APPENDIX F4

Phase II Environmental Site Assessment 150 North Autumn Street

Milligan Parking Lot Project

REPORT FOR PHASE II ESA 150 North Autumn Street San Jose, California 95110

Prepared for

City of San Jose Public Works Department Attn: Mr. Mark Saturnio 200 E. Santa Clara St. Tower 5th Floor San Jose, CA 95113

> Prepared by Envirocom P.O. Box 28310 San Jose, CA 95159 (408) 894-9062

December 13, 2019 Project 19-032.12

December 13, 2019 Project 19-032.12

Mr. Mark Saturnio Associate Engineer City of San Jose, DPW City Facilities Architectural Services Division 200 East Santa Clara St. T6 San Jose, CA 95113

Subject: Report for Phase II Environmental Site Assessment, 150 North Autumn Street, San Jose, California

Dear Mr. Saturnio:

Envirocom is pleased to present this report summarizing scope and results of a Phase II Environmental Site Assessment (ESA) for the subject location, hereafter, referred to as the Site. Site location is shown in Figure 1.

Envirocom understands that future planned development for the Site is a paved ground surface parking lot.

BACKGROUND

The Site is approximately 1.695 acre of land with assessor parcel number (APN) 259-29-102. It is bounded by Los Gatos Trail and Guadalupe River to the East, North Autumn Street to the west, residential properties to the north, and mixture of commercial and park to the south. Envirocom understands that the City is planning to construct a paved ground surface parking lot at the Site in the near future.

The Site is located in a mixed residential and commercial/industrial neighborhood. Figure 2 shows the Site neighboring properties.

P.O. Box 28310 San Jose, CA 95159 Phone (408) 894-9062 Fax (408) 894-9063

Previous Phase I ESA and Update

A Phase I ESA was prepared for the Site by City of San Jose Environmental Services Department (CSJESD) dated March 16, 2017. The Site was constructed with the existing structures by 1959 and operated as a magazine facility distribution until it closed in 2014.

The Site received a case closure on January 24, 1997, after removal of two 10,000-gallon gasoline tanks with associated piping, excavation of contaminated soil, and remediation (pump & treat) of soil vapor and groundwater. Approximately 7 million gallons of groundwater and 8,800 pounds of hydrocarbon vapor were extracted and treated along with 285 cubic yards of contaminated soil, which was aerated and used for landscaping at the Site.

In its report, CSJESD concluded that the long Site history and past Site uses were of environmental concern. Past printing activities may have used hazardous materials. In addition, some residual petroleum soil contamination remains beneath a portion of the Site related to the former thank excavation.

Envirocom prepared a Phase I ESA update for the Site in August 2019. Envirocom recommended performing additional subsurface investigation, as well as, asbestos, lead in paint, and PCBs inspection of building structures at the Site, before the demolition work.

Copies of relevant document related to the historical subsurface environmental conditions attached to the case closure letter, which was prepared by Santa Clara Valley Water District for the Site is enclosed in Appendix A.

Current Site Conditions

Currently, the Site is vacant and used as storage warehouse. Figure 3 shows the Site plan.

OBJECTIVE

The objective of the Phase II ESA was to: (1) obtain updated soil, groundwater, and soil gas data beneath the Site and (2) and evaluate whether additional corrective actions would be warranted for the Site considering its future land use as a paved parking lot.

Envirocom used Environmental Screening Levels (ESLs) for commercial/industrial land use to determine degree of risk to public exposure at the Site. ESLs were established by the San Francisco Regional Water Quality Control Board (SFRWQCB, Water Board, February 2016, Rev. 3). They were revised in 2019, Rev. 2. They are conservative risk-based screening levels. ESLs are not cleanup levels, but they indicate whether additional investigation/mitigation measures would be warranted at properties where contaminant concentrations exceed ESLs for specific land use practices. The land use practices provided by SFRWQCB consist of residential and commercial/industrial. Therefore, ESLs would not apply to the future planned development of the Site as unoccupied paved parking lot. However, in the absence of a Site-specific risk assessment for parking lot, Envirocom used ESLs for commercial/industrial land use as a reference threshold. Please note that variables determining contaminant exposure risk to public who park their cars at the Site in the future will be less stringent than the variables used for ESLs assigned for commercial/industrial land use.

SCOPE OF WORK

To obtain subsurface environmental data, Envirocom had drillers advancing 5 soil borings (MSB1 through MSB5) and constructed 5 soil-gas probes (MSG1 through MSG5) at the Site. The Soil borings and the soil-gas probes were approximately 5 feet apart. Envirocom collected soil, groundwater, and soil-gas samples for chemical analysis.

Prior to the field activities, Envirocom retained services of a private utility locating company, and contacted Underground Services Alert (USA) to clear the sampling locations from underground utilities. Envirocom retained services of a California-licensed drilling contractor to advance the soil borings and construct soil-gas probes. Envirocom submitted the samples to a State-certified analytical laboratory for chemical analysis. Envirocom summarized the information in this report.

PREFIELD ACTIVITIES

Envirocom coordinated with the client and C. Cruz Sub-Surface Locators, inc. (C. Cruz) of Milpitas, California to clear underground utilities at the sampling/drilling locations. Additionally, Envirocom contacted Underground Services Alert (USA) and notified them of the drilling date and time. Envirocom prepared a health and safety plan for its employees and sub contractors. Envirocom coordinated with Enthalpy Analytical (EA) of Berkeley, California to obtain appropriate sampling containers. Envirocom also coordinated with Cascade Drilling, Ltd. (Cascade) of Richmond, California to drill boreholes and collect soil, soil gas, and groundwater samples. Envirocom prepared field material and equipment. Envirocom notified the client of the drilling/sampling date and time.

FIELD ACTIVITIES

Drilling & Soil and Groundwater Sampling

On November 12, 2019, Cascade used a track-mounted Geoprobe® direct push drilling equipment to advance soil boring MSB1 through MSB5 for soil and groundwater sampling. Cascade used a hollow shaft, which was lined with new clear plastic tube (4 feet long) and attached to steel rods. The shaft penetrated into ground by hydraulic hammer and collected continuous soil samples at 4-foot intervals until reaching bottom of borings at 20 feet below ground surface (bgs). After collection, plastic tubes were removed from inside of the shaft for inspection and sample collection. Envirocom screened soil conditions from ground surface to bottom of each boring using visual observations as well as a photo ionization detector (PID). The observations were recorded in boring logs. One soil sample was collected from each boring at approximately 10 feet bgs (above water table) for chemical analysis. Envirocom cut a section of the plastic tube (approximately 6-inch long) containing soil for laboratory analysis. Envirocom sealed the tubes with Teflon[®] tape and plastic end caps, labeled them, and placed them on ice in a cooler.

Except for soil boring MSB2, no visual contamination (odor/stain) or PID reading was observed/detected in the soil samples. Hydrocarbon odor was detected in the soil extruded from MSB2 at approximately 8 feet bgs. Soil type encountered in the borings consisted of clayey silt to silty clay to approximately 15 feet bgs followed with silty sand, sand, and gravelly sand to bottom of borings at 20 feet bgs. Boring locations are shown in Figure 3. Exploratory boring logs are enclosed in Appendix B.

Groundwater was first encountered at approximately 14' bgs in the borings at the Site. Cascade inserted new 3/4-inch diameter perforated and solid PVC piping in each boring to collect grab groundwater samples. Envriocom utilized a well sounder to measure the groundwater level in each boring. Static groundwater levels at the Site measured from 15' to 16' bgs.

New disposable bailers were used to transfer groundwater into clean volatile organic analysis (VOA) vials. The vials were sealed with Teflon-septum screw cap. They were labeled, placed on ice in a cooler, and together with the soil and soil gas samples and chain-of-custody documentation submitted to EA for chemical analysis.

After collecting all samples, Cascade sealed the soil borings with Portland cement and Bentonite[®] mixture. Top of the borings were sealed with concrete or asphalt to match their surroundings.

Drill cuttings were placed in a 55-gallon drum, which was stored at the Site.

Soil-Gas Sampling

Cascade utilized the same track-mounted Geoprobe® direct push drilling equipment for advancing the boreholes and construct the soil gas probes. Sample locations are shown in Figure 3. After advancing the boreholes MSG1 through MSG5 to 5 feet bgs, Cascade connected a gas probe to 1/4-inch diameter Teflon® tubing and used 3/4-inch diameter PVC piping to center and place the probe to the bottom of each borehole. Cascade extended the sampling tubing from the gas probe tip to the ground surface. Cascade placed approximately 2" of sand beneath each probe, 10" of sand was placed around the probe and the tubing, 1' of dry Bentonite[®] was placed above the sand, and 3' of hydrated Bentonite[®] was placed on top of the dry Bentonite[®] extending to the ground surface. After construction, each sample location was left to reach equilibrium, before purging volume, and soil gas sample collection was performed.

Envirocom used a new 1-liter Tedlar® bag, a diaframe pump, and a vacuum chamber/lung box to collect each sample. After collection, the samples were labeled, placed in a sealed box, and submitted to EAL with chain-of-custody documentation for chemical analysis.

CHEMICAL ANALYSIS

The soil and groundwater samples were analyzed for volatile organic compounds (VOCs) using the United States Environmental Protection Agency (EPA) method 8260B.

The soil gas samples were also analyzed for VOCs using EPA method TO-15. They were also analyzed for total petroleum hydrocarbons as gasoline (TPHG) using EPA method TO-3M.

ANALYTICAL RESULTS FOR SOIL AND GROUNDWATER SAMPLES

Other than 29 ug/kg Acetone detected in soil sample MSB2-10, No TPHG or VOCs were detected in the remaining soil samples collected at the Site.

No VOCs or TPHG was detected in groundwater sample MW1, MW3, MW4, and MW5 collected at the Site. Among petroleum hydrocarbon constituents up to 86,000 μ g/L TPHG, 1,700 μ g/L Benzene, and 980 μ g/L Naphthalene were

detected in groundwater sample MW2. This sample location was closest to the former UST area.

Analytical results for soil and groundwater samples are presented in Table I and Table II, respectively.

ANALYTICAL RESULTS FOR SOIL GAS SAMPLES

Up to 120 ug/m³ Acetone, up to 38.1 ug/m³ Benzene, and 18.5 ug/m³ Methylene Chloride as well as other gasoline constituents were detected in the soil gas samples collected at the Site. Summary of the analytical results for the soil gas samples are presented in Table III.

CONCLUSION

The following summarize the findings:

- Other than 29 ug/kg Acetone detected in soil sample MSB2-10, no VOCs or TPHG was detected in the remaining soil samples (Table I);
- No VOCs or TPHG was detected in groundwater sample MW1, MW3, MW4, and MW5 collected at the Site. Among petroleum hydrocarbon constituents up to 86,000 μg/L TPHG, 1,700 μg/L Benzene, and 980 μg/L Naphthalene were detected in groundwater sample MW2. This sample location was closest to the former UST area (Table II);
- Sample MW2 was collected within close proximity of the former UST;
- Gasoline constituents and few VOCs such as Acetone and Methylene Chloride were detected in the soil gas samples (Table III).

DISCUSSION

Evaluation of the contaminants beneath the Site indicates that the gasoline constituents in groundwater are confined within close proximity to the former UST excavation in the paved parking area, northwest of the Site. Except for MW2 (Figure 3), no gasoline constituents or VOCs were detected in the remaining groundwater samples.

Gasoline constituents and few VOCs such as Acetone and Methylene Chloride were detected in the soil gas samples. However, their concentrations are below ESLs (Table III). Although benzene concentration in soil gas sample MSG2 and

MSG3 are slightly above ESL for cancer risk, average benzene concentration at the Site is below ESL. Furthermore, public exposure risk to benzene at an open parking lot would be less than a commercial/industrial land use.

Since the Site has obtained a low threat case closure from the SCVWD in January 1997, and its future planned development is paved parking lot, it is reasonable to conclude that public exposure to the residual contaminants would be less than significant. However, residual contaminants associated with the former fuel tanks exist at the Site that may expose construction workers to pollutants during grading, earthwork, trenching, etc.

RECOMMENDATIONS

Based on the above information, Envirocom recommends preparing a soil management plan (SMP) for the Site, prior to the grading and construction work of the parking lot.

The SMP will provide procedures to properly handle, store, profile, transport, reuse, and dispose of excess soil from the Site in accordance with the Local, State, and Federal regulations. It will also provide health and safety measures protective of workers, public, and the environment during the grading/earthwork activities at the Site.

Envirocom also recommends performing hazardous material inspection including asbestos, lead, and PCBs, before demolition of the structure at the Site.

LIMITATIONS

The content and conclusion provided by Envirocom in this report are based on information collected during its assessment/monitoring, which include, but are not limited to field observations and analytical results for the soil and groundwater samples collected at the Site. Envirocom assumes that the samples collected and laboratory results are reasonably representative of the whole Site, which may not be the case at unsampled areas. This assessment/monitoring was performed in accordance with generally accepted principles and practices of environmental engineering and assessment at the time of the work. This report presents our professional opinion based on our findings, technical knowledge, and experience working on similar projects. No warranty, either expressed or implied, is made. The conclusions presented are based on the analytical results and current regulatory requirements. We are not responsible for the impact of any changes in environmental standards or regulations in the future.

Please feel welcome to contact us if you have questions.

Sincerely, Envirocom

Reza Baradaran, GE, PE Principal Engineer

27-,6

Mitch Hajiaghai, REA II, CPESC, QSD Principal Environmental Consultant

Attachments:	Table I	-	Analytical Results for Soil Samples
	Table II	-	Analytical Results for Groundwater Samples
	Table III	-	Analytical Results for Soil Gas Samples
	Figure 1	-	Site Location Map
Figure 2 -			Neighboring Properties
	Figure 3	-	Soil Boring Locations
Ap	opendix A	-	SCVWD Case Closure Document
Ap	opendix B	-	Exploratory Boring Logs
Ap	pendix C	-	Certified Analytical Results and Chain-Of-Custody
			Documentation

19-032.12\Foundry\MH12132019

 TABLE I

 ANALYTICAL RESULTS FOR SOIL SAMPLES (MILLIGAN)

Sample ID	Sample Date	Sample Location	Sample Depth In Feet	TPHG ¹ mg/kg	Acetone ug/kg
MSB1-10	11-12-19	MSB1	10	< 1.1	< 19
MSB2-10	11-12-19	MSB2	10	< 0.93	29
MSB3-10	11-12-19	MSB3	10	< 1.1	< 19
MSB4-10	11-12-19	MSB4	10	< 1.1	< 19
MSB5-10	11-12-19	MSB5	10	< 9.5	< 20
S Cor	San Francisco Ba Summary of Soil Human Health Ri nmercial/Industri Can	ay RWQCB ESLs 2019 ESLs Direct Exposurd sk Levels (Table S-1) al Shallow Soil Expos cer Risk) e sure	NV ²	NV
San Francisco Bay RWQCB ESLs 2019 Summary of Soil ESLs Direct Exposure Human Health Risk Levels (Table S-1) Commercial/Industrial Shallow Soil Exposure Non-Cancer Hazard				2000	670000

1: TPHG - Total Petroleum Hydrocarbon Gasoline

2: NV – No Value

Note: All other soil sample results for Volatile Organic Compounds (VOCs) not included in table I were below laboratory reporting limits (RL)

 TABLE II

 ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES (MILLIGAN)

 (Concentrations in ug/L)

Sample ID	Sample Date	Sample Location	Gasoline	Benzene	Toluene	Ethylbenzene	m,p-Xylenes	o-Xylene	lsopropylbenzene	Propylbenzene	1,3,5- Trimethy Ibenzene	1,2,4- Trimethy Ibenzene	n-Butylbenzene	Naphthalene
MW1	11-12-19	MSB1	<50 H ¹	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
MW2	11-12-19	MSB2	86000	1700	320	3700	10000	2400	130	420	710	3000	230	980
MW3	11-12-19	MSB3	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
MW4	11-12-19	MSB4	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
MW5	11-12-19	MSB5	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
San Franci of Grou Groundwa Health I Commer	isco Bay RW undwater ES ater Vapor In Risk Levels (cial/Industria	QCB, Summary Ls 2019, for trusion Human Table GW-3) I <mark>Cancer Risk</mark>	NV ¹	1.8	NV	15	NV	NV	NA ²	NA	NA	NA	NA	20
San Francisco Bay RWQCB, Summary of Groundwater ESLs 2019, for Groundwater Vapor Intrusion Human Health Risk Levels (Table GW-3) Commercial/Industrial Non-Cancer Hazard		NV	57	4900	14000	1600	1600	NA	NA	NA	NA	NA	730	

1. H = Sample analyzed outside of hold time due to laboratory omission and miscommunication

1. NV = No Value

2. NA = Not Available

Note: All other VOCs not included in Table II were below laboratory reporting limits (RL).

TABLE III ANALYTICAL RESULTS FOR SOIL GAS SAMPLES (MILLIGAN) (Concentrations in ug/m³)

Sample ID	Sample Date	Sample Location	Sample Depth In Feet	1,2,4- Trimethylbenzene	4-Ethyltoluene	4-Methyl-2- pentanone	Acetone	Benzene	Cyclohexane	Ethylbenzene	Heptane	Hexane	m,p-Xylene	Isopropyl Alcohol	Methylene Chloride	o-Xylene	Toluene	Xylenes (Total)
MSG1	11-12-19	MSG1	5	<2.46	<2.1	<1.62	67.4J ¹	<0.64	62.4J	<1.28	20.7J	42.5J	<2.48	17.2J	18.5J	<1.2	180	<1.2
MSG2	11-12-19	MSG2	5	<2.46	<2.1	34.6J	120J	38.1J	420	<1.28	120	300	36.4J	22.5J	17.7J	<1.2	440	36.4J
MSG3	11-12-19	MSG3	5	<2.46	<2.1	<1.62	110J	20.1J	64.9J	<1.28	40.2J	44.5J	49.2J	18.6J	15.8J	<1.2	370	49.2J
MSG4	11-12-19	MSG4	5	<2.46	<2.1	<1.62	68.9J	<0.64	16.6J	<1.28	17.3J	<1.3	23.7J	24.9J	15.0J	<1.2	130	23.7J
MSG5	11-12-19	MSG5	5	6.7J	5.8J	18.5J	57.5J	4.2J	8.7J	11.0J	<0.29	5.5J	54.0	10.6J	14.9J	22.3	27.4	76.3
San Fra	incisco Bay	RWQCB ES	Ls 2019	NA ²	NA	NA	NV ³	14	NA	160	NA	NA	NV	NA	410	NV	NV	NV
Subslab/	Soil Gas Va	por Intrusio	n Human															
Hea Indus	ith Risk Lev	ercial Cance	G-1) r Risk															
San Francisco Bay RWQCB ESLs 2019			NA	NA	NA	45000	440	NA	150000	NA	NA	15000	NA	58000	15000	44000	15000	
Subslab/Soil Gas Vapor Intrusion Human Health Risk Levels (Table SG-1)						00												
Industria	l/Commercia	al Non-Canc	er Hazard															

J = Reported Value Is Estimated 1.

= Not Available 2. NA

3. NV = No Value

Note: Concentrations of all TPHG and other VOCs not included in table III were below Method Detection limits (MDL).

Appendix A SCVWD CASE CLOSURE DOCUMENT January 24, 1997

Mr. Jack Gillis Milligan News 150 North Autumn Street San Jose, CA 95110

Dear Mr. Gillis:

Subject: Underground Storage Tank Case Closure-Milligan News, 150 Autumn Street, San Jose, CA; Case No. 11-087; Underground Storage Tank Cleanup Fund No. 498

This letter confirms the completion of site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Enclosed is the Case Closure Summary for the referenced site for your records.

Based upon the available information, including the current land use, and with the provision that the information provided to this agency was accurate and representative of site conditions, no further action related to the underground storage tank release is required.

This notice is issued pursuant to a regulation contained in Title 23, California Code of Regulations, Division 3, Chapter 16, Section 2721(e).

Please contact Mr. Lane Davis at the Camden Office, (408) 927-0710, extension 2698, if you have any questions in this matter.

Sincerely,

ORIGINAL SIGNED BY

James S. Crowley, P.E. Associate Civil Engineer Leaking Underground Storage Tank Oversight Program

Enclosure

 cc: Ms. Lori Casias (w/enc) Division of Clean Water Programs State Water Resources Control Board P.O. Box 944212 Sacramento, CA 94244-2120

> Mr. Dan Firth Hazardous Materials Division San Jose Fire Department 4 North Second Street, Suite 1100 San Jose, CA 95113-1305

Mr. John West (w/enc) Regional Water Quality Control Board San Francisco Bay Region 2101 Webster Street, Suite 500 Oakland, CA 94612

Mr. Dave Deaner Division of Clean Water Programs Underground Storage Tank Cleanup Fund State Water Resources Control Board P.O. Box 944212 Sacramento, CA 94244-2120

J. Crowley, L. Davis (w/original enc),/Database (enc)

LD:lk:FL9482az

January 13, 1997

Mr. John West Regional Water Quality Control Board 2101 Webster Street, Suite 500 Oakland, CA 94612

Dear Mr. West:

Subject: Request for Case Closure Concurrence-Underground Storage Tank Program Case No. 11-087, Milligan News, 150 Autumn Street, San Jose, CA

This requests your concurrence on case closure for the subject fuel leak case. Enclosed for your review is a case closure summary. Please provide comment to the Santa Clara Valley Water District (District) casehandler within 30 days from the receipt of this letter. If we have not received comment from you within that time frame, the District will issue a case closure letter for the subject case.

As you know, the District has entered into agreement with the State Water Resources Control Board to provide regulatory oversight for leaking underground fuel storage tanks. The terms of the agreement require the District to issue case closure letters after appropriate remediation for cases where soil and/or groundwater has been impacted. District evaluation of case closure is consistent with the San Francisco Bay Region, Regional Water Quality Control Board Water Quality Control Plan (Basin Plan) requirements and guidance.

Please contact Mr. Lane Davis at the Camden Office, (408) 927-0710, extension 2698, with any questions or comments that arise as you proceed with review of this proposed case closure.

Sincerely,

ORIGINAL SIGNED BY

James S. Crowley, P.E. Associate Civil Engineer Leaking Underground Storage Tank Oversight Program

Enclosure

cc: Mr. Jim Blamey Santa Clara County Health Department 2220 Moorpark Avenue San Jose, CA 95128-2690

J. Crowley, (Database, L. Davis (w/enc)

LD:fd:FL9484ip

Santa Gara Valley Water District

CASE CLOSURE SUMMARY LEAKING UNDERGROUND FUEL STORAGE TANK PROGRAM

I. AGENCY INFORMATION

Date: January 7, 1997

Agency Name: Santa Clara Valley Water District	Address: 5750 Almaden Expressway
City/State/Zip: San Jose, CA 95118	Phone: (408) 265-2600
Responsible Staff Person: Lane R. Davis	Title: Assistant Engineer

II. CASE INFORMATION

Site Facility Name: Milligan News			
Site Facility Address: 150 Autumn	Street, San Jose, CA		
RB LUSTIS Case No.: -	Local Case No.: 07S1E07K03f	LOP Ca	se No.: 11-087
URF Filing Date: 10/28/88	SWEEPS No.: -	APN: 2	59-29-070
Responsible Parties	Addresses		Phone Numbers
Mr. Jack Gillis-Milligan News	150 North Autumn Street, San Jose, CA	95110	(408) 298-3322

Tank I.D. No	Size in Gallons	Contents	Closed In-Place/Removed?	Date
1,2	10,000	Gasoline	Removed	04/21/89
	Piping		Removed	04/21/89

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and Type of Release: Unknown					
Site characterization complete? Yes Date Approved By Oversight Agency: -					
Monitoring wells installed? Yes	Number: 13	Proper screened interval? Yes			
Highest GW Depth Below Ground Surface: 13 ¹ Lowest Depth: 50 ² Flow Direction: NE					
Most Sensitive Current Use: Potential drinking water					

¹Depth to shallow water bearing zone ²Depth to second water bearing zone

Summary of I unknown. O	Production ver 175 me	Wells in onitoring	Vicinity: O and treatment	ne produc nt wells ar	tion well lies cross-gradient	adient of this nt within ½ 1	site; the m	ethod of des	truction i	
Are drinking water wells affected? No					Aquifer Name: Santa Clara Valley Groundwater Basin					
Is surface water affected? No					Nearest SW Name: L 200 feet east	os Gatos Cre	ek and Gu	adalupe Rive	er,	
Off-Site Bene	ficial Use	Impacts (Addresses/L	ocations);	None					
Reports on file	e? Yes				Where are reports file	d? Santa Cla	ara Valley	Water Distri	ct	
		TRI	EATMENT	AND DISI	POSAL OF AFFECTE	ED MATERI	AL			
Material	1	Amount (Include Units	s) Ac	tion (Treatment or Di	sposal w/Des	tination)	Date		
Tank		Tw	o steel		Disposal, destination not reported				1989	
Piping	ing Not reported				Disposal, destination	ed	1989			
Free Product	ee Product None				-	-				
Soil	285 cubic yards				Aerated, used for		198	19		
Groundwater		7 r	nillion		Pump and	treat		1990-1992		
Barrels			-		-			-		
MAXIM	UM DOC	UMENT	ED CONTA	MINANT	CONCENTRATIONS	S-BEFORE	AND AFT	ER CLEAN	UP	
Contaminant	Soil (ppm)	Water	(ppb)		Soil (ppm)		Water	(ppb)	
Containmaint	Before	After	Before	After	Contaminant	Before	After	Before	After	
TPH (Gas)	20,000		34,000,000	11,000	Xylene	2,000	-	300,000	920	
TPH (Diesel)	N/A	-	N/A	-	Ethylbenzene	300	-	130,000	180	
Benzene	220	-	69,000	34	Oil & Grease	N/A	-	N/A	-	
Toluene	1,300 - 190,000 83			83	Heavy Metals		-	- 1		

Description of Interim Remediation Activities: Overexcavate to 17 feet below ground surface (bgs), groundwater pump and treat, and soil vapor extraction.

MTBE

NA

NA

110

N/A - Not applicable

Other

(8240/8270)

1

ND = Below detection limit

N/A

NA = No analysis

'No confirmation samples taken to assess remedial effectiveness

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? Yes

Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? Yes

Does corrective action protect public health for current land use? Santa Clara Valley Water District (District) staff does not make specific determinations concerning public health risk. However, it does not appear that the release would present a risk to human health.

Site Management Requirements: None

Should corrective action be reviewed if land use changes? No

Monitoring Wells Decommissioned: Yes

Number Decommissioned: 1

Number Retained: 12

List Enforcement Actions Taken: None

List Enforcement Actions Rescinded: None

V. ADDITIONAL COMMENTS, DATA, ETC.

Considerations and/or Variances:

- 1988- The Unauthorized Release Form for this site states that the release was discovered as a result of subsurface monitoring at the site, the specifics of the release, and its discovery are unknown.
- 1989- Two 10,000-gallon gasoline underground storage tanks were removed in April. The tank pit was overexcavated to a depth of 17 feet bgs; 285 cubic yards of petroleum-impacted soil was removed. Excavated soil was aerated and used on site for landscaping. A maximum 22,000 parts per million (ppm) Total Petroleum Hydrocarbons as Gasoline (TPHG) and 220 ppm Benzene was left in place.
- 1990- Groundwater extraction and soil vapor extraction wells were constructed.
- 1992- Groundwater extraction was halted after the removal and treatment of 495,000 gallons of groundwater; soil vapor extraction was halted after the removal 8,800 pounds of hydrocarbon vapor.
- 1993- Groundwater extraction was restarted.

1996- Groundwater extraction was halted; a total of 7 million gallons of groundwater was extracted and treated.

Conclusion: Based upon initial source removal activities, interim remedial actions, and groundwater monitoring data, it appears that a large mass of petroleum-impacted soils have been removed. Residual petroleum hydrocarbon contamination in soil (22,000 ppm TPHG and 220 ppm Benzene) was left after tank removal and overexcavation; due to interim remedial action these concentrations have most likely been reduced. Based upon the results of groundwater monitoring data collected from the subject site, dissolved concentrations of petroleum hydrocarbons currently exist (11,000 parts per billion [ppb] TPHG, 34 ppb Benzene, and 110 ppb Methyl Tertiary Butyl Ether in source area well VW-2); however, dissolved concentrations have been reduced significantly since the inception of interim remedial actions and appear to be localized near this well; groundwater monitoring trends appear to show active attenuation of the dissolved plume and will achieve water quality objectives through natural attenuation.

The investigation was performed in accordance with State and local guidelines. District staff has concluded that a continuing threat to groundwater, human health, and the environment from residual petroleum hydrocarbons does not exist at this site and that Regional Water Quality Control Board objectives have not been compromised. District staff recommends closure for this case.

VI. LOCAL AGENCY REPRESENTATIVE DATA

Prepared by: Lane R. Davis	Title: Assistant Engineer	
Signature:	Date: 1-7-97	
Approved by: James S. Crowley, P.E.	Title: Associate Civil Engineer	
Signature: /// Alas	Date: 1-7-97	

This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions.

VII. REGIONAL BOARD NOTIFICATION

Regional Board Staff Name: John West	Title: E.S. III
RB Response: Concur, based solely upon information contained in this case closure summary.	Date Submitted to RB: 1-15-97
Signature: The What	Date: 1-16-97

Attachments

1. Site Maps

Ť

- 2. Soil Analytical Results
- 3. Groundwater Analytical Results

This document and the related CASE CLOSURE LETTER, shall be retained by the lead agency as part of the official site file.

