## VMT ASSESSMENT

INTERNATIONAL

## TECHNICAL MEMORANDUM

To: Brian Parno, Stirling Development<br>From: Jacob Swim TE, Michael Baker International<br>Dawn Wilson PE TE, Michael Baker International

CC: Alan Ashimine, Michael Baker International

Date: $\quad$ December 9, 2020

Subject: Southern California Logistics Airport Specific Plan Vehicle Miles Traveled (VMT) Assessment

## Introduction

The purpose of this memorandum is to document the VMT assessment for the proposed Southern California Logistics Airport (SCLA) Specific Plan Amendment (Project) located in the City of Victorville, California. A separate Traffic Impact Analysis focused on traffic operations is currently under development and City review with the latest draft dated April 23, 2020 for this project. This memorandum has been prepared to evaluate potential transportation impacts under California Environmental Quality Act (CEQA). Table 1 provides key project information. Exhibit 1 shows the location of the project and Exhibit 2 shows the SCLA Specific Plan Amendment Development Area.

Table 1: Project Information

| Item | Project Description |
| :---: | :--- |
| Project Title | Southern California Logistics Airport Specific Plan Amendment |
| Project Location | Situated on the previous George Air Force Base site located north of SR-18 (Palmdale Road), <br> east of US-395, and west of I-15. |
| Existing Use | Approximately 3.8 million square feet (SF) of Industrial uses plus SCLA Support Facilities |
| Proposed Use | 4,551,770 SF of Manufacturing; 15,612,680 SF of Light Warehouse; 2,525,080 SF of Light <br> Industrial; 1,300 Employees for Airport Support Facility; 6,500 SF of Fast Food w/o Drive Thru; <br> 18,000 SF of High-Turnover/Sit Down Restaurant; 36 Vehicle Fueling Positions for Service Station <br> with Convenience Market; 33,000 SF Shopping Center; and 345,000 SF of General Office |
| Trip Generation | 98,752 daily trips with 12,736 AM peak hour Trips \& 13,354 PM peak hour trips |
| Project Area | Encompasses a total of approximately 1,264 acres |

## I NTERNATIONAL

Exhibit 1: Project Location


Exhibit 2: SCLA Specific Plan Amendment Development Area


## Analysis Guidelines

City of Victorville Vehicle Miles Traveled Analysis Guidelines dated May 27, 2020 has been utilized as the primary resource in the development of this VMT analysis. The City participated in a collaborative study and working sessions with San Bernardino County Transportation Authority (SBCTA), which evaluated overall VMT methodologies such as thresholds, tools and mitigation options. Following participation in the study and working sessions, the City prepared their own guidelines. The guidelines follow state guidance with two exceptions that are backed by substantial evidence. The City VMT threshold is equal to or better than the General Plan buildout for low VMT areas (as opposed to OPR's 15\% below existing conditions) and the small project threshold is 1,283 daily vehicle trips (as opposed to OPR's 110 trip). City of Victorville's guidelines are provided as Attachment A to this letter report.

## Screening Criteria

As part of the City's guidelines, a project may be determined to have a less than significant impacts and may be screened out of requiring a detailed VMT analysis if either the daily vehicle trips generated by the project criteria or the land use type criteria are met. Table 2 identifies the trip generation threshold and the land use types that are assumed to result in a less than significant transportation impact under CEQA and do not require a detailed quantitative VMT assessment.

Table 2: Screening Criteria for Land Use Projects Exempt from VMT Calculation

| Screening | Screening Criteria | Project Evaluation | Result |
| :---: | :---: | :---: | :---: |
| Daily Vehicle Trip Thresholds | Project results in a net increase of 1,285 or less weekday daily trips. | Project is expected to generate 98,752 weekday daily trips. | Does Not Meet Criteria |
| Land Use Types | The following land use types will used for screening: <br> - Single Family or Multifamily Residential - 136 dwelling units or less. <br> - Office $-227,000$ SF or less <br> - Retail - 122,000 SF or less <br> - Warehousing - 829,000 SF or less <br> - Light Industrial - 296,000 SF or less <br> - K-12 Public School <br> - Daycare / Childcare / Pre-K <br> - Affordable Housing <br> - Student Housing <br> - Community Institutions, Social Services and Public Buildings | Project includes <br> - $4,551,770$ SF of Manufacturing; <br> - 15,612,680 SF of Light Warehouse; <br> - 2,525,080 SF of Light Industrial; <br> - 1,300 Employees for Airport Support Facility; <br> - 36 Vehicle Fueling Positions for Service Station with Convenience Market; <br> - 345,000 SF of General Office and <br> - 57,500 SF of combined retail | Does Not Meet Criteria |

The project does not meet any of the Screening Criteria for land use projects which would allow a determination of a less-than-significant impact on VMT. Therefore, a project specific VMT assessment is required.

## VMT Threshold of Significance

According to the City of Victorville Vehicle Miles Traveled Analysis Guidelines, a project is considered to have a significant impact if the project VMT per service population is less than the City's VMT General Plan buildout per service population.

## Project Level VMT Assessment

Michael Baker enlisted the assistance of Translutions, Inc. to conduct the project specific travel demand modeling evaluation for the Project using the San Bernardino Transportation Analysis Model (SBTAM). The model was updated to reflect the employment for the project traffic analysis zones (TAZs). Employee forecasts were based on the square feet per employee for each land use using information from the SCAG Employment Density Report conversion factors. This results in approximately 13,820 employees for the project. Table $\mathbf{3}$ summarizes the employee estimates.

Table 3: Employee Estimates

| TAZ | Land Use | Size in Thousand <br> Square Feet (KSF) | Square Feet / <br> Employee* OR <br> Employee/KSF | Total Number of <br> Employees |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 53912101 | Manufacturing | $4,551.77$ | 1,538 | 2,960 |  |  |
| 53912202 | Light Warehouse | $15,612.68$ | 2,111 | 7,396 |  |  |
| 53912101 | Light Industrial | $2,525.08$ | 1,538 | 1,642 |  |  |
| 53912201 | Fast Food w/o Drive Thru | 6.50 | 5.2 | 34 |  |  |
| 53912201 | High Turnover/Sitdown | 18.00 | 5.3 | 95 |  |  |
| 53912205 | Shopping Center | 33.00 | 1,392 | 24 |  |  |
| 53912203 | General Office | 345.00 | 1,014 | 340 |  |  |
| 53912204 | Airport Support Facility | 1,300 Employees | 1 | 1,300 |  |  |
| 53912201 | Service Station w/Conv. Market | 36 VFP | 0.84 | 30 |  |  |
| Total Number of Employees |  |  |  |  |  | $\mathbf{1 3 , 8 2 0}$ |

* Used SCAG Employment Density Report for conversion factors.

The SCLA Specific Plan includes a mix of land uses such as manufacturing, light warehouse, light industrial, airport support facilities, shopping center, restaurant, gas station, and general office. The warehouse and manufacturing components of the project would be a combination of employee trips and truck trips. Whereas the shopping center, restaurant, and gas station would be a combination of employee trips and patron trips. Given the mix of employee, patron and truck trips anticipated for the site, VMT per service population is the appropriate VMT metric for the project and is consistent with the City's guidelines.

For modeling purposes, the Productions/Attractions or PA method can isolate trip purpose and truck VMT but does not account for trips with one trip end outside the model boundary. Origin/Destination or OD method cannot isolate trip purpose or truck VMT but does include all trips including those with one trip end outside the model boundary. The PA method can be used if the project is of a single land use type and OD method for a mixed-use project. For the SCLA project, both the PA and OD methods were evaluated in the VMT model to determine the projects VMT based on individual land uses and the mix of land uses. The City guidelines recommend mixed use project evaluate VMT based on the OD method.

The VMT travel demand model calculation results are shown in Table 4. As stated previously, the impact threshold is assumed to be based on VMT per service population. The Project is estimated to generate a daily total (ProductionAttraction, PA) VMT of 328,593 and a daily total (Origins-Destinations, OD) VMT of 496,940. The resulting Total PA VMT/Service Population is 23.8 ( 328,593 VMT / 13,820 service population) and total OD VMT/Service Population is 36.0 (496,940 VMT / 13,820).

A comparison of the Project PA VMT/Service Population (23.8 Total VMT/Service Population) to the Citywide VMT/Service Population (25.0 Total VMT/Service Population) shows that the Project VMT/Service Population is anticipated to be $95 \%$ of the City VMT/Service Population. The Project OD VMT/Service Population (36.0 Total VMT/Service Population) compared to the Citywide VMT/Service Population (36.2 Total VMT/Service Population) is anticipated to be $99 \%$ of the City VMT/Service Population. Therefore, the project is NOT anticipated to result in a significant transportation impact.

Table 4: VMT Summary

|  | Year 2040 |  |
| :---: | :---: | :---: |
|  | City of Victorville* <br> (General Plan Buildout) | SCLA (Project) |
| Total Daily Project PA VMT |  | 328,593 |
| Total Daily Project OD VMT |  | 496,940 |
| Total Project Employees |  | $\mathbf{1 3 , 8 2 0}$ |
| PA VMT Per Service Population | 25.0 | 23.8 |
| OD VMT Per Service Population | 36.2 | 36.0 |
| Percent of City Average | $\mathbf{9 5 \%}$ | $\mathbf{9 9 \%}$ |

* Threshold values obtained from SBCTA Screening Tool (https://devapps.fehrandpeers.com/sbctavmt/)


## Mitigation Measures

Since the project is projected to not result in a significant transportation impact, mitigation measures have not been identified.

## Conclusions

Our review of the SCLA Specific Plan determined that the project does not meet the screening criteria established by the City and thus a VMT assessment was required. Evaluation of the year 2040 project VMT/service population determined that using both the PA and OD methods, the Project VMT/service population falls below the City's General Plan VMT/service population and therefore, the project is forecast to have a less than significant transportation impact.

If you have any questions pertaining to the results summarized in this letter, please call me at (760) 603-6266.
Sincerely,

## ATTACHMENT A

## City of Victorville VMT Guidelines

MAY 27, 2020
5:00 P.M. SPECIAL MEETING

VICTORVILLE CITY HALL IS CLOSED TO THE PUBLIC
Join by phone or WebEx at: (415) 655-0045 AC: 287734038 victorvilleca.webex.com/meet/planning

## TELECONFERENCE NOTICE

This meeting is being held in accordance with the Brown Act as currently in effect under the State Emergency Services Act, the Governor's Emergency Declaration related to COVID-19, and the Governor's Executive Order N-29-20 issued on March 17, 2020 that allows attendance by members of the Planning Commission, City Staff, and the public to participate and conduct the meeting by teleconference.

## NOTICE TO THE PUBLIC:

TO PROVIDE PUBLIC COMMENT DURING THE PLANNING COMMISSION MEETING PLEASE DIAL (415) 655-0045 AND ENTER ACCESS CODE: 287734038 OR JOIN VIA WEBEX BY TYPING THE FOLLOWING LINK IN YOUR BROWSER: VICTORVILLECA.WEBEX.COM/MEET/PLANNING

IN COMPLIANCE WITH THE AMERICANS WITH DISABILITIES ACT, IF YOU NEED SPECIAL ASSISTANCE TO PARTICIPATE IN THIS MEETING, PLEASE CONTACT THE DEVELOPMENT DEPARTMENT SECRETARY AT (760) 955-5135 NO LATER THAN 72 HOURS PRIOR TO THE MEETING

SPECIAL MEETING
5:00 P.M.
CALL TO ORDER
ROLL CALL
INVOCATION \& PLEDGE OF ALLEGIANCE
PUBLIC HEARINGS

1. PLAN20-00011 - VEHICLE MILES TRAVELED (VMT)

PROJECT - A WORKSHOP OF THE PLANNING COMMISSION OF THE CITY OF VICTORVILLE TO DISCUSS "VEHICLE MILES TRAVELED" (VMT) THRESHOLDS OF SIGNIFICANCE FOR PURPOSES OF ANALYZING TRANSPORTATION IMPACTS UNDER THE CALIFORNIA ENVIRONMENTAL QUALITY ACT AND POSSIBLE ACTION BY THE PLANNING COMMISSION TO APPROVE A RESOLUTION RECOMMENDING CITY COUNCIL ADOPTION OF VMT THRESHOLDS OF SIGNIFICANCE

## PUBLIC COMMENTS

PRESENTATION OF REPORTS BY COMMISSION MEMBERS AND STAFF

## THIS PAGE LEFT BLANK INTENTIONALLY

## PUBLIC HEARINGS

## THIS PAGE LEFT BLANK INTENTIONALLY

## PLANNING COMMISSION STAFF REPORT

DATE:
MAY 27, 2020
AGENDA NO. 1
CASE: PLAN20-00011
SUBJECT: A WORKSHOP OF THE PLANNING COMMISSION OF THE CITY OF VICTORVILLE TO DISCUSS "VEHICLE MILES TRAVELED" (VMT) THRESHOLDS OF SIGNIFICANCE FOR PURPOSES OF ANALYZING TRANSPORTATION IMPACTS UNDER THE CALIFORNIA ENVIRONMENTAL QUALITY ACT AND POSSIBLE ACTION BY THE PLANNING COMMISSION TO APPROVE A RESOLUTION RECOMMENDING CITY COUNCIL ADOPTION OF VMT THRESHOLDS OF SIGNIFICANCE

## APPLICANT: CITY OF VICTORVILLE - DEVELOPMENT DEPARTMENT

LOCATION: CITYWIDE

## I. STAFF RECOMMENDATION:

Staff recommends that the Planning Commission conduct a public hearing, receive testimony regarding the proposal and take the following actions:

1. Environmental Assessment - Recommend that the City Council find the adoption of the attached Resolution is not a project under Section 15378(b)(5) of the California Environmental Quality Act (CEQA) because it involves an administrative activity involving process only and would not result in any direct or indirect physical changes to the environment; and
2. Code Amendment - Adopt Resolution No. P-20-010, recommending City Council approval of Case No. PLAN20-00011 adopting "Vehicle Miles Traveled" (VMT) thresholds of significance for purposes of analyzing transportation impacts under Sections 15064.3 of the California Environmental Quality Act.

## II. SUMMARY:

Staff will be providing a power point presentation at the Planning Commission workshop to help the Commission understand the basics of VMT and the VMT process.

The California Environmental Quality Act (CEQA) is California's most comprehensive environmental law. Generally, it requires public agencies to evaluate the environmental effects of a project before action is taken. CEQA also aims to prevent significant environmental effects from occurring as a result of agency actions by requiring agencies to avoid or reduce, when feasible, the significant environmental impacts of their decisions.

As a result of Senate Bill SB743, on December 28, 2018, the Office of Administrative Law approved a comprehensive update to the CEQA Guidelines which also included implementation metrics for Vehicle Miles Traveled (VMT) to replace Level of Service (LOS),
which rates and grades (A-F) for the level of traffic congestion. VMT however, measures the total amount of weekday miles driven from home and to work, shopping and back home again. Since VMT is a new method in analyzing transportation impacts, Staff has been working with the San Bernardino County Transportation Authority (SBCTA), traffic consultant Translutions and traffic consultant Fehr and Peers to update the City's method to analyze traffic impacts. The proposed CEQA traffic methodology developed through that process includes VMT thresholds specific to Victorville. Staff is proposing to adopt Vehicle Miles Traveled thresholds and include them as part of the local CEQA process per CEQA Guidelines Section 15064.3.

## III. STAFF ANALYSIS:

## 1. Discussion.

## Vehicle Miles Traveled Thresholds

As mentioned, VMT is the new metric for transportation analysis which focuses on the overall miles traveled by vehicles within a region, resulting in automobile delay (Level of Service LOS) to be no longer used as criteria for determining a significant environmental effect under CEQA. This approach has an added inherent emphasis on reducing greenhouse gas emissions. All cities in the State of California are encouraged to adopt individual VMT thresholds through a public hearing process no later than July 1, 2020, otherwise the State Office of Planning and Research (OPR) VMT Guidance will become effective wholesale for the jurisdiction, including more restrictive VMT Thresholds for projects. Therefore, Fehr \& Peers, assisted in review and development of methodology for project generated VMT thresholds for Victorville, and other San Bernardino County cities. Traffic consultant Translutions, Inc. assisted in developing land use and trip based thresholds.

CEQA Guidelines Section 15064.7(c) allows a Lead Agency to consider Thresholds of Significance previously adopted or recommended by other public agencies or recommended by experts, provided the decision of the Lead Agency to adopt such thresholds is supported by substantial evidence. Therefore, the City of Victorville is not required to adhere to OPR's recommendations and can set its own thresholds that are supported by substantial evidence.

City Staff participated in a collaborative study led by SBCTA which evaluated the tools, thresholds, and mitigation options appropriate for the San Bernardino County region. Staff attended several workshops in 2019 and 2020 on Vehicle Miles Traveled. VMT thresholds for Victorville have been proposed to be adopted as the method to analyze CEQA transportation impacts. Those thresholds are all consistent with OPR guidance, with two exceptions backed by substantial evidence, including:

- VMT project generation equal to or better than the General Plan future buildout for Low VMT areas, whereas OPR guidance suggests $15 \%$ below existing conditions. This threshold is VMT Threshold Option \#3 of four SBCTA options developed by Fehr and Peers (See Attachment ' $C$ '); and
- Projects by land use type or other projects that generate less than 1,283 daily vehicle trips (See the VMT screening process below), whereas OPR guidance suggests 110 trips.

As a result, automobile delay, as measured by LOS, generally no longer constitutes a significant environmental effect under CEQA. Adopting VMT thresholds however, does not preclude the City from using LOS analysis to comply with Congestion Management Plan requirements or to conduct a project specific transportation analysis.

The VMT Thresholds will become effective upon adoption by the City Council. New projects or projects that have not circulated CEQA documents for public review before the effective date must comply with the City's new CEQA Guidelines.

## Vehicle Miles Traveled Screening Process

There are three types of screening of a proposed project, which are demonstrated by substantial evidence (CEQA Guidelines Section 15064). A proposed project would not be required to prepare an independent VMT Analysis if exempted by one or more of the following screening methods.

- Transit Priority Area (TPA) Screening - With exceptions, projects located within one half mile of a TPA may be presumed to have a less than significant impact. Victorville does not have any TPA's as defined by PRC 21064.3 - Major Transit Stops within HQTA's, therefore this screening method will not be utilized.
- Low VMT Area Screening - Developed with the San Bernardino County Traffic Analysis Model (SBTAM), the travel forecasting model for individual Traffic Analysis Zones (TAZ), total daily VMT (Baseline VMT levels) per service population (population + employment) was estimated for each jurisdictions TAZ. Developers for proposed residential and office projects can utilize a screening tool to identify if the project is within a low VMT-generating area and therefore be exempt. If Victorville adopts the VMT threshold mentioned above (VMT project generation equal to or better than the General Plan future buildout) it will not only be less restrictive than OPR technical advice, but will allow for a greater number of exempt projects because of addition exempt low VMT areas (See Attachment ' $B$ '). However, proposed projects must be consistent with existing land use and not increase the rate or length of existing trips. This methodology is based the Implementation Study (within Attachment ' $C$ ') conducted for SBCTA.
- Daily Trip and Land Use Type Screening - In this category, OPR set the recommended threshold at 110 daily trips based on the daily traffic count of a 10,000 square foot office building, which is an existing CEQA categorical exemption. The Technical Advisory states, "CEQA provides a categorical exemption for existing facilities, including additions to existing structures of up to 10,000 square feet, so long as the project is in an area where public infrastructure is available to allow for maximum planned development and the project is not in an environmentally sensitive area. (CEQA Guidelines, § 15301, subd. (e)(2).)" However, OPR's criteria for selecting this categorical exemption as a threshold is
arbitrary and is not supported by a correlation in greenhouse gas emissions (GHG) reduction.

Based on the intent and goals of SB-743 to promote the reduction in greenhouse gas emissions, staff is recommending the City base their thresholds from a GHG emissions perspective. Translutions, Inc. provides justification of daily trip and land use type thresholds based on the thresholds the governing Air Quality Management Districts use to determine if a project is will have a significant impact based on the Metric Tons of CO2 Equivalents per year a project would product. Attachment D provided substantial evidence that allows the City to establish realistic thresholds with a nexus to GHG reduction.

To summarize Translutions, Inc. evaluation, the following unit counts are anticipated to have less than significant impacts:

- Single Family Residential - 136 Dwelling Units
- Multi-Family (Low Rise) Residential - 136 Dwelling Units
- Office - 227,000 square feet
- Retail - 122,000 square feet
- Warehousing - 829,000 square feet
- Light Industrial - 296,000 square feet
- For land uses not included described above, the project would have a threshold of 1,285 daily weekday trips

Staff has included additional land use project types that are allowed to be screened from doing a VMT analysis, as authorized by OPR, such as affordable housing, student housing and K-12 public schools.

Projects that cannot be screened will be required to prepare an independent VMT Analysis through the SBTAM model prior to the formal submittal of a project. If VMT thresholds are exceeded, changes to the project or mitigation to the project must be done to reduce the level to less than significant. Some possible changes and mitigation are shown below.

- Modify the projects built environment characteristics to reduce the VMT generated by the project. For instance, a residential tract development could reduce the number of houses (density) or add a market, and/or a church and/or a park (add land diversity) to capture trips.
- Implement Transportation Demand Management (TDM) measures to reduce VMT generated by the project. TDM measures rely on strategies to reduce vehicle travel through incentives and disincentives. For instance, mixing of land uses within a development.
- Participate in a VMT impact fee program with a nexus to VMT reduction that would use fees for transit, bicycle or pedestrian improvements that reduce VMT.
- Participate in a VMT mitigation bank/exchange program that matches VMT generators with reducers within or outside jurisdiction boundaries to reduce VMT generated by the project.

MJS/SW

Attachments:
Attachment A - Resolution No. P-20-010 and Vehicle Miles Traveled (VMT) Analysis Guidelines
Attachment B - Screenshots of SBCTA VMT Threshold Options from Screening Tool
Attachment C - Various SBCTA VMT Reports from Fehr and Peers
Attachment D - Translution, INC, Memorandum Dated May 21, 2020

## ATTACHMENT 'A’

## RESOLUTION NO. P-20-010

A RESOLUTION OF THE PLANNING COMMISSION OF THE CITY OF VICTORVILLE RECOMMENDING TO THE CITY COUNCIL THE ADOPTION OF "VEHICLE MILES TRAVELED" THRESHOLDS OF SIGNIFICANCE FOR PURPOSES OF ANALYZING TRANSPORTATION IMPACTS UNDER THE CALIFORNIA ENVIRONMENTAL QUALITY ACT

WHEREAS, a public hearing was held on the $27^{\text {th }}$ day of May 2020, pursuant to Title 7, Division I, Chapter 4, of the Government Code, State of California, to hear arguments for and against the issue; and

WHEREAS, the Planning Commission finds that all materials that constitute the record of proceedings upon which its decision is based, shall be located with the City of Victorville Clerk, located at 14343 Civic Drive, Victorville, CA; and

WHEREAS, the California Environmental Quality Act Guidelines ("CEQA Guidelines") encourage public agencies to develop and publish generally applicable "thresholds of significance" to be used in determining the significance of a project's environmental effects; and

WHEREAS, CEQA Guidelines section 15064.7(a) defines a threshold of significance as "an identifiable quantitative, qualitative or performance level of a particular environmental effect, noncompliance with which means the effect will normally be determined to be significant by the agency and compliance with which means the effect normally will be determined to be less than significant"; and

WHEREAS, CEQA Guidelines section 15064.7(b) requires that thresholds of significance must be adopted by ordinance, resolution, rule, or regulations, developed through a public review process, and be supported by substantial evidence; and

WHEREAS, pursuant to CEQA Guidelines section 15064.7(c), when adopting thresholds of significance, a public agency may consider thresholds of significance adopted or recommended by other public agencies provided that the decision of the agency is supported by substantial evidence; and

WHEREAS, the City of Victorville Planning Commission recommends adoption of the Vehicle Miles Traveled (VMT) thresholds of significance as set forth in the Exhibit 1 of this resolution, as supported by substantial evidence; and

WHEREAS, Senate Bill 743, enacted in 2013 and codified in Public Resources Code section 21099, required changes to the CEQA Guidelines regarding the criteria for determining the significance of transportation impacts of projects; and

WHEREAS, in 2018, the Governor's Office of Planning and Research ("OPR") proposed, and the California Natural Resources Agency certified and adopted, new CEQA Guidelines section 15064.3 that identifies vehicle miles traveled ("VMT") - meaning the amount and distance of automobile travel attributable to a project - as the most appropriate metric to evaluate a project's transportation impacts; and

WHEREAS, as a result, automobile delay, as measured by "level of service" ("LOS") and other similar metrics, will generally no longer constitute a significant environmental effect under CEQA; and

WHEREAS, CEQA Guidelines section 15064.3 requires agencies to stop treating automobile delay/LOS as an environmental impact effective on July 1, 2020, though public agencies may elect to be governed by this section immediately; and

WHEREAS, the City of Victorville, through this public review process consisting of Staff presentations before the Planning Commission workshop, wishes to adopt the VMT thresholds of significance for determining the significance of transportation impacts that are recommended by experts in the field of traffic engineering and supported by substantial evidence.

NOW, THEREFORE, BE IT RESOLVED by the Planning Commission, pursuant to Chapter 2.12.090 of the Victorville Municipal Code, that it recommends to the City Council of the City of Victorville approval of Case No. PLAN20-00011, the adoption of "Vehicle Miles Traveled"
thresholds of significance, as described in Exhibit '1', for purposes of analyzing transportation impacts under the California Environmental Quality Act.

PASSED, APPROVED AND ADOPTED this $27^{\text {th }}$ day of May, 2020.

ATTEST:
SCOTT WEBB,
PLANNING COMMISSION SECRETARY

## Exhibit ' 1 ' <br> City of Victorville

## Vehicle Miles Traveled (VMT) Analysis Guidelines

## Project Screening Criteria

Projects that will not require a VMT analysis can be screened using either the daily vehicle trips generated by project or the project's land use type.

## Daily Vehicle Trip thresholds

The project results in a net increase of 1,285 or less weekday daily trips. The Institute of Transportation Engineers (ITE) Trip Generation Manual, latest edition will be used to estimate the daily trip generation. If the ITE Trip Generation Manual does not have studies specific to a land use, other trip generation traffic studies may be used.

## Land Use Types

The following land use types will be used for screening.

- Single family or Multifamily Residential - 136 dwelling units or less
- Office - 227,000 square feet
- Retail - 122,000 square feet
- Warehousing - 829,000 square feet
- Light Industrial - 296,000 square feet
- K-12 Public School
- Daycare/Childcare/Pre-K
- Affordable housing
- Student Housing
- Community Institutions, Social Services and Public Buildings


## Project Generated Methodology

Either the Production/Attraction (PA) or Origin/Destination (OD) methods can be used. For projects with a single land use type the PA method will be used. For projects with mixed land use types the OD method will be used.

## Benchmark

The benchmark used will be the City Limits as the boundary.

## Thresholds

Thresholds shall be consistent with the Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) future year VMT projections for the City's General Plan buildout. A project's VMT generation per service population shall be less than the City's VMT General Plan buildout per service population. However, feasible mitigation measures may be identified to reduce the project VMT below the thresholds.

## Level of Service Analysis (LOS)

LOS analysis thresholds identified in the City's General Plan and Traffic Impact Analysis guidelines will continue to be used to analyze traffic impacts, in addition to VMT impact analysis.

## Model Used for VMT Analysis

The model used for VMT analysis will be the San Bernardino County Transportation Analysis Model (SBCTAM), maintained by the San Bernardino County Transportation Authority (SBCTA).

## ATTACHMENT ‘B’



0\% Baseline at Existing Conditions Option \#4 (Shaded TAZs include Low VMT exempt areas)


0\% Baseline at GP Buildout Option \#3 (Shaded TAZs include Low VMT exempt areas)

14.3\% Baseline at Existing Option \#2 (Shaded TAZs include Low VMT exempt areas)


15\% Baseline at Existing Option \#1 (Shaded TAZs include Low VMT exempt areas)

## ATTACHMENT ‘C’

## SBCTA: City VMT Guidelines Decision Checklist



## Decision

Yes - Include

- How many trips per day? $\qquad$
- Instead of trip-based, VMT-basedNo - Do not include

Any changes (subtractions or additions) to current list:

- Local serving retail (50 ksf or less)
- K-12 Public School
- Daycare/Childcare/Pre-K
- Affordable housing
- Student Housing
- Community Institutions (Public Library, Fire station, Local GovernmentPA - Productions/AttractionsOD - Origin/Destination
Both - PA when single use and OD when mixed use


## City

County

OPTION 1 - Rely on the OPR Technical Advisory Thresholds (15\% Below Existing)

OPTION 2 - Set Thresholds Consistent with Lead Agency Air Quality, GHG Reduction, and Energy Conservation Goals (14.3\% Below Existing)OPTION 3 - Set Thresholds Consistent with RTP/SCS Future Year VMT Projections by Jurisdiction or Sub-Region (Better than General Plan Buildout)

OPTION 4 - Set Thresholds Based on Baseline VMT Performance (Better than Existing)

Include - intersection or roadway LOS analysis as part of the City's TIA Guidelines, although this analysis would not be used to determine CEQA impacts

Do not include any LOS analysis in the City's TIA Guidelines

## Notes

OPR recommends a threshold of 110 daily trips for project screening. This is based on the number of trips generated by $10,000 \mathrm{sf}$ of office space. As trips are only one component of VMT, this screening criteria should be carefully considered. Alternatively, a screening threshold based on VMT could be applied.

Any land use types that are local serving in your community should be considered for this screening.

List changes here:


PA method can isolate trip purpose and truck VMT, but does not account for trips with one trip end outside the model boundary. OD method cannot isolate trip purpose or truck VMT, but does include all trips including those with one trip end outside the model boundary. Both methods can be identified in the TIA guidelines, with the selection of method can be used based on if the project is of a single land use type (PA) or mixed use (OD).

Each City must choose their appropriate boundary for a regional benchmark for all impacts.

See SBCTA SB 743 Implementation Thresholds Assessment dated 11/11/19 for more information.

# Evaluating Transportation Impacts in CEQA 

Based on New Guidelines as Directed by SB 743

## |What was the legislative intent of SB 743 (2013)?

1 Balance the needs of congestion management with the following statewide goals
a Reduction of greenhouse gas emissions
b Infill development
c Public health through active transportation
2 Ensure that the environmental impacts of traffic such as noise, air pollution, and safety concerns continue to be addressed and mitigated through CEQA

## What does the new CEQA Section 15064.3 adopted by the state in December 2018 require?

1 A project's effect on automobile delay (i.e., Level of Service) shall not constitute a significant environmental impact under CEQA.
2 A lead agency may adopt these provisions immediately, but no later than July 1, 2020.
3 VMT is the "most appropriate" measure of transportation impacts.
4 Other relevant considerations may include effects on transit and non-motorized travel.
5 VMT exceeding an applicable threshold may indicate a significant impact
6 Projects may be presumed to have a less than significant VMT impact if they are located in a transit priority area (TPA) or would reduce VMT.
7 A lead agency has discretion to choose the most appropriate methodology to evaluate a project's VMT
8 A lead agency may use models to estimate a project's VMT, and may revise those VMT estimates based on substantial evidence
9 Any assumptions used to estimate VMT must be documented and explained

## What decisions do a local agency need to make to implement these new guidelines?

1 VMT Metric?
a VMT in absolute terms or
b VMT per capita, VMT per employee, VMT per service population ...
2 VMT Methodology?
a How to calculate VMT - travel model, spreadsheet tool, other methods

# Evaluating Transportation Impacts in CEQA 

## Based on New Guidelines as Directed by SB 743

b Total VMT or partial VMT associated with select vehicle types, land uses, and/or trip purposes/tours
c Project generated VMT versus project effect on VMT
3 VMT Impact Significance Threshold?
a Threshold: Level of reduction in VMT below existing conditions?
b Thresholds: (1) Project VMT and (2) Cumulative Impacts (project's effect on VMT)
c Thresholds: (1) Land Use Projects, (2) Land Use Plans, (3) Transportation Projects
d Is the level of VMT reduction compared to regional VMT, citywide VMT, or other baseline?
e For cities and counties, are VMT impacts best addressed at the general plan level given that all land use decisions only influence land use supply and CEQA Section 15183 provides streamlining for subsequent projects?
4 VMT Mitigation Options?
a VMT mitigation options for land use projects involve either changing the physical design of the project (i.e., its density, mix of use, street design, etc.) or requiring trip reduction strategies as part of a transportation demand management (TDM) program.
i Are cities and counties willing to require stringent TDM programs with annual monitoring and adjustments if projects do not accomplish required VMT reductions?
ii Should cities and counties instead rely on mitigation programs such as impact fee programs that are based on a VMT-reduction nexus?

## How does the OPR Technical Advisory recommend implementing CEQA Section 15064.3?

1 If a lead agency uses a travel model as the basis for establishing thresholds, that same model must be used for subsequent project level VMT analyses.
2 For land use projects and plans, the Technical Advisory states, "OPR recommends that a per capita or per employee VMT that is fifteen percent below that of existing development may be a reasonable threshold" based on substantial evidence related to the state's GHG reduction goals.
a Residential Project Threshold - A proposed project exceeding a level of 15 percent below existing VMT per capita may indicate a significant transportation impact. Existing VMT per capita may be measured as regional VMT per capita or city VMT per capita.
b Office Project Threshold - A proposed project exceeding a level of 15 percent below existing regional VMT per employee may indicate a significant transportation impact.
c Retail Project Threshold - A net increase in total VMT may indicate a significant transportation impact.

# Evaluating Transportation Impacts in CEQA 

Based on New Guidelines as Directed by SB 743

d Mixed-Use Projects - Lead agencies can evaluate each component of a mixed-use project independently and apply the significance threshold for each project type included... Alternatively, a lead agency may consider only the project's dominant use. In the analysis of each use, a project should take credit for internal capture.
3 For transportation projects, the Technical Advisory states:
a Because a roadway expansion project can induce substantial VMT, incorporating quantitative estimates of induced VMT is critical to calculating both transportation and other impacts of the projects.
b Transit and active transportation projects generally reduce VMT and therefore are presumed to cause a less-than-significant impact on transportation.
4 The Technical Advisory expands Section 15064.3 options for VMT impact screening using the presumption that certain projects will have less than significant VMT impacts based on location within a low VMT generating area or by being a locally serving retail project.
5 Impacts to Transit - lead agencies should consider impacts to transit systems and bicycle and pedestrian networks. ... a project that blocks access to a transit stop or blocks a transit routes itself may interfere with transit functions.

## Is a lead agency required to follow recommendations in the Technical Advisory?

1 The Technical Advisory helps lead agencies think about the variety of implementation questions they face with respect to shifting to a new VMT metric.
2 The guidance is not a recipe for SB 743 implementation since lead agencies must still make their own specific decisions about methodology, thresholds, and mitigation. For cities and counties, these decisions must be consistent with their general plan, which may not be aligned with state GHG reduction goals upon which the Technical Advisory is based.
3 A lead agency has the discretion to choose the most appropriate methodology and thresholds to evaluate a project's VMT. A lead agency may take into account both its own policy goals and context in developing a VMT methodology and thresholds.

# Evaluating Transportation Impacts in CEQA 

## Based on New Guidelines as Directed by SB 743

## What are the pros and cons of following the Technical Advisory guidance with respect to CEQA defensibility?

## PROS

1 Aligns with state goals for GHG reduction, infill development, transit, active transportation, and public health.
2 Requires limited effort to implement.
3 Creates VMT impact screening opportunities for housing, employment, transit, bicycle, pedestrian, and minor roadway projects.
4 Includes specific thresholds.

## CONS

1 Recommends only reporting partial VMT for individual land uses, trip purposes/tours, and vehicle types. This could be interpreted as presenting an inadequate or incomplete analysis when compared to the current practice of reporting total VMT for air quality, GHG, and energy impact analysis.
2 Includes evidence that a 15 percent reduction from baseline may not be sufficient to achieve statewide goals for GHG reduction.
3 Does not consider local general plan role in setting threshold expectations.
4 Includes inconsistent threshold expectations based on the same land use and transportation context.

## What other challenges should a lead agency consider?

1 Direct application of the Technical Advisory results in significant and unavoidable VMT impacts for projects in jurisdictions with limited transit service and low land use densities even when those projects are consistent with the local general plan.
2 Lead agencies have often used transportation demand management (TDM) strategies as mitigation to reduce VMT. Most TDM strategies are project site and building tenant dependent. Since this information is typically unknown during the project entitlement and environmental review process, a lead agency must think about whether it can guarantee TDM mitigation outcomes. This implies that ongoing monitoring and adjustment of the TDM strategies may be required and that impacts are likely to remain significant even with mitigation due to the uncertainty associated with building tenant performance over time.
3 Caltrans has published a Draft TISG (February 2020) that endorses the OPR Technical Advisory methodology and thresholds (Page 8). This sets the expectation that local agencies will use the OPR recommended VMT impact thresholds for all land use plans and projects.


Project
Questions
Procedural
Flowchart

Decision

- Analytical process or procedural outcome


## Step 1

Screening

Step 2
Establishing
Baseline
VMT Levels

Step 3
Establishing
VMT

Step 4 Identifying Significant Impacts


Developing
Mitigation
Measures

Step 6 Identifying Impacts of Mitigation

Is the project type:
Transit
Active transportation
One of the road project types on pages 20
and 21 of the OPR Technical Advisory*?
(See Page 2 for complete list)
Does substantial evidence
exist to support a finding that
the project will not generate
new VMT?
(Reler to the SBCTA web tool)
Process complete

$$
\begin{aligned}
& \text { What are the baseline } \\
& \text { VMT levels? } \\
& \text { (Refer to the SBCTA web tool) }
\end{aligned}
$$


for project-generated VMT? What is the future estimate for project effect on VMI?

O calculate propect<br>MT isee notes)

alculate cumulative $\mathbf{O}$
VMI (see motes)


## OPR <br> Steps

Step 1
Screening

Analysis

## Procedures

PEt the OPR technical advisory: Projects that would nol likely lead to a substantial or measurable increase in vehicle travel, and therefore generally should not require an induced travel analysis, include:

- Rehabiitation, maintenance, replacement, safety, and repair projects designed to improve the condition of existing transportation assets and that do not add additional motor vehicle capacity
- Roadside safety devices or hardware installation such as median barriers and quardiralls Roadway shoulder enhancements to provide "breakdown space," dedicated space for use only by transit vehicles, to provide bicycle access, or to otherwise improve safely, but which will not be used as automobile vehicle travel lanes
- Addition of an auxiliary lane of less than one mile in length designed to improve roadvray safety
- installation, removal, or reconfiguration of traffic lanes that are not for through traffic, such as left right, and U-turn pockets, two way left turn lanes, or emergency breakdown lanes that are not utilized as through lanes
- Addition of roadway capacity on local or collector streets provided the project also substantially improves conditions for pedestrians, cyclists, and, if applicable, transit
- Conversion of existing general purpose lanes (including ramps) to managed lanes oi transit lanes, or changing lane management in a manner that would not substantially increase vehicle travel
- Addition of a new lane that is permanently restricted to use only by transit vehicles
- Reduction in number of through lanes
- Grade separation to separate vehicles from rail, transit, pedestrians or bicycles, or to replace a lane in order to separate preferential vehicles (e.g. HOV. HOT, or frucks) from genetal vehicles
- Installation, removal, or reconfiguration of traffic control devices, including Transit Signal Priority (TSP) features
- Instaliation of traffic metering systems, detection systems, cameras, changeable message signs and other electronics designed to optimize vehicle, bicycle, or pedestrian flow
- Timing of signals to optimize vehicle, bicycle, or pedestrian flow
- Installation of roundabouts or traffic circles
- Installation or reconfiguration of traffic calming devices
- Adoption of or increase in tolls
- Addition of tolled tanes, where totls are sufficient to mitigate VMT increase
- Initiation of new transit service
- Conversion of streets from one-way to two-way operation vith no net increase in number of traffic lanes
- Removal or relocation of off-street or on-street parking spaces
- Adoption or modification of on-street parking or loading restrictions (including meters, time limits, accessible spaces, and preferentia//reserved parking permit programs)
- Addition of traffic wayfinding signage
- Rehabilitation and maintenance projects that do not add motor vehicle capacity
- Addition of new or enhanced bike or pedestrian facilities on existing streets/highways or within existing publicrights-of-way
- Addition of Class I bike paths, trails, multi-use paths, or other off-road fatilities that serve nonmotorized travel
- Instaliation of publicly available alternative fuel/charging infrastructure
- Addition of passing lanes, truck climbing lanes, or truck brake check lanes in rural areas that do not increase overall vehicle capacity along the corridor


## Step 2 <br> Establishing <br> Baseline <br> VMT Levels

## Step 3

Establishing
VMT
Threshold

## Project-Generated VMT

Use the same year as baseline VMT to determine the base year. Future year should be set at the latest RTP horizon year. VMT should be calculated using the latest version of SBTAM using the PA or 0 D method.

Project Effect on VMT
Use the RTP horizon year. VMT should be calculated using the latest version of SBTAM and the boundary method

## Technical Notes

Baseline should be tied to the date of the NOP release. Hence, baseline VMT calculations may require obtaining current year data or interpolating between base year and future year model estimates.

Lead agencies have the option to select a thresthold. As part of the SBCTA SB 743 implementation Study. local jurisdictions reviewed threshoid and methodiology options. Refer to the latest guidelines where the project is located to determine which threshold and methodology apply.

## OPR <br> Steps

Step 4
Identifying
Significant Impacts

Step 5
Developing
Mitigation
Measures

Step 6
Identifying Impacts of Mitigation

Analysis
Procedures

Identify significant impacts for all impact scenarios. Significant Impact may occur if project's Step 3 VMT exceeds Step 3 threshold or the project is found inconsistent with the RTP or RTP/SCS (ie., the project generales more VMT than the adopted RTP or RTP/SCS)

As part of the SECTA SB 743 Implementation Study. mitigation measures considered most appropriate for San Bernatdino County were identified. Refer to this list. Note that different mitigation strategies will be applicable for different contexts and land use types

Mitigation actions can create other environmental impacts. Mitigation actions that require the expansion of existing facilities or services or the creation of new facilities or services may have an effect on the environment that should be evaluated as prescribed by CEOA Guidelines Section 15126 4(a)(T)(D).

