.5		ug/L
n-Butylbenzene	ND	0.5		ug/L
1,2-Dichlorobenzene	ND	0.5		ug/L
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L
1,2,4-Trichlorobenzene	ND	0.5		ug/L
Hexachlorobutadiene	ND	2.0		ug/L
Naphthalene	ND	2.0		ug/L
1,2,3-Trichlorobenzene	ND	0.5		ug/L
Surrogate		%REC	Lin	nits
Dibromofluoromethane		107	80-	120
1,2-Dichloroethane-d4		126 *	80-	120
Toluene-d8		107	80-	120
Bromofluorobenzene		108	80-	120
Legend				
*: Value is outside QC limits				

MDL: Method Detection Limit

ND: Not Detected

Lab #	#: 315810		Pro	oject#: 19-0	32.10		
Clien	t: Envirocom		Loc	cation: Vala	ya Aut	0	
Field ID:	VW3	Batch#:	276211		Prep:	EPA 5030E	}
Lab ID:	315810-003	Sampled:	11/11/19	An	-	EPA 8260E	
Matrix:		Received:			,		
Diln Fac:		Analyzed:					
Analyte				Result	RL	MDL	Units
Freon 12				ND	1.0		ug/L
Chloromethane				ND	1.0		ug/L
Vinyl Chloride				ND	0.5	0.1	ug/L
Bromomethane				ND	1.0	••••	ug/L
Chloroethane				ND	1.0		ug/L
Frichlorofluorometha	ine			ND	1.0		ug/L
Acetone				46	10		ug/L
Freon 113				ND	2.0		ug/L
1,1-Dichloroethene				ND	0.5		ug/L
Methylene Chloride				ND	10		ug/L
Carbon Disulfide				ND	0.5		ug/L
MTBE				ND	0.5		ug/L
rans-1,2-Dichloroeth	nene			ND	0.5		ug/L
/inyl Acetate				ND	10		ug/L
,1-Dichloroethane				ND	0.5		ug/L
2-Butanone				ND	10		ug/L
cis-1,2-Dichloroethe	ne			ND	0.5		ug/L
2,2-Dichloropropane				ND	0.5		ug/L
Chloroform	-			ND	2.0		ug/L
Bromochloromethan	e			ND	0.5		ug/L
1,1,1-Trichloroethan				ND	0.5		ug/L
1,1-Dichloropropene				ND	0.5		ug/L
Carbon Tetrachloride				ND	0.5		ug/L
1,2-Dichloroethane	-			ND	0.5		ug/L
Benzene				ND	0.5		ug/L
Trichloroethene				ND	0.5		ug/L
1,2-Dichloropropane				ND	0.5		ug/L
Bromodichlorometha				ND	0.5		ug/L
Dibromomethane				ND	0.5		ug/L
4-Methyl-2-Pentanor	ne			ND	10		ug/L
cis-1,3-Dichloroprop				ND	0.5		ug/L
Foluene				ND	0.5		ug/L
rans-1,3-Dichloropro	opene			ND	0.5		ug/L
1,2-Trichloroethan				ND	0.5		ug/L
2-Hexanone	-			ND	10		ug/L
,3-Dichloropropane)			ND	0.5		ug/L
Fetrachloroethene				ND	0.5		ug/L
Dibromochlorometha	ane			ND	0.5		ug/L
,2-Dibromoethane	~			ND	0.5		ug/L
Chlorobenzene				ND	0.5		ug/L
1,1,1,2-Tetrachloroet	thana			ND	0.5		ug/L

Lab #: 315810	Project#: 19-032.10						
Client: Envirocom	Location: Vala	iya Auto					
Analyte	Result	RL	MDL	Units			
Ethylbenzene	ND	0.5		ug/L			
m,p-Xylenes	ND	0.5		ug/L			
o-Xylene	ND	0.5		ug/L			
Styrene	ND	0.5		ug/L			
Bromoform	ND	1.0		ug/L			
lsopropylbenzene	ND	0.5		ug/L			
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L			
1,2,3-Trichloropropane	ND	0.5		ug/L			
Propylbenzene	ND	0.5		ug/L			
Bromobenzene	ND	0.5		ug/L			
1,3,5-Trimethylbenzene	ND	0.5		ug/L			
2-Chlorotoluene	ND	0.5		ug/L			
4-Chlorotoluene	ND	0.5		ug/L			
tert-Butylbenzene	ND	0.5		ug/L			
1,2,4-Trimethylbenzene	ND	0.5		ug/L			
sec-Butylbenzene	ND	0.5		ug/L			
para-Isopropyl Toluene	ND	0.5		ug/L			
1,3-Dichlorobenzene	ND	0.5		ug/L			
1,4-Dichlorobenzene	ND	0.5		ug/L			
n-Butylbenzene	ND	0.5		ug/L			
1,2-Dichlorobenzene	ND	0.5		ug/L			
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L			
1,2,4-Trichlorobenzene	ND	0.5		ug/L			
Hexachlorobutadiene	ND	2.0		ug/L			
Naphthalene	ND	2.0		ug/L			
1,2,3-Trichlorobenzene	ND	0.5		ug/L			
Surrogate		%REC	Lin	nits			
Dibromofluoromethane		106	80-	120			
1,2-Dichloroethane-d4		125 *	80-	120			
Toluene-d8		104	80-	120			
Bromofluorobenzene		104	80-	120			
Legend							
*: Value is outside QC limits							

MDL: Method Detection Limit

ND: Not Detected

Lab	#: 315810		Pro	oject#: 19-0	32.10		
Clien	it: Envirocom		Loc	ation: Vala	ya Aut	0	
Field ID:	VW4	Batch#:	276211		Prep:	EPA 5030E	}
Lab ID:	315810-004	Sampled:	11/11/19	An	alysis:	EPA 8260E	}
Matrix:	Water	Received:	11/12/19				
Diln Fac:		Analyzed:	11/19/19				
Analyte				Result	RL	MDL	Units
Freon 12				ND	1.0		ug/L
Chloromethane				ND	1.0		ug/L
/inyl Chloride				ND	0.5	0.1	ug/L
Bromomethane				ND	1.0		ug/L
Chloroethane				ND	1.0		ug/L
Frichlorofluorometha	ane			ND	1.0		ug/L
Acetone				16	10		ug/L
Freon 113				ND	2.0		ug/L
I,1-Dichloroethene				ND	0.5		ug/L
Methylene Chloride				ND	10		ug/L
Carbon Disulfide				ND	0.5		ug/L
MTBE				ND	0.5		ug/L
rans-1,2-Dichloroet	hene			ND	0.5		ug/L
/inyl Acetate				ND	10		ug/L
,1-Dichloroethane				ND	0.5		ug/L
2-Butanone				ND	10		ug/L
cis-1,2-Dichloroethe	ene			ND	0.5		ug/L
2,2-Dichloropropane	e			ND	0.5		ug/L
Chloroform				ND	2.0		ug/L
Bromochloromethar	ie			ND	0.5		ug/L
1,1,1-Trichloroethan	ie			ND	0.5		ug/L
1,1-Dichloropropene	9			ND	0.5		ug/L
Carbon Tetrachlorid	e			ND	0.5		ug/L
I,2-Dichloroethane				ND	0.5		ug/L
Benzene				ND	0.5		ug/L
Frichloroethene				ND	0.5		ug/L
1,2-Dichloropropane	e			ND	0.5		ug/L
Bromodichlorometh	ane			ND	0.5		ug/L
Dibromomethane				ND	0.5		ug/L
4-Methyl-2-Pentano	ne			ND	10		ug/L
cis-1,3-Dichloroprop	bene			ND	0.5		ug/L
Foluene				ND	0.5		ug/L
rans-1,3-Dichloropr	opene			ND	0.5		ug/L
,1,2-Trichloroethan	e			ND	0.5		ug/L
-Hexanone				ND	10		ug/L
,3-Dichloropropane	9			ND	0.5		ug/L
Fetrachloroethene				ND	0.5		ug/L
Dibromochlorometh	ane			ND	0.5		ug/L
,2-Dibromoethane				ND	0.5		ug/L
Chlorobenzene				ND	0.5		ug/L
1,1,1,2-Tetrachloroe	ethane			ND	0.5		ug/L

Lab #: 315810	Project#: 19-032.10						
Client: Envirocom	Location: Vala	aya Auto					
Analyte	Result	RL	MDL	Units			
Ethylbenzene	ND	0.5		ug/L			
m,p-Xylenes	0.6	0.5		ug/L			
o-Xylene	ND	0.5		ug/L			
Styrene	ND	0.5		ug/L			
Bromoform	ND	1.0		ug/L			
lsopropylbenzene	ND	0.5		ug/L			
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L			
1,2,3-Trichloropropane	ND	0.5		ug/L			
Propylbenzene	ND	0.5		ug/L			
Bromobenzene	ND	0.5		ug/L			
1,3,5-Trimethylbenzene	ND	0.5		ug/L			
2-Chlorotoluene	ND	0.5		ug/L			
4-Chlorotoluene	ND	0.5		ug/L			
tert-Butylbenzene	ND	0.5		ug/L			
1,2,4-Trimethylbenzene	0.7	0.5		ug/L			
sec-Butylbenzene	ND	0.5		ug/L			
para-Isopropyl Toluene	ND	0.5		ug/L			
1,3-Dichlorobenzene	ND	0.5		ug/L			
1,4-Dichlorobenzene	ND	0.5		ug/L			
n-Butylbenzene	ND	0.5		ug/L			
1,2-Dichlorobenzene	ND	0.5		ug/L			
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L			
1,2,4-Trichlorobenzene	ND	0.5		ug/L			
Hexachlorobutadiene	ND	2.0		ug/L			
Naphthalene	ND	2.0		ug/L			
1,2,3-Trichlorobenzene	ND	0.5		ug/L			
Surrogate		%REC	Lin	nits			
Dibromofluoromethane		104	80-				
1,2-Dichloroethane-d4		122 *	80-				
Toluene-d8		106	80-				
		105	80-				

MDL: Method Detection Limit

ND: Not Detected

Lab #: 315810	Pro	oject#: 19-0	32.10		
Client: Envirocom	Loc	cation: Vala	ya Auto)	
Field ID: VW5	Batch#: 276211		•	EPA 5030E	3
Lab ID: 315810-005	Sampled: 11/11/19	Ar	•	EPA 8260E	
Matrix: Water	Received: 11/12/19		, <u>,</u>		
Diln Fac: 1.000	Analyzed: 11/19/19				
Analyte		Result	RL	MDL	Units
Freon 12		ND	1.0		ug/L
Chloromethane		ND	1.0	0.4	ug/L
Vinyl Chloride		ND	0.5	0.1	ug/L
Bromomethane		ND	1.0		ug/L
Chloroethane		ND	1.0		ug/L
Trichlorofluoromethane		ND	1.0		ug/L
Acetone Freon 113		ND	10		ug/L
		ND	2.0		ug/L
1,1-Dichloroethene		ND	0.5		ug/L
Methylene Chloride		ND	10		ug/L
Carbon Disulfide		ND	0.5		ug/L
MTBE		ND	0.5		ug/L
rans-1,2-Dichloroethene		ND	0.5		ug/L
Vinyl Acetate		ND	10		ug/L
1,1-Dichloroethane		ND	0.5		ug/L
2-Butanone		ND	10		ug/L
cis-1,2-Dichloroethene		ND	0.5		ug/L
2,2-Dichloropropane		ND	0.5		ug/L
Chloroform		ND	2.0		ug/L
Bromochloromethane		ND	0.5		ug/L
1,1,1-Trichloroethane		ND	0.5		ug/L
1,1-Dichloropropene		ND	0.5		ug/L
Carbon Tetrachloride		ND	0.5		ug/L
1,2-Dichloroethane		ND	0.5		ug/L
Benzene		ND	0.5		ug/L
Trichloroethene		ND	0.5		ug/L
1,2-Dichloropropane		ND	0.5		ug/L
Bromodichloromethane		ND	0.5		ug/L
Dibromomethane		ND	0.5		ug/L
4-Methyl-2-Pentanone		ND	10		ug/L
cis-1,3-Dichloropropene		ND	0.5		ug/L
Toluene		ND	0.5		ug/L
rrans-1,3-Dichloropropene		ND	0.5		ug/L
I,1,2-Trichloroethane		ND	0.5		ug/L
2-Hexanone		ND	10		ug/L
1,3-Dichloropropane		ND	0.5		ug/L
Tetrachloroethene		ND	0.5		ug/L
Dibromochloromethane		ND	0.5		ug/L
1,2-Dibromoethane		ND	0.5		ug/L
Chlorobenzene		ND	0.5		ug/L
I,1,1,2-Tetrachloroethane		ND	0.5		ug/L