TABLE 4

Samples I.D.	TPH Concentration	Top of 6-Inch Sample Depth
S-1	1,500	14'
S-2	22,000	14'
S-3	280	14'
S-4	21,000	14'
S-5	ND	20'
S-6	200	20'
S-7	ND	27'
S-8	5,700	3'
S - 9	20,000	12'
S-10	37	16'
S-12	130	14'
S-13	16,000	14'
S-14	830	14'
S-15	990	14'
S-16	23	14'
S-18	1,000	16'
S-19	1,000	16'

SUMMARY OF TANK EXCAVATION CHEMICAL ANALYSIS - TPH (all results in ppm)

Note: ND = Non- detected at the 10 ppm detection limit used.

All excavation soil samples are not shown on Figure 4 (which is limited to 14 to 16 foot depths), but they were all located within the tank excavation area or within two feet of the excavation sidewalls.

3 TANK PULL AND OVEREKCONSTION! Wahler Associates Project MNC-102H

TABLE 2 SUMMARY OF PETROLEUM HYDROCARBON RESULTS FOR SOIL (MAY 1989 TO MARCH 1995) MILLIGAN NEWS COMPANY, INC. SAN JOSE, CALIFORNIA

Well Number	Sample Number	Sample Depth (Fcet bgs)	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Yvlenes
B-I	B-1,R-4	16.0	5/4/89	Superior	600	0.296	2.8	1.8	14(0)
	B-1,R-5	19.0	5/4/89	Superior	ND(1)	0.260	0.008	0.023	0.006(1)
	B-1,R-10	36.0	5/4/89	Superior	5	0.680	0.150	0.130	0.530(1)
B-2	B-2,R-14	16,0	5/4/89	Superior	17	0,130	0.100	0.130	1 2(1)
	B-2,R-15	21.0	5/4/89	Superior	ND(1)	ND(0.003)	ND(0.003)	ND(0.003)	ND(0.002)(I)
	B-2,R-16	26.0	5/4/89	Superior	ND(1)	0.035	0.003	ND(0.003)	ND(0.003)(I)
B-3	B-3,R-19	16.0	5/4/89	Superior	700	0.640	43	2.8	10(0.003)
	B-3,R-20	21.0	5/4/89	Superior	ND(1)	0.031	0.032	0.011	0.040(1)
	B-3,R-21	26.0	5/4/89	Superior	ND(1)	0.007	0.005	ND(0.003)	NUX(0.0023(I)
B-4	B-4,R-24	15.5	5/8/89	Superior	ND(1)	0.250	0.005	ND(0.003)	ND(0.003)**
	B-4,R-25	20.4	5/8/89	Superior	ND(1)	0.140	0.036	0.016	0.110
	B-4,R-26	25.3	5/8/89	Superior	ND(1)	0.005	0.008	0.010	0.036
B-5	B-5,R-35	15.3	5/8/89	Superior	ND(1)	0.100	0.000	0.004	0.013
	B-5,R-36	20.7	5/8/89	Superior	ND(1)	ND(0.003)	ND(0.003)	ND(0.003)	0.120 "
	B-5,R-37	25.6	5/8/89	Superior	1	0.075	0.071	0.031	ND(0.003)**
B-6	B-6,R-30	15.3	5/8/89	Superior	34	0.430	0.027	0.031	0.560
	B-6,R-31	20.6	5/8/89	Superior	ND(1)	ND(0.003)	0.027	ND(0.003)	1.10
	B-6,R-32	25.7	5/8/89	Superior	2	ND(0.003)	0.003	0.060	0.008
B-7	B-7,R-40	15.7	5/8/89	Superior	ND(1)	ND(0.003)	ND(0.003)	ND(0.007)	0.480**
	B-7,R-41	20.9	5/8/89	Superior	ND(1)	ND(0.003)	0.005	ND(0.003)	0.009**
	B-7,R-42	26.0	5/8/89	Superior	ND(1)	ND(0.003)	ND(0.002)	ND(0.003)	0.017"
B-8	B-8,R-101	11.0	7/28/89	Acurex	ND(0.500)	ND(0.005)	ND(0.005)	ND(0.003)	ND(0.003)**
MW-2	MW-2,R-45	16.0	5/9/89	Superior	28	0.520	ND(0.003)	ND(0.005)	ND(0.005)**
	MW-2,R-49	36.0	5/0/80	Superior	20	0.330	0.110	0,380	1.90

TABLE 2 SUMMARY OF PETROLEUM HYDROCARBON RESULTS FOR SOIL (MAY 1989 TO MARCH 1995) MILLIGAN NEWS COMPANY, INC. SAN JOSE, CALIFORNIA

Well Number	Sample Number	Sample Depth (Feet bgs)	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	MW-2,R-52	56,0	5/9/89	Superior	ND(10)	ND(0.003)	ND(0.003)	ND(0.003)	0.0049(1)
MW-3	MW-3,R-54	16.0	5/10/89	Superior	ND(10)	0.420	0.057	0.460	0.710(1)
	MW-3,R-58	35.0	5/10/89	Superior	ND(10)	0.0037	0.0039	ND(0.003)	0.024(1)
	MW-3,R-61	51.0	5/10/89	Superior	ND(10)	0.0074	0.0068	ND(0.003)	0.0089(1)
MW-4	MW-4,R-73	6.0	5/25/89	Acurex	1.3(2)	ND(0.005)	0.012	ND(0.005)	ND(0.005)
	MW-4,R-74	11.0	5/25/89	Acurex	6	0.230	ND(0.035)	0.080	0.170
	MW-4,R-75	16.0	5/25/89	Acurex	3400	ND(5)	81	48	240
	MW-4,R-76	20.8	5/25/89	Acurex	20,000	220	1400	240	1800
	MW-4,R-77	31.0	5/25/89	Acurex	1	0.039	0.0081	ND(0.005)	ND(0.005)
	MW-4,R-78	36.0	5/25/89	Acurex	450	ND(2.5)	5	28	21
	MW-4,R-79	45.5	5/25/89	Acurex	0.800	0.021	0.049	ND(0.005)	0.048
	MW-4,R-80	50.2	5/25/89	Acurex	ND(0.500)	ND(0.005)	0.010	ND(0.005)	0.0056
	MW-4,R-81	53.0	5/25/89	Acurex	ND(0.500)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
MW-5	MW-5,R-64	16.0	7/24/89	Acurex	2.1(2)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
	MW-5,R-68	36.0	7/24/89	Acurex	ND(0.500)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
	MW-5,R-70	46.0	7/24/89	Acurex	ND(0.500)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
MW-6	MW-6,R-84	15.5	7/26/89	Acurex	2.5(2)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
MW-7	MW-6,R-98	34.5	7/27/89	Acurex	ND(0.500)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
MW-8	MW-8,L-23	16.0	3/16/90	Sequoia	ND(1)	0.0064	0.025	0.0093	0.022
	MW-8,L-24	20.2	3/16/90	Sequoia	ND(1)	ND(0.005)	0.0082	0.0096	0.022
	MW-8,L-27	36.0	3/16/90	Sequoia	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
	MW-31,L-31	56.0	3/16/90	Sequoia	ND(1)	ND(0.005)	ND(0.005)	0.005	0.020
MW-9	MW-9,L-13	16.0	3/13/90	Sequoia	470	0.910	8.5	5	37
	MW-9,L14	20.5	3/13/90	Sequoia	88	.3	7.2	1.2	6

SUMMARY OF PETROLEUM HYDROCARBON RESULTS FOR SOIL (MAY 1989 TO MARCH 1995) MILLIGAN NEWS COMPANY, INC. SAN JOSE, CALIFORNIA

Well Number	Sample Number	Sample Depth (Feet bgs)	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	MW-9,L-17	35.5	3/13/90	Sequoia	10	110.0	0.025	0.010	0.110
	MW-9,L-20	56.0	3/13/90	Sequoia	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
MW-10	MW-10,L-3	15.5	3/12/90	Sequoia	13	0.018	0.052	0.087	0.530
	MW-10,L-4	20.5	3/12/90	Sequoia	ND(1)	0.0053	ND(0.005)	ND(0.005)	0.011
	MW-10,L-7	35.5	3/12/90	Sequoia	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	0.0086
	MW-10,L-10	56.0	3/12/90	Sequoia	ND(1)	0.005	ND(0.005)	ND(0.005)	0.010
MW-11	MW-11,L-3	15.7	6/29/90	Natex	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
	MW-11,L-6	31.0	6/29/90	Natex	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
	MW-11,L-8	44.5	6/29/90	Natex	ND(1)	0.0093	ND(0.005)	ND(0.005)	0.0083
MW-12	SB12-1	5.5	3/8/95	Sequoia	ND(1)	ND(0.005)	0.0088	ND(0.005)	0.012(4)
	SB12-3	15.5	3/8/95	Sequoia	5.6	ND(0.005)	ND(0.005)	ND(0.005)	0.037(3)
MW-13	SB13-1	5.5	3/8/95	Sequoia	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
	SB13-2	10.5	3/8/95	Sequoia	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	0.0078(4)
MW-14	SB14-1	5.5	3/7/95	Sequoia	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
	SB14-2	10.5	3/7/95	Sequoia	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
	SB14-5	25.5	3/7/95	Sequoia	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
	SB14-6	30.5	3/8/95	Sequoia	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
	SB14-9	46.0	3/8/95	Sequoia	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)
EW-1	EW-1,L-3	14.0	3/8/90	Sequoia	ND(1)	ND(0.050)	ND(0.100)	ND(0.100)	ND(0.100)
	EW-1,L-4	19.0	3/8/90	Sequoia	270	3.6	10	5.1	27
	EW-1,L-7	34.0	3/8/90	Sequoia	770	0.190	0.790	3.7	24
EW-2	EW-2,L-1	5.5	4/8/91	Sequioa	ND(I)	ND(0.005)	ND(0,005)	ND(0.005)	ND(0.005)
	EW-2,L-2	10.7	4/8/91	Sequioa	ND(1)	ND(0.005)	ND(0,005)	ND(0.005)	ND(0.005)
	EW-2,L-3	16.0	4/8/91	Sequioa	ND(1)	ND(0.005)	ND(0,005)	ND(0.005)	ND(0.005)
	EW-2,L-4	20.5	4/8/91	Sequioa	ND(1)	ND(0.005)	ND(0,005)	ND(0.005)	ND(0.005)

N WITTENFOREP:68811.200/TRL2.WTD

October, 1996

TABLE 2 SUMMARY OF PETROLEUM HYDROCARBON RESULTS FOR SOIL (MAY 1989 TO MARCH 1995) MILLIGAN NEWS COMPANY, INC. SAN JOSE, CALIFORNIA

Well Number	Sample Number	Sample Depth (Feet bgs)	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Yulanas
	EW-2,L-5	26.0	4/8/91	Seguiga	ND(1)	NUNCO DOGO	1		Total Aylenes
	FW-21-6	21.0	410101		TRUCI	ND(0.005)	ND(0,005)	ND(0.005)	ND(0.005)
	LW-L,L-0	31.0	4/8/91	Sequioa	ND(1)	ND(0.005)	ND(0.005)	ND(0.005)	NDV0 005
	EW-2,L-7	40.5	4/8/91	Sequioa	NID(1)	NIDO DOCI		110(0.005)	140(0.003)
	EW/21.0	45.0		ocquitod	(1)	ND(0.005)	ND(0,005)	ND(0.005)	ND(0.005)
	LW-2,L-0	45.0	4/8/91	Sequioa	ND(1)	ND(0.005)	ND(0,005)	ND(0.005)	ND(0.005)

NOTES: All measurements in milligrams per kilograms (mg/kg) or approximately parts per million

- Feet bgs: Feet below ground surface
- TPH-G: Total purgeable petroleum hydrocarbons analyzed by Modified EPA Method 8015

Benzene, toluene, ethylbenzene, and total xylenes (BTEX) analyzed by Modified EPA Method 8020 in conjunction with TPH-G, unless otherwise noted.

- ND(0.005): Not detected at, or above the value stated in parentheses.
- Superior: Superior Analytical Laboratory of San Francisco, California.
- Acurex: Acurex Corporation of Mountain View, California.
- Sequoia: Sequoia Analytic Laboratory of Redwood City, California.
- Natex: National Express Laboratories, Inc., (formerly Acurex) of Mountain View, California.
- BTEX analyzed by EPA Method 8020.
- (2): Note on laboratory report stated "unidentified hydrocarbons pattern quantitated as gasoline."
- (3): Note on laboratory report stated "Weathered Gas C6-C12".
- (4): Note on laboratory reported stated "Gas".

	Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
Γ	MW-1	MW-1	3/28/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-2	MW-2	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-3	MW-3	3/28/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
-	MW-4	MW-4	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-6	MW-6	NT	NT	NT	NT	NT	NT	NT
	MW-7	MW-7	NT	NT	NT	NT	NT	NT	NT
	MW-8	MW-8	NT	NT	NT	NT	NT	NT	NT
	MW-9	MW-9	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-10 ⁽⁴⁾	MW-10	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-11	MW-11	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-12 ⁽⁴⁾	MW-12	3/26/96	Sequoia	ND(50)	1.6	ND(0.50)	ND(0.50)	ND(0.50)
	MW-14	MW-14	3/28/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	EW-1	EW-1	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	EW-2	EW-2	3/28/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	VW-1	VW-1	NT	NT	NT	NT	NT	NT	NT
	VW-2	VW-2	3/26/96	Sequoia	11,000	34	83	180	920(2)
	VW-3	VW-3	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	VW-4	VW-4	3/28/96	Seguoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)

TABLE 3 SUMMARY OF MOST RECENT PETROLEUM HYDROCARBON RESULTS FOR GROUNDWATER (MARCH 1996)

NOTES:

All measurements in micrograms per liter (μ g/L) or approximately parts per billion.

Groundwater extraction from EW-2 started on April 20, 1991 and continued through April 1996.

Benzene, toluene, ethylbenzene, and total xylenes (BTEX) analyzed by Modified EPA Method 8020 in conjunction with TPH-G.

TABLE 3

SUMMARY OF PETROLEUM HYDROCARBON RESULTS FOR GROUNDWATER (MARCH 1996)

Notes (continued):

- TPH-G: Total purgeable petroleum hydrocarbons analyzed by Modified EPA Method 8015 and quantified against a fresh gasoline standard.
- ND(5): Not detected at, or above the value stated in parenthesis.
- NT: Not tested.

(1) Sequoia Analytical Laboratory of Redwood City, California.

(2) Note on laboratory report stated "Gas".

- (3) Note on groundwater sampling form stated "water has gas smell and sheen".
- (4) Total dissolved solids analyzed for MW-10 and MW-12 were 830 mg/L and 920 mg/L, respectively.

TABLE 1 SUMMARY OF PETROLEUM HYDROCARBON RESULTS FOR GROUNDWATER (MAY 1989 TO MARCH 1996) MILLIGAN NEWS COMPANY, INC. SAN JOSE, CALIFORNIA

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethulbonroom	THEFT
PERCHED ZON	NE .		T			Tolucite	Ethylochzene	Total Aylenes
MW-1	MW-I	8/31/90	Chromalab	34,000,000	69,000	190.000	130,000	200 000/4
	MW-1	5/6/91		NT	NT	NT	150,000	500,000**
	MW-1	2/25/93	Sequoia	600	ND(0.50)	33	4.0	1910
	MW-I	8/13/93	Sequoia	100	2.8	ND(0.50)	4.0	0.70(15)(3
	MW-1	11/24/93	Sequoia	520	15	43	1.5	0.78
	MW-1	2/18/94	Sequoia	60	2.1	0.53	0.1	2.4/3
	MW-I	5/10/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	1.1 ND(0.50)	3.4ª
	MW-1	8/29/94	Sequoia	510	106	50	ND(0.50)	ND(0.50)
	MW-1	12/27/94	Sequoia	4,500	18	17	110(0.50)	8.4
	MW-1	3/9/95	Sequoia	140	25	ND(0.50)	55 ND(0.50)	360-000
	MW-1	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-1	9/25/95	Sequoia	99	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-1	12/11/95	Seguoia	ND(50)	1.2	ND(0.50)	ND(0.50)	ND(0.50)
	MW-1	3/28/96	Seguoia	ND(50)	ND(0,50)	ND(0.50)	ND(0.50)	ND(0.50)
			1			110(0.50)	ND(0.50)	ND(0.50)
VW-1	VW-1	7/3/90	Natex	ND(100)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	VW-1	5/6/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	VW-1	2/23/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.5)	ND(0.5)
	VW-1	8/16/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	VW-1	11/23/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	VW-1	5/10/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	VW-1	8/29/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	VW-1	12/27/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)

NAWT\ENVAREP\68811.200\781.1.WPD

October, 1996

TABLE I SUMMARY OF PETROLEUM HYDROCARBON RESULTS FOR GROUNDWATER (MAY 1989 TO MARCH 1996) MILLIGAN NEWS COMPANY, INC. SAN JOSE, CALIFORNIA

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	VW-1	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
VW-2	VW-2	5/6/91		NT	NT	NT	NT	NT ⁽⁹⁾
	VW-2	2/24/93	Seguoia	9,700	160	920	530	7.200(12)(20)
	VW-2	8/13/93	Seguoia	14,000	100	100	120	1,600(15)(20)
	VW-2	11/24/93	Seguoia	31,000	150	160	130	1,500(15)(20)
	VW-2	2/18/94	Sequoia	41,000	69	730	540	6,200(23)(20)
	VW-2	5/10/94	Sequoia	48,000	ND(0.50)	700	630	7,100(15)
	VW-2	8/25/94	Sequoia	55,000	160	ND(20)	ND(20)	5,200(15)
	VW-2	12/27/94	Sequoia	49,000	ND(100)	2,400	940	9,700(15)
	VW-2	3/9/95	Sequoia	21,000	71	190	280	2,100(15)(20)
	VW-2	6/12/95	Sequoia	12,000	ND(0.50)	ND(0.50)	64	610(20)(33)(34)
	VW-2	9/25/95	Sequoia	15,000	ND(0.50)	100	180	1,200(20)(28
	VW-2	3/26/96	Sequoia	11,000	34	83	180	920(13)(20)
MW-12	MW-12	3/14/95	Sequoia	61	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50) ⁽³¹⁾
	MW-12	6/12/95	Sequoia	57	2.0	ND(0.50)	ND(0.50)	ND(0.50)(34)
	MW-12	9/25/95	Sequoia	ND(50)	2.0	ND(0.50)	ND(0.50)	ND(0.50)
	MW-12	12/11/95	Sequoia	ND(50)	0.81	ND(0.50)	ND(0.50)	ND(0.50)
	MW-12	3/26/96	Sequoia	ND(50)	1.6	ND(0.50)	ND(0.50)	ND(0.50)
MW-13	MW-13	3/14/95	Seguoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-13	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)(34)
	MW-13	9/25/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)(34)

TABLE I SUMMARY OF PETROLEUM HYDROCARBON RESULTS FOR GROUNDWATER (MAY 1989 TO MARCH 1996) MILLIGAN NEWS COMPANY, INC. SAN JOSE, CALIFORNIA

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	MW-13	3/26/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
SHALLOW ZO	NE							
MW-2	MW-2	5/15/89	Superior	ND(1,000)	1.2	1.3	ND(0.3)	2.1(1)
	MW-2	8/7/89	Acurex	400	36	8.7	ND(0.5)	2.0
	MW-2	2/22/90	Sequoia	13,000	2,500	1,000	ND(0.30)	3,000
	MW-2	7/5/90	Natex	ND(100)	ND(0.5)*	ND(0.5)	ND(0.5)	ND(0.5)
	MW-2	8/30/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-2	10/24/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-2	11/19/90	Chromalab	130	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-2	1/3/91	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-2	5/6/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-2	6/10/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-2	2/24/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-2	8/12/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-2	11/23/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-2	5/9/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-2	8/25/94	Sequoia	ND(50)	ND(0,50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-2	12/27/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)(20)
	MW-2	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-2	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
MW-3	MW-3	4/9/90	Mid-Pacific	8,900	450	410	41	1,000
	MW-3	7/5/90	Natex	1,300	44	42	18	26

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	MW-3	8/30/90	Chromalab	1,200	69	6.4	12	1.3
	MW-3	10/25/90	Chromalab	900	30	ND(0.5)	ND(0.5)	25
	MW-3	11/19/90	Chromalab	590	6.2	1.7	8.1	ND(0.5)
	MW-3	1/3/91	Chromalab	150	1.2	ND(0.5)	ND(0.5)	ND(0.5)
	MW-3	5/6/91	Natex	ND(50)	0.8	ND(0.5)	0.6	ND(0.5)
	MW-3	6/11/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-3	8/26/91	Natex	65	ND(0.50)	ND(0.50)	1.2	ND(0.50)(10)
	MW-3	9/30/91	Natex	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-3	2/24/93	Sequoia	ND(50)	ND(0.50)	0.98	ND(0.50)	ND(0.50)
	MW-3	8/16/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-3	5/10/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-3	11/23/93	Sequoia	110	1.7	2.0	1.2	1.2(15)
	MW-3	8/25/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-3	12/27/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-3	3/9/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-3	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50) ⁽³⁴⁾
	MW-3	3/28/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
MW-4	MW-4	7/31/89	Acurex	5,400	610	31	12	800
	MW-4	2/22/90	Sequoia	1,400	17	0.63	ND(0.30)	16
	MW-4	7/5/90	Natex	200	22	4.3	0.9	ND(0.5)
	MW-4	8/30/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-4	10/24/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-4	11/19/90	Chromalab	ND(50)	2.5	ND(0.5)	ND(0.5)	ND(0.5)

October, 1996

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	MW-4	1/3/91	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-4	5/3/91	Natex	ND(50)	1.2	ND(0.5)	ND(0.5)	ND(0.5)
	MW-4	6/10/91	Natex	ND(50)	0.8	ND(0.5)	ND(0.5)	ND(0,5)
	MW-4	8/26/91	Natex	ND(50)	0.69	ND(0.50)	ND(0.50)	ND(0,50)
	MW-4	9/30/91	Natex	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-4	2/23/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-4	8/13/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0,50)
	MW-4	11/23/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-4	5/9/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-4	8/25/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-4	12/27/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-4	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-4	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
MW-5	MW-5	7/31/89	Acurex	ND(100)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-5	2/22/90	Seguoia	ND(30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.3)
	MW-5	7/3/90	Natex	ND(100)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-5	8/30/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-5	5/3/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-5	6/10/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-5	2/22/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
MW-5 Well Dest	oyed on April 22, 19	93						
MW-6	MW-6	7/31/89	Acurex	ND(100)	ND(0.5)	ND(0,5)	ND(0.5)	ND(0.5)

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	MW-6	2/22/90	Sequoia	ND(30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)
	MW-6	7/3/90	Natex	ND(100)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-6	5/2/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0,5)	ND(0.5)
	MW-6	2/23/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-6	8/17/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-6	11/23/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-6	12/27/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
MW-7	MW-7	7/31/89	Acurex	ND(100)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-7	7/3/90	Natex	ND(100)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-7	5/2/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-7	2/22/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-7	8/17/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-7	11/24/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-7	12/27/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
MW-8	MW-8	3/16/90	Mid-Pacific	ND(100)	ND(0.5)	ND(0,5)	ND(0.5)	ND(0.5)
	MW-8	7/3/90	Natex	ND(100)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-8	8/30/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-8	5/2/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-8	2/23/93	Seguoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-8	8/16/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0,50)	ND(0.50)
	MW-8	11/23/93	Seguoia	87	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)(21)
	MW-8	2/21/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	MW-8	5/9/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-8	8/24/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-8	12/27/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-8	3/9/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-8	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
MW-9	MW-9	3/16/90	Mid-Pacific	500	8.3	ND(0.5)	ND(0.5)	20
	MW-9	7/3/90	Natex	ND(100)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-9	8/30/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-9	10/24/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-9	11/19/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-9	1/3/91	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-9	5/6/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-9	6/10/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-9	2/24/93	Sequoia	360	ND(0.50)	1.1	7.0	1 5(12)
	MW-9	8/13/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)(5)
	MW-9	11/24/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-9	5/10/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-9	8/29/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-9	12/27/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-9	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-9	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
MW-10	MW-10	3/16/90	Mid-Paciifc	17,000	770	300	ND(10.0)	000

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	MW-10	7/5/90	Natex	200	15	2.2	1.1	0.8
	MW-10	8/30/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-10	10/24/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-10	11/19/90	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-10	1/3/91	Chromalab	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-10	5/6/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-10	6/12/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
	MW-10	2/24/93	Sequoia	81	ND(0.50)	1.8	ND(0.50)	ND(0,50)(15)
	MW-10	8/12/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-10	11/23/93	Sequoia	ND(50)	ND(0.50)	0.89	ND(0.50)	1.7
	MW-10	5/10/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-10	8/25/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-10	3/9/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-10	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
MW-11	MW-11	7/3/90	Natex	2,000	59	7.4	ND(1.0)	9.4
	MW-11	8/30/90	Chromalab	3,200	390	9.8	43	5.4
	MW-11	10/25/90	Chromalab	4,100	400	23	130	9.0
	MW-11	11/19/90	Chromalab	3,400	140	5.7	53	2.5
	MW-11	1/3/91	Chromalab	1,200	28	0.7	4.5	ND(0.5)
	MW-11	5/6/91	Natex	640	17	2.3	9.5	ND(0.5)(7)
	MW-11	6/12/91	Natex	230	2.0	1.1	2.0	ND(0.5)
	MW-11	8/26/91	Natex	1,300	20	ND(0.50)	35	5.6
	MW-11	9/30/91	Natex	380	6.4	2.6	9.1	ND(0.50)
	MW-11	2/24/93	Sequoia	230	ND(0.50)	4.3	0.52	0.47(14)

October, 1996

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	- MW-11	8/16/93	Sequoia	52	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-11	11/23/93	Sequoia	110	ND(0.50)	0.80	0.80	4.3(15)
	MW-11	2/21/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-11	5/10/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-11	8/25/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-11	12/27/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-11	3/9/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-11	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-11	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
MW-14	MW-14	3/14/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	MW-14	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0,50)(34)
	MW-14	3/28/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
EW-1	EW-1	3/16/90	Mid-Pacific	13,000	220	150	ND(10.0)	740
r.	EW-1	7/5/90	Natex	1,400	65	48	2.4	60
	EW-I	8/29/90	Chromalab	4,500	110	65	33	170
	EW-1	10/24/90	Chromalab	3,200	69	37	72	41
	EW-1	11/20/90	Chromalab	2,200	20	5.1	19	6.1
	EW-1	1/3/91	Chromalab	2,000	14	4.9	16	4.8
	EW-1	5/6/91	Natex	2,200	44	19	48	59(7)
	EW-1	6/11/91	Natex	1,300	16	14	19	10(3)
	EW-1	8/26/91	Natex	1,400	12	8.0	31	13
	EW-1	10/1/91	Natex	1,200	7.3	8.0	22	15

NAWPIENVIREPIGRR11.200/181.1.WPD

October, 1996

and the second se

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Тојиепе	Ethylbenzene	Total Xylenes
	EW-1	2/22/93	Sequoia	ND(50)	4.4	3.5	ND(0.50)	1.2(16)
	EW-1	8/16/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	EW-1	11/23/93	Sequoia	540	2.7	1.8	4.5	2.7(15)
	EW-1	2/18/94	Sequoia	380	ND(0.50)	0.75	2.0	0.54(23)
	EW-1	5/11/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	EW-1	8/25/94	Sequoia	650	12	4.1	ND(0.50)	6.1
	EW-1	12/27/94	Sequoia	ND(50)	0.57	ND(0.50)	0.54	0.90(25)(26)(20)
	EW-1	3/9/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50) ⁽²⁹⁾
	EW-1	6/12/95	Sequoia	110	3.1	ND(0.50)	0.75	0.54(15)
	EW-1	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
EW-2	EW-2	6/11/91	Natex	2,900	110	9.0	81	7.6
	EW-2	8/27/91	Natex	3,300	240	7.0	180	9.0
	EW-2	9/30/91	Natex	1,900	120	6.5	110	9.2(11)
	EW-2	4/6/92	Sequoia	1,900	190	ND(3.0)	130	ND(3.0)
	EW-2	2/25/93	Sequoia	340	5.4	5.3	1.1	1.0(14)
	1-1-4-19-93	4/19/93	Sequoia	450	4.2	1.7	1.5	3.2(17)
	1-1-4-23-93	4/23/93	Sequoia	330	12	0.62	0.80	0.78(17)
	1-1-5-11-93	5/12/93	Sequoia	210	4.9	ND(0.50)	ND(0.50)	ND(0.50)(14)(1)
	1-1-6-7-93	6/7/93	Sequoia	160	0.73	ND(0.50)	ND(0.50)	ND(0.50)(18)(1)
	1-1-7-8-93	7/8/93	Sequoia	52	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)(19)(1)
	1-1-8-12-93	8/12/93	Sequoia	ND(50)	0.85	ND(0.50)	ND(0.50)	ND(0.50)(1)
	EW-2	8/13/93	Sequoia	84	ND(0.50)	ND(0.50)	0.65	0.53(15)
	EW-2	12/1/93	Sequoia	90	4.1	ND(0.50)	ND(0.50)	ND(0.50)(22)