## Technical

Notes

## TECHNICAL MEMORANDUM

Date: 11.11.19

To: Steve Smith (SBCTA), Josh Lee (SBCTA), Albert Espinoza (City of Rancho Cucamonga), Jason
Welday (City of Rancho Cucamonga), Baldwin Ngai (City of Rancho Cucamonga)
From: Jason Pack, PE and Delia Votsch, PE

Subject: SB 743 Implementation Thresholds Assessment
OC18-0585

This technical memorandum summarizes the consultant team assessment of potential VMT thresholds for land use projects and land use plans to comply with SB 743. For all transportation projects, lead agencies have the discretion to select their own metrics and thresholds, consistent with CEQA, and no change to current practice is required. Hence, the remainder of this memo will focus on land use thresholds and is organized into four sections.

- Section 1 - Background on CEQA Thresholds
- Section 2 - OPR VMT Threshold Recommendations
- Section 3-Recommendations for SBCTA member agencies


## Section 1 - Background on CEQA Thresholds

Establishing thresholds requires complying with the new statutes added by SB 743 and traditional guidance contained in CEQA Guidelines Section 15064.7 and new language being proposed as part of the Proposed Updates to the CEQA Guidelines, December 2018, California Governor's Office of Planning and Research (see excerpts below).

## § 15064. Determining the Significance of the Environmental Effects Caused by a Project.

(a) Determining whether a project may have a significant effect plays a critical role in the CEQA process.
(1) If there is substantial evidence, in light of the whole record before a lead agency, that a project may have a significant effect on the environment, the agency shall prepare a draft EIR.
(2) When a final EIR identifies one or more significant effects, the lead agency and each responsible agency shall make a finding under Section 15091 for each significant effect and may need to make a statement of overriding considerations under Section 15093 for the project.
(b) (1) The determination of whether a project may have a significant effect on the environment calls for careful judgment on the part of the public agency involved, based to the extent possible on scientific and factual data. An ironclad definition of significant effect is not always possible because the significance of an activity may vary with the setting. For example, an activity which may not be significant in an urban area may be significant in a rural area.
(2) Thresholds of significance, as defined in Section 15064.7(a), may assist lead agencies in determining whether a project may cause a significant impact. When using a threshold, the lead agency should briefly explain how compliance with the threshold means that the project's impacts are less than significant. Compliance with the threshold does not relieve a lead agency of the obligation to consider substantial evidence indicating that the project's environmental effects may still be significant.

Source: http://resources.ca.gov/ceqa/docs/2018 CEQA FINAL TEXT 122818.pdf
§ 15064.7. Thresholds of Significance.
(a) Each public zgency ic enceuraged to-develep and publish threchelds-of-cignificance that the-rgengy uses-in the determination-therigntlicance-of-enviremmentaleffectsr A threshold of significance is an identifiable quantitative, qualitative or performance level of a particular environmental effect, noncompliance with which means the effect will normally be determined to be significant by the agency and compliance with which means the effect normally will be determined to be less than significant.
(b) Each public agency is encouraged to develop and publish thresholds of significance that the agency uses in the determination of the significance of environmental effects. Thresholds of significance to be adopted for general use as part of the lead agency's environmental review process must be adopted by ordinance, resolution, rule, or regulation, and developed through a public review process and be supported by substantial evidence. Lead agencies may also use thresholds on a case-by-case basis as provided in Section 15064(b)(2).
(c) When adopting or using thresholds of significance, a lead agency may consider thresholds of significance previously adopted or recommended by other public agencies or recommended by experts, provided the decision of the lead agency to adopt such thresholds is supported by substantial evidence.
(d) Using environmental standards as thresholds of significance promotes consistency in significance determinations and integrates environmental review with other environmental program planning and regulation. Any public agency may adopt or use an environmental standard as a threshold of significance. In adopting or using an environmental standard as a threshold of significance, a public agency shall explain how the particular requirements of that environmental standard reduce project impacts, including cumulative impacts, to a level that is less than significant, and why the environmental standard is relevant to the analysis of the project under consideration. For the purposes of this subdivision, an "environmental standard" is a rule of general application that is adopted by a public agency through a public review process and that is all of the following:
(1) a quantitative, qualitative or performance requirement found in an ordinance, resolution, rule. regulation, order, plan or other environmental requirement;

## (2) adopted for the purpose of environmental protection;

(3) addresses the environmental effect caused by the project; and,
(4) applies to the project under review.

Source: http://resources.ca.gov/ceqa/docs/2018 CEQA FINAL TEXT 122818.pdf

In summary, this threshold setting guidance emphasizes the need to use substantial evidence ${ }^{1}$ to help determine when a project will cause an unacceptable environmental condition or outcome. For SB 743, the specific outcome of focus is the change a project will cause in vehicle miles of travel (VMT). Since VMT is already used to determine air quality, energy, and greenhouse gas (GHG) impacts as part of CEQA compliance ${ }^{2}$, the challenge for lead agencies is to answer the question, "What type or amount of change in VMT constitutes a significant impact solely for transportation purposes?"

## Section 2 - OPR VMT Threshold Recommendations

SB 743 includes the following two legislative intent statements, which were used to help guide OPR's VMT threshold decisions.

1) Ensure that the environmental impacts of traffic, such as noise, air pollution, and safety concerns, continue to be properly addressed and mitigated through the California Environmental Quality Act.
2) More appropriately balance the needs of congestion management with statewide goals related to infill development, promotion of public health through active transportation, and reduction of greenhouse gas emissions.

The threshold recommendations are found in the CEQA Guidelines and the Technical Advisory. Specific excerpts and threshold highlights are provided below.

## CEQA Guidelines Section 15064.3

(b) Criteria for Analyzing Transportation Impacts.
(1) Land Use Projects. Vehicle miles traveled exceeding an applicable threshold of significance may indicate a significant impact. Generally, projects within one-half mile of either an existing major transit stop or a stop along an existing high quality transit corridor should be presumed to cause a less than significant transportation impact. Projects that decrease vehicle miles traveled in the project area compared to existing conditions should be considered to have a less than significant transportation impact.
(2) Transportation Projects. Transportation projects that reduce, or have no impact on, vehicle miles traveled should be presumed to cause a less than significant transportation impact. For roadway capacity projects, agencies have discretion to determine the appropriate measure of transportation impact consistent with CEQA and other applicable requirements. To the extent that such impacts have already been adequately addressed at a programmatic level, such as in a regional transportation plan EIR, a lead agency may tier from that analysis as provided in Section 15152.

[^0]
## Technical Advisory on Evaluating Transportation Impacts in CEQA (page 10)

Based on OPR's extensive review of the applicable research, and in light of an assessment by the California Air Resources Board quantifying the need for VMT reduction in order to meet the State's long-term climate goals, OPR recommends that a per resident or per employee VMT that is fifteen percent below that of existing development may be a reasonable threshold.

## Technical Advisory on Evaluating Transportation Impacts in CEQA (page 18)

As with projects, agencies should analyze VMT outcomes of land use plans across the full area over which the plan may substantively affect travel patterns, including beyond the boundary of the plan or jurisdiction's geography. And as with projects, VMT should be counted in full rather than split between origin and destination. (Emissions inventories have sometimes spit cross-boundary trips in order to sum to a regional total, but CEQA requires accounting for the full impact without truncation or discounting). Analysis of specific plans may employ the same thresholds described above for projects. A general plan, area plan, or community plan may have a significant impact on transportation if proposed new residential, office, or retail land uses would in aggregate exceed the respective thresholds recommended above.

> Technical Advisory on Evaluating Transportation Impacts in CEQA - Rural Projects Outside of MPOs (page 19)
> In rural areas of non-MPO counties (i.e., areas not near established or incorporated cities or towns), fewer options may be available for reducing VMT, and significance thresholds may be best determined on a case-by-case basis. Note, however, that clustered small towns and small town main streets may have substantial VMT benefits compared to isolated rural development, similar to the transit oriented development described above.

These (and the other) threshold recommendations in the Technical Advisory rely on the following evidence associated with the state's GHG reduction goals and targets in combination with environmental case law.

- Assembly Bill 32 (2006) requires statewide greenhouse gas reductions to 1990 levels by 2020 and continued reductions beyond 2020.
- Senate Bill 32 (2016) requires at least a 40 percent reduction in greenhouse gas emissions by 2030.
- Pursuant to Senate Bill 375 (2008), the California Air Resources Board establishes greenhouse gas reduction targets for metropolitan planning organizations (MPOs) to achieve based on land use patterns and transportation systems specified in Regional Transportation Plans and Sustainable

Community Strategies. Current targets for the largest metropolitan planning organizations range from $13 \%$ to $16 \%$ reductions by 2035.

- Executive Order B-30-15 (2015) sets a GHG emissions reduction target of 40 percent below 1990 levels by 2030.
- Executive Order S-3-05 (2005) sets a GHG emissions reduction target of 80 percent below 1990 levels by 2050.
- Executive Order B-16-12 (2012) specifies a GHG emissions reduction target of 80 percent below 1990 levels by 2050 specifically for transportation.
- Senate Bill 391 requires the California Transportation Plan to support 80 percent reduction in GHGs below 1990 levels by 2050.
- The California Air Resources Board Mobile Source Strategy (2016) describes California's strategy for containing air pollutant emissions from vehicles and quantifies VMT growth compatible with achieving state targets.
- The California Air Resources Board's 2017 Climate Change Scoping Plan Update: The Strategy for Achieving California's 2030 Greenhouse Gas Target describes California's strategy for containing greenhouse gas emissions from vehicles and quantifies VMT growth compatible with achieving state targets.
- The Caltrans Strategic Management Plan (2015) calls for a 15 percent reduction in VMT per resident compared to 2010 levels, by 2020.
- California Air Resources Board 2017 Scoping Plan-Identified VMT Reductions and Relationship to State Climate Goals (2019) identifies a 16.8 percent reduction in automobile VMT per resident below existing (2018) levels to achieve statewide GHG reduction goals.

Lead agencies should note that the OPR recommended VMT thresholds are almost exclusively based on GHG and air pollution reduction goals. While this is one of the SB 743 legislative intent objectives, a less clear connection is made to the other legislative intent objectives to encourage infill development and promote active transportation. And, as noted above, GHG impacts are already addressed in another CEQA section.

Another important distinction within the Technical Advisory is how projects within different land use contexts are treated. The general expectation that a 15 percent reduction below that of existing development may be reasonable is proposed for projects within metropolitan planning organizations (MPOs). For rural areas outside MPOs, the Technical Advisory recognizes that VMT mitigation options are limited so thresholds may need to be set on a case-by-case basis.

The recognition that land use context matters when it comes to the potential VMT mitigation options and effectiveness is important. The MPO boundary distinction is not relevant to the feasibility of VMT mitigation. A rural or suburban area inside or outside an MPO boundary will have very similar limitations when it comes to the feasibility of VMT reduction options. As such, land use context and not MPO status
should be the defining criteria for setting threshold expectations. The land use context is also relevant to the potential range of effectiveness associated with VMT reduction strategies. The Technical Advisory relies on the Quantifying Greenhouse Gas Mitigation Measures, CAPCOA, 2010 resource document to help justify the 15 percent reduction threshold stating, "...fifteen percent reduction in VMT are achievable at the project level in a variety of place types...". A more accurate reading of the CAPCOA document is that a fifteen percent is the maximum reduction when combining multiple mitigation strategies for the suburban center place type. For suburban place types, $10 \%$ is the maximum and requires a project to contain a diverse land use mix, workforce housing, and project-specific transit. It is also important to note that the maximum percent reductions were not based on data or research comparing the actual performance of VMT reduction strategies in these place types. Instead, the percentages were derived from a limited comparison of aggregate citywide VMT performance for Sebastopol, San Rafael, and San Mateo where VMT performance ranged from 0 to 17 percent below the statewide VMT/resident average based on data collected prior to 2002. Little to evidence exists about the long-term performance of similar TDM strategies in different land use contexts. As such, VMT reductions from TDM strategies cannot be guaranteed in most cases.
Statewide $\mathrm{CO}_{2}$ and Vehicle Miles Traveled (VMT) Per Capita Trend with
Respect to Anticipated Performance of Current SB 375 SCSs ${ }^{2}$

## California VMT Trends

Source: 2018 Progress Repot California's Sustainable Communities and Climate Protection Act, California Air Reserves Board, 2018

## Section 3 - Recommendations for SBCTA member agencies

How should lead agencies approach VMT threshold setting given their discretion? Since an impact under CEQA begins with a change to the existing environment, a starting level for potential thresholds would the baseline (i.e., existing condition) VMT, VMT per resident, VMT per employee, or VMT per service population ${ }^{3}$. Since VMT will increase or fluctuate with population and employment growth, changes in economic activity, and expansion of new vehicle travel choices (i.e., Uber, Lyft, Chariot, autonomous vehicles, etc.), expressing VMT measurement in an efficiency metric form allows for more direct comparisons to baseline conditions ${ }^{4}$ when it comes to land use projects, land use plans, and transportation projects. Establishing a threshold such as baseline VMT per service population would be essentially setting an expectation that future land uses perform similar to existing land uses. If this is the floor, then expectations for VMT reduction can increase depending on a community's values related to vehicle use and its associated effects on mobility, economic activity, and environmental consequences. Working towards the 15 -percent reduction recommended in the Technical Advisory becomes more feasible as the land use context becomes more urban with higher densities and high-quality transit systems. In central cities, the 15 -percent reduction can be surpassed because of the close proximity of land uses and the multiple options for accessing destinations by walking, using bicycles or scooters, sharing vehicles, and using transit.

While OPR has developed specific recommended VMT impact thresholds for project-related impacts, current practice has not sufficiently evolved where a clear line can be drawn between 'acceptable' and 'unacceptable' levels of VMT change for the sole purpose of determining a significant transportation impact especially when considering land use context. Furthermore, OPR's Guidance is only a recommendation and not binding law. Until SB 743, VMT changes were viewed through an environmental lens that focused on the relationship to fuel consumption and emissions. For transportation purposes, VMT has traditionally been used to evaluate whether land use or transportation decisions resulted in greater dependency on vehicle travel. Trying to determine whether a portion of someone's daily vehicle travel is unacceptable or would constitute a significant transportation impact is generally not clear to lead agencies.

Another consideration in threshold setting is how to address cumulative VMT impacts and whether addressing them in the general plan EIR is advantageous for streamlining the review of subsequent land use and transportation projects given CEQA relief available through SB 375 or CEQA Guidelines Section 15183. This section of the Guidelines may relieve a project of additional environmental review if the

[^1]environmental impact was adequately addressed in the general plan EIR, if there are no project-specific significant effects which are specific to the project on its site, and if the project is consistent with the general plan (see below).
15183. PROJECTS CONSISTENT WITH A COMMUNITY PLAN OR ZONING
(a) CEQA mandates that projects which are consistent with the development density established by existing zoning, community plan, or general plan policies for which an EIR was certified shall not require additional environmental review, except as might be necessary to examine whether there are project-specific significant effects which are peculiar to the project or its site. This streamlines the review of such projects and reduces the need to prepare repetitive environmental studies.

The use of Section 15183 also addresses cumulative impacts as acknowledged in Section 15130(e).

## 15130. DISCUSSION OF CUMULATIVE IMPACTS

(e) If a cumulative impact was adequately addressed in a prior EIR for a community plan, zoning action, or general plan, and the project is consistent with that plan or action, then an EIR for such a project should not further analyze that cumulative impact, as provided in Section 15183(j).

For cities in the San Bernardino County region, addressing VMT impacts in general plan EIRs could be useful in understanding how VMT reduction should be balanced against other community values when it comes to setting new VMT impact thresholds for SB 743.

Given this information, lead agencies have at least five options for setting thresholds as outlined below. Under any option, the lead agency must develop its own substantial evidence to support their preferred threshold and should consider multiple perspectives. These perspectives include those from the community in general as well as specific stakeholder perspectives from the development community and environmental protection groups. A threshold that is too stringent could lead to a permanent significant and unavoidable VMT impact finding increasing the cost of environmental review for developers. Conversely, a threshold that does not result in any significant impacts could lead to missed opportunities to reasonably reduce VMT and related environmental impacts. In either case, attracting the attention of specific stakeholder groups can lead to CEQA challenges, which are often determined based on the strength of substantial evidence supporting lead agency decisions.

## OPTION 1 - Rely on the OPR Technical Advisory Thresholds

The first option is to simply rely on the threshold recommendations contained in the OPR Technical Advisory. As noted above, the general expectation is that land use projects should be measured against a 15 percent reduction below that of existing baseline conditions. Specific VMT thresholds for residential, office (work-related), and retail land uses are summarized below.

- Residential projects - A proposed project exceeding a level of 15 percent below existing (baseline) VMT per resident may indicate a significant transportation impact. Existing VMT per resident may be measured as regional VMT per resident or as city VMT per resident.
- Office projects - A proposed project exceeding a level of 15 percent below existing (baseline) regional VMT per employee may indicate a significant transportation impact.
- Retail projects - A net increase in total VMT may indicate a significant transportation impact.

For land use plans (i.e., a general plan, area plan, or community plan), a significant impact would occur if the respective thresholds above were exceeded in aggregate. This means that new population and employment growth combined the planned transportation network would need to generate future VMT per resident or VMT per worker that is less than 85 percent of the baseline value to be considered less than significant. Land use project and land use plans would also need to be consistent with the applicable RTP/SCS.

A potential limitation of the OPR recommendations is that the substantial evidence used to justify the thresholds is largely based on the state's air quality and GHG goals. Four main issues arise from this reliance.

- The OPR recommended threshold does not establish a level of VMT reduction that would result in the state meeting it's air quality and GHG goals according to the California Air Resources Board 2017 Scoping Plan-Identified VMT Reductions and Relationship to State Climate Goals (2019). This may create confusion with air quality and GHG impact analysis in environmental documents, which should already address the influence of VMT.
- The OPR recommended thresholds do not directly reflect expectations related to the other SB 743 objectives related to statewide goals to promote public health through active transportation, infill development, multimodal networks, and a diversity of land uses. Recommending a reduction below baseline levels is consistent with these objectives, but the numerical value has not been tied to specific statewide values for each objective or goal.
- State expectations for air quality and GHG may not align with local/lead agency expectations. Using state expectations for a local lead agency threshold may create inconsistencies with local city or county general plans.
- Each agency relying upon OPR's recommended threshold should still develop and set forth the substantial evidence explaining why OPR's recommendation is appropriate for the individual agency adopting it.


## OPTION 2 - Set Thresholds Consistent with Lead Agency Air Quality, GHG Reduction, and Energy Conservation Goals

This option sets a threshold consistent with a lead agency's air quality, GHG reduction, and energy conservation goals. A local agency would have to provide substantial evidence justifying why any threshold would meet statewide GHG goals. This approach requires that local air quality and GHG reduction goals in general plans, climate action plans, or GHG reduction plans comply with the legislation and associated plans described above on pages 5 and 6. In general, most of the expectations set through legislation are related to the state's GHG reduction goals that were originally captured in EO S-3-05.

- 2000 levels by 2010
- 1990 levels by 2020
- 80 percent below 1990 levels by 2050

SB 32 expanded on these goals and added the expectation that the state should reach 40 percent below 1990 levels by 2030 followed by SB 391 that requires the California Transportation Plan to support 80 percent reduction in GHGs below 1990 levels by 2050. With respect to the land use and transportation sectors, SB 375 tasked ARB with setting specific GHG reduction goals through the RTP/SCSs prepared by MPOs. The ARB Scoping Plan and Mobile Source Strategy provide analysis related to how the state can achieve the legislative and executive goals while the Caltrans Strategic Management Plan and Smart Mobility Framework provide supportive guidance and metrics. An important recognition of the ARB Scoping Plan and Mobile Source Strategy is that the initial SB 375 targets were not aggressive enough. The state needs to achieve a reduction of 7 percent below projected 2030 VMT levels and 15 percent below projected 2050 VMT levels associated with the first round of RTP/SCSs (see chart below).


Statewide On-Road GHG Emissions
Source: https://www.arb.ca.gov/cc/sb375/final staff proposal sb375 target update october 2017.pdf (pg. 12)

Note that the baseline trend in the chart did not consider key disruptive trends such as transportation network companies (TNCs) and autonomous vehicles (AVs) so it is possible that baseline VMT may be higher. Further, the climate planning scenario did not consider the recently issued Governor's Executive Order (EO) B-55-18 that establishes the goal to achieve carbon neutrality no later than 2045. Consideration of these factors would increase the level of VMT reduction needed to achieve the State's climate goals.

The most recent ARB analysis contained in California Air Resources Board 2017 Scoping Plan-Identified VMT Reductions and Relationship to State Climate Goals, January 2019 recommends project specific VMT reduction thresholds of 16.8 percent reduction from baseline for light-duty vehicle VMT (i.e., passenger cars and light trucks) or a 14.3 percent reduction for total VMT (i.e., all vehicles) - see excerpt below. These reductions are dependent on MPO RTP/SCS targets being met, which may not be a reasonable assumption for CEQA purposes given the information presented above from the 2018 Progress Report

California's Sustainable Communities and Climate Protection Act. Also, ARB does not provide details about whether the VMT values should be compared against jurisdictional or regional baseline values. Since the analysis was based on statewide data, it may be reasonable to presume that the reduction expectation is a fair-share expectation for all jurisdictions.


## ARB Recommended Total VMT per Resident Threshold

Source: California Air Resources Board 2017 Scoping Plan-Identified VMT Reductions and Relationship to State Climate Goals, January 2019

One benefit of relying on ARB or other state agencies for a threshold recommendation is the CEQA Guidelines provision in Section 15064.7(c) highlighted below.


#### Abstract

§ 15064.7. Thresholds of Significance. (a) Each public ageney is encouraged to develep-and publish thresholds of significance that the zgengy uses in the determination of the significance-ofenvironmentaleffectsr $A$ threshold of significance is an identifiable quantitative, qualitative or performance level of a particular environmental effect, noncompliance with which means the effect will normally be determined to be significant by the agency and compliance with which means the effect normally will be determined to be less than significant. (b) Each public agency is encouraged to develop and publish thresholds of significance that the agency uses in the determination of the significance of environmental effects. Thresholds of significance to be adopted for general use as part of the lead agency's environmental review process must be adopted by ordinance, resolution, rule, or regulation, and developed through a public review process and be supported by substantial evidence. Lead agencies may also use thresholds on a case-by-case basis as provided in Section 15064(b)(2). (c) When adopting or using thresholds of significance, a lead agency may consider thresholds of significance previously adopted or recommended by other public agencies or recommended by experts, provided the decision of the lead agency to adopt such thresholds is supported by substantial evidence.


ARB meets the criteria of being a public agency and having noted expertise in the areas of VMT and emissions analysis. Further, the recommended threshold values above were developed in specific consideration of SB 743 requirements.

One other agency threshold to consider is Caltrans. The Local Development-Intergovernmental Review (LD-IGR) Branch at Caltrans (http://www.dot.ca.gov/hq/tpp/offices/ocp/igr ceqa.html) has responsibility to reduce potential adverse impacts of local development on the state transportation system. As part of its responsibilities, each district branch performs reviews of CEQA environmental documents for local land use projects. These reviews include providing expectations for transportation impact analysis such as metrics and thresholds. Caltrans has published initial guidance related to SB 743 implementation.

- Local Development - Intergovernmental Review Program Interim Guidance, Caltrans, November 9, 2016 (http://www.dot.ca.gov/hq/tpp/documents/RevisedInterimGuidance11092016.pdf)

An important part of the Caltrans guidance are the following expectations for thresholds and impact findings related to VMT.

## A. Comment on Vehicle Miles Traveled associated with the project.

Reviewers should comment on vehicle miles traveled resulting from the land use project, applying local agency thresholds or absent those, thresholds recommended by the-mestrecent-dratt- of in Opn's adopted CEQA Guidelines end or OPR's approved Technical Advisory. If an assessment of VMT is not presented, Caltrans should request it be presented. Though $5 B 743$ clarifies requirements for transportation analysis, a VMT analysis is already needed to meet other CEQA requirements. ${ }^{1}$ Methods for assessing VMT should be compared to the methods recommended in the OPR's approved Technical Advisory. Where methods are not consistent with the recommendations in the Technical Advisory, Caltrans should comment on those methods. Where the project exhibits less than threshold VMT; Caltrans comments should acknowledge the project's transportation efficiency. Where the project exhibits greater than threshold VMT, Caltrans should request mitigation. Examples of mitigation measures are included in the OPR Technical Advisory. Contact the Caltrans SB 743 Program Implementation Manager, Alyssa Begley, for assistance with VMT calculation.

Source: http://www.dot.ca.gov/hq/tpp/documents/RevisedlnterimGuidance11092016.pdf

When Caltrans reviews CEQA documents, they may function as a reviewing agency or a responsible agency. In a responsible agency role, Caltrans has approval authority over some component of the project such as an encroachment permit for access to the state highway system. Comments from Caltrans should be adequately addressed, and special attention should be paid to those comments when Caltrans serves as a responsible agency since an adequate response may be required to obtain their required approval. The interim guidance above does not endorse the Technical Advisory recommendations for thresholds; it only requires IGR staff to 'comment' on VMT analysis. However, Caltrans is working to establish specific VMT thresholds per conversations with Alyssa Begley, SB 743 Program Implementation Manager with Caltrans. Further, Caltrans may have already establish GHG thresholds that could also serve as VMT thresholds.

In the draft Interim Guidance: Determining CEQA Significance For Greenhouse Gas Emissions for Projects on the State Highway System, California Department of Transportation, 2018, Caltrans recommends that any increase in GHG emissions would constitute a significant impact (see excerpt below).


## Interim Caltrans GHG Thresholds

Source: Interim Guidance: Determining CEQA Significance For Greenhouse Gas Emissions for Projects on the State Highway System, California Department of Transportation, 2018

Since any increase in VMT would result in an increase in GHG emissions, lead agencies could rely on this Caltrans threshold for VMT purposes using the same 15064.7(c) provision above. Using this threshold would result in most land use projects and land use plans resulting in significant impacts but it would also result in the maximum feasible mitigation for VMT.

## OPTION 3 - Set Thresholds Consistent with RTP/SCS Future Year VMT Projections by Jurisdiction or Sub-Region

VMT is a composite metric that is created as an output of combining a community's long-term population and growth projections with its long-term transportation network (i.e., the general plan). Other variables are also in play related to travel behavior, but land use changes and transportation network modifications are the items largely influenced or controlled by cities and counties. As such, every city and county unincorporated area within SBCTA already has a VMT growth budget. This is the amount of VMT that is forecast to be generated from their general plans combined with other travel behavior inputs for the region as captured in the RIVTAM or SCAG regional travel forecasting models as part of regional planning and the RTP/SCS. This VMT growth has already been 'approved' by the community, the region, and the state and could serve as the basis of a VMT threshold expressed as a VMT growth budget or as a VMT efficiency metric based on the future year VMT per resident, VMT per employee, or VMT per service population. The measurement of VMT could occur at the jurisdictional or sub-region level.

Potential limitations of this approach relate to model sensitivity and forecast accuracy/reasonableness. If a general plan includes policies or implementation programs designed to reduce VMT through transportation demand management (TDM) strategies, the regional models did not likely include these effects. Further, current regional models do not capture major disruptive trend effects such as TNCs, AVs, and internet shopping. The regional models may also have other issues with forecasting accuracy or reasonableness due to a disconnect between RTP/SCS expectations and the realities of transportation investments and local agency land use decisions as noted in the 2018 Progress Report California's Sustainable Communities and Climate Protection Act, California Air Resources Board, November 2018.

## OPTION 4 - Set Thresholds Based on Baseline VMT Performance

As noted above, an impact under CEQA begins with a change to the existing or baseline environment. There are a range of approaches to using this starting point for VMT impact analysis. At one end of the spectrum is 'total daily VMT' generated under baseline conditions. Setting this value as the threshold for a jurisdiction could result in a fixed budget that would limit increases such that even small increases could result in a significant impact. Alternatively, the baseline VMT per resident, VMT per employee, or VMT per service population could be used to establish an efficiency metric basis for impact evaluation. Using this form of VMT would mean that future land use projects would be expected to perform no worse than existing land use projects and only projects that cause an increase in the rate of VMT generation would cause significant impacts. Since VMT will increase or fluctuate with population and employment growth, changes in economic activity, and expansion of new vehicle travel choices (i.e., Uber, Lyft, AVs, etc.), expressing VMT measurement in an efficiency metric form allows for more direct comparisons to baseline conditions when it comes to land use projects, land use plans, and transportation projects. Setting a threshold based on baseline levels should consider how the threshold complies with the SB 743 statute provisions described at the beginning of this memo as well as whether VMT reduction strategies are feasible in the jurisdiction.

## OPTION 5 - Set Thresholds Based on Maximum Achievable VMT Reduction

Programs and practices designed to reduce VMT are referred to as transportation demand management (TDM) strategies. TDM strategies range from programs such as employers providing subsidized or free transit passes to constructing new infrastructure such as bicycle or pedestrian paths. The VMT reduction associated with different TDM measures has been published in research papers. In August 2010 the California Air Pollution Control Officers Association (CAPCOA) published Quantifying Greenhouse Gas Mitigation Measures. This report identified 50 transportation measures, 41 of which are applicable at the building and site level. Of these strategies, only a few are likely to be effective in rural or suburban settings such as those found in San Bernardino County. As such, a threshold could be based on the maximum achievable reduction in VMT, based on the TDM measures that would be feasible in the jurisdiction in which the project is located.

The August 2010 CAPCOA report identified an estimate for the expected reduction associated with each TDM measure. The most current research now suggests that these expected reduction targets are aggressive and not achievable in most areas. Implementation of several TDM measures can vary significantly for similar areas and uses. For example, any TDM measures associated with employment uses are dependent upon the employer. Office buildings in the same neighborhood with different tenants may not achieve the same reduction targets.

The maximum achievable reduction is also influenced by key factors such as urban context, the size of the project, and access to transit. Detailed analysis would be required to determine the feasible mitigation measures for a specific project and location. However, a $15 \%$ threshold, as identified by OPR, would not be feasible throughout most of the unincorporated and rural areas of the county. Areas in the West Valley with high quality transit could potentially achieve a reduction between $5 \%$ and $10 \%$, while the more rural and unincorporated areas of San Bernardino County would have a lower maximum achievable reduction, likely less than $4 \%$.

## FEHRヤPEERS

## TECHNICAL MEMORANDUM

## Date: 11.11.19

To: Steve Smith (SBCTA), Josh Lee (SBCTA), Albert Espinoza (City of Rancho Cucamonga), Jason
Welday (City of Rancho Cucamonga), Baldwin Ngai (City of Rancho Cucamonga)

From: Jason Pack, PE and Delia Votsch, PE

Subject: SB 743 Implementation Mitigation and TDM Strategy Assessment
OC18-0585

This technical memorandum summarizes our assessment of new research related to transportation demand management (TDM) effectiveness for reducing vehicle miles of travel (VMT). The purpose of this work was to understand what options are available to mitigate VMT, to compile new TDM information that has been published in research papers since release of the Quantifying Greenhouse Gas Mitigation Measures, CAPCOA, August 2010 and to identify those strategies suited to SBCTA member jurisdictions given the varying land use context. The land use and transportation context for SBCTA presents a challenge to the effectiveness of common TDM strategies for VMT reduction when applied at individual project sites due to limited travel choices. The matrix in Attachment A summarizes the overall evaluation of all the CAPCOA strategies while the matrix in Attachment B identifies the top twelve strategies suited for the study area.

## Mitigation Programs

The approach to the overall assessment includes two parts. The first part evaluated how VMT reduction strategies or projects could be developed or incorporated into existing funding programs such as Transportation Impact Fee (TIF) program. The purpose of incorporating VMT reduction strategies directly into existing programs is to provide greater certainty and effectiveness for VMT impact mitigation. The second part of the assessment identified potential new mitigation program concepts that may be worthy of further evaluation.

## FEHRケPEERS

## Existing Programs

Most SBCTA member jurisdictions maintain Traffic Impact Fees. These programs collect a fair-share fee payment from new development to contribute to the cost of a capital improvement program (CIP) consisting of long-term transportation network expansion projects identified to accommodate planned population and employment growth. A common theme for the existing programs is that they focus on vehicle trips or vehicle LOS as the key metric for determining deficiencies and developing CIP projects.

In their current form, most of the impact fees would not qualify as VMT impact mitigation programs. Most CIPs include roadway capacity expansion that contributes to VMT increases. Expanding roadway capacity in congested areas induces new vehicle travel that diminishes congestion relief benefits and generates new VMT and emissions. Refer to the following websites for more research information and technical details.

- http://www.dot.ca.gov/newtech/researchreports/reports/2015/10-12-2015NCST Brief InducedTravel CS6 v3.pdf
- https://www.arb.ca.gov/cc/sb375/policies/hwycapacity/highway capacity brief.pdf
- https.//trrjournalonline.trb.org/doi/abs/10.3141/2653-02

Many CIPs also include operational improvements, such as signal coordination projects, which would not contribute to an increase in VMT. Most CIPs also include some transit, bicycle, and pedestrian projects that could contribute to VMT reduction.

If the transit, bicycle, and pedestrian projects were separated into a stand-alone CIP with a supporting nexus study based on VMT reduction, then a new VMT fee program could be developed that is dedicated to VMT impact mitigation. This could be a new program implemented by the SBCTA member jurisdictions as a collaborative or as individual jurisdictions. An example of this type of program has been developed the City of Los Angeles as part of their Coastal Transportation Corridor Specific Plan and West Los Angeles Transportation Improvement and Mitigation Specific Plan. Details are provided at the following website. http://www.westsidemobilityplan.com/ctcspwla-timp-final-eir/

It may also be possible for a development project applicant to fully fund a transit, bicycle, or pedestrian project from a CIP as an alternative to paying the fee directly. Some fee programs currently allow fee credits for development that expedites and completes CIP-identified projects. Using this option requires inclusion of the mitigation in a development agreement or an EIR.

Managing and reducing demand could accomplish the goal of reducing peak period VMT. The main source of congestion is typically defined as vehicles move too slowly (i.e., peak period speeds are lower than posted speed limits). This definition of congestion describes a symptom and fails to recognize that peak period travel consists of vehicles with poor seat utilization caused by not managing demand more

[^2]
## FEHRケPEERS

effectively and mispricing travel demand. The existing roadway network has a limited capacity and this capacity is routinely filled up during peak periods in San Bernardino County by vehicles with solo drivers (i.e., low seat utilization). Further, limited facilities exist that prioritize travel by high occupancy vehicles. Increasing vehicle speeds and reducing delays substantially requires much greater seat utilization in existing vehicles (i.e., private vehicles and public transit). This change would also reduce VMT. Hence, refocusing on the combination of congestion management and VMT reduction would result in a different CIP that could qualify as VMT impact mitigation.

## New Mitigation Program Concepts

Beyond the conventional programs described above are two new concepts that are not currently available in The SBCTA area. For purposes of this study, these programs are defined as follows.

- VMT Mitigation Exchange - An exchange program is a concept where VMT generators can select from a pre-approved list of mitigation projects that may be located within the same jurisdiction or possibly from a larger area. The intent is to match the project's needed VMT reduction with a specific mitigation project of matching size and to provide evidence that the VMT reduction will reasonably occur.
- VMT Mitigation Bank - A mitigation bank is intended to serve as an entity or organization that pools fees from development projects across multiple jurisdictions to spend on larger scale mitigation projects. This concept differs from the more conventional impact fee program approach described above in that the fees are directed to a few larger projects that have the potential for a more significant reduction in VMT and the program is regional in nature.

As these new mitigation program concepts are still evolving, the specific descriptions and elements of the programs will likely change. The first resource document to describe and assess these programs was recently published by U.C. Berkeley and is entitled, "Implementing SB 743, An Analysis of Vehicle Miles Traveled Banking and Exchange Frameworks," The University of California Institute of Transportation Studies, October 2018. This document is a useful starting place for a dialogue about these programs.

The findings of the report are supportive of these concepts noting the following about the reasoning for their consideration.

Yet while methods for reducing VMT impacts—such as mileage pricing mechanisms, direct investments in new public transit infrastructure, transit access subsidies, and infill development incentives-are well understood, they may be difficult in some cases to implement as mitigation projects directly linked or near to individual developments. As a result, broader and more flexible approaches to mitigation may be necessary. In response, state and local policy makers are considering the creation of mitigation "banks" or "exchanges." In a mitigation bank, developers

## FEHRやPEERS

would commit funds instead of undertaking specific on-site mitigation projects, and then a local or regional authority could aggregate these funds and deploy them to top-priority mitigation projects throughout the jurisdiction. Similarly, in a mitigation exchange, developers would be permitted to select from a list of pre-approved mitigation projects throughout the jurisdiction (or propose their own), without needing to mitigate their transportation impacts on-site. Both models can be applied at a city, county, regional, and potentially state scale, depending on local development patterns, transportation needs and opportunities, and political will.

This reasoning is important for lead agencies in the SBCTA area because mitigating VMT impacts on a project-by-project basis is challenging especially in suburban land use contexts where travel choices are limited. That said, the UCB report and research conducted for this study identified the following key challenges with these types of programs.

- Challenges for Mitigation Exchanges
- Potential mismatch between funds and mitigation projects available
- Potential for reduced oversight of project selection
- Difficulty in verifying VMT reductions and their sustainability especially with VMT generation changing over time due to disruptive transportation trends such as transportation network companies (TNCs) and autonomous vehicles (AVs)
- Difficulty in demonstrating an essential nexus
- Potential opposition to mitigation not directly occurring in the project impact area especially if impacts are concentrated in or near disadvantaged communities and the mitigation occurs in more affluent areas
- Challenges for Mitigation Banks
- Increased need to conduct careful CEQA/Mitigation Fee Act analysis
- Accounting challenge in delay from fee payment to project funding
- Greater need for program administration budget
- Political difficulty in distributing mitigation projects and coordinating across jurisdictions
- Difficulty in verifying VMT reductions and their sustainability especially with VMT generation changing over time due to disruptive transportation trends such as transportation network companies (TNCs) and autonomous vehicles (AVs)
- Difficulty in demonstrating an essential nexus
- Potential opposition to mitigation not directly occurring in the project impact area especially if impacts are concentrated in or near disadvantaged communities and the mitigation occurs in more affluent areas

Another important element for either of these concepts is to have an entity that is responsible for establishing, operating, and maintaining the program. This is a potential role for a sub-regional or regional entity especially for programs that would extend mitigation projects beyond individual

[^3]
## FEHRヤPEERS

jurisdictional boundaries. A key part of 'operations' is that the entity will need the capability to provide verification of the VMT reduction performance and to adjust the program projects over time. Whether the entity is regional or sub-regional is another important consideration. A sub-regional entity could help minimize potential concerns about mitigation not occurring near the project site or in the same community.

The potential desire for VMT Mitigation Exchanges or Banks may depend on how lead agencies and developers respond to the initial implementation of SB 743 currently schedule to go into effect July 1, 2020. If many projects are found to have significant VMT impacts and problems occur with finding feasible mitigation measures for individual projects, then interest may grow for more program-based mitigation.

## TDM Strategies

This information can be used as part of the SB 743 implementation to determine potentially feasible VMT mitigation measures for individual land use projects in the SBCTA area. An important consideration for the mitigation effectiveness is the scale for TDM strategy implementation. The biggest effects of TDM strategies on VMT (and resultant emissions) derive from regional policies related to land use location efficiency and infrastructure investments that support transit, walking, and bicycling. While there are many measures that can influence VMT and emissions that relate to site design and building operations, they have smaller effects that are often dependent on final building tenants. Figure 1 presents a conceptual illustration of the relative importance of scale.

Figure 1: Transportation-Related GHG Reduction Measures


Of the 50 transportation measures presented in the CAPCOA 2010 report Quantifying Greenhouse Gas Mitigation Measures, 41 are applicable at building and site level. The remaining nine are functions of, or depend on, site location and/ or actions by local and regional agencies or funders. Table 1 summarizes the strategies according to the scope of implementation and the agents who would implement them.

## FEHRやPEERS

TABLE 1: SUMMARY OF TRANSPORTATION-RELATED CAPCOA MEASURES

| Scope | Agents | CAPCOA Strategies (see full CAPCOA list below) |
| :---: | :---: | :---: |
| Building Operations | Employer, Manager | $\mathbf{2 6}$ total from five CAPCOA strategy groups: <br> - $\mathbf{3}$ from 3.2 Site Enhancements group <br> - $\mathbf{3}$ from 3.3 Parking Pricing Availability group <br> - $\mathbf{1 5}$ from 3.4 Commute Trip Reduction group <br> - 2 from 3.5 Transit Access group <br> - $\mathbf{3}$ from 3.7 Vehicle Operations group |
| Site Design | Owner, Architect | 15 total from three strategy groups: <br> - 6 from 3.1 Land Use group <br> - 6 from 3.2 Site Enhancements group <br> - $\mathbf{1}$ from 3.3 Parking group <br> - 2 from 3.6 Road Access group |
| Location Efficiency | Developer, Local Agency | 3 shared with Regional and Local Policies |
| Alignment with Regional and Local Policies | Regional and local agencies | 3 shared with Location Efficiency |
| Regional Infrastructure and Services | Regional and local agencies | 6 total |

Of these strategies, some are likely to be effective in denser areas, while others will be less applicable in rural or suburban setting. In the SBCTA area, key factors that determine which reduction measures will be effective such as density and access to transit vary throughout and within the jurisdictions. To help narrow the list, we reviewed how land use context could influence each strategy's effectiveness and identified the seven for more detailed review. These strategies are described in Attachment B and listed below. Please note that disruptive trends, including but not limited to, transportation network companies (TNCs), autonomous vehicles (AVs), internet shopping, and micro-transit may affect the future effectiveness of these strategies.

1. Increase diversity of land uses - This strategy focuses on inclusion of mixed uses within projects or in consideration of the surrounding area to minimize vehicle travel in terms of both the number of trips and the length of those trips.
2. Provide pedestrian network improvements - This strategy focuses on creating a pedestrian network within the project and connecting to nearby destinations. Projects in the SBCTA area range in size, so the emphasis of this strategy for smaller projects would likely be the construction of network improvements that connect the project sites directly to nearby destinations. For larger projects, this strategy could focus on the development of a robust pedestrian network within the project itself. Alternatively, implementation could occur through an impact fee program such as the TUMF or benefit/assessment district based on local or regional plans.