Ocation: Vala Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RL 0.5	MDL Unit ug// ug// ug// ug//
ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	ug// ug// ug// ug// ug// ug// ug// ug//
ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	ug// ug// ug// ug// ug// ug// ug// ug//
ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	ug// ug// ug// ug// ug// ug// ug// ug//
ND ND ND ND ND ND ND ND ND ND ND ND ND	0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	ug// ug// ug// ug// ug// ug// ug// ug//
ND ND ND ND ND ND ND ND ND ND ND	1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	ug// ug// ug// ug// ug// ug// ug// ug//
ND ND ND ND ND ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug// ug// ug// ug// ug// ug// ug// ug//
ND ND ND ND ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/
ND ND ND ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug// ug// ug// ug// ug// ug// ug// ug//
ND ND ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug// ug// ug// ug// ug// ug// ug//
ND ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/ ug/ ug/ ug/ ug/ ug/ ug/
ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5 0.5	ug/ ug/ ug/ ug/ ug/ ug/ ug/
ND ND ND ND	0.5 0.5 0.5 0.5 0.5	ug/ ug/ ug/ ug/
ND ND ND ND	0.5 0.5 0.5 0.5	ug/ ug/ ug/ ug/
ND ND ND	0.5 0.5 0.5	ug/l ug/l ug/l
ND ND	0.5 0.5	ug/l
ND	0.5	ug/
		-
ND		-
	0.5	ug/
ND	0.5	ug/l
ND	2.0	ug/l
ND	0.5	ug/l
ND	2.0	ug/
ND	2.0	ug/l
ND	0.5	ug/l
	%REC	Limits
	106	80-120
	123 *	80-120
	105	80-120
	108	80-120
	ND	ND 2.0 ND 0.5 %REC 106 123 * 105

MDL: Method Detection Limit

ND: Not Detected

Lab #: 315810					Project	#: 19-0	32.10		
Client: Enviroco	m				Locatio	n: Vala	iya Auto		
Type: BS	Matrix:	Water		Ba	tch#: 276211		Prep:	EPA 5030B	
Lab ID: QC999336	Diln Fac:	1.000		Analy	/zed: 11/19/19		Analysis:	EPA 8260B	
Analyte			Spiked		Result	%RE	C Limits	Un	its
1,1-Dichloroethene			15.00		17.03	11	14 71-129	ug ug	/L
Benzene			15.00		15.34	1()2 77-120	ug ug	/L
Trichloroethene			15.00		15.30	1()2 73-120	ug ug	/L
Toluene			15.00		14.95	1(0 78-120	ug ug	/L
Chlorobenzene			15.00		14.88	ę	99 80-120	ug ug	/L
Surrogate							%REC	Limits	
Dibromofluoromethane							107	80-120	
1,2-Dichloroethane-d4							120	80-120	
Toluene-d8							105	80-120	
Bromofluorobenzene							100	80-120	
Type: BSD	Matrix:	Water		Ba	tch#: 276211		Prep:	EPA 5030B	
Lab ID: QC999337	Diln Fac:	1.000	Analyzed: 11/19/19 Analysis: EPA 8260B						
Analyte		Spiked	Re	esult	%REC	Limits	Units	RPD	Lim
1,1-Dichloroethene		15.00	1	8.39	123	71-129	ug/L	8	20
Benzene		15.00	1	5.21	101	77-120	ug/L	1	20
Trichloroethene		15.00	1	5.65	104	73-120	ug/L	2	20
Toluene		15.00	1	5.88	106	78-120	ug/L	6	20
Chlorobenzene		15.00	1	5.73	105	80-120	ug/L	6	20
Surrogate							%REC	Limits	
Dibromofluoromethane							105	80-120	
1,2-Dichloroethane-d4							115	80-120	
Toluene-d8							104	80-120	
Bromofluorobenzene							103	80-120	
Legend									
BBB DIVE DIVE									

RPD: Relative Percent Difference

Lab #: 315810				Project#: 19-0			
Client: Enviro	com			Location: Vala	aya Auto		
Type: BLANK	Matrix:	Water	Batch#:	276211	Prep	: EPA 50)30B
Lab ID: QC999338	Diln Fac:	1.000	Analyzed:	11/19/19	Analysis	: EPA 82	260B
Analyte				Result	RL	MDL	Units
Freon 12				ND	1.0		ug/L
Chloromethane				ND	1.0		ug/L
/inyl Chloride				ND	0.5	0.1	ug/L
Bromomethane				ND	1.0		ug/L
Chloroethane				ND	1.0		ug/L
Frichlorofluoromethane				ND	1.0		ug/L
Acetone				ND	10		ug/L
Freon 113				ND	2.0		ug/L
I,1-Dichloroethene				ND	0.5		ug/L
Methylene Chloride				ND	10		ug/L
Carbon Disulfide				ND	0.5		ug/L
MTBE				ND	0.5		ug/L
rans-1,2-Dichloroethene				ND	0.5		ug/L
/inyl Acetate				ND	10		ug/L
I,1-Dichloroethane				ND	0.5		ug/L
2-Butanone				ND	10		
							ug/L
cis-1,2-Dichloroethene				ND	0.5		ug/L
2,2-Dichloropropane				ND	0.5		ug/L
Chloroform				ND	2.0		ug/L
Bromochloromethane				ND	0.5		ug/L
I,1,1-Trichloroethane				ND	0.5		ug/L
1,1-Dichloropropene				ND	0.5		ug/L
Carbon Tetrachloride				ND	0.5		ug/L
I,2-Dichloroethane				ND	0.5		ug/L
Benzene				ND	0.5		ug/L
Frichloroethene				ND	0.5		ug/L
,2-Dichloropropane				ND	0.5		ug/L
Bromodichloromethane				ND	0.5		ug/L
Dibromomethane				ND	0.5		ug/L
1-Methyl-2-Pentanone				ND	10		ug/L
cis-1,3-Dichloropropene				ND	0.5		ug/L
Foluene				ND	0.5		ug/L
rans-1,3-Dichloropropene				ND	0.5		ug/L
I,1,2-Trichloroethane				ND	0.5		ug/L
2-Hexanone				ND	10		ug/L
I,3-Dichloropropane				ND	0.5		ug/L
Fetrachloroethene				ND	0.5		ug/L
Dibromochloromethane				ND	0.5		ug/L
I,2-Dibromoethane				ND	0.5		ug/L
Chlorobenzene				ND	0.5		ug/L
I,1,1,2-Tetrachloroethane				ND	0.5		ug/L
Ethylbenzene				ND	0.5		ug/L
-10//00/20/0							

Lab #: 315810	Project#: 19-0	32.10		
Client: Envirocom	Location: Vala	aya Auto		
Analyte	Result	RL	MDL	Units
o-Xylene	ND	0.5		ug/L
Styrene	ND	0.5		ug/L
Bromoform	ND	1.0		ug/L
lsopropylbenzene	ND	0.5		ug/L
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L
1,2,3-Trichloropropane	ND	0.5		ug/L
Propylbenzene	ND	0.5		ug/L
Bromobenzene	ND	0.5		ug/L
1,3,5-Trimethylbenzene	ND	0.5		ug/L
2-Chlorotoluene	ND	0.5		ug/L
4-Chlorotoluene	ND	0.5		ug/L
tert-Butylbenzene	ND	0.5		ug/L
1,2,4-Trimethylbenzene	ND	0.5		ug/L
sec-Butylbenzene	ND	0.5		ug/L
para-Isopropyl Toluene	ND	0.5		ug/L
1,3-Dichlorobenzene	ND	0.5		ug/L
1,4-Dichlorobenzene	ND	0.5		ug/L
n-Butylbenzene	ND	0.5		ug/L
1,2-Dichlorobenzene	ND	0.5		ug/L
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L
1,2,4-Trichlorobenzene	ND	0.5		ug/L
Hexachlorobutadiene	ND	2.0		ug/L
Naphthalene	ND	2.0		ug/L
1,2,3-Trichlorobenzene	ND	0.5		ug/L
Surrogate		%REC	Lin	nits
Dibromofluoromethane		107	80-	120
1,2-Dichloroethane-d4		122 *	80-	120
Toluene-d8		107	80-	120
Bromofluorobenzene		104	80-	120
Legend				

Legend

*: Value is outside QC limits

MDL: Method Detection Limit

ND: Not Detected

Enthalpy Analytical 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900

enthalpy.com

Lab Job Number: 315741 Report Level: II Report Date: 11/13/2019

Analytical Report prepared for:

Mitch Hajiaghai Envirocom 800 Charcot Avenue Suite 114 San Jose, CA 95131

Project: 19-032.11 - Valaya Auto

Authorized for release by:

Jessie Silbermon

Jess Silberman, Project Manager (510) 204-2223 Jessica.Silberman@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 2896, NELAP# 4044-001

Sample Summary

Mitch Hajiaghai	Lab Job Number:	315741
Envirocom	Project No:	19-032.11
800 Charcot Avenue	Project Name:	Valaya Auto
Suite 114	Date Received:	11/11/19
San Jose, CA 95131		11/11/10

Sample ID	Lab ID	Collected	Matrix
VSG1	315741-001	11/11/19 00:00	Air
VSG2	315741-002	11/11/19 00:00	Air
VSG3	315741-003	11/11/19 00:00	Air

Envirocom	Lab Job Number: 315741	
800 Charcot Avenue	Project No: 19-032.11	
Suite 114	Location: Valaya Auto	
San Jose, CA 95131	Date Received: 11/11/19	
Mitch Hajiaghai		

Case Narrative

This data package contains sample and QC results for three air samples, requested for the above referenced project on 11/11/19. The samples were received intact.

Volatile Organics in Air by MS (EPA TO-15):

Enthalpy Analytical (Orange) in Orange, CA performed the analysis (NELAP certified). Please see the Enthalpy Analytical (Orange) case narrative.

Detection Summary for 315741

Client: Envirocom Project: 19-032.11 Location Valaya Auto

No detections for VSG1, Lab ID 315741-001

No detections for VSG2, Lab ID 315741-002

No detections for VSG3, Lab ID 315741-003

315741 EMIROCOM

11 p 16:06 Time 13.40 **Turnaround Time** Northal Sampler: Mazzar Hajia cher. Normal Normal Contraction of the second Normal Norn 4-hour Jther 24-hour Other 24-hour Other 24-hour Other hour --^{-ner} 24-hour Other 24-hour Other 19 24-hol Date 9 W/11/ Date: **Analysis Requested** U Ba CHAIN OF CUSTODY Received by Client: City of San Jose 19-032.11 Time 13;45 Project No: 6-15 X Date U/u/19 N° of Containers Project Location _++7_W. St. John Street, SJ___ 119 16,06 Auto Matrix A ... lin Valaza Sampling Time Date Sampled W/11/19 Project Name: Relinguished by n 2-2151 V563 Sample ID 15%1 ١ NOTES: .

P.O. Box 28310 • San Jose • California • 95159 Phone (408) 894-9062 • Fax (408) 894-9063

	nt: Envi	KDC ALOO		(7
		100 0101		ENT	
Date Received: 11 11 Pro	ject:			LINT	IIALI
Section 2: Shipping info (if applicable)		· · · · · · · · · · · · · · · · · · ·			
Are custody seals present? 🛛 No, or 🗆 Ye	es. If yes, where? D	🛛 on cooler, 🗖 on samp	oles, 🗆 on pao	ckage	
🗖 Date: How many	🛛 Signat	ure, 🗆 Initials, 🗆 None			
Were custody seals intact upon arriv	al? □Yes □No	D □ N/A			
Samples received in a cooler? Yes, how many?		-			
If no cooler Sample Temp (°C):		n # □ B, or □ C			
□ Samples received on ice directly from the					
If in cooler: Date Opened By (print)		(sign)			
Section 3:		Notify PM if temperature	exceeds 6°C	or arrive	froz
Packing in cooler: (if other, describe)	•				
Bubble Wrap, C Foam blocks, Bags, None	, 🗆 Cloth material, 🛙	 Cardboard, 🗖 Styrofoa	m, 🛛 Paper te	owels	
□ Samples received on ice directly from the field. Cooli					
Type of ice used : 🗆 Wet, 🗇 Blue/Gel, 🖾 None			d? 🗆 Yes. 🛛	⊐ No	
Temperature measured using 🗖 Thermometer ID:		or IR Gun # 🛛 B 🔲 C			
 Cooler Temp (°C): #1: #2: #3:			, #7:		
Section 4:			YES	NO	N/
Were custody papers dry, filled out properly, and the pr	roject identifiable				
Were Method 5035 sampling containers present?				1	
If YES, what time were they transferred to freezer	?				
Did all bottles arrive unbroken/unopened?					
Are there any missing / extra samples?				-	
Are samples in the appropriate containers for indicated	tests?				
Are sample labels present, in good condition and compl					1. VI
Does the container count match the COC?				_	
Do the sample labels agree with custody papers?					
Was sufficient amount of sample sent for tests requested	ed?				
Did you change the hold time in LIMS for unpreserved \					- 1
Did you change the hold time in LIMS for preserved terr					
Are bubbles > 6mm present in VOA samples?					
Was the client contacted concerning this sample deliver	ry?	· · · · · · · · · · · · · · · · · · ·			
If YES, who was called?	By	Date:			
Section 5:			YES	NO	N/
Are the samples appropriately preserved? (if N/A, sk	ip the rest of section	15)			
Did you check preservatives for all bottles for each sam					
Did you document your preservative check?	•				a de servición.
pH strip lot# pH strip lot#		, pH strip lot#			
Preservative added:					
H2SO4 lot# added to samples		o	n/at		
HCL lot# added to samples			n/at		
HNO3 lot# added to samples		0	n/at		
NaOH lot# added to samples		C	n/at	-	
Section 6:					
Explanations/Comments:					
· · ·					
1. 1.2.	.1		<u> </u>		
	11 1 1	(sign)	H		
Date Logged in <u>! [[]</u> By (print)	le	(sign)			