N:1071ENI\REP\68811.200\7811.WPD

October, 1996

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	• EW-2	2/18/94	Sequoia	ND(50)	4.6	ND(0.50)	ND(0.50)	ND(0.50)(24)
	EW-2	5/11/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	EW-2	8/29/94	Sequoia	99	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)(27)
	EW-2	12/27/94	Sequoia	ND(50)	2.3	ND(0.50)	ND(0.50)	ND(0,50)(25)(26)
	EW-2	3/9/95	Sequoia	ND(50)	ND(0.50)	ND(0,50)	ND(0.50)	ND(0.50)
	EW-2	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	EW-2	9/25/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	INF	12/11/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
	EW-2	3/28/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
VW-3	VW-3	4/26/90	Mid-Pacific	800	16	16	ND(0.5)	150(6)
	VW-3	7/5/90	Natex	300	12	4.4	0.8	150
	VW-3	8/31/90	Chromalab	21,000	250	50	0.8	57
	VW-3	11/20/90	Chromalab	10,000	73	43	3.0	940
	VW-3	1/4/91	Chromalab	1,600	23	ND(0.5)	1.6	41
	VW-3	5/6/91	Natex	7,300	480	11	130	100(7)(3)
	VW-3	6/12/91	Natex	6,800	330	7.5	110	0600
	VW-3	8/27/91	Natex	6,200	360	7.2	98	51
	VW-3	10/1/91	Natex	5,200	380	8.4	88	56
	VW-3	2/24/93	Sequoia	1,200	1.5	9.3	24	43/12)
	VW-3	8/13/93	Sequoia	790	64	3.1	15	A A(16)(20)
	VW-3	11/24/93	Sequoia	560	30	2.8	0.8	5 0(5)(75)
	VW-3	2/21/94	Sequoia	700	7.8	ND(0.50)	5.0	ND(0 50)(2)(3)
	VW-3	5/10/94	Sequoia	640	20	ND(0.50)	1.9	1.000
	VW-3	8/29/94	Sequoia	730	ND(5.0)	ND(5 ())	4.0 ND(5.0)	ND(5.0)

October, 1996

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylhenzone	Tatal Val
	VW-3	12/27/94	Sequoia	340	85	ND(0.50)	1 Longiochzene	Total Aylenes
	VW-3	3/24/94	Sequoia	ND(50)	2.0	ND(0.50)	2.7	1.1(25)(26)(20)
	VW-3	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50) ⁽³⁰⁾⁽³⁾
	VW-3	9/25/95	Sequoia	110	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50) ⁽³⁾
	VW-3	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)(13) ND(0.50)
VW-4	VW-4	4/26/90	Mid-Pacific	970.000	000	2.100		
	VW-4	7/6/90	Natex	30,000	500	2,100	ND(250)	12,000(2)(6)
	VW-4	8/31/90	Chromalah	26,000	540	1,600	460	4,000
	VW-4	11/20/90	Chromalab	16,000	420	190	610	70(5)
	VW-4	1/4/91	Chromalah	9,600	230	92	140	120
	VW-4	5/6/91	Natex	8,000	200	29	54	48
	VW-4	6/12/91	Notex	11,000	540	140	310	350(7)
	VW-4	8/27/91	Nater	11,000	510	150	390	490(3)
	VW-4	10/1/91	Notox	10,000	760	110	560	510
	VW-4	2/24/02	Cognoia	9,100	670	110	560	570
	VW-4	8/13/03	Sequola	5,700	170	10	95	34(13)
	VW-4	11/24/02	Sequota	1,300	68	5.8	35	14(16)
	VW.4	2/21/04	Sequota	2,400	76	12	34	21(15)
	VW A	5/10/04	Sequota	2,800	400	ND(0.50)	44	5.1(15)(5)
	VW-4	5/10/94	Sequoia	1,500	160	ND(0,50)	15	5.6(15)
	<u>vw-4</u>	8/29/94	Sequoia	470	22	4.1	ND(0.50)	4.8(15)
	VW-4	12/27/94	Sequoia	1,300	210	ND(0.50)	22	7.9 ^{(25K26)(20)}
	VW-4	3/9/95	Sequoia	57	2.9	ND(0.50)	ND(0.50)	ND(0.50)(24)((5)(30)
	VW-4	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0 50)(3)

Well Number	Sample Number	Sample Date	Analytical Laboratory	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
	VW-4	9/25/95	Sequoia	370	4.4	ND(0.50)	0.78	0.92(28)
	VW-4	3/28/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
T-i- DI- I		E 12 10 1	1	ND(CO)	NDOOD	NID-00-50	-	NID O O
Trip Blank	Trip Blank	5/2/91	Natex	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
Trip Blank	10-1-91	10/1/91	Natex	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	TB-1-11-23-93	11/23/93	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	TB-1	2/18/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	TB-1	5/4/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	TB-82494	8/24/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	TB-1	12/27/94	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	TB	3/9/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	Trip B	3/14/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	TB-1	6/12/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	TB	9/25/95	Seguoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	TB	12/11/95	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	TB 326	3/26/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Trip Blank	TB 327	3/27/96	Sequoia	ND(50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)

NOTES:

All measurements in micrograms per liter ($\mu g/L$) or approximately parts per billion.

Groundwater extraction from EW-1 started on 7/1/90 and continued through 7/8/91.

Groundwater extraction from EW-2 started on 4/20/91 and continued through April 1996.

Benzene, toluene, ethylbenzene, and total xylenes (BTEX) analyzed by Modified EPA Method 8020 in conjunction with TPH-G, unless otherwise noted.

TPH-G: Total purgeable petroleum hydrocarbons analyzed by Modified EPA Method 8015

ND(5): Not detected at, or above the value stated in parenthesis.

NOTES (Continued):

	NT: Supe Acur Chro Sequ Mid- Nate:	Not tested. erior: Superior Analytical Laboratory of San Francisco, California. rex: Acurex Corporation of Mountain View, California. omalab: Chromalab, Inc., of Pleasanton, California. soia: Sequoia Analytical Laboratory of Redwood City, California. Pacific: Mid-Pacific Environmental Laboratory (formerly Acurex) of Mountain View, California. x: National Express Laboratories, Inc., (formerly Mid-Pacific) of Mountain View, California.
	(1)	BTEX analyzed by EPA Method 8020.
	(2) (3)	Note on laboratory report stated "some interference from heavier hydrocarbons." Suspected product mixed with sample.
	(4)	Noted on groundwater sampling form: Insufficient water in well to purse. Grab sample collected with approximately 0.1" brown colored floating are due
	(5)	Product odor, but no visible product noted on groundwater sampling form.
	(6)	Suspected grab sample.
	(7)	Note on laboratory report stated "Gasoline has relatively little toluene."
	(0)	Noted on groundwater sampling form: Well almost dry - purged approximately 0.25 gallons. Product odor noted.
	(2)	0.05 feet brown colored floating product
	(10)	Note on laboratory report stated: "The paroline reported in MW 2 may not be excellent. The
	1024	is too low to give a recognizable nattern"
	(11)	Note on laboratory report stated: "Samples WE-2 and VW-3" "Benzene concentration is at higher level then is expected
		for normal gasoline pattern."
	(12)	Note on laboratory report stated: "Gas and non-gas $> C-9$."
	(13)	Note on laboratory report stated: "Gas and non-gas mix $>$ C-9."
	(14)	Note on laboratory report stated: "Gas and non-gas >C-12."
	(15)	Note on laboratory report stated: "Gas."
	(16)	Note on laboratory report stated: "Discrete peaks of gas."
	(17)	Note on laboratory report stated: "Gas and non-gas C4-C12."
	(18)	Note on laboratory report stated: "Non-gas C4-C12."
	(19)	Prote on laboratory report stated: "Discrete Peaks."
ĥ	(21)	Note on laboratory report stated. Then Cap Min > C.9.
5	(22)	Note on laboratory report stated: "Non-Gas Mix SC-8."
1	(23)	Note on Jaboratory report stated: "Weathered Cos"
1	(24)	Note on Japoratory report stated: "Discrete Beak"
1	(25)	Note on laboratory report stated: "Weathered Gas C6 C12 + "
1	(26)	Note on laboratory report stated: "Discrete Peak C6."
ì	(27)	Note on laboratory report stated: " <cid."< td=""></cid."<>

NOTES (Continued):

(28) Note on laboratory report stated: "Weathered Gas C6-C12."

(29) Brown water noted on groundwater sampling form.

(30) Note on laboratory report stated: "C6-C7".

(31) Note on laboratory report stated: "Weathered Gas C7-C12".

(32) Gray water notd on groundwater sampling form.

(33) Note on laboratory report stated: "Weathered Gas C8-C12".

(34) Water change from clear to dirty noted on groundwater sampling form.

(35) Water color turned from yellow to clear noted on groundwater sampling form.

(36) Note on laboratory report stated "Unidentified HC, <C8".

Appendix B

EXPLORATORY BORING LOGS

Appendix C

CERTIFIED ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Enthalpy Analytical 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900

enthalpy.com

Lab Job Number: 315809 Report Level: II Report Date: 11/27/2019

Analytical Report prepared for:

Mitch Hajiaghai Envirocom 800 Charcot Avenue Suite 114 San Jose, CA 95131

Project: 19-032.12 - Milligan

Authorized for release by:

Jessie Silbermon

Jess Silberman, Project Manager (510) 204-2223 Jessica.Silberman@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 2896, NELAP# 4044-001

Sample Summary

Mitch Hajiaghai	Lab Job #:	315809
Envirocom	Project No:	19-032.12
800 Charcot Avenue	Location:	Milligan
Suite 114	Date Received	11/12/19
San Jose, CA 95131		,, . 0

Sample ID	Lab ID	Collected	Matrix
MSB1-10	315809-001	11/12/19 00:00	Soil
MSB2-10	315809-002	11/12/19 00:00	Soil
MSB3-10	315809-003	11/12/19 00:00	Soil
MSB4-10	315809-004	11/12/19 00:00	Soil
MSB5-10	315809-005	11/12/19 00:00	Soil

Case Narrative

Envirocom	Lab Job Number:	315809
800 Charcot Avenue	Project No:	19-032.12
Suite 114	Location:	Milligan
San Jose, CA 95131	Date Beceived:	11/12/19
Mitch Hajiaghai		1,,12,10

This data package contains sample and QC results for five soil samples, requested for the above referenced project on 11/12/19. The samples were received intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Detection Summary for 315809

Client: Envirocom Project: 19-032.12 Location Milligan

1 of 1

No detections for MSB1-10, Lab ID 315809-001

Sample ID: MS	SB2-10							Lab ID: 315809-002
Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Acetone	29		20	ug/Kg	As Recd	0.9940	EPA 8260B	EPA 5030B

No detections for MSB3-10, Lab ID 315809-003

No detections for MSB4-10, Lab ID 315809-004

No detections for MSB5-10, Lab ID 315809-005

					Снан	OF CUST	ODY			
Project Na Project Lo	ame: ocation _	Milliga 150 N. Au	tumn Stre	et, SJ (Project No: Client: <u>Ci</u>	19-032.12 ty of San Jose	DateSam	::!Yız/10 pler: <u>Mitch</u>	1 Hajia	ghni
Sample ID	Date Sampled	Sampling Time	Matrix	N° of Containers		An	alysis Requested		Turna	round Time
	4. 8				TPHG- Vacs 8260B					0
MSBHO	11/12/19		Soil	l					24-hour Other	Normal
M432-10			1						24-hour Other	Normal
M5B3-10									24-hour Other	Normal
MSB4-10									24-hour Other	Normal
M585-10	V		1	V	J				24-hour Other	Normal
									24-hour Other	Normal
									24-hour Other	Normal
									24-hour Other	Normal
NOTES:										
Relinquished	apy in S	In s		Date 11/12/1 °	<i>Tim</i> 1 [5:10	e Received b	Hedon	D 11	^{ate}	Time 15:10
Judraf	Hudso	- "/12	119	17:45	-	zm	/	L.	/12/1	19 17:50

		3					r -	
SAMPLE RECEIPT CHE	CKLIST						1	3
Section 1: Login #	15809	Client: _	CAUCE	ocon	······································		ENIT.	
Date Receiv	red: 11-12-14	Project:	Millie	n			CIN1	nau
Section 2: Shipping inf	o (if applicable)		C	10-				
Are custody	seals present?	or 🗆 Yes. If	ves. where?	on cooler.	on samples.	🗆 on pa	ckage	
	ate: How	w many	□ Sigr	ature. 🗆 Initia	s. 🗆 None			
Wer	e custody seals intact up	on arrival?			-,			
Samples received in a co	noler? (A Yes how man	v? /		in Section 3 he	low)			
If no cooler Sample Ten	an (°C).	·						
	received on ice directly f	rom the field	d Cooling pro					
	1 11-1249 (mile unectiv)	14	a. cooming pro	(cian)	1.4			
If in cooler: Date Opene		211		(sign)	¥1	1 680		
Section 3:			Important	: Notify PM if t	emperature exc	eeds 6°C	or arrive	froze
Packing in cooler: (if oth	ier, describe)				-			
Bubble Wrap, D	Foam blocks, 🗆 Bags, 🛙	□ None, □ 0	Cloth material	, 🗆 Cardboard,	□ Styrofoam, [] Paper t	owels	
Samples received on	ice directly from the field	d. Cooling pr	rocess had be	gun				
Type of ice used :	Net, BBlue/Gel, D	None	Te	mperature blar	k(s) included? [∃ Yes,	🗌 No	
Temperature measured	using Thermometer	ID:		_, or IR Gun #	த в □ с			
Cooler Temp (°C): #1:	#2: #	3:	_, #4:	_, #5:	_, #6:,	#7:		
Section 4:						YES	NO	N/A
Were custody papers di	y, filled out properly, and	d the projec	t identifiable			V	/	
Were Method 5035 sam	pling containers present	:?					V	
If YES, what time v	were they transferred to	freezer?		-		a series and	- States	1993 - 199 6 (Tella - 199
Did all bottles arrive un	proken/unopened?					V		
Are there any missing /	extra samples?				4		~	2.6
Are samples in the appr	opriate containers for in	dicated tests	s?			V		and the
Are sample labels prese	nt, in good condition and	d complete?				V		
Does the container cour	nt match the COC?					V		
Do the sample labels ag	ree with custody papers	?				V	1	
Was sufficient amount of	of sample sent for tests r	equested?				V		
Did you change the hold	time in LIMS for unpres	erved VOAs	?					1
Did you change the hold	time in LIMS for preserve	ved terracor	es?					V
Are bubbles > 6mm pres	sent in VOA samples?						1	V
Was the client contacte	d concerning this sample	delivery?						
If YES, who was cal	led?		By		Date:	林市理会		
Section 5:						YES	NO	N/A
Are the samples approp	riately preserved? (if	N/A, skip th	e rest of secti	on 5)				1
Did you check preservat	ives for all bottles for ea	ch sample?						
Did you document your	preservative check?							
pH strip lot#	, pH strip lo	t#		_, pH strip lot	ŧ			
Preservative added:								
H2SO4 lot#	added to samp	les			on/at			
HCL lot#	added to samp	les			on/at			
HNO3 lot#	added to samp	les			on/at			
□ NaOH lot#	added to samp	les			on/at			
Section 6:								
Explanations/Comment	S:							
							_	
Date Logged in	13/15 By (pri	nt)	AL	(sid	(n)	R		
Date Labeled	13/14 Bulant	n+1 7	1)		m a chan	/		
Date Labeleu	C/ Dy (pri		7	(51)				

Total Volatile Hydrocarbons

La	b #: 315809			Project#	: 19-032.1	2
Cli	ent: Envirocom			Location	: Milligan	
Field ID:	MSB1-10	Basis:	as received		Received:	11/12/19
Туре:	SAMPLE	Diln Fac:	1.000		Analyzed:	11/22/19
Lab ID:	315809-001	Batch#:	276363		Prep:	EPA 5030B
Matrix:	Soil	Sampled:	11/12/19		Analysis:	EPA 8015B
Analyte				Result	RL	Units
Gasoline C7-C12				ND	1.1	mg/Kg
Surrogate					%REC	Limits
Bromofluorobenze	ene (FID)				91	39-127
Field ID:	MSB2-10	Basis:	as received		Received:	11/12/19
Туре:	SAMPLE	Diln Fac:	1.000		Analyzed:	11/22/19
Lab ID:	315809-002	Batch#:	276363		Prep:	EPA 5030B
Matrix:	Soil	Sampled:	11/12/19		Analysis:	EPA 8015B
Analyte				Result	RL	Units
Gasoline C7-C12				ND	0.93	mg/Kg
Surrogate					%REC	Limits
Bromofluorobenze	ene (FID)				102	39-127
Field ID:	MSB3-10	Basis:	as received		Received:	11/12/19
Туре:	SAMPLE	Diln Fac:	1.000		Analyzed:	11/22/19
Lab ID:	315809-003	Batch#:	276363		Prep:	EPA 5030B
Matrix:	Soil	Sampled:	11/12/19		Analysis:	EPA 8015B
Analyte				Result	RL	Units
Gasoline C7-C12				ND	1.1	mg/Kg
Surrogate					%REC	Limits
Bromofluorobenze	ene (FID)				82	39-127
Field ID:	MSB4-10	Basis:	as received		Received:	11/12/19
Туре:	SAMPLE	Diln Fac:	1.000		Analyzed:	11/22/19
Lab ID:	315809-004	Batch#:	276363		Prep:	EPA 5030B
Matrix:	Soil	Sampled:	11/12/19		Analysis:	EPA 8015B
Analyte				Result	RL	Units
Gasoline C7-C12				ND	1.1	mg/Kg
Surrogate					%REC	Limits
Bromofluorobenze	ene (FID)				85	39-127

Total Volatile Hydrocarbons

Lab #: 315809			Project#	: 19-032.12	
Client: Envirocom	า		Location	: Milligan	
Field ID: MSB5-10	Basis:	as received		Received: 11	/12/19
Type: SAMPLE	Diln Fac:	1.000		Analyzed: 11	/22/19
Lab ID: 315809-005	Batch#:	276363		Prep: EF	PA 5030B
Matrix: Soil	Sampled:	11/12/19		Analysis: Ef	PA 8015B
Analyte			Result	RL	Units
Gasoline C7-C12			ND	0.95	mg/Kg
Surrogate				%REC	Limits
Bromofluorobenzene (FID)				92	39-127
Type: BLANK	Matrix: Soil	Batch#:	276363	Prep:	EPA 5030B
Lab ID: QC999985	Diln Fac: 1.000	Analyzed:	11/22/19	Analysis:	EPA 8015B
Analyte			Result	RL	Units
Gasoline C7-C12			ND	1.0	mg/Kg
Surrogate				%REC	Limits
Bromofluorobenzene (FID)				89	39-127
Legend					

ND: Not Detected

RL: Reporting Limit

Total Volatile Hydrocarbons: Batch QC

Lab #: 31580	9		F	Project#: 1	9-032.12		
Client: Enviro	com		L	ocation: N	<i>l</i> illigan		
Type: BS	Matrix: Soil	Ba	atch#: 27636	63	Prep:	EPA 5030B	
Lab ID: QC999986	Diln Fac: 1.000	Anal	yzed: 11/22	/19	Analysis:	EPA 8015B	
Analyte	Sp	iked	Result	%REC	Limits	Units	\$
Gasoline C7-C12	1	.000	0.9644	96	80-122	mg/K	g
Surrogate					%REC	Limits	
Bromofluorobenzene (FID)					95	39-127	
Type: BSD	Matrix: Soil	Ba	atch#: 27636	63	Prep:	EPA 5030B	
Lab ID: QC999987	Diln Fac: 1.000	Anal	yzed: 11/22	/19	Analysis:	EPA 8015B	
Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim
Gasoline C7-C12	1.000	0.9091	91	80-122	mg/Kg	6	20
Surrogate					%REC	Limits	
Bromofluorobenzene (FID)					94	39-127	

Legend **RPD:** Relative Percent Difference

Lab #: 315809		Project#:	19-032.1	12	
Client: Envirocom	Location: Milligan				
Field ID: MSB1-10	Diln Fac: 0.9294	Ar	alyzed:	11/19/19	
Lab ID: 315809-001	Batch#: 276206		Prep:	EPA 50308	3
Matrix: Soil	Sampled: 11/12/19	Α	nalysis:	EPA 8260	3
Basis: as received	Received: 11/12/19		,		
		Result	BI	MDI	Units
Freon 12		ND	9.3		
Chloromethane		ND	9.3		ug/Kg
Vinyl Chloride		ND	9.3	0.2	ug/Kg
Bromomethane		ND	9.3	0.2	ug/Kg
Chloroethane		ND	0.0 Q 3		ug/Kg
Trichlorofluoromethane			4.6		ug/Kg
			4.0 19		ug/Kg
Freen 113			4.6		ug/Kg
1 1-Dichloroethene			4.6		ug/Kg
Methylene Chloride		סא	4.0 10		ug/Ng
			19		ug/Kg
MTRE			4.0		ug/Kg
trana 1.2 Dishlaraathana			4.0		ug/Kg
			4.0		ug/Kg
1 1 Disblaraathana			40		ug/Kg
			4.0		ug/Kg
			9.3		ug/Kg
cis-1,2-Dichloroethene			4.6		ug/Kg
2,2-Dichloropropane		ND	4.6		ug/Kg
Chlorotorm Desires a la la vala a tha sin a		ND	4.6		ug/Kg
		ND	4.6		ug/Kg
1,1,1-Trichloroethane		ND	4.6		ug/Kg
1,1-Dichloropropene		ND	4.6		ug/Kg
Carbon Tetrachloride		ND	4.6		ug/Kg
1,2-Dichloroethane		ND	4.6		ug/Kg
Benzene		ND	4.6		ug/Kg
Trichloroethene		ND	4.6		ug/Kg
1,2-Dichloropropane		ND	4.6		ug/Kg
Bromodichloromethane		ND	4.6		ug/Kg
Dibromomethane		ND	4.6		ug/Kg
4-Methyl-2-Pentanone		ND	9.3		ug/Kg
cis-1,3-Dichloropropene		ND	4.6		ug/Kg
Toluene		ND	4.6		ug/Kg
trans-1,3-Dichloropropene		ND	4.6		ug/Kg
1,1,2-Trichloroethane		ND	4.6		ug/Kg
2-Hexanone		ND	9.3		ug/Kg
1,3-Dichloropropane		ND	4.6		ug/Kg
Tetrachloroethene		ND	4.6		ug/Kg
Dibromochloromethane		ND	4.6		ug/Kg
1,2-Dibromoethane		ND	4.6		ug/Kg
Chlorobenzene		ND	4.6		ug/Kg
1,1,1,2-Tetrachloroethane		ND	4.6		ug/Ka

Lab #: 315809 Project#: 19-032.12				
Client: Envirocom	Location:	Milligan		
Analyte	Result	RL	MDL	Units
Ethylbenzene	ND	4.6		ug/Kg
m,p-Xylenes	ND	4.6		ug/Kg
o-Xylene	ND	4.6		ug/Kg
Styrene	ND	4.6		ug/Kg
Bromoform	ND	4.6		ug/Kg
lsopropylbenzene	ND	4.6		ug/Kg
1,1,2,2-Tetrachloroethane	ND	4.6		ug/Kg
1,2,3-Trichloropropane	ND	4.6		ug/Kg
Propylbenzene	ND	4.6		ug/Kg
Bromobenzene	ND	4.6		ug/Kg
1,3,5-Trimethylbenzene	ND	4.6		ug/Kg
2-Chlorotoluene	ND	4.6		ug/Kg
4-Chlorotoluene	ND	4.6		ug/Kg
tert-Butylbenzene	ND	4.6		ug/Kg
1,2,4-Trimethylbenzene	ND	4.6		ug/Kg
sec-Butylbenzene	ND	4.6		ug/Kg
para-Isopropyl Toluene	ND	4.6		ug/Kg
1,3-Dichlorobenzene	ND	4.6		ug/Kg
1,4-Dichlorobenzene	ND	4.6		ug/Kg
n-Butylbenzene	ND	4.6		ug/Kg
1,2-Dichlorobenzene	ND	4.6		ug/Kg
1,2-Dibromo-3-Chloropropane	ND	4.6		ug/Kg
1,2,4-Trichlorobenzene	ND	4.6		ug/Kg
Hexachlorobutadiene	ND	4.6		ug/Kg
Naphthalene	ND	4.6		ug/Kg
1,2,3-Trichlorobenzene	ND	4.6		ug/Kg
Surrogate		%REC	Lir	nits
Dibromofluoromethane		120	77-	126
1,2-Dichloroethane-d4		107	77-	131
Toluene-d8		96	80-	120
Bromofluorobenzene		102	80-	123
Legend MDL: Method Detection Limit				

ND: Not Detected

RL: Reporting Limit

Lab #: 315809		Project#: 1	19-032.1	2	
Client: Envirocom	Location: Milligan				
Field ID: MSB2-10	Diln Fac: 0.9940	An	alyzed:	11/19/19	
Lab ID: 315809-002	Batch#: 276206		Prep:	EPA 50308	3
Matrix: Soil	Sampled: 11/12/19	A	nalysis:	EPA 8260	3
Basis: as received	Received: 11/12/19		•		
Analyte		Result	RL	MDL	Units
Freon 12		ND	9.9		ug/Kg
Chloromethane		ND	9.9		ug/Kg
Vinyl Chloride		ND	9.9	0.2	ug/Kg
Bromomethane		ND	9.9		ug/Kg
Chloroethane		ND	9.9		ug/Kg
Trichlorofluoromethane		ND	5.0		ug/Kg
Acetone		29	20		ug/Kg
Freon 113		ND	5.0		ug/Kg
1,1-Dichloroethene		ND	5.0		ug/Kg
Methylene Chloride		ND	20		ug/Kg
Carbon Disulfide		ND	5.0		ug/Kg
МТВЕ		ND	5.0		ug/Kg
trans-1,2-Dichloroethene		ND	5.0		ug/Kg
Vinyl Acetate		ND	50		ug/Kg
1,1-Dichloroethane		ND	5.0		ug/Kg
2-Butanone		ND	9.9		ug/Kg
cis-1,2-Dichloroethene		ND	5.0		ug/Kg
2,2-Dichloropropane		ND	5.0		ug/Kg
Chloroform		ND	5.0		ug/Kg
Bromochloromethane		ND	5.0		ug/Kg
1,1,1-Trichloroethane		ND	5.0		ug/Kg
1,1-Dichloropropene		ND	5.0		ug/Kg
Carbon Tetrachloride		ND	5.0		ug/Kg
1,2-Dichloroethane		ND	5.0		ug/Kg
Benzene		ND	5.0		ug/Kg
Trichloroethene		ND	5.0		ug/Kg
1,2-Dichloropropane		ND	5.0		ug/Kg
Bromodichloromethane		ND	5.0		ug/Kg
Dibromomethane		ND	5.0		ug/Kg
4-Methyl-2-Pentanone		ND	9.9		ug/Kg
cis-1,3-Dichloropropene		ND	5.0		ug/Kg
Toluene		ND	5.0		ug/Kg
trans-1,3-Dichloropropene		ND	5.0		ug/Kg
1,1,2-Trichloroethane		ND	5.0		ug/Kg
2-Hexanone		ND	9.9		ug/Kg
1,3-Dichloropropane		ND	5.0		ug/Kg
Tetrachloroethene		ND	5.0		ug/Kg
Dibromochloromethane		ND	5.0		ug/Kg
1,2-Dibromoethane		ND	5.0		ug/Kg
Chlorobenzene		ND	5.0		ug/Kg
1,1,1,2-Tetrachloroethane		ND	5.0		ug/Kg

Lab #: 315809 Project#: 19-032.12						
Client: Envirocom	Location:	Location: Milligan				
Analyte	Result	RL	MDL	Units		
Ethylbenzene	ND	5.0		ug/Kg		
m,p-Xylenes	ND	5.0		ug/Kg		
o-Xylene	ND	5.0		ug/Kg		
Styrene	ND	5.0		ug/Kg		
Bromoform	ND	5.0		ug/Kg		
lsopropylbenzene	ND	5.0		ug/Kg		
1,1,2,2-Tetrachloroethane	ND	5.0		ug/Kg		
1,2,3-Trichloropropane	ND	5.0		ug/Kg		
Propylbenzene	ND	5.0		ug/Kg		
Bromobenzene	ND	5.0		ug/Kg		
1,3,5-Trimethylbenzene	ND	5.0		ug/Kg		
2-Chlorotoluene	ND	5.0		ug/Kg		
4-Chlorotoluene	ND	5.0		ug/Kg		
tert-Butylbenzene	ND	5.0		ug/Kg		
1,2,4-Trimethylbenzene	ND	5.0		ug/Kg		
sec-Butylbenzene	ND	5.0		ug/Kg		
para-Isopropyl Toluene	ND	5.0		ug/Kg		
1,3-Dichlorobenzene	ND	5.0		ug/Kg		
1,4-Dichlorobenzene	ND	5.0		ug/Kg		
n-Butylbenzene	ND	5.0		ug/Kg		
1,2-Dichlorobenzene	ND	5.0		ug/Kg		
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/Kg		
1,2,4-Trichlorobenzene	ND	5.0		ug/Kg		
Hexachlorobutadiene	ND	5.0		ug/Kg		
Naphthalene	ND	5.0		ug/Kg		
1,2,3-Trichlorobenzene	ND	5.0		ug/Kg		
Surrogate		%REC	Lir	nits		
Dibromofluoromethane		121	77-	126		
1,2-Dichloroethane-d4		107	77-	·131		
Toluene-d8		95	80-	120		
Bromofluorobenzene		98	80-	123		
Legend MDL: Method Detection Limit						