## FehrłPEERS

3. Provide traffic calming measures and low-stress bicycle network improvements - This strategy combines the CAPCOA research focused on traffic calming with new research on providing a lowstress bicycle network. Traffic calming creates networks with low vehicle speeds and volumes that are more conducive to walking and bicycling. Building a low-stress bicycle network produces a similar outcome. Implementation options are similar to strategy 2 above. One potential change in this strategy over time is that e-bikes (and e-scooters) could extend the effective range of travel on the bicycle network, which could enhance the effectiveness of this strategy.
4. Implement car-sharing program - This strategy reduces the need to own a vehicle or reduces the number of vehicles owned by a household by making it convenient to access a shared vehicle for those trips where vehicle use is essential. Note that implementation of this strategy would require regional or local agency implementation and coordination and would not likely be applicable for individual development projects.
5. Increase transit service frequency and speed - This strategy focuses on improving transit service convenience and travel time competitiveness with driving. While the SBCTA area has fixed route rail and bus service that could be enhanced, it's also possible that new forms of low-cost demand-responsive transit service could be provided. The demand-responsive service could be provided as subsidized trips by contracting to private TNCs or Taxi companies. Alternatively, a public transit operator could provide the subsidized service but would need to improve on traditional cost effectiveness by relying on TNC ride-hailing technology, using smaller vehicles sized to demand, and flexible driver employment terms where drivers are paid by trip versus by hour. This type of service would reduce wait times for travelers and improve the typical in-vehicle travel time compared to traditional transit. Note that implementation of this strategy would require regional or local agency implementation, substantial changes to current transit practices, and would not likely be applicable for individual development projects.
6. Encourage telecommuting and alternative work schedules - This strategy relies of effective internet access and speeds to individual project sites/buildings to provide the opportunity for telecommuting. The effectiveness of the strategy depends on the ultimate building tenants and this should be a factor in considering the potential VMT reduction.
7. Provide ride-sharing programs - This strategy focuses on encouraging carpooling and vanpooling by project site/building tenants and has similar limitations as strategy 10 above.

Because of the limitations noted above, strategies $1,2,3,4$, and 7 are initially considered the highest priorities for individual land use project mitigation subject to review and discussion with the project team.

The VMT reduction strategies can be quantified using CACPOA calculation methodologies and recent ARB research findings. Attachment $C$ provides calculation methodologies for each of the mitigations provided above, along with their range of effectiveness.

## FEHRヤPEERS

## Summary

To help understand the full range of VMT impact mitigation and their benefits and challenges, Table 2 provides a high-level summary comparison.

## FEHRケPEERS

| Mitigation Option | Description | Benefits | Challenges |
| :---: | :---: | :---: | :---: |
| No feasible action | This option recognizes that feasible mitigation is not available due to the land use or transportation context. | - Recognizes the limitations of VMT impact mitigation when alternatives to driving are not reasonably available. | Could result in more significant and unavoidable (SAU) impacts that require an EIR instead of a negative declaration. |
| Change project | This option would tend to focus on changing built environment characteristics of a project such as its land use density or diversity to reduce vehicle travel. | - Mitigation may not require long-term monitoring (see substantial evidence summarized in the SB 743 Implementation TDM Strategy Assessment Technical Memorandum dated 6.11.18). <br> - Mitigation reduces VMT (and other vehicle travel) in immediate vicinity of the project site. | Project applicants may resist land use or other built environment changes due to financial concerns and market feasibility. |
| TDM | This option relies on strategies to reduce vehicle travel through incentives and disincentives often tied to the cost and convenience of vehicle travel. | - Mitigation reduces VMT (and other vehicle travel) in immediate vicinity of the project site. <br> - Multiple mitigation strategies to choose from such that a project applicant may find cobenefits from the strategies also serving as project amenities. | - Mitigation monitoring required because effectiveness depends on building tenants, which can change over time. As a result, impacts will remain SAU. <br> - Creates potential financial equity issues between existing and new land uses. Existing land use with TDM mitigation will have lower operating costs. <br> - Limited reduction based on applicable or relevant strategies |
| Impact fee program | This option requires developing a new impact fee program with a nexus | - Provides clear expectations for | - Requires lead agency to develop stakeholder support and funding to |

## FehrłPEERS

Table 2 - Summary of VMT Impact Mitigation Options

| Mitigation Option | Description | Benefits | Challenges |
| :---: | :---: | :---: | :---: |
|  | based on VMT reduction. <br> This type of nexus would allow the fee program capital improvement program (CIP) to include transit, bicycle, pedestrian and other types of projects that can demonstrate VMT reduction effectiveness. | developers about the VMT mitigation costs. <br> - Increases funding for VMT reduction projects such that larger and more effective projects may be implemented. <br> - May result in greater levels of VMT reduction compared to project-byproject mitigation. | create and maintain the fee program. <br> - Mitigation (e.g., CIP projects) may not occur in immediate vicinity of the project site where impacts of vehicle travel will be most directly felt by neighbors. |
| Mitigation bank/exchange | This option matches VMT generators with VMT reducers within or beyond jurisdictional boundaries through a third party. | - Could create mitigation options that may not otherwise be available or feasible. <br> - Not limited to jurisdictional boundaries. <br> - Could create incentive for new innovative mitigation ideas. | - Requires an entity capable of operating and maintaining the program with the ability to verify VMT reductions. <br> - Mitigation may not occur in immediate vicinity of the project site where impacts of vehicle travel will be most directly felt by neighbors. |
| General plan coverage | This option would address VMT impacts through a general plan update or amendment EIR and rely on CEQA Guidelines Section 15183 for subsequent project streamlining (as summarized in the SB 743 Implementation Thresholds Assessment Technical Memorandum dated 10.31.18). | - Addresses VMT reduction expectations in consideration of other jurisdictional objectives. <br> - Offers a wider range of mitigation options than at the project-scale. <br> - For subsequent projects consistent with the general plan, additional VMT impact analysis would not be required. | - General plan updates or amendments require substantial time and funding commitments. |

## FEHRケPEERS

ATTACHMENT A

TDM STRATEGY EVALUATION - DRAFT V 1.0
Comparison of CAPCOA Strategies Versus New Research Since 2010

| CapCOA Cotegory | CAPCOA | CAPCOA Strategy | CAPCOA Reduction | Strength of Substantial Evidence for CEOA impact Analysis? | New information Since CNPCOA Wis Published in 2010 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | New informution | Change in VMT reduction compared to CAPCOA | Literature or Evidence Cited |
| und Uiselocasion | 34 | Ur-thecresm Denuty | 0.5x-308 vimt medecion due to macesce in density | Adequate | howerng mivertal deniti is niecotated mith lowe virf peer capita hocroued cridental desait h orres mith high jebs sccess moy hrve a groster Vort tange than thorenes in rogions meth lowes jobs accere. <br> The range ef reductoras is beied on a range ef clasticies foom -0.04 to 0.022 The low end of the reverions rpprumas $s e 08$ <br>  denily end a-0.22 elosscoity in mesponse to sok moresse to residertavivemployment densiay. | 0.45.10.73\% | Pronary sources: <br> Soamet M and Mandy, S. (201d). Impacts of Resibential Density on Passenger Vehide Use and Greenhouse Gas Emisions - Policy Bief and Technical Badigrbund Dooawent: Callomis Air Reteurces Beart. Retrieved from: hetps://eib.ca gev/cc/sb37S/policies/policiechiten <br> Secondary nource: <br> Stevess, M. (2at7). Does Cempact Development Make People Drive Leed? Journal of the American Panning Association 33(0, 7-98. |
| Lend urelaction | 3.19 |  | 30n-21.35 meducton in VMT diw to increating intersection demity ns. typical ITt subuitam development | Natequate | No update to Cancoa inerinize adise <br>  developmenti wift igginfant intemal toext stuesure | Some | N/2 |
| Lend Uner/acobon | 34 | IUT-4 Ancreave Destination Accespladty | $575-20 \%$ VMT reduction due to decrasie in diatance to major jot centie ar downdoem | Adequate | Aeduction in VMAT due to increased regional occensidity (fobs grovity) Lecatieg are development in arsas with good access to destinatioes reducet VMT by reduring trip lengtis and making walking, blking and tratuit trips more feasible. Destination eccersbility is musured in termss of the number of jobs (or other atbactiona) reachable within a given trvel tima, which tends to be highest at central lecations and lowest at peripheral ones. | asx-2x | Premary sounces: <br> Mandy, S at al. (2014) Impacts of Network Connectivity on Faspenger Vahicle Use and Greenhoese Gas Emissions - Policy Brief and Technical Beckgeound Doownent Califomia Air Reseurces Boarct. Hetioved from: Mupi///arb.ca.gov/ce/tbl73/policies/pelicieshtm <br> Mandy, S. et al $\mathbf{2 0 0 1 9}$, Inpacts of Regional Accessibiley an Passenger Vehicle Ute and Grvenhouse Cas Imishont - Policy Briet and Techeical Background Docyment. Colifomis Air Resources Boeed. Betieved fonv: Metpo//brb. ce gov/ce/bb37S/policies/policies/htm <br> Secondary aturce: <br> Hohtaciew. et al groo2.) Lecatine EMifiency. Neighberheod and Socioeconomic Characteristics Deternine Auto Ownenhep and Use - Seadias in Cricago, Les Angeles, and Chicage. Tranaportation Plenuing and Tectrocogg. vot 2s. ip. $1-2$. |

TDM STRATEGY EVALUATION - DRAFT V 1.0
Comparison of CAPCOA Strategies Versus New Research Since 2010

| CAPCOA Category | CAPCOA. | CAPCOA Strategy | CAPCOA Reduction | Strength of Substantial Evidence for CEOA impact Analynis? | New information Since CAPCOA Wes Published in 2010 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | New information | Change in VMT reduction compored to CAPCOA | Lterature of find |
| land bie/locetion | 313 | LuT-3 hecesse Direstity of Ubben and Subuitan Develogpments | 9x-30 VMT reduction due to mixing Iend vire wilinn t ingitd developement | equate |  wethin $~$ ungle deverispment. Märing bend eses within s single dereloporent con decreses wit tand rowitiong GHG emliskera) uike bolding ueen do not need to divien to meetall of their nexidi. 2] Mediurtan in VMT due to regional charge in entropy mete of diventy, Moviding a mix of land user mithin 土 tinge neigtbotiood an decrese VMT bend rewuting CHic <br>  oper are thorrea nond may bs accommodoted by non anta modes of transport foe exsmple when residenitial arsas are in the same neighlowhoed as retsil and office bualdingh, a msident dew net need to travel autakie of the seighborhoed to meet his/her trip needh. At the Regional level, reductions in VMT are messured in repponse to changes in the entropy inder of liend use fiversity. | ทos.res <br> 2) 0.3 x - x |  <br>  Associsten (2010) Oumotying Greenhouse Ces Magation Mestures: Rebieved Som: <br>  <br>  <br>  Repen Wh-RD 755 . Wetingten Sute Departiment ef Trampertation. Retifived frome <br>  <br>  <br>  <br>  Resuech and Dontopment Authority Renifived frome <br>  <br>  <br> Spesin. Set al. (2014). impacta of Land Use Mix on Pessenger Veriste Use and Geenhouse Ges <br>  <br>  <br> 2] Duang. Wengis at al Yhort- and iong-Temn EHecks of Land Use on Reducing Personal Vehicie Mies of Travel* |
| Lund ure/toction | 3.15 |  | $0.5 \%-34.6 \%$ redure in VMT dee to locating a project nesr high-quality tramis | ute | 11 VMT modetion when trans station 8 provided mition $\sqrt{2}$ mile of derihponem (4compared to VMI tor siter becmed sutide $1 / 2$ mik nadun of tromite loating high densily durviopmant metion $1 / 2$ nite ot <br>  prople tereing to ar from tes Propper ink: meretore medoced vart. <br> 21) Reduction in vatide 0ipi dou to implermerting $100 . A$ propec with. midentiveommetcil center trigiped Eound and of tus station is akts: prokec deecition thould inlwofe th: mienimem, the folowing dexign fotetion: <br>  <br>  5.10 mincte milk ior rovely y mide for - A rall station locatas miltin 220 minute eas tor roughy x mie from station to edee at dentopmenty <br>  connectiog to a Righ perecentage of regibas dentinutoons <br>  oxling | nos.ses. <br> 2006.73x | FIund, K et al (2504. Tuwet Characteristics of Trarsit-Oriented Developenent in Calforna Oakland. CA: Bry Area Rapid Transit Distsict, Metrepelitan Transportation Cemmission. and Caltrana. <br> Tal G. et al (2013). Policy Brief on the Imypacts of Transit Access (Distance to Tranaif) Based on a Review of the Eimpirical Liternture. Calfomis Air Resources Board, Retrieved frome Mrys:/hwwwatbica gow/oc/sb375/policies/mansitacceithranit access_briefla0813 pdf <br> 2) Zani, K. R. et al. Boid). EFrects of Tremait-Oriented Develepment an Trip Generstion Distribution and Mode Share in Wauhington. D.C, and Batisesee, Maryland. Transpertation Besearch Aecerd. Joumal of the Tranpportation Research Board. 2413, 45-53. D01. 10.341/2413-05 |

TDM STRATEGY EVALUATION - DRAFT V 1.0
Comparison of CAPCOA Strategies Versus New Research Since 2010


TDM STRATEGY EVALUATION - DRAFT V 1.0
Comparison of CAPCOA Strategies Versus New Research Since 2010

| CAPCOA Category Nagtbontiod she fembancerents | CAPCOA. | CAPCOA Strategy | CAPCOA Reduction | Strength of Substantial Evidence for CEOA Impact Analyais? | New information Since CAPCOA Was Published in 2010 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | New information | Change in VMT reduction compred to CAPCOA | Literature or Evidence Cited |
|  | 149 | TRT 9 Implement Cor Shating Prigys | OAx-075 vill reduction dut to lover vehiche omsersiap rites and peneral shift to nan dirong mades | Sespate | velide trip ioductan due ve cor staning programs raducton mixames 1x, 5x penetamion site lepplemesing cas shanng programu vilome perophe to heme en demenen acess to $s$ vared flet di ventices on $\mathrm{am} m$ <br>  by mon SoV modet Traneat sation bases proyrems foas on promides the 'Wast mk'. sobrani und hink trasut mit commuters find detimatiom Rerstentalibsed programa nork to mbicisite entas houresoid based uipi Iteploperibued pregrams prowite m mass for buxnesa/day trop for diteceatiat mode commutes nid prende a gurrmtere nide hame option The <br>  pentration ate | -35-16 |  <br>  <br>  <br> Nend to werdy with mver reent UcD reserich |
| Puthes Priong | 331 | rot.tuma rating Sepply | $5 \%-175 \%$ VMT refuction in texporuse to reduced parkng supply ve. ITI parking generation rate | Weal-mot recormenendel Fetr a Peers has diveloped nex estimaiss for mesidestail lend wee onty that may bes nued | OWCOA reduction range dermed trom etimaic of reduced rethicie ameentiop not wipportad by oblemed tre or vist rebiectoons tudencer is wellabh bor mode whi deen to provencoc/bienexce of pating in magh-tranct urban सwesk additional anvestaston ongaing | nolue |  <br>  <br>  |
| Pationg Prices | 332 | PDT 2 Unbundle Farking Certs from Property Cest | $26 \mathrm{x}-1 \mathrm{mh}$ vart returtion tuat to drocesed wetcice ownenhip mites | Adequate - conditonal on the agency net requinng pariong minimums and pricing/managing en strest parhing (il e. residential parking permit districts, sfic) | Reduction in VML. penmanty tor retedential unes buied on ragen of elasticities for <br> veticle ounentip on cesposse to moneusd <br> revidencel peting foer. Does not secount <br> for sell--telection ondy appien it the aty <br> does not trquire paring meimums and $\#$ <br> on sureet perting is piced and mavaged <br> (0) midental patang permit distincti) | 25.12\% |  Retrived Mant 2010 tom hite//mwew vic orghpark:how pet |

TDM STRATEGY EVALUATION - DRAFT V 1.0

|  |  |  |  |  |  | New informatio | an Since CAPCOA Wes Published in 2010 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CAPCOA Category | CAPCOA* | CAPCOA Strategy | CAPCOA Reduction | Strength of Substantal Evidence for CEOA Impact Analynis? | Nevi information | Change in VMT reduction compared to CAPCOA | Lterature or Evidence Citad |
| Pationg Prions | 333 | POT- 3 implement Market Price Malic Parbang | 28x.558 ver metrition due 10 peok once bebevior and diricencese to dinung | Aosquate | 1 meplememit P proces gatiogy for paibing by procy at contral busines <br> datnclemployment senie/finctil center on <br> park ance' behaver the benefit of this <br> memure above that of paid parking at the <br> propect cenly st thet e deters parkeg spillover <br> public periking neaty. which undecwere ihe <br> velucle miles traveled (VM) benefts of <br> peopect peoing II may abse penesate <br> unflowert arse mide mode shift to puctify <br> VMT reduction apples to VITT from vishonfeustemer tips only Andaction <br> higher than top wed of range from CAPCOA report apply enly a conditions mith highly censtained an-itrent parking rapply and | 253 145 |  Flastioty, Dubin Deperment of Emeronmemal Studies, Univerity Colifge Dobbin Retivend from <br>  <br>  Retineved trom Metp $/$ /eww upt org/idwindmilitm <br>  <br>  <br>  <br>  <br>  |
| Trasar Spruem | 353 | TST. 3 Gepand Tamea Netront | 0.1.e.2N VMT reduction en response to increase in traneit netwedk ceverage | Asequate | Heduction in velucle treps dive to noreased transit serwice hours or couerage. Low end of redurtion is typical ef project-level implewentation (payesent of impact fees and/or localizes mprovements). | a.1510.3x |  <br>  <br>  |
| Tremin Sptem | 354 | TST 41 Incresso Transit Sence Frequeneyspeeed | 0.02*-2.5* VMT reduction due to reduced hradeays and increased speed and reiabily | Adequte | Beduction in vehicle trips due to momened Iranut Irequency/decreased heacfway, Loe end af rechaction is typical of project-level implementation (feyyment of impact fees and/ar iscolized improwemenlay | ask.63x | Honty, 5 el al [2013) impoets of Thenat Sence Strateges on Pasenger Vehicit Ure and <br>  <br>  |
| Trame Sytum | 3st | TSI-1 Provide a Alyt Repid Tranait System | $0025-32 x$ vM meserion by comerring tenderd bus greem to skr spown | Nsequate | Na mesw mformation dentifed | Seme | N/A |
| Commutr Thy Refluction | 341 | TRT- 1 Implement CTR Program Vohantary | $100-62 \mathrm{~L}$ cemmate VhIt reductuon due to employer-hased roode shif progam | Alequate Effectrveness is <br> budivng/tenant specofic. De not use whth "TET 2 implement CTR Pragram Required Implernentabon/Manstorng' or with CNCCOA serategies IRI-3 43 thruugh TRT 3 . 49 |  enployerided Tous poogame $T$ The CTR progum shouid ncteste at of the stiaring to enety the other thersiam <br> - Conpothong encournpement Node mancheng assatunce Proferembial aspool partiong -herthe moik utamains tor compeoin <br>  Vmpool asistance Biyck end inp lactites peting alowen end lecken) | 10560x |  <br>  Dooumem Caitomis Na Brosuren Bowd Retioend trom <br>  |
| Comenute Trip Reductorn | 342 | TRT 2 implement CTR Prograns Requared Implementation/Moniteving | 425 2108 conmute vMi medection due iu employer-based mode aih program weth requared montonng and reporting | Adequate - Effectiveness in budileng/tenant upecific. Do not use widt "TeI 1 irmplement CTR Nrogram . Voluntary' or with CAPCOA strategies <br>  | Lirited evidence aveilalle Aneciola svidence shoes hagh investwent produces high VMT/vehicle tnep reductions at ervployment sites weth menhonng requirtments and apecifie Largeis | Seme |  <br>  <br>  Qanuficeson-Reporis.s.s-ITinalpdit |

TDM STRATEGY EVALUATION - DRAFT V 1.0


TDM STRATEGY EVALUATION - DRAFT V 1.0

| CAPCOA Category | CAPCOA. | CAPCOA Strategy | CAPCOA Reduction | Strength of Substantial Evidence for CFOA impact Analyuis? | New information Since CAPCOA Was Published in 2010 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Neww information | Change in VMT reduction compared to cipcoa | Uterature or tv |
| Cemmeste Trip Reducuon | 311 | ThT 11 Proude Eneployer-Sponsored Vanpoel/Shutile | O3S 13 AX commuie VMT roducion due to employersposoced vempol ms/or shente servec |  budding/ unant apecific | 1) Reductinn in commute vehicle terpid due ie implementing empleyer sponsored vinpoel and shettie programi: $2 ;$ Reductuon in comrmute vehicle trips due to vanpoel uncentive programe. 37 Reducten in comusute vehide trips due to employer shutile progrems | 10.5 F 5 cm 218.35-745 31.45-6.3\% | 1) Conces, Sisinus. Wanters, Phelip Wamhalabe Francis, poo5) Fare Pricing Flastacty, Subsudies and Bemand for Vanpool Services Trarapartation Racarch fecprat lournal of the Transpertatian Aesarrh Board, 1924, pp 215.223 <br> 2) Vicieria Transport Falocy Instrivie Qovs) Rdesharing Corpoaling and Varpoeling Onlive TDM frcyctopedis Retneced from Mety //Mpi orghde/tdm34 him <br> 3) ICF [2004]. GHG lnapacts for Commuter Surtles Pibt Program |
| Comerute Trig Aeduction | 3 | Ter 3 Pronde Sde Shamp Mrogume | the $15 \%$ commate VMt redoctiun due to empleyer nde share coprdenation and facilions | Alequate Ellectiveness is <br> bulding/tenens upecifft the not use with "TET- 1 limplement CIR Propourn Voherary of "TRT- 2 Implement CTR Rogram - Requared Implementaiior/Monstonng | Commuie velicle viges reduction due to ersployer nide-sharng programi. Nvomete ride:sharing programs through a mults faceled appenach wach as <br> - Designating a cerrain percentage of pabing peces for ede sharing veheles - Dereyrating adequaie passenger loading and unioading and waiting artas for rife sharng vehadies - Providing an app or webyite for s.eerdinarny rifes | 250.3\% |  <br>  |
| Commvie Trep Redurbon | 1410 | TRT T3 Implement a Scheel Poel Program | 725 15 A $\mathbf{x}$ redurtoon in achoel WMT due to scheot peot implementasen | Asequate Selosi Mat enty | Limited new evidence avalable not crenchative | ser | Transpertalabe Demand Managemest instives of the Associanes for Commuter Transpertaison TDM Cane Studies and Commuter Testrsonials. Frepared for the US EPA 1997 (ip 10. 36-335 <br> Waylocio 2015 Annuai Repon Accessed on Moch 11. 2017 from <br>  |
| Commestr Inp Reduction | 3413 |  | 38\% 63\% ieduction in schoel VMI doe to schaol bus service implementabon | Achaunte Scheol vet onts | VMT reducbion for wheopl trops based on dsta beyond a single school detrict. <br> School dstinct boundenes are alie a lactor To conaider VMT redoction does not appear to be a factor that was considered in a select review of Ca beundaries <br> VMT reductions apply to school trip VMI enly | s5-30\% | Whion, \& et al ;200n. The implications of schoel choicr on travel behever and etreisormentel emasions. Transporsation Research Part D Transpert and Enwreament 12p007. 506 sit |
| Not Applicalie - net a Cancoh stralegy | Net Applicabie not a CAFCOA sbateyr | Not Amplcable - not a CAPCOA stritegy | Not Appleable not a CAPCOA strategy | Not Applicable not a CABCOA swatwgy |  baned on dua trom winingion DC. and <br>  at 51000 ma stronc raperavity inctiden Whit tot whationeng and mainemance <br> virt reduran at 6023 mites per day per <br>  <br>  dina tem tuty bove | 57.000-151000 arnuad VMT molucticn based or tev large US cities <br> VMT reduction of 0.02) milish per day wer memher, baind at ene liege US city extionate |  United Stmei, Grest Breain and Austrols Tremsportation Beseach Part 0 Tronyport ane (nversment $31,13-20$ <br> TOM Methodolegy Impart ef Carshaing Mombershp. Tranit Pasies, Biewhaning Membertin. Unbunded Barking ant Parking Sippiy Aeductions on Doving, Cemer for Neighbethoed Technology. Peter Hass and Gindy Copp with TratsFeem ataft. May 5. 204 |

## FEHRヶPEERS

ATTACHMENT B
tDM STRATEGY EVALUATION - DRAFT V 1.0
Relevant Strategies for Implementation in SBCTA Jurisdictions Due to Land Use Context

FEHRヶPEERS

| New information Since Capcoa Wes Published in 2010 |  |  |
| :---: | :---: | :---: |
| New information | Change in VMT reduction compared to CAPCOM(1) | Ltersture or Evidence Cited |
| If VMT reduction dive to mox of land wies with a single development al floduction in VMT bue te regional change in zetrepy index of diversity | गomesers |  <br>  whes ef triene- |
| VMTt reducben due to provition ef edmplete pedectran netemerta | 。 |  <br>  <br>  |
| Redaction in ver dow to buiding out o iom sures bate netwak, educcion in VMr due to epemion of tate netemits in utiten sem | 0. 120 |  <br>  <br>  <br>  <br>  <br>  <br>  |
| Vehicle trip redurtion due te car-sharing Programs Neductioh assumes Th-5N penctration sale <br> Car shaving effect sen Virt is sull evoling due to TNC effect UCD research showed less effect on cor dwourship dhat bo car shariny participabon and an uncertain eflect on vert | 03 |  <br>  <br>  <br>  <br>  <br>  |
| Redoction in mbict trien dien 10 maresued <br>  | 0rxess |  <br>  <br>  |

TDM STRATEGY EVALUATION - DRAFT V 1.0
Relevant Strategies for Implementation in SBCTA Jurisdictions Due to Land Use Context

| CAPCOA Category | CAPCOA ${ }^{\text {a }}$ | CAPCOA Strategy | Capcoa Reduction | Strength of Substantial Evidence for CEQA Impact Analysis? | New information | New information Since CAPCOA Was Published in 2010 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Change in VMT reduction compared to CAPCOAC(1) | Literature of fvidence Cited |
| Commule Trip Aeduction | 146 | TRI- 6 incourage Telecoonnutang and Ahemative Woek Schecikles |  die to redivid commat vep | Adequate - EHectiveness is buading/tenast specific Do not wse with "TRT- 1 Implement CTR Program Veluncary' or "TRT 2 Impliernent CTR Program - fiequared Implemertatian/Monitpring * | val aducton due to adoplion of telicamwuting | 025-45 |  Impincal Lemrive Cablonia hir Ressurces bond Retireved frem <br>  |
| Commute Trip Kellaction | 343 | TRT 3 Aronde Dide-Shminy Programs | $17-15 \%$ cemmete VMT reducten due to ampioger aide share coorderation mentactions | Adequate - Iffectiveness 5 buidiagi terant ipecific De not use whth "TRT I lisplement CTR Progreen Voluntary" ot "IKI - 2 implement CTR Progrem - Bequired Impleimentationy/Aowtering * | Commute velecle trips reducson doe to employer ride sharing programa | 25sass | Neteria Traspoct Policy Instiute Q015). Bodecharng Compooing and Vanpeoling Owline TDM Encriopedia Reineved fram. Nitp/Myiorg/idm/idm34htm |



## ATTACHMENT ‘D’



# memorandum 

DATE: May 21,2020
TO: Brian Gengler, P.E., T.E., City Engineer
FROM: Sandipan Bhattacharjee, P.E., T.E., AICP, ENV-SP
SUBJECT: $\quad$ Screening Criteria for Vehicle Miles Traveled

Translutions, Inc. (Translutions) is pleased to provide this memorandum discussing the background of Senate Bill 743 (SB743 ) which will change transportation impacts under the California Environmental Quality Act (CEQA).

## BACKGROUND

Senate Bill 743 (Steinberg, 2013), which was codified in Public Resources Code section 21099, required changes to the guidelines for implementing CEQA (CEQA Guidelines) (Cal. Code Regs., Title 14, Div. 6, Ch. 3, § 15000 et seq.) regarding the analysis of transportation impacts. As one appellate court recently explained: "During the last 10 years, the Legislature has charted a course of long-term sustainability based on denser infill development, reduced reliance on individual vehicles and improved mass transit, all with the goal of reducing greenhouse gas emissions. Section 21099 is part of that strategy . .
." (Covina Residents for Responsible Development v. City of Covina (2018) 21 Cal.App.5th 712, 729.) Pursuant to Section 21099, the criteria for determining the significance of transportation impacts must "promote the reduction of greenhouse gas emissions, the development of multimodal transportation networks, and a diversity of land uses." (Id., subd. (b)(1); see generally, adopted CEQA Guidelines, § 15064.3, subd. (b) [Criteria for Analyzing Transportation Impacts].) To that end, in developing the criteria, OPR has proposed, and the California Natural Resources Agency (Agency) has ceritified and adopted, changes to the CEQA Guidelines that identify vehicle miles traveled (VMT) as the most appropriate metric to evaluate a project's transportation impacts. With the California Natural Resources Agency's certification and adoption of the changes to the CEQA Guidelines, automobile delay, as measured by "level of service" and other similar metrics, generally no longer constitutes a significant environmental effect under CEQA. (Pub. Resources Code, § 21099, subd. (b)(3).)
It should be noted that SB 743 (the legislation) does not specify any screening thresholds or impact criteria for transportation impacts using VMT. In fact, the legislation does not even specify VMT as the metric - but directs the OPR to identify the appropriate metric. The OPR evaluated several metrics including VMT, Automobile Trips Generated, Multimodal LOS, Fuel Use, and Motor Vehicle Hours Traveled, and ultimately settled on VMT. SB 743 includes legislative intent to help guide the development of the new criteria for transportation impacts to align with Green House Gas (GHG) reduction. For example, Section 1 of the legislation states: "New methodologies under the California Environmental Quality Act are needed for evaluating transportation impacts that are better able to promote the state's goals of reducing greenhouse gas emissions and traffic-related air pollution, promoting the development of a multimodal transportation system, and providing clean, efficient access to destinations." Further, subdivision (b) of the new Section 21099 requires that the new criteria "promote the reduction of greenhouse gas emissions, the development of multimodal transportation networks, and a diversity of land uses."

## OPR'S TECHNICAL ADVISORY

To assist in the process, the OPR released several technical advisories. The technical advisory states that "...(it) is one in a series of advisories provided by the Governor's Office of Planning and Research (OPR) as a service to professional
planners, land use officials, and CEQA practitioners. OPR issues technical assistance on issues that broadly affect the practice of land use planning and the California Environmental Quality Act (CEQA) (Pub. Resources Code, § 21000 et seq.). (Gov. Code, §65040, subds. (g), (I), ( m ).) The purpose of this document is to provide advice and recommendations, which agencies and other entities may use at their discretion. This document does not alter lead agency discretion in preparing environmental documents subject to CEQA. This document should not be construed as legal advice." Therefore, the OPR agrees and recommends that lead agencies choose and implement their thresholds.

## SCREENING THRESHOLDS RECOMMENDED BY OPR

Many agencies use "screening thresholds" to quickly identify when a project should be expected to cause a less-thansignificant impact without conducting a detailed study. (See e.g., CEQA Guidelines, §§ 15063(c)(3)(C), 15128, and Appendix G.) As explained below, this technical advisory suggests that lead agencies may screen out VMT impacts using project size, maps, transit availability, and provision of affordable housing. The Technical Advisory recommends the following thresholds:

Screening Threshold for Small Projects. Many local agencies have developed screening thresholds to indicate when detailed analysis is needed. Absent substantial evidence indicating that a project would generate a potentially significant level of VMT, or inconsistency with a Sustainable Communities Strategy (SCS) or general plan, projects that generate or attract fewer than 110 trips per day generally may be assumed to cause a less-than significant transportation impact.
Analysis. To set this 110-trip threshold, the OPR uses a CEQA exemption for additions to existing structures of up to 10,000 square feet. The Technical Advisory states, "CEQA provides a categorical exemption for existing facilities, including additions to existing structures of up to 10,000 square feet, so long as the project is in an area where public infrastructure is available to allow for maximum planned development and the project is not in an environmentally sensitive area. (CEQA Guidelines, § 15301, subd. (e)(2).) Typical project types for which trip generation increases relatively linearly with building footprint (i.e., general office building, single tenant office building, office park, and business park) generate or attract an additional 110-124 trips per 10,000 square feet. Therefore, absent substantial evidence otherwise, it is reasonable to conclude that the addition of 110 or fewer trips could be considered not to lead to a significant impact'. It should be noted that many land uses generate significantly higher trips than the 110 daily-trip threshold. For example, a 10,000 square foot Drive-In Bank generates 1,000 daily trips. Similarly, a 10,000 square foot drugstore with drive through window would generate 1,092 daily trips, and a USPS would generate 1,039 trips. Therefore, there are many land-uses where the 10,000 square foot exemption would result in substantially higher trips than the 110 -trip threshold used by the OPR.
Recommendation. Based on the intent and stated goals of SB-743, the City has evaluated land uses in the City from a GHG emissions perspective. In San Bernardino County, there are two Air Quality Management Districts the Mojave Desert AQMD (MDAQMD) and the South Coast AQMD (SCAQMD). The MDAQMD uses a threshold of 100,000 Metric Tons (MT) of CO2 Equivalents (CO2e) per year as a threshold to identify significant impacts ${ }^{1}$. The SCAQMD in its Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans² recommends a screening threshold of 3,000 MT of CO2e per year for residential and commercial sectors and 10,000 MT of CO2e per year for industrial projects.

[^4]Understanding that although the City is in the MDAQMD area, the SCAQMD's recommendations are the most stringent in San Bernardino County. Therefore, various land uses were evaluated using City specific average trip lengths by trip purpose from the San Bernardino Transportation Analysis Model (SBTAM) and evaluated in the context of the SCAQMD threshold of 3,000 MT of CO2e per annum. Table A summarizes the findings of the evaluation. The GHG emissions were calculated based on 100 units (DU or 1,000 square feet). The resulting emissions were compared to the SCAQMD threshold of 3,000 MT CO2e/year and the number of units to trigger the threshold was calculated.

Table A - Greenhouse Gas and Trip Generation Thresholds

|  | Calculations Using 100 Units |  |  |  |  |  | Less Than Significant ( 3,000 MT of CO 2 e ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Use | \# | Units | $\begin{aligned} & \text { CO2e } \\ & \text { (MT) } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Mobile } \\ \text { CO2e } \end{gathered}$ | Weekday Trip Generation Rate | Weekday Trips | Units | Trips |
| Single Family Residential | 100 | DU | 2,204 | 1,551 | 9.44 | 944 | 136 | 1,285 |
| Multi Family (Low Rise) Residential | 100 | DU | 1,621 | 1,212 | 7.32 | 732 | 185 | 1,355 |
| Office | 100 | TSF | 1,321 | 828 | 9.74 | 974 | 227 | 2,212 |
| Retail | 100 | TSF | 2,463 | 1,902 | 37.75 | 3,775 | 122 | 4,598 |
| Warehouse No Refrigeration, No Rail | 100 | TSF | 362 | 105 | 1.74 | 174 | 829 | 1,442 |
| Light Industrial | 100 | TSF | 1,015 | 347 | 4.96 | 496 | 296 | 1,466 |

As seen from the above table, the following unit counts are anticipated to have less than significant impacts -

- Single Family Residential - 136 Dwelling Units
- Multi-Family (Low Rise) Residential - 136 Dwelling Units
- Office - 227,000 square feet
- Retail - 122,000 square feet
- Warehousing - 829,000 square feet
- Light Industrial - 296,000 square feet

For land uses not included in the table above, the most restrictive daily trip threshold ( 1,285 trips) from the table above could be used at the City Engineers' discretion.

## PUBLIC COMMENTS

## THIS PAGE LEFT BLANK INTENTIONALLY



## SUBJECT: PUBLIC COMMENTS ON PLANNING MATTERS

In compliance with the Brown Act, it is necessary for the Planning Commission to make available time for members of the public to address the Planning Commission on items of interest that fall within the Planning Commission's subject matter jurisdiction.

Please limit the length of your comments to 3 minutes.
SW:ko

## THIS PAGE LEFT BLANK INTENTIONALLY

# REPORTS <br> BY COMMISSION MEMBERS \& STAFF 

## THIS PAGE LEFT BLANK INTENTIONALLY

## MEMORANDUM



## SUBJECT: PRESENTATION OF REPORTS BY COMMISSION MEMBERS

An opportunity is provided for Planning Commissioners to present items of interest at this time.

SW:ko

## TRAFFIC IMPACT ANALYSIS

# TRAFFIC IMPACT ANALYSIS 

# Southern California Logistics Airport Specific Plan 

Prepared for: Stirling Development<br>27422 Portola Parkway, Suite 300<br>Foothill Ranch, CA 92610

April 23, 2020

## Michael Baker

INTERNATIONAL

## TABLE OF CONTENTS

1 EXECUTIVE SUMMARY ..... 1
2 INTRODUCTION ..... 16
2.1 Study Area ..... 16
2.2 Analysis Methodology ..... 21
2.3 Thresholds of Significance ..... 21
3 EXISTING CONDITIONS ..... 22
3.1 Surrounding Roadway Network ..... 22
3.2 Existing City of Victorville Circulation Plan ..... 23
3.3 Existing Traffic Volumes ..... 23
3.4 Existing Peak Hour Study Intersection LOS ..... 38
4 PROPOSED PROJECT ..... 40
4.1 On-Site Specific Plan Roadway Network Improvements ..... 40
4.2 Project Forecast Trip Generation ..... 42
4.3 Trip Distribution and Trip Assignment of Proposed Project ..... 43
5 EXISTING WITH PROJECT BUILDOUT ..... 50
5.1 Existing With Project Buildout Traffic Volumes ..... 50
5.2 Existing With Project Buildout Peak Hour Study Intersection LOS ..... 50
5.3 Existing With Project Buildout Mitigation Measures ..... 57
6 FORECAST YEAR 2040 WITHOUT HDC WITHOUT PROJECT ..... 63
6.1 Forecast Year 2040 Without HDC Regional Network Improvements ..... 63
6.2 Forecast Year 2040 Without HDC Without Project Traffic Volumes ..... 67
6.3 Forecast Year 2040 Without HDC Without Project Peak Hour Study Intersection LOS ..... 67
7 FORECAST YEAR 2040 WITHOUT HDC WITH PROJECT ..... 72
7.1 Forecast Year 2040 Without HDC With Project Traffic Volumes ..... 72
7.2 Forecast Year 2040 Without HDC With Project Peak Hour Study Intersection LOS ..... 72
7.3 Forecast Year 2040 Without HDC With Project Mitigation Measures ..... 72
8 FORECAST YEAR 2040 WITH HDC WITHOUT PROJECT ..... 85
8.1 Forecast Year 2040 With HDC Regional Network Improvements ..... 85
8.2 Forecast Year 2040 With HDC Without Project Traffic Volumes ..... 86
8.3 Forecast Year 2040 With HDC Without Project Peak Hour Study Intersection LOS ..... 95

## Michael Baker

## INTERNATIONAL

9 FORECAST YEAR 2040 WITH HDC WITH PROJECT ..... 97
9.1 Forecast Year 2040 With HDC With Project Traffic Volumes ..... 97
9.2 Forecast Year 2040 With HDC With Project Peak Hour Study Intersection LOS ..... 97
9.3 Forecast Year 2040 With HDC With Project Mitigation Measures ..... 97
10 PHASING ANALYSIS ..... 110
10.1 Development Phase 1 ..... 110
10.2 Development Phase 2 ..... 111
10.3 Development Phase 3 ..... 112
10.4 Development Phase 4 ..... 112
10.5 Development Phase 5 ..... 113
11 TRAFFIC SIGNAL WARRANT ANALYSIS ..... 119
11.1 Traffic Signal Warrant Methodology ..... 119
11.1.1 Warrant 3: Peak-Hour Vehicular Volume ..... 119
11.1.2 Warrant 6: Coordinated Signal System ..... 120
11.2 Traffic Signal Warrant Analysis ..... 120
11.2.1 Forecast Year 2040 Without HDC With Project ..... 120
11.2.2 Forecast Year 2040 With HDC With Project. ..... 120
12 FINDINGS AND RECOMMENDATIONS ..... 122
LIST OF EXHIBITS
Exhibit 1, Regional Project Location ..... 18
Exhibit 2, SCLA Specific Plan Area ..... 19
Exhibit 3, Project Study Area ..... 20
Exhibit 4, City of Victorville Circulation Element Roadway System ..... 24
Exhibit 5, City of Victorville Circulation Element Roadway Classification Standards ..... 25
Exhibit 6, Existing Intersection Lane Configuration ..... 30
Exhibit 7, Existing AM/PM Peak Hour Volumes... ..... 34
Exhibit 8, SCLA SP Traffic Analysis Sub-Areas ..... 41
Exhibit 9, Existing Plus Project Buildout Trip Distribution ..... 44
Exhibit 10, Forecast Year 2040 Without HDC With Project Buildout Trip Distribution ..... 45
Exhibit 11, Forecast Year 2040 With HDC With Project Buildout Trip Distribution. ..... 46

## Michael Baker

## INTERNATIONAL

Exhibit 12, Existing Plus Project Buildout AM/PM Peak Hour Trip Assignment ..... 47
Exhibit 13, Forecast Year 2040 Without HDC With Project Buildout AM/PM Peak Hour Trip Assignment48
Exhibit 14, Forecast Year 2040 With HDC With Project Buildout AM/PM Peak Hour Trip Assignment ..... 49
Exhibit 15, Existing With Project Buildout AM/PM Peak Hour Volumes ..... 51
Exhibit 16, Existing With Project Buildout Mitigated Lane Configurations ..... 61
Exhibit 17, Forecast Year 2040 Without HDC Intersection Configurations ..... 64
Exhibit 18, Forecast Year 2040 Without HDC AM/PM Peak Hour Volumes ..... 69
Exhibit 19, Forecast Year 2040 Without HDC With Project AM/PM Peak Hour Volumes ..... 77
Exhibit 20, Forecast Year 2040 Without HDC Mitigated Lane Configurations ..... 83
Exhibit 21, Forecast Year 2040 With HDC Intersection Configurations ..... 87
Exhibit 22, Forecast Year 2040 With HDC AM/PM Peak Hour Volumes ..... 91
Exhibit 23, Forecast Year 2040 With HDC With Project AM/PM Peak Hour Volumes. ..... 102
Exhibit 24, Forecast Year 2040 With HDC Mitigated Lane Configurations ..... 108
LIST OF TABLES
Table ES-1, Existing With Project Buildout Mitigation Measures ..... 5
Table ES-2, Forecast Year 2040 Without HDC With Project Buildout Mitigation Measures ..... 9
Table ES-3, Forecast Year 2040 With HDC With Project Buildout Mitigation Measures ..... 13
Table 1 - Level of Service \& Delay Range Source: HCM 2010 ..... 21
Table 2, Existing AM/PM Peak Hour Intersection LOS ..... 38
Table 3, ITE Trip Generation Rates ..... 42
Table 4, SCLA SP Proposed Project Trip Generation ..... 43
Table 5, Existing With Project Buildout AM/PM Peak Hour Intersection LOS ..... 54
Table 6, Existing With Project Buildout Recommended Mitigation ..... 57
Table 7, Forecast Year 2040 Without HDC Without Project AM/PM Peak Hour Intersection LOS ..... 67
Table 8, Forecast Year 2040 Without HDC With Project AM/PM Peak Hour Intersection LOS. ..... 74
Table 9, Forecast Year 2040 Without HDC With Project Recommended Mitigation ..... 80
Table 10, Forecast Year 2040 With HDC Without Project AM/PM Peak Hour Intersection LOS ..... 95

## Michael Baker

INTERNATIONAL
Table 11, Forecast Year 2040 With HDC With Project AM/PM Peak Hour Intersection LOS ..... 99
Table 12, Forecast Year 2040 With HDC With Project Recommended Mitigation ..... 106
Table 13, Project Development Phasing AM/PM Peak Hour Intersection LOS ..... 114
Table 14, Project Development Phasing Recommended Mitigation ..... 116
Table 15, Forecast Year 2040 Without HDC With Project Traffic Signal Warrant Summary ..... 120
Table 16, Forecast Year 2040 With HDC With Project Traffic Signal Warrant Summary ..... 121
Table 17, Existing With Project Buildout Mitigation Measures ..... 126
Table 18, Forecast Year 2040 Without HDC With Project Buildout Mitigation Measures ..... 130
Table 19, Forecast Year 2040 With HDC With Project Buildout Mitigation Measures ..... 134
APPENDICES
Appendix A: Count Data
Appendix B: Existing Synchro Worksheets
Appendix C: Southern California Logistics Airport Specific Plan Trip GenerationAppendix D: Existing With Project Synchro Worksheets
Appendix E: Forecast Year 2040 Without HDC Without Project Conditions Synchro Worksheets
Appendix F: Forecast Year 2040 Without HDC With Project Synchro Worksheets
Appendix G: Victor Valley Area Transportation System"Ultimate" Highway System
Appendix H: Forecast Year 2040 With HDC Without Project Conditions Synchro Worksheets
Appendix I: Forecast Year 2040 With HDC With Project Synchro Worksheets
Appendix J: Phase 1 Synchro Worksheets
Appendix K: Phase 2 Synchro Worksheets
Appendix L: Phase 3 Synchro Worksheets
Appendix M: Phase 4 Synchro Worksheets
Appendix N: Signal Warrant Worksheets
Appendix O: Fair Share Calculations

## EXECUTIVE SUMMARY

This study analyzes the forecast traffic conditions associated with the proposed development of the Southern California Logistics Airport Specific Plan (SCLA SP) area in the City of Victorville. The project is situated on the previous George Air Force Base site located north of SR-18 (Palmdale Road), east of US395, and west of I-15. The proposed SCLA Specific Plan is projected to be built out by Year 2038.