Rev.15.1, 09/13/2019

Laboratory Job Number 315741 Subcontracted Products Enthalpy Analytical (Orange)

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

<u>Sample #</u>	Client Sample ID
421230-001	VSG1
421230-002	VSG2
421230-003	VSG3

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Lisa Nguyen, PM

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 45 days from date received. The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

ELAF.04232GA | ELAF.1330

Matrix: Air	Client: Enthalp	y - Berkel	еу		Co	ollector: Client		
Sampled: 11/11/2019	Site:							
Sample #: <u>421230-001</u>	Client Sample #: VSG1				Sampl	le Type:		
Analyte	Result	DF	MDL	RDL	Units	Prepared	Analyzed By	Notes
Method: EPA TO-15	Prep Method: Method					•		QC1208676
1,1,1-Trichloroethane	ND	20	1.02	110	ug/m3		11/12/19 15:39 GO	1
1,1,2,2-Tetrachloroethane	ND	20	2.9	138	ug/m3		11/12/19 15:39 GO	
1,1,2-Trichloroethane	ND	20	1.4	110	ug/m3		11/12/19 15:39 GO	
1,1,2-Trichlorotrifluoroethane	ND	20	2.44	154	ug/m3		11/12/19 15:39 GO	
1,1-Dichloroethane	ND	20	1.36	80	ug/m3		11/12/19 15:39 GO	
1,1-Dichloroethene	ND	20	1.9	80	ug/m3		11/12/19 15:39 GO	
1,2,4-Trichlorobenzene	ND	20	30	148	ug/m3		11/12/19 15:39 GO	
1,2,4-Trimethylbenzene	58.0 J	20	2.46	98	ug/m3		11/12/19 15:39 GC	
1,2-Dibromoethane	ND	20	2.26	154	ug/m3		11/12/19 15:39 GC	
1,2-Dichloro-1,1,2,2-tetrafluoroeth		20	2.32	140	ug/m3		11/12/19 15:39 GO	
1,2-Dichlorobenzene	ND	20	2.18	120	ug/m3		11/12/19 15:39 GO	
1,2-Dichloroethane	ND	20	1.14	80	ug/m3		11/12/19 15:39 GO	
1,2-Dichloropropane	ND	20	1.22	92	ug/m3		11/12/19 15:39 GC	
1,3,5-Trimethylbenzene 1,3-Butadiene	20.6 J	20 20	2.34	98 44	ug/m3		11/12/19 15:39 GC 11/12/19 15:39 GC	
1,3-Butadiene 1,3-Dichlorobenzene	ND ND	20 20	0.62 2.26	44 120	ug/m3 ug/m3		11/12/19 15:39 GC 11/12/19 15:39 GC	
1,4-Dichlorobenzene	ND	20	1.86	120	ug/m3		11/12/19 15:39 GO	
1,4-Dioxane	ND	20	1.48	360	ug/m3 ug/m3		11/12/19 15:39 GC	
2-Butanone (MEK)	13.6 J	20	1.04	300	ug/m3		11/12/19 15:39 GC	
2-Hexanone	ND	20	1.32	400	ug/m3		11/12/19 15:39 GC	
4-Ethyltoluene	56.0 J	20	2.1	98	ug/m3		11/12/19 15:39 GO	
4-Methyl-2-pentanone (MIBK)	180	20	1.62	82	ug/m3		11/12/19 15:39 GC	
Acetone	110 J	20	1.32	240	ug/m3		11/12/19 15:39 GO	
Benzene	360	20	0.64	64	ug/m3		11/12/19 15:39 GO	
Benzyl Chloride	ND	20	2.24	104	ug/m3		11/12/19 15:39 GO	
Bromodichloromethane	ND	20	1	134	ug/m3		11/12/19 15:39 GO	
Bromoform	ND	20	3.68	200	ug/m3		11/12/19 15:39 GO	
Bromomethane	ND	20	1.08	78	ug/m3		11/12/19 15:39 GO	
Carbon disulfide	ND	20	0.74	62	ug/m3		11/12/19 15:39 GO	
Carbon Tetrachloride	ND	20	2.08	126	ug/m3		11/12/19 15:39 GO	
Chlorobenzene	ND	20	1.52	92	ug/m3		11/12/19 15:39 GO	
Chlorodibromomethane	ND	20	1.58	170	ug/m3		11/12/19 15:39 GO	
Chloroethane	ND	20	1.44	52	ug/m3		11/12/19 15:39 GO	
Chloroform	ND	20	1.42	98	ug/m3		11/12/19 15:39 GO	
Chloromethane	ND	20	0.64	42	ug/m3		11/12/19 15:39 GO	
cis-1,2-Dichloroethene	ND	20	1.2	80	ug/m3		11/12/19 15:39 GO	
cis-1,3-dichloropropene	ND	20	0.98	90	ug/m3		11/12/19 15:39 GC	
Cyclohexane	1500	20	0.96	68	ug/m3		11/12/19 15:39 GO	
Dichlorodifluoromethane	ND	20	1.32	98	ug/m3		11/12/19 15:39 GO	
Ethyl Acetate	17.5 J	20	1.86	360	ug/m3		11/12/19 15:39 GO	
Ethylbenzene	160	20	1.28	86	ug/m3		11/12/19 15:39 GO	
Heptane	1200	20	1.16	82	ug/m3		11/12/19 15:39 GC	
Hexachlorobutadiene	ND	20	42	220	ug/m3		11/12/19 15:39 GC	
Hexane	1000	20	1.3	70	ug/m3		11/12/19 15:39 GC	
Isopropyl alcohol (IPA)	20.3 J	20	1.14	240	ug/m3		11/12/19 15:39 GC	
m and p-Xylene	480	20 20	2.48	86 70	ug/m3		11/12/19 15:39 GC	
Methylene chloride	36.1 J	20 20	0.98	70 72	ug/m3		11/12/19 15:39 GO	
Methyl-t-butyl Ether (MTBE)	ND	20	11.48	72	ug/m3		11/12/19 15:39 GO	
Naphthalene	ND 150	20 20	0.92 1.2	104 86	ug/m3		11/12/19 15:39 GC 11/12/19 15:39 GC	
o-Xylene Propene	150 ND	20 20	2.58	86 34	ug/m3		11/12/19 15:39 GO	
Propene Styrene	ND ND	20 20	2.58 1.34	34 84	ug/m3		11/12/19 15:39 GO	
Styrene Tetrachloroethene	38.7 J	20	1.34	136	ug/m3 ug/m3		11/12/19 15:39 GO	
Toluene	3000	20 20	0.76	76	ug/m3 ug/m3		11/12/19 15:39 GO	
	5000	20	0.10	10	ugnito			
		Analy	tical Resi	ults Repo	ort		Er	nthalpy

Lab Request 421230, Page 2 of 11

Matrix: Air	Client	Enthalpy	- Berkele	у		Col	ector: Client			
Sampled: 11/11/2019	Site	:								
Sample #: 421230-001	Client Sample #	VSG1				Sample	Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
trans-1,2-dichloroethene		ND	20	1.34	80	ug/m3		11/12/19 15:39	GO	
trans-1,3-dichloropropene		ND	20	1.22	90	ug/m3		11/12/19 15:39	GO	
Trichloroethene		ND	20	1.4	108	ug/m3		11/12/19 15:39	GO	
Trichlorofluoromethane		ND	20	1.76	112	ug/m3		11/12/19 15:39	GO	
Vinyl acetate		ND	20	0.8	70	ug/m3		11/12/19 15:39	GO	
Vinyl Chloride		ND	20	0.9	52	ug/m3		11/12/19 15:39	GO	
Xylenes (Total)		630	20	1.2	86	ug/m3		11/12/19 15:39	GO	
<u>Surrogate</u>		<u>% F</u>	Recovery		Limits	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			95		60-140					

Matrix: Air		Enthalpy	- Berkele	әу		Co	ollector: Client			
Sampled: 11/11/2019	Site:									
Sample #: <u>421230-002</u>	Client Sample #:	VSG2				Sampl	le Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
Method: EPA TO-15	Prep Method: Me	thod						QCBatchID		C1208676
1,1,1-Trichloroethane		ND	20	1.02	110	ug/m3		11/13/19 09:44	GO	
1,1,2,2-Tetrachloroethane		ND	20	2.9	138	ug/m3		11/13/19 09:44	GO	
1,1,2-Trichloroethane		ND	20	1.4	110	ug/m3		11/13/19 09:44	GO	
1,1,2-Trichlorotrifluoroethane		ND	20	2.44	154	ug/m3		11/13/19 09:44	GO	
1,1-Dichloroethane		ND	20	1.36	80	ug/m3		11/13/19 09:44	GO	
1,1-Dichloroethene		ND	20	1.9	80	ug/m3		11/13/19 09:44	GO	
1,2,4-Trichlorobenzene		ND	20	30	148	ug/m3		11/13/19 09:44	GO	
1,2,4-Trimethylbenzene		ND	20	2.46	98	ug/m3		11/13/19 09:44		
1,2-Dibromoethane		ND	20	2.26	154	ug/m3		11/13/19 09:44		
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ane	ND	20	2.32	140	ug/m3		11/13/19 09:44	GO	
1,2-Dichlorobenzene		ND	20	2.18	120	ug/m3		11/13/19 09:44	GO	
1,2-Dichloroethane		ND	20	1.14	80	ug/m3		11/13/19 09:44		
1,2-Dichloropropane		ND	20	1.22	92	ug/m3		11/13/19 09:44		
1,3,5-Trimethylbenzene			20 20	2.34	98 44	ug/m3		11/13/19 09:44	GO	
1,3-Butadiene		ND ND	20 20	0.62	44 120	ug/m3		11/13/19 09:44 11/13/19 09:44	GO	
1,3-Dichlorobenzene 1,4-Dichlorobenzene		ND	20 20	2.26 1.86	120 120	ug/m3 ug/m3		11/13/19 09:44 11/13/19 09:44		
1,4-Dioxane		ND	20	1.48	360	-		11/13/19 09:44	GO	
2-Butanone (MEK)		ND	20	1.40	300	ug/m3 ug/m3		11/13/19 09:44	GO	
2-Hexanone		ND	20	1.32	400	ug/m3		11/13/19 09:44		
4-Ethyltoluene		21.9 J	20	2.1	98	ug/m3		11/13/19 09:44		
4-Methyl-2-pentanone (MIBK)		28.2 J	20	1.62	82	ug/m3		11/13/19 09:44	GO	J
Acetone		110 J	20	1.32	240	ug/m3		11/13/19 09:44	GO	J
Benzene		82.9	20	0.64	64	ug/m3		11/13/19 09:44		0
Benzyl Chloride		ND	20	2.24	104	ug/m3		11/13/19 09:44		
Bromodichloromethane		ND	20	1	134	ug/m3		11/13/19 09:44	GO	
Bromoform		ND	20	3.68	200	ug/m3		11/13/19 09:44	GO	
Bromomethane		ND	20	1.08	78	ug/m3		11/13/19 09:44	GO	
Carbon disulfide		ND	20	0.74	62	ug/m3		11/13/19 09:44	GO	
Carbon Tetrachloride		ND	20	2.08	126	ug/m3		11/13/19 09:44	GO	
Chlorobenzene		ND	20	1.52	92	ug/m3		11/13/19 09:44	GO	
Chlorodibromomethane		ND	20	1.58	170	ug/m3		11/13/19 09:44	GO	
Chloroethane		ND	20	1.44	52	ug/m3		11/13/19 09:44	GO	
Chloroform		ND	20	1.42	98	ug/m3		11/13/19 09:44	GO	
Chloromethane		ND	20	0.64	42	ug/m3		11/13/19 09:44	GO	
cis-1,2-Dichloroethene		ND	20	1.2	80	ug/m3		11/13/19 09:44	GO	,
cis-1,3-dichloropropene		ND	20	0.98	90	ug/m3		11/13/19 09:44	GO	
Cyclohexane		240	20	0.96	68	ug/m3		11/13/19 09:44	GO	
Dichlorodifluoromethane		ND	20	1.32	98	ug/m3		11/13/19 09:44	GO	
Ethyl Acetate		ND	20	1.86	360	ug/m3		11/13/19 09:44		
Ethylbenzene		53.9 J	20	1.28	86	ug/m3		11/13/19 09:44		J
Heptane		200	20	1.16	82	ug/m3		11/13/19 09:44		
Hexachlorobutadiene		ND	20	42	220	ug/m3		11/13/19 09:44		
Hexane		180	20	1.3	70	ug/m3		11/13/19 09:44		
Isopropyl alcohol (IPA)		29.2 J	20	1.14	240	ug/m3		11/13/19 09:44		J
m and p-Xylene		190	20	2.48	86	ug/m3		11/13/19 09:44		
Methylene chloride		ND	20	0.98	70 70	ug/m3		11/13/19 09:44		
Methyl-t-butyl Ether (MTBE)		ND	20	11.48	72	ug/m3		11/13/19 09:44		
Naphthalene			20	0.92	104	ug/m3		11/13/19 09:44		
o-Xylene		58.4 J	20 20	1.2	86 24	ug/m3		11/13/19 09:44		J
Propene			20 20	2.58	34 84	ug/m3		11/13/19 09:44		
Styrene Tetrachloroethene		ND 81.7 J	20 20	1.34 1.52	84 136	ug/m3		11/13/19 09:44 11/13/19 09:44		J
Toluene		81.7 J 760	20 20	1.52 0.76	76	ug/m3 ug/m3		11/13/19 09:44 11/13/19 09:44		J
ioluelle		100	20	0.70	70	ug/IIIS				
			Analy	tical Resu	ults Repo	rt			En	thalpy