ND: Not Detected RL: Reporting Limit

Lab #: 315809	Lab #: 315809 Project#: 19-032.12			12		
Client: Envirocom		Location: Milligan				
Field ID: MSB3-10	Diln Fac: 0.9416	Ar	Analyzed: 11/19/19			
Lab ID: 315809-003	Batch#: 276206		Prep:	EPA 5030	3	
Matrix: Soil	Sampled: 11/12/19	Analysis: EPA 8260B				
Basis: as received	Received: 11/12/19		,			
Analyte		Result	BI	MDI	Units	
Freen 12		ND	9.4			
Chloromethane		ND	9.4		ua/Ka	
Vinvl Chloride		ND	9.4	0.2	ua/Ka	
Bromomethane		ND	9.4		ua/Ka	
Chloroethane		ND	9.4		ua/Ka	
Trichlorofluoromethane		ND	4.7		ua/Ka	
Acetone		ND	19		ua/Ka	
Freon 113		ND	4.7		ua/Ka	
1 1-Dichloroethene		ND	47		ua/Ka	
Methylene Chloride		ND	19		ua/Ka	
Carbon Disulfide		ND	4.7		ua/Ka	
MTBE		ND	4.7		ua/Ka	
trans-1 2-Dichloroethene		ND	47		ua/Ka	
Vinvl Acetate		ND	47		ua/Ka	
1.1-Dichloroethane		ND	4.7		ua/Ka	
2-Butanone		ND	9.4		ua/Ka	
cis-1.2-Dichloroethene		ND	4.7		ua/Ka	
2.2-Dichloropropane		ND	4.7		ua/Ka	
Chloroform		ND	4.7		ua/Ka	
Bromochloromethane		ND	4.7		ug/Kg	
1,1,1-Trichloroethane		ND	4.7		ug/Kg	
1.1-Dichloropropene		ND	4.7		ug/Kg	
Carbon Tetrachloride		ND	4.7		ug/Kg	
1,2-Dichloroethane		ND	4.7		ug/Kg	
Benzene		ND	4.7		ug/Kg	
Trichloroethene		ND	4.7		ug/Kg	
1,2-Dichloropropane		ND	4.7		ug/Kg	
Bromodichloromethane		ND	4.7		ug/Kg	
Dibromomethane		ND	4.7		ug/Kg	
4-Methyl-2-Pentanone		ND	9.4		ug/Kg	
cis-1,3-Dichloropropene		ND	4.7		ug/Kg	
Toluene		ND	4.7		ug/Kg	
trans-1,3-Dichloropropene		ND	4.7		ug/Kg	
1,1,2-Trichloroethane		ND	4.7		ug/Kg	
2-Hexanone		ND	9.4		ug/Kg	
1,3-Dichloropropane		ND	4.7		ug/Kg	
Tetrachloroethene		ND	4.7		ug/Ka	
Dibromochloromethane		ND	4.7		ug/Ka	
1,2-Dibromoethane		ND	4.7		ug/Kg	
Chlorobenzene		ND	4.7		ug/Kg	
1,1,1,2-Tetrachloroethane		ND	4.7		ug/Kg	

Lab #: 315809	Project#:	Project#: 19-032.12				
Client: Envirocom	Location: Milligan					
Analyte	Result	RL	MDL	Units		
Ethylbenzene	ND	4.7		ug/Kg		
m,p-Xylenes	ND	4.7		ug/Kg		
o-Xylene	ND	4.7		ug/Kg		
Styrene	ND	4.7		ug/Kg		
Bromoform	ND	4.7		ug/Kg		
lsopropylbenzene	ND	4.7		ug/Kg		
1,1,2,2-Tetrachloroethane	ND	4.7		ug/Kg		
1,2,3-Trichloropropane	ND	4.7		ug/Kg		
Propylbenzene	ND	4.7		ug/Kg		
Bromobenzene	ND	4.7		ug/Kg		
1,3,5-Trimethylbenzene	ND	4.7		ug/Kg		
2-Chlorotoluene	ND	4.7		ug/Kg		
4-Chlorotoluene	ND	4.7		ug/Kg		
tert-Butylbenzene	ND	4.7		ug/Kg		
1,2,4-Trimethylbenzene	ND	4.7		ug/Kg		
sec-Butylbenzene	ND	4.7		ug/Kg		
para-Isopropyl Toluene	ND	4.7		ug/Kg		
1,3-Dichlorobenzene	ND	4.7		ug/Kg		
1,4-Dichlorobenzene	ND	4.7		ug/Kg		
n-Butylbenzene	ND	4.7		ug/Kg		
1,2-Dichlorobenzene	ND	4.7		ug/Kg		
1,2-Dibromo-3-Chloropropane	ND	4.7		ug/Kg		
1,2,4-Trichlorobenzene	ND	4.7		ug/Kg		
Hexachlorobutadiene	ND	4.7		ug/Kg		
Naphthalene	ND	4.7		ug/Kg		
1,2,3-Trichlorobenzene	ND	4.7		ug/Kg		
Surrogate		%REC	Lin	nits		
Dibromofluoromethane		118	77-	126		
1,2-Dichloroethane-d4		107	77-	131		
Toluene-d8		97	80-	120		
Bromofluorobenzene		99	80-	123		
Legend MDL: Method Detection Limit						

ND: Not Detected

RL: Reporting Limit

Lab #: 315809		Project#:	ct#: 19-032.12			
Client: Envirocom		Location: Milligan				
Field ID: MSB4-10	Diln Fac: 0.9524	Analyzed: 11/19/19				
Lab ID: 315809-004	Batch#: 276206		Prep:	EPA 5030	3	
Matrix: Soil	Sampled: 11/12/19	Analvsis: EPA 8260B				
Basis: as received	Received: 11/12/19					
Analyte		Result	BL	MDL	Units	
Freon 12		ND	9.5		μα/Κα	
Chloromethane		ND	9.5		ua/Ka	
Vinyl Chloride		ND	9.5	0.2	ua/Ka	
Bromomethane		ND	9.5	0.2	ua/Ka	
Chloroethane		ND	9.5		ua/Ka	
Trichlorofluoromethane		ND	4.8		ug/Kg	
			19		ug/Kg	
Freen 113			4.8		ug/Kg	
1 1 Dichloroothono			1.0		ug/Kg	
Methylone Chlorida			4.0 10		ug/Kg	
Carbon Digulfida			19		ug/Kg	
			4.0		ug/Kg	
			4.0		ug/ng	
			4.8		ug/Kg	
Vinyi Acetate		ND	48		ug/Kg	
		ND	4.8		ug/Kg	
2-Butanone		ND	9.5		ug/Kg	
cis-1,2-Dichloroethene		ND	4.8		ug/Kg	
2,2-Dichloropropane		ND	4.8		ug/Kg	
Chloroform		ND	4.8		ug/Kg	
Bromochloromethane		ND	4.8		ug/Kg	
1,1,1-Trichloroethane		ND	4.8		ug/Kg	
1,1-Dichloropropene		ND	4.8		ug/Kg	
Carbon Tetrachloride		ND	4.8		ug/Kg	
1,2-Dichloroethane		ND	4.8		ug/Kg	
Benzene		ND	4.8		ug/Kg	
Trichloroethene		ND	4.8		ug/Kg	
1,2-Dichloropropane		ND	4.8		ug/Kg	
Bromodichloromethane		ND	4.8		ug/Kg	
Dibromomethane		ND	4.8		ug/Kg	
4-Methyl-2-Pentanone		ND	9.5		ug/Kg	
cis-1,3-Dichloropropene		ND	4.8		ug/Kg	
Toluene		ND	4.8		ug/Kg	
trans-1,3-Dichloropropene		ND	4.8		ug/Kg	
1,1,2-Trichloroethane		ND	4.8		ug/Kg	
2-Hexanone		ND	9.5		ug/Kg	
1,3-Dichloropropane		ND	4.8		ug/Kg	
Tetrachloroethene		ND	4.8		ug/Kg	
Dibromochloromethane		ND	4.8		ug/Kg	
1,2-Dibromoethane		ND	4.8		ug/Ka	
Chlorobenzene		ND	4.8		ug/Ka	
1 1 1 2-Tetrachloroethane		ND	4.8		ua/Ka	

Lab #: 315809	Project#:	Project#: 19-032.12					
Client: Envirocom	Location:	Location: Milligan					
Analyte	Result	RL	MDL	Units			
Ethylbenzene	ND	4.8		ug/Kg			
m,p-Xylenes	ND	4.8		ug/Kg			
o-Xylene	ND	4.8		ug/Kg			
Styrene	ND	4.8		ug/Kg			
Bromoform	ND	4.8		ug/Kg			
Isopropylbenzene	ND	4.8		ug/Kg			
1,1,2,2-Tetrachloroethane	ND	4.8		ug/Kg			
1,2,3-Trichloropropane	ND	4.8		ug/Kg			
Propylbenzene	ND	4.8		ug/Kg			
Bromobenzene	ND	4.8		ug/Kg			
1,3,5-Trimethylbenzene	ND	4.8		ug/Kg			
2-Chlorotoluene	ND	4.8		ug/Kg			
4-Chlorotoluene	ND	4.8		ug/Kg			
tert-Butylbenzene	ND	4.8		ug/Kg			
1,2,4-Trimethylbenzene	ND	4.8		ug/Kg			
sec-Butylbenzene	ND	4.8		ug/Kg			
para-Isopropyl Toluene	ND	4.8		ug/Kg			
1,3-Dichlorobenzene	ND	4.8		ug/Kg			
1,4-Dichlorobenzene	ND	4.8		ug/Kg			
n-Butylbenzene	ND	4.8		ug/Kg			
1,2-Dichlorobenzene	ND	4.8		ug/Kg			
1,2-Dibromo-3-Chloropropane	ND	4.8		ug/Kg			
1,2,4-Trichlorobenzene	ND	4.8		ug/Kg			
Hexachlorobutadiene	ND	4.8		ug/Kg			
Naphthalene	ND	4.8		ug/Kg			
1,2,3-Trichlorobenzene	ND	4.8		ug/Kg			
Surrogate		%REC	Lin	nits			
Dibromofluoromethane		122	77-	126			
1,2-Dichloroethane-d4		108	77-	131			
Toluene-d8		97	80-	120			
Bromofluorobenzene		102	80-	123			
Legend							
MDL: Method Detection Limit							

ND: Not Detected

Lab #: 315809	Lab #: 315809 Project#: 19-032.12							
Client: Envirocom		Location: Milligan						
Field ID: MSB5-10	Diln Fac: 0.9804	Diln Fac: 0.9804 Analyzed: 11/19/19 Databati 0.70000 Databati Databati Databati						
Lab ID: 315809-005	Batch#: 276206		Prep:	EPA 5030	3			
Matrix: Soil	Sampled: 11/12/19	Α	nalvsis:	EPA 8260	3			
Basis: as received	Beceived: 11/12/19		· ,					
Analyte		Bocult	BI	MDI	Unite			
Freen 12		ND	0.8	MDL				
Chloromethane			9.8		ug/Kg			
Vinvl Chloride		ND	9.8	0.2	ug/Kg			
Bromomethane		ND	9.8	0.2	ug/Kg			
Chloroethane		ND	9.8		ug/Kg			
Trichlorofluoromethane			۵.0 ۷.9		ug/Kg			
			5 20		ug/Kg			
Freen 113			19		ug/Kg			
1 1 Dichlereethene			4.0		ug/Kg			
Mothylono Chlorido			4.9		ug/Kg			
Carbon Disulfido			20		ug/Kg			
			4.9		ug/Kg			
			4.9		ug/Kg			
			4.9		ug/Kg			
1 1 Dishlarasthana			49		ug/Kg			
			4.9		ug/Kg			
			9.0		ug/r.g			
cis-1,2-Dichloroethene		ND	4.9		ug/Kg			
2,2-Dichloropropane			4.9		ug/Kg			
Chiorolorm			4.9		ug/Kg			
Bromochloromethane		ND	4.9		ug/Kg			
1,1,1-Irichloroethane		ND	4.9		ug/Kg			
		ND	4.9		ug/Kg			
Carbon Tetrachioride		ND	4.9		ug/Kg			
1,2-Dichloroethane		ND	4.9		ug/Kg			
		ND	4.9		ug/Kg			
Trichloroethene		ND	4.9		ug/Kg			
1,2-Dichloropropane		ND	4.9		ug/Kg			
Bromodichloromethane		ND	4.9		ug/Kg			
Dibromomethane		ND	4.9		ug/Kg			
4-Methyl-2-Pentanone		ND	9.8		ug/Kg			
cis-1,3-Dichloropropene		ND	4.9		ug/Kg			
Toluene		ND	4.9		ug/Kg			
trans-1,3-Dichloropropene		ND	4.9		ug/Kg			
1,1,2-Trichloroethane		ND	4.9		ug/Kg			
2-Hexanone		ND	9.8		ug/Kg			
1,3-Dichloropropane		ND	4.9		ug/Kg			
Tetrachloroethene		ND	4.9		ug/Kg			
Dibromochloromethane		ND	4.9		ug/Kg			
1,2-Dibromoethane		ND	4.9		ug/Kg			
Chlorobenzene		ND	4.9		ug/Kg			
1,1,1,2-Tetrachloroethane		ND	4.9		ug/Kg			

Lab #: 315809	Project#:	Project#: 19-032.12				
Client: Envirocom	Location:	Milligan				
Analyte	Result	RL	MDL	Units		
Ethylbenzene	ND	4.9		ug/Kg		
m,p-Xylenes	ND	4.9		ug/Kg		
o-Xylene	ND	4.9		ug/Kg		
Styrene	ND	4.9		ug/Kg		
Bromoform	ND	4.9		ug/Kg		
Isopropylbenzene	ND	4.9		ug/Kg		
1,1,2,2-Tetrachloroethane	ND	4.9		ug/Kg		
1,2,3-Trichloropropane	ND	4.9		ug/Kg		
Propylbenzene	ND	4.9		ug/Kg		
Bromobenzene	ND	4.9		ug/Kg		
1,3,5-Trimethylbenzene	ND	4.9		ug/Kg		
2-Chlorotoluene	ND	4.9		ug/Kg		
4-Chlorotoluene	ND	4.9		ug/Kg		
tert-Butylbenzene	ND	4.9		ug/Kg		
1,2,4-Trimethylbenzene	ND	4.9		ug/Kg		
sec-Butylbenzene	ND	4.9		ug/Kg		
para-Isopropyl Toluene	ND	4.9		ug/Kg		
1,3-Dichlorobenzene	ND	4.9		ug/Kg		
1,4-Dichlorobenzene	ND	4.9		ug/Kg		
n-Butylbenzene	ND	4.9		ug/Kg		
1,2-Dichlorobenzene	ND	4.9		ug/Kg		
1,2-Dibromo-3-Chloropropane	ND	4.9		ug/Kg		
1,2,4-Trichlorobenzene	ND	4.9		ug/Kg		
Hexachlorobutadiene	ND	4.9		ug/Kg		
Naphthalene	ND	4.9		ug/Kg		
1,2,3-Trichlorobenzene	ND	4.9		ug/Kg		
Surrogate		%REC	Lin	nits		
Dibromofluoromethane		120	77-	126		
1,2-Dichloroethane-d4		108	77-	131		
Toluene-d8		97	80-	120		
Bromofluorobenzene		102	80-	123		
Legend MDL: Method Detection Limit						

ND: Not Detected

Lab #: 315809				Project#: 19-032.12						
	Client: Enviro	ocom		Location: Milligan						
Туре:	BLANK	Matrix: S	Soil	Batch#:	276206	Pr	ep: EPA 5	030B		
Lab ID:	QC999314	Diln Fac: 1	.000	Analyzed:	11/19/19	Analys	sis: EPA 8	260B		
Analyte					Result	RL	MDL	Units		
Freon 12					ND	10		ug/Kg		
Chloromethar	ne				ND	10		ug/Kg		
Vinyl Chloride)				ND	10	0.3	ug/Kg		
Bromomethar	e				ND	10		ug/Kg		
Chloroethane					ND	10		ug/Kg		
Trichlorofluor	omethane				ND	5.0		ug/Kg		
Acetone					ND	20		ug/Kg		
Freon 113					ND	5.0		ug/Kg		
1,1-Dichloroe	thene				ND	5.0		ug/Kg		
Methylene Ch	loride				ND	20		ug/Kg		
Carbon Disulf	ide				ND	5.0		ug/Kg		
MTBE					ND	5.0		ug/Kg		
trans-1,2-Dich	loroethene				ND	5.0		ug/Kg		
Vinyl Acetate					ND	50		ug/Kg		
1,1-Dichloroe	thane				ND	5.0		ug/Kg		
2-Butanone					ND	10		ug/Kg		
cis-1,2-Dichlo	roethene				ND	5.0		ug/Kg		
2,2-Dichlorop	ropane				ND	5.0		ug/Kg		
Chloroform					ND	5.0		ug/Kg		
Bromochloron	nethane				ND	5.0		ug/Kg		
1,1,1-Trichlor	pethane				ND	5.0		ug/Kg		
1,1-Dichlorop	ropene				ND	5.0		ug/Kg		
Carbon Tetrad	chloride				ND	5.0		ug/Kg		
1,2-Dichloroe	thane				ND	5.0		ug/Kg		
Benzene					ND	5.0		ug/Kg		
Trichloroether	ne				ND	5.0		ug/Kg		
1,2-Dichlorop	ropane				ND	5.0		ug/Kg		
Bromodichlor	omethane				ND	5.0		ug/Kg		
Dibromometh	ane				ND	5.0		ug/Kg		
4-Methyl-2-Pe	entanone				ND	10		ug/Kg		
cis-1,3-Dichlo	ropropene				ND	5.0		ug/Kg		
Toluene					ND	5.0		ug/Kg		
trans-1,3-Dich	loropropene				ND	5.0		ug/Kg		
1,1,2-Trichlor	pethane				ND	5.0		ug/Kg		
2-Hexanone					ND	10		ug/Kg		
1,3-Dichlorop	ropane				ND	5.0		ug/Kg		
Tetrachloroeth	nene				ND	5.0		ug/Kg		
Dibromochlor	omethane				ND	5.0		ug/Kg		
1,2-Dibromoe	thane				ND	5.0		ug/Kg		
Chlorobenzer	ne				ND	5.0		ug/Kg		
1,1,1,2-Tetrac	hloroethane				ND	5.0		ug/Kg		
Ethylbenzene					ND	5.0		ug/Kg		
m,p-Xylenes					ND	5.0		ug/Kg		

Lab #: 315809	Project#: 19-032.12					
Client: Envirocom	Location:	Milligan				
Analyte	Result	RL	MDL	Units		
o-Xylene	ND	5.0		ug/Kg		
Styrene	ND	5.0		ug/Kg		
Bromoform	ND	5.0		ug/Kg		
lsopropylbenzene	ND	5.0		ug/Kg		
1,1,2,2-Tetrachloroethane	ND	5.0		ug/Kg		
1,2,3-Trichloropropane	ND	5.0		ug/Kg		
Propylbenzene	ND	5.0		ug/Kg		
Bromobenzene	ND	5.0		ug/Kg		
1,3,5-Trimethylbenzene	ND	5.0		ug/Kg		
2-Chlorotoluene	ND	5.0		ug/Kg		
4-Chlorotoluene	ND	5.0		ug/Kg		
tert-Butylbenzene	ND	5.0		ug/Kg		
1,2,4-Trimethylbenzene	ND	5.0		ug/Kg		
sec-Butylbenzene	ND	5.0		ug/Kg		
para-Isopropyl Toluene	ND	5.0		ug/Kg		
1,3-Dichlorobenzene	ND	5.0		ug/Kg		
1,4-Dichlorobenzene	ND	5.0		ug/Kg		
n-Butylbenzene	ND	5.0		ug/Kg		
1,2-Dichlorobenzene	ND	5.0		ug/Kg		
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/Kg		
1,2,4-Trichlorobenzene	ND	5.0		ug/Kg		
Hexachlorobutadiene	ND	5.0		ug/Kg		
Naphthalene	ND	5.0		ug/Kg		
1,2,3-Trichlorobenzene	ND	5.0		ug/Kg		
Surrogate		%REC	Lin	nits		
Dibromofluoromethane		121	77-	126		
1,2-Dichloroethane-d4		108	77-	131		
Toluene-d8		96	80-	120		
Bromofluorobenzene		101	80-	123		

Legend MDL: Method Detection Limit

ND: Not Detected

Lab #: 31580	09		Pr	oject#: 1	9-032.12		
Client: Envir	ocom	Location: Milligan					
Type: BS	Matrix: Soil	Bat	ch#: 276206		Prep:	EPA 5030B	
Lab ID: QC999315	Diln Fac: 1.000	Analy	zed: 11/19/1	9	Analysis:	EPA 8260B	
Analyte		Spiked	Result	%REC	C Limits	s Unit	ts
1,1-Dichloroethene		12.50	10.93	87	7 80-13	0 ug/k	ζg
Benzene		12.50	14.46	116	80-12	0 ug/k	ζg
Trichloroethene		12.50	13.34	107	7 78-12	4 ug/k	ζg
Toluene		12.50	12.96	104	80-12	0 ug/k	ίg
Chlorobenzene		12.50	13.47	108	8 80-12	0 ug/k	ζg
Surrogate					%REC	Limits	
Dibromofluoromethane					105	77-126	
1,2-Dichloroethane-d4					106	77-131	
Toluene-d8					97	80-120	
Bromofluorobenzene					91	80-123	
Type: BSD	Matrix: Soil	Bat	ch#: 276206		Prep:	EPA 5030B	
Lab ID: QC999316	Diln Fac: 1.000	Analy	zed: 11/19/1	9	Analysis:	EPA 8260B	
Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim
1,1-Dichloroethene	12.50	10.62	85	80-130	ug/Kg	3	20
Benzene	12.50	13.93	111	80-120	ug/Kg	4	20
Trichloroethene	12.50	12.93	103	78-124	ug/Kg	3	20
Toluene	12.50	12.74	102	80-120	ug/Kg	2	20
Chlorobenzene	12.50	13.30	106	80-120	ug/Kg	1	20
Surrogate					%REC	Limits	
Dibromofluoromethane					104	77-126	
1,2-Dichloroethane-d4					104	77-131	
Toluene-d8					98	80-120	
Bromofluorobenzene					92	80-123	
Legend							

RPD: Relative Percent Difference

Lab #:	315809			Р	roject#:	19-032.1	2		
Client:	Envirocom			Lo	ocation:	Milligan			
Field ID:	MSB1-10		Basis: as rec	eived		Analyzed:	11/19/	19	
Туре:	MS	Dil	In Fac: 0.9416	6		Prep:	EPA 5	030B	
MSS Lab ID:	315809-001	E	Batch#: 276206	6		Analysis:	EPA 8	260B	
Lab ID:	QC999483	Sar	mpled: 11/12/	19					
Matrix:	Soil	Rec	ceived: 11/12/	19					
Analyte		MSS Res	sult Spik	ed R	lesult	%REC	Limits	U	nits
1,1-Dichloroethene		<0.19	947 47.	08	39.19	83	62-141	ug	g/Kg
Benzene		0.093	340 47.	08	52.80	112	63-128	ug	g∕Kg
Trichloroethene		<0.1	125 47.	08	50.03	106	60-140	ug	g∕Kg
Toluene		1.(082 47.	08	48.04	100	60-124	ug	g/Kg
Chlorobenzene		<0.1	121 47.	08	48.06	102	54-120	ug	g/Kg
Surrogate						%REC	L	imits.	
Dibromofluoromethane						105	7	7-126	
1,2-Dichloroethane-d4						104	7	7-131	
Toluene-d8						96	8	0-120	
Bromofluorobenzene						87	8	0-123	
Field ID:	MSB1-10		Basis: as rec	eived		Analyzed:	11/19/	19	
Туре:	MSD	Dil	In Fac: 0.9174	ŀ		Prep:	EPA 5	030B	
MSS Lab ID:	315809-001	E	Batch#: 276206	6		Analysis:	EPA 8	260B	
Lab ID:	QC999484	Sai	mpled: 11/12/	19					
Matrix:	Soil	Rec	ceived: 11/12/	19					
Analyte		Spiked	Result	%REC	Limits	Units	S	RPD	Lim
1,1-Dichloroethene		45.87	32.34	71	62-141	ug/K	g	17	37
Benzene		45.87	42.86	93	63-128	ug/K	g	18	62
Trichloroethene		45.87	40.27	88	60-140	ug/K	g	19	44
Toluene		45.87	38.83	82	60-124	ug/K	g	19	57
Chlorobenzene		45.87	38.82	85	54-120	ug/K	g	19	52
Surrogate						%REC	L	imits.	
Dibromofluoromethane						105	7	7-126	
1,2-Dichloroethane-d4						105	7	7-131	
Toluene-d8						96	8	0-120	
Bromofluorobenzene						87	8	0-123	
Legend RPD: Relative Percent Difference									

Enthalpy Analytical 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900

enthalpy.com

Lab Job Number: 315808 Report Level: II Report Date: 12/05/2019

Analytical Report prepared for:

Mitch Hajiaghai Envirocom 800 Charcot Avenue Suite 114 San Jose, CA 95131

Project: 19-032.12 - Milligan

Authorized for release by:

Jessie Silbermon

Jess Silberman, Project Manager (510) 204-2223 Jessica.Silberman@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 2896, NELAP# 4044-001

Sample Summary

Mitch Hajiaghai	Lab Job #:	315808
Envirocom	Project No:	19-032.12
800 Charcot Avenue	Location:	Milligan
Suite 114	Date Received:	11/12/19
San Jose, CA 95131		,

Sample ID	Lab ID	Collected	Matrix
MW1	315808-001	11/12/19 00:00	Water
MW2	315808-002	11/12/19 00:00	Water
MW3	315808-003	11/12/19 00:00	Water
MW4	315808-004	11/12/19 00:00	Water
MW5	315808-005	11/12/19 00:00	Water

Case Narrative

Envirocom	Lab Job Number: 315808	
800 Charcot Avenue	Project No: 19-032.12	
Suite 114	Location: Milligan	
San Jose, CA 95131	Date Received: 11/12/19	
Mitch Hajiaghai		

This data package contains sample and QC results for five water samples, requested for the above referenced project on 11/12/19. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

Low surrogate recovery was observed for bromofluorobenzene (FID) in MW1 (lab # 315808-001). A number of samples were analyzed outside of hold time; affected data was qualified with "H". MW1 (lab # 315808-001) had pH greater than 2. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High surrogate recoveries were observed for 1,2-dichloroethane-d4 in a number of samples. MW1 (lab # 315808-001) and MW2 (lab # 315808-002) had pH greater than 2. MW5 (lab # 315808-005) had multiple vials combined due to sediment. No other analytical problems were encountered.