This study evaluates traffic conditions that include AM and PM peak hour intersection level of service analysis, and applicable signal warrant analysis for the following scenarios:

- Existing;
- Existing With Project Buildout;
- Forecast Year 2040 Without HDC Without Project;
- Forecast Year 2040 Without HDC With Project;
- Forecast Year 2040 With HDC Without Project;
- Forecast Year 2040 With HDC With Project

The proposed project is forecast to generate approximately 98,752 net new Passenger Car Equivalent (PCE) daily trips which includes approximately 12,736 net new AM peak hour PCE trips and approximately 13,354 net new PM peak hour PCE trips.

## Level of Service Analysis Results

The results of the Existing analysis show that all intersections are forecast to operate at acceptable levels of service (LOS D or better) with the exception of the following locations:

| Existing Conditions |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Intersection | AM Peak Hour | PM Peak Hour |
| $5-\quad$ US-395/Adelanto Road | LOS F | LOS F |  |
| $13-\quad$ Nevada Ave/Air Expressway | LOS F | Acceptable |  |
| $15-\quad$ Phantom East/Air Expressway | LOS E | Acceptable |  |
| $20-$ | I-15 SB Ramps/Palmdale Road | Acceptable | LOS E |
| $21-\quad$ I-15 NB Ramps/Palmdale Road | Acceptable | LOS F |  |

The results of the intersection analysis under Existing With Project Buildout analysis show 11 of the 34 intersections studied are forecast to operate at an acceptable level of service (LOS D or better) and 23 intersections operate at a deficient level of service (LOS E or worse) during the AM peak hour. During the PM peak hour, 5 intersections operate an acceptable level of service and 29 intersections operate at a deficient level of service. Of these locations that are operating deficiently, 27 of the 34 locations are forecast to result in a significant impact according to the City of Victorville significance criteria.

The mitigation measures shown in Table ES-1 have been identified to achieve an acceptable level of service where possible and fully mitigate project forecast significant impacts at the study intersections for Existing With Project Buildout conditions. With the implementation of the identified mitigation measures
however, the following 12 locations would continue to operate at a deficient level of service with the project and the project would result in unavoidable significant impacts:

| Existing With Project Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 3- US-395 / Air Expressway | LOS F | LOS F |
| 4 - US-395 / Rancho Road | LOS F | LOS F |
| 5 - US-395 / Adelanto Road | Acceptable | LOS F |
| 6 - US-395 / Palmdale Road | LOS F | LOS F |
| 9- Adelanto Road / Air Expressway | LOS E | Acceptable |
| 11- Gateway Drive / Air Expressway | Acceptable | LOS F |
| 12- Phantom West / Air Expressway | LOS F | Acceptable |
| 13-Nevada Avenue / Air Expressway | LOS F | Acceptable |
| 15- Phantom East / Air Expressway | Acceptable | LOS F |
| 18- I-15 SB Ramps / National Trails Hwy | LOS F | Acceptable |
| 19- I-15 NB Ramps / National Trails Hwy | LOS F | Acceptable |
| 41 - Perimeter Road / Phantom East | Acceptable | LOS F |

The results of the intersection analysis under Forecast Year 2040 Without HDC Without Project conditions show that all study intersections are forecast to operate at acceptable levels of service (LOS D or better) with the exception of the following intersections:

| Forecast Year 2040 Without HDC Without Project Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 5 - US-395 / Adelanto Road | LOS F | LOS F |
| 6 - US-395 / Palmdale Road | LOS E | LOS F |
| 15 - | Phantom East / Air Expressway | LOS F |
| 17 - National Trails Hwy / Air Expressway | LOS F | LOS E |
| 18 - I-15 SB Ramps / National Trails Hwy | Acceptable | LOS E |

The results of the intersection analysis under Forecast Year 2040 Without HDC With Project analysis show that 18 of the 37 intersections studied are forecast to operate at an acceptable level of service (LOS D or better) and 19 intersections operate at a deficient level of service (LOS E or worse) during the AM peak hour. During the PM peak hour, 15 intersections operate at an acceptable level of service and 22 intersections operate at a deficient level of service. Of these locations that are operating deficiently, 22 of the 37 locations are forecast to result in a significant impact according to the City of Victorville significance criteria.

The mitigation measures shown in Table ES-2 have been identified to achieve an acceptable level of service where possible and fully mitigate project forecast significant impacts at the study intersections for Forecast Year 2040 Without HDC With Project Buildout conditions. With the implementation of the identified mitigation measures however, the following 9 locations would continue to operate at a deficient level of service with the project and the project would result in unavoidable significant impacts:

| Forecast Year 2040 Without HDC With Project With Improvements Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 3 - US-395 / Air Expressway | Acceptable | LOS F |
| 4 - US-395 / Rancho Road | LOS F | LOS F |
| 5 - US-395 / Adelanto Road | Acceptable | LOS E |
| 6 - US-395 / Palmdale Road | LOS F | LOS F |
| 11- Gateway Drive / Air Expressway | Acceptable | LOS E |
| 12- Phantom West / Air Expressway | LOS E | LOS E |
| 13- Nevada Avenue / Air Expressway | LOS E | Acceptable |
| 15- Phantom East / Air Expressway | LOS F | LOS E |
| 26- Phantom East / Palmdale Road | Acceptable | LOS F |

A future Caltrans freeway facility, the "High Desert Corridor" (HDC), is proposed to be constructed within the project study area. Additionally, the need for a major north/south freeway facility has been identified in the form of the US-395 Freeway. These facilities would provide critical regional access for the entire Victor Valley and is integral to the proposed development of the SCLA Specific Plan area. This study takes the proposed HDC and US-395 freeways into consideration as likely future circulation system enhancements and assumes they are fully constructed by the Forecast Year 2040.

The results of the intersection analysis under Forecast Year 2040 With HDC Without Project conditions show that all study intersections are forecast to operate at acceptable levels of service (LOS D or better) with the exception of the following intersections:

| Forecast Year 2040 With HDC Without Project Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 5 - US-395 / Adelanto Rad | LOS F | LOS F |
| 6 - | US-395 / Palmdale Road | Acceptable |
| 31 - | Phantom West / HDC WB Ramps | LOS F |

The results of the intersection analysis under Forecast Year 2040 With HDC With Project analysis show that 26 of the 42 intersections studied are forecast to operate at an acceptable level of service (LOS D or better) and 16 intersections operate at a deficient level of service (LOS E or worse) during the AM peak hour. During the PM peak hour, 26 intersections operate at an acceptable level of service and 16 intersections operate at a deficient level of service. Of these locations that are operating deficiently, 18 of the 42 locations are forecast to result in a significant impact according to the City of Victorville significance criteria.

The mitigation measures shown in Table ES-3 have been identified to achieve an acceptable level of service where possible and fully mitigate project forecast significant impacts at the study intersections for Forecast Year 2040 With HDC With Project Buildout conditions. With the implementation of the identified mitigation measures however, the following one intersection would continue to operate at a deficient level of service with the project and the project would result in unavoidable significant impacts:

| Forecast Year 2040 With HDC With Project With Improvements Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 6 - US-395 / Air Expressway | LOS F | LOS F |

It is anticipated that SCLA Specific Plan TDM measures will be developed that will reduce development trips made during the critical peak hours. Additionally, while the long-range analysis assumes that a large portion of the SCLA Specific Plan will develop as industrial and comprising of manufacturing (25\%) and warehouse (75\%). Programmatic limitations on the ability to achieve $25 \%$ manufacturing development could result in significant reductions in peak hour traffic generation since employee commute trips are lower for warehouse uses.

## Signal Warrants

A signal warrant analysis has been prepared for Forecast Year 2040 With Project conditions both without and with the HDC. Warrants are based on guidelines set for by the California Manual of Uniform Traffic Control Devices (CA MUTCD) for all unsignalized study intersections found to be operating at unacceptable levels of service. All unsignalized study intersections meet the applicable signal warrant for both Forecast Year conditions.

## City of Victorville Funding Mechanism

The City of Victorville plans to engage a consultant in September or October of 2019 to conduct an update of the City's Development Impact Fee (DIF) Program. This effort is estimated by the City to take approximately one year. The DIF will establish updated development impact fees on new residential and commercial development in the City. This study will provide the City with the necessary technical documentation to support adoption of the DIF Program, which will apply to future development in the City. Transportation facility needs will be evaluated for a projected development conditions in a horizon year (possibly 2040). The study will then calculate justifiable impact fees that may be levied for each land use based on the proportionate share of the total facility use that each land use represents. As a development impact fee, the DIF can be charged only to new development and must be based on the impact of new development on transportation facilities infrastructure. The purpose of this study is to establish the nexus (or reasonable relationship) between new development that will occur in the City and the need for additional public facility improvements due to this new development. This study will include the identification of selected roadway improvements critical to increase citywide roadway system capacity to accommodate future development. The DIF update will include all the arterial roads and interchanges in the General Plan Circulation Map, including SCLA. However, it will not include the High Desert Corridor and its interchanges.

If the updated DIF Program is in effect at the time future development occurs within the SCLA Specific Plan, the SCLA development would be subject to established DIF fee payments according to the development land use type and the adopted DIF payment schedule. Intersection and roadway impacts identified in the SCLA TIA will be satisfied by the DIF payments if the required mitigation measure is a component of the City's DIF Roadway Projects list. Any roadway system improvements needed to mitigate SCLA Project impacts that are not covered by the DIF program will be assessed to the Project on a "fair share" contribution basis.

Fair share calculations have been conducted for the purposes of this analysis and can be found in Appendix 0.

Table ES-1, Existing With Project Buildout Mitigation Measures

| Intersection | Impacted <br> Peak Hour | Existing <br> Without <br> Project | Existing With Project | Existing With Project Buildout Recommended Mitigation | Existing With <br> Project <br> With Mitigation <br> Delay ${ }^{1}$ - LOS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Delay ${ }^{1}$ - LOS | $y^{1}-$ LOS |  |  |
| 1 - US-395 / Chamberlain Way | PM | 10.2-B | >80.0- $\mathrm{F}^{2}$ | - Install westbound dedicated left-turn-lane | 14.6-B |
| 2-US-395 / Bartlett Ave | PM | 12.1 - B | 69-E | - Install northbound dedicated right-turn-lane <br> - Install westbound dedicated right-turn-lane | 52.6 - D |
| 3-US-395 / Air Expressway | AM <br> PM | $\begin{aligned} & 16.6-B \\ & 24.0-C \end{aligned}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install second and third northbound through-lanes and one northbound dedicated right-turn-lane with a free movement <br> - Install second and third southbound through-lanes and one southbound dedicated right-turn-lane <br> - Install dedicated eastbound left-turn-lane; Modify eastbound shared through/left-turn lane to a dedicated through lane; Install one shared through/right-turn lane <br> - Install three westbound left-turn lanes | $\begin{aligned} & 29.0-\mathrm{C} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ |
| 4-US-395 / Rancho Rd | AM PM | $\begin{gathered} 15.7-B \\ 15.3-B \end{gathered}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second northbound left-turn-lane, third northbound through-lane, and one northbound dedicated right-turn-lane <br> - Install third southbound through-lane and southbound dedicated right-turn-lane | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ |
| 5-US-395 /Adelanto Rd | AM <br> PM | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection <br> - Install second and third northbound through-lanes and northbound left-turn-lane <br> - Install second southbound through-lanes; Install third combination shared through/right-turn-lane; Install southbound left-turn-lane <br> - Restripe westbound approach to include dedicate left-turn-lane and a shared through/right-turn-lane | $\begin{aligned} & 52.2-\mathrm{D} \\ & 79.4-E \end{aligned}$ |
| 6 - US - 395 / Palmdale Rd | AM <br> PM | $\begin{aligned} & 41.6-D \\ & 50.7-D \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install third northbound through-lanes; second left-turn-lane; and dedicated right-turn-lane <br> - Install third southbound through-lane <br> - Install eastbound dedicated right-turn-lane | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ |
| $\begin{aligned} & 8 \text { - Adelanto Rd / Innovation Way / } \\ & \text { Bartlett Ave } \end{aligned}$ | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 7.4-\mathrm{A} \\ & 7.5-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection | $\begin{aligned} & 22.6-C \\ & 11.1-B \end{aligned}$ |


| Intersection | Impacted <br> Peak Hour | Existing Without Project | Existing With Project | Existing With Project Buildout Recommended Mitigation | Existing With Project With Mitigation |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |
| 9 - Adelanto Rd/ Air Expressway | AM <br> PM | $\begin{aligned} & 18.1-B \\ & 16.1-B \end{aligned}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install two northbound dedicated right-turn-lanes with an overlap phase <br> - Install a southbound dedicated right-turn-lane with an overlap phase <br> - Install third eastbound through-lane; fourth combination shared through/right-turn-lane; and second eastbound left-turn-lane <br> - Install third eastbound through-lane; fourth combination shared through/right-turn-lane; and second eastbound left-turn-lane | $\begin{aligned} & 69.1-E \\ & 50.7-D \end{aligned}$ |
| 11 - Gateway Dr / Air Expressway | AM PM | $\begin{aligned} & 4.9-\mathrm{A} \\ & 5.5-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install southbound dedicated right-turn-lane with an overlap phase <br> - Install third and fourth eastbound through lanes and second eastbound left-turn-lane <br> - Install third and fourth westbound through-lanes and second westbound right-turn-lane with an overlap phase | $\begin{array}{r} 51.9-\mathrm{D} \\ >80.0-\mathrm{F}^{2} \end{array}$ |
| 12 - Phantom West / Air Expressway | AM <br> PM | $\begin{aligned} & 23.9-C \\ & 18.6-B \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install third southbound left-turn-lane; install southbound right-turn free movement <br> - Install second and third eastbound through-lanes and second eastbound left-turn-lane <br> - Install third and fourth westbound through-lanes | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 70.9-\mathrm{E} \end{gathered}$ |
| 13 - Nevada Ave / Air Expressway | AM <br> PM | $>80.0-\mathrm{F}^{2}$ $13.7-\mathrm{B}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install second southbound left-turn-lane and second southbound right-turn-lane <br> - Install third and fourth eastbound through-lane, and second eastbound left-turn-lane <br> - Install third and fourth westbound through-lanes; Install westbound dedicated right-turn-lane with an overlap phase | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 43.5-\mathrm{D} \end{gathered}$ |
| 14 - George Blvd / Air Expressway | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 34.5-C \\ & 34.8-C \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install third eastbound through lane and fourth combination through/shared right-turn-lane <br> - Install third and fourth westbound through lanes | $\begin{aligned} & 22.9-\mathrm{C} \\ & 20.2-\mathrm{C} \end{aligned}$ |
| 15 - Phantom East / Air Expressway | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 76.7-E \\ & 10.8-B \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install third and fourth eastbound through-lanes <br> - Install third and fourth westbound through-lanes | $\begin{array}{r} 53.3-\mathrm{D} \\ >80.0-\mathrm{F}^{2} \end{array}$ |
| 16 - Village Dr / Air Expressway | AM <br> PM | $\begin{aligned} & 11.2-B \\ & 19.2-B \end{aligned}$ |  | - Install northbound dedicated right-turn-lane <br> - Install third and fourth eastbound through-lanes; Install eastbound rightturn overlap phase <br> - Install third and fourth westbound through-lanes | $\begin{aligned} & 48.8-\mathrm{D} \\ & 46.6-\mathrm{D} \end{aligned}$ |


| Intersection | Impacted <br> Peak Hour | Existing Without Project | Existing With Project | Existing With Project Buildout Recommended Mitigation | Existing With Project With Mitigation |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Delay ${ }^{1}$-LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |
| $\qquad$ | AM <br> PM | $\begin{aligned} & 24.6-C \\ & 16.5-B \end{aligned}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Reconfigure intersection to make Air Expressway the east/west through movement and the north leg of National Trails Highway a "T" <br> - Install two southbound left-turn-lanes and southbound right-turn lane <br> - Install two eastbound left-turn-lanes and two eastbound through-lanes <br> - Install three westbound through-lanes and one westbound right-turnlane | $>80.0-\mathrm{F}^{2}$ $13.6-B$ |
| $18 \text { - }$ <br> I-15 Southbound Ramps / National Trails Hwy | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 18.6-B \\ & 21.2-C \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second northbound left-turn-lane <br> - Convert southbound dedicated right-turn-lane to a free movement <br> - Install second eastbound left-turn-lane | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 38.1-\mathrm{D} \end{gathered}$ |
| 19 - <br> I-15 Northbound Ramps / National Trails Hwy | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 24.7-C \\ & 22.3-C \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install two southbound dedicated right-turn-lanes <br> - Install second eastbound left-turn-lane | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 75.3-\mathrm{E} \end{gathered}$ |
| 35 - Phantom West / Innovation Dr | $\begin{aligned} & \text { AM } \\ & \text { PM } \\ & \hline \end{aligned}$ | $\begin{aligned} & 9.7-\mathrm{A} \\ & 9.0-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection | $\begin{aligned} & 27.5-C \\ & 54.7-D \end{aligned}$ |
| 36 - Phantom West / Aerospace Dr | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 8.8-\mathrm{A} \\ & 9.3-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane | $\begin{aligned} & 4.1-\mathrm{A} \\ & 8.5-\mathrm{A} \end{aligned}$ |
| 37 - Phantom West /Mustang St | $\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 9.7-\mathrm{A} \\ & 9.3-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Install median modifications to restrict eastbound and westbound left turns | $\begin{aligned} & \hline 13.8-B \\ & 13.3-B \end{aligned}$ |
| 38 - Phantom West / Sabre Blvd | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{array}{r} 10.2-\mathrm{B} \\ 9.4-\mathrm{A} \end{array}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane | $\begin{array}{r} 6.0-\mathrm{A} \\ 11.6-\mathrm{B} \end{array}$ |
| 40 - Nevada Ave / Phantom East | PM | 9.0-A | >50.0- $\mathrm{F}^{2}$ | - Install All-Way-Stop <br> - Install northbound left-turn-lane | 16.9-C |
| 41 - Phantom East / Perimeter Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 8.7-\mathrm{A} \\ & 8.9-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Install All-Way-Stop <br> - Install southbound right-turn-lane | $\begin{aligned} & 36.9-E \\ & 17.5-C \end{aligned}$ |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Intersection} \& \multirow[t]{2}{*}{Impacted Peak Hour} \& Existing Without Project \& Existing With Project \& \multirow[t]{2}{*}{Existing With Project Buildout Recommended Mitigation} \& Existing With Project With Mitigation <br>
\hline \& \& Delay ${ }^{1}$-LOS \& Delay ${ }^{1}$ - LOS \& \& Delay ${ }^{1}$ - LOS <br>
\hline 42 - Gateway Dr / Innovation Way \& AM

PM \& $$
8.5-\mathrm{A}
$$

$$
8.7-\mathrm{A}
$$ \& \[

$$
\begin{aligned}
& >50.0-\mathrm{F}^{2} \\
& >50.0-\mathrm{F}^{2}
\end{aligned}
$$

\] \& | - Signalize Intersection |
| :--- |
| - Install east leg of the intersection |
| - Install three northbound through-lanes and one northbound dedicated right-turn-lane |
| - Install second and third southbound through lanes and one southbound left-turn lane |
| - Install one eastbound through-lanes and one eastbound shared through/right-turn-lane |
| - Install one westbound left-turn-lane, one westbound through-lane, and one westbound shared through/right-turn-lane | \& | $49.5-D$ |
| :--- |
| 54.3-D | <br>

\hline 43 - Nevada Ave / Innovation Dr / \& AM

PM \& $$
\begin{aligned}
& 0.0-\mathrm{A} \\
& 0.0-\mathrm{A}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& >50.0-\mathrm{F}^{2} \\
& >50.0-\mathrm{F}^{2}
\end{aligned}
$$

\] \& | - Signalize Intersection |
| :--- |
| - Install east leg of the intersection |
| - Install second northbound left-turn-lane, two northbound through-lanes, and one northbound dedicated right-turn-lane |
| - Install one southbound left-turn-lane and two southbound through-lanes |
| - Install two eastbound through-lanes and one eastbound dedicated right-turn-lane with a channelized yield movement |
| - Install two westbound left-turn-lanes, one westbound through-lane, and one westbound shared through/right-turn-lane | \& $22.0-\mathrm{C}$

$43.1-\mathrm{D}$ <br>

\hline \multirow[t]{2}{*}{45 - Phantom East / Sabre Boulevard} \& AM \& \multirow[t]{2}{*}{Does Not Exist Without Project} \& >50.0- $\mathrm{F}^{2}$ \& \multirow[t]{2}{*}{| - Install All-Way-Stop |
| :--- |
| - Install west leg of the intersection to include one shared left/through/right-turn-lane |
| - Install east leg of the intersection to include one left-turn-lane and one shared through/right-turn-lane |} \& 27.5-D <br>

\hline \& PM \& \& >50.0- $\mathrm{F}^{2}$ \& \& 32.1 -D <br>

\hline 46 - Phantom East / Innovation Way \& PM \& Does Not Exist Without Project \& >50.0- $\mathrm{F}^{2}$ \& | - Signalize Intersection |
| :--- |
| - Install west leg of the intersection to include one eastbound shared left/through-lane and one eastbound dedicated right-turn-lane with a channelized yield movement | \& 11.7-B <br>

\hline
\end{tabular}

Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM
LOS = level of service; TWSC = Two-Way Stop Control; OWSC = One-Way Stop Control

Table ES-2, Forecast Year 2040 Without HDC With Project Buildout Mitigation Measures

| Mitigation Measure | Intersection | Impacted Peak Hour | Forecast Year 2040 Without HDC Without Project | Forecast Year 2040 Without HDC With Project | Forecast Year 2040 Without HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-1 | 3-US-395 / Air Expressway | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$ | $\begin{aligned} & 17.8-\mathrm{B} \\ & 21.2-\mathrm{C} \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Modify northbound right-turn lane to a free movement | $\begin{gathered} 54.5-\mathrm{D} \\ >80.0-\mathrm{F}^{2} \\ \hline \end{gathered}$ | DIF |
| MM-2 | 4 - US-395 / Rancho Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 12.6-B \\ & 14.6-B \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Restripe westbound approach to include two left-turnlanes, one through lane, and one shared through/right-turnlane | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | DIF |
| MM-3 | 5 - US-395 / Adelanto Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection <br> - Restripe westbound approach to include dedicated left-turn-lane and a shared through/right-turn-lane | $\begin{aligned} & 52.5-\mathrm{D} \\ & 80.0-\mathrm{E} \end{aligned}$ | DIF |
| MM-4 | 6 - US-395 / Palmdale Road | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$ | $\begin{gathered} \\ \hline 59.8-\mathrm{E} \\ >80.0-\mathrm{F} 2 \\ \hline \end{gathered}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install overlap phasing on all right-turn movements | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | DIF |
| MM-5 | $9 \text { - Adelanto Road / Air }$ | AM <br> PM | $19.8-\mathrm{C}$ $17.7-\mathrm{B}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install second northbound right-turn-lane with a right-turn overlap phase <br> - Install third westbound through-lanes; Install dedicated westbound right-turn-lane with an overlap phase. <br> - Install third combination eastbound shared through/right-turn-lane | $\begin{aligned} & 54.7 \text { - D } \\ & 52.2-D \end{aligned}$ |  |
| MM-6 | 10 - Adelanto Road / Rancho Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 11.4-\mathrm{B} \\ & 11.9-\mathrm{B} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection | $\begin{aligned} & \hline 6.6-\mathrm{A} \\ & 8.4-\mathrm{A} \\ & \hline \end{aligned}$ |  |
| MM-7 | 11 - Gateway Drive / Air | AM <br> PM | $6.2-\mathrm{A}$ 7.1-A | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install third eastbound through-lane; Install second eastbound left-turn-lane <br> - Install second southbound left-turn-lane; Install southbound right-turn overlap phase. <br> - Install third westbound through-lane; Install second westbound right-turn lane with overlap phase | $\begin{aligned} & 44.2-\mathrm{D} \\ & 77.0-\mathrm{E} \end{aligned}$ |  |
| MM-8 | Phantom West / Air <br> 12Expressway | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $37.1-D$ $32.7-\mathrm{C}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install southbound right-turn overlap phase <br> - Install second eastbound left-turn-lane | $\begin{gathered} 79.8-E \\ 61.9-E \end{gathered}$ |  |


| Mitigation Measure | Intersection | Impacted Peak Hour | Forecast Year 2040 Without HDC Without Project | Forecast Year 2040 Without HDC With Project | Forecast Year 2040 Without HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-9 | 13- Nevada Ave / Air Expressway | AM <br> PM | 8-A $7.9-\mathrm{A}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second southbound left-turn-lane and second southbound right-turn-lane <br> - Install second eastbound left-turn-lane <br> - Install one westbound dedicated right-turn-lane with an overlap phase | $\begin{aligned} & 77.2-E \\ & 46.2-D \end{aligned}$ |  |
| MM-10 | 15- Phantom East / Air Expressway | AM <br> PM | $>80.0-\text { F2 }$ 62.0-E | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Restripe northbound approach to include one dedicated left-turn lane, one through-lane, and one shared through/right-turn-lane. <br> - Install second southbound through-lane; Install second southbound left-turn-lane. <br> - Convert westbound right-turn-lane to a free movement | $>80.0-\mathrm{F}^{2}$ $78.2-E$ |  |
| MM-11 | 17 - $\begin{aligned} & \text { National Trails Highway / Air } \\ & \text { Expressway }\end{aligned}$ | AM PM | >80.0-F2 $14.7-B$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Reconfigure intersection to make Air Expressway the east/west through movement and the north leg of National Trails Highway a "T" <br> - Install two southbound left-turn-lanes and southbound right-turn lane <br> - Install two eastbound left-turn-lanes and two eastbound through-lanes <br> - Install three westbound through-lanes and one westbound right-turn-lane | $\begin{aligned} & 38.4-D \\ & 13.1-B \end{aligned}$ |  |
| MM-12 | $18-\begin{aligned} & \text { I-15 Southbound Ramps / } \\ & \text { National Trails Hwy }\end{aligned}$ | AM <br> PM | $\begin{aligned} & 52.9-D \\ & 71.3-E \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second northbound left-turn-lane <br> - Convert southbound dedicated right-turn-lane to a free movement <br> - Install second eastbound left-turn-lane; Install eastbound right-turn overlap phase | $\begin{aligned} & 54.0-\mathrm{D} \\ & 39.0-\mathrm{D} \end{aligned}$ |  |
| MM-13 | $\begin{array}{\|c\|} \hline 19 \text { - I-15 Northbound Ramps / } \\ \text { National Trails Hwy } \end{array}$ | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 27.4-C \\ & 26.6-C \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second southbound dedicated right-turn-lane | $\begin{aligned} & \hline 37.3-D \\ & 44.2-D \\ & \hline \end{aligned}$ |  |
| MM-14 | 26 - Phantom East / Palmdale Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 6.9-\mathrm{A} \\ & 6.9-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second southbound left-turn-lane. <br> - Install southbound right-turn overlap phase. <br> - Install westbound right-turn overlap phase. | $\begin{array}{r} 54.7-\mathrm{D} \\ >80.0-\mathrm{F}^{2} \\ \hline \end{array}$ |  |
| MM-15 | 35 - Phantom West / Innovation Dr | AM <br> PM | $\begin{aligned} & 9.4-A \\ & 8.7-A \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection. | $\begin{aligned} & 20.2-\mathrm{C} \\ & 46.2-\mathrm{D} \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |


| Mitigation Measure | Intersection | Impacted <br> Peak Hour | Forecast Year 2040 Without HDC Without Project | Forecast Year 2040 Without HDC With Project | Forecast Year 2040 Without HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-16 | 36 - Phantom West / Aerospace Dr | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 8.7-\mathrm{A} \\ & 9.1-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane | $4.2-\mathrm{A}$ <br> 7.8-A |  |
| MM-17 | 38 - Phantom West / Sabre Blvd | AM <br> PM | $\begin{aligned} & 9.9-\mathrm{A} \\ & 9.1-\mathrm{A} \end{aligned}$ | $\begin{array}{r} 32.9-\mathrm{F}^{2} \\ >50.0-\mathrm{F}^{2} \end{array}$ | - Install All-Way-Stop <br> - Modify northbound approach to include a one shared left/through-lane and one shared through/right-turn-lane <br> - - Modify southbound approach to include a one shared left/through-lane and one shared through/right-turn-lane | $\begin{aligned} & 21.0-\mathrm{C} \\ & 18.4-\mathrm{B} \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-18 | 40 - Nevada Ave/Phantom East | PM | 8.8-A | >50.0- F2 | - Install All-Way Stop | 14.4 - B | 100.0\% |
| MM-19 | $\qquad$ | AM <br> PM | $8.5-\mathrm{A}$ 8.6-A | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection. <br> - Construct east leg of the intersection. <br> - Install one northbound through lane and one shared through/right-turn-lane <br> - Install one southbound left-turn-lane and a second southbound shared through/right-turn-lane. <br> - Install one eastbound through-lane and second shared through/right-turn-lane <br> - Install a westbound left-turn-lane, one westbound throughlane, and one shared through/right-turn-lane | $42.1 \text { - D }$ <br> 38.5 - D | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-20 | 43 Nevada Ave / Innovation Dr / McCoy Circle | AM <br> PM | $\begin{aligned} & 0.0-\mathrm{A} \\ & 0.0-\mathrm{A} \end{aligned}$ | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection <br> - Construct east leg of the intersection <br> - Install one northbound through lane and one shared through/right-turn-lane <br> - Install a southbound left-turn-lane, one southbound through-lane, and one southbound dedicated right-turn-lane <br> - Install eastbound through-lane <br> - Install two westbound left-turn-lanes, and a westbound shared through/right-turn-lane | $\begin{aligned} & 43.6-D \\ & 40.0-D \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |

$\qquad$


Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM
LOS = level of service; TWSC = Two-Way Stop Control; OWSC = One-Way Stop Control

Table ES-3, Forecast Year 2040 With HDC With Project Buildout Mitigation Measures

| Mitigation Measure | Intersection | Impacted <br> Peak Hour | Forecast Year 2040 With HDC Without Project | Forecast Year <br> 2040 With <br> HDC With <br> Project | Forecast Year 2040 With HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-23 | 3 - US-395 / Air Expressway | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & 17.9-\mathrm{B} \\ & 20.3-\mathrm{C} \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Modify northbound right-turn lane to a free movement <br> - Install eastbound dedicated right-turn-lane | $\begin{aligned} & 26.0-\mathrm{C} \\ & 54.7-\mathrm{D} \end{aligned}$ |  |
| MM-24 | 4 - US-395 / Rancho Road | PM | 23.9-C | >80.0- $\mathrm{F}^{2}$ | - Restripe westbound approach to include two left-turnlanes, one through lane, and one shared through/right-turnlane | 54.7 - D |  |
| MM-25 | 5 - US-395 / Adelanto Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & >50.0-F^{2} \\ & >50.0-F^{2} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection | $\begin{array}{r} 4.9-\mathrm{A} \\ 27.1-\mathrm{C} \end{array}$ |  |
| MM-26 | 6 - US-395 / Palmdale Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{gathered} 48.9-\mathrm{D} \\ >80.0-\mathrm{F}^{2} \end{gathered}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install overlap phasing on all right-turn movements | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ |  |
| MM-27 | $\qquad$ | AM | 16.3- B | 76.5-E | - Install northbound right-turn overlap phase | 54.5 - D |  |
| MM-28 | 10 - Adelanto Road / Rancho Road | PM | 11.5-B | >50.0- $\mathrm{F}^{2}$ | - Signalize Intersection | 7.2-A |  |
| MM-29 | 11 - $\begin{aligned} & \text { Gateway Drive / Air } \\ & \text { Expressway }\end{aligned}$ | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{array}{r} 32.6-C \\ 45-D \end{array}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second eastbound left-turn-lane <br> - Install second southbound right-turn-lane; Install southbound right-turn overlap phase. | $\begin{aligned} & 21.1-C \\ & 20.7-C \end{aligned}$ |  |
| MM-30 | 27 - US-395 / HDC WB Ramps | PM | 29.4-C | >80.0- $\mathrm{F}^{2}$ | - Reconfigure westbound approach to include one left-turnlane, one shared left/through-lane; Install second westbound dedicated right-turn-lane <br> - Convert third southbound through-lane to a shared through/right-turn-lane | 44.7 - D |  |
| MM-31 | 31 - $\begin{aligned} & \text { Phantom East /HDC WB } \\ & \text { Ramps }\end{aligned}$ | AM | 19.9-B | >80.0- $\mathrm{F}^{2}$ | - Modify westbound right-turn-lane to include a channelized yield right-turn movement | 0.9-A |  |
| MM-32 | 35 - Phantom West / Innovation Dr | AM <br> PM | $\begin{aligned} & 9.4-\mathrm{A} \\ & 8.7-\mathrm{A} \end{aligned}$ | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection. <br> - Install second northbound left turn lane and one northbound dedicated right-turn-lane with a right-turn overlap phase <br> - Install southbound dedicated right-turn-lane <br> - Install second eastbound through lane and convert dedicated right-turn to a free right movement <br> - Install second westbound through lane | $\begin{aligned} & 30.7-\mathrm{C} \\ & 54.3 \text {-D } \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |


| Mitigation Measure | Intersection | Impacted <br> Peak Hour | Forecast Year 2040 With HDC Without Project | Forecast Year 2040 With HDC With Project | Forecast Year 2040 With HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-33 | 36 - Phantom West / Aerospace Dr | $\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & \text { 8.7-A } \\ & 9.1-A \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane | $\begin{aligned} & \hline 4.1-\mathrm{A} \\ & 9.5-\mathrm{A} \end{aligned}$ | $\begin{aligned} & \hline 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-34 | 37 - Phantom West /Mustang St | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 9.5-A \\ & 9.2-A \end{aligned}$ | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 49.8-\mathrm{F}^{2} \end{array}$ | - Install median modifications to eliminate eastbound and westbound left turns | $\begin{aligned} & 14.3-B \\ & 13.7-B \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-35 | 38 - Phantom West / Sabre Blvd | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{gathered} 10-\mathrm{A} \\ 9.1-\mathrm{A} \end{gathered}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize intersection <br> - Install northbound dedicated right-turn-lane | $\begin{aligned} & 5.3-\mathrm{A} \\ & 9.5-\mathrm{A} \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-36 | 41 - Perimeter Road/ Phantom | AM <br> PM | $\begin{aligned} & 8.7-\mathrm{A} \\ & 8.8-\mathrm{A} \end{aligned}$ | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 45.1-\mathrm{F}^{2} \end{array}$ | - Install southbound dedicated right-turn-lane <br> - Install westbound dedicated right-turn-lane | 29.2 - D <br> 14.6 - B | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-37 | 42 Gateway Drive / Innovation Way | AM <br> PM | $8.5-\mathrm{A}$ 8.6-A | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection <br> - Construct east leg of the intersection <br> - Install two northbound through-lanes and one northbound dedicated right-turn-lane with an overlap phase <br> - Install one southbound left-turn-lane and a second southbound through-lane <br> - Install two eastbound through-lanes and one eastbound dedicated right-turn-lane <br> - Install a westbound left-turn-lane, two westbound through-lanes, and two westbound right-turn-lanes with a right-turn overlap phase | $\begin{aligned} & 43.6-D \\ & \\ & 54.8 \text { - D } \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-38 | 43 Nevada Ave / Innovation Dr / McCoy Circle | AM <br> PM | $\begin{aligned} & 0.0-\mathrm{A} \\ & 0.0-\mathrm{A} \end{aligned}$ | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection <br> - Construct east leg of the intersection <br> - Install one northbound shared through/right-turn-lane <br> - Install a southbound left-turn-lane <br> - Install one eastbound through-lane and one shared through/right-turn-lane <br> - Install a westbound left-turn-lane, a westbound throughlane, and a shared through/right-turn-lane | $\begin{aligned} & 10.6-B \\ & 13.6-B \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |

$\qquad$

| Mitigation Measure | Intersection | Impacted <br> Peak Hour | Forecast Year 2040 With HDC Without Project | Forecast Year 2040 With HDC With Project | Forecast Year 2040 With HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-39 | $\qquad$ | AM <br> PM | Does Not Exist Without Project | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection <br> - Install west leg of the intersection to include one shared left/through/right-turn-lane <br> - Install east leg of the intersection to include one shared left/through/right-turn-lane | $\begin{aligned} & 13.3-B \\ & 44.0-D \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-40 | $\qquad$ | AM <br> PM | Does Not Exist Without Project | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection <br> - Install second northbound left-turn-lane <br> - Install west leg of the intersection to include one eastbound shared left/through-lane and one eastbound dedicated right-turn-lane with a channelized yield movement <br> - Install westbound left-turn-lane | $\begin{aligned} & 11.0-B \\ & 16.1-B \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |

Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM
LOS = level of service; TWSC = Two-Way Stop Control; OWSC = One-Way Stop Control

## 2 INTRODUCTION

This study analyzes the forecast traffic conditions associated with the proposed development of the Southern California Logistics Airport (SCLA) Specific Plan area in the City of Victorville.

Exhibit 1 shows the regional location of the project site. Exhibit 2 shows the draft SCLA Specific Plan area.
The proposed project encompasses a total of approximately 1,264 acres as part of the SCLA Specific Plan area. The total new development of the proposed project is estimated around 24 million square feet of building area. The SCLA SP is proposed to be constructed over approximately 20-year period and is projected to be built out by Year 2038.

The proposed project is forecast to generate approximately 98,752 net new Passenger Car Equivalent (PCE) daily trips which includes approximately 12,736 net new AM peak hour PCE trips and approximately 13,354 net new PM peak hour PCE trips.

As required by San Bernardino County, this traffic impact study has been prepared in accordance with the County of San Bernardino Traffic Impact Study Guidelines (Revised April 9, 2014) and the Guidelines for CMP Traffic Impact Analysis Reports in San Bernardino County. The scope of this traffic study was coordinated with the City of Victorville.

### 2.1 STUDY AREA

The study evaluates the following 46 intersections during the AM and PM peak hours in the vicinity of the project site as shown in Exhibit 3:

## Existing Intersections:

1. US-395 / Chamberlain Way
2. US-395 / Bartlett Avenue
3. US-395 / Air Expressway
4. US-395 / Rancho Road
5. US-395 / Adelanto Road
6. US-395 / Palmdale Road
7. Adelanto Road / Chamberlain Way Momentum
8. Adelanto Road / Bartlett Avenue Innovation Way
9. Adelanto Road / Air Expressway
10. Adelanto Road / Rancho Road
11. Air Expressway / Gateway Drive
12. Air Expressway / Phantom West
13. Air Expressway / Nevada Avenue
14. Air Expressway / George Boulevard
15. Air Expressway / Phantom East
16. Air Expressway / Village Drive
17. Air Expressway / National Trails Highway
18. I-15 SB Ramps / National Trails Highway
19. I-15 NB Ramps / National Trails Highway
20. I-15 SB Ramps / Palmdale Road
21. I-15 NB Ramps / Palmdale Road
22. I-15 NB Direct Ramps / Mariposa Road

Future Off-Site Intersections:
23. Adelanto Road / Calusa Road
24. Adelanto Road / El Mirage Road Navigation
25. Phantom East / Mojave Road
26. Phantom East / Palmdale Road
$\qquad$

High Desert Corridor Intersections:
27. HDC EB Ramps / US-395
28. HDC WB Ramps / US-395
29. HDC EB Ramps / Phantom West
30. HDC WB Ramps / Phantom West
31. HDC EB Ramps / Phantom East
32. HDC WB Ramps / Phantom West
33. HDC EB Ramps / National Trails Highway
34. HDC WB Ramps / National Trails Highway

On-Site Intersections:
35. Phantom West / Innovation Drive
36. Phantom West / Aerospace Drive
37. Phantom West / Mustang Street
38. Phantom West / Sabre Boulevard
39. Phantom West / George Boulevard
40. Phantom East / Nevada Avenue
41. Phantom East / Perimeter Road
42. Gateway Drive / Innovation Way
43. Nevada Avenue / Innovation Drive
44. Sabre Boulevard / George Boulevard
45. Phantom East / Sabre Boulevard
46. Phantom East / Innovation Drive

These study locations are analyzed for the following study scenarios:

- Existing;
- Existing With Project Buildout;
- Forecast Year 2040 Without HDC Without Project;
- Forecast Year 2040 Without HDC With Project;
- Forecast Year 2040 With HDC Without Project;
- Forecast Year 2040 With HDC With Project

In addition, the following project development phases are analyzed:

- Phase 1 Completion (Year 2023)
- Phase 2 Completion (Year 2028)
- Phase 3 Completion (Year 2033)
- Phase 4 Completion (Year 2038)

The analysis of Phase 5 is covered in the Forecast Year 2040 buildout analyses without and with the High Desert Corridor.