Matrix: Air	Client	Enthalpy	- Berkele	у		Coll	ector: Client			
Sampled: 11/11/2019	Site	:								
Sample #: 421230-002	Client Sample #	VSG2				Sample	Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
trans-1,2-dichloroethene		ND	20	1.34	80	ug/m3		11/13/19 09:44	GO	
trans-1,3-dichloropropene		ND	20	1.22	90	ug/m3		11/13/19 09:44	GO	
Trichloroethene		ND	20	1.4	108	ug/m3		11/13/19 09:44	GO	
Trichlorofluoromethane		ND	20	1.76	112	ug/m3		11/13/19 09:44	GO	
Vinyl acetate		ND	20	0.8	70	ug/m3		11/13/19 09:44	GO	
Vinyl Chloride		ND	20	0.9	52	ug/m3		11/13/19 09:44	GO	
Xylenes (Total)		250	20	1.2	86	ug/m3		11/13/19 09:44	GO	
<u>Surrogate</u>		<u>% F</u>	Recovery		<u>Limits</u>	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			100		60-140					

Matrix: Air		Enthalpy	- Berkel	еу		Co	ollector: Client			
Sampled: 11/11/2019	Site:									
Sample #: <u>421230-003</u>	Client Sample #:	VSG3				Sampl	le Type:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
Method: EPA TO-15	Prep Method: Me	thod						QCBatchIE): Q(C1208676
1,1,1-Trichloroethane		ND	20	1.02	110	ug/m3		11/12/19 17:54	GO	
1,1,2,2-Tetrachloroethane		ND	20	2.9	138	ug/m3		11/12/19 17:54	GO	
1,1,2-Trichloroethane		ND	20	1.4	110	ug/m3		11/12/19 17:54	GO	
1,1,2-Trichlorotrifluoroethane		ND	20	2.44	154	ug/m3		11/12/19 17:54	GO	
1,1-Dichloroethane		ND	20	1.36	80	ug/m3		11/12/19 17:54	GO	
1,1-Dichloroethene		ND	20	1.9	80	ug/m3		11/12/19 17:54	GO	
1,2,4-Trichlorobenzene		ND	20	30	148	ug/m3		11/12/19 17:54	GO	
1,2,4-Trimethylbenzene		19.7 J	20	2.46	98	ug/m3		11/12/19 17:54		J
1,2-Dibromoethane		ND	20	2.26	154	ug/m3		11/12/19 17:54		
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ane	ND	20	2.32	140	ug/m3		11/12/19 17:54	GO	
1,2-Dichlorobenzene		ND	20	2.18	120	ug/m3		11/12/19 17:54	GO	
1,2-Dichloroethane		ND	20	1.14	80	ug/m3		11/12/19 17:54		
1,2-Dichloropropane		ND	20	1.22	92	ug/m3		11/12/19 17:54		
1,3,5-Trimethylbenzene		ND	20	2.34	98	ug/m3		11/12/19 17:54	GO	
1,3-Butadiene		ND ND	20	0.62	44 120	ug/m3		11/12/19 17:54	GO	
1,3-Dichlorobenzene		ND	20	2.26 1.86	120	ug/m3		11/12/19 17:54 11/12/19 17:54		
1,4-Dichlorobenzene 1,4-Dioxane		ND	20 20	1.60	120 360	ug/m3		11/12/19 17:54	GO GO	
2-Butanone (MEK)		17.3 J	20	1.40	300	ug/m3 ug/m3		11/12/19 17:54	GO	J
2-Hexanone		ND	20	1.32	400	ug/m3		11/12/19 17:54		J
4-Ethyltoluene		23.5 J	20	2.1	98	ug/m3		11/12/19 17:54		
4-Methyl-2-pentanone (MIBK)		92.7	20	1.62	82	ug/m3		11/12/19 17:54	GO	5
Acetone		500	20	1.32	240	ug/m3		11/12/19 17:54	GO	
Benzene		100	20	0.64	64	ug/m3		11/12/19 17:54		
Benzyl Chloride		ND	20	2.24	104	ug/m3		11/12/19 17:54		
Bromodichloromethane		ND	20	1	134	ug/m3		11/12/19 17:54	GO	
Bromoform		ND	20	3.68	200	ug/m3		11/12/19 17:54	GO	
Bromomethane		ND	20	1.08	78	ug/m3		11/12/19 17:54	GO	
Carbon disulfide		ND	20	0.74	62	ug/m3		11/12/19 17:54		
Carbon Tetrachloride		ND	20	2.08	126	ug/m3		11/12/19 17:54		
Chlorobenzene		ND	20	1.52	92	ug/m3		11/12/19 17:54	GO	
Chlorodibromomethane		ND	20	1.58	170	ug/m3		11/12/19 17:54	GO	
Chloroethane		ND	20	1.44	52	ug/m3		11/12/19 17:54		
Chloroform		ND	20	1.42	98	ug/m3		11/12/19 17:54	GO	
Chloromethane		ND	20	0.64	42	ug/m3		11/12/19 17:54	GO	
cis-1,2-Dichloroethene		ND	20	1.2	80	ug/m3		11/12/19 17:54	GO	
cis-1,3-dichloropropene		ND	20	0.98	90	ug/m3		11/12/19 17:54	GO	
Cyclohexane		720	20	0.96	68	ug/m3		11/12/19 17:54	GO	
Dichlorodifluoromethane		ND	20	1.32	98	ug/m3		11/12/19 17:54	GO	
Ethyl Acetate		25.8 J	20	1.86	360	ug/m3		11/12/19 17:54	GO	J
Ethylbenzene		86.8	20	1.28	86	ug/m3		11/12/19 17:54		
Heptane		280	20	1.16	82	ug/m3		11/12/19 17:54		
Hexachlorobutadiene		ND	20	42	220	ug/m3		11/12/19 17:54		
Hexane		470	20	1.3	70	ug/m3		11/12/19 17:54		
Isopropyl alcohol (IPA)		31.1 J	20	1.14	240	ug/m3		11/12/19 17:54		J
m and p-Xylene		350	20	2.48	86	ug/m3		11/12/19 17:54		
Methylene chloride		98.5	20	0.98	70	ug/m3		11/12/19 17:54		
Methyl-t-butyl Ether (MTBE)		ND	20	11.48	72	ug/m3		11/12/19 17:54		
Naphthalene		ND	20	0.92	104	ug/m3		11/12/19 17:54		
o-Xylene		84.5 J	20	1.2	86	ug/m3		11/12/19 17:54		J
Propene		ND	20	2.58	34	ug/m3		11/12/19 17:54		
Styrene		ND	20	1.34	84	ug/m3		11/12/19 17:54		
Tetrachloroethene		ND	20	1.52	136	ug/m3		11/12/19 17:54		
Toluene		460	20	0.76	76	ug/m3		11/12/19 17:54	GO	
			Analy	tical Resu	ults Repo	rt			En	thalpy

Lab Request 421230, Page 6 of 11

Matrix: Air	Client:	Enthalpy	- Berkele	/		Coll	lector: Client			
Sampled: 11/11/2019	Site	:								
Sample #: 421230-003	Client Sample #:	VSG3				Sample	Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
trans-1,2-dichloroethene		ND	20	1.34	80	ug/m3		11/12/19 17:54	GO	
trans-1,3-dichloropropene		ND	20	1.22	90	ug/m3		11/12/19 17:54	GO	
Trichloroethene		ND	20	1.4	108	ug/m3		11/12/19 17:54	GO	
Trichlorofluoromethane		ND	20	1.76	112	ug/m3		11/12/19 17:54	GO	
Vinyl acetate		ND	20	0.8	70	ug/m3		11/12/19 17:54	GO	
Vinyl Chloride		ND	20	0.9	52	ug/m3		11/12/19 17:54	GO	
Xylenes (Total)		430	20	1.2	86	ug/m3		11/12/19 17:54	GO	
<u>Surrogate</u>		<u>% F</u>	Recovery		Limits	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			94		60-140					

QCBatchID: QC1208676 Analyst:	gortiz	Method:	EPA TO-15			
Matrix: Air Analyzed:	11/12/2019	Instrument:	VOA-MS (grou	up)		
	Bla	nk Summar	v			
	Blank					
Analyte	Result	Units	MDL	RDL	Notes	
C1208676MB1						
1,1,1-Trichloroethane	ND	ug/m3	0.051	5.5		
1,1,2,2-Tetrachloroethane	ND	ug/m3	0.145	6.9		
1,1,2-Trichloroethane	ND	ug/m3	0.07	5.5		
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	0.122	7.7		
1,1-Dichloroethane	ND	ug/m3	0.068	4		
1,1-Dichloroethene	ND	ug/m3	0.095	4		
1,2,4-Trichlorobenzene	ND	ug/m3	1.5	7.4		
1,2,4-Trimethylbenzene	ND	ug/m3	0.123	4.9		
1,2-Dibromoethane	ND	ug/m3	0.113	7.7		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ug/m3	0.116	7		
1,2-Dichlorobenzene	ND	ug/m3	0.109	6		
1,2-Dichloroethane	ND	ug/m3	0.057	4		
1,2-Dichloropropane	ND	ug/m3	0.061	4.6		
1,3,5-Trimethylbenzene	ND	ug/m3	0.117	4.9		
1,3-Butadiene	ND	ug/m3	0.031	2.2		
1,3-Dichlorobenzene	ND	ug/m3	0.113	6		
1,4-Dichlorobenzene	ND	ug/m3	0.093	6		
1,4-Dioxane	ND	ug/m3	0.074	18		
2-Butanone (MEK)	ND	ug/m3	0.052	15		
2-Hexanone	ND	ug/m3	0.066	20		
4-Ethyltoluene	ND	ug/m3	0.105	4.9		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	0.081	4.1		
Acetone	ND	ug/m3	0.066	12		
Benzene	ND	ug/m3	0.032	3.2		
Benzyl Chloride	ND	ug/m3	0.112	5.2		
Bromodichloromethane	ND	ug/m3	0.05	6.7		
Bromoform	ND	ug/m3	0.184	10		
Bromomethane	ND	ug/m3	0.054	3.9		
Carbon disulfide	ND	ug/m3	0.037	3.1		
Carbon Tetrachloride	ND	ug/m3	0.104	6.3		
Chlorobenzene	ND	ug/m3	0.076	4.6		
Chlorodibromomethane	ND	ug/m3	0.070	4.0 8.5		
Chloroethane	ND	ug/m3	0.079	2.6		
Chloroform	ND	ug/m3	0.072	2.0 4.9		
Chloromethane	ND	ug/m3	0.071	4.9 2.1		
cis-1,2-Dichloroethene	ND	-	0.032	4		
	ND	ug/m3	0.08	4.5		
cis-1,3-dichloropropene		ug/m3		4.5 3.4		
Cyclohexane	ND	ug/m3	0.048			
Dichlorodifluoromethane	ND	ug/m3	0.066 0.093	4.9 19		
Ethyl Acetate	ND	ug/m3		18		
Ethylbenzene	ND	ug/m3	0.064	4.3		
Heptane	ND	ug/m3	0.058	4.1		
Hexachlorobutadiene	ND	ug/m3	2.1	11 2 5		
Hexane	ND	ug/m3	0.065	3.5		
Isopropyl alcohol (IPA)	ND	ug/m3	0.057	12		
m and p-Xylene	ND	ug/m3	0.124	4.3		
Methylene chloride	ND	ug/m3	0.049	3.5		
Methyl-t-butyl Ether (MTBE)	ND	ug/m3	0.574	3.6		
Naphthalene	ND	ug/m3	0.046	5.2		
o-Xylene	ND	ug/m3	0.06	4.3		
Propene	ND	ug/m3	0.129	1.7		
Styrene	ND	ug/m3	0.067	4.2		