Detection Summary for 315808

Client: Envirocom Project: 19-032.12 Location Milligan

No detections for MW1, Lab ID 315808-001

Sample ID: MW2							Lab	ID: 315808-002
Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	86,000	Н	1,700	ug/L	As Recd	33.33	EPA 8015B	EPA 5030B
Benzene	1,700		84	ug/L	As Recd	167.0	EPA 8260B	EPA 5030B
Toluene	320		84	ug/L	As Recd	167.0	EPA 8260B	EPA 5030B
Ethylbenzene	3,700		84	ug/L	As Recd	167.0	EPA 8260B	EPA 5030B
m,p-Xylenes	10,000		84	ug/L	As Recd	167.0	EPA 8260B	EPA 5030B
o-Xylene	2,400		84	ug/L	As Recd	167.0	EPA 8260B	EPA 5030B
Isopropylbenzene	130		84	ug/L	As Recd	167.0	EPA 8260B	EPA 5030B
Propylbenzene	420		84	ug/L	As Recd	167.0	EPA 8260B	EPA 5030B
1,3,5-Trimethylbenzene	710		84	ug/L	As Recd	167.0	EPA 8260B	EPA 5030B
1,2,4-Trimethylbenzene	3,000		84	ug/L	As Recd	167.0	EPA 8260B	EPA 5030B
n-Butylbenzene	230		84	ug/L	As Recd	167.0	EPA 8260B	EPA 5030B
Naphthalene	980		330	ug/L	As Recd	167.0	EPA 8260B	EPA 5030B

No detections for MW3, Lab ID 315808-003

No detections for MW4, Lab ID 315808-004

No detections for MW5, Lab ID 315808-005

H: Holding time was exceeded

1 of 1

	CHAIN OF CUSTODY								
Project Na	ame:	Milliga	п		Project No:	19-032.12	Date:	11/12/19	
Project Lo	ocation _	150 N. Au	tumn Stre	et, SJ	Client:Ci	ty of San Jose	Sampler:	Mitch Ho	yjioghan"
Sample ID	Date Sampled	Sampling Time	Matrix	N° of Containers	ł	Analy	sis Requested		Turnaround Time
					TAHG			-	
MWI	Winha		water	4	BLa 9			24-h Othe	our Normal
MIN7.	191			1				24-h Othe	our Normal
MW3								24-h Othe	our Normal Ir
MWY								24-h Othe	our Normai
MWS	V			\$				24-h Othe	our Normal
								24-h Othe	our Normal
								24-h Othe	our Normal
								24-h Othe	our Normal r
NOTES:		1							
Relinguishe	day -	A	c	Date	Tim	e Received by	11 1.	Date	Time
4 h	1 10	De-	(19911	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and	Mason	- map	7 13.30
Judrey -	Hadson	- 11/12/	19 17.	45		2/Mal	/	11/12/	119 17:50
0						1 001			

P.O. Box 28310 · San Jose · California · 95159 Phone (408) 894-9062 · Fax (408) 894-9063

		-	
SAMPLE RECEIPT CHECKLIST		1	
Section 1: Login # 315 508 Client: Cluincom		ENIT	
Date Received: 11-12-19 Project: Million		ENI	TALFT
Section 2: Shipping info (if applicable)			
Are custody seals present? I No, or Yes. If yes, where? on cooler, on samples,	on par	ckage	
□ Date: How many □ Signature, □ Initials, □ None		J	
Were custody seals intact upon arrival? Yes No N/A			
Samples received in a cooler? Yes, how many? / No (skip Section 3 below)			
If no cooler Sample Temp (°C): using IR Gun #			
Samples received on ice directly from the field. Cooling process had begun			
If in cooler: Date Opened 11-12-(By (print) JH (sign) /			
Section 3:	eeds 6°C	or arrive	frozer
Packing in cooler: (if other describe)			nozen
Bubble Wran D Foam blocks D Bags D None D Cloth material D Cardboard D Styrofoam	D Paper to	owels	
\Box Samples received on ice directly from the field. Cooling process had begun		owers	
Type of ice used : Wet Plue/Gel None Temperature blank/c) included?		⊐ No	
Temperature measured using D Thermometer ID:			
	#7.		
Section 4:	YES	NO	N/A
Were custody papers dry filled out properly, and the project identifiable		110	14/14
Were Method 5035 sampling containers present?		1	
If VES, what time were they transferred to freezer?			
Did all bottles arrive unbroken/unonened?	1	torne tail	
Are there any missing / extra samples?	V	1	
Are samples in the appropriate containers for indicated tests?	1	V	
Are sample labels present, in good condition and complete?	1		
Does the container count match the COC?	V		
Does the comple labels agree with sustady papers?	1		States and
Was sufficient amount of sample sent for tests requested?	1		351070
Did you change the hold time in LIMS for unpreserved VOAs?	V	V	
Did you change the hold time in LIMS for preserved terracores?			1
Are hubbles > 6mm present in V/OA samples?	1		V
Are bubbles > binin present in vOA samples:		1	-
If VES, who was called?	Thus are a	BRETHER	1000
If FES, who was called r by by bate	VES	NO	N/A
Section 5:	11.5	NO	V
Are the samples appropriately preserved? (II N/A, skip the rest of section 5)	+		
Did you check preservatives for all bottles for each sample:		-	1000
nH strip lot#			
pH strip lot#, pH strip lot#, pH strip lot#			
\square H2SOA lot#	£		
H2304 101# added to samples on/a			
HOC lot#added to samplesOn/a			
ANOS Iot#added to samplesON/a			
Section 5:			-
Explanations/Comments: 1/4 VOAs for sumple 2 contained to bubb	le > l	5 mm	
Date Logged in <u>W/13/19</u> By (print) <u>C</u> (sign) Date Labeled <u>W/13/19</u> By (print) ZA (sign) <u>D</u>	e,		

Total Volatile Hydrocarbons

Lal	b #: 315808			Project#: 19	-032.12	
Clie	ent: Envirocom			Location: Mi	lligan	
Field ID:	MW1	Diln Fac:	1.000	Anal	yzed: 12/04/	19
Туре:	SAMPLE	Batch#:	276597		Prep: EPA 5	030B
Lab ID:	315808-001	Sampled:	11/12/19	Ana	Iysis: EPA 8	015B
Matrix:	Water	Received:	11/12/19			
Analyte				Result	RL	Units
Gasoline C7-C12				ND H	50	ug/L
Surrogate					%REC	Limits
Bromofluorobenze	ne (FID)				78 * H	80-120
Field ID:	MW2	Diln Fac:	33.33	Anal	yzed: 12/05/	19
Туре:	SAMPLE	Batch#:	276627		Prep: EPA 5	030B
Lab ID:	315808-002	Sampled:	11/12/19	Ana	Iysis: EPA 8	015B
Matrix:	Water	Received:	11/12/19			
Analyte				Result	RL	Units
Gasoline C7-C12				86,000 H	1,700	ug/L
Surrogate					%REC	Limits
Bromofluorobenze	ne (FID)				101 H	80-120
Field ID:	MW3	Diln Fac:	1.000	Anal	yzed: 12/04/	19
Туре:	SAMPLE	Batch#:	276597		Prep: EPA 5	030B
Lab ID:	315808-003	Sampled:	11/12/19	Ana	Iysis: EPA 8	015B
Matrix:	Water	Received:	11/12/19			
Analyte				Result	RL	Units
Gasoline C7-C12				ND H	50	ug/L
Surrogate					%REC	Limits
Bromofluorobenze	ne (FID)				83 H	80-120
Field ID:	MW4	Diln Fac:	1.000	Anal	yzed: 12/04/	19
Туре:	SAMPLE	Batch#:	276597		Prep: EPA 5	030B
Lab ID:	315808-004	Sampled:	11/12/19	Ana	lysis: EPA 8	015B
Matrix:	Water	Received:	11/12/19			
Analyte				Result	RL	Units
Gasoline C7-C12				ND H	50	ug/L
Surrogate					%REC	Limits
Bromofluorobenze	ne (FID)				87 H	80-120

Total Volatile Hydrocarbons

Lab #: 315808				Proj	ect#: 1	9-032.12	
Client: Envirocom	l			Loca	tion: N	1illigan	
Field ID: MW5		Diln Fac:	1.000		Ana	alyzed: 12/0	04/19
Type: SAMPLE		Batch#:	276597			Prep: EP	A 5030B
Lab ID: 315808-005		Sampled:	11/12/19		An	alysis: EP	A 8015B
Matrix: Water		Received:	11/12/19				
Analyte					Result	RL	Units
Gasoline C7-C12					ND H	50	ug/L
Surrogate						%REC	Limits
Bromofluorobenzene (FID)						87 H	80-120
Type: BLANK	Matrix:	Water	Batch#:	276597		Prep:	EPA 5030B
Lab ID: QC1000984	Diln Fac:	1.000	Analyzed:	12/03/19		Analysis:	EPA 8015B
Analyte					Result	RL	Units
Gasoline C7-C12					ND	50	ug/L
Surrogate						%REC	Limits
Bromofluorobenzene (FID)						83	80-120
Type: BLANK	Matrix:	Water	Batch#:	276627		Prep:	EPA 5030B
Lab ID: QC1001114	Diln Fac:	1.000	Analyzed:	12/04/19		Analysis:	EPA 8015B
Analyte					Result	RL	Units
Gasoline C7-C12					ND	50	ug/L
Surrogate						%REC	Limits
Bromofluorobenzene (FID)						94	80-120
Legend *: Value is outside QC limits							

H: Holding time was exceeded

ND: Not Detected

Total Volatile Hydrocarbons: Batch QC

	Lab #: 315808					Pr	oject#: 19	9-032.12		
	Client: Envirocom					Lo	cation: M	illigan		
Туре:	BS	Matrix:	Water		Batch#:	276597	7	Prep:	EPA 5030B	
Lab ID:	QC1000985	Diln Fac:	1.000		Analyzed:	12/04/	19	Analysis:	EPA 8015B	
Analyte			Spi	iked	Resu	ılt	%REC	Limits	Unit	S
Gasoline C7-	C12		3,	,000	2,56	67	86	80-123	ug/l	L
Surrogate								%REC	Limits	
Bromofluorob	enzene (FID)							97	80-120	
Туре:	BSD	Matrix:	Water		Batch#:	276597	7	Prep:	EPA 5030B	
Lab ID:	QC1000986	Diln Fac:	1.000		Analyzed:	12/04/	19	Analysis:	EPA 8015B	
Analyte		Spil	ked	Resul	t %	REC	Limits	Units	RPD	Lim
Gasoline C7-	C12	3,0	000	2,556	6	85	80-123	ug/L	0	20
Surrogate								%REC	Limits	
Bromofluorob	enzene (FID)							98	80-120	

Legend **RPD:** Relative Percent Difference

Total Volatile Hydrocarbons: Batch QC

	Lab #: 315808					Pr	oject#: 1	9-032.12		
	Client: Envirocom					Lo	cation: N	lilligan		
Туре:	BS	Matrix:	Water		Batch#:	27662	7	Prep:	EPA 5030B	
Lab ID:	QC1001115	Diln Fac:	1.000		Analyzed:	12/04/	19	Analysis:	EPA 8015B	
Analyte			Spi	iked	Resu	ılt	%REC	Limits	Unit	s
Gasoline C7-	C12		1,	,000	942	.5	94	80-123	ug/l	L
Surrogate								%REC	Limits	
Bromofluorob	enzene (FID)							101	80-120	
Туре:	BSD	Matrix:	Water		Batch#:	27662	7	Prep:	EPA 5030B	
Lab ID:	QC1001116	Diln Fac:	1.000	1	Analyzed:	12/04/	19	Analysis:	EPA 8015B	
Analyte		Spil	ked	Resul	t %	REC	Limits	Units	RPD	Lim
Gasoline C7-	C12	1,0	000	962.6	6	96	80-123	ug/L	2	20
Surrogate								%REC	Limits	
Bromofluorob	enzene (FID)							92	80-120	

Legend **RPD:** Relative Percent Difference

Total Volatile Hydrocarbons: Batch QC

Lab #: :	315808				Project#:	19-032.1	2	
Client:	Envirocom				Location:	Milligan		
Field ID:	ZZZZZZZZZZ		Matrix:	Water		Received:	11/25/19	
Туре:	MS		Diln Fac:	1.000		Analyzed:	12/05/19	
MSS Lab ID:	316237-001		Batch#:	276627		Prep:	EPA 5030B	
Lab ID:	QC1001168		Sampled:	11/21/19		Analysis:	EPA 8015B	
Analyte		MSS R	esult S	piked	Result	%REC	Limits	Units
Gasoline C7-C12		2	21.63	2,000	1,641	81	80-124	ug/L
Surrogate						%REC	Limits	;
Bromofluorobenzene (FI	D)					108	80-120)
Field ID:	ZZZZZZZZZZZ		Matrix:	Water		Received:	11/25/19	
Туре:	MSD		Diln Fac:	1.000		Analyzed:	12/05/19	
MSS Lab ID:	316237-001		Batch#:	276627		Prep:	EPA 5030B	
Lab ID:	QC1001169		Sampled:	11/21/19		Analysis:	EPA 8015B	
Analyte		Spiked	Result	%REC	C Limits	Units	RPD	Lim
Gasoline C7-C12		2,000	1,981	98	8 80-124	ug/L	19	20
Surrogate						%REC	Limits	;
Bromofluorobenzene (FI	D)					99	80-120)

Legend **RPD:** Relative Percent Difference

- \\Lims\gdrive\ezchrom\Projects\GC07\Data\2019\338-028, A

- \\Lims\gdrive\ezchrom\Projects\GC07\Data\2019\338-002, A

Lab #: 315808		Project#: 1	9-032.1	2			
Client: Envirocom		Location: Milligan					
Field ID: MW1	Batch#: 276256		Prep: E	EPA 5030B			
Lab ID: 315808-001	Sampled: 11/12/19	Sampled: 11/12/19 Analysis: EPA 8260B					
Matrix: Water	Received: 11/12/19						
Diln Fac: 1.000	Analyzed: 11/20/19						
Analyte		Result	RL	MDL	Units		
Freon 12		ND	1.0		ug/L		
Chloromethane		ND	1.0		ug/L		
Vinyl Chloride		ND	0.5	0.1	ug/L		
Bromomethane		ND	1.0		ug/L		
Chloroethane		ND	1.0		ug/L		
Trichlorofluoromethane		ND	1.0		ug/L		
Acetone		ND	10		ug/L		
Freon 113		ND	2.0		ug/L		
1.1-Dichloroethene		ND	0.5		ua/L		
Methylene Chloride		ND	10		ua/l		
Carbon Disulfide		ND	0.5		ua/l		
MTBE		ND	0.5		ug/L		
trans-1.2-Dichloroethene		ND	0.5		ug/L		
Vinvl Acetate		ND	10		ug/L		
1 1-Dichloroethane		ND	0.5		ug/L		
2-Butanone		ND	10		ug/L		
cic_1 2-Dichloroothono		ND	0.5		ug/L		
2 2-Dichloropropage			0.5		ug/∟		
Chloroform			2.0		ug/∟		
Bromochloromothano			2.0		ug/∟		
			0.5		ug/∟		
		ND	0.5		ug/L		
I, I-Dichloropropene		ND	0.5		ug/L		
Carbon Tetrachioride		ND	0.5		ug/L		
		ND	0.5		ug/L		
Benzene		ND	0.5		ug/L		
Irichloroethene		ND	0.5		ug/L		
1,2-Dichloropropane		ND	0.5		ug/L		
Bromodichloromethane		ND	0.5		ug/L		
Dibromomethane		ND	0.5		ug/L		
4-Methyl-2-Pentanone		ND	10		ug/L		
cis-1,3-Dichloropropene		ND	0.5		ug/L		
Toluene		ND	0.5		ug/L		
trans-1,3-Dichloropropene		ND	0.5		ug/L		
1,1,2-Trichloroethane		ND	0.5		ug/L		
2-Hexanone		ND	10		ug/L		
1,3-Dichloropropane		ND	0.5		ug/L		
Tetrachloroethene		ND	0.5		ug/L		
Dibromochloromethane		ND	0.5		ug/L		
1,2-Dibromoethane		ND	0.5		ug/L		
Chlorobenzene		ND	0.5		ug/L		
1,1,1,2-Tetrachloroethane		ND	0.5		ug/L		

Lab #: 315808 Project#: 19-032.12				
Client: Envirocom	Location:	Milligan		
Analyte	Result	RL	MDL	Units
Ethylbenzene	ND	0.5		ug/L
m,p-Xylenes	ND	0.5		ug/L
o-Xylene	ND	0.5		ug/L
Styrene	ND	0.5		ug/L
Bromoform	ND	1.0		ug/L
Isopropylbenzene	ND	0.5		ug/L
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L
1,2,3-Trichloropropane	ND	0.5		ug/L
Propylbenzene	ND	0.5		ug/L
Bromobenzene	ND	0.5		ug/L
1,3,5-Trimethylbenzene	ND	0.5		ug/L
2-Chlorotoluene	ND	0.5		ug/L
4-Chlorotoluene	ND	0.5		ug/L
tert-Butylbenzene	ND	0.5		ug/L
1,2,4-Trimethylbenzene	ND	0.5		ug/L
sec-Butylbenzene	ND	0.5		ug/L
para-Isopropyl Toluene	ND	0.5		ug/L
1,3-Dichlorobenzene	ND	0.5		ug/L
1,4-Dichlorobenzene	ND	0.5		ug/L
n-Butylbenzene	ND	0.5		ug/L
1,2-Dichlorobenzene	ND	0.5		ug/L
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L
1,2,4-Trichlorobenzene	ND	0.5		ug/L
Hexachlorobutadiene	ND	2.0		ug/L
Naphthalene	ND	2.0		ug/L
1,2,3-Trichlorobenzene	ND	0.5		ug/L
Surrogate		%REC	Lim	nits
Dibromofluoromethane		110	80-1	120
1,2-Dichloroethane-d4		132 *	80-1	120
Toluene-d8		106	80-1	120
Bromofluorobenzene		109	80-1	120
Legend *: Value is outside QC limits				

MDL: Method Detection Limit

ND: Not Detected

Lab #: 315808		Project	#: 19-032.12	2	
Client: Envirocom		Locatio	n: Milligan		
Field ID: MW2	Batch#: 276402		Prep: E	PA 5030B	
Lab ID: 315808-002	Sampled: 11/12/19		Analysis: E	PA 8260B	
Matrix: Water	Received: 11/12/19		-		
Diln Fac: 167.0	Analyzed: 11/25/19				
Analyta	_	Pocult	DI	MDI	Unite
Freen 12		ND	170	MDL	
Chloromethane			170		ug/L
Vinvl Chloride		ND	84	18	ug/L
Bromomethane		ND	170	10	ug/L
Chloroethane		ND	170		ug/L
Trichlorofluoromethane		ND	170		ug/L
Acetone		ND	1 700		ug/L
Freon 113		ND	330		ug/L
1 1-Dichloroethene		ND	84		ug/l
Methylene Chloride		ND	1 700		ug/L
Carbon Disulfide		ND	84		ug/L
MTBE		ND	84		ug/L
trans-1 2-Dichloroethene		ND	84		ug/L
Vinvl Acetate		ND	1 700		ug/L
1.1-Dichloroethane		ND	.,, 88		ug/L
2-Butanone		ND	1.700		ug/L
cis-1 2-Dichloroethene		ND	.,. 88		ug/l
2.2-Dichloropropane		ND	84		ua/l
Chloroform		ND	84		ua/L
Bromochloromethane		ND	84		ua/L
1.1.1-Trichloroethane		ND	84		ua/l
1.1-Dichloropropene		ND	84		ua/l
Carbon Tetrachloride		ND	84		ua/L
1.2-Dichloroethane		ND	84		ua/L
Benzene		1,700	84		ug/L
Trichloroethene		ND	84		ug/L
1,2-Dichloropropane		ND	84		ug/L
Bromodichloromethane		ND	84		ug/L
Dibromomethane		ND	84		ug/L
4-Methyl-2-Pentanone		ND	1,700		ug/L
cis-1,3-Dichloropropene		ND	84		ug/L
Toluene		320	84		ug/L
trans-1,3-Dichloropropene		ND	84		ug/L
1,1,2-Trichloroethane		ND	84		ug/L
2-Hexanone		ND	1,700		ug/L
1,3-Dichloropropane		ND	84		ug/L
Tetrachloroethene		ND	84		ug/L
Dibromochloromethane		ND	84		ug/L
1,2-Dibromoethane		ND	84		ug/L
Chlorobenzene		ND	84		ug/L
1,1,1,2-Tetrachloroethane		ND	84		ug/L

Lab #: 315808	Project#:	19-032.12		
Client: Envirocom	Location:	Milligan		
Analyte	Result	RL	MDL	Units
Ethylbenzene	3,700	84		ug/L
m,p-Xylenes	10,000	84		ug/L
o-Xylene	2,400	84		ug/L
Styrene	ND	84		ug/L
Bromoform	ND	170		ug/L
lsopropylbenzene	130	84		ug/L
1,1,2,2-Tetrachloroethane	ND	84		ug/L
1,2,3-Trichloropropane	ND	84		ug/L
Propylbenzene	420	84		ug/L
Bromobenzene	ND	84		ug/L
1,3,5-Trimethylbenzene	710	84		ug/L
2-Chlorotoluene	ND	84		ug/L
4-Chlorotoluene	ND	84		ug/L
tert-Butylbenzene	ND	84		ug/L
1,2,4-Trimethylbenzene	3,000	84		ug/L
sec-Butylbenzene	ND	84		ug/L
para-Isopropyl Toluene	ND	84		ug/L
1,3-Dichlorobenzene	ND	84		ug/L
1,4-Dichlorobenzene	ND	84		ug/L
n-Butylbenzene	230	84		ug/L
1,2-Dichlorobenzene	ND	84		ug/L
1,2-Dibromo-3-Chloropropane	ND	330		ug/L
1,2,4-Trichlorobenzene	ND	130		ug/L
Hexachlorobutadiene	ND	330		ug/L
Naphthalene	980	330		ug/L
1,2,3-Trichlorobenzene	ND	130		ug/L
Surrogate		%REC	Lim	its
Dibromofluoromethane		98	80-1	20
1,2-Dichloroethane-d4		112	80-1	20
Toluene-d8		104	80-1	20
Bromofluorobenzene		97	80-1	20
Legend MDL: Method Detection Limit				

ND: Not Detected

Lab #: 315808		Project#: 19-032.12 Location: Milligan Prep: EPA 5030B Analysis: EPA 8260B				
Client: Envirocom		Location: Milligan				
Field ID: MW3	Batch#: 276256		Prep:	EPA 5030B	}	
Lab ID: 315808-003	Sampled: 11/12/19	Ar	nalysis: E	EPA 8260B	}	
Matrix: Water	Received: 11/12/19					
Diln Fac: 1.000	Analvzed: 11/20/19					
Analyte	· · · · · · · · · · · · · · · · · · ·	Result	BI	MDI	Unite	
Freen 12		ND	1.0	MDE		
Chloromethane		ND	1.0		ug/L	
Vinvl Chloride		ND	0.5	0.1	ua/l	
Bromomethane		ND	1.0		ug/L	
Chloroethane		ND	10		ug/l	
Trichlorofluoromethane		ND	1.0		ug/L	
Acetone		ND	10		ug/L	
Freon 113		ND	2.0		ua/l	
1 1-Dichloroethene		ND	0.5		ug/L	
Methylene Chloride		ND	10		ug/L	
Carbon Disulfide		ND	0.5		ug/L	
MTBE		ND	0.5		ug/L	
trans-1 2-Dichloroethene		ND	0.5		ug/L	
		ND	10		ug/L	
1 1-Dichloroethane		ND	0.5		ug/L	
2-Butanone		ND	10		ug/L	
cis-1 2-Dichloroethene		ND	0.5		ug/L	
2 2-Dichloropropage		ND	0.5		ug/L	
Chloroform		ND	2.0		ug/L	
Bromochloromethane		ND	0.5		ug/L	
1 1 1-Trichloroethane		ND	0.5		ug/L	
1 1-Dichloropropene		ND	0.5		ug/L	
Carbon Tetrachloride		ND	0.5		ug/L	
1.2-Dichloroethane		ND	0.5		ug/L	
Benzene		ND	0.5		ug/l	
Trichloroethene		ND	0.5		ug/L	
1 2-Dichloropropane		ND	0.5		ug/L	
Bromodichloromethane		ND	0.5		ug/L	
Dibromomethane		ND	0.5		ug/l	
4-Methyl-2-Pentanone		ND	10		ua/l	
cis-1.3-Dichloropropene		ND	0.5		ug/L	
Toluene		ND	0.5		ug/L	
trans-1.3-Dichloropropene		ND	0.5		ua/l	
1.1.2-Trichloroethane		ND	0.5		ug/L	
2-Hexanone		ND	10		ug/L	
1,3-Dichloropropane		ND	0.5		ua/L	
Tetrachloroethene		ND	0.5		ua/l	
Dibromochloromethane		ND	0.5		ug/l	
1.2-Dibromoethane		ND	0.5		ug/l	
Chlorobenzene		ND	0.5		ua/L	
1.1.1.2-Tetrachloroethane		ND	0.5		ug/L	

Lab #: 315808	Project#:	19-032.12		
Client: Envirocom	Location:	Milligan		
Analyte	Result	RL	MDL	Units
Ethylbenzene	ND	0.5		ug/L
m,p-Xylenes	ND	0.5		ug/L
o-Xylene	ND	0.5		ug/L
Styrene	ND	0.5		ug/L
Bromoform	ND	1.0		ug/L
lsopropylbenzene	ND	0.5		ug/L
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L
1,2,3-Trichloropropane	ND	0.5		ug/L
Propylbenzene	ND	0.5		ug/L
Bromobenzene	ND	0.5		ug/L
1,3,5-Trimethylbenzene	ND	0.5		ug/L
2-Chlorotoluene	ND	0.5		ug/L
4-Chlorotoluene	ND	0.5		ug/L
tert-Butylbenzene	ND	0.5		ug/L
1,2,4-Trimethylbenzene	ND	0.5		ug/L
sec-Butylbenzene	ND	0.5		ug/L
para-Isopropyl Toluene	ND	0.5		ug/L
1,3-Dichlorobenzene	ND	0.5		ug/L
1,4-Dichlorobenzene	ND	0.5		ug/L
n-Butylbenzene	ND	0.5		ug/L
1,2-Dichlorobenzene	ND	0.5		ug/L
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L
1,2,4-Trichlorobenzene	ND	0.5		ug/L
Hexachlorobutadiene	ND	2.0		ug/L
Naphthalene	ND	2.0		ug/L
1,2,3-Trichlorobenzene	ND	0.5		ug/L
Surrogate		%REC	Lim	its
Dibromofluoromethane		110	80-	120
1,2-Dichloroethane-d4		135 *	80-	120
Toluene-d8		108	80-	120
Bromofluorobenzene		110	80-	120
Legend *: Value is outside QC limits				

MDL: Method Detection Limit

ND: Not Detected

Lab #: 315808		Project#: 1	9-032.1	2		
Client: Envirocom		Location: N	<i>l</i> illigan			
Field ID: MW4	Batch#: 276256	Batch#: 276256 Prep: EPA 5030B				
Lab ID: 315808-004	Sampled: 11/12/19	Ar	nalysis: E	EPA 8260E	5	
Matrix: Water	Received: 11/12/19		-			
Diln Fac: 1 000	Analyzed: 11/20/19					
Analyte		Result	RL	MDL	Units	
Freon 12 Chloremethana		ND	1.0		ug/L	
Visul Oblevide			1.0	0.1	ug/∟	
Promomethene			1.0	0.1	ug/L	
		ND	1.0		ug/L	
		ND	1.0		ug/L	
		ND	1.0		ug/L	
		ND	10		ug/L	
Freon 113		ND	2.0		ug/L	
1,1-Dichloroethene		ND	0.5		ug/L	
Methylene Chloride		ND	10		ug/L	
Carbon Disulfide		ND	0.5		ug/L	
МТВЕ		ND	0.5		ug/L	
trans-1,2-Dichloroethene		ND	0.5		ug/L	
Vinyl Acetate		ND	10		ug/L	
1,1-Dichloroethane		ND	0.5		ug/L	
2-Butanone		ND	10		ug/L	
cis-1,2-Dichloroethene		ND	0.5		ug/L	
2,2-Dichloropropane		ND	0.5		ug/L	
Chloroform		ND	2.0		ug/L	
Bromochloromethane		ND	0.5		ug/L	
1,1,1-Trichloroethane		ND	0.5		ug/L	
1,1-Dichloropropene		ND	0.5		ug/L	
Carbon Tetrachloride		ND	0.5		ug/L	
1,2-Dichloroethane		ND	0.5		ug/L	
Benzene		ND	0.5		ug/L	
Trichloroethene		ND	0.5		ug/L	
1,2-Dichloropropane		ND	0.5		ug/L	
Bromodichloromethane		ND	0.5		ug/L	
Dibromomethane		ND	0.5		ug/L	
4-Methyl-2-Pentanone		ND	10		ug/L	
cis-1,3-Dichloropropene		ND	0.5		ug/L	
Toluene		ND	0.5		ug/L	
trans-1,3-Dichloropropene		ND	0.5		ug/L	
1,1,2-Trichloroethane		ND	0.5		ug/L	
2-Hexanone		ND	10		ug/L	
1,3-Dichloropropane		ND	0.5		ug/L	
Tetrachloroethene		ND	0.5		ug/L	
Dibromochloromethane		ND	0.5		ug/L	
1,2-Dibromoethane		ND	0.5		ug/L	
Chlorobenzene		ND	0.5		ug/L	
1.1.1.2-Tetrachloroethane		ND	0.5		ua/L	

Lab #: 315808	Project#:	Project#: 19-032.12				
Client: Envirocom	Location: Milligan					
Analyte	Result	RL	MDL	Units		
Ethylbenzene	ND	0.5		ug/L		
m,p-Xylenes	ND	0.5		ug/L		
o-Xylene	ND	0.5		ug/L		
Styrene	ND	0.5		ug/L		
Bromoform	ND	1.0		ug/L		
lsopropylbenzene	ND	0.5		ug/L		
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L		
1,2,3-Trichloropropane	ND	0.5		ug/L		
Propylbenzene	ND	0.5		ug/L		
Bromobenzene	ND	0.5		ug/L		
1,3,5-Trimethylbenzene	ND	0.5		ug/L		
2-Chlorotoluene	ND	0.5		ug/L		
4-Chlorotoluene	ND	0.5		ug/L		
tert-Butylbenzene	ND	0.5		ug/L		
1,2,4-Trimethylbenzene	ND	0.5		ug/L		
sec-Butylbenzene	ND	0.5		ug/L		
para-Isopropyl Toluene	ND	0.5		ug/L		
1,3-Dichlorobenzene	ND	0.5		ug/L		
1,4-Dichlorobenzene	ND	0.5		ug/L		
n-Butylbenzene	ND	0.5		ug/L		
1,2-Dichlorobenzene	ND	0.5		ug/L		
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L		
1,2,4-Trichlorobenzene	ND	0.5		ug/L		
Hexachlorobutadiene	ND	2.0		ug/L		
Naphthalene	ND	2.0		ug/L		
1,2,3-Trichlorobenzene	ND	0.5		ug/L		
Surrogate		%REC	Lim	its		
Dibromofluoromethane		108	80-	120		
1,2-Dichloroethane-d4		138 *	80-	120		
Toluene-d8		106	80-	120		
Bromofluorobenzene		112	80-	120		
Legend *: Value is outside QC limits						