Not to Scale

### 2.2 ANALYSIS METHODOLOGY

Level of Service (LOS) is commonly used as a qualitative description of intersection operation and is based on the capacity of the intersection and the volume of traffic using the intersection. The Highway Capacity Manual (HCM) 2010 analysis methodology is utilized to determine the operation LOS of the study intersections.

The HCM analysis methodology describes the operation of an intersection using a range of level of service from LOS A (free-flow conditions) to LOS F (severely congested conditions), based on the corresponding stopped delay experienced per vehicle for study intersections as shown in Table 1.

Table 1 - Level of Service \& Delay Range

| Level of <br> Service | Description | Control Delay (seconds/vehicle) |  |
| :---: | :--- | :---: | :---: |
|  |  | Signalized <br> Intersections | Unsignalized <br> Intersections |
| A | Operates with very low delay and most <br> vehicles do not stop. | $\leq 10.0$ | $\leq 10.0$ |
| B | Operates with very high progression and short <br> cycle length. Few vehicles experience delays. | $10.1-20.0$ | $10.0-15.0$ |
| C | Operates at a moderate cycle length with <br> significant number of vehicles stopping. | $21.1-35.0$ | $15.1-25.0$ |
| D | Operates with noticeable congestion and long <br> cycle lengths. Vechicles experience longer <br> delays and many vehicles stop. | $35.1-55.0$ | $25.1-35.0$ |
| E | Operates with significant delay, extensive <br> queuing and unfavorable progression. | $55.1-80.0$ | $35.1-50.0$ |
| F | Operates with long cycle length very poor <br> progression. Arrival rates exceed capacity of <br> the intersection. Extensive queuing occurs. | $>80.0$ | $>50.0$ |

Source: HCM 2010
Level of service is based on the average stopped delay per vehicle for all movements of signalized intersections and all-way stop-controlled intersections; for one-way or two-way stop-controlled intersections, LOS is based on the worst stop-controlled approach.

A computer software program called Synchro v. 9.2 is a direct application of HCM methodology and was used to analyze the study intersections.

### 2.3 THRESHOLDS OF SIGNIFICANCE

The City of Victorville has adopted level of service "D" or better as acceptable operating conditions for intersections during the peak hour. In accordance with the City's guidelines, the following types of traffic impacts are considered to be significant under California Environmental Quality Act (CEQA):

- If a development project would worsen an intersection peak hour LOS to E or worse, it is considered a significant impact that must be mitigated.
- If a development project would worsen an already deficient intersection by two percent or more, it is considered a significant impact that must be mitigated.


## 3 EXISTING CONDITIONS

### 3.1 SURROUNDING ROADWAY NETWORK

The characteristics of the roadway system in the vicinity of the project site are described below:
I-15 (Mojave Freeway) provides north-south regional access to the Victorville area with six-lanes plus paved shoulders. Interstate 15 originates in San Diego County, trending northeast-southwest through the City of Victorville. Interstate 15 is currently built to its ultimate classification as a four to six-lane freeway.

US-395 is a two-lane undivided roadway trending in the north-south direction through the City of Victorville. The highway includes shoulders and frequent passing lanes. US-395 is classified as a Super Arterial per the City of Victorville General Plan Circulation Element with the ultimate condition having three-lanes in each direction. Phase 1 of construction between Victorville and Adelanto to widen US-395 to four lanes is expected to begin in late 2018 and conclude in 2021. The posted speed limit is 50 miles per hour.

Adelanto Road is a two-lane undivided roadway trending in the north-south direction. Between Air Expressway and Bartlett Avenue it transitions to a four-lane roadway. Adelanto Road is functionally classified as a Super Arterial per the City of Victorville General Plan Circulation Element with the ultimate condition having three-lanes in each direction, painted median, bike-lanes, and on-street parking. The posted speed limit is 40 miles per hour.

Palmdale Road (SR-18) is a four-lane roadway trending in the east-west direction. Between the US-395 it is undivided, transitions to a divided roadway with a two-way-left-turn-lane east of Amethyst Road. Palmdale Road becomes $7^{\text {th }}$ Street east of the l-15 freeway. Palmdale Road is functionally classified as a Super Arterial per the City of Victorville General Plan Circulation Element. The posted speed limit is 55 miles per hour.

Air Expressway is a four-lane undivided roadway trending in the east-west direction. Air Expressway is functionally classified as a Major Arterial per the City of Victorville General Plan Circulation Element. The posted speed limit is 60 miles per hour.

Phantom West is a four-lane divided roadway with a painted median trending in the north-south direction that transitions to Phantom East and loops back to Air Expressway. Phantom West is functionally classified as an Eight Lane Divided roadway between Air Expressway and Innovation Drive and as a Super Arterial between Innovation Drive and Nevada Avenue per the City of Victorville General Plan Circulation Element. The posted speed limit is 50 miles per hour. On-street parking is prohibited.

Nevada Avenue is a two-lane undivided roadway trending in the north-south direction and is functionally classified as a Major Arteria per the City of Victorville General Plan Circulation Element I. There is no posted speed limit and on-street parking is prohibited.

Innovation Way is a two-lane extension of Bartlett Avenue trending in the east-west direction between Adelanto Road and Gateway Drive. Innovation Way is functionally classified as a Super Arterial per the City of Victorville General Plan Circulation Element.

Innovation Drive is a two-lane undivided roadway trending in the east-west direction between Phantom West and Nevada Avenue and a partially constructed four-lane roadway west of Phantom West. Future improvements would connect Innovation Drive and Innovation Way and extend from Adelanto Road and Phantom East. Innovation Drive is functionally classified as a Super Arterial per the City of Victorville General Plan Circulation Element.

### 3.2 EXISTING CITY OF VICTORVILLE CIRCULATION PLAN

Exhibit 4 shows the proposed City of Victorville General Plan Circulation Element Roadway System. This shows the classification and configuration of arterial highways planned to serve the ultimate development defined by the land use element of the General Plan.

Exhibit 5a through Exhibit 5e shows the proposed City of Victorville General Plan Circulation Element Roadway Classification Standards.

### 3.3 EXISTING TRAFFIC VOLUMES

To determine the existing operations of the study intersections, peak hour intersection movement counts were collected in June 2017 and May 2018. AM peak period counts were generally collected between 6:30 AM to 9:30 AM and PM peak period counts were generally collected from 3:30 PM to 5:30 PM. The counts used in this analysis were taken from the highest hour within the peak periods counted for each intersection. These counts were axle specific and identified passenger cars, 2-axle trucks, 3-axle trucks, and 4+ axle trucks.

In order to account for truck traffic in the area, these raw volumes were converted to passenger car equivalents (PCE) in accordance with the Guidelines for CMP Traffic Impact Analysis Reports in San Bernardino County. The following factors were used to convert truck trips to PCE's:

- 2-axle trucks = 1.5 PCE
- 3-axle trucks = 2.0 PCE
- $4+$ axle trucks $=3.0$ PCE

Detailed count data is contained in Appendix A.
Exhibit 6a-6d shows the Existing study intersection lane configurations. Exhibit 7a-7d shows the AM and PM peak hour volumes at the study intersections.



Source:
City of Victorville - Draft Proposed


City of Victorville Circulation Element Roadway System

SUPER ARTERIAL


SUPER ARTERIAL
@ MASTER PLANNED INTERSECTIONS


MAJOR ARTERIAL


MAJOR ARTERIAL
@ MASTER PLANNED INTERSECTIONS


ARTERIAL


ARTERIAL
@ MASTER PLANNED INTERSECTIONS


RESIDENTIAL ARTERIAL


RESIDENTIAL ARTERIAL
@ MASTER PLANNED INTERSECTIONS


Source:
City of Victorville General Plan Circulation Element (Flgure Circ-3b)

# City of Victorville Circulation Element Roadway Classification Standards (ctd) 



SUPER ARTERIAL w/ RESIDENTIAL L.M.A.D.


MAJOR ARTERIAL w/ RESIDENTIAL L.M.A.D.


Not to Scale

RESIDENTIAL ARTERIAL w/ RESIDENTIAL L.M.A.D.


RESIDENTIAL ARTERIAL w/ RESIDENTIAL L.M.A.D. @ MASTER PLANNED INTERSECTIONS


COLLECTOR w/ RESIDENTIAL L.M.A.D.


COLLECTOR w/ RESIDENTIAL L.M.A.D.
@ MASTER PLANNED INTERSECTIONS


Not to Scale Roadway Classification Standards (ctd)

(2)


|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  | Notes: XX / XX = AM / PM Peak Hour Volumes |


|  |  |  |
| :---: | :---: | :---: |
|  | $\begin{gathered} 1015 / 1128 \Longrightarrow \\ 188 / 324 \end{gathered}$ |  |
|  |  |  |
|  |  | Notes: XX / XX = AM / PM Peak Hour Volumes |


|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\xrightarrow[c \mid c c c]{ }$ |  | 18/76 $\Rightarrow$ |  |
|  |  |  | Notes: XX / XX = AM / PM Peak Hour Volumes |  |
|  |  |  |  |  |

INTERNATIONAL

### 3.4 EXISTING PEAK HOUR STUDY INTERSECTION LOS

Table 2 summarizes existing conditions AM and PM peak hour level of service for all study intersections. Detailed analysis sheets are contained in Appendix B.

Table 2, Existing AM/PM Peak Hour Intersection LOS

| Study Intersection | Traffic Control | Existing Conditions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM |  | PM |  |
|  |  | Delay ${ }^{1}$ | - LOS | Delay ${ }^{1}$ | - LOS |
| 1- US-395/Chamberlain Way | Signal | 9.2 | - A | 10.2 | - B |
| 2- US-395/Bartlett Avenue | Signal | 10.9 | - B | 12.1 | - B |
| 3- US-395/Air Expressway | Signal | 16.6 | - B | 24.0 | - C |
| 4- US-395/Rancho Road | Signal | 15.7 | - B | 15.3 | - B |
| 5 - US-395/Adelanto Road | TWSC | >50.0 | - $\mathbf{F}^{2}$ | >50.0 | - $\mathbf{F}^{2}$ |
| 6 - US-395/Palmdale Road | Signal | 41.6 | - D | 50.7 | - D |
| 7- Adelanto Road/Chamberlain Way | OWSC | 8.4 | - A | 8.4 | - A |
| 8 - Adelanto Road/Innovation Way/Bartlett Ave | AWSC | 7.4 | - A | 7.5 | - A |
| 9- Adelanto Road/Air Expressway | Signal | 18.1 | - B | 16.1 | - B |
| 10- Adelanto Road/Rancho Road | OWSC | 9.5 | - A | 9.7 | - A |
| 11 - Gateway Drive/Air Expressway | Signal | 4.9 | - A | 5.5 | - A |
| 12- Phantom West/Air Expressway | Signal | 23.9 | - C | 18.6 | - B |
| 13- Nevada Ave/Air Expressway | Signal | >80.0 | - $\mathbf{F}^{2}$ | 13.7 | - B |
| 14- George Blvd/Air Expressway | Signal | 34.5 | - C | 34.8 | - C |
| 15- Phantom East/Air Expressway | Signal | 76.7 | - E | 10.8 | - B |
| 16- Village Drive/Air Expressway | Signal | 11.2 | - B | 19.2 | - B |
| 17- National Trails Highway/Air Expressway | Signal | 24.6 | - C | 16.5 | - B |
| 18- I-15 SB Ramps/National Trails Highway | Signal | 18.6 | - B | 21.2 | - C |
| 19-1-15 NB Ramps/National Trails Highway | Signal | 24.7 | - C | 22.3 | - C |
| 20- l-15 SB Ramps/Palmdale Road | Signal | 50.2 | - D | 69.1 | - E |
| 21 - I-15 NB Ramps/Palmdale Road | Signal | 17.7 | - B | >80.0 | - $\mathbf{F}^{2}$ |
| 22- I-15 NB Direct Ramps/Mariposa Road | Signal | 17.6 | - B | 25.0 | - C |
| 23- US-395/Calusa Road | Not Studied |  |  |  |  |
| 24- US-395/EI Mirage Road | Not Studied |  |  |  |  |
| 25- El Evado Road/Mojave Road | Not Studied |  |  |  |  |
| 26- El Evado Road/Palmdale Road | Not Studied |  |  |  |  |
| 27 - US-395/HDC WB Ramps | Not Studied |  |  |  |  |
| 28- US-395/HDC EB Ramps | Not Studied |  |  |  |  |
| 29- Phantom West/HDC WB Ramps | Not Studied |  |  |  |  |
| 30- Phantom West/HDC EB Ramps | Not Studied |  |  |  |  |
| 31 - Phantom East/HDC WB Ramps | Not Studied |  |  |  |  |
| 32 - Phantom East/HDC EB Ramps | Not Studied |  |  |  |  |
| 33 - National Trails Highway/HDC WB Ramps | Not Studied |  |  |  |  |
| 34 - National Trails Highway/HDC EB Ramps | Not Studied |  |  |  |  |
| $35-\quad$ Phantom West/Innovation Dr | TWSC | 9.7 | - A | 9.0 | - A |
| 36 - Phantom West/Aerospace Dr | TWSC | 8.8 | - $A$ | 9.3 | - A |
| 37- Phantom West/Mustang St | TWSC | 9.7 | - A | 9.3 | - A |
| 38 - Phantom West/Sabre Blvd | TWSC | 10.2 | - B | 9.4 | - A |
| 39- Phantom West/George Blvd | TWSC | 9.4 | - A | 8.7 | - A |
| 40- Nevada Ave/Phantom East | TWSC | 8.6 | - A | 9.0 | - A |
| 41- Perimeter Road/Phantom East | TWSC | 8.7 | - A | 8.9 | - A |


| Study Intersection | Traffic Control | Existing Conditions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM |  | PM |  |
|  |  | Delay ${ }^{1}$ | - LOS | Delay ${ }^{1}$ | - LOS |
| 42- Gateway Drive/Innovation Way | TWSC | 8.5 | - A | 8.7 | - A |
| 43- Nevada Ave/Innovation Dr/McCoy Circle | OWSC | 0.0 | - A | 0.0 | - A |
| 44- George Blvd/Sabre Blvd | OWSC | 7.2 | - A | 9.1 | - A |
| 45- Phantom East/Sabre Blvd | Does Not Exist Without Project |  |  |  |  |
| 46 - Phantom East/Innovation Dr | Does Not Exist Without Project |  |  |  |  |

Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service $F$ per HCM
LOS = level of service; TWSC = Two-Way Stop Control; OWSC = One-Way Stop Control

As shown in Table 2, all study intersections are currently operating at an acceptable level of service (LOS D or better) for Existing conditions with the exception of the following locations:

| Existing Conditions |  |  |  |
| :---: | :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |  |
| $5-\quad$ US-395/Adelanto Road | LOS F | LOS F |  |
| $13-\quad$ Nevada Ave/Air Expressway | LOS F | Acceptable |  |
| $15-\quad$ Phantom East/Air Expressway | LOS E | Acceptable |  |
| $20-\quad$ I-15 SB Ramps/Palmdale Road | Acceptable | LOS E |  |
| $21-\quad$ I-15 NB Ramps/Palmdale Road | Acceptable | LOS F |  |

## 4 PROPOSED PROJECT

The proposed project encompasses a total of approximately 1,264 acres as part of the SCLA Specific Plan area. The total new development of the proposed project is estimated around 24 million square feet of building area. The SCLA SP is proposed to be constructed over approximately 25 -year period and is projected to be built out by Year 2040.

Stirling Development provided Michael Baker with a detailed breakdown of planned land uses by parcel lot number within the specific plan area. Additional land use and employment projections were provided by the City of Victorville for the SCLA airport-side development. The land uses included in the SCLA SP include:

- Manufacturing
- Light Warehouse
- Light Industrial
- Heavy Industrial
- Airport Support Facilities
- Fast Food Restaurants
- High Turnover Restaurants
- Gas Station
- Retail
- General Office

For the proposes of developing vehicle trip generation and trip assignments, the land parcel lots were aggregated into sub-areas. These sub-areas were then grouped into Westside, Central Core, and Eastside specific plan areas.

Exhibit 8 shows the draft SCLA Specific Plan traffic analysis sub-areas.

### 4.1 ON-SITE SPECIFIC PLAN ROADWAY NETWORK IMPROVEMENTS

Within the SCLA Specific Plan area, new on-site roadway network connections will be constructed. For the purposes of this analysis, all "with project" conditions assume the following modifications to the circulation system within the Specific Plan Area:

- Extension of Adelanto Road from Chamberlain Way to El Mirage Road (2-lanes)
- Extension of Gateway Road from Innovation Way to El Mirage Road (2-lanes)
- Extension of Innovation Way from Gateway Drive to Phantom West (4-lanes)
- Extension of Innovation Drive from Nevada Avenue to Phantom East (2-4 lanes)
- Extension of Sabre Boulevard from George Boulevard to Phantom East (2-lanes)
- Construction of Navigation as a continuation of El Mirage Road from Adelanto Road to Gateway Drive (2-lanes)
- Construction of Momentum as a continuation of Chamberlain Way from Adelanto Road to Gateway Drive (2-lanes)
- Widening of Innovation Drive from Phantom West to Nevada Avenue (4-lanes)
- Elimination of George Boulevard from Air Expressway to Sabre Boulevard


Baker
SCLA Specifc Plan Traffic Analysis Sub-Areas
TIONAL
$\qquad$

### 4.2 PROJECT FORECAST TRIP GENERATION

In order to calculate vehicle trips forecast to be generated by the proposed development, the Institute of Transportation Engineers (ITE) $10^{\text {th }}$ Edition Trip Generation Manual (2017) trip generation rates were utilized. The ITE trip generation rates were used to calculate the number of vehicle trips that would be generated by the various planned land uses as described above. The airport support facility trip generation is driven by the employment projections and is based on a refined employee-based rate for warehouse type use. Table 3 summarizes the ITE trip generation rates used.

To account for truck trips for specific land uses (i.e. manufacturing, light warehouse, light industrial, heavy industrial), the trip generation was broken down by vehicle type (passenger cars, 2-axle trucks, 3-axle trucks, and 4+ axle trucks) based on percentages from the South Coast Air Quality Management District (SCAQMD). These vehicle trips were then converted to passenger car equivalents (PCE's) based on the following factors:

- 2-axle = 1.5 PCE
- 3-axle = 2.0 PCE
- $4+$ axle $=3.0$ PCE

Table 3, ITE Trip Generation Rates

| Land Use | $\begin{gathered} \text { ITE } \\ \text { Code } \end{gathered}$ | Daily Trip Rate | AM Peak Hour Trip Rate |  | PM Peak Hour Trip Rate |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Rate | In : Out | Rate | In : Out |
| Airport Support Facility | (1) | 3.9/Emp | 1.0 / Emp | 72\% : 28\% | 1.0/ Emp | 35\% : 65\% |
| General Light Industrial | 110 | 4.96 / KSF | 0.7 / KSF | 88\% : 12\% | 0.63 / KSF | 13\% : 87\% |
| Manufacturing | 140 | 3.93 / KSF | 0.62 / KSF | 77\% : 23\% | 0.67 / KSF | 31\% : 69\% |
| Warehousing | 150 | 1.74/ KSF | 0.17 / KSF | 77\% : 23\% | 0.19 / KSF | 27\% : 73\% |
| High-Cube Warehouse | 154 | 1.4/ KSF | 0.08 / KSF | 77\% : 23\% | 0.1/ KSF | 28\% : 72\% |
| Business Hotel | 312 | 5.08/ Occ. Room | 0.56 / Occ. Room | 53\% : 47\% | 0.45 / Occ. Room | 55\% : 45\% |
| General Office | 710 | 9.74 / KSF | 1.16 / KSF | 86\% : 14\% | 1.15 / KSF | 16\% : 84\% |
| Shopping Center | 820 | 37.75 / KSF | 0.94 / KSF | 62\% : 38\% | 3.81/ KSF | 48\% : 52\% |
| High Turnover/Sit Down Rest | 932 | 112.18 / KSF | 9.94 / KSF | 55\% : 45\% | 9.77 / KSF | 62\% : 38\% |
| Fast Food w/o Drive Thru | 933 | 346.23 / KSF | 25.1/ KSF | 60\% : 40\% | 28.34 / KSF | 50\% : 50\% |
| Fast Food with Drive Thru | 934 | 470.95 / KSF | 40.19 / KSF | 51\% : 49\% | 32.67 / KSF | 52\% : 48\% |
| Serv.Station w/ Conven.Mkt | 945 | 205.36 / Fuel Position | 12.47 / Fuel Position | 51\% : 49\% | 13.99 / Fuel Position | 51\% : 49\% |

Source: 2017 ITE Trip Generation Manual, $10^{\text {th }}$ Edition
${ }^{(1)}$ Modified rate based on ITE Code 150 - Warehouse
Emp = Employee; $K$ SF = 1,000 square feet

Table 4 shows the trip generation summary for the SCLA Specific Plan broken out by land use. Detailed trip generation tables and land use summaries are provided in Appendix C.

Table 4, SCLA SP Proposed Project Trip Generation

| Land Use | Intensities | ADT | AM Peak Hour Trips |  |  | PM Peak Hour Trips |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Total | Inbound | Outbound | Total | Inbound | Outbound |
| Manufacturing | 4,551.77 KSF | 26,169 | 4,139 | 3,187 | 952 | 4,474 | 1,393 | 3,081 |
| Light Warehouse | 15,612.68 KSF | 40,133 | 3,951 | 3,053 | 898 | 4,403 | 1,184 | 3,219 |
| Light Industrial | 2,525.08 KSF | 18,323 | 2,587 | 2,276 | 311 | 2,330 | 304 | 2,026 |
| Airport Support Facility | 1,300 Emp | 5,071 | 1,300 | 937 | 363 | 1,300 | 455 | 845 |
| Fast Food w/o Drive Thru | 6.50 KSF | 2,251 | 163 | 98 | 65 | 185 | 92 | 93 |
| High Turnover/Sit Down Rest | 18.00 KSF | 2,019 | 179 | 98 | 81 | 176 | 110 | 66 |
| Serv.Station w/ Conven.Mkt | 36 VFP | 7,393 | 449 | 229 | 220 | 504 | 257 | 247 |
| Shopping Center | 33.00 KSF | 1,246 | 31 | 20 | 11 | 126 | 60 | 66 |
| General Office | 345.00 KSF | 3,360 | 401 | 345 | 56 | 398 | 64 | 334 |
|  | Reductions ${ }^{1}$ | -7,213 | -464 | -249 | -215 | -542 | -284 | -258 |
| SCLA Net New Trips |  | 98,752 | 12,736 | 9,994 | 2,742 | 13,354 | 3,635 | 9,719 |

Notes: ITE 10th Edition
All volumes are shown in PCE's.
ADT = Average Daily Trips; KSF = 1,000 square feet, Emp = employees; VFP = vehicle fueling position
${ }^{1}$ Reductions include pass-by trips and internal trips and have been applied to commercial uses only (i.e. restaurant $50 \%$, retail=35\%\%, gas station=60\%)

As shown in Table 4, the SCLA SP is projected to generate approximately 98,752 net new daily PCE trips with 12,736 AM peak hour trips ( 9,994 in / 2,742 out) and approximately 13,354 PM peak hour trips ( 3,635 in / 9,719 out) by the specific plan build out. It should be noted that trip reductions have been applied to proposed commercial uses such as retail, gas stations, and restaurants to account for pass-by trip and for trips that would be internal to the land parcel lot in which the commercial use is located or trips between immediately adjacent lots that are close enough to allow for convenient pedestrian access. Detailed trip generation tables and land use summaries are provided in Appendix C.

### 4.3 TRIP DISTRIBUTION AND TRIP ASSIGNMENT OF PROPOSED PROJECT

The distribution of SCLA SP trips has been based on trip distribution characteristics developed for the previous project traffic studies as well as traffic patterns reflected in the existing counts at the key intersections along Air Expressway.

Exhibit 9 shows the forecast trip percent distribution of the proposed project within the study area based on the existing circulation network. Exhibit 10 shows the forecast trip percent distribution of the proposed project within the study area based on the Forecast Year 2040 Without HDC buildout roadway network. Exhibit 11 shows the forecast trip percent distribution of the proposed project within the study area based on the Forecast Year 2040 With HDC buildout roadway network. The trips were manually assigned onto the roadways surrounding each sub area in a logical manner that considered the likely location of access points around the perimeter of the individual sub areas and subsequently assigned to principal access roads that would carry the trips to and from the regional routes.

Exhibit 12 - Exhibit 14 shows the corresponding forecast assignment of AM and PM peak hour projectgenerated trips assuming the trip percent distribution shown in Exhibit 9-Exhibit 11 respectively. All trips are shown as PCE's.


Not to Scale
Existing Plus Project Buildout Trip Distribution


Not to Scale

Forecast Year 2040 Without HDC With Project Buildout Trip Distribution


Forecast Year 2040 With HDC With Project Buildout Trip Distribution


AM/PM Peak Hour Project Trip Assignment - Existing Plus Project Buildout

INTERNATIONAL


## Michael Baker

INTERNATIONAL
AM/PM Peak Hour Project Trip Assignment

- Existing Plus Project Buildout (ctd)



AM/PM Peak Hour Project Trip Assignment - Forecast Year 2040 Without HDC With Project

I NTERNATIONAL

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  | Notes: XX / XX = AM / PM Peak Hour Volumes |
|  |  |  |
|  |  |  |


|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $$ |  |  |  |  |  |
| ~~ |  |  | $\text { ص / } 233 \text { ك }$ <br> Sabre Blvd |  |  |
|  |  |  |  |  |  |


|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  | Does Not Exist |  |
|  |  | Notes: XX / XX = AM / PM Peak Hour Volumes |

## Michael Baker

INTERNATIONAL
AM/PM Peak Hour Project Trip Assignment

- Forecast Year 2040 With Project


|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
| Notes: XX / XX = AM / PM Peak Hour Volu |  |  |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  | Notes: <br> XX / XX = AM / PM <br> Peak Hour Volumes |

## EXISTING WITH PROJECT BUILDOUT

This section analyzes the potential traffic impacts from the addition of project related trips to the existing conditions traffic volumes at the study intersections. It is important to note that this analysis assumes the existing roadway network configuration which limits the routing options of project related traffic as well as area background traffic. In reality, the study area roadway system will be changing significantly by the time the SCLA Specific Plan area is fully developed. With the addition of new roadway connections and regional freeway facilities will likely redistribute and spread traffic throughout the area. Some of these connections to the roadway network would include:

- Proposed construction of the High Desert Corridor and the 395-Freeway
- Planned extension of Phantom East to/from the south between Air Expressway and Palmdale Rd.

Because of these considerations, the analysis findings and identified intersection improvement needs for this scenario are for "informational purposes" only.

### 5.1 EXISTING WITH PROJECT BUILDOUT TRAFFIC VOLUMES

Existing With Project Buildout traffic volumes are derived by adding trips forecast to be generated by the proposed project to existing traffic volumes.

Exhibit 15a-15c shows the forecast Existing With Project Buildout AM/PM peak hour volumes at study intersections.

### 5.2 EXISTING WITH PROJECT BUILDOUT PEAK HOUR STUDY INTERSECTION LOS

Table 5 summarizes Existing With Project AM and PM peak hour level of service for all study intersections. Detailed analysis sheets are contained in Appendix D.

As shown, 11 of the 34 intersections studied in the Existing With Project Buildout conditions are forecast to operate at an acceptable level of service (LOS D or better) and 23 intersections operate at a deficient level of service (LOS E or worse) during the AM peak hour. During the PM peak hour, 5 intersections operate an acceptable level of service and 29 intersections operate at a deficient level of service.

According to the City of Victorville significance criteria, 27 of the 34 intersections would be significantly impacted during one or both peak hours as a result of the proposed project and therefore require mitigation.

It is not likely that the SCLA project would be fully developed under these conditions. In this scenario, the project will add a significant amount of project trips to the existing street network which is missing some key regional roadway connections. Without these important facilities the roadway network is forecast to operate poorly under Existing With Project Buildout conditions.

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  | Notes: XX / XX = AM / PM Peak Hour Volumes |




Table 5, Existing With Project Buildout AM/PM Peak Hour Intersection LOS


| Study Intersection | Traffic Control | Existing Conditions |  |  |  |  | Existing With Project Conditions |  |  |  |  |  | Significant Impact? ${ }^{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM |  | PM |  |  | AM |  |  | PM |  |  |  |  |
|  |  | Delay ${ }^{1}$ | - LOS | Delay ${ }^{1}$ | - | LOS | Delay ${ }^{1}$ |  | LOS | Delay ${ }^{1}$ |  | LOS | AM | PM |
| 18- I-15 SB Ramps/National Trails Highway | Signal | 18.6 | - B | 21.2 | - | C | >80.0 |  |  | >80.0 |  |  | YES | YES |
| With Improvements |  |  |  |  |  |  | >80.0 |  | $\mathrm{F}^{2}$ | 38.1 | - | D | YES | No |
| 19- I-15 NB Ramps/National Trails Highway | Signal | 24.7 | C | 22.3 | - | C | >80.0 |  |  | >80.0 |  |  | YES | YES |
| With Improvements |  |  |  |  |  |  | >80.0 |  | $\mathrm{F}^{2}$ | 75.3 | - | E | YES | YES |
| 20- I-15 SB Ramps/Palmdale Road | Signal | 50.2 | - D | 69.1 | - | E | 50.2 |  | D | 69.1 | - | E | No | No |
| 21- I-15 NB Ramps/Palmdale Road | Signal | 17.7 | - B | >80.0 | - | $\mathrm{F}^{2}$ | 17.7 |  | B | >80.0 | - | $\mathrm{F}^{2}$ | No | No |
| 22- I-15 NB Direct Ramps/Mariposa Road | Signal | 17.6 | - B | 25.0 | - | C | 17.6 |  | B | 25.0 | - | C | No | No |
| 23- US-395/Calusa Road |  |  |  |  |  | Not S | cudied |  |  |  |  |  |  |  |
| 24- US-395/El Mirage Road |  |  |  |  |  | Not S | cudied |  |  |  |  |  |  |  |
| 25 - El Evado Road/Mojave Road |  |  |  |  |  | Not S | Studied |  |  |  |  |  |  |  |
| 26- El Evado Road/Palmdale Road- Navigation |  |  |  |  |  | Not S | tudied |  |  |  |  |  |  |  |
| 27- US-395/HDC WB Ramps |  |  |  |  |  | Not S | dudied |  |  |  |  |  |  |  |
| 28 - US-395/HDC EB Ramps |  |  |  |  |  | Not S | dudied |  |  |  |  |  |  |  |
| 29- Phantom West/HDC WB Ramps |  |  |  |  |  | Not S | tudied |  |  |  |  |  |  |  |
| 30- Phantom West/HDC EB Ramps |  |  |  |  |  | Not S | tudied |  |  |  |  |  |  |  |
| 31- Phantom East/HDC WB Ramps |  |  |  |  |  | Not S | udied |  |  |  |  |  |  |  |
| 32- Phantom East/HDC EB Ramps |  |  |  |  |  | Not S | udied |  |  |  |  |  |  |  |
| 33- National Trails Highway/HDC WB Ramps |  |  |  |  |  | Not S | udied |  |  |  |  |  |  |  |
| 34- National Trails Highway/HDC EB Ramps |  |  |  |  |  | Not S | udied |  |  |  |  |  |  |  |
| 35- Phantom West/Innovation Dr | TWSC |  | - A | 9.0 | - | A | >50.0 |  | $\mathrm{F}^{2}$ | >50.0 |  | $\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  |  |  |  |  |  |  |  |  |  | No | No |
| 36- Phantom West/Aerospace Dr | TWSC |  | - A | 9.3 | - | A | >50.0 |  |  | >50.0 |  | $\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  |  |  |  |  |  |  |  | - |  | No | No |
| 37- Phantom West/Mustang St | TWSC |  | - A |  | - | A | >50.0 |  | $\mathrm{F}^{2}$ | >50.0 |  | $\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  |  |  |  | 13.8 |  | B | 13.3 | - | B | No | No |
| 38- Phantom West/Sabre Blvd | TWSC | 10.2 | - B |  | - | A | >50.0 |  |  | >50.0 | - |  | YES | YES |
| With Improvements |  |  |  |  |  |  | 6.0 |  | A | 11.6 | - | B | No | No |
| 39- Phantom West/George Blvd | TWSC |  | - A | 8.7 | - | A | 15.1 | - | C | 19.1 | - | C | No | No |
| 40- Nevada Ave/Phantom East | TWSC |  | - A |  | - | A | 19.5 | - | C | >50.0 | - |  | No | YES |
| With Improvements |  |  |  |  |  |  |  |  | C |  |  |  | No | No |
| 41- Perimeter Road/Phantom East | TWSC | 8.7 | - A |  | - | A | >50.0 |  |  | >50.0 | - |  | YES | YES |
| With Improvements |  |  |  |  |  |  |  | - |  | 17.5 |  |  | YES | No |



Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM
${ }^{3}$ Delay deteriorates from acceptable (LOS D or better) to unacceptable (LOS E or F) OR change in delay for an already deficient intersection by $2 \%$ or more
LOS = level of service; TWSC = Two-Way Stop Control; OWSC = One-Way Stop Control

### 5.3 EXISTING WITH PROJECT BUILDOUT MITIGATION MEASURES

Table 6 shows the mitigation measures that have been identified to reduce the traffic impacts at the intersections that are expected to operate at deficient levels of service with the project. These mitigation measures are generally consistent with those improvements identified by the City of Victorville circulation element as shown in Exhibit 4 and Exhibits 5a-5e and do not provide improvements beyond what can be accommodated by these classifications.

Table 5 summarizes the AM and PM peak hour level of service assuming the implementation of the identified improvements. With the implementation of the identified mitigation measures, the following 12 locations would continue to operate at deficient levels of service with the project and would result in unavoidable significant impacts:

| Existing With Project Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 3 - US-395 / Air Expressway | LOS F | LOS F |
| 4 - US-395 / Rancho Road | LOS F | LOS F |
| 5 - US-395 / Adelanto Road | Acceptable | LOS F |
| 6 - US-395 / Palmdale Road | LOS F | LOS F |
| 9 - Adelanto Road / Air Expressway | LOS E | Acceptable |
| 11 - Gateway Drive / Air Expressway | Acceptable | LOS F |
| 12- Phantom West / Air Expressway | LOS F | Acceptable |
| 13-Nevada Avenue / Air Expressway | LOS F | Acceptable |
| 15- Phantom East / Air Expressway | Acceptable | LOS F |
| 18- I-15 SB Ramps / National Trails Hwy | LOS F | Acceptable |
| 19- I-15 NB Ramps / National Trails Hwy | LOS F | Acceptable |
| 41 - Perimeter Road / Phantom East | Acceptable | LOS F |

Exhibit 16a-16b shows the Existing With Project Buildout mitigated lane configurations
Table 6, Existing With Project Buildout Recommended Mitigation

| Intersection | Existing With Project Buildout Recommended Mitigation |
| :---: | :--- |
| 1- US-395 / Chamberlain Way | • Install westbound dedicated left-turn-lane |
| $2-$ US - 395 / Bartlett Ave | • Install northbound dedicated right-turn-lane <br> $\bullet$ |
| •Install westbound dedicated right-turn-lane |  |


| Intersection | Existing With Project Buildout Recommended Mitigation |
| :---: | :---: |
| 4- US - 395 / Rancho Rd | - Install second northbound left-turn-lane, third northbound through-lane, and one northbound dedicated right-turn-lane <br> - Install third southbound through-lane and southbound dedicated right-turn-lane |
| 5- US - 395 /Adelanto Rd | - Signalize Intersection <br> - Install second and third northbound through-lanes and northbound left-turn-lane <br> - Install second southbound through-lanes; Install third combination shared through/right-turn-lane; Install southbound left-turn-lane <br> - Restripe westbound approach to include dedicate left-turn-lane and a shared through/right-turn-lane |
| 6- US - 395 / Palmdale Rd | - Install third northbound through-lanes; second left-turn-lane; and dedicated right-turn-lane <br> - Install third southbound through-lane <br> - Install eastbound dedicated right-turn-lane |
| 8 Adelanto Rd / Innovation Way / Bartlett Ave | - Signalize Intersection |
| 9 - Adelanto Rd/ Air Expressway | - Install two northbound dedicated right-turn-lanes with an overlap phase <br> - Install a southbound dedicated right-turn-lane with an overlap phase <br> - Install third eastbound through-lane; fourth combination shared through/right-turn-lane; and second eastbound left-turn-lane <br> - Install third eastbound through-lane; fourth combination shared through/right-turn-lane; and second eastbound left-turn-lane |
| 11- Gateway Dr / Air Expressway | - Install southbound dedicated right-turn-lane with an overlap phase <br> - Install third and fourth eastbound through lanes and second eastbound left-turn-lane <br> - Install third and fourth westbound through-lanes and second westbound right-turn-lane with an overlap phase |
| 12-Phantom West / Air Expressway | - Install third southbound left-turn-lane; install southbound right-turn free movement <br> - Install second and third eastbound through-lanes and second eastbound left-turn-lane <br> - Install third and fourth westbound through-lanes |
| 13-Nevada Ave / Air Expressway | - Install second southbound left-turn-lane and second southbound right-turn-lane <br> - Install third and fourth eastbound through-lane, and second eastbound left-turn-lane <br> - Install third and fourth westbound through-lanes; Install westbound dedicated right-turn-lane with an overlap phase |
| 14-George Blvd / Air Expressway |  |


| Intersection | Existing With Project Buildout Recommended Mitigation |
| :---: | :---: |
|  | - Install third eastbound through lane and fourth combination through/shared right-turn-lane <br> - Install third and fourth westbound through lanes |
| 15- Phantom East / Air Expressway | - Install third and fourth eastbound through-lanes <br> - Install third and fourth westbound through-lanes |
| 16-Village Dr / Air Expressway | - Install northbound dedicated right-turn-lane <br> - Install third and fourth eastbound through-lanes; Install eastbound rightturn overlap phase <br> - Install third and fourth westbound through-lanes |
| 17- National Trails Highway / Air Expressway | - Reconfigure intersection to make Air Expressway the east/west through movement and the north leg of National Trails Highway a "T" <br> - Install two southbound left-turn-lanes and southbound right-turn lane <br> - Install two eastbound left-turn-lanes and two eastbound through-lanes <br> - Install three westbound through-lanes and one westbound right-turnlane |
| 18 -I-15 Southbound Ramps / National Trails Hwy | - Install second northbound left-turn-lane <br> - Convert southbound dedicated right-turn-lane to a free movement <br> - Install second eastbound left-turn-lane |
| 19-I-15 Northbound Ramps / National Trails Hwy | - Install two southbound dedicated right-turn-lanes <br> - Install second eastbound left-turn-lane |
| 35 - Phantom West / Innovation Dr | - Signalize Intersection |
| 36- Phantom West / Aerospace Dr | - Signalize Intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane |
| 37- Phantom West /Mustang St | - Install median modifications to restrict eastbound and westbound left turns |
| 38- Phantom West / Sabre Blvd | - Signalize Intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane |
| 40- Nevada Ave / Phantom East | - Install All-Way-Stop <br> - Install northbound left-turn-lane |
| 41 - Phantom East / Perimeter Road | - Install All-Way-Stop <br> - Install southbound right-turn-lane |


| Intersection | Existing With Project Buildout Recommended Mitigation |
| :---: | :---: |
| 42-Gateway Dr / Innovation Way | - Signalize Intersection <br> - Install east leg of the intersection <br> - Install three northbound through-lanes and one northbound dedicated right-turn-lane <br> - Install second and third southbound through lanes and one southbound left-turn lane <br> - Install one eastbound through-lanes and one eastbound shared through/right-turn-lane <br> - Install one westbound left-turn-lane, one westbound through-lane, and one westbound shared through/right-turn-lane |
| 43Nevada Ave / Innovation Dr / McCoy Circle | - Signalize Intersection <br> - Install east leg of the intersection <br> - Install second northbound left-turn-lane, two northbound through-lanes, and one northbound dedicated right-turn-lane <br> - Install one southbound left-turn-lane and two southbound through-lanes <br> - Install two eastbound through-lanes and one eastbound dedicated right-turn-lane with a channelized yield movement <br> - Install two westbound left-turn-lanes, one westbound through-lane, and one westbound shared through/right-turn-lane |
| 45-Phantom East / Sabre Boulevard | - Install All-Way-Stop <br> - Install west leg of the intersection to include one shared left/through/right-turn-lane <br> - Install east leg of the intersection to include one left-turn-lane and one shared through/right-turn-lane |
| 46 - Phantom East / Innovation Way | - Signalize Intersection <br> - Install west leg of the intersection to include one eastbound shared left/through-lane and one eastbound dedicated right-turn-lane with a channelized yield movement |


|  | $\underbrace{\text { 2 }}$ |  |
| :---: | :---: | :---: |
|  | ${ }^{0}$ |  |
|  |  |   |
|  | (14) |  |
|  |  |  |

Existing With Project Buildout

|  |  | (1) |
| :---: | :---: | :---: |
|  |  | (38) |
|  |  |  |
|  |  |  |
|  |  |  |

Existing With Project Buildout

## 6 FORECAST YEAR 2040 WITHOUT HDC WITHOUT PROJECT

This section analyzes the potential impacts for Forecast Year 2040 Without HDC Without Project conditions. This scenario assumes complete buildout of the City of Victorville roadway network consistent with the circulation map shown in Exhibit 4 with the exception of the High Desert Corridor.