QCBatchID: QC1208676	Analyst:	gortiz	Method:	EPA TO-15			
Matrix: Air	Analyzed:	11/12/2019	Instrument:	VOA-MS (group)		
		Blank					
Analyte		Result	Units	MDL	RDL	Notes	
QC1208676MB1			1				
Tetrachloroethene		ND	ug/m3	0.076	6.8		
Toluene		ND	ug/m3	0.038	3.8		
trans-1,2-dichloroethene		ND	ug/m3	0.067	4		
trans-1,3-dichloropropene		ND	ug/m3	0.061	4.5		
Trichloroethene		ND	ug/m3	0.07	5.4		
Trichlorofluoromethane		ND	ug/m3	0.088	5.6		
Vinyl acetate		ND	ug/m3	0.04	3.5		
Vinyl Chloride		ND	ug/m3	0.045	2.6		
Xylenes (Total)		ND	ug/m3	0.06	4.3		

	Dup	olicate Summa	ary			
	Sample	Duplicate			Limits	
Analyte	Amount	Amount	Units	RPD	RPD	Notes
QC1208676DUP1	H	4	1		1	Source: 420972-012
1,1,1-Trichloroethane	ND	0.0	ug/m3	0.0	30	
1,1,2,2-Tetrachloroethane	ND	0.0	ug/m3	0.0	30	
1,1,2-Trichloroethane	ND	0.0	ug/m3	0.0	30	
1,1,2-Trichlorotrifluoroethane	ND	0.0	ug/m3	0.0	30	
1,1-Dichloroethane	ND	0.0	ug/m3	0.0	30	
1,1-Dichloroethene	ND	0.0	ug/m3	0.0	30	
1,2,4-Trichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,2,4-Trimethylbenzene	ND	0.0	ug/m3	0.0	30	
1,2-Dibromoethane	ND	0.0	ug/m3	0.0	30	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.0	ug/m3	0.0	30	
1,2-Dichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,2-Dichloroethane	ND	0.0	ug/m3	0.0	30	
1,2-Dichloropropane	ND	0.0	ug/m3	0.0	30	
1,3,5-Trimethylbenzene	ND	0.0	ug/m3	0.0	30	
1,3-Butadiene	ND	0.0	ug/m3	0.0	30	
1,3-Dichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,4-Dichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,4-Dioxane	ND	0.0	ug/m3	0.0	30	
2-Butanone (MEK)	ND	0.0	ug/m3	0.0	30	
2-Hexanone	ND	0.0	ug/m3	0.0	30	
4-Ethyltoluene	ND	0.0	ug/m3	0.0	30	
4-Methyl-2-pentanone (MIBK)	ND	0.0	ug/m3	0.0	30	
Acetone	ND	ND	ug/m3	0.0	30	
Benzene	ND	0.0	ug/m3	0.0	30	
Benzyl Chloride	ND	0.0	ug/m3	0.0	30	
Bromodichloromethane	ND	0.0	ug/m3	0.0	30	
Bromoform	ND	0.0	ug/m3	0.0	30	
Bromomethane	ND	0.0	ug/m3	0.0	30	
Carbon disulfide	ND	0.0	ug/m3	0.0	30	
Carbon Tetrachloride	ND	0.0	ug/m3	0.0	30	
Chlorobenzene	ND	0.0	ug/m3	0.0	30	
Chlorodibromomethane	ND	0.0	ug/m3	0.0	30	
Chloroethane	ND	0.0	ug/m3	0.0	30	
Chloroform	ND	0.0	ug/m3	0.0	30	
Chloromethane	ND	0.0	ug/m3	0.0	30	
cis-1,2-Dichloroethene	46000	45000	ug/m3	2.2	30	
cis-1,3-dichloropropene	ND	0.0	ug/m3	0.0	30	
Cyclohexane	ND	0.0	ug/m3	0.0	30	
Dichlorodifluoromethane	ND	0.0	ug/m3	0.0	30	

QCBatchID: QC1208676	Analyst:	gortiz	Method:	EPA TO-15			
Matrix: Air	Analyzed:	11/12/2019	Instrument:	VOA-MS (group	o)		
		Sample	Duplicate			Limits	
Analyte		Amount	Amount	Units	RPD	RPD	Notes
QC1208676DUP1	Ľ						Source: 420972-012
Ethyl Acetate		ND	0.0	ug/m3	0.0	30	
Ethylbenzene		ND	0.0	ug/m3	0.0	30	
Heptane		ND	0.0	ug/m3	0.0	30	
Hexachlorobutadiene		ND	0.0	ug/m3	0.0	30	
Hexane		ND	ND	ug/m3	0.0	30	
Isopropyl alcohol (IPA)		ND	ND	ug/m3	0.0	30	
m and p-Xylene		ND	0.0	ug/m3	0.0	30	
Methylene chloride		35000	41000	ug/m3	15.8	30	
Methyl-t-butyl Ether (MTBE)		ND	0.0	ug/m3	0.0	30	
Naphthalene		ND	0.0	ug/m3	0.0	30	
o-Xylene		ND	0.0	ug/m3	0.0	30	
Propene		ND	ND	ug/m3	0.0	30	
Styrene		ND	0.0	ug/m3	0.0	30	
Tetrachloroethene		9200000	9200000	ug/m3	0.0	30	
Toluene		ND	0.0	ug/m3	0.0	30	
trans-1,2-dichloroethene		ND	0.0	ug/m3	0.0	30	
trans-1,3-dichloropropene		ND	0.0	ug/m3	0.0	30	
Trichloroethene		84000	82000	ug/m3	2.4	30	
Trichlorofluoromethane		ND	0.0	ug/m3	0.0	30	
Vinyl acetate		ND	0.0	ug/m3	0.0	30	
Vinyl Chloride		ND	0.0	ug/m3	0.0	30	
Xylenes (Total)		ND	0.0	ug/m3	0.0	30	

Data Qualifiers and Definitions

<u>Qualifiers</u>	
A	See Report Comments.
В	Analyte was present in an associated method blank.
B1	Analyte was present in a sample and associated method blank greater than MDL but less than RDL.
BQ1	No valid test replicates. Sample Toxicity is possible. Best result was reported.
BQ2	No valid test replicates.
BQ3	No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.
BQ4	Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.
BQ5	Minor Dissolved Oxygen loss was observed in the blank water check.
C	Possible laboratory contamination.
D D1	RPD was not within control limits. The sample data was reported without further clarification.
D1 D2	Lesser amount of sample was used due to insufficient amount of sample supplied. Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.
D2 D3	Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.
DW	Sample result is calculated on a dry weigh basis.
E	Concentration is estimated because it exceeds the quantification limits of the method.
I	The sample was read outside of the method required incubation period.
IR	Inconclusive Result. Legionella is present, however, there is possible non-specific agglutination preventing specific identification.
J	Reported value is estimated
L	The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample data was reported with qualifier.
L2	LCS did not meet recovery criteria, however, the MS and/or MSD met LCS recovery criteria, validating the batch.
Μ	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated LCS and/or LCSD was within control limits and the sample data was reported without further clarification.
M1	The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.
M2	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not within control limits. Sample result is estimated.
N1	Sample chromatography does not match the specified TPH standard pattern.
NC	The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not apply.
P P1	Sample was received without proper preservation according to EPA guidelines. Temperature of sample storage refrigerator was out of acceptance limits.
P2	The sample was preserved within 24 hours of collection in accordance with EPA 218.6.
P3	Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended
	due to potential loss of target analytes. Results may be biased low.
Q1 Q2	Analyte Calibration Verification exceeds criteria. The result is estimated. Analyte calibration was not verified and the result was estimated.
Q3	Analyte initial calibration was not available or exceeds criteria. The result was estimated.
S	The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery was within control limits and the sample data was reported without further clarification.
S1	The associated surrogate recovery was out of control limits; result is estimated.
S2	The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate
	recoveries in the associated batch QC met recovery criteria.
S3	Internal Standard did not meet recovery limits. Analyte concentration is estimated.
T T	Sample was extracted/analyzed past the holding time.
T1	Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).
T2 T3	Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.
T4	Sample received and analyzed out of hold time per client's request. Sample was analyzed out of hold time per client's request.
T5	Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.
T6	Hold time is indeterminable due to unspecified sampling time.
T7	Sample was analyzed past hold time due to insufficient time remaining at time of receipt.
Definitions	
DF	Dilution Factor
MDL	Method Detection Limit. Result is reported ND when it is less than or equal to MDL.
ND	Analyte was not detected or was less than the detection limit.
NR	Not Reported. See Report Comments.
RDL	Reporting Detection Limit
TIC	Tentatively Identified Compounds

Analytical Results Report

Enthalpy Berkeley

2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 (510) 486-0532

421230

Project Number: 315741 Site: Valaya Auto

Subcontract Laboratory: Enthalpy Analytical (Orange) 931 W Barkley Avenue Orange, CA 92868 (714) 771-9923 ATTN: Lisa Nguyen

Results due:

Report Level: II

Please send report to: Jess Silberman (Jessica.Silberman@enthalpy.com) and ClientServices.Berkeley@enthalpy.com *** Please report using Sample ID rather than Enthalpy (Berkeley) Lab #.

Sample ID	Sampled	Matrix	: Analysia	Lab # Comments	
VSG1	11/11 00:00	Air	T015	315741-001	
VSG2	11/11 00:00	Air	T015	315741-002	
VSG3	11/11 00:00	Air	T015	315741-003	

Notes:	Relinquished By:	ву:
	Date/Time: [1 11 119 16.04 Date/Time: 11 12]	9 0930 AM.
	· · · · · · · · · · · · · · · · · · ·	
	Date/Time: Date/Time:	

Signature on this form constitutes a firm Purchase Order for the services requested above. Page 1 of 1

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: Enthalpy Analytical - Berkeley	Project: 315741			
Date Received: 11/12/19	Sampler's Name Present:	Yes	√No	
Section 2	11111 1111 1111 1111 1111 1111 1111 1111			
Sample(s) received in a cooler?Yes, How many?	NO (skip section 2)	Sampl	le Temp (°C (No Cooler) . ambient
Sample Temp (°C), One from each cooler: #1:			-	_
(Acceptance range is < 6°C but not frozen (for Microbiology samples, accept the same day as sample receipt to have a higher tempera				es collected
Shipping Information:		nus neg		
Section 3				
Was the cooler packed with:	Bubble Wrap Styro	foam		
Paper None	Other			
Cooler Temp (°C): #1:#2:	#3:	#4:		
Section 4	· · · · · · · · · · · · · · · · · · ·	YES	NO	N/A
Was a COC received?		1		
Are sample IDs present?		1		
Are sampling dates & times present?		1		
Is a relinquished signature present?				
Are the tests required clearly indicated on the COC?	√			
Are custody seals present?			✓	
If custody seals are present, were they intact?				√
Are all samples sealed in plastic bags? (Recommended Did all samples arrive intact? If no, indicate in Section 4				
Did all bottle labels agree with COC? (ID, dates and time	and the second			
Were the samples collected in the correct containers for				
Are the containers labeled with the correct preser				✓
Is there headspace in the VOA vials greater than 5-6 mm			1	1 V
Was a sufficient amount of sample submitted for the re-		\checkmark		
	•		1	
Section 5 Explanations/Comments				
Section 6				
For discrepancies, how was the Project Manager notifie	=)	
	Email (email sent to/	on):	./	
Project Manager's response:				
	Illola			
Completed By:	_Date:	_		
\bigvee Enchalpy Analytical, a subsidiary of	Montrose Environmental Group , Inc.			
	• T: (714) 771-6900 • F: (714) 538-1209)		
	lpy.com/socal necklist – Rev 4, 8/8/2017			

20 of 21

GSO CAGLS

Ship From ENTHALPY ANALYTICAL, LLC PROJECT MANAGEMENT 2323 FIFTH STREET BERKELEY, CA 94710

Bhip to Enthalpy Analytical (Drange) Lisa Nguyen 931 W Barkley Ave Drange, Ca 92866

COD: \$0.00 Weight: 0 lb(s) Reference:

Delivery Instructions:

Signature Type: STANDARD

ORANGE

S92868A

ORC CA927-CI0

Print Data: 11/11, 2019 4:13 PM

÷

.4

.

PDS

٠.

800-322-5555 www.gso.com

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode. Step 1: Use the "Finit Label" button on this page to print the shipping label on a laser or inkjet printer. Step 2: Fold this page in half. Step 3: Securaly attach this label to your package and do not cover the barcode.

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the GSO service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at and the states.