MDL: Method Detection Limit

ND: Not Detected

Lab #: 315808		Project#: 1	9-032.1	2	
Client: Envirocom		Location: N	<i>l</i> illigan		
Field ID: MW5	Batch#: 276256	Prep: EPA 5030B			
Lab ID: 315808-005	Sampled: 11/12/19	Ar	nalysis: E	EPA 8260B	5
Matrix: Water	Received: 11/12/19				
Diln Fac: 1.000	Analyzed: 11/20/19				
Analyte	-	Result	RL	MDL	Units
Freon 12		ND	1.0		ug/L
Chloromethane		ND	1.0		ug/L
Vinyl Chloride		ND	0.5	0.1	ug/L
Bromomethane		ND	1.0		ug/L
Chloroethane		ND	1.0		ua/L
Trichlorofluoromethane		ND	1.0		ua/L
Acetone		ND	10		ua/L
Freon 113		ND	2.0		ua/L
1 1-Dichloroethene		ND	0.5		ua/l
Methylene Chloride		ND	10		ug/L
Carbon Disulfide		ND	0.5		ug/L
MTBE		ND	0.5		ug/L
trans-1 2-Dichloroethene		ND	0.5		ug/L
			10		ug/L
1 1-Dichloroethane			0.5		ug/∟
2-Butanone			10		ug/∟
zio 1.2 Dichlaroothono			0.5		ug/∟
2.2 Dichloropropago			0.5		ug/∟
2,2-Dichloroproparie			0.5		ug/L
Bramachlaramathana			2.0		ug/L
			0.5		uy/L
		ND	0.5		ug/L
I, I-Dichloropropene		ND	0.5		ug/L
Carbon Tetrachioride		ND	0.5		ug/L
		ND	0.5		ug/L
Benzene		ND	0.5		ug/L
Irichloroethene		ND	0.5		ug/L
1,2-Dichloropropane		ND	0.5		ug/L
Bromodichloromethane		ND	0.5		ug/L
Dibromomethane		ND	0.5		ug/L
4-Methyl-2-Pentanone		ND	10		ug/L
cis-1,3-Dichloropropene		ND	0.5		ug/L
Toluene		ND	0.5		ug/L
trans-1,3-Dichloropropene		ND	0.5		ug/L
1,1,2-Trichloroethane		ND	0.5		ug/L
2-Hexanone		ND	10		ug/L
1,3-Dichloropropane		ND	0.5		ug/L
Tetrachloroethene		ND	0.5		ug/L
Dibromochloromethane		ND	0.5		ug/L
1,2-Dibromoethane		ND	0.5		ug/L
Chlorobenzene		ND	0.5		ug/L
1,1,1,2-Tetrachloroethane		ND	0.5		ug/L

Lab #: 315808	Project#:	Project#: 19-032.12				
Client: Envirocom	Location: Milligan					
Analyte	Result	RL	MDL	Units		
Ethylbenzene	ND	0.5		ug/L		
m,p-Xylenes	ND	0.5		ug/L		
o-Xylene	ND	0.5		ug/L		
Styrene	ND	0.5		ug/L		
Bromoform	ND	1.0		ug/L		
lsopropylbenzene	ND	0.5		ug/L		
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L		
1,2,3-Trichloropropane	ND	0.5		ug/L		
Propylbenzene	ND	0.5		ug/L		
Bromobenzene	ND	0.5		ug/L		
1,3,5-Trimethylbenzene	ND	0.5		ug/L		
2-Chlorotoluene	ND	0.5		ug/L		
4-Chlorotoluene	ND	0.5		ug/L		
tert-Butylbenzene	ND	0.5		ug/L		
1,2,4-Trimethylbenzene	ND	0.5		ug/L		
sec-Butylbenzene	ND	0.5		ug/L		
para-Isopropyl Toluene	ND	0.5		ug/L		
1,3-Dichlorobenzene	ND	0.5		ug/L		
1,4-Dichlorobenzene	ND	0.5		ug/L		
n-Butylbenzene	ND	0.5		ug/L		
1,2-Dichlorobenzene	ND	0.5		ug/L		
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L		
1,2,4-Trichlorobenzene	ND	0.5		ug/L		
Hexachlorobutadiene	ND	2.0		ug/L		
Naphthalene	ND	2.0		ug/L		
1,2,3-Trichlorobenzene	ND	0.5		ug/L		
Surrogate		%REC	Lim	its		
Dibromofluoromethane		109	80-	120		
1,2-Dichloroethane-d4		137 *	80-	120		
Toluene-d8		105	80-	120		
Bromofluorobenzene		114	80-	120		
Legend *: Value is outside QC limits						

MDL: Method Detection Limit

ND: Not Detected

Lab #: 315808			Project#: 19-032.12						
Client: Envirod	om		Location: Milligan						
Type: BS	Matrix: Water		Batch#: 276402	402 Prep: EPA 5030					
Lab ID: QC1000154	Diln Fac: 1.000	An	alyzed: 11/25/-	19	Analysis:	EPA 8260B			
Analyte		Spiked	Result	%REC	C Limits	Uni	ts		
1,1-Dichloroethene		10.00	10.04	100) 71-129) ug/	L		
Benzene		10.00	9.652	97	7 77-120) ug/	L		
Trichloroethene		10.00	9.730	97	7 73-120) ug/	L		
Toluene		10.00	10.07	101	1 78-120) ug/	L		
Chlorobenzene		10.00	10.10	101	80-120) ug/	L		
Surrogate					%REC	Limits			
Dibromofluoromethane					97	80-120			
1,2-Dichloroethane-d4					111	80-120			
Toluene-d8					105	80-120			
Bromofluorobenzene					98	80-120			
Type: BSD	Matrix: Water		Batch#: 276402	2	Prep:	EPA 5030B			
Lab ID: QC1000155	Diln Fac: 1.000	An	alyzed: 11/25/-	19	Analysis:	EPA 8260B			
Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim		
1,1-Dichloroethene	10.00	10.03	100	71-129	ug/L	0	20		
Benzene	10.00	9.840	98	77-120	ug/L	2	20		
Trichloroethene	10.00	9.945	99	73-120	ug/L	2	20		
Toluene	10.00	10.35	104	78-120	ug/L	3	20		
Chlorobenzene	10.00	10.44	104	80-120	ug/L	3	20		
Surrogate					%REC	Limits			
Dibromofluoromethane					97	80-120			
1,2-Dichloroethane-d4					110	80-120			
Toluene-d8					105	80-120			
Bromofluorobenzene					97	80-120			
Legend									

RPD: Relative Percent Difference

Lab #: 315808		Project#: 19-032.12					
Client: Envirocom			Location: Milligan				
Type: BLANK	Matrix:	Water	Batch#: 276402		Prep:	EPA 50	30B
Lab ID: QC1000156 D	iln Fac:	1.000	Analyzed: 11/25/19		Analysis:	EPA 82	60B
Analyte			Res	sult	RL	MDL	Units
Freon 12				ND	1.0		ug/L
Chloromethane				ND	1.0		ug/L
Vinyl Chloride				ND	0.5	0.1	ug/L
Bromomethane				ND	1.0		ug/L
Chloroethane				ND	1.0		ug/L
Trichlorofluoromethane				ND	1.0		ug/L
Acetone				ND	10		ug/L
Freon 113				ND	2.0		ug/L
1,1-Dichloroethene				ND	0.5		ug/L
Methylene Chloride				ND	10		ug/L
Carbon Disulfide				ND	0.5		ug/L
МТВЕ				ND	0.5		ug/L
trans-1,2-Dichloroethene				ND	0.5		ug/L
Vinyl Acetate				ND	10		ug/L
1,1-Dichloroethane				ND	0.5		ug/L
2-Butanone				ND	10		ug/L
cis-1,2-Dichloroethene				ND	0.5		ug/L
2,2-Dichloropropane				ND	0.5		ug/L
Chloroform				ND	0.5		ug/L
Bromochloromethane				ND	0.5		ug/L
1,1,1-Trichloroethane				ND	0.5		ug/L
1,1-Dichloropropene				ND	0.5		ug/L
Carbon Tetrachloride				ND	0.5		ug/L
1,2-Dichloroethane				ND	0.5		ug/L
Benzene				ND	0.5		ug/L
Trichloroethene				ND	0.5		ug/L
1,2-Dichloropropane				ND	0.5		ug/L
Bromodichloromethane				ND	0.5		ug/L
Dibromomethane				ND	0.5		ug/L
4-Methyl-2-Pentanone				ND	10		ug/L
cis-1,3-Dichloropropene				ND	0.5		ug/L
Toluene				ND	0.5		ug/L
trans-1,3-Dichloropropene				ND	0.5		ug/L
1,1,2-Trichloroethane				ND	0.5		ug/L
2-Hexanone				ND	10		ug/L
1,3-Dichloropropane				ND	0.5		ug/L
Tetrachloroethene				ND	0.5		ug/L
Dibromochloromethane				ND	0.5		ug/L
1,2-Dibromoethane				ND	0.5		ug/L
Chlorobenzene				ND	0.5		ug/L
1,1,1,2-Tetrachloroethane				ND	0.5		ug/L
Ethylbenzene				ND	0.5		ug/L
m,p-Xylenes				ND	0.5		ug/L

Lab #: 315808	Project#:	19-032.12	2				
Client: Envirocom	Location: Milligan						
Analyte	Result	RL	MDL	Units			
o-Xylene	ND	0.5		ug/L			
Styrene	ND	0.5		ug/L			
Bromoform	ND	1.0		ug/L			
Isopropylbenzene	ND	0.5		ug/L			
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L			
1,2,3-Trichloropropane	ND	0.5		ug/L			
Propylbenzene	ND	0.5		ug/L			
Bromobenzene	ND	0.5		ug/L			
1,3,5-Trimethylbenzene	ND	0.5		ug/L			
2-Chlorotoluene	ND	0.5		ug/L			
4-Chlorotoluene	ND	0.5		ug/L			
tert-Butylbenzene	ND	0.5		ug/L			
1,2,4-Trimethylbenzene	ND	0.5		ug/L			
sec-Butylbenzene	ND	0.5		ug/L			
para-Isopropyl Toluene	ND	0.5		ug/L			
1,3-Dichlorobenzene	ND	0.5		ug/L			
1,4-Dichlorobenzene	ND	0.5		ug/L			
n-Butylbenzene	ND	0.5		ug/L			
1,2-Dichlorobenzene	ND	0.5		ug/L			
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L			
1,2,4-Trichlorobenzene	ND	0.8		ug/L			
Hexachlorobutadiene	ND	2.0		ug/L			
Naphthalene	ND	2.0		ug/L			
1,2,3-Trichlorobenzene	ND	0.8		ug/L			
Surrogate		%REC	Lim	nits			
Dibromofluoromethane		101	80-	120			
1,2-Dichloroethane-d4		113	80-	120			
Toluene-d8		104	80-	120			
Bromofluorobenzene		99	80-	120			
Legend							

MDL: Method Detection Limit

ND: Not Detected

Lab #: 3158	308		Pro	oject#: 1	9-032.12			
Client: Envi	rocom		Loc	cation: N	lilligan			
Type: BS	Matrix: Water		Batch#: 276256			Prep: EPA 5030B		
Lab ID: QC999523	Diln Fac: 1.000	An	Analyzed: 11/20/19		Analysis:	EPA 8260B		
Analyte		Spiked	Result	%RE	C Limit	is Uni	its	
1,1-Dichloroethene		15.00	16.25	10	8 71-12	29 ug	/L	
Benzene		15.00	15.08	10	1 77-12	20 ug.	/L	
Trichloroethene		15.00	15.13	10	1 73-12	20 ug	/L	
Toluene		15.00	14.71	9	8 78-12	20 ug.	/L	
Chlorobenzene		15.00	14.29	9	5 80-12	20 ug	/L	
Surrogate					%REC	Limits		
Dibromofluoromethane					108	80-120		
1,2-Dichloroethane-d4					134 *	80-120		
Toluene-d8					105	80-120		
Bromofluorobenzene					115	80-120		
Type: BSD	Matrix: Water		Batch#: 276256		Prep:	EPA 5030B		
Lab ID: QC999524	Diln Fac: 1.000	An	alyzed: 11/20/1	9	Analysis: EPA 8260B			
Analyte	Spiked	Resu	t %REC	Limits	Units	RPD	Lim	
1,1-Dichloroethene	15.00	18.5	4 124	71-129	ug/L	13	20	
Benzene	15.00	15.7	2 105	77-120	ug/L	4	20	
Trichloroethene	15.00	16.7	5 112	73-120	ug/L	10	20	
Toluene	15.00	15.9	2 106	78-120	ug/L	8	20	
Chlorobenzene	15.00	14.9	9 100	80-120	ug/L	5	20	
Surrogate					%REC	Limits		
Dibromofluoromethane					106	80-120		
1,2-Dichloroethane-d4					129 *	80-120		
Toluene-d8					106	80-120		
Bromofluorobenzene					104	80-120		
Legend								

*: Value is outside QC limits

RPD: Relative Percent Difference

	Lab #: 315808 Project#: 19-032.12			2				
	Client: Enviro	ocom		Location: Milligan				
Туре:	BLANK	Matrix:	Water	Batch#: 276256		Pre	p: EPA 50	030B
Lab ID:	QC999525	Diln Fac:	1.000	Analyzed: 11/20/19		Analysi	s: EPA 8	260B
Analyte				F	Result	RL	MDL	Units
Freon 12					ND	1.0		ug/L
Chloromethar	ne				ND	1.0		ug/L
Vinyl Chloride	Э				ND	0.5	0.1	ug/L
Bromomethar	ne				ND	1.0		ug/L
Chloroethane)				ND	1.0		ug/L
Trichlorofluor	omethane				ND	1.0		ug/L
Acetone					ND	10		ug/L
Freon 113					ND	2.0		ug/L
1,1-Dichloroe	thene				ND	0.5		ug/L
Methylene Ch	nloride				ND	10		ug/L
Carbon Disul	fide				ND	0.5		ug/L
MTBE					ND	0.5		ug/L
trans-1,2-Dich	nloroethene				ND	0.5		ug/L
Vinyl Acetate					ND	10		ug/L
1,1-Dichloroe	thane				ND	0.5		ug/L
2-Butanone					ND	10		ug/L
cis-1,2-Dichlo	proethene				ND	0.5		ug/L
2,2-Dichlorop	oropane				ND	0.5		ug/L
Chloroform					ND	2.0		ug/L
Bromochloror	methane				ND	0.5		ug/L
1,1,1-Trichlor	oethane				ND	0.5		ug/L
1,1-Dichlorop	oropene				ND	0.5		ug/L
Carbon Tetra	chloride				ND	0.5		ug/L
1,2-Dichloroe	thane				ND	0.5		ug/L
Benzene					ND	0.5		ug/L
Trichloroethe	ne				ND	0.5		ug/L
1,2-Dichlorop	oropane				ND	0.5		ug/L
Bromodichlor	omethane				ND	0.5		ug/L
Dibromometh	ane				ND	0.5		ug/L
4-Methyl-2-Pe	entanone				ND	10		ug/L
cis-1,3-Dichlo	propropene				ND	0.5		ug/L
Toluene					ND	0.5		ug/L
trans-1,3-Dich	nloropropene				ND	0.5		ug/L
1,1,2-Trichlor	oethane				ND	0.5		ug/L
2-Hexanone					ND	10		ug/L
1,3-Dichlorop	oropane				ND	0.5		ug/L
Tetrachloroet	hene				ND	0.5		ug/L
Dibromochlor	romethane				ND	0.5		ug/L
1,2-Dibromoe	ethane				ND	0.5		ug/L
Chlorobenzer	ne				ND	0.5		ug/L
1,1,1,2-Tetrac	chloroethane				ND	0.5		ug/L
Ethylbenzene)				ND	0.5		ug/L
m,p-Xylenes					ND	0.5		ug/L

Lab #: 315808	Project#:	19-032.12	2	
Client: Envirocom	Client: Envirocom Location: Milligan			
Analyte	Result	RL	MDL	Units
o-Xylene	ND	0.5		ug/L
Styrene	ND	0.5		ug/L
Bromoform	ND	1.0		ug/L
lsopropylbenzene	ND	0.5		ug/L
1,1,2,2-Tetrachloroethane	ND	0.5		ug/L
1,2,3-Trichloropropane	ND	0.5		ug/L
Propylbenzene	ND	0.5		ug/L
Bromobenzene	ND	0.5		ug/L
1,3,5-Trimethylbenzene	ND	0.5		ug/L
2-Chlorotoluene	ND	0.5		ug/L
4-Chlorotoluene	ND	0.5		ug/L
tert-Butylbenzene	ND	0.5		ug/L
1,2,4-Trimethylbenzene	ND	0.5		ug/L
sec-Butylbenzene	ND	0.5		ug/L
para-Isopropyl Toluene	ND	0.5		ug/L
1,3-Dichlorobenzene	ND	0.5		ug/L
1,4-Dichlorobenzene	ND	0.5		ug/L
n-Butylbenzene	ND	0.5		ug/L
1,2-Dichlorobenzene	ND	0.5		ug/L
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L
1,2,4-Trichlorobenzene	ND	0.5		ug/L
Hexachlorobutadiene	ND	2.0		ug/L
Naphthalene	ND	2.0		ug/L
1,2,3-Trichlorobenzene	ND	0.5		ug/L
Surrogate		%REC	Lim	its
Dibromofluoromethane		112	80-	120
1,2-Dichloroethane-d4		125 *	80-	120
Toluene-d8		108	80-	120
Bromofluorobenzene		108	80-	120

Legend

*: Value is outside QC limits

MDL: Method Detection Limit

ND: Not Detected

Enthalpy Analytical 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900

enthalpy.com

Lab Job Number: 315800 Report Level: II Report Date: 12/13/2019

Analytical Report prepared for:

Mitch Hajiaghai Envirocom 800 Charcot Avenue Suite 114 San Jose, CA 95131

Project: 19-032.11 - Milligan

Authorized for release by:

Jessie Silbermon

Jess Silberman, Project Manager (510) 204-2223 Jessica.Silberman@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 2896, NELAP# 4044-001

Sample Summary

Mitch Hajiaghai	Lab Job #:	315800
Envirocom	Project No:	19-032.11
800 Charcot Avenue	Location:	Milligan
Suite 114	Date Received:	11/12/19
San Jose, CA 95131		,, . 0

Sample ID	Lab ID	Collected	Matrix
MSG1	315800-001	11/12/19 00:00	Air
MSG2	315800-002	11/12/19 00:00	Air
MSG3	315800-003	11/12/19 00:00	Air
MSG4	315800-004	11/12/19 00:00	Air
MSG5	315800-005	11/12/19 00:00	Air

Case Narrative

Envirocom	Lab Job Number:	315800
800 Charcot Avenue	Project No:	19-032.11
Suite 114	Location:	Milligan
San Jose, CA 95131	Date Received:	11/12/19
Mitch Hajiaghai		

This data package contains sample and QC results for five air samples, requested for the above referenced project on 11/12/19. The samples were received intact.

Volatile Organics in Air by MS (EPA TO-15):

Enthalpy Analytical (Orange) in Orange, CA performed the analysis (NELAP certified). Please see the Enthalpy Analytical (Orange) case narrative.

Volatile Organics in Air (EPA TO-3):

Enthalpy Analytical (Orange) in Orange, CA performed the analysis (not NELAP certified). Please see the Enthalpy Analytical (Orange) case narrative.

<u> </u>	CHAIN OF CUSTODY												
Project Name: <u>Mil</u> Project Location <u>150</u>		Millig: 150 N. 1	Milligan Pi 50 N. Autumn Street 55 C			Project No:19-032.11 <u>↓ 5 3</u> Client:City of San Jose			1 Hajiayl	uc i			
Sample ID	Date Sampled	Sampling Time	Matrix	N° of Containers		Analysis	Turnaro	und Time					
					TO-15								
M56-1	11/12/19		Air	1	χ				24-hour Other 24-hour Other	Normal			
<u>MG67</u> MG63									24-hour Other	Normal			
MGG4			• 1						24-hour 24-hour Other	Normal			
MASS					V				24-hour Other 24-hour	Normal			
									24-hour Other	Normal			
NOTES:				Dete		Fime Received by)ate	Time			
Relinquish	taj.	lle	2	11/12/10	r 15	10 Judsec A	udson	4	12/19	15:10			
Judru	f Sheder	r)	11/12/	19 17:9	15	h	\frown	- 1	1 /12/19	Die			

P.O. Box 28310 · San Jose · California · 95159 Phone (408) 894-9062 · Fax (408) 894-9063

SAMPLE RECEIPT CHECKLIST			
Section 1: Login # Client: Client:		ENTH	IALPY
Date Received: 11124 Project:		• •	
Section 2: Shipping info (if applicable)		_	
Are custody seals present? \Box No, or \Box Yes. If yes, where? \Box on cooler, \Box on samples,	🗆 on pac	.kage	
Date: How many Dignature, Dinitials, None			
Were custody seals intact upon arrival? □ Yes □ No □ N/A			
Samples received in a cooler? Yes, how many? No (skip Section 3 below)			
If no cooler Sample Temp (°C): using IR Gun # 🗆 B, or 🗖 C			
Samples received on ice directly from the field. Cooling process had begun			
If in cooler: Date Opened By (print) (sign)		_	
Section 3: Important : Notify PM if temperature exc	eeds 6°C (or arrive	frozen.
Packing in cooler: (if other, describe)			
Bubble Wrap. Foam blocks, Bags, None, Cloth material, Cardboard, Styrofoam, C] Paper to	owels	
□ Samples received on ice directly from the field. Cooling process had begun			
Type of ice used : U Wet. Blue/Gel, None Temperature blank(s) included?]Yes, [] No	
Temperature measured using Thermometer ID:, or IR Gun # D B D C			
Cooler Temp (°C): #1: , #2: , #3: , #4: , #4: , #5: , #6: , #6: ,,	#7:		
Section 4:	YES	NO	N/A
Were custody papers dry, filled out properly, and the project identifiable			
Were Method 5035 sampling containers present?			
If YES what time were they transferred to freezer?	and and any spinores.		
Did all bottles arrive unbroken/unopened?		-	
Are there any missing / extra samples?		-	
Are samples in the appropriate containers for indicated tests?	— —		
Are sample labels present, in good condition and complete?			
Does the container count match the COC?			
Do the sample labels agree with custody papers?		~	
Was sufficient amount of sample sent for tests requested?		r	
Did you change the hold time in LIMS for unpreserved VOAs?			L
Did you change the hold time in LIMS for preserved terracores?			
Are bubbles > 6mm present in VOA samples?			
Was the client contacted concerning this sample delivery?			t
If YES, who was called?ByDate:			
Section 5:	YES	NO	N/A
Are the samples appropriately preserved? (if N/A, skip the rest of section 5)			
Did you check preservatives for all bottles for each sample?			
Did you document your preservative check?			
pH strip lot#, pH strip lot#			
Preservative added:			
D H2SO4 lot# added to sampleson/a	t		
D HCL lot# added to samples on/a	t		
D HNO3 lot# added to samples on/a	t		
□ NaOH lot# added to samples on/a	t		
Section 6:			
Explanations/Comments:			
	<u>^</u>		- 10
Date Logged in 11/12/14 By (print) AC (sign)	K-	-	_
Date Labeled $\frac{11}{12}$ 1	\sim		
Date Lancied 11 11 / 10 11 09 (printe) (0.8.1)	I		-

Rev.15.1, 09/13/2019

Laboratory Job Number 315800 Subcontracted Products Enthalpy Analytical (Orange)

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

<u>Sample #</u>	Client Sample ID
421288-001	MSG1
421288-002	MSG2
421288-003	MSG3
421288-004	MSG4
421288-005	MSG5

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Lisa Nguyen, PM

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 45 days from date received. The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

12/13/2019

15279

Matrix: Air	Client:	Enthalpy -	Berkele	ey 🛛		С	ollector: Client			
Sampled: 11/12/2019 00:00	Site:									
Sample #: 421288-001	Client Sample #:	MSG1				Samp	ole Type:			
Apalyto	P	ocult	DE	MDI	PDI	Unite	Proparad	Analyzod	By	Notos
Method: EPA TO-15	Pren Method: Meth	esuit od	DF	WDL	KUL	Units	Frepareu			1208749
1 1 1-Trichloroethane	Thep method. Meth		20	1 02	110	ua/m3		11/15/19 07:52	GO	71200140
1 1 2 2-Tetrachloroethane		ND	20	2.9	138	ug/m3		11/15/19 07:52	GO	
1 1 2-Trichloroethane			20	14	110	ug/m3		11/15/19 07:52	GO	
1 1 2-Trichlorotrifluoroethane			20	2 44	154	ug/m3		11/15/19 07:52	60	
1 1-Dichloroethane			20	1 36	80	ug/m3		11/15/19 07:52	60	
1,1 Dichloroothono			20	1.00	80	ug/m3		11/15/19 07:52	60	
1,2,4 Trichlorobonzono			20	30	1/10	ug/m3		11/15/19 07:52	60	
1,2,4-Trimothylbonzono			20	2.46	08	ug/m3		11/15/19 07:52	60	
1.2 Dibromoothano			20	2.40	154	ug/m3		11/15/19 07:52	60	
1.2 Dichloro 1.1.2.2 totrafluorooth	200		20	2.20	140	ug/m3		11/15/19 07:52	60	
1,2-Dichlorobanzana	alle		20	2.32	140	ug/m2		11/15/19 07.52	60	
1,2-Dichloroothana			20	2.10	120	ug/m3		11/15/19 07.52	GO	
			20	1.14	00	ug/ms		11/15/19 07.52	GO ČŌ	
1,2-Dichloropropane			20	1.22	92	ug/m3		11/15/19 07:52	GO	
1,3,5-I rimetnyibenzene		ND	20	2.34	98	ug/m3		11/15/19 07:52	GO	
1,3-Butadiene		ND	20	0.62	44	ug/m3		11/15/19 07:52	GO	
1,3-Dichlorobenzene		ND	20	2.26	120	ug/m3		11/15/19 07:52	GO	
1,4-Dichlorobenzene		ND	20	1.86	120	ug/m3		11/15/19 07:52	GO	
1,4-Dioxane		ND	20	1.48	360	ug/m3		11/15/19 07:52	GO	
2-Butanone (MEK)		ND	20	1.04	300	ug/m3		11/15/19 07:52	GO	
2-Hexanone		ND	20	1.32	400	ug/m3		11/15/19 07:52	GO	
4-Ethyltoluene		ND	20	2.1	98	ug/m3		11/15/19 07:52	GO	
4-Methyl-2-pentanone (MIBK)		ND	20	1.62	82	ug/m3		11/15/19 07:52	GO	
Acetone	(67.4 J	20	1.32	240	ug/m3		11/15/19 07:52	GO	J
Benzene		ND	20	0.64	64	ug/m3		11/15/19 07:52	GO	
Benzyl Chloride		ND	20	2.24	104	ug/m3		11/15/19 07:52	GO	
Bromodichloromethane		ND	20	1	134	ug/m3		11/15/19 07:52	GO	
Bromoform		ND	20	3.68	200	ug/m3		11/15/19 07:52	GO	
Bromomethane		ND	20	1.08	78	ug/m3		11/15/19 07:52	GO	
Carbon disulfide		ND	20	0.74	62	ug/m3		11/15/19 07:52	GO	
Carbon Tetrachloride		ND	20	2.08	126	ug/m3		11/15/19 07:52	GO	
Chlorobenzene		ND	20	1.52	92	ug/m3		11/15/19 07:52	GO	
Chlorodibromomethane		ND	20	1.58	170	ug/m3		11/15/19 07:52	GO	
Chloroethane		ND	20	1.44	52	ug/m3		11/15/19 07:52	GO	
Chloroform		ND	20	1.42	98	ug/m3		11/15/19 07:52	GO	
Chloromethane		ND	20	0.64	42	ug/m3		11/15/19 07:52	GO	
cis-1,2-Dichloroethene		ND	20	1.2	80	ug/m3		11/15/19 07:52	GO	
cis-1,3-dichloropropene		ND	20	0.98	90	ug/m3		11/15/19 07:52	GO	
Cyclohexane	(62.4 J	20	0.96	68	ug/m3		11/15/19 07:52	GO	J
Dichlorodifluoromethane		ND	20	1.32	98	ug/m3		11/15/19 07:52	GO	
Ethyl Acetate		ND	20	1.86	360	ug/m3		11/15/19 07:52	GO	
Ethylbenzene		ND	20	1.28	86	ug/m3		11/15/19 07:52	GO	
Heptane	2	20.7 J	20	1.16	82	ug/m3		11/15/19 07:52	GO	J
Hexachlorobutadiene		ND	20	42	220	ug/m3		11/15/19 07:52	GO	
Hexane	4	42.5 J	20	1.3	70	ug/m3		11/15/19 07:52	GO	J
Isopropyl alcohol (IPA)		17.2 J	20	1.14	240	ug/m3		11/15/19 07:52	GO	J
m and p-Xylene		ND	20	2.48	86	ug/m3		11/15/19 07:52	GO	
Methylene chloride	•	18.5 J	20	0.98	70	ug/m3		11/15/19 07:52	GO	J
Methyl-t-butyl Ether (MTBE)		ND	20	11.48	72	ug/m3		11/15/19 07:52	GO	
Naphthalene		ND	20	0.92	104	ug/m3		11/15/19 07:52	GO	
o-Xylene		ND	20	1.2	86	ug/m3		11/15/19 07:52	GO	
Propene		ND	20	2.58	34	ug/m3		11/15/19 07:52	GO	
Styrene		ND	20	1.34	84	ug/m3		11/15/19 07:52	GO	
Tetrachloroethene		ND	20	1.52	136	ug/m3		11/15/19 07:52	GO	
Toluene		180	20	0.76	76	ug/m3		11/15/19 07:52	GO	
						-				the less