### 6.1 FORECAST YEAR 2040 WITHOUT HDC REGIONAL NETWORK IMPROVEMENTS

Forecast Year 2040 Without HDC conditions assumes the following modifications to the roadway circulation system within the study area:

## Without Project:

- Extension of Phantom East from Air Expressway to Palmdale Road (existing El Evado Road alignment) (2-lanes)
- Extension of El Mirage Road from US-395 to Adelanto Road (2-lanes)
- Extension of Adelanto Road from El Mirage Road to Calusa Road (2-lanes)
- Construction of Calusa Road from US-395 to Adelanto Road (2-lanes)


## With Project:

- Extension of Adelanto Road from Chamberlain Way to El Mirage Road (2-lanes)
- Extension of Gateway Road from Innovation Way to El Mirage Road (2-lanes)
- Extension of Innovation Way from Gateway Drive to Phantom West (4-lanes)
- Extension of Innovation Drive from Nevada Avenue to Phantom East (2-4 lanes)
- Extension of Sabre Boulevard from George Boulevard to Phantom East (2-lanes)
- Construction of Navigation as a continuation of El Mirage Road from Adelanto Road to Gateway Drive (2-lanes)
- Construction of Momentum as a continuation of Chamberlain Way from Adelanto Road to Gateway Drive (2-lanes)
- Widening of Innovation Drive from Phantom West to Nevada Avenue (4-lanes)
- Elimination of George Boulevard from Air Expressway to Sabre Boulevard

Exhibit 17a-17c shows the Forecast Year 2040 Without HDC buildout roadway network intersection lane configurations which includes the network assumptions discussed above.

While the proposed plan shows a roadway connection at Momentum as an extension of Chamberlain Way between Adelanto Road and Gateway Drive, this connection is not considered critical. While included in this analysis, the elimination of Momentum would not result in any impacts beyond what has been identified in this report.


Forecast Year 2040 Without HDC

### 6.2 FORECAST YEAR 2040 WITHOUT HDC WITHOUT PROJECT TRAFFIC VOLUMES

Forecast Year 2040 Without HDC Without Project traffic volumes are derived by applying a 2\% per year ambient growth rate to existing traffic volumes at all study intersections with the exception of those located within the specific plan area (Intersections 37-46). Traffic growth within the SCLA Specific Plan area is anticipated to be attributed to development within the specific plan area only and no other growth has been applied to Intersections 37-46. For the purposes of this analysis, the ambient growth was applied to existing year 2018 volumes for 22 years until the forecast year for buildout of which is anticipated to be year 2040 With HDC. This represents a total of $44 \%$ growth in traffic volumes.

Exhibit 18a-18c shows the Forecast Year 2040 Without HDC AM and PM peak hour trips at study intersections assuming full buildout of the City of Victorville roadway network with the exception of the High Desert Corridor.

### 6.3 FORECAST YEAR 2040 WITHOUT HDC WITHOUT PROJECT PEAK HOUR STUDY INTERSECTION LOS

Table 7 summarizes Forecast Year 2040 Without HDC Without Project AM and PM peak hour level of service for all study intersections. Detailed analysis sheets are contained in Appendix E.

## Table 7, Forecast Year 2040 Without HDC Without Project AM/PM Peak Hour Intersection LOS

| Stu | Traffic Control | Forecast Year 2040 Without HDC Without Project Conditions |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM |  |  | PM |  |  |
|  |  | Delay ${ }^{1}$ | - | LOS | Delay ${ }^{1}$ |  | LOS |
| 1- US-395/Chamberlain Way | Signal | 9.2 | - | A | 10.4 |  | B |
| 2- US-395/Bartlett Avenue | Signal | 10.7 | - | B | 11.9 | - | B |
| 3- US-395/Air Expressway | Signal | 17.8 | - | B | 21.2 | - | C |
| 4- US-395/Rancho Road | Signal | 12.6 | - | B | 14.6 |  | B |
| 5 - US-395/Adelanto Road | TWSC | >50.0 | - | $\mathrm{F}^{2}$ | >50.0 |  | $\mathrm{F}^{2}$ |
| 6 - US-395/Palmdale Road | Signal | 59.8 | - | E | >80.0 | - | $\mathrm{F}^{2}$ |
| 7- Adelanto Road/Chamberlain Way | OWSC | 8.4 | - | A | 8.4 | - | A |
| 8 - Adelanto Road/Innovation Way/Bartlett Ave | Signal | 4.8 | - | A | 5.4 | - | A |
| 9- Adelanto Road/Air Expressway | Signal | 19.8 | - | C | 17.7 |  | B |
| 10- Adelanto Road/Rancho Road | TWSC | 11.4 | - | B | 11.9 | - | B |
| 11 - Gateway Drive/Air Expressway | Signal | 6.2 | - | A | 7.1 | - | A |
| 12- Phantom West/Air Expressway | Signal | 37.1 | - | D | 32.7 | - | C |
| 13- Nevada Ave/Air Expressway | Signal | 8.0 | - | A | 7.9 | - | A |
| 14- George Blvd/Air Expressway | Not Studied |  |  |  |  |  |  |
| 15- Phantom East/Air Expressway | Signal | >80.0 | - | $\mathrm{F}^{2}$ | 62.0 | - | E |
| 16- Village Drive/Air Expressway | Signal | 10.6 | - | B | 29.4 | - | C |
| 17- National Trails Highway/Air Expressway | Signal | >80.0 | - | $\mathrm{F}^{2}$ | 14.7 | - | B |
| 18- I-15 SB Ramps/National Trails Highway | Signal | 52.9 | - | D | 71.3 | - | E |
| 19-1-15 NB Ramps/National Trails Highway | Signal | 27.4 | - | C | 26.6 | - | C |
| 20- l-15 SB Ramps/Palmdale Road | Signal | 14.6 | - | B | 17.7 | - | B |
| 21-1-15 NB Ramps/Palmdale Road | Signal | 21.5 | - | C | 42.0 | - | D |


| Study Intersection | Traffic Control | Forecast Year 2040 Without HDC Without Project Conditions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM |  | PM |  |  |
|  |  | Delay ${ }^{1}$ | - LOS | Delay ${ }^{1}$ |  | LOS |
| 22- I-15 NB Direct Ramps/Mariposa Road | Signal | 12.9 | - B | 13.1 |  | B |
| 23- US-395/Calusa Road | TWSC | 12.0 | - B | 14.2 |  | B |
| 24- US-395/EI Mirage Road | TWSC | 9.5 | - A | 9.7 |  | A |
| 25- El Evado Road/Mojave Road | Signal | 6.8 | - A | 6.9 |  | A |
| 26- El Evado Road/Palmdale Road | Signal | 6.9 | - A | 6.9 |  | A |
| 27- US-395/HDC WB Ramps | Not Studied |  |  |  |  |  |
| 28- US-395/HDC EB Ramps | Not Studied |  |  |  |  |  |
| 29- Phantom West/HDC WB Ramps | Not Studied |  |  |  |  |  |
| $30-\quad$ Phantom West/HDC EB Ramps | Not Studied |  |  |  |  |  |
| 31 - Phantom East/HDC WB Ramps | Not Studied |  |  |  |  |  |
| 32 - Phantom East/HDC EB Ramps | Not Studied |  |  |  |  |  |
| 33- National Trails Highway/HDC WB Ramps | Not Studied |  |  |  |  |  |
| $34-\quad$ National Trails Highway/HDC EB Ramps | Not Studied |  |  |  |  |  |
| $35-\quad$ Phantom West/Innovation Dr | TWSC | 9.4 | - A | 8.7 |  | A |
| 36 - Phantom West/Aerospace Dr | TWSC | 8.7 | - A | 9.1 |  | A |
| 37- Phantom West/Mustang St | TWSC | 9.4 | - A | 9.1 |  | A |
| 38- Phantom West/Sabre Blvd | TWSC | 9.9 | - A | 9.1 | - | A |
| 39- Phantom West/George Blvd | TWSC | 9.3 | - A | 8.7 | - | A |
| 40- Nevada Ave/Phantom East | TWSC | 8.5 | - A | 8.8 |  | A |
| 41- Perimeter Road/Phantom East | TWSC | 8.7 | - A | 8.8 |  | A |
| 42- Gateway Drive/Innovation Way | OWSC | 8.5 | - A | 8.6 | - | A |
| 43- Nevada Ave/Innovation Dr/McCoy Circle | OWSC | 0.0 | - A | 0.0 |  | A |
| 44- George Blvd/Sabre Blvd | OWSC | 0.0 | - A | 0.0 | - | A |
| 45- Phantom East/Sabre Blvd | Does Not Exist Without Project |  |  |  |  |  |
| 46 - Phantom East/Innovation Dr | Does Not Exist Without Project |  |  |  |  |  |

Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM
LOS = level of service; TWSC = Two-Way Stop Control; OWSC = One-Way Stop Control

Assuming the intersection approach lane configurations shown in Exhibits 17a-17c, all study intersections are forecast to operate at LOS D or better during the peak hour for Forecast Year 2040 Without HDC Without Project conditions with the exception of the following locations:

| Forecast Year 2040 Without HDC Without Project Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 5 - US-395 / Adelanto Road | LOS F | LOS F |
| $6-\quad$ US-395 / Palmdale Road | LOS E | LOS F |
| $15-\quad$ Phantom East / Air Expressway | LOS F | LOS E |
| $17-\quad$ National Trails Hwy / Air Expressway | LOS F | Acceptable |
| $18-\quad$ I-15 SB Ramps / National Trails Hwy | Acceptable | LOS E |


|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  | Notes: XX / XX = AM / PM Peak Hour Volumes |


|  |  |  |
| :---: | :---: | :---: |
|  | $\begin{array}{r} 1462 / 1624 \\ 271 / 467 \end{array}$ |  |
|  |  | Notes: XX / XX = AM / PM Peak Hour Volumes |
|  |  |  |
|  |  |  |



## Michael Baker

Forecast Year 2040 Without HDC

## FORECAST YEAR 2040 WITHOUT HDC WITH PROJECT

### 7.1 FORECAST YEAR 2040 WITHOUT HDC WITH PROJECT TRAFFIC VOLUMES

Forecast Year 2040 Without HDC With Project traffic volumes are derived by adding trips forecast to be generated by the SCLA Specific Plan area to Forecast Year 2040 Without HDC Without Project conditions traffic volumes.

Exhibit 19a-19c shows the Forecast Year 2040 Without HDC With Project AM and PM peak hour trips at study intersections assuming full buildout of the City of Victorville roadway network.

### 7.2 FORECAST YEAR 2040 WITHOUT HDC WITH PROJECT PEAK HOUR STUDY INTERSECTION LOS

Table 8 summarizes Forecast Year 2040 Without HDC With Project AM and PM peak hour level of service for all study intersections. Detailed analysis sheets are contained in Appendix F.

As shown in Table 8, assuming the intersection approach lane configurations shown in Exhibit 17a-17c, 18 of the 37 intersections studied in the Forecast Year 2040 Without HDC With Project conditions are forecast to operate at an acceptable level of service (LOS D or better) and 19 intersections operate at a deficient level of service (LOS E or worse) during the AM peak hour. During the PM peak hour, 15 intersections operate an acceptable level of service and 22 intersections operate at a deficient level of service.

According to the City of Victorville significance criteria, 22 of the 37 locations would result in a significant impact during at least one peak-hour period as a result of the proposed project and therefore require mitigation.

### 7.3 FORECAST YEAR 2040 WITHOUT HDC WITH PROJECT MITIGATION MEASURES

Table 9 lists the mitigation measures that have been identified to reduce the traffic impacts at the intersections that are expected to operate at deficient levels of service with the project. Table 8 also summarizes the AM and PM peak hour level of service assuming the implementation of the identified improvements.

With the implementation of identified mitigation measures, the following locations would continue to operate at deficient levels of service with the project and would result in unavoidable significant impacts:

| Forecast Year 2040 Without HDC With Project With Improvements Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 3- US-395 / Air Expressway | Acceptable | LOS F |
| 4 - US-395 / Rancho Road | LOS F | LOS F |
| 5- US-395 / Adelanto Road | Acceptable | LOS E |
| 6 - US-395 / Palmdale Road | LOS F | LOS F |
| 11 - Gateway Drive / Air Expressway | Acceptable | LOS E |
| 12- Phantom West / Air Expressway | LOS E | LOS E |
| 13-Nevada Avenue / Air Expressway | LOS E | Acceptable |
| 15- Phantom East / Air Expressway | LOS F | LOS E |
| 18- I-15 SB Ramps / National Trails Hwy | Los F | Acceptable |
| 19- I-15 NB Ramps / National Trails Hwy | LOS F | Acceptable |
| 26- Phantom East / Palmdale Road | Acceptable | LOS F |

Exhibit 20a-20b shows the Forecast Year 2040 Without HDC With Project mitigated lane configurations.
It should be noted that TDM measures will most likely be developed that will reduce development trips made during the critical peak hours. Additionally, while the long-range analysis assumes that a large portion of the SCLA Specific Plan will develop as industrial and comprising of manufacturing (25\%) and warehouse ( $75 \%$ ). Programmatic limitations on the ability to achieve $25 \%$ manufacturing development could result in significant reductions in peak hour traffic generation since employee commute trips are lower for warehouse uses.

Table 8, Forecast Year 2040 Without HDC With Project AM/PM Peak Hour Intersection LOS

| Study Intersection | Traffic Control | Forecast Year 2040 Without HDC Without Project Conditions |  | Forecast Year 2040 Without HDC With Project Conditions |  | Significant Impact? ${ }^{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM | PM | AM | PM |  |  |
|  |  | Delay ${ }^{1}$ - LOS | AM | PM |
| 1 - US-395/Chamberlain Way | Signal | 9.2-A | 10.4-B | 9.7-A | 14.6-B | No | No |
| 2 - US-395/Bartlett Avenue | Signal | 10.7 - B | 11.9-B | 21.9-C | 38.3 - D | No | No |
| 3 - US-395/Air Expressway $\quad$ With Improvements | Signal | 17.8-B | 21.2-C | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 54.5-\mathrm{D} \end{gathered}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | YES No | $\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$ |
| 4 - US-395/Rancho Road With Improvements | Signal | 12.6-B | 14.6 - B | $\begin{aligned} & >80.0-F^{2} \\ & >80.0-F^{2} \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | $\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$ | $\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$ |
| 5 - US-395/Adelanto Road With Improvements | TWSC | >50.0 - $\mathrm{F}^{2}$ | >50.0 - $\mathrm{F}^{2}$ | $\begin{gathered} >50.0-\mathrm{F}^{2} \\ 52.5-\mathrm{D} \end{gathered}$ | $\begin{gathered} >50.0-\mathrm{F}^{2} \\ 80.0-\mathrm{E} \end{gathered}$ | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$ |
| 6 - US-395/Palmdale Road ${ }^{\text {With Improvements }}$ | Signal | 59.8-E | >80.0 - $\mathrm{F}^{2}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | $\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$ | $\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$ |
| 7 - Adelanto Road/Chamberlain Way- Momentum | OWSC | 8.4-A | 8.4-A | 12.7 - B | 15.7-C | No | No |
| 8 - Adelanto Road/Innovation Way/Bartlett Ave | Signal | 4.8-A | 5.4-A | 9.7-A | 10.2-B | No | No |
| 9 - Adelanto Road/Air Expressway With Improvements | Signal | 19.8-C | 17.7 - B | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 54.7-\mathrm{D} \end{gathered}$ | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 52.2-\mathrm{D} \end{gathered}$ | YES No | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ |
| 10 - Adelanto Road/Rancho Road With Improvements | TWSC | 11.4-B | 11.9 - B | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 6.6-\mathrm{A} \end{array}$ | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 8.4-\mathrm{A} \end{array}$ | YES <br> No | $\begin{aligned} & \hline \text { YES } \\ & \text { No } \end{aligned}$ |
| 11 - Gateway Drive/Air Expressway With Improvements | Signal | 6.2-A | 7.1-A | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 44.2-\mathrm{D} \end{gathered}$ | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 77.0-\mathrm{E} \end{gathered}$ | $\begin{aligned} & \hline \text { YES } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$ |
| 12 - Phantom West/Air Expressway With Improvements | Signal | 37.1 - D | 32.7 - C | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 79.8-E \end{gathered}$ | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 61.9-\mathrm{E} \end{gathered}$ | $\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$ | $\begin{aligned} & \hline \text { YES } \\ & \text { YES } \\ & \hline \end{aligned}$ |
| 13 - Nevada Ave/Air Expressway <br> With Improvements | Signal | 8.0-A | 7.9-A | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 77.2-\mathrm{E} \end{gathered}$ | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 46.2-\mathrm{D} \end{gathered}$ | $\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$ | $\begin{gathered} \text { YES } \\ \text { No } \end{gathered}$ |
| 14 - George Blvd/Air Expressway |  |  | Not S | tudied |  |  |  |
| 15 - Phantom East/Air Expressway <br> With Improvements | Signal | >80.0 - $\mathrm{F}^{2}$ | 62.0 - E | $\begin{aligned} & >80.0-F^{2} \\ & >80.0-F^{2} \end{aligned}$ | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 78.2-\mathrm{E} \end{gathered}$ | $\begin{aligned} & \hline \text { YES } \\ & \text { YES } \end{aligned}$ | $\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$ |


| Study Intersection | Traffic <br> Control | Forecast Year 2040 Without HDC Without Project Conditions |  | Forecast Year 2040 Without HDC With Project Conditions |  | Significant Impact? ${ }^{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM | PM | AM | PM |  |  |
|  |  | Delay ${ }^{1}$ - LOS | AM | PM |
| 16 - Village Drive/Air Expressway | Signal | 10.6-B | 29.4-C | 25.1-C | 36.2-D | No | No |
| 17 - National Trails Highway/Air Expressway With Improvements | Signal | >80.0 - $\mathrm{F}^{2}$ | 14.7 - B | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 38.4-\mathrm{D} \end{gathered}$ | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 13.1-\mathrm{B} \end{gathered}$ | $\begin{gathered} \text { YES } \\ \text { No } \end{gathered}$ | $\begin{gathered} \text { YES } \\ \text { No } \end{gathered}$ |
| 18- I-15 SB Ramps/National Trails Highway With Improvements | Signal | 52.9 - D | 71.3-E | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 54.0-\mathrm{D} \end{gathered}$ | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 39.0-\mathrm{D} \end{gathered}$ | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ |
| 19- I-15 NB Ramps/National Trails Highway With Improvements | Signal | 27.4-C | 26.6 - C | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 37.3-\mathrm{D} \end{gathered}$ | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 44.2-\mathrm{D} \end{gathered}$ | $\begin{gathered} \text { YES } \\ \text { No } \end{gathered}$ | $\begin{gathered} \text { YES } \\ \text { No } \end{gathered}$ |
| 20-I-15 SB Ramps/Palmdale Road | Signal | 14.6-B | 17.7-B | 22.1-C | 18.2-B | No | No |
| 21 - I-15 NB Ramps/Palmdale Road | Signal | 21.5-C | 42.0 - D | 48.0 - D | 44.2 - D | No | No |
| 22 - I-15 NB Direct Ramps/Mariposa Road | Signal | 12.9-B | 13.1-B | 24.5-C | 17.9-B | No | No |
| 23 - US-395/Calusa Road | TWSC | 12.0-B | 14.2-B | 11.1-B | 12.7 - B | No | No |
| 24 - US-395/El Mirage Road | TWSC | 9.5-A | 9.7-A | 9.7-A | 10.6-B | No | No |
| 25 - El Evado Road/Mojave Road | Signal | 6.8-A | 6.9-A | 53.6 - D | 53.6 - D | No | No |
| 26 - El Evado Road/Palmdale Road With Improvements | Signal | 6.9-A | 6.9-A | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 54.7-\mathrm{D} \end{gathered}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$ |
| 27 - US-395/HDC WB Ramps | Not Studied |  |  |  |  |  |  |
| 28 - US-395/HDC EB Ramps | Not Studied |  |  |  |  |  |  |
| 29 - Phantom West/HDC WB Ramps | Not Studied |  |  |  |  |  |  |
| 30 - Phantom West/HDC EB Ramps | Not Studied |  |  |  |  |  |  |
| 31 - Phantom East/HDC WB Ramps | Not Studied |  |  |  |  |  |  |
| 32 - Phantom East/HDC EB Ramps | Not Studied |  |  |  |  |  |  |
| 33 - National Trails Highway/HDC WB Ramps | Not Studied |  |  |  |  |  |  |
| 34 - National Trails Highway/HDC EB Ramps | Not Studied |  |  |  |  |  |  |
| 35 - Phantom West/Innovation Dr | TWSC | 9.4-A | 8.7-A | >50.0 - $\mathrm{F}^{2}$ | >50.0- $\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  | 20.2-C | 46.2 - D | No | No |
| 36 - Phantom West/Aerospace Dr | TWSC | 8.7-A | 9.1-A | >50.0- $\mathrm{F}^{2}$ | >50.0- $\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  | 4.2-A | 7.8 - A | No | No |
| 37 - Phantom West/Mustang St | TWSC | 9.4-A | 9.1-A | 33.8 - D | 27.4-D | No | No |

$\qquad$

| Study Intersection | Traffic Control | Forecast Year 2040 Without HDC Without Project Conditions |  | Forecast Year 2040 Without HDC With Project Conditions |  | Significant Impact? ${ }^{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM | PM | AM | PM |  |  |
|  |  | Delay ${ }^{1}$ - LOS | AM | PM |
| 38 - Phantom West/Sabre Blvd | TWSC | 9.9-A | 9.1-A | 32.9-D | >50.0- ${ }^{2}$ | No | YES |
| With Improvements |  |  |  | 21.0-C | 18.4-B | No | No |
| 39 - Phantom West/George Blvd | TWSC | 9.3-A | 8.7-A | 13.5-B | 11.9-B | No | No |
| 40 - Nevada Ave/Phantom East | TWSC | 8.5-A | 8.8-A | 19.2-C | >50.0- $\mathrm{F}^{2}$ | No | YES |
| With Improvements |  |  |  | 15.7 - B | 14.4-B | No | No |
| 41 - Perimeter Road/Phantom East | TWSC | 8.7-A | 8.8-A | 31.5 - D | 23.4-C | No | No |
| 42 - Gateway Drive/Innovation Way | OWSC | 8.5-A | 8.6-A | $>50.0$ - $\mathrm{F}^{2}$ | >50.0- $\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  | 42.1 - D | 38.5 - D | No | No |
| 43 - Nevada Ave/Innovation Dr/McCoy Circle | OWSC | 0.0-A | 0.0-A | >50.0- $\mathrm{F}^{2}$ | >50.0- ${ }^{2}$ | YES | YES |
| With Improvements |  |  |  | 43.6 - D | 40.0 - D | No | No |
| 44 - George Blvd/Sabre Blvd | OWSC | 0.0-A | 0.0-A | 11.2-B | 11.2-B | No | No |
| 45 - Phantom East/Sabre Blvd With Improvements | Does Not Exist Without Project |  |  | >50.0- $\mathrm{F}^{2}$ | >50.0- $\mathrm{F}^{2}$ | YES | YES |
|  |  |  |  | 30.8 - D | 35.0 - D | No | No |
|  | Does Not Exist Without Project |  |  | $21.4-C$ | $>50.0-\mathrm{F}^{2}$ | No | YES |
| With Improvements |  |  |  | $11.7-\mathrm{B}$ | $11.0-B$ | No | No |

Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM
${ }^{3}$ Delay deteriorates from acceptable (LOS D or better) to unacceptable (LOS E or F) OR change in delay for an already deficient intersection by $2 \%$ or more

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  | Notes: XX / XX = AM / PM Peak Hour Volumes |


|  |  |  |
| :---: | :---: | :---: |
|  | $\begin{gathered} 1462 / 1624 \\ 551 / 1446 \end{gathered}$ |  |
|  |  | Notes: XX / XX = AM / PM Peak Hour Volumes |
|  |  |  |
|  |  |  |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Table 9, Forecast Year 2040 Without HDC With Project Recommended Mitigation

| Mitigation Measure | Intersection | Forecast Year 2040 Without HDC With Project Recommended Mitigation |
| :---: | :---: | :---: |
| MM-1 | 3- US-395 / Air Expressway | - Modify northbound right-turn lane to a free movement |
| MM-2 | 4- US-395 / Rancho Road | - Restripe westbound approach to include two left-turnlanes, one through lane, and one shared through/right-turn-lane |
| MM-3 | 5 - US-395 / Adelanto Road | - Signalize Intersection <br> - Restripe westbound approach to include dedicated left-turn-lane and a shared through/right-turn-lane |
| MM-4 | 6 - US-395 / Palmdale Road | - Install overlap phasing on all right-turn movements |
| MM-5 | Adelanto Road / Air <br> 9 Expressway | - Install second northbound right-turn-lane with a rightturn overlap phase <br> - Install third westbound through-lanes; Install dedicated westbound right-turn-lane with an overlap phase. <br> - Install third combination eastbound shared through/right-turn-lane |
| MM-6 | 10 - Adelanto Road / Rancho Road | - Signalize Intersection |
| MM-7 | 11- Gateway Drive / Air <br> 11- Expressway | - Install third eastbound through-lane; Install second eastbound left-turn-lane <br> - Install second southbound left-turn-lane; Install southbound right-turn overlap phase. <br> - Install third westbound through-lane; Install second westbound right-turn lane with overlap phase |
| MM-8 | 12- Phantom West / Air <br> 12Expressway | - Install southbound right-turn overlap phase <br> - Install second eastbound left-turn-lane |
| MM-9 | 13- Nevada Ave / Air Expressway | - Install second southbound left-turn-lane and second southbound right-turn-lane |


| Mitigation Measure | Intersection | Forecast Year 2040 Without HDC With Project Recommended Mitigation |
| :---: | :---: | :---: |
|  |  | - Install second eastbound left-turn-lane <br> - Install one westbound dedicated right-turn-lane with an overlap phase |
| MM-10 | 15- Phantom East / Air Expressway | - Restripe northbound approach to include one dedicated left-turn lane, one through-lane, and one shared through/right-turn-lane. <br> - Install second southbound through-lane; Install second southbound left-turn-lane. <br> - Convert westbound right-turn-lane to a free movement |
| MM-11 | 17- $\begin{aligned} & \text { National Trails Highway / Air } \\ & \text { Expressway }\end{aligned}$ | - Reconfigure intersection to make Air Expressway the east/west through movement and the north leg of National Trails Highway a "T" <br> - Install two southbound left-turn-lanes and southbound right-turn lane <br> - Install two eastbound left-turn-lanes and two eastbound through-lanes <br> - Install three westbound through-lanes and one westbound right-turn-lane |
| MM-12 | 18 I-15 Southbound Ramps / National Trails Hwy | - Install second northbound left-turn-lane <br> - Convert southbound dedicated right-turn-lane to a free movement <br> - Install second eastbound left-turn-lane; Install eastbound right-turn overlap phase |
| MM-13 | 19 -I-15 Northbound Ramps / National Trails Hwy | - Install second southbound dedicated right-turn-lane |
| MM-14 | 26 - Phantom East / Palmdale Road | - Install second southbound left-turn-lane. <br> - Install southbound right-turn overlap phase. <br> - Install westbound right-turn overlap phase. |
| MM-15 | 35 - Phantom West / Innovation Dr | - Signalize Intersection. |
| MM-16 | 36 - Phantom West / Aerospace Dr | - Signalize intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane |
| MM-17 | 38 - Phantom West / Sabre Blvd | - Install All-Way-Stop <br> - Modify northbound approach to include a one shared |


| Mitigation Measure | Intersection | Forecast Year 2040 Without HDC With Project Recommended Mitigation |
| :---: | :---: | :---: |
|  |  | left/through-lane and one shared through/right-turn-lane <br> - Modify southbound approach to include a one shared left/through-lane and one shared through/right-turn-lane |
| MM-18 | 40-Nevada Ave/Phantom East | - Install All-Way Stop |
| MM-19 | 42 Gateway Drive / Innovation Way | - Signalize Intersection. <br> - Construct east leg of the intersection. <br> - Install one northbound through lane and one shared through/right-turn-lane <br> - Install one southbound left-turn-lane and a second southbound shared through/right-turn-lane. <br> - Install one eastbound through-lane and second shared through/right-turn-lane <br> - Install a westbound left-turn-lane, one westbound through-lane, and one shared through/right-turn-lane |
| MM-20 | 43 Nevada Ave / Innovation Dr / McCoy Circle | - Signalize Intersection <br> - Construct east leg of the intersection <br> - Install one northbound through lane and one shared through/right-turn-lane <br> - Install a southbound left-turn-lane, one southbound through-lane, and one southbound dedicated right-turnlane <br> - Install eastbound through-lane <br> - Install two westbound left-turn-lanes, and a westbound shared through/right-turn-lane |
| MM-21 | 45 Phantom East / Sabre Boulevard | - Install All-Way-Stop <br> - Install west leg of the intersection to include one shared left/through/right-turn-lane <br> - Install east leg of the intersection to include one shared left/through/right-turn-lane |
| MM-22 | Phantom East / Innovation <br> 46Way | - Signalize Intersection <br> - Install west leg of the intersection to include one eastbound shared left/through-lane and one eastbound dedicated right-turn-lane with a channelized yield movement <br> - Install dedicated northbound left-turn-lane <br> - Modify Southbound approach to include one shared through/right-turn-lane |


|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  | 滈䯩 |
|  |  |  |
| (18) | (26) |  |

Forecast Year 2040 Without HDC With Project

|  |  |
| :---: | :---: |
|  |  |
|  |  |

Forecast Year 2040 Without HDC With Project

## 8 FORECAST YEAR 2040 WITH HDC WITHOUT PROJECT

This section analyzes the potential impacts for Forecast Year 2040 With HDC Without Project conditions. This scenario assumes complete buildout of the City of Victorville roadway network consistent with the circulation map shown in Exhibit 4. In addition, this scenario assumes complete buildout of the High Desert Corridor (HDC) through the study area as well as the US-395 Freeway to the west of the existing US-395 alignment.

### 8.1 FORECAST YEAR 2040 WITH HDC REGIONAL NETWORK IMPROVEMENTS

The High Desert Corridor is a multi-modal link between SR-14 in Los Angeles and SR-18 in San Bernardino County. The proposed 63-mile-long freeway would provide critical regional access for the entire Victor Valley and would prove integral to the proposed development of the SCLA Specific Plan area. Within the study area, the HDC would replace Air Expressway as the major east-west corridor.

In addition to the HDC, the need for a major north/south freeway facility has been identified in the form of the US-395 Freeway. Various studies have been conducted in recent years that analyze the feasibility of such a regional facility including the Victor Valley Area Transportation Study (SANBAG, 2008) and the US-395 Transportation Concept Report (Caltrans, 2017). The ultimate proposed highway system which includes a US-395 Freeway facility to the west of the current alignment as well as the HDC is shown in Appendix G.

Forecast Year 2040 With HDC conditions assumes the construction of the US-395 Freeway facility outside of the study area. In addition, this analysis assumes the following modifications to the roadway circulation system within the study area:

## Without Project:

- Construction of the High Desert Corridor as a grade-separated freeway facility
- Construction of interchange at US-395
- Construction of interchange at Phantom West
- Construction of Interchange at Phantom East
- Construction of interchange at National Trails Hwy
- Extension of Phantom East from Air Expressway to Palmdale Road (existing El Evado Road alignment) (2-lanes)
- Extension of El Mirage Road from US-395 to Adelanto Road (2-lanes)
- Extension of Adelanto Road from El Mirage Road to Calusa Road (2-lanes)
- Construction of Calusa Road from US-395 to Adelanto Road (2-lanes)
- Elimination of Air Expressway approximately $3 / 4$ mile east of Gateway Drive
- Elimination of intersection of Air Expressway and Nevada Avenue


## With Project:

- Extension of Adelanto Road from Chamberlain Way to El Mirage Road (2-lanes)
- Extension of Gateway Road from Innovation Way to El Mirage Road (2-lanes)
- Extension of Innovation Way from Gateway Drive to Phantom West (4-lanes)
- Extension of Innovation Drive from Nevada Avenue to Phantom East (2-4 lanes)
- Extension of Sabre Boulevard from George Boulevard to Phantom East (2-lanes)
- Construction of Navigation as a continuation of El Mirage Road from Adelanto Road to Gateway Drive (2-lanes)
- Construction of Momentum as a continuation of Chamberlain Way from Adelanto Road to Gateway Drive (2-lanes)
- Widening of Innovation Drive from Phantom West to Nevada Avenue (4-lanes)
- Elimination of George Boulevard from Air Expressway to Sabre Boulevard

It should be noted for this analysis, the intersections of Air Expressway at Phantom West (Intersection 12) and Phantom East (Intersection 15) have been replaced by the HDC westbound and eastbound ramps (Intersection's 31-35) and the intersections of Air Expressway at George Blvd and Nevada Avenue (Intersection 13 \& 14) have been removed consistent with the modifications discussed above.

Exhibit 21a-21d shows the Forecast Year 2040 With HDC buildout roadway network intersection lane configurations which includes the network assumptions discussed above.

While the proposed plan shows a roadway connection at Momentum as an extension of Chamberlain Way between Adelanto Road and Gateway Drive, this connection is not considered critical. While included in this analysis, the elimination of Momentum would not result in any impacts beyond what has been identified in this report.

### 8.2 FORECAST YEAR 2040 WITH HDC WITHOUT PROJECT TRAFFIC VOLUMES

Forecast Year 2040 With HDC Without Project traffic volumes are derived by applying a $2 \%$ per year ambient growth rate to existing traffic volumes at all study intersections with the exception of those located within the specific plan area (Intersections 37-46). Traffic growth within the SCLA Specific Plan area is anticipated to be attributed to development within the specific plan area only and no other growth has been applied to Intersections 37-46. For the purposes of this analysis, the ambient growth was applied to existing year 2018 volumes for 22 years until the forecast year for buildout of which is anticipated to be year 2040 With HDC. This represents a total of $44 \%$ growth in traffic volumes.

Exhibit 22a-22d shows the Forecast Year 2040 With HDC Without Project AM and PM peak hour trips at study intersections assuming the construction of the High Desert Corridor and full buildout of the City of Victorville roadway network.


Forecast Year 2040 With HDC
Intersection Lane Configuration


Forecast Year 2040 With HDC


Forecast Year 2040 With HDC

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  | Does Not Exist |  |
| Does Not Exist |  |  <br> Notes: XX / XX = AM / PM Peak Hour Volumes |


| Does Not Exist |  |  |
| :---: | :---: | :---: |
|  | $\begin{array}{r} 1462 / 1624 \\ 271 / 467 \end{array}$ |  |
|  |  | Notes: XX / XX = AM / PM Peak Hour Volumes |
|  |  |  |
|  |  |  |


|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
| Notes: XX / XX = AM / PM Peak Hour Volu |  |  |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  | Notes: <br> XX / XX = AM / PM <br> Peak Hour Volumes |

### 8.3 FORECAST YEAR 2040 WITH HDC WITHOUT PROJECT PEAK HOUR STUDY INTERSECTIONLOS

Table 10 summarizes Forecast Year 2040 With HDC Without Project AM and PM peak hour level of service for all study intersections. Detailed analysis sheets are contained in Appendix H.

Table 10, Forecast Year 2040 With HDC Without Project AM/PM Peak Hour Intersection LOS

| Study Intersection | Traffic Control | Forecast Year 2040 With HDC Without Project Conditions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM |  | PM |  |
|  |  | Delay ${ }^{1}$ | - LOS | Delay ${ }^{1}$ | - LOS |
| 1 - US-395/Chamberlain Way | Signal | 8.8 | - A | 12.2 | - B |
| 2- US-395/Bartlett Avenue | Signal | 10.9 | - B | 13.6 | - B |
| 3 - US-395/Air Expressway | Signal | 17.9 | - B | 20.3 | - C |
| 4- US-395/Rancho Road | Signal | 19.1 | - B | 23.9 | - C |
| 5 - US-395/Adelanto Road | TWSC | >50.0 | - $\mathrm{F}^{2}$ | >50.0 | - $F^{2}$ |
| 6- US-395/Palmdale Road | Signal | 48.9 | - D | 78.7 | - E |
| 7- Adelanto Road/Chamberlain Way | OWSC | 8.4 | - A | 8.4 | - A |
| 8 - Adelanto Road/Innovation Way/Bartlett Ave | AWSC | 5.0 | - A | 5.7 | - A |
| 9- Adelanto Road/Air Expressway | Signal | 16.3 | - B | 15.1 | - B |
| 10- Adelanto Road/Rancho Road | TWSC | 11.1 | - B | 11.5 | - B |
| 11 - Gateway Drive/Air Expressway | Signal | 32.6 | - C | 45.0 | - D |
| 12- Phantom West/Air Expressway | Not Studied |  |  |  |  |
| 13- Nevada Ave/Air Expressway | Not Studied |  |  |  |  |
| 14- George Blvd/Air Expressway | Not Studied |  |  |  |  |
| 15- Phantom East/Air Expressway | Not Studied |  |  |  |  |
| 16- Village Drive/Air Expressway | Signal | 12.5 | - B | 35.2 | - D |
| 17- National Trails Highway/Air Expressway | Signal | 8.1 | - A | 7.4 | - A |
| 18- l-15 SB Ramps/National Trails Highway | Signal | 17.2 | - B | 17.9 | - B |
| 19-1-15 NB Ramps/National Trails Highway | Signal | 42.1 | - D | 26.0 | - C |
| 20-1-15 SB Ramps/Palmdale Road | Signal | 14.6 | - B | 17.7 | - B |
| 21 - I-15 NB Ramps/Palmdale Road | Signal | 21.1 | - C | 43.2 | - D |
| 22- I-15 NB Direct Ramps/Mariposa Road | Signal | 13.2 | - B | 13.5 | - B |
| 23- US-395/Calusa Road | TWSC | 12.0 | - B | 14.2 | - B |
| 24- US-395/El Mirage Road | TWSC | 9.5 | - A | 9.7 | - A |
| 25-El Evado Road/Mojave Road | Signal | 15.4 | - B | 10.9 | - B |
| 26- El Evado Road/Palmdale Road | Signal | 15.4 | - B | 31.5 | - C |
| 27- US-395/HDC WB Ramps | Signal | 18.2 | - B | 29.4 | - C |
| 28- US-395/HDC EB Ramps | Signal | 11.6 | - B | 11.0 | B |
| 29- Phantom West/HDC WB Ramps | Signal | >80.0 | - $\mathrm{F}^{2}$ | 77.4 | - E |
| 30 - Phantom West/HDC EB Ramps | Signal | 32.3 | - C | 29.3 | - C |
| 31 - Phantom East/HDC WB Ramps | Signal | 19.9 | - B | 8.1 | - A |
| 32 - Phantom East/HDC EB Ramps | Signal | 36.8 | - D | 5.5 | - A |
| 33 - National Trails Highway/HDC WB Ramps | Signal | 9.8 | - A | 9.7 | - A |
| 34 - National Trails Highway/HDC EB Ramps | Signal | 12.7 | - B | 28.7 | - C |
| $35-\quad$ Phantom West/Innovation Dr | TWSC | 9.4 | - A | 8.7 | - A |
| 36 - Phantom West/Aerospace Dr | TWSC | 8.7 | - A | 9.1 | - A |
| 37- Phantom West/Mustang St | TWSC | 9.5 | - A | 9.2 | - A |
| 38- Phantom West/Sabre Blvd | TWSC | 10.0 | - A | 9.1 | - A |


| Study Intersection |  | Traffic Control | Forecast Year 2040 With HDC Without Project Conditions |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM |  |  |  | PI |  |
|  |  | Delay ${ }^{1}$ |  | LOS | Delay ${ }^{1}$ |  | LOS |
| 39 | Phantom West/George Blvd |  | TWSC | 9.3 |  | A | 8.7 | - | A |
| 40 | Nevada Ave/Phantom East |  | TWSC | 8.5 |  | A | 8.8 | - | A |
| 41 | Perimeter Road/Phantom East | TWSC | 8.7 |  | A | 8.8 | - | A |
| 42 | Gateway Drive/Innovation Way | OWSC | 8.5 |  | A | 8.6 | - | A |
| 43 | Nevada Ave/Innovation Dr/McCoy Circle | OWSC | 0.0 | - | A | 0.0 | - | A |
| 44 | George Blvd/Sabre Blvd | OWSC | 7.2 | - | A | 9.0 | - | A |
| 45 | Phantom East/Sabre Blvd | Does Not Exist Without Project |  |  |  |  |  |  |
| 46 | Phantom East/Innovation Dr | Does Not Exist Without Project |  |  |  |  |  |  |

Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM LOS = level of service; TWSC = Two-Way Stop Control; OWSC = One-Way Stop Control

Assuming the intersection approach lane configurations shown in Exhibits 21a-21d, all study intersections are forecast to operate at LOS D or better during the peak hour for Forecast Year 2040 With HDC Without Project conditions with the exception of the following locations:

| Forecast Year 2040 With HDC Without Project Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| $5-\quad$ US-395 / Adelanto Rad | LOS F | LOS F |
| $6-\quad$ US-395 / Palmdale Road | Acceptable | LOS E |
| 31 - Phantom West / HDC WB Ramps | LOS F | LOS E |

## 9 FORECAST YEAR 2040 WITH HDC WITH PROJECT

### 9.1 FORECAST YEAR 2040 WITH HDC WITH PROJECT TRAFFIC VOLUMES

Forecast Year 2040 With HDC With Project traffic volumes are derived by adding trips forecast to be generated by the SCLA Specific Plan area to Forecast Year 2040 With HDC Without Project conditions traffic volumes.

Exhibit 23a-23d shows the Forecast Year 2040 With HDC With Project AM and PM peak hour trips at study intersections assuming the construction of the High Desert Corridor and full buildout of the City of Victorville roadway network.

### 9.2 FORECAST YEAR 2040 WITH HDC WITH PROJECT PEAK HOUR STUDY INTERSECTION LOS

Table 11 summarizes Forecast Year 2040 With HDC With Project AM and PM peak hour level of service for all study intersections. Detailed analysis sheets are contained in Appendix I.

As shown in Table 11, assuming the intersection approach lane configurations shown in Exhibit 15a-15d, 26 of the 42 intersections studied in the Forecast Year 2040 With HDC With Project conditions are forecast to operate at an acceptable level of service (LOS D or better) and 16 intersections operate at a deficient level of service (LOS E or worse) during the AM peak hour. During the PM peak hour, 26 intersections operate an acceptable level of service and 16 intersections operate at a deficient level of service.

According to the City of Victorville significance criteria, 18 of the 44 locations would result in a significant impact during at least one peak-hour period as a result of the proposed project and therefore require mitigation.