Enthalpy Analytical 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900

enthalpy.com

Lab Job Number: 315807 Report Level: II Report Date: 11/22/2019

Analytical Report prepared for:

Mitch Hajiaghai Envirocom 800 Charcot Avenue Suite 114 San Jose, CA 95131

Project: 19-032.12 - Valaya Auto

Authorized for release by:

Jessie Silbermon

Jess Silberman, Project Manager (510) 204-2223 Jessica.Silberman@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 2896, NELAP# 4044-001

Sample Summary

Mitch Hajiaghai	Lab Job Number:	315807
Envirocom	Project No:	19-032.12
800 Charcot Avenue	Project Name:	Valaya Auto
Suite 114	Date Received:	11/12/19
San Jose, CA 95131		

Sample ID	Lab ID	Collected	Matrix
VSG4	315807-001	11/11/19 00:00	Air
VSG5	315807-002	11/11/19 00:00	Air

Case Narrative

Envirocom 800 Charcot Avenue Suite 114 San Jose, CA 95131 Mitch Hajiaghai Lab Job Number: 315807 Project No: 19-032.12 Location: Valaya Auto Date Received: 11/12/19

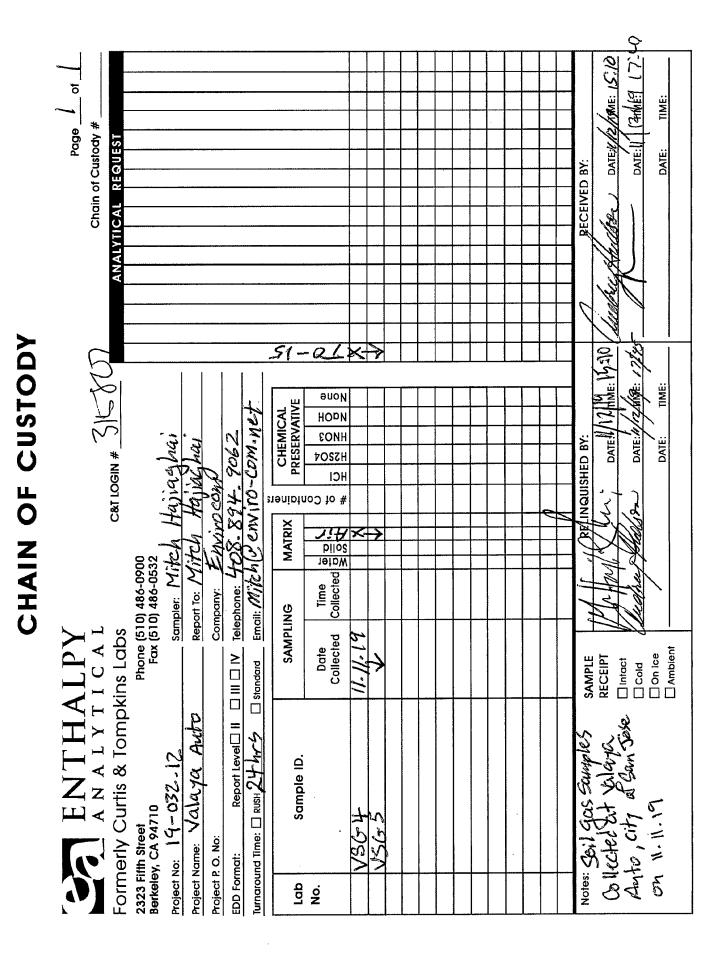
This data package contains sample and QC results for two air samples, requested for the above referenced project on 11/12/19. The samples were received intact.

Volatile Organics in Air by MS (EPA TO-15):

Enthalpy Analytical (Orange) in Orange, CA performed the analysis (NELAP certified). Please see the Enthalpy Analytical (Orange) case narrative.

Volatile Organics in Air (EPA TO-3):

Enthalpy Analytical (Orange) in Orange, CA performed the analysis (not NELAP certified). Please see the Enthalpy Analytical (Orange) case narrative.


Detection Summary for 315807

Client: Envirocom Project: 19-032.12 Location Valaya Auto

1 of 1

No detections for VSG4, Lab ID 315807-001

No detections for VSG5, Lab ID 315807-002

SAMPLE RECEIPT CHECKLIST		-	
Section 1: Login # 315807 Client: +MMOCOM			
Date Received: 11 12 19 Project:		ENT	HALPY
Section 2: Shipping info (if applicable)			· · · ·
Are custody seals present?		- kage	
Date: How many Dignature, Dinitials, Dinone		Rage	
Were custody seals intact upon arrival? \Box Yes \Box No \Box N/A			
Samples received in a cooler? Yes, how many? No (skip Section 3 below)			
If no cooler Sample Temp (°C): using IR Gun # 🗆 B, or 🗇 C			
□ Samples received on ice directly from the field. Cooling process had begun			
If in cooler: Date Opened By (print) (sign) Section 3: Important : Notify PM if temperature exc	ands 6°C /	- vr arriva	frozen
Packing in cooler: (if other, describe)	ceus v c (nozen.
Bubble Wrap, Foam blocks, Bags, None, Cloth material, Cardboard, Styrofoam, E	7 Panor to	wole	
Samples received on ice directly from the field. Cooling process had begun	а гарени	WCIS	
	J Vog F	J No	
Type of ice used : □ Wet, □ Blue/Gel, □ None Temperature blank(s) included? [Temperature measured using □ Thermometer ID:, or IR Gun # □ B C	_1 103, L	7 140	
Cooler Temp (°C): #1:, #2:, #3:, #4:, #5:, #6:	#7·		
Section 4:	+/. YES	NO	N/A
Were custody papers dry, filled out properly, and the project identifiable	11.5	NO	
Were Method 5035 sampling containers present?			
If YES, what time were they transferred to freezer?			
Did all bottles arrive unbroken/unopened?			
Are there any missing / extra samples?			
Are samples in the appropriate containers for indicated tests?			
Are sample labels present, in good condition and complete?			
Does the container count match the COC?			
Do the sample labels agree with custody papers?			
Was sufficient amount of sample sent for tests requested?	-		
Did you change the hold time in LIMS for unpreserved VOAs?			
Did you change the hold time in LIMS for preserved terracores?			
Are bubbles > 6mm present in VOA samples?			/
Was the client contacted concerning this sample delivery?			
If YES, who was called?ByDate:			
Section 5:	YES	NO	N/A,
Are the samples appropriately preserved? (if N/A, skip the rest of section 5)			
Did you check preservatives for all bottles for each sample?			·
Did you document your preservative check?			
pH strip lot#, pH strip lot#, pH strip lot#, pH strip lot#			
Preservative added:			
added to samples on/at			
ded to samples on/at			
HNO3 lot# added to samples on/at			
NaOH lot# added to samples on/at			··
Section 6:			
Explanations/Comments:			
	Δ		
Date Logged in 1/ 12/19 By (print)	$l_{\mathcal{V}}$	_	
	$n \leq 1$		
Date Labeled (() 2/19 By (print) A((sign)			

.

Rev.15.1, 09/13/2019

Laboratory Job Number 315807 Subcontracted Products Enthalpy Analytical (Orange)

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample # Client Sample ID

421285-001 VSG4 421285-002 VSG5

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Lisa Nguyen, PM

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 45 days from date received. The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Matrix: Air	Client:	Enthalpy -	Berkel	еу		Co	llector: Client			
Sampled: 11/11/2019 00:00	Site:									
Sample #: <u>421285-001</u>	Client Sample #:	VSG4				Sample	е Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed		
Method: EPA TO-15	Prep Method: Met							QCBatchIE		21208749
1,1,1-Trichloroethane		ND	80	4.08	440	ug/m3		11/15/19 11:35		
1,1,2,2-Tetrachloroethane		ND	80	11.6	552	ug/m3		11/15/19 11:35	GO	
1,1,2-Trichloroethane		ND	80	5.6	440	ug/m3		11/15/19 11:35	GO	
1,1,2-Trichlorotrifluoroethane		ND	80	9.76	616	ug/m3		11/15/19 11:35		
1,1-Dichloroethane		ND	80	5.44	320	ug/m3		11/15/19 11:35	GO	
1,1-Dichloroethene		ND	80	7.6	320	ug/m3		11/15/19 11:35	GO	
1,2,4-Trichlorobenzene		ND	80	120	592	ug/m3		11/15/19 11:35	GO	
1,2,4-Trimethylbenzene		ND	80	9.84	392	ug/m3		11/15/19 11:35		
1,2-Dibromoethane		ND	80	9.04	616	ug/m3		11/15/19 11:35		
1,2-Dichloro-1,1,2,2-tetrafluoroetha	ine	ND	80	9.28	560	ug/m3		11/15/19 11:35	GO	
1,2-Dichlorobenzene		ND	80	8.72	480	ug/m3		11/15/19 11:35	GO	
1,2-Dichloroethane		ND	80	4.56	320	ug/m3		11/15/19 11:35		
1,2-Dichloropropane		ND	80	4.88	368	ug/m3		11/15/19 11:35		
1,3,5-Trimethylbenzene		ND	80	9.36	392	ug/m3		11/15/19 11:35	GO	
1,3-Butadiene		ND	80	2.48	176	ug/m3		11/15/19 11:35	GO	
1,3-Dichlorobenzene		ND	80	9.04	480	ug/m3		11/15/19 11:35		
1,4-Dichlorobenzene		ND	80	7.44	480	ug/m3		11/15/19 11:35		
1,4-Dioxane		ND	80	5.92	1440	ug/m3		11/15/19 11:35	GO	
2-Butanone (MEK)		61.1 J	80	4.16	1200	ug/m3		11/15/19 11:35	GO	J
2-Hexanone		ND	80	5.28	1600	ug/m3		11/15/19 11:35		
4-Ethyltoluene		ND	80	8.4	392	ug/m3		11/15/19 11:35	GO	
4-Methyl-2-pentanone (MIBK)		ND	80	6.48	328	ug/m3		11/15/19 11:35	GO	
Acetone		600 J	80	5.28	960	ug/m3		11/15/19 11:35	GO	J
Benzene		ND	80	2.56	256	ug/m3		11/15/19 11:35	GO	
Benzyl Chloride		ND	80	8.96	416	ug/m3			GO	
Bromodichloromethane		ND	80	4	536	ug/m3		11/15/19 11:35	GO	
Bromoform		ND	80	14.72	800	ug/m3		11/15/19 11:35	GO	
Bromomethane		ND	80	4.32	312	ug/m3		11/15/19 11:35		
Carbon disulfide		ND	80	2.96	248	ug/m3		11/15/19 11:35	GO	
Carbon Tetrachloride		ND	80	8.32	504	ug/m3		11/15/19 11:35	GO	
Chlorobenzene		ND	80	6.08	368	ug/m3		11/15/19 11:35		
Chlorodibromomethane		ND	80	6.32	680	ug/m3			GO	
Chloroethane		ND	80	5.76	208	ug/m3		11/15/19 11:35	GO	
Chloroform		ND	80	5.68	392	ug/m3		11/15/19 11:35	GO	
Chloromethane		ND	80	2.56	168	ug/m3		11/15/19 11:35	GO	
cis-1,2-Dichloroethene		ND	80	4.8	320	ug/m3		11/15/19 11:35		
cis-1,3-dichloropropene		ND	80	3.92	360	ug/m3		11/15/19 11:35		
Cyclohexane		130 J	80	3.84	272	ug/m3		11/15/19 11:35	GO	J
Dichlorodifluoromethane		ND	80	5.28	392	ug/m3		11/15/19 11:35	GO	
Ethyl Acetate		ND	80	7.44	1440	ug/m3		11/15/19 11:35		
Ethylbenzene		ND	80 80	5.12	344	ug/m3		11/15/19 11:35		
Heptane			80 80	4.64	328	ug/m3		11/15/19 11:35	GO	
Hexachlorobutadiene		ND 2200	80 80	168 5 2	880	ug/m3		11/15/19 11:35	GO CO	
		2200 120 J	80	5.2 4 56	280	ug/m3		11/15/19 11:35		
Isopropyl alcohol (IPA)		120 J ND	80 80	4.56 9.92	960 344	ug/m3		11/15/19 11:35 11/15/19 11:35	GO GO	J
m and p-Xylene Methylene chloride		ND 2500	80 80	9.92 3.92	344 280	ug/m3 ug/m3		11/15/19 11:35	GO	
Methyl-t-butyl Ether (MTBE)		2500 ND	80 80	3.92 45.92	280 288	ug/m3		11/15/19 11:35		
Naphthalene		ND	80	45.92 3.68	200 416	ug/m3		11/15/19 11:35		
o-Xylene		ND	80 80	3.00 4.8	416 344	ug/m3		11/15/19 11:35	GO	
Propene		ND	80 80	4.0 10.32	344 136	ug/m3		11/15/19 11:35	GO	
Styrene		ND	80 80	5.36	336	ug/m3		11/15/19 11:35		
Tetrachloroethene		ND	80	5.36 6.08	536 544	ug/m3		11/15/19 11:35	GO	
Toluene		160 J	80 80	0.08 3.04	544 304	ug/m3		11/15/19 11:35		J
Toruene		100 0	00	0.04	504	uginio				
			Analy	rtical Resu	ults Repo	rt			En	thalpy