Enthalpy Analytical, LLC 8 of 29

Matrix: Air	Clier	nt: Enthalp	y - Berkele	ey		Col	lector: Client			
Sampled: 11/12/2019 00:00	Si	te:								
Sample #: <u>421288-001</u>	Client Sample	#: MSG1				Sample	Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
trans-1,2-dichloroethene		ND	20	1.34	80	ug/m3		11/15/19 07:52	GO	
trans-1,3-dichloropropene		ND	20	1.22	90	ug/m3		11/15/19 07:52	GO	
Trichloroethene		ND	20	1.4	108	ug/m3		11/15/19 07:52	GO	
Trichlorofluoromethane		ND	20	1.76	112	ug/m3		11/15/19 07:52	GO	
Vinyl acetate		ND	20	0.8	70	ug/m3		11/15/19 07:52	GO	
Vinyl Chloride		ND	20	0.9	52	ug/m3		11/15/19 07:52	GO	
Xylenes (Total)		ND	20	1.2	86	ug/m3		11/15/19 07:52	GO	
<u>Surrogate</u>		<u>%</u>	<u>Recovery</u>		Limits	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			94		60-140					
Method: EPA TO-3M	Prep Method:	Method						QCBatchID): Q(21209046
TPH gasoline ugM3		ND	1	1227	20450	ug/m3		11/19/19 15:03	EW	Т

Matrix: Air	Client: Enthalp	oy - Berkel	еу		С	ollector: Client	
Sampled: 11/12/2019 00:	00 Site:						
Sample #: 421288-002	Client Sample #: MSG2				Samp	ole Type:	
Analyta	Posult	DE	MDI	וחפ	Unite	Proparad	Analyzad By Notas
Method: EPA TO-15	Prep Method: Method			NDL	Units	Flepaleu	OCBatchID: OC1208749
1.1.1-Trichloroethane	ND	20	1.02	110	ua/m3		11/15/19 08:35 GO
1.1.2.2-Tetrachloroethane	ND	20	2.9	138	ug/m3		11/15/19 08:35 GO
1,1,2-Trichloroethane	ND	20	1.4	110	uq/m3		11/15/19 08:35 GO
1.1.2-Trichlorotrifluoroethane	ND	20	2.44	154	ug/m3		11/15/19 08:35 GO
1,1-Dichloroethane	ND	20	1.36	80	ug/m3		11/15/19 08:35 GO
1,1-Dichloroethene	ND	20	1.9	80	ug/m3		11/15/19 08:35 GO
1,2,4-Trichlorobenzene	ND	20	30	148	ug/m3		11/15/19 08:35 GO
1,2,4-Trimethylbenzene	ND	20	2.46	98	ug/m3		11/15/19 08:35 GO
1,2-Dibromoethane	ND	20	2.26	154	ug/m3		11/15/19 08:35 GO
1,2-Dichloro-1,1,2,2-tetrafluoro	oethane ND	20	2.32	140	ug/m3		11/15/19 08:35 GO
1,2-Dichlorobenzene	ND	20	2.18	120	ug/m3		11/15/19 08:35 GO
1,2-Dichloroethane	ND	20	1.14	80	ug/m3		11/15/19 08:35 GO
1,2-Dichloropropane	ND	20	1.22	92	ug/m3		11/15/19 08:35 GO
1,3,5-Trimethylbenzene	ND	20	2.34	98	ug/m3		11/15/19 08:35 GO
1,3-Butadiene	ND	20	0.62	44	ug/m3		11/15/19 08:35 GO
1,3-Dichlorobenzene	ND	20	2.26	120	ug/m3		11/15/19 08:35 GO
1,4-Dichlorobenzene	ND	20	1.86	120	ug/m3		11/15/19 08:35 GO
1,4-Dioxane	ND	20	1.48	360	ug/m3		11/15/19 08:35 GO
2-Butanone (MEK)	ND	20	1.04	300	ug/m3		11/15/19 08:35 GO
2-Hexanone	ND	20	1.32	400	ug/m3		11/15/19 08:35 GO
4-Ethyltoluene	ND	20	2.1	98	ug/m3		11/15/19 08:35 GO
4-Methyl-2-pentanone (MIBK	() 34.6 J	20	1.62	82	ug/m3		11/15/19 08:35 GO J
Acetone	120 J	20	1.32	240	ug/m3		11/15/19 08:35 GO J
Benzene	38.1 J	20	0.64	64	ug/m3		11/15/19 08:35 GO J
Benzyl Chloride	ND	20	2.24	104	ug/m3		11/15/19 08:35 GO
Bromodichloromethane	ND	20	1	134	ug/m3		11/15/19 08:35 GO
Bromoform	ND	20	3.68	200	ug/m3		11/15/19 08:35 GO
Bromomethane	ND	20	1.08	78	ug/m3		11/15/19 08:35 GO
Carbon disulfide	ND	20	0.74	62	ug/m3		11/15/19 08:35 GO
Carbon Tetrachloride	ND	20	2.08	126	ug/m3		11/15/19 08:35 GO
Chlorobenzene	ND	20	1.52	92	ug/m3		11/15/19 08:35 GO
Chlorodibromomethane	ND	20	1.58	170	ug/m3		11/15/19 08:35 GO
Chloroethane	ND	20	1.44	52	ug/m3		11/15/19 08:35 GO
Chloroform	ND	20	1.42	98	ug/m3		11/15/19 08:35 GO
Chloromethane	ND	20	0.64	42	ug/m3		11/15/19 08:35 GO
cis-1,2-Dichloroethene	ND	20	1.2	80	ug/m3		11/15/19 08:35 GO
cis-1,3-dichloropropene	ND	20	0.98	90	ug/m3		11/15/19 08:35 GO
Cyclohexane	420	20	0.96	68	ug/m3		11/15/19 08:35 GO
Dichlorodifluoromethane	ND	20	1.32	98	ug/m3		11/15/19 08:35 GO
Ethyl Acetate	ND	20	1.86	360	ug/m3		11/15/19 08:35 GO
Ethylbenzene	ND	20	1.28	86	ug/m3		11/15/19 08:35 GO
Heptane	120	20	1.16	82	ug/m3		11/15/19 08:35 GO
Hexachlorobutadiene	ND	20	42	220	ug/m3		11/15/19 08:35 GO
Hexane	300	20	1.3	70	ug/m3		11/15/19 08:35 GO
Isopropyl alcohol (IPA)	22.5 J	20	1.14	240	ug/m3		11/15/19 08:35 GO J
m and p-Xylene	36.4 J	20	2.48	86	ug/m3		11/15/19 08:35 GO J
Methylene chloride	17.7 J	20	0.98	70	ug/m3		11/15/19 08:35 GO J
Methyl-t-butyl Ether (MTBE)	ND	20	11.48	72	ug/m3		11/15/19 08:35 GO
Naphthalene	ND	20	0.92	104	ug/m3		11/15/19 08:35 GO
o-Xylene	ND	20	1.2	86	ug/m3		11/15/19 08:35 GO
Propene	ND	20	2.58	34	ug/m3		11/15/19 08:35 GO
Styrene	ND	20	1.34	84	ug/m3		11/15/19 08:35 GO
Tetrachloroethene	ND	20	1.52	136	ug/m3		11/15/19 08:35 GO
Toluene	440	20	0.76	76	ug/m3		11/15/19 08:35 GO
							Entholou

Matrix: Air	Clien	t: Enthalp	y - Berkele	ey		Col	lector: Client			
Sampled: 11/12/2019 00:00	Site	e:								
Sample #: <u>421288-002</u>	Client Sample	#: MSG2				Sample	Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	Ву	Notes
trans-1,2-dichloroethene		ND	20	1.34	80	ug/m3		11/15/19 08:35	GO	
trans-1,3-dichloropropene		ND	20	1.22	90	ug/m3		11/15/19 08:35	GO	
Trichloroethene		ND	20	1.4	108	ug/m3		11/15/19 08:35	GO	
Trichlorofluoromethane		ND	20	1.76	112	ug/m3		11/15/19 08:35	GO	
Vinyl acetate		ND	20	0.8	70	ug/m3		11/15/19 08:35	GO	
Vinyl Chloride		ND	20	0.9	52	ug/m3		11/15/19 08:35	GO	
Xylenes (Total)		36.4 J	20	1.2	86	ug/m3		11/15/19 08:35	GO	J
<u>Surrogate</u>		%	<u>Recovery</u>		<u>Limits</u>	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			102		60-140					
Method: EPA TO-3M	Prep Method: N	lethod						QCBatchI): Q(21209046
TPH gasoline ugM3		ND	1	1227	20450	ug/m3		11/19/19 16:46	EW	Т

Matrix: Air	Client:	Enthalpy -	Berkele	ey		C	ollector: Client			
Sampled: 11/12/2019 0	00:00 Site:									
Sample #: 421288-003	Client Sample #:	MSG3				Samp	le Type:			
Analyta	P	ocult	DE	MDI	PDI	Unite	Proparad	Analyzod	By	Notos
Method: EPA TO-15	Prep Method: Meth	nod			NDL	Units	Fiepaieu	QCBatchIC		1208749
1.1.1-Trichloroethane		ND	20	1.02	110	ua/m3		11/15/19 13:00	GO	
1.1.2.2-Tetrachloroethane		ND	20	2.9	138	ua/m3		11/15/19 13:00	GO	
1,1,2-Trichloroethane		ND	20	1.4	110	ug/m3		11/15/19 13:00	GO	
1,1,2-Trichlorotrifluoroethan	e	ND	20	2.44	154	ug/m3		11/15/19 13:00	GO	
1,1-Dichloroethane		ND	20	1.36	80	ug/m3		11/15/19 13:00	GO	
1,1-Dichloroethene		ND	20	1.9	80	ug/m3		11/15/19 13:00	GO	
1,2,4-Trichlorobenzene		ND	20	30	148	ug/m3		11/15/19 13:00	GO	
1,2,4-Trimethylbenzene		ND	20	2.46	98	ug/m3		11/15/19 13:00	GO	
1,2-Dibromoethane		ND	20	2.26	154	ug/m3		11/15/19 13:00	GO	
1,2-Dichloro-1,1,2,2-tetraflue	oroethane	ND	20	2.32	140	ug/m3		11/15/19 13:00	GO	
1,2-Dichlorobenzene		ND	20	2.18	120	ug/m3		11/15/19 13:00	GO	
1,2-Dichloroethane		ND	20	1.14	80	ug/m3		11/15/19 13:00	GO	
1,2-Dichloropropane		ND	20	1.22	92	ug/m3		11/15/19 13:00	GO	
1,3,5-Trimethylbenzene		ND	20	2.34	98	ug/m3		11/15/19 13:00	GO	
1,3-Butadiene		ND	20	0.62	44	ug/m3		11/15/19 13:00	GO	
1,3-Dichlorobenzene		ND	20	2.26	120	ug/m3		11/15/19 13:00	GO	
1.4-Dichlorobenzene		ND	20	1.86	120	ua/m3		11/15/19 13:00	GO	
1,4-Dioxane		ND	20	1.48	360	ug/m3		11/15/19 13:00	GO	
2-Butanone (MEK)		ND	20	1.04	300	ua/m3		11/15/19 13:00	GO	
2-Hexanone		ND	20	1.32	400	ua/m3		11/15/19 13:00	GO	
4-Ethvltoluene		ND	20	2.1	98	ua/m3		11/15/19 13:00	GO	
4-Methyl-2-pentanone (MIB)	٢)	ND	20	1.62	82	ua/m3		11/15/19 13:00	GO	
Acetone	,	110 J	20	1.32	240	ua/m3		11/15/19 13:00	GO	J
Benzene		20.1 J	20	0.64	64	ua/m3		11/15/19 13:00	GO	J
Benzvl Chloride		ND	20	2.24	104	ua/m3		11/15/19 13:00	GO	
Bromodichloromethane		ND	20	1	134	ua/m3		11/15/19 13:00	GO	
Bromoform		ND	20	3.68	200	ug/m3		11/15/19 13:00	GO	
Bromomethane		ND	20	1.08	78	ug/m3		11/15/19 13:00	GO	
Carbon disulfide		ND	20	0.74	62	ua/m3		11/15/19 13:00	GO	
Carbon Tetrachloride		ND	20	2.08	126	ua/m3		11/15/19 13:00	GO	
Chlorobenzene		ND	20	1.52	92	ug/m3		11/15/19 13:00	GO	
Chlorodibromomethane		ND	20	1.58	170	ug/m3		11/15/19 13:00	GO	
Chloroethane		ND	20	1.44	52	ua/m3		11/15/19 13:00	GO	
Chloroform		ND	20	1.42	98	ug/m3		11/15/19 13:00	GO	
Chloromethane		ND	20	0.64	42	ug/m3		11/15/19 13:00	GO	
cis-1,2-Dichloroethene		ND	20	1.2	80	ug/m3		11/15/19 13:00	GO	
cis-1,3-dichloropropene		ND	20	0.98	90	uq/m3		11/15/19 13:00	GO	
Cyclohexane		64.9 J	20	0.96	68	ug/m3		11/15/19 13:00	GO	J
Dichlorodifluoromethane		ND	20	1.32	98	ug/m3		11/15/19 13:00	GO	
Ethyl Acetate		ND	20	1.86	360	ug/m3		11/15/19 13:00	GO	
Ethylbenzene		ND	20	1.28	86	ug/m3		11/15/19 13:00	GO	
Heptane		40.2 J	20	1.16	82	ug/m3		11/15/19 13:00	GO	J
Hexachlorobutadiene		ND	20	42	220	ug/m3		11/15/19 13:00	GO	
Hexane		44.5 J	20	1.3	70	ug/m3		11/15/19 13:00	GO	J
Isopropyl alcohol (IPA)		18.6 J	20	1.14	240	ug/m3		11/15/19 13:00	GO	J
m and p-Xylene		49.2 J	20	2.48	86	ug/m3		11/15/19 13:00	GO	J
Methylene chloride		15.8 J	20	0.98	70	ug/m3		11/15/19 13:00	GO	J
Methyl-t-butyl Ether (MTBE))	ND	20	11.48	72	ug/m3		11/15/19 13:00	GO	
Naphthalene		ND	20	0.92	104	ug/m3		11/15/19 13:00	GO	
o-Xylene		ND	20	1.2	86	ug/m3		11/15/19 13:00	GO	
Propene		ND	20	2.58	34	ug/m3		11/15/19 13:00	GO	
Styrene		ND	20	1.34	84	ug/m3		11/15/19 13:00	GO	
Tetrachloroethene		ND	20	1.52	136	ug/m3		11/15/19 13:00	GO	
Toluene		370	20	0.76	76	ug/m3		11/15/19 13:00	GO	
									En	tholov

Matrix: Air	Clien	t: Enthalp	y - Berkele	ey		Col	lector: Client			
Sampled: 11/12/2019 00:00	Site	e:								
Sample #: <u>421288-003</u>	Client Sample #	#: MSG3				Sample	Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	Ву	Notes
trans-1,2-dichloroethene		ND	20	1.34	80	ug/m3		11/15/19 13:00	GO	
trans-1,3-dichloropropene		ND	20	1.22	90	ug/m3		11/15/19 13:00	GO	
Trichloroethene		ND	20	1.4	108	ug/m3		11/15/19 13:00	GO	
Trichlorofluoromethane		ND	20	1.76	112	ug/m3		11/15/19 13:00	GO	
Vinyl acetate		ND	20	0.8	70	ug/m3		11/15/19 13:00	GO	
Vinyl Chloride		ND	20	0.9	52	ug/m3		11/15/19 13:00	GO	
Xylenes (Total)		49.2 J	20	1.2	86	ug/m3		11/15/19 13:00	GO	J
<u>Surrogate</u>		%	<u>Recovery</u>		<u>Limits</u>	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			104		60-140					
Method: EPA TO-3M	Prep Method: M	lethod						QCBatchI): Q(21209046
TPH gasoline ugM3		ND	1	1227	20450	ug/m3		11/19/19 17:22	EW	Т

Matrix: Air	Client: Entha	alpy - Berke	ley		С	ollector: Client	
Sampled: 11/12/2019 00:00	Site:						
Sample #: <u>421288-004</u>	Client Sample #: MSG	4			Samp	ole Type:	
Apalyta	Posu		MDI	וחפ	Unite	Proparod	Analyzed By Notes
Method: FPA TO-15	Prep Method: Method		IVIDL	RDL	Units	Flepaleu	OCBatchID: OC1208888
1 1 1-Trichloroethane	ND	20	1 02	110	ua/m3		11/15/19 19:53 GO
1 1 2 2-Tetrachloroethane	ND	20	29	138	ug/m3		11/15/19 19:53 GO
1 1 2-Trichloroethane	ND	20	14	110	ug/m3		11/15/19 19:53 GO
1 1 2-Trichlorotrifluoroethane		20	2 44	154	ug/m3		11/15/19 19:53 GO
1 1 Dichloroothano		20	1 36	80	ug/m3		11/15/19 19:53 60
1,1 Dichloroothono		20	1.50	80	ug/m3		11/15/19 19:53 CO
1,2,4 Trichlorobonzono		20	30	149	ug/m3		11/15/19 19:53 CO
1,2,4-Thermothylbonzono		20	2.46	08	ug/m3		11/15/19 19:53 GO
1.2 Dibromoothano		20	2.40	154	ug/m3		11/15/19 19:53 CO
1.2 Dichloro 1.1.2.2 totrafluorooth		20	2.20	140	ug/m3		11/15/19 19:53 GO
1,2-Dichlorohonzono		20	2.32	140	ug/m2		11/15/19 19:53 GO
1,2-Dichloroothana	ND	20	2.10	120	ug/m3		11/15/19 19:53 GO
		20	1.14	00	ug/ms		11/15/19 19:53 GO
1,2-Dichloropropane	ND	20	1.22	92	ug/m3		11/15/19 19:53 GO
1,3,5-I rimetnyibenzene	ND	20	2.34	98	ug/m3		11/15/19 19:53 GO
1,3-Butadiene	ND	20	0.62	44	ug/m3		11/15/19 19:53 GO
1,3-Dichlorobenzene	ND	20	2.26	120	ug/m3		11/15/19 19:53 GO
1,4-Dichlorobenzene	ND	20	1.86	120	ug/m3		11/15/19 19:53 GO
1,4-Dioxane	ND	20	1.48	360	ug/m3		11/15/19 19:53 GO
2-Butanone (MEK)	ND	20	1.04	300	ug/m3		11/15/19 19:53 GO
2-Hexanone	ND	20	1.32	400	ug/m3		11/15/19 19:53 GO
4-Ethyltoluene	ND	20	2.1	98	ug/m3		11/15/19 19:53 GO
4-Methyl-2-pentanone (MIBK)	ND	20	1.62	82	ug/m3		11/15/19 19:53 GO
Acetone	68.9	J 20	1.32	240	ug/m3		11/15/19 19:53 GO J
Benzene	ND	20	0.64	64	ug/m3		11/15/19 19:53 GO
Benzyl Chloride	ND	20	2.24	104	ug/m3		11/15/19 19:53 GO
Bromodichloromethane	ND	20	1	134	ug/m3		11/15/19 19:53 GO
Bromoform	ND	20	3.68	200	ug/m3		11/15/19 19:53 GO
Bromomethane	ND	20	1.08	78	ug/m3		11/15/19 19:53 GO
Carbon disulfide	ND	20	0.74	62	ug/m3		11/15/19 19:53 GO
Carbon Tetrachloride	ND	20	2.08	126	ug/m3		11/15/19 19:53 GO
Chlorobenzene	ND	20	1.52	92	ug/m3		11/15/19 19:53 GO
Chlorodibromomethane	ND	20	1.58	170	ug/m3		11/15/19 19:53 GO
Chloroethane	ND	20	1.44	52	ug/m3		11/15/19 19:53 GO
Chloroform	ND	20	1.42	98	ug/m3		11/15/19 19:53 GO
Chloromethane	ND	20	0.64	42	ug/m3		11/15/19 19:53 GO
cis-1,2-Dichloroethene	ND	20	1.2	80	ug/m3		11/15/19 19:53 GO
cis-1,3-dichloropropene	ND	20	0.98	90	ug/m3		11/15/19 19:53 GO
Cyclohexane	16.6	J 20	0.96	68	ug/m3		11/15/19 19:53 GO J
Dichlorodifluoromethane	ND	20	1.32	98	ug/m3		11/15/19 19:53 GO
Ethyl Acetate	ND	20	1.86	360	ug/m3		11/15/19 19:53 GO
Ethylbenzene	ND	20	1.28	86	ug/m3		11/15/19 19:53 GO
Heptane	17.3	J 20	1.16	82	ug/m3		11/15/19 19:53 GO J
Hexachlorobutadiene	ND	20	42	220	ug/m3		11/15/19 19:53 GO
Hexane	ND	20	1.3	70	ug/m3		11/15/19 19:53 GO
Isopropyl alcohol (IPA)	24.9	J 20	1.14	240	ug/m3		11/15/19 19:53 GO J
m and p-Xylene	23.7	J 20	2.48	86	ug/m3		11/15/19 19:53 GO J
Methylene chloride	15.0	J 20	0.98	70	ug/m3		11/15/19 19:53 GO J
Methyl-t-butyl Ether (MTBE)	ND	20	11.48	72	ug/m3		11/15/19 19:53 GO
Naphthalene	ND	20	0.92	104	ug/m3		11/15/19 19:53 GO
o-Xylene	ND	20	1.2	86	ug/m3		11/15/19 19:53 GO
Propene	ND	20	2.58	34	ug/m3		11/15/19 19:53 GO
Styrene	ND	20	1.34	84	ug/m3		11/15/19 19:53 GO
Tetrachloroethene	ND	20	1.52	136	ua/m3		11/15/19 19:53 GO
Toluene	130	20	0.76	76	ug/m3		11/15/19 19:53 GO
				-	5 -		

Enthalpy Analytical, LLC 14 of 29

Matrix: Air	Clien	t: Enthalpy	/ - Berkele	ey		Col	lector: Client			
Sampled: 11/12/2019 00:00	Site	e:								
Sample #: <u>421288-004</u>	Client Sample #	#: MSG4				Sample	Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	Ву	Notes
trans-1,2-dichloroethene		ND	20	1.34	80	ug/m3		11/15/19 19:53	GO	
trans-1,3-dichloropropene		ND	20	1.22	90	ug/m3		11/15/19 19:53	GO	
Trichloroethene		ND	20	1.4	108	ug/m3		11/15/19 19:53	GO	
Trichlorofluoromethane		ND	20	1.76	112	ug/m3		11/15/19 19:53	GO	
Vinyl acetate		ND	20	0.8	70	ug/m3		11/15/19 19:53	GO	
Vinyl Chloride		ND	20	0.9	52	ug/m3		11/15/19 19:53	GO	
Xylenes (Total)		23.7 J	20	1.2	86	ug/m3		11/15/19 19:53	GO	J
<u>Surrogate</u>		<u>%</u> [Recovery		<u>Limits</u>	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			96		60-140					
Method: EPA TO-3M	Prep Method: N	lethod						QCBatchIE): Q(21209046
TPH gasoline ugM3		ND	1	1227	20450	ug/m3		11/19/19 17:54	EW	Т

Matrix: Air	Client: Enthalpy	- Berkel	еу		C	ollector: Client	
Sampled: 11/12/2019 00:00	Site:						
Sample #: 421288-005	Client Sample #: MSG5				Samp	le Type:	
Analyte	Result	DE	MDI	BDI	Units	Prenared	Analyzed By Notes
Method: EPA TO-15	Prep Method: Method		MDL	RDL	Onits	Tieparea	QCBatchID: QC1208888
1,1,1-Trichloroethane	ND	5	0.255	27.5	ug/m3		11/16/19 01:50 GO
1,1,2,2-Tetrachloroethane	ND	5	0.725	34.5	ug/m3		11/16/19 01:50 GO
1,1,2-Trichloroethane	ND	5	0.35	27.5	ug/m3		11/16/19 01:50 GO
1,1,2-Trichlorotrifluoroethane	ND	5	0.61	38.5	ug/m3		11/16/19 01:50 GO
1,1-Dichloroethane	ND	5	0.34	20	ug/m3		11/16/19 01:50 GO
1,1-Dichloroethene	ND	5	0.475	20	ug/m3		11/16/19 01:50 GO
1,2,4-Trichlorobenzene	ND	5	7.5	37	ug/m3		11/16/19 01:50 GO
1,2,4-Trimethylbenzene	6.7 J	5	0.615	24.5	ug/m3		11/16/19 01:50 GO J
1,2-Dibromoethane	ND	5	0.565	38.5	ug/m3		11/16/19 01:50 GO
1,2-Dichloro-1,1,2,2-tetrafluoroetha	ane ND	5	0.58	35	ug/m3		11/16/19 01:50 GO
1,2-Dichlorobenzene	ND	5	0.545	30	ug/m3		11/16/19 01:50 GO
1,2-Dichloroethane	ND	5	0.285	20	ug/m3		11/16/19 01:50 GO
1,2-Dichloropropane	ND	5	0.305	23	ug/m3		11/16/19 01:50 GO
1,3,5-Trimethylbenzene	ND	5	0.585	24.5	ug/m3		11/16/19 01:50 GO
1,3-Butadiene	ND	5	0.155	11	ug/m3		11/16/19 01:50 GO
1,3-Dichlorobenzene	ND	5	0.565	30	ug/m3		11/16/19 01:50 GO
1,4-Dichlorobenzene	ND	5	0.465	30	ug/m3		11/16/19 01:50 GO
1,4-Dioxane	ND	5	0.37	90	ug/m3		11/16/19 01:50 GO
2-Butanone (MEK)	ND	5	0.26	75	ug/m3		11/16/19 01:50 GO
2-Hexanone	ND	5	0.33	100	ug/m3		11/16/19 01:50 GO
4-Ethyltoluene	5.8 J	5	0.525	24.5	ug/m3		11/16/19 01:50 GO J
4-Methyl-2-pentanone (MIBK)	18.5 J	5	0.405	20.5	ug/m3		11/16/19 01:50 GO J
Acetone	57.5 J	5	0.33	60	ug/m3		11/16/19 01:50 GO J
Benzene	4.2 J	5	0.16	16	ug/m3		11/16/19 01:50 GO J
Benzyl Chloride	ND	5	0.56	26	ug/m3		11/16/19 01:50 GO
Bromodichloromethane	ND	5	0.25	33.5	ug/m3		11/16/19 01:50 GO
Bromoform	ND	5	0.92	50	ug/m3		11/16/19 01:50 GO
Bromomethane	ND	5	0.27	19.5	ug/m3		11/16/19 01:50 GO
Carbon disulfide	ND	5	0.185	15.5	ug/m3		11/16/19 01:50 GO
Carbon Tetrachloride	ND	5	0.52	31.5	ug/m3		11/16/19 01:50 GO
Chlorobenzene	ND	5	0.38	23	ug/m3		11/16/19 01:50 GO
Chlorodibromomethane	ND	5	0.395	42.5	ug/m3		11/16/19 01:50 GO
Chloroethane	ND	5	0.36	13	ug/m3		11/16/19 01:50 GO
Chloroform	ND	5	0.355	24.5	ug/m3		11/16/19 01:50 GO
Chloromethane	ND	5	0.16	10.5	ug/m3		11/16/19 01:50 GO
cis-1,2-Dichloroethene	ND	5	0.3	20	ug/m3		11/16/19 01:50 GO
cis-1,3-dichloropropene	ND	5	0.245	22.5	ug/m3		11/16/19 01:50 GO
Cyclohexane	8.7 J	5	0.24	17	ug/m3		11/16/19 01:50 GO J
Dichlorodifluoromethane	ND	5	0.33	24.5	ug/m3		11/16/19 01:50 GO
Ethyl Acetate	ND	5	0.465	90	ug/m3		11/16/19 01:50 GO
Ethylbenzene	11.0 J	5	0.32	21.5	ug/m3		11/16/19 01:50 GO J
Heptane	ND	5	0.29	20.5	ug/m3		11/16/19 01:50 GO
Hexachlorobutadiene	ND	5	10.5	55	ug/m3		11/16/19 01:50 GO
Hexane	5.5 J	5	0.325	17.5	ug/m3		11/16/19 01:50 GO J
Isopropyl alcohol (IPA)	10.6 J	5	0.285	60	ug/m3		11/16/19 01:50 GO J
m and p-Xylene	54.0	5	0.62	21.5	ug/m3		11/16/19 01:50 GO
Methylene chloride	14.9 J	5	0.245	17.5	ug/m3		11/16/19 01:50 GO J
Methyl-t-butyl Ether (MTBE)	ND	5	2.87	18	ug/m3		11/16/19 01:50 GO
Naphthalene	ND	5	0.23	26	ug/m3		11/16/19 01:50 GO
o-Xylene	22.3	5	0.3	21.5	ug/m3		11/16/19 01:50 GO
Propene	ND	5	0.645	8.5	ug/m3		11/16/19 01:50 GO
Styrene	ND	5	0.335	21	ug/m3		11/16/19 01:50 GO
Tetrachloroethene	ND	5	0.38	34	ug/m3		11/16/19 01:50 GO
Toluene	27.4	5	0.19	19	ug/m3		11/16/19 01:50 GO
			–				Eathola