### 9.3 FORECAST YEAR 2040 WITH HDC WITH PROJECT MITIGATION MEASURES

Table 12 lists the mitigation measures that have been identified to reduce the traffic impacts at the intersections that are expected to operate at deficient levels of service with the project. Table 11 also summarizes the AM and PM peak hour level of service assuming the implementation of the identified improvements.

With the implementation of identified mitigation measures, all study intersections are expected to operate at acceptable levels of service in the Forecast Year 2040 With HDC With Project condition. With the exception of the following location:

| Forecast Year 2040 With HDC With Project Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 6 - US-395 / Air Expressway | LOS F | LOS F |

Exhibit 24a-24b shows the Forecast Year 2040 With HDC With Project mitigated lane configurations.
It should be noted that TDM measures will most likely be developed that will reduce development trips made during the critical peak hours. Additionally, while the long-range analysis assumes that a large portion of the SCLA Specific Plan will develop as industrial and comprising of manufacturing (25\%) and warehouse (75\%). Programmatic limitations on the ability to achieve $25 \%$ manufacturing development could result in significant reductions in peak hour traffic generation since employee commute trips are lower for warehouse uses.

Table 11, Forecast Year 2040 With HDC With Project AM/PM Peak Hour Intersection LOS

| Study Intersection | Traffic Control | Forecast Year 2040 With HDC Without Project Conditions |  | Forecast Year 2040 With HDC With Project Conditions |  | Significant Impact? ${ }^{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { AM } \\ \text { Delay }^{1}-\text { LOS } \\ \hline \end{gathered}$ | $\begin{gathered} \text { PM } \\ \text { Delay }^{1}-\text { LOS } \end{gathered}$ | $\begin{gathered} \text { AM } \\ \text { Delay }^{1}-\text { LOS } \\ \hline \end{gathered}$ | $\begin{gathered} \text { PM } \\ \text { Delay }^{1}-\text { LOS } \end{gathered}$ |  |  |
|  |  |  |  |  |  | AM | PM |
| 1 - US-395/Chamberlain Way | Signal | 8.8-A | 12.2-B | 9.8-A | 17.1-B | No | No |
| 2 - US-395/Bartlett Avenue | Signal | 10.9 - B | 13.6 - B | 23.7-C | 41.2 - D | No | No |
| 3 - US-395/Air Expressway | Signal | 17.9 - B | 20.3 - C | >80.0 - $\mathrm{F}^{2}$ | >80.0 - $\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  | 26.0-C | 54.7 - D | No | No |
| 4 - US-395/Rancho Road | Signal | 19.1 - B | 23.9 - C | 25.9 - C | >80.0 - $\mathrm{F}^{2}$ | No | YES |
| With Improvements |  |  |  | 28.5-C | 54.7 - D | No | No |
| 5 - US-395/Adelanto Road | TWSC | >50.0 - $\mathrm{F}^{2}$ | >50.0 - $\mathrm{F}^{2}$ | >50.0 - $\mathrm{F}^{2}$ | >50.0 - $\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  | 4.9-A | 27.1-C | No | No |
| 6 - US-395/Palmdale Road | Signal | 48.9 - D | 78.7 - $\mathbf{F}^{\mathbf{2}}$ | >80.0 - $\mathrm{F}^{2}$ | $>80.0-\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  | >80.0 - $\mathrm{F}^{2}$ | $>80.0-\mathrm{F}^{2}$ | YES | YES |
| 7 - Adelanto Road/Chamberlain Way- Momentum | OWSC | 8.4 - A | 8.4 - A | 11.1 - B | 12.4 - B | No | No |
| 8 - Adelanto Road/Innovation Way/Bartlett Ave | AWSC | 5.0 - A | 5.7-A | 7.4-A | 10.1-B | No | No |
| 9 - Adelanto Road/Air Expressway | Signal | 16.3 - B | 15.1 - B | 76.5-E | 34.3 - C | YES | No |
| With Improvements |  |  |  | 54.5 - D | 27.4-C | No | No |
| 10 - Adelanto Road/Rancho Road | TWSC | 11.1 - B | 11.5 - B | 34.7 - D | >50.0 - $\mathrm{F}^{2}$ | No | YES |
| With Improvements |  |  |  | 5.3-A | 7.2-A | No | No |
| 11-Gateway Drive/Air Expressway | Signal | 32.6 - C | 45.0 - D | >80.0 - $\mathrm{F}^{2}$ | >80.0 - $\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  | 21.1-C | 20.7-C | No | No |
| 12 - Phantom West/Air Expressway |  |  | Not Stud | died |  |  |  |
| 13 - Nevada Ave/Air Expressway |  |  | Not Stud | died |  |  |  |
| 14-George Blvd/Air Expressway |  |  | Not Stud | udied |  |  |  |
| 15 - Phantom East/Air Expressway |  |  | Not Stud | died |  |  |  |
| 16 - Village Drive/Air Expressway | Signal | 12.5 - B | 35.2 - D | 12.1-B | 35.6 - D | No | No |
| 17-National Trails Highway/Air Expressway | Signal | 8.1-A | 7.4-A | 8.6-A | 8.0-A | No | No |
| 18-I-15 SB Ramps/National Trails Highway | Signal | 17.2-B | 17.9 - B | 13.4 - B | 15.6-B | No | No |
| 19-1-15 NB Ramps/National Trails Highway | Signal | 42.1 - D | 26.0-C | 33.5 - C | 43.9-D | No | No |
| 20-1-15 SB Ramps/Palmdale Road | Signal | 14.6 - B | 17.7 - B | 15.3 - B | 18.6 - B | No | No |
| 21- I-15 NB Ramps/Palmdale Road | Signal | 21.1 - C | 43.2 - D | 23.6-C | 46.6 - D | No | No |


| Study Intersection | Traffic <br> Control | Forecast Year 2040 With HDC Without Project Conditions |  | Forecast Year 2040 With HDC With Project Conditions |  | Significant Impact? ${ }^{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM | PM | AM | PM |  |  |
|  |  | Delay ${ }^{1}$ - LOS | AM | PM |
| 22-I-15 NB Direct Ramps/Mariposa Road | Signal | 13.2 - B | 13.5 - B | 12.0 - B | 10.8 - B | No | No |
| 23 - US-395/Calusa Road | TWSC | 12.0 - B | 14.2-B | 11.4 - B | 12.8 - B | No | No |
| 24 - US-395/El Mirage Road | TWSC | 9.5-A | 9.7 - A | 9.8-A | 10.6 - B | No | No |
| 25-El Evado Road/Mojave Road | Signal | 15.4-B | 10.9 - B | 27.6-C | 18.9-B | No | No |
| 26 - National Trails Highway/HDC WB Ramps- Navigation | Signal | 15.4 - B | 31.5 - C | 39.3 - D | 54.9 - D | No | No |
| 27 - US-395/HDC WB Ramps $\quad$ With Improvements | Signal | 18.2 - B | 29.4 - C | $\begin{aligned} & 30.3-C \\ & 33.4-C \end{aligned}$ | $\begin{array}{r} >80.0-\mathrm{F}^{2} \\ 44.7-\mathrm{D} \end{array}$ | $\begin{aligned} & \text { No } \\ & \text { No } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { YES } \\ & \text { No } \end{aligned}$ |
| 28 - US-395/HDC EB Ramps | Signal | 11.6 - B | 11.0 - B | 46.8-D | 39.2 - D | No | No |
| 29 - Phantom West/HDC WB Ramps | Signal | >80.0 - $\mathrm{F}^{2}$ | 77.4 - E | >80.0 - $\mathrm{F}^{2}$ | 37.2 - D | No | No |
| 30 - Phantom West/HDC EB Ramps | Signal | 32.3 - C | 29.3-C | 23.1-C | 38.4 - D | No | No |
| 31 - Phantom East/HDC WB Ramps <br> With Improvements | Signal | 19.9 - B | 8.1 - A | $\begin{array}{r} >80.0-\mathrm{F}^{2} \\ 0.9-\mathrm{A} \end{array}$ | $\begin{array}{r} 21.8-\mathrm{C} \\ 2.0-\mathrm{A} \end{array}$ | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ | No <br> No |
| 32 - Phantom East/HDC EB Ramps | Signal | 36.8 - D | 5.5-A | 31.7 - C | 32.3 - C | No | No |
| 33 - National Trails Highway/HDC WB Ramps | Signal | 9.8-A | 9.7-A | 14.4 - B | 11.0 - B | No | No |
| 34 - National Trails Highway/HDC EB Ramps | Signal | 12.7 - B | 28.7-C | 18.7 - B | 42.5-D | No | No |
| 35 - Phantom West/Innovation Dr | TWSC | 9.4-A | 8.7 - A | $\begin{array}{r} >50.0-F^{2} \\ 30.7-C \end{array}$ | $\begin{gathered} >50.0-\mathrm{F}^{2} \\ 54.3-\mathrm{D} \end{gathered}$ | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ |
| 36 - Phantom West/Aerospace DrWith Improvements | TWSC | 8.7 - A | 9.1-A | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 4.1-\mathrm{A} \end{array}$ | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 9.5-\mathrm{A} \end{array}$ | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ |
| 37 - Phantom West/Mustang St With Improvements | TWSC | 9.5-A | 9.2-A | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 14.3-\mathrm{B} \end{array}$ | $\begin{aligned} & 49.8-E \\ & 13.7-B \\ & \hline \end{aligned}$ |  | YES No |
| 38 - Phantom West/Sabre Blvd With Improvements | TWSC | 10.0 - A | 9.1 - A | $\begin{array}{r} >50.0-\mathbf{F}^{2} \\ 5.3-\mathrm{A} \\ \hline \end{array}$ | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 9.5-\mathrm{A} \end{array}$ |  | YES No |
| 39 - Phantom West/George Blvd | TWSC | 9.3-A | 8.7 - A | 19.1-C | 13.9 - B | No | No |
| 40 - Nevada Ave/Phantom East | TWSC | 8.5 - A | 8.8 - A | 17.1-C | 16.1-C | No | No |
| 41 - Perimeter Road/Phantom East With Improvements | TWSC | 8.7 - A | 8.8-A | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 29.2-\mathrm{D} \end{array}$ | $\begin{array}{r} 45.1-E \\ 14.6-B \\ \hline \end{array}$ | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ | YES <br> No |
| 42 - Gateway Drive/Innovation Way With Improvements | OWSC | 8.5 - A | 8.6 - A | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 43.6-\mathrm{D} \end{array}$ | $\begin{gathered} >50.0-F^{2} \\ 54.8-D^{2} \end{gathered}$ | $\begin{aligned} & \text { YES } \\ & \text { No } \end{aligned}$ | YES No |


| Study Intersection | Traffic Control | Forecast Year 2040 With HDC Without Project Conditions |  | Forecast Year 2040 With HDC With Project Conditions |  | Significant Impact? ${ }^{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM | PM | AM | PM |  |  |
|  |  | Delay ${ }^{1}$ - LOS | AM | PM |
| 43 - Nevada Ave/Innovation Dr/McCoy Circle | OWSC | 0.0-A | 0.0-A | >50.0 - $\mathrm{F}^{2}$ | >50.0 - $\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  | 10.6 - B | 13.6 - B | No | No |
| 44-George Blvd/Sabre Blvd | OWSC | 7.2 - A | 9.0 - A | 11.5 - B | 11.8 - B | No | No |
| 45 - Phantom East/Sabre Blvd | Does Not Exist Without Project |  |  | >50.0 - $\mathrm{F}^{2}$ | >50.0 - $\mathrm{F}^{2}$ | YES | YES |
| With Improvements |  |  |  | 13.3 - B | 44.0 - D | No | No |
| 46 - Phantom East/Innovation Dr $\quad$ With Improvements | Does Not Exist Without Project |  |  | >50.0 - $\mathrm{F}^{2}$ | >50.0 - $\mathrm{F}^{2}$ | YES | YES |
|  |  |  |  | 11.0-B | 16.1-B | No | No |

Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM
${ }^{3}$ Delay deteriorates from acceptable (LOS D or better) to unacceptable (LOS E or F) OR change in delay for an already deficient intersection by $2 \%$ or more LOS = level of service; TWSC = Two-Way Stop Control; OWSC = One-Way Stop Control

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  | Does Not Exist |  |
| Does Not Exist |  | Notes: XX / XX = AM / PM Peak Hour Volumes |



|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
| Notes: XX / XX = AM / PM Peak Hour Volu |  |  |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  | Notes <br> XX / XX = AM / PM <br> Peak Hour Volumes |

Table 12, Forecast Year 2040 With HDC With Project Recommended Mitigation

| Mitigation Measure | Intersection | Forecast Year 2040 With HDC With Project Recommended Mitigation |
| :---: | :---: | :---: |
| MM-23 | 3 - US-395 / Air Expressway | - Modify northbound right-turn lane to a free movement <br> - Install eastbound dedicated right-turn-lane |
| MM-24 | 4 - US-395 / Rancho Road | - Restripe westbound approach to include two left-turn-lanes, one through lane, and one shared through/right-turn-lane |
| MM-25 | 5 - US-395 / Adelanto Road | - Signalize Intersection |
| MM-26 | 6 - US-395 / Palmdale Road | - Install overlap phasing on all right-turn movements |
| MM-27 | 9 - Adelanto Road / Air Expressway | - Install northbound right-turn overlap phase |
| MM-28 | 10 - Adelanto Road / Rancho Road | - Signalize Intersection |
| MM-29 | 11 - Gateway Drive / Air Expressway | - Install second eastbound left-turn-lane <br> - Install second southbound right-turn-lane; Install southbound rightturn overlap phase. |
| MM-30 | 27 - US-395 / HDC WB Ramps | - Reconfigure westbound approach to include one left-turn-lane, one shared left/through-lane; Install second westbound dedicated right-turn-lane <br> - Convert third southbound through-lane to a shared through/right-turn-lane |
| MM-31 | 31 - Phantom East /HDC WB Ramps | - Modify westbound right-turn-lane to include a channelized yield right-turn movement |
| MM-32 | 35 - Phantom West / Innovation Dr | - Signalize Intersection. <br> - Install second northbound left turn lane and one northbound dedicated right-turn-lane with a right-turn overlap phase <br> - Install southbound dedicated right-turn-lane <br> - Install second eastbound through lane and convert dedicated rightturn to a free right movement <br> - Install second westbound through lane |
| MM-33 | 36 - Phantom West / Aerospace Dr | - Signalize intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane |
| MM-34 | 37 - Phantom West /Mustang St | - Install median modifications to eliminate eastbound and westbound left turns |
| MM-35 | 38 - Phantom West / Sabre Blvd | - Signalize intersection <br> - Install northbound dedicated right-turn-lane |


| Mitigation Measure | Intersection | Forecast Year 2040 With HDC With Project Recommended Mitigation |
| :---: | :---: | :---: |
| MM-36 | 41 - Perimeter Road / Phantom East | - Install southbound dedicated right-turn-lane <br> - Install westbound dedicated right-turn-lane |
| MM-37 | 42 - Gateway Drive / Innovation Way | - Signalize Intersection <br> - Construct east leg of the intersection <br> - Install two northbound through-lanes and one northbound dedicated right-turn-lane with an overlap phase <br> - Install one southbound left-turn-lane and a second southbound through-lane <br> - Install two eastbound through-lanes and one eastbound dedicated right-turn-lane <br> - Install a westbound left-turn-lane, two westbound through-lanes, and two westbound right-turn-lanes with a right-turn overlap phase |
| MM-38 | 43 Nevada Ave / Innovation Dr / McCoy Circle | - Signalize Intersection <br> - Construct east leg of the intersection <br> - Install one northbound shared through/right-turn-lane <br> - Install a southbound left-turn-lane <br> - Install one eastbound through-lane and one shared through/right-turn-lane <br> - Install a westbound left-turn-lane, a westbound through-lane, and a shared through/right-turn-lane |
| MM-39 | 45 - Phantom East / Sabre Boulevard | - Signalize Intersection <br> - Install west leg of the intersection to include one shared left/through/right-turn-lane <br> - Install east leg of the intersection to include one shared left/through/right-turn-lane |
| MM-40 | 46 - Phantom East / Innovation Way | - Signalize Intersection <br> - Install second northbound left-turn-lane <br> - Install west leg of the intersection to include one eastbound shared left/through-lane and one eastbound dedicated right-turn-lane with a channelized yield movement <br> - Install westbound left-turn-lane |



Forecast Year 2040 With HDC With Project

## 10 PHASING ANALYSIS

The development of the SCLA Specific Plan Area is proposed to be constructed over approximately 25year period and is projected to be built out by Year 2040. The following project development phases have been analyzed as part of this traffic study:

- Phase 1 Completion (Year 2023)
- Phase 2 Completion (Year 2028)
- Phase 3 Completion (Year 2033)
- Phase 4 Completion (Year 2038)

The analysis of Phase 5 (Project Buildout) is covered in the Forecast Year 2040 buildout analyses without and with the High Desert Corridor.

Study intersection locations that were forecast to operation at deficient levels of service for the Forecast Year 2040 With Project condition were further analyzed for each development phase in order to determine when specific improvements would be necessary.

Table 13 summarizes the Project Development Phasing AM and PM peak hour level of service for the study intersections that are forecast to operate at deficient levels of service for the Forecast Year 2040 Without HDC With Project condition.

Table 14 lists the mitigations measures that have been identified for each development phase shown to operate deficiently for each phase. The identified measures are forecast to reduce the incremental traffic impacts associated with the project for each phase. Table 13 also summarizes the AM and PM peak hour level of service assuming the implementation of the identified improvements.

For reach subsequent development phase, the operations analysis assumes the implantation of the previous phases' improvements.

### 10.1 DEVELOPMENT PHASE 1

Development Phase 1 (Year 2023) analysis assumes the existing onsite and offsite roadway network with the exception of the widening of US-395.

The widening of US-395 from 2-lanes to 4-lanes is estimated to be completed by 2022. As part of the widening, the following improvements are assumed:

- Widening of US-395 from Air Expressway to Adelanto Road
- Improvements to the intersection of US-395 and Air Expressway (Int. 3)
- Eastbound approach to include one left-turn-lane, one through-lane, and one shared through/right-turn-lane
- Westbound approach to include one left-turn-lane, one through-lane, and one shared through/right-turn-lane
- Removal of northbound free movement from US-395 onto Adelanto Road (Int. 5)
- Holly Road (Int. 5) to be restricted to right-turns only from Holly Road onto US-395

The following improvements are necessary to serve the on-site developments in Phase 1:

- Extension of El Mirage Road from US-395 to Adelanto Road
- Extension of Adelanto Road from Chamberlain Way to El Mirage Road
- Extension of Gateway Road from Innovation Way to El Mirage Road
- Construction of Navigation as a continuation of El Mirage Road from Adelanto Road to Gateway Drive
- Construction of Momentum as a continuation of Chamberlain Way from Adelanto Road to Gateway Drive

As shown in Table 13, the locations below require improvements as described in Table 14. Detailed analysis sheets for Phase 1 are contained in Appendix J.

| Phase 1 Conditions |  |  |  |
| :---: | :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour | Significant <br> Impact? |
| $3-\quad$ US-395/Air Expressway | Acceptable | LOS E | No |
| $6-\quad$ US-395/Palmdale Road | LOS E | LOS F | No |
| 17- | National Trails Hwy/Air Expressway | LOS F | Acceptable |

### 10.2 DEVELOPMENT PHASE 2

Phase 2 (Year 2028) assumes the incremental mitigation improvements described in Phase 1. In addition, the extension of Innovation Way from Gateway Drive to Phantom West is necessary to serve the on-site developments in Phase 2.

As shown in Table 13, the locations below require improvements as described in Table 14. Detailed analysis sheets for Phase 2 are contained in Appendix K.

| Phase 2 Conditions |  |  |  |
| :---: | :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour | Significant <br> Impact? |
| $3-\quad$ US-395/Air Expressway | LOS F | LOS F | No |
| $6-\quad$ US-395/Palmdale Road ${ }^{(1)}$ | LOS F | LOS F | YES |
| $9-\quad$ Adelanto Road/Air Expressway | LOS E | Acceptable | No |
| $11-\quad$ Gateway Drive/Air Expressway | LOS F | LOS F | No |
| $17-\quad$ National Trails Hwy/Air Expressway | LOS F | Acceptable | No |
| $18-\quad$ I-15 SB Ramps/National Trails Hwy | LOS F | Acceptable | No |
| $19-\quad$ I-15 NB Ramps/National Trails Hwy | LOS F | Acceptable | No |
| $35-\quad$ Phantom West/Innovation Drive | LOS F | LOS F | No |
| $42-\quad$ Gateway Drive/Innovation Drive | LOS F | LOS F | No |

${ }^{(1)}$ Mitigation Measures Fully Implemented this Phase
With the implementation of the identified mitigation measures, the intersection of US-395 and Palmdale Road (Int 6) would continue to operate at a deficient level of service and would result in an unavoidable significant impact. Due to right of way constraints, it is not feasible to improve this location beyond what is identified in this analysis. All other unmitigable impacts would occur in Phase 4 or Phase 5 (buildout).

### 10.3 DEVELOPMENT PHASE 3

Phase 3 (Year 2033) assumes the incremental mitigation improvements described in Phase 1 \& 2. In addition, the construction of the east leg of the intersection of Nevada Avenue and Innovation Drive/McCoy Circle is necessary to serve the on-site development in Phase 3.

As US-395 approaches capacity, it is estimated that increases in regional trips to and from the south would naturally shift to National Trails Highway as an alternative route. Therefore, Phase 3 distribution assumes approximately $3 \%$ of regional project traffic that is forecast to travel to and from the south shifts from US395 to National Trails Highway

As shown in Table 13, the locations below require improvements as described in Table 14. Detailed analysis sheets for Phase 3 are contained in Appendix L.

| Phase 3 Conditions |  |  |  |
| :---: | :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour | Significant <br> Impact? |
| $3-\quad$ US-395/Air Expressway ${ }^{(1)}$ | Acceptable | LOS F | No |
| $5-\quad$ US-395/Adelanto Road | LOS E | LOS F | No |
| $6-\quad$ US-395/Palmdale Road | Deficient | Deficient | YES |
| $9-\quad$ Adelanto Road/Air Expressway | LOS F | LOS E | No |
| $11-\quad$ Gateway Drive/Air Expressway ${ }^{(1)}$ | Acceptable | LOS F | No |
| $12-\quad$ Phantom West/Air Expressway | LOS F | LOS E | No |
| $13-\quad$ Nevada Avenue/Air Expressway | LOS F | LOS F | No |
| $15-\quad$ Phantom East/Air Expressway | Acceptable | LOS E | No |
| $17-\quad$ National Trails Hwy/Air Expressway | LOS F | Acceptable | No |
| $18-\quad$ I-15 SB Ramps/National Trails Hwy | LOS F | LOS F | No |
| $19-\quad$ I-15 NB Ramps/National Trails Hwy ${ }^{(1)}$ | LOS F | Acceptable | No |
| $43-\quad$ Nevada Avenue/Innovation Drive | LOS E | LOS F | No |

${ }^{(1)}$ Mitigation Measures Fully Implemented this Phase

During Phase 3, the intersections of US-395 and Air Expressway (Int 3), US-395 and Adelanto Road (Int 5) as well as Gateway Drive and Air Expressway (Int 11) are fully improved to the ultimate buildout as identified in this analysis.

### 10.4 DEVELOPMENT PHASE 4

Phase 4 (Year 2038) assumes the incremental mitigation improvements described in Phase 1, 2, \& 3. In addition, the following on-site improvements are required to serve on-site development in Phase 4:

- Extension of Sabre Boulevard from Nevada Avenue to Phantom East
- Extension of Innovation Drive from Nevada Avenue to Phantom East

The following off-site improvements are assumed consistent with the City of Victorville roadway network Circulation Element:

- Extension of Phantom East from Air Expressway to Palmdale Road (existing El Evado Road alignment)
- Extension of Phantom West south of Air Expressway
- Extension of Adelanto Road from El Mirage Road to Calusa Road (2-lanes)
- Construction of Calusa Road from US-395 to Adelanto Road (2-lanes)

As shown in Table 13, the locations below require improvements as described in Table 14. Detailed analysis sheets for Phase 4 are contained in Appendix M.

| Phase 4 Conditions |  |  |  |
| :---: | :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour | Significant <br> Impact? |
| $3-\quad$ US-395/Air Expressway | Acceptable | Deficient | YES |
| $4-\quad$ US-395/Ranch Road ${ }^{(1)}$ | LOS F | LOS F | YES |
| $5-\quad$ US-395/Adelanto Road | LOS F | LOS F | No |
| $6-\quad$ US-395/Palmdale Road | Deficient | Deficient | YES |
| $11-\quad$ Gateway Drive/Air Expressway | Acceptable | Deficient | YES |
| $13-\quad$ Nevada Avenue / Air Expressway ${ }^{(1)}$ | LOS | LOS E | No |
| $15-\quad$ Phantom East/Air Expressway ${ }^{(1)}$ | LOS F | LOS | YES |
| $26-\quad$ El Evado Road/Palmdale Road | LOS F | LOS F | YES |
| $36-\quad$ Phantom West/Aerospace ${ }^{(1)}$ | LOS E | Acceptable | No |
| $42-\quad$ Gateway Drive/Innovation Way ${ }^{(1)}$ | LOS E | Acceptable | No |
| $43-\quad$ Nevada Avenue/Innovation Drive | LOS E | LOS E | No |

${ }^{(1)}$ Mitigation Measures Fully Implemented this Phase
With the implementation of the identified mitigation measures, the intersections of US-395 and Rancho Road (Int 4), Phantom East and Air Expressway (Int 15), as well as El Evado Road and Palmdale Road (Int 26) would continue to operate at deficient levels of service and would result in unavoidable significant impacts at these intersections. In addition, Phase 4 traffic increases to the locations that were fully improved in Phase 3 would also cause these locations to operate deficiently. All other unmitigatable impacts would occur in Phase 5 (buildout).

### 10.5 DEVELOPMENT PHASE 5

The analysis of Phase 5 (Project Buildout) is covered in the Forecast Year 2040 buildout analyses without and with the High Desert Corridor. Refer to Chapter 7 and Chapter 9 of this report.

Table 13, Project Development Phasing AM/PM Peak Hour Intersection LOS


|  |  | Phas | se 1 C | ndition |  |  |  | Phas | se 2 | ndition |  |  |  | has | 3 C | ndition |  |  |  | Phase 4 | ditions |  |  | Forecast |  | $\begin{aligned} & \text { r } 2040 \\ & \text { Condit } \end{aligned}$ | $\begin{aligned} & \text { t HDC W } \\ & \text { ase 5) } \end{aligned}$ |  | Project |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM |  |  | PM |  |  | AM |  |  | PM |  |  | AM |  |  | PM |  |  | M |  | PM |  |  | AM |  |  | PM |  |
|  | Delay ${ }^{1}$ | - | LOS | Delay ${ }^{1}$ | - | LOS | Delay ${ }^{1}$ |  | LOS | Delay ${ }^{1}$ | - | LOS | Delay ${ }^{1}$ |  | LOS | Delay ${ }^{1}$ | - | Los | Delay ${ }^{1}$ | LOS | Delay ${ }^{1}$ |  | LOS | Delay ${ }^{1}$ |  | LOS | Delay ${ }^{1}$ |  | LOS |
| 36- Phantom West/Aerospace Dr <br> With Improvements | 10.2 | - |  | 14.8 | - | B | 11.0 | - |  | 16.0 | - | C | 11.0 | - B |  | 18.3 | - |  | $\begin{array}{r} 36.4 \\ 3.5 \end{array}$ | $\begin{aligned} & \hline- E \\ &-\quad A \end{aligned}$ | $\begin{array}{r} 32.8 \\ 4.8 \end{array}$ | - | D | $\begin{array}{r} \hline 50.0 \\ 4.2 \end{array}$ |  | $\overline{F^{2}}$ | $\begin{array}{r} >50.0 \\ 7.8 \end{array}$ |  | $\begin{aligned} & \hline \mathrm{F}^{2} \\ & \mathrm{~A} \end{aligned}$ |
| 38 - Phantom West/Sabre Blvd With Improvements |  | - |  |  | - | B |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  | D | $\begin{aligned} & 32.9 \\ & 21.0 \end{aligned}$ |  | D | $\begin{array}{r} >50.0 \\ 18.4 \end{array}$ |  | $\begin{aligned} & \mathrm{F}^{2} \\ & \mathrm{~B} \end{aligned}$ |
| 40- Nevada Ave/Phantom East <br> With Improvements |  | - |  | 12.4 | - | B |  | - |  |  | - |  |  | - |  |  | - |  |  |  |  | - | B | $\begin{aligned} & 19.2 \\ & 15.7 \end{aligned}$ | - | $\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$ | $\begin{array}{r} >50.0 \\ 14.4 \end{array}$ |  | $\begin{aligned} & \mathrm{F}^{2} \\ & \mathrm{~B} \end{aligned}$ |
| 42- Gateway Drive/Innovation Way With Improvements |  | - |  | 8.8 | - | A | $\begin{array}{r} \hline>50.0 \\ 10.8 \end{array}$ |  |  | $\begin{array}{r} \hline>50.0 \\ 17.2 \end{array}$ |  |  | 53.0 |  |  |  |  |  | $\begin{aligned} & 62.3 \\ & 37.1 \end{aligned}$ | $\begin{array}{r} \hline \quad E \\ -\quad D \\ \hline \end{array}$ | $\begin{aligned} & 51.9 \\ & 38.7 \end{aligned}$ |  | D | $\begin{array}{r} \hline 50.0 \\ 42.1 \end{array}$ |  | $\begin{aligned} & \mathrm{F}^{2} \\ & \mathrm{D} \end{aligned}$ | $\begin{array}{r} \hline>50.0 \\ 38.5 \end{array}$ |  | $\begin{aligned} & \hline \mathrm{F}^{2} \\ & \mathrm{D} \end{aligned}$ |
| 43-Nevada Ave/Innovation Dr/McCoy Circle With Improvements | 9.0 | - |  | 11.8 | - | B |  | - |  | 11.2 | - | B | $\begin{array}{r} 43.9 \\ 6.0 \end{array}$ | - |  | $\begin{array}{r} \hline>50.0 \\ 7.9 \end{array}$ |  |  | $\begin{aligned} & 59.3 \\ & 38.6 \end{aligned}$ | $\begin{array}{ll} \hline & E \\ - & D \end{array}$ | $\begin{aligned} & 75.0 \\ & 21.3 \end{aligned}$ | - | E | $\begin{array}{r} >50.0 \\ 43.6 \end{array}$ | - | $\begin{aligned} & \mathrm{F}^{2} \\ & \mathrm{D} \end{aligned}$ | $\begin{array}{r} >50.0 \\ 40.0 \end{array}$ |  | $\begin{aligned} & \hline \mathrm{F}^{2} \\ & \mathrm{D} \end{aligned}$ |
| 45- Phantom East/Sabre Blvd <br> With Improvements | Not Studied in these Phases |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} >50.0 \\ 30.8 \end{array}$ |  | $\begin{aligned} & \mathrm{F}^{2} \\ & \mathrm{D} \end{aligned}$ | $\begin{array}{r} >50.0 \\ 35.0 \end{array}$ |  | $\begin{aligned} & \mathrm{F}^{2} \\ & \mathrm{D} \end{aligned}$ |
| 46- Phantom East/Innovation Dr With Improvements | Not Studied in these Phases |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 17.9 - C |  | 16.2 - C |  |  | $\begin{aligned} & 21.4 \\ & 11.7 \end{aligned}$ | - |  | $\begin{array}{r} \hline>50.0 \\ 11.0 \end{array}$ |  | $\begin{aligned} & \mathrm{F}^{2} \\ & \mathrm{~B} \end{aligned}$ |

Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM
${ }^{3}$ Delay deteriorates from acceptable (LOS D or better) to unacceptable (LOS E or F) OR change in delay for an already deficient intersection by $2 \%$ or more

| Mitigation Measure | Intersection | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Forecast Year 2040 Without HDC With Project Conditions (Phase 5) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MM-1 | 3 - US-395 / Air Expressway | - Install northbound right-turn overlap phase | - Install northbound channelized yield right-turn-lane <br> - Install eastbound dedicated right-turnlane <br> - Install second westbound left-turn-lane | - Install a third northbound through-lane and convert dedicated right-turn to a free right movement | Identified Improvements F | ully Implemented in Phase 3 |
| MM-2 | 4 - US-395 / Rancho Road | (1) | (1) | (1) | - Install third northbound through-lane; Install second northbound left-tun-lane <br> - Install third southbound through-lane <br> - Install second westbound left-turn-lane | Identified Improvements Fully Implemented in Phase 4 |
| MM-3 | 5 - US-395 / Adelanto Road | (1) | (1) | - Signalize Intersection <br> - Install dedicated northbound left-turn- <br> lane <br> - Install dedicated southbound left-turn- <br> lane | - Install third northbound through-lane <br> - Install third southbound left-turn-lane | - Restripe westbound approach to include two left-turn-lanes, one through lane, and one shared through/right-turn-lane |
| MM-4 | 6 - US-395 / Palmdale Road | - Install second northbound left-turn-lane <br> - Install eastbound right-turn overlap phase | - Install third eastbound through-lane <br> - Install third westbound through-lane <br> - Install overlap phasing on all right-turn movements |  | Fully Improved in Phase 2 |  |
| MM-5 | 9 - Adelanto Road / Air Expressway | (1) | - Install northbound right-turn overlap phase | - Install third combination eastbound shared through/right-turn-lane <br> - Install third combination westbound shared through/right-turn-lane | (1) | - Install second northbound right-turn-lane with a right-turn overlap phase <br> - Install dedicated westbound right-turnlane with an overlap phase |
| MM-6 | 10 - Adelanto Road / Rancho Road | (1) | (1) | ${ }^{(1)}$ | (1) | - Signalize Intersection |
| MM-7 | 11-Gateway Drive / Air Expressway | (1) | - Install second southbound left-turn-lap; Install southbound right-turn overlap phase <br> - Install second eastbound left-turn-lane | - Install third eastbound through-lane - Install third westbound through-lane; Install second westbound right-turn-lane with an overlap phase | Identified Improvements F | ally Implemented in Phase 3 |
| MM-8 | 12 - Phantom West / Air Expressway | (1) | (1) | - Install third eastbound through-lane; Install second eastbound left-turn-lane <br> - Install third westbound left-turn-lane | (1) | - Install southbound right-turn overlap phase |
| MM-9 | 13 - Nevada Ave / Air Expressway | (1) | (1) | - Install third eastbound through-lane <br> - Install third westbound through-lane; <br> Install westbound dedicated right-turn-lane | - Install second southbound left-turn-lane; Install second southbound right-turn-lane <br> - Install second eastbound left-turn-lane | Identified Improvements Fully Implemented in Phase 4 |
| MM-10 | 15 - Phantom East / Air Expressway | (1) | (1) | - Install third eastbound through-lane <br> - Install third westbound through-lane | - Install combination northbound shared through/right-turn-lane <br> - Install second southbound through-lane <br> - Convert westbound dedicated right-turn lane to a free movement | Identified Improvements Fully Implemented in Phase 4 |


| Mitigation Measure | Intersection | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Forecast Year 2040 Without HDC With Project Conditions (Phase 5) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MM-11 | 17- $\begin{aligned} & \text { National Trails Highway / Air } \\ & \text { Expressway }\end{aligned}$ | - Install second northbound left-turn-lane | - Install second southbound through-lane | - Install third northbound left-turn-lane | (1) | - Reconfigure intersection to make Air Expressway the east/west through movement and the north leg of National Trails Highway a "T" <br> - Install two southbound left-turn-lanes and a southbound right-turn lane <br> - Install two eastbound left-turn-lanes and two eastbound through-lanes Install three westbound through-lanes and one westbound right-turn-lane |
| MM-12 | 18- I-15 Southbound Ramps / National | (1) | - Install second northbound through-lane | - Install second eastbound left-turn-lane | (1) | - Convert southbound dedicated right-turnlane to a free movement <br> - Install eastbound right-turn overlap phase |
| MM-13 | 19- $\begin{aligned} & \text { I-15 Northbound Ramps / National } \\ & \text { Trails Hwy }\end{aligned}$ | (1) | - Install second northbound through-lane | - Install second southbound right-turn-lane | Identified Improvements | ly Implemented in Phase 3 |
| MM-14 | 26 - Phantom East / Palmdale Road | (1) | (1) | (1) | - Install second southbound left-turn lane <br> - Install eastbound right-turn overlap phase | - Install westbound right-turn overlap |
| MM-15 | 35 - Phantom West / Innovation Dr | (1) | - Signalize Intersection | Iden | tified Improvements Fully Implemented in Ph | hase 2 |
| MM-16 | 36 - Phantom West / Aerospace Dr | (1) | (1) | (1) | - Signalize intersection <br> - Install northbound dedicated right-turnlane <br> - Install southbound dedicated right-turnlane | Identified Improvements Fully Implemented in Phase 4 |
| MM-17 | 38 - Phantom West / Sabre Blvd | (1) | (1) | (1) | (1) | - Install All-Way-Stop <br> - Modify northbound approach to include a one shared left/through-lane and one shared through/right-turn-lane <br> - Modify southbound approach to include a one shared left/through-lane and one shared through/right-turn-lane |
| MM-18 | 40 - Nevada Ave/Phantom East | (1) | (1) | (1) | ${ }^{(1)}$ | - Install All-Way Stop |
| MM-19 | 42 - Gateway Drive / Innovation Way | (1) | - Signalize Intersection <br> - Construct east leg of intersection <br> - Install one northbound dedicated left-turn-lane, one northbound through-lane, and a second shared through/right-turnlane <br> - Install one northbound dedicated left-turn-lane, one northbound through-lane, and a second shared through/right-turnlane <br> - Install westbound dedicated left-turn-lane and a shared through/right-turn-lane <br> - Install eastbound dedicated left-turn-lane and a shared through/right-turn-lane | (1) | - Install second combination eastbound shared through/right-turn-lane <br> - Install second combination westbound shared through/right-turn-lane | Identified Improvements Fully Implemented in Phase 4 |


| Mitigation Measure | Intersection | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Forecast Year 2040 Without HDC With Project Conditions (Phase 5) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MM-20 | 43 Nevada Ave / Innovation Dr / McCoy Circle | (1) | (1) | - Signalize Intersection <br> - Construct east leg of intersection <br> - Install dedicated northbound left-turn- <br> lane <br> - Install dedicated southbound left-turnlane <br> - Install one westbound shared left/through/right-turn-lane | - Install dedicated eastbound left-turn-lane; Convert eastbound shared left/through-lane to a dedicated through-lane <br> - Install two westbound left-turn-lanes | - Install one northbound through lane and one shared through/right-turn-lane - Install a southbound left-turn-lane, one southbound through lane, and one southbound dedicated right-turn-lane |
| MM-21 | 45 - Phantom East / Sabre Boulevard | ${ }^{(1)}$ | ${ }^{(1)}$ | (1) | (1) | - Install All-Way-Stop <br> - Install west leg of the intersection to include one shared left/through/right-turnlane <br> - Install east leg of the intersection to include one shared left/through/right-turnlane |
| MM-22 | 46 - Phantom East / Innovation Way | (1) | (1) | (1) | (1) | - Signalize Intersection <br> - Install west leg of the intersection to include one eastbound shared left/throughlane and one eastbound dedicated right-turn-lane with a channelized yield movement <br> - Install dedicated northbound left-turnlane <br> - Modify Southbound approach to include one shared through/right-turn-lane |

${ }^{(1)}$ No Improvements are necessary for this phase

## 11 TRAFFIC SIGNAL WARRANT ANALYSIS

This section provides an overview of the California Manual on Uniform Traffic Control Devices (CA MUTCD) signal warrant analysis methodology. A traffic signal warrant analysis provides a procedure to determine whether installation of a traffic control signal is justified at a particular location. As part of this reports, signal warrants have been evaluated for Forecast Year 2040 With Project conditions without and with the HDC.

### 11.1 TRAFFIC SIGNAL WARRANT METHODOLOGY

### 11.1.1 Warrant 3: Peak-Hour Vehicular Volume

Warrant 3 is intended for use at a location where traffic conditions are such that for a minimum of one hour of an average day, the minor street traffic suffers undue delay when entering or crossing the major street. This signal warrant shall be applied when high occupancy vehicle complexes attract or discharge large numbers of vehicles over a short period of time. (i.e. offices, manufacturing plants, industrial complexes, etc.)

In accordance with CA MUTCD guidelines, the need for a traffic control signal shall be considered if an engineering study finds that the criteria in either of the following two categories are met:
A. If all three of the following conditions exist for the same one hour (any four consecutive 15-minute periods) of an average day
a. The total stop delay experienced by the traffic on one minor street approach (one direction only) controlled by a STOP sign equals or exceeds: 4 vehicle hours for a one-lane approach; or 5 vehicle-hours for a two-lane approach; and
b. The volume on the same minor street approach equals or exceeds 100 vehicles per hour for one moving lane of traffic or 150 vehicles per hour for two moving lanes; and
c. The total entering volume serviced during the hour equals or exceeds 650 vehicles per hour for intersections with three approaches or 800 vehicles per hour for intersections with four or more approaches.
B. The plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher volume minor street approach (one direction only) for one hour (any four consecutive 15-minute periods) of an average day falls above the applicable curve in Figure 4C-3 (see Appendix $\mathbf{N}$ ) for the existing combination of approach lanes.

If the posted or statutory speed limit or the $85^{\text {th }}$ percentile speed on the major street exceeds 40 MPH , or if the intersection lies within the built-up area of an isolated community having a population of less than 10,000 , Figure $4 \mathrm{C}-4$ may be used in place of $4 \mathrm{C}-3$.

### 11.1.2 Warrant 6: Coordinated Signal System

Warrant 6 simply states that a traffic signal may be warranted in order to provide progressive movement in a coordinated signal system and allow for proper platooning of vehicles. The Phantom West/East corridor is expected to be a coordinated traffic signal system due to the close proximity of intersections and the heavy through movements on the major street and therefore these intersections would meet warrants for signalization under Forecast Year 2040 With Project conditions without and with the HDC.

### 11.2 TRAFFIC SIGNAL WARRANT ANALYSIS

### 11.2.1 Forecast Year 2040 Without HDC With Project

Traffic signal warrants were evaluated for the 9 study unsignalized intersections that are shown to operate at deficient levels of service for Forecast Year 2040 Without HDC With Project Conditions.

Table 13 shows the signal warrant analysis results for Forecast Year 2040 Without HDC With Project conditions. Detailed signal warrant analysis sheets are contained in Appendix $\mathbf{N}$.