Enthalpy Analytical, LLC 9 of 21

Sample #: <u>421285-001</u>	Client Sample #	V3G4				Sample	Type.			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
trans-1,2-dichloroethene		ND	80	5.36	320	ug/m3		11/15/19 11:35	GO	
trans-1,3-dichloropropene		ND	80	4.88	360	ug/m3		11/15/19 11:35	GO	
Trichloroethene		ND	80	5.6	432	ug/m3		11/15/19 11:35	GO	
Trichlorofluoromethane		ND	80	7.04	448	ug/m3		11/15/19 11:35	GO	
Vinyl acetate		ND	80	3.2	280	ug/m3		11/15/19 11:35	GO	
Vinyl Chloride		ND	80	3.6	208	ug/m3		11/15/19 11:35	GO	
Xylenes (Total)		ND	80	4.8	344	ug/m3		11/15/19 11:35	GO	
<u>Surrogate</u>		<u>%</u>	<u>Recovery</u>		Limits	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			103		60-140					
Method: EPA TO-3M	Prep Method: Me	ethod						QCBatchI): Q(C1209047
TPH gasoline ugM3		ND	1	1227	20450	ug/m3		11/20/19 12:20	EW	Т

Matrix: Air	Client	: Enthalpy	- Berkel	еу		Co	ollector: Client			
Sampled: 11/11/2019 00:00	Site									
Sample #: <u>421285-002</u>	Client Sample #	VSG5				Sampl	le Type:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
Method: EPA TO-15	Prep Method: M	lethod					-	QCBatchIE): Q(C1208749
1,1,1-Trichloroethane		ND	100	5.1	550	ug/m3		11/15/19 12:18	GO	
1,1,2,2-Tetrachloroethane		ND	100	14.5	690	ug/m3		11/15/19 12:18	GO	
1,1,2-Trichloroethane		ND	100	7	550	ug/m3		11/15/19 12:18	GO	
1,1,2-Trichlorotrifluoroethane		ND	100	12.2	770	ug/m3		11/15/19 12:18	GO	
1,1-Dichloroethane		ND	100	6.8	400	ug/m3		11/15/19 12:18	GO	
1,1-Dichloroethene		ND	100	9.5	400	ug/m3		11/15/19 12:18	GO	
1,2,4-Trichlorobenzene		ND	100	150	740	ug/m3		11/15/19 12:18	GO	
1,2,4-Trimethylbenzene		ND	100	12.3	490	ug/m3		11/15/19 12:18	GO	
1,2-Dibromoethane		ND	100	11.3	770	ug/m3		11/15/19 12:18	GO	
1,2-Dichloro-1,1,2,2-tetrafluoroetha	ine	ND	100	11.6	700	ug/m3		11/15/19 12:18	GO	
1,2-Dichlorobenzene		ND	100	10.9	600	ug/m3		11/15/19 12:18	GO	
1,2-Dichloroethane		ND	100	5.7	400	ug/m3		11/15/19 12:18	GO	
1,2-Dichloropropane		ND	100	6.1	460	ug/m3		11/15/19 12:18	GO	
1,3,5-Trimethylbenzene		ND	100	11.7	490	ug/m3		11/15/19 12:18	GO	
1,3-Butadiene		ND	100	3.1	220	ug/m3		11/15/19 12:18	GO	
1,3-Dichlorobenzene		ND	100	11.3	600	ug/m3		11/15/19 12:18		
1,4-Dichlorobenzene		ND	100	9.3	600	ug/m3		11/15/19 12:18		
1,4-Dioxane		ND	100	7.4	1800	ug/m3		11/15/19 12:18	GO	
2-Butanone (MEK)		ND	100	5.2	1500	ug/m3		11/15/19 12:18	GO	
2-Hexanone		ND	100	6.6	2000	ug/m3		11/15/19 12:18		
4-Ethyltoluene		ND	100	10.5	490	ug/m3		11/15/19 12:18	GO	
4-Methyl-2-pentanone (MIBK)		84.8 J	100	8.1	410	ug/m3		11/15/19 12:18	GO	J
Acetone		690 J	100	6.6	1200	ug/m3		11/15/19 12:18	GO	J
Benzene		ND	100	3.2	320	ug/m3		11/15/19 12:18		0
Benzyl Chloride		ND	100	11.2	520	ug/m3		11/15/19 12:18	GO	
Bromodichloromethane		ND	100	5	670	ug/m3		11/15/19 12:18	GO	
Bromoform		ND	100	18.4	1000	ug/m3		11/15/19 12:18	GO	
Bromomethane		ND	100	5.4	390	ug/m3		11/15/19 12:18		
Carbon disulfide		ND	100	3.7	310	ug/m3		11/15/19 12:18		
Carbon Tetrachloride		ND	100	10.4	630	ug/m3		11/15/19 12:18	GO	
Chlorobenzene		ND	100	7.6	460	ug/m3		11/15/19 12:18		
Chlorodibromomethane					400 850	-		11/15/19 12:18		
Chloroethane		ND ND	100	7.9	260	ug/m3		11/15/19 12:18	GO	
Chloroform		ND	100	7.1	200 490	ug/m3		11/15/19 12:18	GO	
			100			ug/m3				
Chloromethane		ND		3.2	210	ug/m3		11/15/19 12:18		
cis-1,2-Dichloroethene		ND	100	6	400	ug/m3		11/15/19 12:18		
cis-1,3-dichloropropene		ND	100	4.9	450 240	ug/m3		11/15/19 12:18		
Cyclohexane Dichlorodifluoromethane		320 J	100	4.8 6.6	340 400	ug/m3		11/15/19 12:18	GO GO	J
		ND	100	6.6	490	ug/m3		11/15/19 12:18		
Ethyl Acetate		ND	100	9.3	1800	ug/m3		11/15/19 12:18		
Ethylbenzene		ND	100	6.4	430	ug/m3		11/15/19 12:18		
Heptane		120 J	100	5.8	410	ug/m3		11/15/19 12:18	GO	J
Hexachlorobutadiene		ND	100	210	1100	ug/m3		11/15/19 12:18		
Hexane		630	100	6.5	350	ug/m3		11/15/19 12:18		
Isopropyl alcohol (IPA)		210 J	100	5.7	1200	ug/m3		11/15/19 12:18		J
m and p-Xylene		110 J	100	12.4	430	ug/m3		11/15/19 12:18	GO	J
Methylene chloride		2000	100	4.9	350	ug/m3		11/15/19 12:18		
Methyl-t-butyl Ether (MTBE)		ND	100	57.4	360	ug/m3		11/15/19 12:18		
Naphthalene		ND	100	4.6	520	ug/m3		11/15/19 12:18		
o-Xylene		ND	100	6	430	ug/m3		11/15/19 12:18		
Propene		ND	100	12.9	170	ug/m3		11/15/19 12:18		
Styrene		ND	100	6.7	420	ug/m3		11/15/19 12:18		
Tetrachloroethene		ND	100	7.6	680	ug/m3		11/15/19 12:18		
Toluene		430	100	3.8	380	ug/m3		11/15/19 12:18	GO	
			Analy	tical Res	ults Repo	rt			En	thalpy

Enthalpy Analytical, LLC 11 of 21

Matrix: Air	Clier	t: Enthalp	y - Berkele	ey		Coll	ector: Client			
Sampled: 11/11/2019 00:00	Sit	e:								
Sample #: <u>421285-002</u>	Client Sample	#: VSG5				Sample	Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
trans-1,2-dichloroethene		ND	100	6.7	400	ug/m3		11/15/19 12:18	GO	
trans-1,3-dichloropropene		ND	100	6.1	450	ug/m3		11/15/19 12:18	GO	
Trichloroethene		ND	100	7	540	ug/m3		11/15/19 12:18	GO	
Trichlorofluoromethane		ND	100	8.8	560	ug/m3		11/15/19 12:18	GO	
Vinyl acetate		ND	100	4	350	ug/m3		11/15/19 12:18	GO	
Vinyl Chloride		ND	100	4.5	260	ug/m3		11/15/19 12:18	GO	
Xylenes (Total)		110 J	100	6	430	ug/m3		11/15/19 12:18	GO	J
<u>Surrogate</u>		%	<u>Recovery</u>		<u>Limits</u>	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			105		60-140					
Method: EPA TO-3M	Prep Method: N	/lethod						QCBatchIE): Q(C1209046
TPH gasoline ugM3		3800 J	1	1227	20450	ug/m3		11/19/19 14:30	EW	Т

QCBatchID: QC1208749 Analyst	gortiz	Method:	EPA TO-15			
Matrix: Air Analyzed:	11/13/2019	Instrument:	VOA-MS (gro	up)		
	Bla	nk Summar	V			
	Blank					
Analyte	Result	Units	MDL	RDL	Notes	
QC1208749MB1		1				
1,1,1-Trichloroethane	ND	ug/m3	0.051	5.5		
1,1,2,2-Tetrachloroethane	ND	ug/m3	0.145	6.9		
1,1,2-Trichloroethane	ND	ug/m3	0.07	5.5		
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	0.122	7.7		
1,1-Dichloroethane	ND	ug/m3	0.068	4		
1,1-Dichloroethene	ND	ug/m3	0.095	4		
1,2,4-Trichlorobenzene	ND	ug/m3	1.5	7.4		
1,2,4-Trimethylbenzene	ND	ug/m3	0.123	4.9		
1,2-Dibromoethane	ND	ug/m3	0.113	7.7		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ug/m3	0.116	7		
1,2-Dichlorobenzene	ND	ug/m3	0.109	6		
1,2-Dichloroethane	ND	ug/m3	0.057	4		
1,2-Dichloropropane	ND	ug/m3	0.061	4.6		
1,3,5-Trimethylbenzene	ND	ug/m3	0.117	4.9		
1,3-Butadiene	ND	ug/m3	0.031	2.2		
1.3-Dichlorobenzene	ND	ug/m3	0.113	6		
1,4-Dichlorobenzene	ND	ug/m3	0.093	6		
1,4-Dioxane	ND	ug/m3	0.074	18		
2-Butanone (MEK)	ND	ug/m3	0.074	15		
2-Hexanone	ND	ug/m3	0.066	20		
	ND	ug/m3	0.105	4.9		
4-Ethyltoluene	ND	ug/m3	0.081	4.9 4.1		
4-Methyl-2-pentanone (MIBK)		-				
Acetone	ND	ug/m3	0.066	12 3.2		
Benzene	ND	ug/m3	0.032	5.2 5.2		
Benzyl Chloride	ND	ug/m3	0.112			
Bromodichloromethane	ND	ug/m3	0.05	6.7		
Bromoform	ND	ug/m3	0.184	10		
Bromomethane	ND	ug/m3	0.054	3.9		
Carbon disulfide	ND	ug/m3	0.037	3.1		
Carbon Tetrachloride	ND	ug/m3	0.104	6.3		
Chlorobenzene	ND	ug/m3	0.076	4.6		
Chlorodibromomethane	ND	ug/m3	0.079	8.5		
Chloroethane	ND	ug/m3	0.072	2.6		
Chloroform	ND	ug/m3	0.071	4.9		
Chloromethane	ND	ug/m3	0.032	2.1		
cis-1,2-Dichloroethene	ND	ug/m3	0.06	4		
cis-1,3-dichloropropene	ND	ug/m3	0.049	4.5		
Cyclohexane	ND	ug/m3	0.048	3.4		
Dichlorodifluoromethane	ND	ug/m3	0.066	4.9		
Ethyl Acetate	ND	ug/m3	0.093	18		
Ethylbenzene	ND	ug/m3	0.064	4.3		
Heptane	ND	ug/m3	0.058	4.1		
Hexachlorobutadiene	ND	ug/m3	2.1	11		
Hexane	ND	ug/m3	0.065	3.5		
Isopropyl alcohol (IPA)	ND	ug/m3	0.057	12		
m and p-Xylene	ND	ug/m3	0.124	4.3		
Methylene chloride	ND	ug/m3	0.049	3.5		
Methyl-t-butyl Ether (MTBE)	ND	ug/m3	0.574	3.6		
Naphthalene	ND	ug/m3	0.046	5.2		
o-Xylene	ND	ug/m3	0.06	4.3		
Propene	ND	ug/m3	0.129	1.7		
Styrene	ND	ug/m3	0.067	4.2		

QCBatchID: QC1208749	Analyst:	gortiz	Method:	EPA TO-15			
Matrix: Air	Analyzed:	11/13/2019	Instrument:	VOA-MS (group)			
		Blank					
Analyte		Result	Units	MDL	RDL	Notes	
QC1208749MB1				-1		1	1
Tetrachloroethene		ND	ug/m3	0.076	6.8		
Toluene		ND	ug/m3	0.038	3.8		
trans-1,2-dichloroethene		ND	ug/m3	0.067	4		
trans-1,3-dichloropropene		ND	ug/m3	0.061	4.5		
Trichloroethene		ND	ug/m3	0.07	5.4		
Trichlorofluoromethane		ND	ug/m3	0.088	5.6		
Vinyl acetate		ND	ug/m3	0.04	3.5		
Vinyl Chloride		ND	ug/m3	0.045	2.6		
Xylenes (Total)		ND	ug/m3	0.06	4.3		