Enthalpy Analytical, LLC 16 of 29

Matrix: Air	Client	: Enthalpy	- Berkel	еу		Col	ector: Client			
Sampled: 11/12/2019 00:00	Site	:								
Sample #: <u>421288-005</u>	Client Sample #	: MSG5				Sample	Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
trans-1,2-dichloroethene		ND	5	0.335	20	ug/m3		11/16/19 01:50	GO	
trans-1,3-dichloropropene		ND	5	0.305	22.5	ug/m3		11/16/19 01:50	GO	
Trichloroethene		ND	5	0.35	27	ug/m3		11/16/19 01:50	GO	
Trichlorofluoromethane		ND	5	0.44	28	ug/m3		11/16/19 01:50	GO	
Vinyl acetate		ND	5	0.2	17.5	ug/m3		11/16/19 01:50	GO	
Vinyl Chloride		ND	5	0.225	13	ug/m3		11/16/19 01:50	GO	
Xylenes (Total)		76.3	5	0.3	21.5	ug/m3		11/16/19 01:50	GO	
<u>Surrogate</u>		<u>% F</u>	Recovery		Limits	<u>Notes</u>				
4-Bromofluorobenzene (SUR)			99		60-140					
Method: EPA TO-3M	Prep Method: M	ethod						QCBatchID): Q(21209046
TPH gasoline ugM3		ND	1	1227	20450	ug/m3		11/19/19 18:24	EW	Т

QCBatchID: QC1208749	Analyst:	gortiz	Method:	EPA TO-15							
Matrix: Air	Analyzed:	11/13/2019	Instrument:	VOA-MS (grou	ıp)						
	Blank Summary										
		Blank									
Analyte		Result	Units	MDL	RDL	Notes					
QC1208749MB1											
1,1,1-Trichloroethane		ND	ug/m3	0.051	5.5						
1,1,2,2-Tetrachloroethane		ND	ug/m3	0.145	6.9						
1,1,2-Trichloroethane		ND	ug/m3	0.07	5.5						
1,1,2-Trichlorotrifluoroethane		ND	ug/m3	0.122	7.7						
1,1-Dichloroethane		ND	ug/m3	0.068	4						
1,1-Dichloroethene		ND	ug/m3	0.095	4						
1,2,4-Trichlorobenzene		ND	ug/m3	1.5	7.4						
1,2,4-Trimethylbenzene		ND	ug/m3	0.123	4.9						
1,2-Dibromoethane		ND	ug/m3	0.113	7.7						
1,2-Dichloro-1,1,2,2-tetrafluoroethane		ND	ug/m3	0.116	7						
1,2-Dichlorobenzene		ND	ug/m3	0.109	6						
1,2-Dichloroethane		ND	ug/m3	0.057	4						
1,2-Dichloropropane		ND	ug/m3	0.061	4.6						
1,3,5-Trimethylbenzene		ND	ug/m3	0.117	4.9						
1,3-Butadiene		ND	ug/m3	0.031	2.2						
1,3-Dichlorobenzene		ND	ug/m3	0.113	6						
1,4-Dichlorobenzene		ND	ug/m3	0.093	6						
1,4-Dioxane		ND	ug/m3	0.074	18						
2-Butanone (MEK)		ND	ug/m3	0.052	15						
2-Hexanone		ND	ug/m3	0.066	20						
4-Ethyltoluene		ND	ug/m3	0.105	4.9						
4-Methyl-2-pentanone (MIBK)		ND	ug/m3	0.081	4.1						
Acetone		ND	ug/m3	0.066	12						
Benzene		ND	ug/m3	0.032	3.2						
Benzyl Chloride		ND	ug/m3	0.112	5.2						
Bromodichloromethane		ND	ug/m3	0.05	6.7						
Bromotorm		ND	ug/m3	0.184	10						
Bromomethane		ND	ug/m3	0.054	3.9						
Carbon disulfide		ND	ug/m3	0.037	3.1						
		ND	ug/m3	0.104	6.3						
Chloredibrereereetheree		ND	ug/m3	0.076	4.0						
Chlorodibromomethane		ND	ug/m3	0.079	8.5						
Chloroform		ND	ug/m3	0.072	2.0						
Chlorom		ND	ug/m3	0.071	4.9						
			ug/m3	0.032	2.1						
cis-1,2-Dichloroethene			ug/m3	0.06	4						
Cycloboxopo			ug/m3	0.049	4.0						
Dichlorodifluoromothano			ug/m3	0.048	3.4 4 0						
Ethyl Acetate			ug/m3	0.000	4.9						
Ethylbonzono			ug/m3	0.093	10						
			ug/m3	0.004	4.3						
Hovachlorobutadiono			ug/m3	2.1	4.1						
Hexaciliorobuladiene			ug/m3	2.1	35						
			ug/III3	0.005							
m and n-Xvlene			ug/m3	0.007	43						
Methylene chlorida			ug/m2	0.124	4.J 2 F						
Methylete chloride Methyletehutyl Ether (MTPE)			ug/m3	0.049	3.J 3.G						
Nanhthalene			ug/113	0.074	5.0 5.2						
			ug/m2	0.040	0.Z						
Dropene			ug/m2	0.00	4.3 1 7						
Styrene			ug/m2	0.129	1.7						
otyrene		IND	uyilla	0.007	4.4						

QCBatchID: QC1208749	Analyst:	gortiz	Method:	EPA TO-15			
Matrix: Air A	nalyzed:	11/13/2019	Instrument:	VOA-MS (group)		
		Blank					
Analyte		Result	Units	MDL	RDL	Notes	
QC1208749MB1	1					•	4
Tetrachloroethene		ND	ug/m3	0.076	6.8		
Toluene		ND	ug/m3	0.038	3.8		
trans-1,2-dichloroethene		ND	ug/m3	0.067	4		
trans-1,3-dichloropropene		ND	ug/m3	0.061	4.5		
Trichloroethene		ND	ug/m3	0.07	5.4		
Trichlorofluoromethane		ND	ug/m3	0.088	5.6		
Vinyl acetate		ND	ug/m3	0.04	3.5		
Vinyl Chloride		ND	ug/m3	0.045	2.6		
Xylenes (Total)		ND	ug/m3	0.06	4.3		

	Dup	olicate Summa	ry			
	Sample	Duplicate			Limits	
Analyte	Amount	Amount	Units	RPD	RPD	Notes
QC1208749DUP1		L			1	Source: 421174-006
1,1,1-Trichloroethane	ND	0.0	ug/m3	0.0	30	
1,1,2,2-Tetrachloroethane	ND	0.0	ug/m3	0.0	30	
1,1,2-Trichloroethane	ND	0.0	ug/m3	0.0	30	
1,1,2-Trichlorotrifluoroethane	ND	0.0	ug/m3	0.0	30	
1,1-Dichloroethane	ND	0.0	ug/m3	0.0	30	
1,1-Dichloroethene	ND	0.0	ug/m3	0.0	30	
1,2,4-Trichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,2,4-Trimethylbenzene	ND	ND	ug/m3	0.0	30	
1,2-Dibromoethane	ND	0.0	ug/m3	0.0	30	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.0	ug/m3	0.0	30	
1,2-Dichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,2-Dichloroethane	ND	0.0	ug/m3	0.0	30	
1,2-Dichloropropane	ND	0.0	ug/m3	0.0	30	
1,3,5-Trimethylbenzene	ND	0.0	ug/m3	0.0	30	
1,3-Butadiene	ND	0.0	ug/m3	0.0	30	
1,3-Dichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,4-Dichlorobenzene	ND	0.0	ug/m3	0.0	30	
1,4-Dioxane	ND	0.0	ug/m3	0.0	30	
2-Butanone (MEK)	ND	0.0	ug/m3	0.0	30	
2-Hexanone	ND	0.0	ug/m3	0.0	30	
4-Ethyltoluene	ND	0.0	ug/m3	0.0	30	
4-Methyl-2-pentanone (MIBK)	ND	0.0	ug/m3	0.0	30	
Acetone	4.5	4.4	ug/m3	2.2	30	
Benzene	ND	0.0	ug/m3	0.0	30	
Benzyl Chloride	ND	0.0	ug/m3	0.0	30	
Bromodichloromethane	ND	0.0	ug/m3	0.0	30	
Bromoform	ND	0.0	ug/m3	0.0	30	
Bromomethane	ND	0.0	ug/m3	0.0	30	
Carbon disulfide	ND	0.0	ug/m3	0.0	30	
Carbon Tetrachloride	ND	0.0	ug/m3	0.0	30	
Chlorobenzene	ND	0.0	ug/m3	0.0	30	
Chlorodibromomethane	ND	0.0	ug/m3	0.0	30	
Chloroethane	ND	0.0	ug/m3	0.0	30	
Chloroform	ND	0.0	ug/m3	0.0	30	
Chloromethane	ND	0.0	ug/m3	0.0	30	
cis-1,2-Dichloroethene	ND	0.0	ug/m3	0.0	30	
cis-1,3-dichloropropene	ND	0.0	ug/m3	0.0	30	
Cyclohexane	ND	0.0	ug/m3	0.0	30	
Dichlorodifluoromethane	ND	ND	ug/m3	0.0	30	

QCBatchID: QC1208749	Analyst:	gortiz	Method:	EPA TO-15			
Matrix: Air	Analyzed:	11/13/2019	Instrument:	VOA-MS (grou	ıp)		
		Sample	Duplicate			Limits	
Analyte		Amount	Amount	Units	RPD	RPD	Notes
QC1208749DUP1			•			•	Source: 421174-006
Ethyl Acetate		ND	0.0	ug/m3	0.0	30	
Ethylbenzene		ND	ND	ug/m3	0.0	30	
Heptane		ND	0.0	ug/m3	0.0	30	
Hexachlorobutadiene		ND	0.0	ug/m3	0.0	30	
Hexane		ND	0.0	ug/m3	0.0	30	
Isopropyl alcohol (IPA)		ND	ND	ug/m3	0.0	30	
m and p-Xylene		ND	ND	ug/m3	0.0	30	
Methylene chloride		3.8	3.7	ug/m3	2.7	30	
Methyl-t-butyl Ether (MTBE)		ND	0.0	ug/m3	0.0	30	
Naphthalene		ND	0.0	ug/m3	0.0	30	
o-Xylene		ND	0.0	ug/m3	0.0	30	
Propene		ND	ND	ug/m3	0.0	30	
Styrene		ND	0.0	ug/m3	0.0	30	
Tetrachloroethene		1200	1200	ug/m3	0.0	30	
Toluene		ND	0.0	ug/m3	0.0	30	
trans-1,2-dichloroethene		ND	0.0	ug/m3	0.0	30	
trans-1,3-dichloropropene		ND	0.0	ug/m3	0.0	30	
Trichloroethene		ND	ND	ug/m3	0.0	30	
Trichlorofluoromethane		ND	0.0	ug/m3	0.0	30	
Vinyl acetate		ND	0.0	ug/m3	0.0	30	
Vinyl Chloride		ND	0.0	ug/m3	0.0	30	
Xylenes (Total)		ND	0.0	ug/m3	0.0	30	

QCBatchID: QC1208888	Analyst:	gortiz	Method:	EPA TO-15			
Matrix: Air	Analyzed:	11/15/2019	Instrument:	VOA-MS (grou	ıp)		
		Bla	nk Summa	21			
		Blank	lik Sullillai	y 			
Analyte		Result	Units	MDI	RDI	Notes	
QC1208888MB1		rtooun	Office	INDE	THE L	110100	
1,1,1-Trichloroethane		ND	ug/m3	0.051	5.5		
1,1,2,2-Tetrachloroethane		ND	ug/m3	0.145	6.9		
1,1,2-Trichloroethane		ND	ug/m3	0.07	5.5		
1,1,2-Trichlorotrifluoroethane		ND	ug/m3	0.122	7.7		
1,1-Dichloroethane		ND	ug/m3	0.068	4		
1,1-Dichloroethene		ND	ug/m3	0.095	4		
1,2,4-Trichlorobenzene		ND	ug/m3	1.5	7.4		
1,2,4-Trimethylbenzene		ND	ug/m3	0.123	4.9		
1,2-Dibromoethane		ND	ug/m3	0.113	7.7		
1,2-Dichloro-1,1,2,2-tetrafluoroethane		ND	ug/m3	0.116	7		
1,2-Dichlorobenzene		ND	ug/m3	0.109	6		
1,2-Dichloroethane		ND	ug/m3	0.057	4		
1,2-Dichloropropane		ND	ug/m3	0.061	4.6		
1,3,5-Trimethylbenzene		ND	ug/m3	0.117	4.9		
1,3-Butadiene		ND	ug/m3	0.031	2.2		
1,3-Dichlorobenzene		ND	ug/m3	0.113	6		
1,4-Dichlorobenzene		ND	ug/m3	0.093	6		
1,4-Dioxane		ND	ug/m3	0.074	18		
2-Butanone (MEK)		ND	ug/m3	0.052	15		
2-Hexanone		ND	ug/m3	0.066	20		
4-Ethyltoluene		ND	ug/m3	0.105	4.9		
4-Methyl-2-pentanone (MIBK)		ND	ug/m3	0.081	4.1		
Acetone		ND	ug/m3	0.066	12		
Denzene Ronzul Chlorido			ug/m3	0.032	5.2		
Bromodichloromethane			ug/m3	0.112	5.Z 6.7		
Bromoform			ug/m3	0.05	10		
Bromomethane			ug/m3	0.054	30		
Carbon disulfide		ND	ug/m3	0.004	31		
Carbon Tetrachloride		ND	ug/m3	0 104	6.3		
Chlorobenzene		ND	ug/m3	0.076	4.6		
Chlorodibromomethane		ND	ug/m3	0.079	8.5		
Chloroethane		ND	ug/m3	0.072	2.6		
Chloroform		ND	ug/m3	0.071	4.9		
Chloromethane		ND	ug/m3	0.032	2.1		
cis-1,2-Dichloroethene		ND	ug/m3	0.06	4		
cis-1,3-dichloropropene		ND	ug/m3	0.049	4.5		
Cyclohexane		ND	ug/m3	0.048	3.4		
Dichlorodifluoromethane		ND	ug/m3	0.066	4.9		
Ethanol		ND	ug/m3	0.059	9.4		
Ethyl Acetate		ND	ug/m3	0.093	18		
Ethylbenzene		ND	ug/m3	0.064	4.3		
Heptane		ND	ug/m3	0.058	4.1		
Hexachlorobutadiene		ND	ug/m3	2.1	11		
Hexane		ND	ug/m3	0.065	3.5		
Isopropyl alcohol (IPA)		ND	ug/m3	0.057	12		
m and p-Xylene		ND	ug/m3	0.124	4.3		
Methylene chloride		ND	ug/m3	0.049	3.5		
Methyl-t-butyl Ether (MTBE)		ND	ug/m3	0.574	3.6		
Naphthalene		ND	ug/m3	0.046	5.2		
o-Xylene		ND	ug/m3	0.06	4.3		
Propene		ND	ug/m3	0.129	1.7		

QCBatchID: QC1208888 Analyst	aortiz	Method:	FPA TO-15			
	gonaz	mounour				
Matrix: Air Analyzed	: 11/15/2019	Instrument:	VOA-MS (grou	(qu		
	Diank	1				
	DIATIK					
Analyte	Result	Units	MDL	RDL	Notes	
QC1208888MB1						
Styrene	ND	ug/m3	0.067	4.2		
Tetrachloroethene	ND	ug/m3	0.076	6.8		
Toluene	ND	ug/m3	0.038	3.8		
trans-1,2-dichloroethene	ND	ug/m3	0.067	4		
trans-1,3-dichloropropene	ND	ug/m3	0.061	4.5		
Trichloroethene	ND	ug/m3	0.07	5.4		
Trichlorofluoromethane	ND	ug/m3	0.088	5.6		
Vinyl acetate	ND	ug/m3	0.04	3.5		
Vinyl Chloride	ND	ug/m3	0.045	2.6		
Xylenes (Total)	ND	ug/m3	0.06	4.3		

Duplicate Summary										
	Sample	Duplicate			Limits					
Analyte	Amount	Amount	Units	RPD	RPD	Notes				
QC1208888DUP1						Source: 421288-005				
1,1,1-Trichloroethane	ND	0.0	ug/m3	0.0	30					
1,1,2,2-Tetrachloroethane	ND	0.0	ug/m3	0.0	30					
1,1,2-Trichloroethane	ND	0.0	ug/m3	0.0	30					
1,1,2-Trichlorotrifluoroethane	ND	0.0	ug/m3	0.0	30					
1,1-Dichloroethane	ND	0.0	ug/m3	0.0	30					
1,1-Dichloroethene	ND	0.0	ug/m3	0.0	30					
1,2,4-Trichlorobenzene	ND	0.0	ug/m3	0.0	30					
1,2,4-Trimethylbenzene	6.7	6.8	ug/m3	1.5	30					
1,2-Dibromoethane	ND	0.0	ug/m3	0.0	30					
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.0	ug/m3	0.0	30					
1,2-Dichlorobenzene	ND	0.0	ug/m3	0.0	30					
1,2-Dichloroethane	ND	0.0	ug/m3	0.0	30					
1,2-Dichloropropane	ND	0.0	ug/m3	0.0	30					
1,3,5-Trimethylbenzene	ND	ND	ug/m3	0.0	30					
1,3-Butadiene	ND	0.0	ug/m3	0.0	30					
1,3-Dichlorobenzene	ND	0.0	ug/m3	0.0	30					
1,4-Dichlorobenzene	ND	0.0	ug/m3	0.0	30					
1,4-Dioxane	ND	0.0	ug/m3	0.0	30					
2-Butanone (MEK)	ND	ND	ug/m3	0.0	30					
2-Hexanone	ND	0.0	ug/m3	0.0	30					
4-Ethyltoluene	5.8	5.9	ug/m3	1.7	30					
4-Methyl-2-pentanone (MIBK)	18.5	18.8	ug/m3	1.6	30					
Acetone	57.5	58.3	ug/m3	1.4	30					
Benzene	4.2	4.2	ug/m3	0.0	30					
Benzyl Chloride	ND	0.0	ug/m3	0.0	30					
Bromodichloromethane	ND	0.0	ug/m3	0.0	30					
Bromoform	ND	0.0	ug/m3	0.0	30					
Bromomethane	ND	0.0	ug/m3	0.0	30					
Carbon disulfide	ND	ND	ug/m3	0.0	30					
Carbon Tetrachloride	ND	0.0	ug/m3	0.0	30					
Chlorobenzene	ND	0.0	ug/m3	0.0	30					
Chlorodibromomethane	ND	0.0	ug/m3	0.0	30					
Chloroethane	ND	0.0	ug/m3	0.0	30					
Chloroform	ND	0.0	ug/m3	0.0	30					
Chloromethane	ND	0.0	ug/m3	0.0	30					
cis-1,2-Dichloroethene	ND	0.0	ug/m3	0.0	30					
cis-1,3-dichloropropene	ND	0.0	ug/m3	0.0	30					
Cyclohexane	8.7	8.8	ug/m3	1.1	30					

QCBatchID: QC1208888	Analyst:	gortiz	Method:	EPA TO-15			
Matrix: Air	Analyzed:	11/15/2019	Instrument:	VOA-MS (grou	p)		
		Sample	Duplicate			Limits	
Analyte		Amount	Amount	Units	RPD	RPD	Notes
QC1208888DUP1						1	Source: 421288-005
Dichlorodifluoromethane		ND	ND	ug/m3	0.0	30	
Ethyl Acetate		ND	0.0	ug/m3	0.0	30	
Ethylbenzene		11.0	11.1	ug/m3	0.9	30	
Heptane		ND	ND	ug/m3	0.0	30	
Hexachlorobutadiene		ND	0.0	ug/m3	0.0	30	
Hexane		5.5	5.5	ug/m3	0.0	30	
Isopropyl alcohol (IPA)		10.6	11.1	ug/m3	4.6	30	
m and p-Xylene		54.0	55.2	ug/m3	2.2	30	
Methylene chloride		14.9	15.5	ug/m3	3.9	30	
Methyl-t-butyl Ether (MTBE)		ND	0.0	ug/m3	0.0	30	
Naphthalene		ND	0.0	ug/m3	0.0	30	
o-Xylene		22.3	22.8	ug/m3	2.2	30	
Propene		ND	ND	ug/m3	0.0	30	
Styrene		ND	ND	ug/m3	0.0	30	
Tetrachloroethene		ND	0.0	ug/m3	0.0	30	
Toluene		27.4	28.3	ug/m3	3.2	30	
trans-1,2-dichloroethene		ND	0.0	ug/m3	0.0	30	
trans-1,3-dichloropropene		ND	0.0	ug/m3	0.0	30	
Trichloroethene		ND	0.0	ug/m3	0.0	30	
Trichlorofluoromethane		ND	ND	ug/m3	0.0	30	
Vinyl acetate		ND	0.0	ug/m3	0.0	30	
Vinyl Chloride		ND	0.0	ug/m3	0.0	30	
Xylenes (Total)		76.3	78.0	ug/m3	2.2	30	

QCBatchID: QC1209046 Anal	yst: sandyw	Method:	EPA TO-3M					
Matrix: Air Analyz	ed: 11/19/2019	Instrument:	VOA-GC (gro	up)				
Blank Summary								
	Blank							
Analyte	Result	Units	MDL	RDL	Notes			
QC1209046MB1	· ·		•	•		· ·		
TPH gasoline ugM3	ND	ug/m3	1227	20450				
Duplicate Summary								
	Sample	Duplicate			Limits			
Analyte	Amount	Amount	Units	RPD	RPD	Notes		
QC1209046DUP1						Source: 421389-001		

ND

ug/m3

0.0

25

ND

TPH gasoline ugM3

Data Qualifiers and Definitions

<u>Qualifiers</u>	
Α	See Report Comments.
В	Analyte was present in an associated method blank.
B1	Analyte was present in a sample and associated method blank greater than MDL but less than RDL.
BQ1	No valid test replicates. Sample Toxicity is possible. Best result was reported.
BQ2	No valid test replicates.
BQ3	No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.
BQ4	Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.
BQ5	Minor Dissolved Oxygen loss was observed in the blank water check.
С	Possible laboratory contamination.
D	RPD was not within control limits. The sample data was reported without further clarification.
D1	Lesser amount of sample was used due to insufficient amount of sample supplied.
D2	Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.
D3	Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.
DW	Sample result is calculated on a dry weigh basis.
E	Concentration is estimated because it exceeds the quantification limits of the method.
I	The sample was read outside of the method required incubation period.
IR	Inconclusive Result. Legionella is present, however, there is possible non-specific agglutination preventing specific identification.
J	Reported value is estimated
L	The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample data was reported with qualifier.
L2	LCS did not meet recovery criteria, however, the MS and/or MSD met LCS recovery criteria, validating the batch.
М	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated LCS and/or LCSD was within control limits and the sample data was reported without further clarification.
M1	The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.
M2	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not within control limits. Sample result is estimated.
N1	Sample chromatography does not match the specified TPH standard pattern.
NC	The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not apply.
Р	Sample was received without proper preservation according to EPA guidelines.
P1	Temperature of sample storage refrigerator was out of acceptance limits.
P2	The sample was preserved within 24 hours of collection in accordance with EPA 218.6.
P3	Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended due to potential loss of target analytes. Results may be biased low.
Q1	Analyte Calibration Verification exceeds criteria. The result is estimated.
Q2	Analyte calibration was not verified and the result was estimated.
Q3	Analyte initial calibration was not available or exceeds criteria. The result was estimated.
S	The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery was within control limits and the sample data was reported without further clarification.
S1	The associated surrogate recovery was out of control limits; result is estimated.
S2	The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate recoveries in the associated batch QC met recovery criteria.
53	Internal Standard did not meet recovery limits. Analyte concentration is estimated.
1	Sample was extracted/analyzed past the hold time due to feiling replicates in the existing englysis (DOD and i)
11	Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).
12	Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.
13	Sample was applyized out of hold time per client's request.
14	Sample was analyzed out of hold time, the original analysis was within held time, but not reportable
15 T6	Hold time is indeterminable due to unspecified sampling time.
T7	Sample was analyzed nast hold time due to insufficient time remaining at time of receipt
Definitione	Comple was analyzed past hold time due to insume on the remaining at time of receipt.
Demnitions	
	Dilution Factor Method Detection Limit - Deput is reported ND when it is less than an equal to MDI
	Applyte was not detected or was less than the detection limit
	Analyte was not detected of was less than the detection limit.
	Penorting Detection Limit
TIC	Tentatively Identified Compounds

Analytical Results Report

Enthalpy Berkeley

2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 (510) 486-0532

UN VOS

Project Number: 315800 Site: Valaya Auto

Subcontract Laboratory: Enthalpy Analytical (Orange) 931 W Barkley Avenue Orange, CA 92868 (714) 771-9923 ATTN: Lisa Nguyen

Results due:

Report Level: II

Please send report to: Jess Silberman (Jessica.Silberman@enthalpy.com) and ClientServices.Berkeley@enthalpy.com *** Please report using Sample ID rather than Enthalpy (Berkeley) Lab #.

Sampl	e ID Sampled	Matri	x Analysis	Lab # Comm	ents
MSG1	11/12 00:00	Air	T015	315800-001	
MSG2	11/12 00:00	Air	T015	315800-002	
MSG3	11/12 00:00	Air	T015	315800-003	
MSG4	11/12 00:00	Air	T015	315800-004	
MSG5	11/12 00:00	Air	T015	315800-005	

Notes:	Relinquish	ed By:	Received By:
	A		(Marma
	Date/Time:	12/19	Date/Time: 11/13/19 1005
		(7:50	
	Date/Time:		Date/Time:

Signature on this form constitutes a firm Purchase Order for the services requested above. Page 1 of 1

SAMPLE ACCEPTANCE CHECKLIST

Section 1						
Client: Enthalpy Berkeley			•			
Date Received: 11/13/19	Sampler's Name Present:	Yes	√ No			
Section 2						
Sample(s) received in a cooler? Yes, How many?	Sampl	e Temp (°C (No Cooler) . AMBIENT } :			
Sample Temp (°C), One from each cooler: #1:	_#2:#3:	_#4:		_		
(Acceptance range is < 6°C but not frozen (for Microbiology samples, accept	ance range is < 10°C but not frozen). Il	is acceptable	e for sample	es collected		
the same day as sample receipt to have a higher temperat Shipping Information:	ture as long as there is evidence that co	oling has beg	un.)			
Section 3						
Was the cooler packed with: Ice Ice Packs	Bubble Wrap Styre	foam				
Cooler Temp (°C): #1:#2:	#3:	_#4:				
Section 4		YES	NO	N/A		
Was a COC received?						
Are sample IDs present?						
Are sampling dates & times present?						
Is a relinguished signature present?		<u>† ;</u>				
Are the tests required clearly indicated on the COC?						
Are custody seals present?						
If custody seals are present, were they intact?						
Are all samples sealed in plastic bags? (Recommended f						
Did all samples arrive intact? If no. indicate in Section 4 b						
Did all bottle labels agree with COC? (ID, dates and times	T Ż					
Were the samples collected in the correct containers for	$\overline{1}$					
Are the containers labeled with the correct preserv	atives?	1		\checkmark		
Is there headspace in the VOA vials greater than 5-6 mm	in diameter?	1				
Was a sufficient amount of sample submitted for the rec	\checkmark					
Section 5 Explanations/Comments						
Section 6						
For discrepancies, how was the Project Manager notified? Werbal PM Initials: Date/Time						
Project Manager's response:						
Completed By:	_Date:11/13/19					
Enthalpy Analytical, a subsidiary of I 931 W. Barkley Ave, Orange, CA 92868 www.enthal	Montrose Environmental Group ,Inc. • T: (714) 771-6900 • F: (714) 538-1209 by.com/socal	ł				

Sample Acceptance Checklist – Rev 4, 8/8/2017

Ship From ENTHALPY ANALYTICAL, LLC PROJECT MANAGEMENT 2323 FIFTH STREET BERKELEY, CA 94710

Ship To ENTHALPY ANALYTICAL (ORANGE) LISA NGUYEN 931 W BARKLEY AVE. ORANGE, CA 92868

COD: \$0.00 Weight: 0 lb(s) Reference:

Delivery Instructions:

Signature Type: STANDARD

Tracking #: 546914575

ORANGE

800-322-5555 www.gso.com

ORC CA927-CI0

Print Date: 11/12/2019 5:24 PM

PDS

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode. Step 1: Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer.

Step 2: Fold this page in half.

Step 3: Securely attach this label to your package and do not cover the barcode.

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the GSO service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gso.com.

Hi Lisa,

Do you mind revising the project name for the above job to say "Milligan" and resend it to me asap? My client is looking to send this report to his regulator today and they need the change asap.

Thanks

In observance of Christmas and New Year, Enthalpy Analytical will be closed on Tuesday December 24th at 2PM through Thursday December 26th and Wednesday January 1st. Normal operation will resume on Friday December 27th through December 30th and on Thursday January 2nd. During this period, samples with holding time less than 48 hours will only be accepted if they were pre-arranged with the project managers. Please be advised that holiday surcharges might apply.

Project Manager Assistant Enthalpy Analytical LLC 2323 Fifth St., Berkeley, CA 94710 Direct: (510) 204.2223