Table 15, Forecast Year 2040 Without HDC With Project Traffic Signal Warrant
SUMMARY

| Study Intersection | Warrant 3: Peak Hour Traffic Signal Warrant Met? |  | Warrant 6: Coordinated Signal System Warrant Met? |
| :---: | :---: | :---: | :---: |
|  | AM | PM |  |
| 5 - US-395/Adelanto Road | Yes | Yes | - |
| 10 - Adelanto Road/Rancho Road | Yes | Yes | - |
| 35 - Phantom West/Innovation Dr | Yes | Yes | Yes |
| 36 - Phantom West/Aerospace Dr | Yes | Yes | Yes |
| 38 - Phantom West/Sabre Blvd | Yes | Yes | Yes |
| 39 - Phantom West/George Blvd | NO | NO | Yes |
| 42-Gateway Drive/Innovation Way | Yes | Yes | - |
| 43 - Nevada Ave/Innovation Dr/McCoy Circle | Yes | Yes | - |
| 46 - Phantom East/Innovation Dr | Yes | Yes |  |

### 11.2.2 Forecast Year 2040 With HDC With Project

Traffic signal warrants were evaluated for the 10 study unsignalized intersections that are shown to operate at deficient levels of service for Forecast Year 2040 With HDC With Project Conditions.

Table 13 shows the signal warrant analysis results for Forecast Year 2040 With HDC With Project conditions. Detailed signal warrant analysis sheets are contained in Appendix $\mathbf{N}$.

Table 16, Forecast Year 2040 With HDC With Project Traffic Signal Warrant Summary

| Study Intersection | Warrant 3: Peak Hour Traffic Signal Warrant Met? |  | Warrant 6: Coordinated Signal System Warrant Met? |
| :---: | :---: | :---: | :---: |
|  | AM | PM |  |
| 5 - US-395/Adelanto Road | Yes | Yes | - |
| 10 - Adelanto Road/Rancho Road | Yes | Yes | - |
| 35 - Phantom West/Innovation Dr | Yes | Yes | Yes |
| 36 - Phantom West/Aerospace Dr | Yes | Yes | Yes |
| 38 - Phantom West/Sabre Blvd | Yes | Yes | Yes |
| 39 - Phantom West/George Blvd | NO | Yes | Yes |
| 42 - Gateway Drive/Innovation Way | Yes | Yes | - |
| 43 - Nevada Ave/Innovation Dr/McCoy Circle | Yes | Yes | - |
| 45 - Phantom East/Sabre Blvd | Yes | Yes | - |
| 46 - Phantom East/Innovation Dr | Yes | Yes | - |

As shown, all of the unsignalized study intersections meet Signal Warrant 3 as described above with the exception of the intersections of Phantom West at George Blvd. (Int. 39). Although these intersections do not meet Warrant 3 for peak hour volumes, the signalization of this location would be warranted according to Warrant 6 of the CA MUTCD.

## 12 FINDINGS AND RECOMMENDATIONS

This study analyzes the forecast traffic conditions associated with the proposed development of the Southern California Logistics Airport (SCLA) Specific Plan area in the City of Victorville. The proposed project encompasses 1,264 acres and is estimated to develop approximately 24 million square feet of building area by the year 2038.

The proposed project is forecast to generate approximately 98,752 net new Passenger Car Equivalent (PCE) daily trips which includes approximately 12,736 net new AM peak hour PCE trips and approximately 13,354 net new PM peak hour PCE trips.

## Level of Service Analysis Results

The results of the Existing analysis show that all intersections are forecast to operate at acceptable levels of service (LOS D or better) with the exception of the following locations:

| Existing Conditions |  |  |  |
| :---: | :--- | :---: | :---: |
| Intersection |  |  |  |
| AM Peak Hour | PM Peak Hour |  |  |
| $5-\quad$ US-395/Adelanto Road | LOS F | LOS F |  |
| $13-\quad$ Nevada Ave/Air Expressway | LOS F | Acceptable |  |
| $15-\quad$ Phantom East/Air Expressway | LOS E | Acceptable |  |
| $20-$ | I-15 SB Ramps/Palmdale Road | Acceptable | LOS E |
| $21-$ | I-15 NB Ramps/Palmdale Road | Acceptable | LOS F |

The results of the intersection analysis under Existing With Project Buildout analysis show 11 of the 34 intersections studied are forecast to operate at an acceptable level of service (LOS D or better) and 23 intersections operate at a deficient level of service (LOS E or worse) during the AM peak hour. During the PM peak hour, 5 intersections operate an acceptable level of service and 29 intersections operate at a deficient level of service. Of these locations that are operating deficiently, 27 of the 34 locations are forecast to result in a significant impact according to the City of Victorville significance criteria.

The mitigation measures shown in Table ES-1 have been identified to achieve an acceptable level of service where possible and fully mitigate project forecast significant impacts at the study intersections for Existing With Project Buildout conditions. With the implementation of the identified mitigation measures however, the following 12 locations would continue to operate at a deficient level of service with the project and the project would result in unavoidable significant impacts:

| Existing With Project Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 3 - US-395 / Air Expressway | LOS F | LOS F |
| 4 - US-395 / Rancho Road | LOS F | LOS F |
| 5 - US-395 / Adelanto Road | Acceptable | LOS F |
| 6 - US-395 / Palmdale Road | LOS F | LOS F |


| Existing With Project Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 9 - | Adelanto Road / Air Expressway | LOS E |
| 11 - | Gateway Drive / Air Expressway | Acceptable |
| 12 - | Phantom West / Air Expressway | LOS F |
| $13-\quad$ Nevada Avenue / Air Expressway | Acceptable |  |
| 15 - | Phantom East / Air Expressway | Acceptable |
| 18 - I-15 SB Ramps / National Trails Hwy | LOS F | Acceptable |
| $19-\quad$ I-15 NB Ramps / National Trails Hwy | LOS F | Acceptable |
| 41 - Perimeter Road / Phantom East | Acceptable | LOS F |

The results of the intersection analysis under Forecast Year 2040 Without HDC Without Project conditions show that all study intersections are forecast to operate at acceptable levels of service (LOS D or better) with the exception of the following intersections:

| Forecast Year 2040 Without HDC Without Project Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 5 - US-395 / Adelanto Road | LOS F | LOS F |
| 6 - | US-395 / Palmdale Road | LOS E |
| 15 - Phantom East / Air Expressway | LOS F | LOS F |
| 17- National Trails Hwy / Air Expressway | LOS F | Acceptable |
| 18- I-15 SB Ramps / National Trails Hwy | Acceptable | LOS E |

The results of the intersection analysis under Forecast Year 2040 Without HDC With Project analysis show that 18 of the 37 intersections studied are forecast to operate at an acceptable level of service (LOS D or better) and 19 intersections operate at a deficient level of service (LOS E or worse) during the AM peak hour. During the PM peak hour, 15 intersections operate at an acceptable level of service and 22 intersections operate at a deficient level of service. Of these locations that are operating deficiently, 22 of the 37 locations are forecast to result in a significant impact according to the City of Victorville significance criteria.

The mitigation measures shown in Table ES-2 have been identified to achieve an acceptable level of service where possible and fully mitigate project forecast significant impacts at the study intersections for Forecast Year 2040 Without HDC With Project Buildout conditions. With the implementation of the identified mitigation measures however, the following 9 locations would continue to operate at a deficient level of service with the project and the project would result in unavoidable significant impacts:

| Forecast Year 2040 Without HDC With Project With Improvements <br> Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 3- US-395 / Air Expressway | Acceptable | LOS F |
| $4-\quad$ US-395 / Rancho Road | LOS F | LOS F |
| $5-\quad$ US-395 / Adelanto Road | Acceptable | LOS E |
| $6-\quad$ US-395 / Palmdale Road | LOS F | LOS F |
| 11- | Gateway Drive / Air Expressway | Acceptable |
| $12-\quad$ Phantom West / Air Expressway | LOS E | LOS E |
| $13-\quad$ Nevada Avenue / Air Expressway | LOS E | Acceptable |


| Forecast Year 2040 Without HDC With Project With Improvements <br> Conditions |  |  |  |
| :---: | :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |  |
| $15-\quad$ Phantom East / Air Expressway | LOS F | LOS E |  |
| $26-\quad$ Phantom East / Palmdale Road | Acceptable | LOS F |  |

A future Caltrans freeway facility, the "High Desert Corridor" (HDC), is proposed to be constructed within the project study area. Additionally, the need for a major north/south freeway facility has been identified in the form of the US-395 Freeway. These facilities would provide critical regional access for the entire Victor Valley and is integral to the proposed development of the SCLA Specific Plan area. This study takes the proposed HDC and US-395 freeways into consideration as likely future circulation system enhancements and assumes they are fully constructed by the Forecast Year 2040.

The results of the intersection analysis under Forecast Year 2040 With HDC Without Project conditions show that all study intersections are forecast to operate at acceptable levels of service (LOS D or better) with the exception of the following intersections:

| Forecast Year 2040 With HDC Without Project Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 5 - US-395 / Adelanto Rad | LOS F | LOS F |
| 6 - US-395 / Palmdale Road | Acceptable | LOS E |
| 31 - | Phantom West / HDC WB Ramps | LOS F |

The results of the intersection analysis under Forecast Year 2040 With HDC With Project analysis show that 26 of the 42 intersections studied are forecast to operate at an acceptable level of service (LOS D or better) and 16 intersections operate at a deficient level of service (LOS E or worse) during the AM peak hour. During the PM peak hour, 26 intersections operate at an acceptable level of service and 16 intersections operate at a deficient level of service. Of these locations that are operating deficiently, 18 of the 42 locations are forecast to result in a significant impact according to the City of Victorville significance criteria.

The mitigation measures shown in Table ES-3 have been identified to achieve an acceptable level of service where possible and fully mitigate project forecast significant impacts at the study intersections for Forecast Year 2040 With HDC With Project Buildout conditions. With the implementation of the identified mitigation measures however, the following location would continue to operate at a deficient level of service with the project and the project would result in unavoidable significant impacts:

| Forecast Year 2040 With HDC With Project With Improvements Conditions |  |  |
| :---: | :---: | :---: |
| Intersection | AM Peak Hour | PM Peak Hour |
| 6 - US-395 / Air Expressway | LOS F | LOS F |

It is anticipated that SCLA Specific Plan TDM measures will be developed that will reduce development trips made during the critical peak hours. Additionally, while the long-range analysis assumes that a large portion of the SCLA Specific Plan will develop as industrial and comprising of manufacturing (25\%) and warehouse ( $75 \%$ ). Programmatic limitations on the ability to achieve $25 \%$ manufacturing development could result in significant reductions in peak hour traffic generation since employee commute trips are lower for warehouse uses.

## Signal Warrants

A signal warrant analysis has been prepared for the Forecast Year 2040 With Project build out conditions without and with the HDC based on guidelines set for by the California Manual of Uniform Traffic Control Devices (CA MUTCD) for all unsignalized study intersections found to be operating at unacceptable levels of service. All unsignalized study intersections meet the applicable signal warrants for both buildout conditions.

## City of Victorville Funding Mechanism

The City of Victorville plans to engage a consultant in September or October of 2019 to conduct an update of the City's Development Impact Fee (DIF) Program. This effort is estimated by the City to take approximately one year. The DIF will establish updated development impact fees on new residential and commercial development in the City. This study will provide the City with the necessary technical documentation to support adoption of the DIF Program, which will apply to future development in the City. Transportation facility needs will be evaluated for a projected development conditions in a horizon year (possibly 2040). The study will then calculate justifiable impact fees that may be levied for each land use based on the proportionate share of the total facility use that each land use represents. As a development impact fee, the DIF can be charged only to new development and must be based on the impact of new development on transportation facilities infrastructure. The purpose of this study is to establish the nexus (or reasonable relationship) between new development that will occur in the City and the need for additional public facility improvements due to this new development. This study will include the identification of selected roadway improvements critical to increase citywide roadway system capacity to accommodate future development. The DIF update will include all the arterial roads and interchanges in the General Plan Circulation Map, including SCLA. However, it will not include the High Desert Corridor and its interchanges.

If the updated DIF Program is in effect at the time future development occurs within the SCLA Specific Plan, the SCLA development would be subject to established DIF fee payments according to the development land use type and the adopted DIF payment schedule. Intersection and roadway impacts identified in the SCLA TIA will be satisfied by the DIF payments if the required mitigation measure is a component of the City's DIF Roadway Projects list. Any roadway system improvements needed to mitigate SCLA Project impacts that are not covered by the DIF program will be assessed to the Project on a "fair share" contribution basis.

Fair share calculations have been conducted for the purposes of this analysis and can be found in Appendix 0.

Table 17, Existing With Project Buildout Mitigation Measures

| Intersection | Impacted <br> Peak Hour | Existing Without Project | Existing With Project | Existing With Project Buildout Recommended Mitigation | Existing With Project With Mitigation |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |
| 1 - US-395 / Chamberlain Way | PM | 10.2-B | >80.0- $\mathrm{F}^{2}$ | - Install westbound dedicated left-turn-lane | 14.6-B |
| 2 - US - 395 / Bartlett Ave | PM | 12.1-B | 69-E | - Install northbound dedicated right-turn-lane <br> - Install westbound dedicated right-turn-lane | 52.6 - D |
| 3-US-395 / Air Expressway | AM <br> PM | $\begin{aligned} & 16.6-B \\ & 24.0-C \end{aligned}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install second and third northbound through-lanes and one northbound dedicated right-turn-lane with a free movement <br> - Install second and third southbound through-lanes and one southbound dedicated right-turn-lane <br> - Install dedicated eastbound left-turn-lane; Modify eastbound shared through/left-turn lane to a dedicated through lane; Install one shared through/right-turn lane <br> - Install three westbound left-turn lanes | $29.0-\mathrm{C}$ $>80.0-\mathrm{F}^{2}$ |
| 4 -US - 395 / Rancho Rd | AM <br> PM | $\begin{aligned} & 15.7-\mathrm{B} \\ & 15.3-\mathrm{B} \end{aligned}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install second northbound left-turn-lane, third northbound through-lane, and one northbound dedicated right-turn-lane <br> - Install third southbound through-lane and southbound dedicated right-turn-lane | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ |
| 5-US-395/Adelanto Rd | AM <br> PM | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection <br> - Install second and third northbound through-lanes and northbound left-turn-lane <br> - Install second southbound through-lanes; Install third combination shared through/right-turn-lane; Install southbound left-turn-lane <br> - Restripe westbound approach to include dedicate left-turn-lane and a shared through/right-turn-lane | $\begin{aligned} & 52.2-\mathrm{D} \\ & 79.4-E \end{aligned}$ |
| 6-US-395 / Palmdale Rd | AM <br> PM | $\begin{aligned} & 41.6-D \\ & 50.7-D \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install third northbound through-lanes; second left-turn-lane; and dedicated right-turn-lane <br> - Install third southbound through-lane <br> - Install eastbound dedicated right-turn-lane | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ |
| 8 Adelanto Rd / Innovation Way / Bartlett Ave | $\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & \hline 7.4-\mathrm{A} \\ & 7.5-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection | $\begin{aligned} & \hline 22.6-C \\ & 11.1-B \end{aligned}$ |


| Intersection | Impacted Peak Hour | Existing Without Project | Existing With Project | Existing With Project Buildout Recommended Mitigation | Existing With Project With Mitigation |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |
| 9 - Adelanto Rd/ Air Expressway | AM PM | $\begin{aligned} & 18.1-B \\ & 16.1-B \end{aligned}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install two northbound dedicated right-turn-lanes with an overlap phase <br> - Install a southbound dedicated right-turn-lane with an overlap phase <br> - Install third eastbound through-lane; fourth combination shared through/right-turn-lane; and second eastbound left-turn-lane <br> - Install third eastbound through-lane; fourth combination shared through/right-turn-lane; and second eastbound left-turn-lane | $\begin{aligned} & 69.1-E \\ & 50.7-D \end{aligned}$ |
| 11 - Gateway Dr / Air Expressway | AM <br> PM | $\begin{aligned} & 4.9-\mathrm{A} \\ & 5.5-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install southbound dedicated right-turn-lane with an overlap phase <br> - Install third and fourth eastbound through lanes and second eastbound left-turn-lane <br> - Install third and fourth westbound through-lanes and second westbound right-turn-lane with an overlap phase | $\begin{array}{r} 51.9-\mathrm{D} \\ >80.0-\mathrm{F}^{2} \end{array}$ |
| 12 - Phantom West / Air Expressway | AM <br> PM | $\begin{aligned} & 23.9-C \\ & 18.6-B \end{aligned}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install third southbound left-turn-lane; install southbound right-turn free movement <br> - Install second and third eastbound through-lanes and second eastbound left-turn-lane <br> - Install third and fourth westbound through-lanes | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 70.9-\mathrm{E} \end{gathered}$ |
| 13 - Nevada Ave / Air Expressway | AM <br> PM | $>80.0-\mathrm{F}^{2}$ $13.7-B$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install second southbound left-turn-lane and second southbound right-turn-lane <br> - Install third and fourth eastbound through-lane, and second eastbound left-turn-lane <br> - Install third and fourth westbound through-lanes; Install westbound dedicated right-turn-lane with an overlap phase | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 43.5-\mathrm{D} \end{gathered}$ |
| 14 - George Blvd / Air Expressway | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 34.5-C \\ & 34.8-C \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install third eastbound through lane and fourth combination through/shared right-turn-lane <br> - Install third and fourth westbound through lanes | $\begin{aligned} & 22.9-C \\ & 20.2-C \end{aligned}$ |
| 15 - Phantom East / Air Expressway | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 76.7-E \\ & 10.8-B \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install third and fourth eastbound through-lanes <br> - Install third and fourth westbound through-lanes | $\begin{gathered} 53.3-\mathrm{D} \\ >80.0-\mathrm{F}^{2} \end{gathered}$ |
| 16 - Village Dr / Air Expressway | AM <br> PM | $\begin{aligned} & 11.2-B \\ & 19.2-B \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install northbound dedicated right-turn-lane <br> - Install third and fourth eastbound through-lanes; Install eastbound rightturn overlap phase <br> - Install third and fourth westbound through-lanes | $\begin{aligned} & 48.8-D \\ & 46.6-D \end{aligned}$ |


| Intersection | Impacted <br> Peak Hour | Existing Without Project | Existing With Project | Existing With Project Buildout Recommended Mitigation | Existing With Project With Mitigation |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Delay ${ }^{1}$-LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |
| $\qquad$ | AM <br> PM | $\begin{aligned} & 24.6-C \\ & 16.5-B \end{aligned}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Reconfigure intersection to make Air Expressway the east/west through movement and the north leg of National Trails Highway a "T" <br> - Install two southbound left-turn-lanes and southbound right-turn lane <br> - Install two eastbound left-turn-lanes and two eastbound through-lanes <br> - Install three westbound through-lanes and one westbound right-turnlane | $>80.0-\mathrm{F}^{2}$ $13.6-B$ |
| $18 \text { - }$ <br> I-15 Southbound Ramps / National Trails Hwy | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 18.6-B \\ & 21.2-C \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second northbound left-turn-lane <br> - Convert southbound dedicated right-turn-lane to a free movement <br> - Install second eastbound left-turn-lane | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 38.1-\mathrm{D} \end{gathered}$ |
| 19 - <br> I-15 Northbound Ramps / National Trails Hwy | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 24.7-C \\ & 22.3-C \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install two southbound dedicated right-turn-lanes <br> - Install second eastbound left-turn-lane | $\begin{gathered} >80.0-\mathrm{F}^{2} \\ 75.3-\mathrm{E} \end{gathered}$ |
| 35 - Phantom West / Innovation Dr | $\begin{aligned} & \text { AM } \\ & \text { PM } \\ & \hline \end{aligned}$ | $\begin{aligned} & 9.7-\mathrm{A} \\ & 9.0-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection | $\begin{aligned} & 27.5-C \\ & 54.7-D \end{aligned}$ |
| 36 - Phantom West / Aerospace Dr | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 8.8-\mathrm{A} \\ & 9.3-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane | $\begin{aligned} & 4.1-\mathrm{A} \\ & 8.5-\mathrm{A} \end{aligned}$ |
| 37 - Phantom West /Mustang St | $\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 9.7-\mathrm{A} \\ & 9.3-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Install median modifications to restrict eastbound and westbound left turns | $\begin{aligned} & \hline 13.8-B \\ & 13.3-B \end{aligned}$ |
| 38 - Phantom West / Sabre Blvd | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{array}{r} 10.2-\mathrm{B} \\ 9.4-\mathrm{A} \end{array}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane | $\begin{array}{r} 6.0-\mathrm{A} \\ 11.6-\mathrm{B} \end{array}$ |
| 40 - Nevada Ave / Phantom East | PM | 9.0-A | >50.0- $\mathrm{F}^{2}$ | - Install All-Way-Stop <br> - Install northbound left-turn-lane | 16.9-C |
| 41 - Phantom East / Perimeter Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 8.7-\mathrm{A} \\ & 8.9-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Install All-Way-Stop <br> - Install southbound right-turn-lane | $\begin{aligned} & 36.9-E \\ & 17.5-C \end{aligned}$ |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Intersection} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Impacted \\
Peak Hour
\end{tabular}} \& Existing Without Project \& Existing With Project \& \multirow[t]{2}{*}{Existing With Project Buildout Recommended Mitigation} \& Existing With Project With Mitigation \\
\hline \& \& Delay \({ }^{1}\)-LOS \& \[
\text { Delay }{ }^{1} \text { - LOS }
\] \& \& Delay \({ }^{1}\) - LOS \\
\hline 42 - Gateway Dr / Innovation Way \& \begin{tabular}{l}
AM \\
PM
\end{tabular} \& \[
8.5-\mathrm{A}
\]
\[
8.7-\mathrm{A}
\] \& \[
\begin{aligned}
\& >50.0-\mathrm{F}^{2} \\
\& >50.0-\mathrm{F}^{2}
\end{aligned}
\] \& \begin{tabular}{l}
- Signalize Intersection \\
- Install east leg of the intersection \\
- Install three northbound through-lanes and one northbound dedicated right-turn-lane \\
- Install second and third southbound through lanes and one southbound left-turn lane \\
- Install one eastbound through-lanes and one eastbound shared through/right-turn-lane \\
- Install one westbound left-turn-lane, one westbound through-lane, and one westbound shared through/right-turn-lane
\end{tabular} \& \[
49.5 \text { - D }
\]
\[
54.3 \text { - D }
\] \\
\hline 43 Nevada Ave / Innovation Dr / McCoy Circle \& AM

PM \& $$
\begin{aligned}
& 0.0-\mathrm{A} \\
& 0.0-\mathrm{A}
\end{aligned}
$$ \& \[

>50.0-\mathrm{F}^{2}
\]

\[
>50.0-\mathrm{F}^{2}

\] \& | - Signalize Intersection |
| :--- |
| - Install east leg of the intersection |
| - Install second northbound left-turn-lane, two northbound through-lanes, and one northbound dedicated right-turn-lane |
| - Install one southbound left-turn-lane and two southbound through-lanes |
| - Install two eastbound through-lanes and one eastbound dedicated right-turn-lane with a channelized yield movement |
| - Install two westbound left-turn-lanes, one westbound through-lane, and one westbound shared through/right-turn-lane | \& $22.0-\mathrm{C}$

$43.1-\mathrm{D}$ <br>
\hline 45 - Phantom East / Sabre Boulevard \& AM

PM \& Does Not Exist Without Project \& $$
>50.0-\mathrm{F}^{2}
$$

\[
>50.0-\mathrm{F}^{2}

\] \& | - Install All-Way-Stop |
| :--- |
| - Install west leg of the intersection to include one shared left/through/right-turn-lane |
| - Install east leg of the intersection to include one left-turn-lane and one shared through/right-turn-lane | \& \[

$$
\begin{aligned}
& 27.5-D \\
& 32.1-D
\end{aligned}
$$
\] <br>

\hline 46 - Phantom East / Innovation Way \& PM \& Does Not Exist Without Project \& >50.0- $\mathrm{F}^{2}$ \& | - Signalize Intersection |
| :--- |
| - Install west leg of the intersection to include one eastbound shared left/through-lane and one eastbound dedicated right-turn-lane with a channelized yield movement | \& 11.7-B <br>

\hline
\end{tabular}

Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM
LOS = level of service; TWSC = Two-Way Stop Control; OWSC = One-Way Stop Control

Table 18, Forecast Year 2040 Without HDC With Project Buildout Mitigation Measures

| Mitigation Measure | Intersection | Impacted <br> Peak Hour | Forecast Year 2040 Without HDC Without Project | Forecast Year 2040 Without HDC With Project | Forecast Year 2040 Without HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-1 | 3-US-395 / Air Expressway | $\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 17.8-B \\ & 21.2-C \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Modify northbound right-turn lane to a free movement | $\begin{gathered} 54.5-\mathrm{D} \\ >80.0-\mathrm{F}^{2} \end{gathered}$ | DIF |
| MM-2 | 4 - US-395 / Rancho Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 12.6-B \\ & 14.6-B \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Restripe westbound approach to include two left-turnlanes, one through lane, and one shared through/right-turnlane | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | DIF |
| MM-3 | 5 - US-395 / Adelanto Road | AM <br> PM | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection <br> - Restripe westbound approach to include dedicated left-turn-lane and a shared through/right-turn-lane | $\begin{gathered} 52.5-\mathrm{D} \\ 80.0-\mathrm{E} \end{gathered}$ | DIF |
| MM-4 | 6 - US-395 / Palmdale Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{gathered} 59.8-\mathrm{E} \\ >80.0-\mathrm{F} 2 \\ \hline \end{gathered}$ | $\begin{array}{r} >80.0-\mathrm{F}^{2} \\ >80.0-\mathrm{F}^{2} \\ \hline \end{array}$ | - Install overlap phasing on all right-turn movements | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | DIF |
| MM-5 | 9 Adelanto Road / Air Expressway | AM <br> PM | $\begin{aligned} & 19.8-\mathrm{C} \\ & 17.7-\mathrm{B} \end{aligned}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install second northbound right-turn-lane with a right-turn overlap phase <br> - Install third westbound through-lanes; Install dedicated westbound right-turn-lane with an overlap phase. <br> - Install third combination eastbound shared through/right-turn-lane | $\begin{aligned} & 54.7-\mathrm{D} \\ & 52.2-\mathrm{D} \end{aligned}$ |  |
| MM-6 | 10 - Adelanto Road / Rancho Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 11.4-\mathrm{B} \\ & 11.9-\mathrm{B} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection | $\begin{aligned} & 6.6-\mathrm{A} \\ & 8.4-\mathrm{A} \end{aligned}$ |  |
| MM-7 | 11 - $\begin{aligned} & \text { Gateway Drive / Air } \\ & \text { Expressway }\end{aligned}$ | AM <br> PM | $\begin{aligned} & 6.2-A \\ & 7.1-A \end{aligned}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install third eastbound through-lane; Install second eastbound left-turn-lane <br> - Install second southbound left-turn-lane; Install southbound right-turn overlap phase. <br> - Install third westbound through-lane; Install second westbound right-turn lane with overlap phase | $\begin{aligned} & 44.2-\mathrm{D} \\ & 77.0-\mathrm{E} \end{aligned}$ |  |
| MM-8 | 12- <br> Phantom West / Air Expressway | AM <br> PM | $\begin{aligned} & 37.1-D \\ & 32.7-C \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install southbound right-turn overlap phase <br> - Install second eastbound left-turn-lane | $\begin{gathered} 79.8-E \\ 61.9-E \end{gathered}$ |  |


| Mitigation Measure | Intersection | Impacted <br> Peak Hour | Forecast Year 2040 Without HDC Without Project | Forecast Year 2040 Without HDC With Project | Forecast Year 2040 Without HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-9 | 13- Nevada Ave / Air Expressway | AM <br> PM | 8-A 7.9-A | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second southbound left-turn-lane and second southbound right-turn-lane <br> - Install second eastbound left-turn-lane <br> - Install one westbound dedicated right-turn-lane with an overlap phase | $\begin{aligned} & 77.2-E \\ & 46.2-D \end{aligned}$ |  |
| MM-10 | 15- Phantom East / Air Expressway | AM <br> PM | $>80.0-\text { F2 }$ 62.0-E | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Restripe northbound approach to include one dedicated left-turn lane, one through-lane, and one shared through/right-turn-lane. <br> - Install second southbound through-lane; Install second southbound left-turn-lane. <br> - Convert westbound right-turn-lane to a free movement | $>80.0-\mathrm{F}^{2}$ $78.2-E$ |  |
| MM-11 | 17 - National Trails Highway / Air Expressway | AM PM | $>80.0-\text { F2 }$ $14.7-B$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Reconfigure intersection to make Air Expressway the east/west through movement and the north leg of National Trails Highway a "T" <br> - Install two southbound left-turn-lanes and southbound right-turn lane <br> - Install two eastbound left-turn-lanes and two eastbound through-lanes <br> - Install three westbound through-lanes and one westbound right-turn-lane | $\begin{aligned} & 38.4-D \\ & 13.1-B \end{aligned}$ |  |
| MM-12 | 18 - $\begin{aligned} & \text { I-15 Southbound Ramps / } \\ & \text { National Trails Hwy }\end{aligned}$ | AM <br> PM | $\begin{aligned} & 52.9-D \\ & 71.3-E \end{aligned}$ | $>80.0-\mathrm{F}^{2}$ $>80.0-\mathrm{F}^{2}$ | - Install second northbound left-turn-lane <br> - Convert southbound dedicated right-turn-lane to a free movement <br> - Install second eastbound left-turn-lane; Install eastbound right-turn overlap phase | $\begin{aligned} & 54.0-\mathrm{D} \\ & 39.0-\mathrm{D} \end{aligned}$ |  |
| MM-13 | $19-\begin{aligned} & \text { I-15 Northbound Ramps / } \\ & \text { National Trails Hwy }\end{aligned}$ | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & \text { 27.4-C } \\ & 26.6-C \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second southbound dedicated right-turn-lane | $\begin{aligned} & 37.3-D \\ & 44.2-D \end{aligned}$ |  |
| MM-14 | 26 - Phantom East / Palmdale Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 6.9-\mathrm{A} \\ & \text { 6.9-A } \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second southbound left-turn-lane. <br> - Install southbound right-turn overlap phase. <br> - Install westbound right-turn overlap phase. | $\begin{array}{r} 54.7-\mathrm{D} \\ >80.0-\mathrm{F}^{2} \\ \hline \end{array}$ |  |
| MM-15 | 35 - Phantom West / Innovation Dr | $\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 9.4-\mathrm{A} \\ & 8.7-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection. | $\begin{aligned} & \hline 20.2-C \\ & 46.2-D \end{aligned}$ | $\begin{aligned} & \hline 100.0 \% \\ & 100.0 \% \end{aligned}$ |


| Mitigation Measure | Intersection | Impacted <br> Peak Hour | Forecast Year 2040 Without HDC Without Project | Forecast Year 2040 Without HDC With Project | Forecast Year 2040 Without HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-16 | 36 - Phantom West / Aerospace Dr | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 8.7-\mathrm{A} \\ & 9.1-\mathrm{A} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane | $\begin{aligned} & 4.2-\mathrm{A} \\ & 7.8-\mathrm{A} \end{aligned}$ | 100.0\% <br> 100.0\% |
| MM-17 | 38 - Phantom West / Sabre Blvd | AM <br> PM | $\begin{aligned} & 9.9-A \\ & 9.1-\mathrm{A} \end{aligned}$ | $\begin{array}{r} 32.9-\mathrm{F}^{2} \\ >50.0-\mathrm{F}^{2} \end{array}$ | - Install All-Way-Stop <br> - Modify northbound approach to include a one shared left/through-lane and one shared through/right-turn-lane <br> - - Modify southbound approach to include a one shared left/through-lane and one shared through/right-turn-lane | $\begin{aligned} & 21.0-\mathrm{C} \\ & 18.4-\mathrm{B} \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-18 | 40 - Nevada Ave/Phantom East | PM | 8.8-A | >50.0- F2 | - Install All-Way Stop | 14.4-B | 100.0\% |
| MM-19 | 42 Gateway Drive / Innovation Way | AM <br> PM | $8.5-\mathrm{A}$ <br> 8.6-A | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection. <br> - Construct east leg of the intersection. <br> - Install one northbound through lane and one shared through/right-turn-lane <br> - Install one southbound left-turn-lane and a second southbound shared through/right-turn-lane. <br> - Install one eastbound through-lane and second shared through/right-turn-lane <br> - Install a westbound left-turn-lane, one westbound throughlane, and one shared through/right-turn-lane | $\begin{aligned} & 42.1-\mathrm{D} \\ & 38.5-\mathrm{D} \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-20 | 43 Nevada Ave / Innovation Dr / McCoy Circle | AM <br> PM | $\begin{aligned} & 0.0-\mathrm{A} \\ & 0.0-\mathrm{A} \end{aligned}$ | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection <br> - Construct east leg of the intersection <br> - Install one northbound through lane and one shared through/right-turn-lane <br> - Install a southbound left-turn-lane, one southbound through-lane, and one southbound dedicated right-turn-lane <br> - Install eastbound through-lane <br> - Install two westbound left-turn-lanes, and a westbound shared through/right-turn-lane | $\begin{aligned} & 43.6-\mathrm{D} \\ & 40.0-\mathrm{D} \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |

$\qquad$


Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM
LOS = level of service; TWSC = Two-Way Stop Control; OWSC = One-Way Stop Control

Table 19, Forecast Year 2040 With HDC With Project Buildout Mitigation Measures

| Mitigation Measure | Intersection | Impacted <br> Peak Hour | Forecast Year 2040 With HDC Without Project | Forecast Year <br> 2040 With <br> HDC With <br> Project | Forecast Year 2040 With HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-23 | 3 - US-395 / Air Expressway | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & 17.9-\mathrm{B} \\ & 20.3-\mathrm{C} \end{aligned}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Modify northbound right-turn lane to a free movement <br> - Install eastbound dedicated right-turn-lane | $\begin{aligned} & 26.0-\mathrm{C} \\ & 54.7-\mathrm{D} \end{aligned}$ |  |
| MM-24 | 4 - US-395 / Rancho Road | PM | 23.9-C | >80.0- $\mathrm{F}^{2}$ | - Restripe westbound approach to include two left-turnlanes, one through lane, and one shared through/right-turnlane | 54.7 - D |  |
| MM-25 | 5 - US-395 / Adelanto Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection | $\begin{array}{r} 4.9-\mathrm{A} \\ 27.1-\mathrm{C} \end{array}$ |  |
| MM-26 | 6 - US-395 / Palmdale Road | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{gathered} 48.9-\mathrm{D} \\ >80.0-\mathrm{F}^{2} \end{gathered}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install overlap phasing on all right-turn movements | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ |  |
| MM-27 | $\qquad$ | AM | 16.3- B | 76.5-E | - Install northbound right-turn overlap phase | 54.5 - D |  |
| MM-28 | 10 - Adelanto Road / Rancho Road | PM | 11.5-B | >50.0- $\mathrm{F}^{2}$ | - Signalize Intersection | 7.2-A |  |
| MM-29 | 11 - $\begin{aligned} & \text { Gateway Drive / Air } \\ & \text { Expressway }\end{aligned}$ | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{array}{r} 32.6-C \\ 45-D \end{array}$ | $\begin{aligned} & >80.0-\mathrm{F}^{2} \\ & >80.0-\mathrm{F}^{2} \end{aligned}$ | - Install second eastbound left-turn-lane <br> - Install second southbound right-turn-lane; Install southbound right-turn overlap phase. | $\begin{aligned} & 21.1-C \\ & 20.7-C \end{aligned}$ |  |
| MM-30 | 27 - US-395 / HDC WB Ramps | PM | 29.4-C | >80.0- $\mathrm{F}^{2}$ | - Reconfigure westbound approach to include one left-turnlane, one shared left/through-lane; Install second westbound dedicated right-turn-lane <br> - Convert third southbound through-lane to a shared through/right-turn-lane | 44.7 - D |  |
| MM-31 | 31 - $\begin{aligned} & \text { Phantom East /HDC WB } \\ & \text { Ramps }\end{aligned}$ | AM | 19.9-B | >80.0- $\mathrm{F}^{2}$ | - Modify westbound right-turn-lane to include a channelized yield right-turn movement | 0.9-A |  |
| MM-32 | 35 - Phantom West / Innovation Dr | AM <br> PM | $\begin{aligned} & 9.4-\mathrm{A} \\ & 8.7-\mathrm{A} \end{aligned}$ | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection. <br> - Install second northbound left turn lane and one northbound dedicated right-turn-lane with a right-turn overlap phase <br> - Install southbound dedicated right-turn-lane <br> - Install second eastbound through lane and convert dedicated right-turn to a free right movement <br> - Install second westbound through lane | $\begin{aligned} & 30.7-\mathrm{C} \\ & 54.3 \text {-D } \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |


| Mitigation Measure | Intersection | Impacted <br> Peak Hour | Forecast Year 2040 With HDC Without Project | Forecast Year 2040 With HDC With Project | Forecast Year 2040 With HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$ - LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-33 | 36 - Phantom West / Aerospace Dr | $\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & \text { 8.7-A } \\ & 9.1-A \end{aligned}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize intersection <br> - Install northbound dedicated right-turn-lane <br> - Install southbound dedicated right-turn-lane | $\begin{aligned} & \hline 4.1-\mathrm{A} \\ & 9.5-\mathrm{A} \end{aligned}$ | $\begin{aligned} & \hline 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-34 | 37 - Phantom West /Mustang St | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 9.5-A \\ & 9.2-A \end{aligned}$ | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 49.8-\mathrm{F}^{2} \end{array}$ | - Install median modifications to eliminate eastbound and westbound left turns | $\begin{aligned} & 14.3-B \\ & 13.7-B \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-35 | 38 - Phantom West / Sabre Blvd | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{gathered} 10-\mathrm{A} \\ 9.1-\mathrm{A} \end{gathered}$ | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize intersection <br> - Install northbound dedicated right-turn-lane | $\begin{aligned} & 5.3-\mathrm{A} \\ & 9.5-\mathrm{A} \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-36 | 41 - Perimeter Road/ Phantom | AM <br> PM | $\begin{aligned} & 8.7-\mathrm{A} \\ & 8.8-\mathrm{A} \end{aligned}$ | $\begin{array}{r} >50.0-\mathrm{F}^{2} \\ 45.1-\mathrm{F}^{2} \end{array}$ | - Install southbound dedicated right-turn-lane <br> - Install westbound dedicated right-turn-lane | 29.2 - D <br> 14.6 - B | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-37 | 42 Gateway Drive / Innovation Way | AM <br> PM | $8.5-\mathrm{A}$ 8.6-A | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection <br> - Construct east leg of the intersection <br> - Install two northbound through-lanes and one northbound dedicated right-turn-lane with an overlap phase <br> - Install one southbound left-turn-lane and a second southbound through-lane <br> - Install two eastbound through-lanes and one eastbound dedicated right-turn-lane <br> - Install a westbound left-turn-lane, two westbound through-lanes, and two westbound right-turn-lanes with a right-turn overlap phase | $\begin{aligned} & 43.6-D \\ & \\ & 54.8 \text { - D } \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-38 | 43 Nevada Ave / Innovation Dr / McCoy Circle | AM <br> PM | $\begin{aligned} & 0.0-\mathrm{A} \\ & 0.0-\mathrm{A} \end{aligned}$ | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection <br> - Construct east leg of the intersection <br> - Install one northbound shared through/right-turn-lane <br> - Install a southbound left-turn-lane <br> - Install one eastbound through-lane and one shared through/right-turn-lane <br> - Install a westbound left-turn-lane, a westbound throughlane, and a shared through/right-turn-lane | $\begin{aligned} & 10.6-B \\ & 13.6-B \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |

$\qquad$

| Mitigation Measure | Intersection | Impacted <br> Peak Hour | Forecast Year 2040 With HDC Without Project | Forecast Year 2040 With HDC With Project | Forecast Year 2040 With HDC With Project Recommended Mitigation | With Mitigation | Project Responsibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay ${ }^{1}$ - LOS | Delay ${ }^{1}$-LOS |  | Delay ${ }^{1}$ - LOS |  |
| MM-39 | $\qquad$ Boulevard | AM <br> PM | Does Not Exist Without Project | $\begin{aligned} & >50.0-\mathrm{F}^{2} \\ & >50.0-\mathrm{F}^{2} \end{aligned}$ | - Signalize Intersection <br> - Install west leg of the intersection to include one shared left/through/right-turn-lane <br> - Install east leg of the intersection to include one shared left/through/right-turn-lane | $\begin{aligned} & 13.3-B \\ & 44.0-D \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |
| MM-40 | $\begin{aligned} & 46 \text { - Phantom East / Innovation } \\ & \text { Way } \end{aligned}$ | AM <br> PM | Does Not Exist <br> Without <br> Project | $>50.0-\mathrm{F}^{2}$ $>50.0-\mathrm{F}^{2}$ | - Signalize Intersection <br> - Install second northbound left-turn-lane <br> - Install west leg of the intersection to include one eastbound shared left/through-lane and one eastbound dedicated right-turn-lane with a channelized yield movement <br> - Install westbound left-turn-lane | $\begin{aligned} & 11.0-\mathrm{B} \\ & 16.1-\mathrm{B} \end{aligned}$ | $\begin{aligned} & 100.0 \% \\ & 100.0 \% \end{aligned}$ |

Note: Deficient intersection operation indicated in bold.
${ }^{1}$ Average seconds of delay per vehicle.
${ }^{2}$ Delay exceeds 80.0 seconds for signalized intersection or 50.0 seconds for unsignalized intersections; Level of Service F per HCM
LOS = level of service; TWSC = Two-Way Stop Control; OWSC = One-Way Stop Control


[^0]:    ${ }^{1}$ Per the CEQA Guidelines Section 15384, substantial evidence must be based in fact, rather than conclusions or base assertions.
    ${ }^{2}$ The methodology used to calculate VMT for GHG purposes should be reviewed to confirm if it is consistent with SB 743 guidance and requirements. For example, if VMT calculated for GHG emissions is truncated at a model's jurisdictional boundaries, that may require modifications for SB 743 purposes.

[^1]:    ${ }^{3}$ Service population is defined as the sum of residents and employees
    ${ }^{4}$ Baseline conditions are typically defined as the year when a Notice of Preparation for an EIR is issued, rather than a specific year

[^2]:    $\mathbf{2 | P a g e}$

[^3]:    $4 \mid P$ a $g e$

[^4]:    ${ }^{1}$ MDAQMD California Environmental Quality Act (CEQA) And Federal Conformity Guidelines (http://www.mdaqmd.ca.gov/home/showdocument?id=538)
    ${ }^{2}$ http://www. aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/ghgboardsynopsis.pdf?sfvrsn=2