Duplicate Summary						
	Sample	Duplicate			Limits	
Analyte	Amount	Amount	Units	RPD	RPD	Notes
C1208749DUP1	ł	4			1	Source: 421174-00
1,1,1-Trichloroethane	ND	0.0	ug/m3	0.0	30	
1,1,2,2-Tetrachloroethane	ND	0.0	ug/m3	0.0	30	
1,1,2-Trichloroethane	ND	0.0	ug/m3	0.0	30	
1,1,2-Trichlorotrifluoroethane	ND	0.0	ug/m3	0.0	30	
1,1-Dichloroethane	ND	0.0	ug/m3	0.0	30	
1,1-Dichloroethene	ND	0.0	ug/m3	0.0	30	
1,2,4-Trichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,2,4-Trimethylbenzene	ND	ND	ug/m3	0.0	30	
1,2-Dibromoethane	ND	0.0	ug/m3	0.0	30	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.0	ug/m3	0.0	30	
1,2-Dichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,2-Dichloroethane	ND	0.0	ug/m3	0.0	30	
1,2-Dichloropropane	ND	0.0	ug/m3	0.0	30	
1,3,5-Trimethylbenzene	ND	0.0	ug/m3	0.0	30	
1,3-Butadiene	ND	0.0	ug/m3	0.0	30	
1,3-Dichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,4-Dichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,4-Dioxane	ND	0.0	ug/m3	0.0	30	
2-Butanone (MEK)	ND	0.0	ug/m3	0.0	30	
2-Hexanone	ND	0.0	ug/m3	0.0	30	
4-Ethyltoluene	ND	0.0	ug/m3	0.0	30	
4-Methyl-2-pentanone (MIBK)	ND	0.0	ug/m3	0.0	30	
Acetone	4.5	4.4	ug/m3	2.2	30	
Benzene	ND	0.0	ug/m3	0.0	30	
Benzyl Chloride	ND	0.0	ug/m3	0.0	30	
Bromodichloromethane	ND	0.0	ug/m3	0.0	30	
Bromoform	ND	0.0	ug/m3	0.0	30	
Bromomethane	ND	0.0	ug/m3	0.0	30	
Carbon disulfide	ND	0.0	ug/m3	0.0	30	
Carbon Tetrachloride	ND	0.0	ug/m3	0.0	30	
Chlorobenzene	ND	0.0	ug/m3	0.0	30	
Chlorodibromomethane	ND	0.0	ug/m3	0.0	30	
Chloroethane	ND	0.0	ug/m3	0.0	30	
Chloroform	ND	0.0	ug/m3	0.0	30	
Chloromethane	ND	0.0	ug/m3	0.0	30	
cis-1,2-Dichloroethene	ND	0.0	ug/m3	0.0	30	
cis-1,3-dichloropropene	ND	0.0	ug/m3	0.0	30	
Cyclohexane	ND	0.0	ug/m3	0.0	30	
Dichlorodifluoromethane	ND	ND	ug/m3	0.0	30	

QCBatchID: QC1208749	Analyst:	gortiz	Method:	EPA TO-15			
Matrix: Air	Analyzed:	11/13/2019	Instrument:	VOA-MS (group	o)		
		Sample	Duplicate			Limits	
Analyte		Amount	Amount	Units	RPD	RPD	Notes
QC1208749DUP1						ł	Source: 421174-00
Ethyl Acetate		ND	0.0	ug/m3	0.0	30	
Ethylbenzene		ND	ND	ug/m3	0.0	30	
Heptane		ND	0.0	ug/m3	0.0	30	
Hexachlorobutadiene		ND	0.0	ug/m3	0.0	30	
Hexane		ND	0.0	ug/m3	0.0	30	
Isopropyl alcohol (IPA)		ND	ND	ug/m3	0.0	30	
m and p-Xylene		ND	ND	ug/m3	0.0	30	
Methylene chloride		3.8	3.7	ug/m3	2.7	30	
Methyl-t-butyl Ether (MTBE)		ND	0.0	ug/m3	0.0	30	
Naphthalene		ND	0.0	ug/m3	0.0	30	
o-Xylene		ND	0.0	ug/m3	0.0	30	
Propene		ND	ND	ug/m3	0.0	30	
Styrene		ND	0.0	ug/m3	0.0	30	
Tetrachloroethene		1200	1200	ug/m3	0.0	30	
Toluene		ND	0.0	ug/m3	0.0	30	
trans-1,2-dichloroethene		ND	0.0	ug/m3	0.0	30	
trans-1,3-dichloropropene		ND	0.0	ug/m3	0.0	30	
Trichloroethene		ND	ND	ug/m3	0.0	30	
Trichlorofluoromethane		ND	0.0	ug/m3	0.0	30	
Vinyl acetate		ND	0.0	ug/m3	0.0	30	
Vinyl Chloride		ND	0.0	ug/m3	0.0	30	
Xylenes (Total)		ND	0.0	ug/m3	0.0	30	

QCBatchID: QC1209046	Analyst:	sandyw	Method:	EPA TO-3M			
Matrix: Air	Analyzed:	11/19/2019	Instrument:	VOA-GC (gro	up)		
		Bla	ank Summa	ry			
		Blank					
Analyte		Result	Units	MDL	RDL	Notes	
QC1209046MB1	L		L				I
TPH gasoline ugM3		ND	ug/m3	1227	20450		
		Dupl	icate Summ	ary			
		Sample	Duplicate			Limits	
Analyte		Amount	Amount	Units	RPD	RPD	Notes
QC1209046DUP1		•		•	•		Source: 421389-001

ND

ug/m3

0.0

25

ND

TPH gasoline ugM3

QCBatchID: QC1209047	Analyst:	sandyw	Method:	EPA TO-3M			
Matrix: Air	Analyzed:	11/20/2019	Instrument:	VOA-GC (gro	up)		
		Bla	nk Summa	ry			
		Blank					
Analyte		Result	Units	MDL	RDL	Notes	
QC1209047MB1				•			i
TPH gasoline ugM3		ND	ug/m3	1227	20450		
		Dunl	icate Summ	251/			
				ary	1	1	l
		Sample	Duplicate			Limits	
Analyte		Amount	Amount	Units	RPD	RPD	Notes
QC1209047DUP1	·	•					Source: 421389-004

ND

ug/m3

0.0

25

ND

Enthalpy
Analytical, LLC
17 of 21

TPH gasoline ugM3

Data Qualifiers and Definitions

<u>Qualifiers</u>	
A	See Report Comments.
В	Analyte was present in an associated method blank.
B1	Analyte was present in a sample and associated method blank greater than MDL but less than RDL.
BQ1	No valid test replicates. Sample Toxicity is possible. Best result was reported.
BQ2	No valid test replicates.
BQ3	No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.
BQ4	Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.
BQ5	Minor Dissolved Oxygen loss was observed in the blank water check.
С	Possible laboratory contamination.
D	RPD was not within control limits. The sample data was reported without further clarification.
D1	Lesser amount of sample was used due to insufficient amount of sample supplied.
D2	Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.
D3	Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.
DW	Sample result is calculated on a dry weigh basis.
E	Concentration is estimated because it exceeds the quantification limits of the method. The sample was read outside of the method required incubation period.
IR	Inconclusive Result. Legionella is present, however, there is possible non-specific agglutination preventing specific identification.
J	Reported value is estimated
L	The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample
	data was reported with qualifier.
L2	LCS did not meet recovery criteria, however, the MS and/or MSD met LCS recovery criteria, validating the batch. The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated
Μ	LCS and/or LCSD was within control limits and the sample data was reported without further clarification.
M1	The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.
M2	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not within control limits.
N1	within control limits. Sample result is estimated.
NC	Sample chromatography does not match the specified TPH standard pattern. The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not
	apply.
Р	Sample was received without proper preservation according to EPA guidelines.
P1	Temperature of sample storage refrigerator was out of acceptance limits.
P2	The sample was preserved within 24 hours of collection in accordance with EPA 218.6.
P3	Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended due to potential loss of target analytes. Results may be biased low.
Q1	Analyte Calibration Verification exceeds criteria. The result is estimated.
Q2	Analyte calibration was not verified and the result was estimated.
Q3	Analyte initial calibration was not available or exceeds criteria. The result was estimated.
S	The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery was within control limits and the sample data was reported without further clarification.
S1	The associated surrogate recovery was out of control limits; result is estimated.
S2	The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate recoveries in the associated batch QC met recovery criteria.
S3	Internal Standard did not meet recovery limits. Analyte concentration is estimated.
т	Sample was extracted/analyzed past the holding time.
T1	Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).
T2	Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.
Т3	Sample received and analyzed out of hold time per client's request.
T4	Sample was analyzed out of hold time per client's request.
T5	Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.
T6	Hold time is indeterminable due to unspecified sampling time.
T7	Sample was analyzed past hold time due to insufficient time remaining at time of receipt.
Definitions	
DF	Dilution Factor
MDL	Mathed Detection Limit. Deput is repeated ND when it is less than an equal to MDI
	Method Detection Limit. Result is reported ND when it is less than or equal to MDL.
ND	Analyte was not detected or was less than the detection limit.
ND NR	Analyte was not detected or was less than the detection limit. Not Reported. See Report Comments.
ND	Analyte was not detected or was less than the detection limit.

Analytical Results Report

Enthalpy Berkeley

421285

2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 (510) 486-0532

Project Number: 315807 Site: Valaya Auto

Subcontract Laboratory: Enthalpy Analytical (Orange) 931 W Barkley Avenue Orange, CA 92868 (714) 771-9923 ATTN: Lisa Nguyen

Results due:

Report Level: II

Please send report to: Jess Silberman (Jessica.Silberman@enthalpy.com) and ClientServices.Berkeley@enthalpy.com

*** Please report using Sample ID rather than Enthalpy (Berkeley) Lab #.

Sample	e ID Sampled	Matrix	Analysis	Lab # Comments
VSG4	11/11 00:00) Air	T015	315807-001
VSG5	11/11 00:00) Air	T015	315807-002
Note		Relin Date/Time:	quished By: 11/12/19 17:50	Date/Time:

Signature on this form constitutes a firm Purchase Order for the services requested above. Page 1 of 1

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: Enthalpy Berkeley	Project:			·
Date Received: 11/13/19	Sampler's Name Present:	Yes	√ No	
Section 2				
Sample(s) received in a cooler? Yes, How many?	No (skip section 2)	Sampl	e Temp (°C (No Cooler) . AMBIENT } :
Sample Temp (°C), One from each cooler: #1:	# 2:#3:	_#4:		_
(Acceptance range is < 6°C but not frozen (for Microbiology samples, acce		-		es collected
the same day as sample receipt to have a higher temper Shipping Information:	rature as long as there is evidence that co	oling has beg	un.j	
Section 3				
Was the cooler packed with: Ice Ice Packs Paper None Cooler Temp (°C): #1: #2:	Bubble Wrap Styro Other	foam #4:		
Cooler Temp (C). #1#2				
Section 4		YES	NO	N/A
Was a COC received?		✓		
Are sample IDs present?		√		
Are sampling dates & times present?				
Is a relinquished signature present?		1		
Are the tests required clearly indicated on the COC?		√		
Are custody seals present?			 ✓ 	
If custody seals are present, were they intact?				\checkmark
Are all samples sealed in plastic bags? (Recommended	for Microbiology samples)			✓
Did all samples arrive intact? If no, indicate in Section 4	below.	✓		
Did all bottle labels agree with COC? (ID, dates and tim	es)	✓		
Were the samples collected in the correct containers for	or the required tests?	 ✓ 		
Are the containers labeled with the correct prese	rvatives?			✓
Is there headspace in the VOA vials greater than 5-6 m	m in diameter?			\checkmark
Was a sufficient amount of sample submitted for the re	 ✓ 			
Section 5 Explanations/Comments				
Section 6	· · · ·			
For discrepancies, how was the Project Manager notified	ed? Verbal PM Initials: Email (email sent to/	-	1	
Project Manager's response:				
Completed By:		_		
931 W. Barkley Ave, Orange, CA 9286 www.enth	of Montrose Environmental Group ,Inc. 8 • T: (714) 771-6900 • F: (714) 538-1209 alpy.com/socal Checklist – Rev 4, 8/8/2017	•		

20 of 21

800-322-5555 www.gso.com

Ship From ENTHALPY ANALYTICAL, LLC PROJECT MANAGEMENT 2323 FIFTH STREET BERKELEY, CA 94710

Ship To ENTHALPY ANALYTICAL (ORANGE) LISA NGUYEN 931 W BARKLEY AVE. ORANGE, CA 92868

COD: \$0.00 Weight: 0 lb(s) Reference:

Delivery Instructions:

Signature Type: STANDARD

Tracking #: 546914575

PDS

ORANGE

ORC CA927-CI0

Print Date: 11/12/2019 5:24 PM

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode. Step 1: Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer. Step 2: Fold this page in half.

Step 3: Securely attach this label to your package and do not cover the barcode.

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the GSO service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gso.com.